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PREFACE 

This study was done in answer to a criticism of a pa.per on ultra­

sonic absorption in the lanthanide sulfates by N. Purdie and c. A. 

Vincent. The argument that the absorption of the lanthanide sulfates 

is a. cation dependent process cannot be conclud.9d until a study of 

anion dependence is done. The nitrates of the la.nthanides are studied 

and compared with the corresponding sulfate. 

Uranyl sulfate and uranyl nitrate a.re studied to determ.inewhether 

the relaxations observed are due to complex formation or hydrolysis. 

I wish to express my gratitude to Professor N. Purdie, research 

adviser, for his inva.lua.b1e guidance, patience and confidence during 

the preparation of this thesis. Thanks are due Mr .. Douglas P. Fay who 

prepared the sulfates of the lantha.nides for this study. I also wish 

to thank Dr. T. E. Moore for a.id and assistance during the course of 

my graduate work at Oklahoma. State University. 
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CHAPI'ER I 

INTRODUCTION 

Th~ properties of aqueous solutions of electrolytes depend, for· 

the most part, on ion-water interactions as described in the model 
1 

of Frank and Wen. The ions at infinite separation are surrounded by 

three concentric region~: 

/ 
,---....-c-

Figure 1. The Hydrated Ion 

1 



a primary or inner sphere (a) of strongly bound water molecules, a 

second sphere (b) with water molecules still ordered to some extent by 

electrostatic forces of polarization and a third sphere (c) having 

2 

water influenced only slightly by the presence of the ion and essential-

ly resembiing the structure of the pure solvent. At short interionic 

distances the coulombic attraction of .ions of opposite charge can 

bring about substitution of ions for solvent molecules in the first 

and second hydration spheres. The species produced are called ion 

pairs, outer ion pairs if solvent molecules exist between the ions and 

inner ion pairs or complexes if the ions are in contact. Studies of 

the thermodynamics of ion pair formation by classical methods such as 

conductivity measurements, spectrophotometry, polarography, 

potentiomentry and solubility measurements have been unable to dis-

2 
tinguish between these species. This is not unreasonable since, 

using the present model, the species existing in equilibrium could not 

be resolved due to the complexity of the system, Figure 2. 

Two processes are involved in the first step between states 1 and 

2. First, the free hydrated ions approach each other to within the ap-
··~ -proximate dimensions of their ionic atmospheres, and second, there is a 

rearrangement of ions and molecules within the ionic atmosphere to give 

structure 2. The second step is the loss of a water molecule from the 

primary coordination sphere of the anion. The anion has three modes 

of interaction with the water molecules of the cation. The anion may 

interact strongly with one hydrogen of a water molecule in the primary 

hydration sheath of the cation, or with two hydrogens on either th~ 

same or two adjacent water molecules. At any one time the three 

structures are in equilibrium with one another. The third step is 



Figure 2. Mechanism of Ion Pair Formation 

the replacement of a water molecule from the inner coordination sphere 

of the cation by the anion and the formation of a chemical bond 

between the ions. There is a concomitant increase in the degree of 

disorder of the water structure as a result of charge neutralization 

and this gain in entropy is very often the principal contributing 

factor to thermodynamic sta.bili ty •. This is particularly true in the . 

ease of unsymmetrical electrolytes in wp.ieh the various states have a 

net charge. 

3 



It the equilibrium constants for .the various reactions in the 

mechanism a.re JS:, KII and 1S:tI' then the overall stl!!,bility constant~ 

en be shown to be 

(l) 

As a consequence, the structure of the complexed species present in 
' 

solution ea.n not be identified by the overall stability constant. The 

utility of the conventional approach is limited to situations wherein 

the anion, for example, is kept constant and the change in KT for a 

series of complexes with similar metal ions is a function of the 

cationic properties and therefore of KIII• It is apparent from 

equation (1) that a simple relationship does not exist between the 

various equilibrium constants and consequent1y, extreme caution must 

be used in drawing conclusions about the predominant species in solu-

tion from stability measurements alone. If heat and entropy data a.re 

available, the conclusions a.re more justified. 

The only route to the evaluation of the individual equilibrium 

constants is by kinetic measurements .. Equilibrium is reached very 

rapid1y and the problem is amenable on1y to modern relaxation methods. 

The complete mechanism, rewritten to introduce the rate constants 

a.- 3 . ..m+ e.-1'f"+( aq) + A (a.q) ~ M (H20)(H20)A 

k:21 tl 
. k ~21 k23 

(m-a)+ 34 m+ a.-
, H20 + MA ( ) M (H20)A + H20 

(2) 

k43 



shows a dependence of KIII = k34/k43 on the ratio oft~ concentra­

tions of inner to outer com.plex. 

5 

Evidence indicates that the rate determining step of the mechanism 

is indeed step III. Supporting this a.re several t~eoretical consider-

a.t:tons: 

(a) It the rates of diffusion of the aquated ions, to within 

two water molecules of each other, are ealeu.1a.ted from the 

theory of diffusion controlled reactions, the relaxation time 

should lie in the order of 10-9 seconds. 

(b) The eaEJe ot remova.1 of water molecules from an oxyanion should 

ta.\e place faster than from. a corresponding cation since the 

interaction of .the anion with the surrounding water molecules 

is usually weaker than for the cation. 

(e) The waters coordinated to the cation should be held more 

strongly due to the large surface charge on the cation result-

.i:ng from the small ionic radius. 

Experimental evidence for the correlation of the slow step with 

step III is exhibited by the dependence of the rate on the cation for 
; 

a. series of sim,ilar 1:1 and a:2 electrolytes.3 Sulfate, EDTA and 1m3 
3 complexes of Cu, for example, are formed at nearly the same rate. 

D20 studies of com.plexation show no dependence of OH bonds on the 
4 

observed re~•tions. That the rate eonstants are directly related 

to step III has been confirmed by Connick5 in a number of studies using 

17 O labelled water in '.NMR studies of water exchange rates in the 

transition elements. 
. 17 

The rates obtained are related to OH2 moleeul.es 
I 

entering the f!rst coordination shell of the paramagnetic cations. 

'?he rates<of' wj.ter exch.Qge tor the diva.lent ions wnen com.pared with 



Eigen's3 values for the rates of formation of inner sulfate ion pairs 

show a. fairly close parallelism. 

Since the substitution rate is apparently independent of the 

na.ture of the entering ligand, .the metal to water bond must be broten 

prior to the arrival of the ligand at the coordination site. Such a 

mechanism is designated SNl. This explanation is consistent with the 

observation that the slow step is cation <J.ependent • 

.. The rates of complex formation of the a.lka.li meta.ls, the alkaline 

earth nteta.ls and the transition metals closely follow changes in 

electronic structure. This can be seen from the plots of log k34 vs 

1/r for the alkali and the alkaline earth metals which give a linear 

rate dependence, as would be assumed for ions of noble gas configura-

6 

tion. For the transition metals the rates follow the eft'ects of ligand 

field stabilization as seen in Figure 3. 

B.o 

~ 7.0 
.!i:I 
bO 
~ .6.o 

4.o 

1.0 1,l lo2 

1/rcX-1> 

Mn 
2+ 

2+ 
Co 

Figure 3. log k34 vs 1/r for the Transition Metal Series3 
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'l'he ligand field effects on the stability of the trivalent rare earth 

complexes and on the rates of ligand substitution are considere~ small 

because of the de~:p penetration of the 4f' electrons into the electronic 

atmosphere of the ion--a maximum of 10% contribution to the stability 
. 6 

has been suggested by Dunn. It is reasonable, therefore, to expect 

them to behave like the alkaline earth metals because of their pseudo-

noble gas eonf'igura.tion. 'fhat they do not, Figure 4, 

108 

...::t 
CV) 

·,J,i:I 

bO 
0 

r-4 
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·Figure 4. 
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Log k L vs 1/r for the Rare Earth Metals {from Ge1er7) · 
3'+ 

has been attributed to a change in hydration or coordination number of 
8 

the series. Entropy studies by Yatsimirskii have shown a range in 
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the lanthanide series where the entropy of complexation changes 

abruptly and it is possible to associate this with two forms of eoordin-

ation which differ with the atomic number of the metal. 

There is at least one exception to the independence of the slow 

step on the nature of the ligand. This arises in hydrolysis reactions 

where, depep,ding upon the pH, the ''entering" group will be either a 

hydroxide ion or a water molecule. If the rate of substitution of 

water is slower than the rate of proton transfer from the primary 

coordinated water to the "entering" group, then the rate controlling 

step in basic medium will be :9 ,lO 

m+ ...,H ~ (m-1)+ 
M~O,, + OH-~<--.:::: M~OH + H O 

"-H 2 

a.nd in an e.eid medium: 

(3) 

(4) 

, Hydrolysis· • reactions can complicate. studies of complex formation 

especially when the cation is relatively small and highly charged, for 

3+ 2+ · 3+ example Al , Be ., Fe . , U(VI), and in particular when stable 

polynuclear complexes are produced. 

Gep.eral Theory 

In 1950 relaxation methods for studying rapid reactions in solu-
11 

tion were introduced by M. Eigen. The principle of these methods is 

the variation of some external pare.meter of a system at or near 

equilibrium. The para.meters varied can be temperature or pressure. 
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For example, if the chemical equilibrium is temperature dependent, the 

concentrations will all change from their equilibrium values at T1 to 

their respective values at T2 • The rates at which the concentrations 

change :f'rom one equilibrium state to another is a consequence of the 

kinetics of the opposing reactions. Any type of perturbation can be 

used if it causes a measurable change in concentration from some 

arbitrary reference state; examples are step-function perturbations, 

12 
periodic perturbations and pulsed perturbations. 

Four relaxational methods have been -used extensively: temperature 

jump, pressure jump, the II Wein effect (electric field jump) and 

ultrasonic absorption. In the present stuq.y pulsed ultrasound was 

used. 

Relaxation :methodsp.ave a unique feature. Since the deviations 

from an equilibrium state a.re very small", the kinetics of a. system can 

be described by a $et of linear differential equations. For example, 

in the general reaction 

the rate equation 1$: 

kl 
A +B( >AB 

k_l 

d.6.e 1 ... -, = -Ac 
dt 'T 

(5) 

(6) 

where Ac is the deviation of' the concentration of all components :from 

their equilibrium values and. 'Tis called. the relaxatio11 time of the 

system. If the chemical system is complex, a system of rate equations 

of the general form., 
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(7) 

are OQtained where aij are known functions of rate constants and 

equilibrium. concentrations. If' the system of simultaneous equations is 

solved, a spectrum of relaxations is obtained--each relaxation time 

having its OW'.13. particular dependence on the equilibrium concentrations. 

An ultras9nic wave propagates as an adiabatic pressure wave. 

Both temperature and pressure cha~es accompany the sound wave but in 

aqueous solutions, temperature f'luctu!iltions are nearly absent because 
. . 0 

the thermal expansion of' H2o is very small (zero a.t 4 c.). 'I'he 

adiabatic compressibility of the fluid may be resolved into a. virtually 

insta.nteous portion plus a time depen~ent portion: 

where ~00 is the instantaneous compressibility and is given by the 

limiting value as the :frequency approaches infinity. 

~· is the relaxa.tiona.l pa.rt of the compressibility which is 
r. 

:frequency depen~ent. 

(8) 

If the frequency of pressure variation in the liquid is low, then the 

chemical equilibrium is continuously maintained and the volmne-pressure 

relationship will be the static one ~00 0 On the other hand, if the 

frequency o:t' pressure variation is very large, then the chemical 

equilibri'tl.Dl cannot be greatly altered during the pressure change. 

Between these two frequency limits lies the region o:t' absorption. 

Since the system cannot immediately re-establish equilibrium with a 

pressure rise as in cas~ l, it follows that a phase lag exists between 

pressure and the specific volume.. The :frequency dependence of the 



relaxational compressibility is 

where w is the angular frequency. 

a is a real number. 
r 

The phase lag ca.uses dissipation of energy with each cycle 

Energy Lost Per Cycle= ~PdV 

11 

(9) 

(10) 

As the frequency rises from a low value, the shift in equilibrium. will 

increasingly l!;l.g behind the pressure. The maximum energy is lost 

when: 

(co...) 
r 

where flo = ar ,+, Sex, 

a excess absorption per wave length 

T is the relaxation frequency 

w is angular frequency 

The maximum occurs at a frequency of' w = 1 .. This yields an absorp­
T 

tion curve Figure 5, which is independent of frequency. 

(11) 
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log w 

Figure 5. Ultrasonic Absorption P1ot 

/ 



CHAPTER II 

APPARATUS 

The pulse teclmique can be used, in the :frequency range 1-300 MHz. 

Since the absorption is proportional to the square of the freque~cy, 

the absorption is very small below l MHz. At very high frequencies, 

the efficiency of the crystal transducer is greatly reduced. The 

equipment used in this study has a fre\uency range of 5 to 75 MHz. 

The Electronic System 

A block diagram of the apparatus is shown in Figure 6. The signal. 

is initiated by a square wave pulse generator suppl.ying two output 

pulses at about 60 pulses per second which are separated by a variable 

delay. The two pulses a.re similar in amplitude and polarity and a.re 

therefore identical. '!'he :first pulse drives a pulse amplifier which 

suppl.ies approxima.tel.y 500 volts amplitude to the translllitters. These 

in tu.rn put out 150 volts peak to peak into a. circuit impedance of 75 

ohms to tlrive a crystal transducer. The second pulse drives a. tra.n~ 

s:tstor pul!!Je a.mpl.ifier. This pulses a particular comparison pulse 

osc,illator, a.nd the out::i;:>ut :from the selected unit is passed through a. 

set of precision attenuators. The outputs of the receiving trans­

ducer and the attenuators are combined in a pas~ive addition circuit 

and ta.ken to a video a.mpl.ifier. The resultant signal is then displayed 

on an oscilloscope, Tektronix 536, equipped for fast :t".ise time. 

l.3 
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The Mechanical System 

The mechanical system is picture in Figure 7. It consists of 

three parallel stainless steel platforms anchored to a.stainless steel 

back. On the lower platform is positioned a table, 'fastened by _a sp:s!ng 

through the center and two •pin off' nuts on either side. The table is 

supported by three adjustable levelling feet. The table is actually a 

large chuck into which a quartz rod can be inserted, electrical con-

tacts with the rod being made on the sides of the chuck and through 

the bottom by a spring leaf assembly; the external connection is made, 

through a BNC connector mounted on the side of the table. The center 

platform has a moveable chuck (electrical connections through the sides 

and base) tensioned by spr+ngs so as to maintain position if moved 

· vertica.1ly. The upper pl1:1,tform has a. micrometer firmly mounted above 

the UJ;>per chuck. The mic~ometer moves the upper chuck through an 

intermeq.ia.te stainless steel ball to achieve calibrated vertical motion 

of the receiver transducer. 

The Transducer Assembly 

Two delay rods of Spectrosil B grade fused quartz were obtained 

from Thermal Syndicates Ltd., England. The emitter and lower rod has 

the specifications, length--80 Illl!l±l.Omm, dia.rneter--30mm.±o.5mm., one end 

ground to a taper, the semi angle being 5 degrees leaving the diameter 

of one end 24nw. The tapered end fits a water jacket. The detector 

rod dimensions a.re 80+lmm. in length and 20mm+o.5:imn in diameter. Both - ~ 

cylinders have end fa.ces optically flat to 1/4 of the wave length of 

green light and are parallel to 6 seconds of arc. 

~ach rod was platinum plated on one end and to approximately 30mm 
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Figure 7. Mechanical System 
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along the side.by repeated application and heating to 700°c of Liquid 

Bright Platinum. (Du;?ont #7447) until a conducting surface of approxi­

mately 1 ohm resistance between face and side was achieved. 

The ptezoelectric transducers are X-cut crystals w:i,th a 'funda­

mental resonant frequency of 5000 KHz with a tolerance of ±70 KHz 

(Marconi's w. T. co. Ltd,). The crystals were attached to the delay 

rods usin$ hot :pa.ra:t:f'in wa.x--the crystals being nset inn until there 

was essentially a monomolecular bond between the crystal and rod. The 

outer face of the crystal was coated with liquid silver conducting 

paint to achieve electrical contact. The rods were checked for excess 

attenuation due to poor bonq,ing and the nsetting in" process repeated 

u,ntil the lowest value of attenuation was obtained. 

Experimental Procedure 

The solution under study was placed in the thermostated cell. The 

delay rods were made parallel by adjusting the lower table until the 

first pulse displayed on the oscilloscope was maximized .. This was 

usually done at 75 MHz since parallelism is most critical at shorter 

wave lengths. The transmitter pulse was tuned to a maximum at a given 

frequency. To check that the comparison pulse generator was opera.ting 

at the same frequency, the two pulses were overlapped, and the com­

parison pulse frequency tuned until beating was observed in the 

oscilloscope display. It wai, not possible to measure the precise 

separation of th~ delay :i;-ods so the total sou,nd absorbed, in decibels, 

was meas'll!'ed as a 'function of the change in separation, in centimeters. 

More precisely a reading was taken by selecting a value on the pre­

cision attenuators which gave a suitable height for the comparison 



18 

pulse. The transmitted pulse was matched to the same height with the 

micrometer drive of the mechanical system. Where possible five or more 

measurements of attenuation and distance were taken in replicate. The 

sound absorption coefficient~ in decibels per centimeter for each 

frequency was obtained from the slope of the plot of distance versus 

attenuation. 



CHAPTER III 

STATEMENT OF THE PROBLEM 

The aim of this study is the measurement a1'1d the interpretat:ion 

of the ultrasonic absorption spectra of the nitrates of' La(II:I) 9 

Ce{III), P:r{Ir:r)J) Sm(III), Er(III)y an.d uo2UIL ar,1d the sulf'ate® !Qlf 

Pr(III}p Sv1(III)y Er(III), and UOiII). 

The sul:f'at;ee o:f sm13 and Pr14 have been etud:lled previou1dy by 

ultrasonic techniques and a. comparison of the relaxation ti:meai sbould 

serve as a check of the ultrasonic apparatus .. 

With regard to the studies of the tran:dtion :metals 9 lt 1'::a:$ ·been, 
1.-:; 

fairly well esta:foli~hed that Eigen 's three step r:r.ieehan.:li.:emt ,, hold~ true 

and the low frequency rela.xatio:a observed is Jlndeed due to eitep rn .. 

relaxation bei:ng lin.'ked to step III has not been el!lltablishecL.. It 1.SJ 

there:fore proposed. that a number of lanthanide ni~,ratee and, if not 

already measured.J> their corresponding sulfatel31 be ®tud.:ll.edo 1'.:'f' aii 

anion indLepe:ndenee is seeni> then the mecha.nil!lm. a,t:'.11=;.ordi.ng to Eigen 

should hold., '.P.he nitrates must be studied at rela.th·e,ly high concien"" 

traticm since the anion. co:ntributel!ll to low a.bai(orpt:1.on beca:u:se o:f its 

16 low charge density compared to the sulfates. 

The kinetics of the uranyl ion have been studted exten!lllively by 

17 0 . 18 . 10 Peter$Oln. P by S1.llen and by Eyring a.ccord.:i:ng to the seheme i 

19 
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2+ k.1,. 
UO + H OZ::ZUO OH++ H+ 

2 2 "k-1 2 

2UO z+ + 2H 0( >(uo ' §OH:\ 2+ + 2H+ 
2 2 212' ~2 (12) 

2+ . + + 
3uo2 + 5H2o~(uo2 ) 3(oo:\ + 5H 

Very preliminary work on sound a.bsorpti,on. of vo2so4 solutions indica­

ted that there is a relaxation between land 5 MB:z. If the relaxation 

time for hydrolysis is calculated using the value of k_1 derived from 

the theory of diffusion controlled reactions and the known value of 

kl' a value of '!" = 2 .. 5 megacycles is obtainedo Since uranyl sulfate 

also forms a strong complex the observed relaxation may be due to 

1) complex formation alone 

2) hydrolysis alone 

3) complex formation and hydrolysis togethero 

As a preliminary investigation, the possibility of a contribution 

from (1) will be considered by a comparison of the absorption spectra 

of uranyl nitrate, which does not complex and uranyl sulfatep whicb 

does. A more complete study would involve the dependence of the re= 

laxation frequency on pHo 



RESULTS AN.D CONCLUSIONS 

The attenuation or a plane progressive wave traversing a solution 
11 

is given by the expression 

I= I exp (-2ax) 
Q 

where I= sound intensity at distance x, 

! 0 = sound intensity at distance zero, 

a= absorption coef't'icient of' the solution. 

(13) 

The experimentally measured absorption is ex and a , due to chemical T XS 

relaxation, is o'btained by subtracting the solvent contribution aH O 
2· 

a =a -a 
XS T HO 

2 

(14) 

Equation (14) implies strict additivity or absorption contributions. 

The addition of a solute to a solvent can decrease the observed ab-

sorption due to the solvent even in moderately dilute solutionso This 

means an error is introduced in treating the absorption of electrolytes 

in solution as the sum of the absorption due to the solvent and that 

due to the chemical relaxation processes. In most instances where 

chemical relaxation is involved, the overall absorption is considerably 

greater than that for the solvent alone and the error introduced is 
. 16 

small. 

Measurements are expressed as absorption per wavelength O!xs ;\, 

21 



where 

a :\ = 
XS 

Cl c 
XS W 

" 
C is the velocity of sound in.pure water at 25°c and vis the fre­
w 

quency, Tables I. through x. 

22 

(15) 

Rel~ation curves a.re shown in Figures 8 through 13. The maxi-

mum m.a.y not always be observed within the.available frequency range-< 

because theoretically a complete single relaxation occurs over one 

decade in frequency. The curve could be extrapolated to give a rough 

estimate of tbe frequency maximum.; however, a more quantitative re-
. . . 18 

sult is obtained if the equation for chemical relaxation 

(16) 

is used w~re B' is the absorption due to the solvent and A is tbe 

a.mplit'Ude of the chemical. absorption. Equation (16) ca.n be rearranged 

to read 

a - B'v2 _._ A = 2 .,. (17) 
v m 

which is equivalent to 

(18) 

2 A plot of the left hand side versus a gives - 1/-vm as the slope and· 
XS 

therefore the characteristic relaxation frequency vm, e.g. Figure 14, 

15 and 16. 
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TABLE I 

MmAS~ ABSORP.rION OF Pr2(so4)3 AT 25°c 

0.00537 F 
-6 2 16 3 v x 10 , ,aT: . a a Iv x 10 axs~ xlO .... XS .. XS . 

(Hz) (d.b/cm) · (db/em) (db x.fie.c2/~m) (db) 

5. 0.367 0.259 103.5 7.74 
15 1 .. 699 1.306 58.0 13 .. 02 
25 3~1':61 2.298 36.8 13.75 
35 4.867 2 .. 640 21.5 11.29 
55 8.486 3.054 10.1 8~31 
75 11.358' 3.340 5.9 6.66 

0.00269 F 

v x 10 
.. 6 I 2 1016 3 

. aT Cl Cl \} x . ctxJ-x 10 XS XS 
(H.z) ( db/em) (db/cm) (db x sec2 /cm) (db) 

5 0.268 0.160 63.8 . 4.77 
15 1.095 .0.701 31.2 6.99 
25 2.296 1.132 18 •. 1 6.77 
35 3.438 1.211 10.0 5 .. 18 
55 6.818 1.386 4.6 3 .. 77 
75 9.510 1 .. 492 2.7 2 .. 98 

0.00134 
.. 6 2 16 3 

v x 10 Cl O! et Iv x 10 axs"x 10 
T ;x:s XS 2 

(Hz.) (db/cm) (db/cm) (db x sec /cm) (db) 

5 0.199 0.091 36.4 3.73 
15 0.755 0.362 16.1 3.61 
25 1.673 0.509 8.1 3.05 
35 2.783 0.556 li-.5 2-38 
55 5.988 0.557 1.8 l.51 
75 8.761 0.744 1.3 L48 
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TABLE II 

. . 0 
MEASURE}) ABSORPTION OF Sm (so,.) AT 25 c 

. . 2 • 3 

O.Olo60 F 

v x 10·6 2 16 a }. x 103 aT (XX$ a Iv x 10 
XS · XS 

(H;r;) _ (db/cm) (db/cm) (dbx see2/cm) (db) 

5 0.393 0.285 113.8 8.54 
15 · 2.466" 2.072 92.1 20.66 
25 5.665 4.502 72.0 . 26.94 
J5 8.557 6.330 . 51.7 27.06 
55 15.542 10.110 33.4 27.50 
75 19.406 ll.389 ·. 20.2 22.72 

0.00529 F 
-6 2 16 

et }.. x 103 · .\I x 10 . a a XS ax6 /v x 10 . '!' XS 
(H;t) (db/em) (db/cm) 2 (db) (db x sec /em) 

5- 0.297 0.189 75.4 5o64 
15 1.615 1.221 51t. .. 3 12.18 
25 3.710. 2 .. 546 40.7 15.24 
35 5.507 3.280 26.8 14.02 
55 10.344 4.912 16.2. 13.36 
75 13.655 5.637 10.0 11.24 

0.00264 F 
. . ;.;6 

/" 
2 16 

103 v x .10 (X' (X (X x 10 a A x 
T" XS XS 2 XS 

(~). (c(tb/em).) (d.b/cm) (dbx sec /cm) (db} 

5 Q .. !?11''' 0.109 43.5 3.25 
15 Jl:-17'5 · 0.781 34.7 7.79 
25 a,;34:. 1.370 21.9 8.20 
35 'i774:: 1.547 12.6 9.61 
55 ,$12. 2.381 7.9 6.48 
75 t~;;;p89) 2.671 4.7 5.33 
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TABLE II (continued) 

0.00132 F 
. -6 2 16 3 v x 10 . aT (X O! ;..., x 10 O!XSA x 10 

XS XS 2 
(Hz) (db/em) (db/cm) (db x sec /em) (db) 

5 0.153 o .. o45 18.0 1.34 
15 o.844 o.450 20.0 4.49 
25 i.848 0.685 11.0 4.10 
35 3.005 0.778 6.3 3.32 
55 6.555 1.124 3 .. 7 3.06 
75 9.305 1.287 2.3 2.57 



v x lO 
.. 6 

(Jiz) 

-
5 

15 
25 
35 
55 
75 

\Ix 10 
... 6 

(Hi) .... 

5 
15 
25 
35 
55 
75 

.... 6 
v x 10 

(H:~) 

5 
15 
25 
35 
55 
75 · 

TABLE :CII 

0 
MEASURED ABSORPI'ION OF Er (SO ) AT 25 C 

. 2 4 3 

0.00539 F 

J·i x 1016 a a a 
T XS ·· XS 

{a.b/em) (d"b/em) ( db x sec2 /cm) 

0.547 o.438 175.2 
1 • .390 0.996 44.3 
2.347 i.183 18.9 
3.449 1.222 9.7 
7.145 1.714 5.7 
9.842 1.825 3.2 

0.00270 F 
2 . 16 

QIT ~XS a Iv x 10 
XS 2 

(db/em.) (db/cm) (dbx sec /cm) 

0 .. 363 0.255 · 101.9 
o.886 o.492 21.9 
1.762 0.599 9.6 
2.772 0 .. 545 4.4 
6.402 0.970 3.2 
8.818 0.800 1.4 

0.00135 F 

I 2 x 1016 
OIT 0/ 

XS Q'xs " 
(db/cm) (db/cm) (dbx sec2/cm) 

0.213 0.104 41.6 
0.706 0.312 13.8 
1.426 0.262 4.2 
2.542 0.315 2.6 
5.906 o.1n1i- 1.6 
8.324 0.307 0.5 

26 

3 a 'X. x 10 
XS 

(db) 

13.11 
9.93 
7.o8 
5.22 
4..66 
3.64 

3 
a 'X. x 10 

XS 
(db) 

7.62 
4.91 
3.59 
2.33 
2.64 
1.60 

3 
axs 'X. x 10 

(db) 

3.11 
3.11 
1.57 
1.35 
1.29 
0.61 



TABLE IV 

MEASURED ABSORPI'ION OF La(N03)3 AT 25°c 

"x 10-6 

(Itz) 

5 
15 
25 
35 
55 . 
75 

-6 v x 10 
(H.z) 

5 
15 
25 
35 
55 
75 

0.0545 F 

O'T Q' 
XS 

(db/cm) (db/cm) 

0.138 0.030 
0.870 o.476 
2.295 1.131 
3.776 1.549 
8.018 2.587 

10.861 2.843 

0.0115 F 

0.130 
o.484 
1.393 
2.473 
5.844 
8.319 

ct 
XS 

(db/cm) 

0.021 
0.091 
0.229 
0.,246 
o.412 
0.302 

Q' /1. x 103 
XS 

(db) 

8.89 
4.75 
6.77 
6.62 
7.04 
5.67 

ct 11. x 103 
XS 

(db) 

o.64 
0.90 
1.37 
1..05 
1.12 
0.60 
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TABLE V 

MEASURED ABSORPTION OF Ce(No3)3 AT 25°e 

0.0524 F 
. ··. ..6 
V ~ 10 .. · OIT crxs 

(H~) . (db/cm) (db/cm) 

5 o.415 0.306 
15. 1 .. 181 0.787 
25 2.737 1.574 

· 35 4.701 2.474 
55 9.661 4.230 
75 ;i.3.173 5.155 

0.0111 F 
. . . .6 
v x 10 Q'T axs 
(Hz) (db/cm) (db/cm) 

5 0.180 0.071 
15 0.557 0.163 
25 1.347 0.183 
35 2.535 o.3o8 
55 5.910 o.478 
75 8.584 0.566 

a A x 103 
XS 

(db) 

9.16 
7.85 
9.42 

10.57 
11 .. 51 
10.28 

. 3 
axs A x 10 

(db) 

2.13 
1..62 
1.10 
1..32 

· 1..30 
l.13 

28 
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TABLE VI 

.MEASURED ABSORPTION OF Pr(wo3)3 AT 25°c 

0,0512 F 
.· -6. . 3 

v x 10 Q! (JJ ct · 11. x 10 
T XS XS 

(Hz) .(db/cm) (db/cm) (db) 

5 0.193 0.085 2.54 
. 15 1.096 0 .. 702 7.01 

25 3.029 1.865 11.16 
35 5.255 3.028 12.94 
55 10.873 5~442 14.80 
75. 14.970 6.952 13.87 

0.0105 F 
-6 3 

\I X. 10 O'T Q'xs ax8 11. x 10 

(Hz) (do/cm) (db/cm) (db) 

5 . 0.152 0.043 1.30 
15 0.600 0.207 2.o6 
25 1.540 0.377 2.25 
35 2.467 0.240 1.03 
55 6.152 0.721 1.96 
75 8.973 0.956 1.91 
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TABLE VII 

MEASURED ABSORPTION OF Sm(No3)3 AT 25°c 

0.0528 F 

"x 10-6 
Q'':E' O' Q'XSA x 103 

XS 
· (H,z) (db/cm) (db/cm) (db) 

5 0.294 0.186 5.55 
15 1.143 · 0.749 7.47 
25 2.874 1.710 10.23 
35 4.961 2 .. 733 11.68 
55 10.344 4.912 13.36 
75 13.936 5.919 llo81 

0.0105 F 
-6 x 103 " x 10 · <l'T O'xs C:txsA 

(Hz) · (db/cm) (db/cm) (db) 

5 0.112 0.004 Ooll 
15 0.593 0.199 l.20 
25 1.541 0 .. 378 2 .. 26 
35 2.326 0.099 o.42 
55 6.256 0.825 2 .. 24 
75 8.749 0.731 L46 



TABLE VIII 

MEASURED ABSORPTION OF Er{No3)3 AT 25°c 

-6 
v x 10 

(Hz) 

5 
. 15 

25 
35 
55 
75 

-6 v x 10 

(Rz) 

5 
15 
25 
35 
55 
75 

0.0505 F 

0.181 
0.532 
l.~-57 
2.560 
5.915 
8.440 

0 .. 073 
0.138 
0.293 
0.333 
o.484 
o.423 

Q.0101 F 

aT 
(db/cm)· 

0 .141 
0.480 
2 .271~ 
2.204 
5.478 
8.107 

ct 
XS 

(db/cm) 

0.033 
o.o86 
1.110 
0.000 
0.046 
0.089 

a 11. x 103 
XS 

(db) 

2.18 
1.38 
1.76 
1.42 
1.32 
o.84 

a 11. x 103 
XS 

(db) 

1)098 
Q .. 85 
6.65 
o.oo 
0 .. 12 
0.17 

31 
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TABI,E IX 
. 0 

MEASURED ASSORPTION OF uo2so4 AT 25 C 

0.229 F 

·. v x 10'"6 3 
Cl'T 

O! . ct :\ x 10 
·xs XS 

(Hi) ,. · (db/cm) (db/cm) (db) 

5 1.851 1.743 52.11i. 
15 · 2.620 .2.226 22.20 
25 3.700 2.537 15.18 
35 5.039 2.812 12.02 
55 9.171'. 3.7li-2 10.18 
75 . 13.oli.li.· 5.026 10.03 

0.115 F 

. -v x 10'"6 3 
Cl (X . axl x 10 

T XS 
.(Hz)·. (db/cm) · (db/cm) (db) 

.5 0.999 0.890 26.63 
15 1.591 1.197 11.9li. 
25 2.582 1.418 8.48 
35 3,841 l.614 6.90 
55 7.874 2.443 6 .. 6lt. 
75 ll.110 3.092 6.17 
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TABLE X 
. . 0 

~ASURE.0 ABSORPl'ION OF U02(N03)3 AT 25 C 

0.213 F 
. · .. · -6 

A 103 · \I x 10 Ol (X otxs x 
T XS 

(H.g) (db/cm) (db/cm) (db) 

5· 0.128 0.020 0.59 
15 o.49l 0.097 0.96 
~5 .1.4i8 0.254 1.52 
35 2.2979 0.071 0.30 
55 5.833 o .. 401 1.09 
75 8.524 0.507 1.01 

0.107 F 
-6 

x 103 vx 10 · a,T Ol Cl'XSA. XS 
. Caz) (db/cm) ( d'b/cm) (db) 

5 0.112 o.oo4 0.12 
l5 o.455 0.061 0 .. 61 
25 1.388 0.225 1.34 
35 2.222 0.000 o.oo 
55 . 5.535 0.103 0.28 
75 8.422 o.40li- 0.80 
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:,:.anthanide Sulfates 

The a.p.alys1s of the s'Ulfates is based on the three step complex 
· 11 

forina.tion mechantsm: 

(19) 

For a COll'l;plete kinetic solution the spectra should consist of 

three relaxations corresponding to. the three steps of the mechanism, 

with corresponding rel,axation times given by the equations 

k' 
12 ' 1/'T' = 2m, = k + [ . ] k = k _.L k' i[ (21' 

II mII ··. 32 . 23 32 .,... 23 ·' 1 

· . kk +. k21 ,• 

' ' ' k23 ' ,, 
1/'T' = 2m, = k4 + [- ]k34 = k. + k3\ (22) 

III . mIII 3 k·, + k 43 
23 32 

where ,.1 = relaxation time and v = frequency of maximum absorption 
mi 

for step i, ltk involves a correction for activities of the ions. For 

small perturbations 



. 0 . . . . 
where k12 is the rate constant at ze:ro ionic strength, TTf is the 

· I 3+ 2-activity coefficient quotient r3+ r2_ f± and [M '] and [so4 ] re-

present the equilibrium. free ion concentrations in solution. 

The concentration Qt' solute is c1 I!J.Ole/1. of ~(so4)3• At 

.. equilibrium let the (legree of dissociation be Y, therefore. 

44 

+ 3+ 2-
L_:caolt. •(----) Ln + S04 (24) 

2 'V C (2y +l)C 

and thus 1/KT· :: C2,YCJ(CJ2 'V +l)J • TT 
. f 

2C(l• 'V) 

(25) 

· 19 · where ~ is the thermodynamic association constant. Hence equation 

(23) beco:mi,s 

The values of Y were evaluated using a computer program. (Appendix I) 

for each value of Ci (Appen.dix II) by standard iterations procedures 

where the activity coefficients r 3+, f f were calculated using the 
2- + 

20 
Davies equation. 

where Z 1 1·s the charge on the i t:b ion 

8 B is the constant .33 x 10 

0 a is the distance of closest approach of the ions 

µ, = 3Ci + 12 YC:1, the ion:i,c strength of the medium. 

In th~ original treatment of the lanthanide su.lfates,13 assumptions 

(27) 



were ma.de in the evaluation of the derivative in e(c). It was decided 

that a more rigorous calculation was appropriate, which involved the 

complete solution of the derivative with a minimum of assumptions. 

O ln TTf a ln TTf o 1Ji =---···--- (28) 
o ln 'Y 0 1n 'Y 

20 
In the original treatment of the data, the Davies equation was 

U11ed.w.l.thciut .. m.04Utca.t:ton for the ion size. B a.0 = 1 was taken where the 

estimated valtte of a0 , the distance of closest approach of the ions, 

was taken as 3 i which is too small for a 3:2 electrolyte .. The new 

value of the distance of closest approach was ta.ken to be the sum of 

the ionic radii plus two water molecule diameters. This distance 

varies little from cation to cation with the lanthanide series and the 
0 . 0 . . 

value a = 8.86 A is,used ,for all three salts .. 

Activity corrections cancel in step II and III for the singly 

charged species. The rate expression can be written in terms of con~ 

eentration and equilibrium constants 

0 
2TTVmI = k21 + kl2 [e(C)] 

e(c) 
(29) 

where IS_e, ~ 3 and K34 are thermodynamic equilibrium constants for 



TABLE XI 

CALCULATION OF i6(c) FOR RARE EARTH SULFATES 

0 8 86 ° a = .. A 
-1 K12 = 0.0023 mole 1. ~ 3 =O. 51 uni tless 

o lnrrf 
e(c) sif(C} ·. Salt c y T\• µ. olnY 

0.00537 F 0.1256 0 .. 2463 ,0~0242 -,00138· .o.·00176 . o.459 

Pr2(S04)3 0.00269 F 0.1743 0.3110 ,0.0137 --00163 . .0i00l23 ,0:~4o6 

0.00134 F 002381 0-3839 . ,0 .. 0079 - 0.175 o.ooo87 0.350 

0 .. 01060 F o .. o822 0.1967 o.0421 - 0.095 0.00253 0.507 

0.00529 F 0.1173 0.2503 0.0233 - 0.132 0.00173 o.457 
s~(so4)3 0.00264 F 0.1636 0.3162 0.0131 - 0.157 0.00121 o.403 

o.00132 F 0 .. 2251 0 .. 3900 0 .. 0075 - 0.169 o.ooo85 0.347 

0.00539 F 0.1333 0.2437 0.0248 - 0 .. 144 0.00177 o.461 

Er2(so4) o .. 00270 F 0.1840 0 .. 3078 0.0140 - 0 .. 170 0.00125 o.4o8 

0 .. 00135 F 0.2499 0.3802 0 .. 0081 - 0 .. 181 o.ooo89 0.353. · 

-· 
+"" 
0\ 



steps I, II and III respectively and defined by 1S_2 = k21/~, K23 = 
k32/k~3' and t314.·= k43!34• 

The value of K:i_2 is calculated :f'rom. the theory of di:t"tus1on con-

21 trolled reactions using Bjerrum's equation 

where rAB ~ a0 the diste.nee of closest approach ot the 

Q(b) =J b eb b .. 14, db 
2 

ZA Z:B 
b = . 

rAJfk T 

22 ions 

(30) 

(31) 

-1 The value obtained is .,0023 mole l • No experimental value is avail-

able :t"or K23 and there is no theoretical way in which it may be cal­

culated. Consequently the K value for MgS01. is taken, 23 equal to 
23 q. 

0.51 (unitles,).While it is unlikely that the increase in charge of 

the cation will not have an effect on the equilibrium constants of 

Step II, the nature of the cation is of secondary importance in the 

elimination of water from. the sulfate solvation sheath. 

A plot of, (C) versus 2nvmIII (Appendix !II) gives k34 (Figure 

17) as the slope and k43 as the intercept. The evaluation of k43 is 

complicated by the limiting value of ~ (C) which is not zero at zero 

absorption. Plots of al~!III VS ,cc) for each salt were extrapolated 
2 

to a/~mIII = o. From. plots of, (C) vs 2TJVmIII the intercept at the 

limiting value of , ( C) is ta.ken as the value of 1t4 3• 

'fhe values fork and kL are given in Table XII 
34 At-3. 
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Figure 17. Plots of 2m, III a.ga.~nst ~(C) for the Sulfates of 
Pr(III), Ill Sm(IIl}, and Er(III), · 



TABLE XII 

VALUE.OF THE RATE CONSTANTS k 4 AND k . . 3 ~ 

Ln(III) 
. -1 

~34C~~c ) k43(sec-1) 1/r<X-1) 

. 8 7 Pr · 4.5 x 108 5.4 x 10 0.917 
Sm 6.5 x 1ga 9.3 x 107 0.962 
Er 1.7 x l 1.6x 107 1.042 

__ :.;,, ________ ,.. ... ~ .. ------------------------------·--' 
La. 
Ce 
Eu 
Gd 
Dy 
Yb 

0 .. 870 
0.901 
0.970 
0.980 
1.010 
1.o64 

together with the rec~lculated values :f'or La.(III), Ce(IIIr),, Eu(III), 

Gd(III), Dy{III), a.nd. Yb(III) from previous work by Purdie a.nd 
. . 13 · 
Vincent. There is excellent agreement between the sa.m.a.riu.m. results 

. .~ 
and with the praeseodymium results obtained by Grecsek. 

. 7 'fb.e rates of substitution a.re faster than those reported by Geier 

for the murexide system by T-jmnp but this is not unreasonable because 

of the difference in. ionie strength in the two systems. On the other 

17 2~ hand the rate of water e:xchange (by O NMR studies ) into the 
.. . . 8 ~ 

primary" salvation sphere of gadolinium is given to be 9-taXlO seconds , 
. -

in excellent agreement with the present result. 

In Figure 18, log k 4 is plotted as a function of 1/r, the 
. 3 

reciprocal cationic crystal radius. The dependence is quite different 

from that of Geier (Figure 4) a.nd is non-linear which is inconsistent 
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with the data for the a.lk.aline earths. In view of the weight of 

the;r:1T1.odynamic evidence for a change in coordination number within the 

.· series, it ii!! possible that this could be used to explain the trend 

in rates of sub$titution • 

. The Lanthanider Ni tra.tes 

51 

lnterpretation o.f the lanthanide nitrates spectra. is complicated 

· by the presence of more than one relaxation. Quantitative interpre­

tation is prohibited by inadequate theory for the resolution of 

m.'\illtiple relaxations. The differences in the spectra, both from the 

corresl)>ond.ing sulfates and ~om each other, allow a qualitative des­

cri!)tion to be made. 

The absorption curves are com.pared in Figure 8 through 13 for the 

sulfates a.nd the nitrates of each particular cation. The curves differ 

in thr~e respects: 

(1) although sulfate solutions of equal concentration absorb to 

the same order of magnitude, a comparison between nitrates 

shows a.n order of ma.gni tude difference, Table XIII. 

(2) the low frequency maximum of the sulphates ha.s been shifted 

to a higher value in all eases except erbimn 

(3) in the nitrates where the peaks have been shifted upfield., .. 

the peaks a.re considerably broadened as com.pared to a. typical 

relaxation in the corresponding sulfate. 



TABLE XIII 

ABSORPrION PEAK MAXIMA 

Suli'ate* 
(axsA) max 

Salt 

(db) 

La 0.0120° 

Ce 0.0120° 

Pr 0.01~0 

Sm 0.0155 

0.0140° 

* R;:I 0.0050 F 
** R;:I 0.050 F 

O peaks are not complete 
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Nitrate** 
( O:'xs A) max 

(db) 

0.0070 

0.0115 

0.0145 

0.0130 

0.0022 

The basis f9r the interpretation of the sulfate data was that the 

relaxation was simple and due to the third step in the mechanism only 

i.e. the formation of the inner· complex. 25 Marcus has reported that 

nitrates t'orm very little inner· complex unless concentrations are 

relatively high. The sv.J.fates on the other hand are almost 90'1i inner 

complex. Since the amplitude of absorption depends on the concentra-

tion o:f' inner complex and since the characteristic frequency for step 

III is independent of the anion, a large decrease in absor;ption would 

be expected in going to the nitrates. This is indeed true for 

lanthanum and erbium. An absorption at a higher frequency is also 

observed with some overlap of the low f,:'equency relaxation. Since 
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· step III is the rate determining. step, this higher frequency relaxa­

tion ~s beeh identified with step II, i.e. solvent substitution into 

the anion. Preliminary work on calcium nitrate which is not inner-

e~lexed 2'hows an a.l;)sorption·in the frequency range 35 to 55 Dz. 

· .. For nn,ll.tiple relaxations, the absorptions appear separately if 

11 
the cha.ra.ctertstie frequencies differ by at lea.st a decade. When 

relM;a.tioi,.s overlap, the total absorption expressed a, Ol ;\.. ·:1er not 
·. . . ~ 

s:t.mply the sum of the tw:o values .for the separate relaxations: but 

always much l~ger.26 In addit:i,on if the absorption extends over more 

than one decade then the characteristic frequency is shifted. The 

higher frequency relaxation for le,ntha.num and erbium occurs a.round 

35·55 MHz and is sufficiently far removed fr~ the low frequency re­

laxation in the sulfates that the · curve' ·is· partially resolved. 

Op. the other band for cerium, pra.eseodymium and samarium the 

differences.in the characteristic frequencies a.re much less so that 

overlap is substantial and no resolution is observed. Consequently 

the magnitud,e ef absorption is greater for these three ions and the 
· 26 

cp.aracteristic frequenqy is sbif'ted upfie1d. 

It ean therefore.be concluded that the interpretation of the 

sulfate data. is correct and the relaxations observed in the sulfa.tea 

az.e duet© the third step. 

Uranyl ltitra.te and Uranyl Sulfate 

Ho valid interpretation of the data (see Figure 13) can be me.de. 

Since the absorption at 5 MHz, seen in the sulfate, is absent in the 

nitrate, then the principle contribution to the relaxation would 

a1pea.r to be d1;1e to inner spher~ complex formation. Considerably more 



study would have to be done to substantiate this conclusion. 
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APPENDIX A 

COMPUTER PROGRI\M 

C DEGREE OF DISSOCIATION USING DAVIES EQUATION REPETITIVELY 
C THIS PROGRAMME REQUIRES ONE DATA CARD TO INITIATE THE CHARGES OF THf 
C SPECIES FOR ALL THE DATA TO BE EVALUATED, 'THE SUCCEEDING CARDS 
C ALLOW Ab CHARACTER LABEL AND THEN THE VALUES OF THE DISSOC[~TION 
C CONSTAN1 AND CONCENTRATION 

DIMENS,ION GAMl3J ,Zl3.J ,1131 
99 FORMAT13F3,0J 

· 100 FORMATIA644X,El0,3,10XoEl0,3J 
101 FORMATllHO,bBHTHE VALUES APPARENTLY APPLY TO A COMPLEX QUADRATIC E 

lQUAT!ON - - HELP////J 
102 FORMATllH0,!3,614X,El6,8JJ 
103 FORMATliHO,l2HF!NAL ANSWER//1X,!3,6l4X,Elb,BJJ 
104 FORMAT(1Hl,4IX,34HPROGRAM TO CALCULAT~ THE OEGREt OF//39X,55HD!SSO 

lCIATION BY REPEATtD APPLICATION OF DAVIES EQUATION//60X,lJHDR, N, 
2PURDIEJ 

105 FORMATllH0,21HO!SSOCIAT!ON CONSTANT,2X,El6,B,2X,llHMOLES/LITER//22 
lH INITIAL CONCENJRAT!ON,2X,El6,8,2X4llHMOLES/LITERJ 

106 PO~MATl4HO ~,15X,5HALPHA,15X,5HPIIFJ,6Xol4HION!C STRENGTH,11X,9H2 
l*ALPHA*C17X,13HC*l2*AL~HA+lJ,7X,13H2*C*ll-ALPHAJ J 

107· FORMATl!HO,lBHCALCULATlON NlJM.BER,!3,lOX.,BHSALT OF ,A6J 
108 FORM·ATl lHlJ . 

C WRITTEN l:lY DANIEL L!TCH!NSKY 
WR!TE16,l04J 

C READ CfiA.RGES ON [ONS 
READl5t99J IZ I !J ,i=l,31 
N•O 

C READ DATA CARDS FOR LABEL, DISSOCIATION CONSTANT AND CONCtNTRAT!ON 
READl5,lOOJARG,D!SK,C 
!FIO!SK*C,EQ,O,Ol~OTO~O 
ALF=l.,O 
!Fll·lN/21*21,Nf;NI WRITE16,l081 
N=N+l 
WR!TE16,l0.7JN,ARG 
D02J=l,3 
GAl'IJJ=l,O 
WRITE16,l051DISK,C 
WR[ TEl6,.lU6l 
K=O . 
K=.K+l 
PAL=ALF 
A=2,0*(*GAMl21•GAMl31 
B=GAMl21*GA~l3r•C+GAMlll*DISK 
R = I -GAM l 11 *.DI SK I 
DS=.8**2-4, O*A*R 
IF l DS·I JO, l O, l O 

30 WRITEl6,10lJ 
GOT0,80 . 

JC ALF=I-B'-SQRTIDSJ 1112,0•AJ 
!FIALF1l2',-13,l3 . 

12 A.LF=I-B+SQRTIDSJ 1/12,C•AI 
JFIALFl30,l3,l3 

13 Tll1=2,0*C*ll,0-ALFI 
Tl21=C*l2,0*ALF+l,01 
TI 3·.I =2,Q*ALF•C 
Dl=O,O 
D015J=l,3 

15 D!=Dl+ZlJl**2*TIJl*0,5 
BI=SORTIDI I 
P!=GAM121*GAMl3J/GA~lll 
WR I TE I 6 ·,102 I K, ALF , PI , DI , T l 3 I , T l 2 I , TI I I 
IFIABSIALF-PALJ,Lt,O,OOIIGOT07Y 
0020 I= l, 3. 

2U GAMIJ l=EXPI l0,509*Zl I l**2*1Bl/l l,0+2,924*tll I-0,3*Dl l 1*1-2,3025851 l 
GOT03 

79 WRITEl6,1031K,ALF,Pl,DI,Tl3l,Tl2l,Tlll 
AA=l,509*l2,0/l2,0*Bl*ll,0+2,924•Hll**2l-l,B4l*2,302585 
BB=ALF*C*l2,0 
DI FF =-l -AA.I *BB 
TH£TA=Pl*C*ll4,0*ALF+l,OJ+l2,0*ALF+l,Ol*DIFFJ 
CC=THETA/( l,0023*,5ll+ll,0+,5ll*THEfAJ 
WR!TEl6,109JAA,CC,DIFF,THETA 

109 FORMAT(lHO,lOX,5HAA = ,El6,B,5X,5H~O = ,E16,8,5X,7HD!FF 1El6,B1 
l5X,BHTHETA = ,£16,8///1 

80 GOTO! 
90 STOP 

END 
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APPENDIX B 

PREPARATION OF SOLUTIONS 

Rare earth nitrates and oxides with a purity of 99.9% were pur-

chased from the American Potash and Chemical Corporation. UO SO and 
2 4 

UO (NO ) were purchased from British Drug Houses Ltd. and Baker 
2 . 3 2 . . 

Chemical Co •. respectively. 

The hydrated rare earth sulfates were prepared from their corres-

ponding ox:i.deo The o:xides were dissolved in 6N HCl and then 6N 
\ 

H2so4 added to yield a. quantitative amount of the sulfate. The rare 

earth sulfates were then precipitated by the addition of a large 

excess of ethyl alcohol. The sulfates were analyzed for cation con-

centration by cation exchange on Dowex 50W-X8 20-50 mesh resin made 

strongly acidic. The resulting solutions were titrated to the 

phenolphthalein end point with standardized sodium hydroxide. 

The salts were weighed as the 6-hydrate for the nitrates and the 

8-hydrate for the sulfates, the only exception being eribum nitrate 

which was weighed as the 5-hydrate. The concentrations were analyzed 

by cation exchange as before. Two ml aliquots of the solutions were 

passed through column loaded with acidic Dowex 50-W-X8 20-50 mesh 

exchange resin, and washed with 100 ml of deionized water. The re-

sulting effluent was titrated wii::h Fisher Certifi~d 0.02N Na.OH Solution 

Standard with the end point being observed potentiometrically using a 

Beckman research pH meter. 
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Ion 

*La.3+ 

*Ce3+ 

Pr 
3+ 

Sm:3+ 

*Eu;+ 

*Gd3+ 

*Dy3+ 

Er:3+ 

*Yb>i-

APPENDIX C 

RELAXATION FREQUENCY DATA 

2 2TI'v (MHz) Formal Cone x 10 ·· mIII ·· ······ 

0088 84 
o.44 69 
0.22 60 

0.98 111 
o.49 89 
o.24 79 

o._54. 120 
0.27 97 
0.13 76 

1.06 231 
0.53 194 
0.26 158 
0.13 128 

· 0.98 228 
o.49 185 
0.25 161 

0.95 207 
o.47 171 
0.24 143 

0.97 104 
0.65 93 
0.32 70 

0.54 43 
0.27 34 
0.14 3.5 

3.57 48 
1.14 39 
o.94 41 

*Purdie & Vincent13 

60 

1/K (mole l:'1) .... ···T· ... 

2.38 x 10 -4 

2.56 x 10 
-4 

2.38 x 10 
-4 

2.17 x 10 
-4 

1.89 x 10 
-4 

2.56 x 10 
-4 

..,_ 

2.56 x 10 
-4 

2 • .56 x 10 -4 

2.56 x 10 -4 
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