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PREFACE 

One of the initial courses in my graduate program of study intro-

duced me to a computer·language known as GPSS, or General Purpose Sys­

tems Simulator, III, GPSS is a problem-oriented language, ·generally 

used in the electronic simulation of traffic systems. Using the extra­

ordinary speed of the computer to its utmost advantage, the language 

simulates operational systems by creating electronic impulses represen­

tative of individual traffic units. Within the computer, the electronic 

units flow through a pattern of logic which has been defined by the ana­

lyst. 

In structuring the pattern of logic, the model of a real-world sys­

t~m has been constructed, Real-world traffic systems are characterized 

by provisions for service, delays, points of decision, and transfers. 

The computer automatically maintains a complete record for each traffic 

unit as it passes through the system, including its time of origination, 

arrival, and departure to and from various points in the model. Upon 

the conclusion of simulation, data from these records provides a com-

plete descri,ption of system behavior and performance. 

G:i,.ven the freedom to pursue my interests, I investigated various 

facets of GPSS by structuring many example problems .. I was most im­

pressed by the scope, versatility, and applicability of the langµage to 

the variety of traffic systems commonly occurring in architecture. In 

improvising hypothetical problems, .l began to encounter information 
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which would be extremely useful in the archit~ctural design of build­

ings. From my own experiences and discussions with members of the fac­

ulty, many of whom were practicing architects; the conclusion was made 

that the investigation of archttectural traffic systems has long been a 

neglected area of applications . 

. In continuing my studies with GPSS, I began to realize its limita­

tions. GPSS is complex, demanding a great deal of programming experi­

ence, both in using the language and evaluating its results. Few prac­

ticing architects have access to the GPSS language or the equipment on 

which it is implemented. Finally, resultant inference of probable sys­

tem behavior applies only to the model simulated so that no general ~o­

lutions are. available. · Hence, a means of system analysis independent of 

the computer and surmounting these difficulties was necessary if inveS-,· 

tigations of traffic systems wete to be practical. 

In expanding my research, I found that the theories of probability 

have been extensively applied to traffic systems in the area broadly re­

ferred to as queueing theory. While GPSS gives a description of system 

performance by physical simulation, queueing theory accomplishes the 

same task mathematically. The great advantage of mathematical. analysis 

was its use to achieve solutions which were general in nature. 

In some respects, the mathematical approach to traffic analyses is 

even more difficult than simulation. The derivation of queueing para­

meters requires concepts well beyond the capabilities of most archi­

tects. Thus, the ultimate goal of this study consisted of an effort to 

present queueing theory in terms of easily understood variables and in a 

manner that would facilitate their application. In order to bypass th~ 

difficulties of mathematics and to provide a rapid means of 
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investigation, a family of relationships descriptive of system perform• 

ance have been presented in graphic form. 

To accomplish these goals, over 50 separate computer programs were 

written for the IBM 7040 and 1620 computers. All of the illustrative 

material, som~ ·Of which required several thousand calculations, were 

executed on plotting equipment attached to the 1620. Direct cross ref­

erencing of the subject material has been limited sinceonly the most 

fundamental concepts of queueing theory have been discussed. Most texts 

dealing with basic operations research or queueing theory, including all 

of those in the bibliography, contain a detailed presentation of these 

concepts. Two of the included references, Queues,. Inventories..).. and 

Maintenance by Philip M. Morse and Waiting-Line Models by Ernesto Ruiz­

Pala, Carlos Avila-Beloso, and William W. Hines, were used extensively. 

I would like to take this opportunity to acknowledge the efforts of 

Dr. Thomas s. Dean of the School of Architecture and Dr, Palmer M. Ter­

rell of the Industrial Engineering Department. They provided me with 

encouragement, constructive criticism, and the inter-disciplinary guid­

ance required for the completion of this study. In addition, the efc, 

forts of Mrs. Nancy Wolfe should be recognized for her excellent: prepa­

ration of the manuscript, 

As an active member of the United States Air Force, special acknow­

ledgement is reserved for the Air Force Institute of Technology, to 

which I have been attached during my course of study. I hope that upon 

return to duty, I am able to fulfill the objectives of my assignment 

with a contribution of professionalism to military engineering. 
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CHAPTER I 

INTRODUCTION 

Architectural Traffic Systems 

A "system" may be defined as ''an assemblage of objects united by 

some form of regular interaction or interdependence; an organic or-

ganized whole.'a The complex buildings of today's technology typify 

Webster's definition of a system. In the modern passenger terminal, the 

assemblage of objects may be·thought of as a collection of sub-systems. 

These sub-systems may consist of arterial roads, parking lots, ticket 

counters, restaurants, lobbies, baggage stands, and loading aprons. In-

teraction and interdependence within the system are characterized by 

traffic flows within and between sub·~systems. Traffic flows may be com-

posed of vehicles, people, baggage, communications, products, or in.nu-

merable like units. 

'I;wo distinct phases are common to traffic within anyarchi.tectural 

system. First, the "arrival'' of units to the system for J'se:rvice"; and 

second, the actual performance of service, upon completion of which the 

unit is discharged. The arriving unit may receive immediate service if 

it is available. Otherwise, the unit must join a queue or waiting line 

and be delayed in its passage through the system. 

1 Webster I s New Colleg!_at~ Dictionary, Second Edition (Springfield, 
Mas.~., 1960). 
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In the design of systems, the architect: must i.nsure that service 

capacities are capable of handling arrival traffic so that unreasonable 

waiting periods do not occur. If the system is not designed so that the 

service capacity is at least as large as arrival traffic, a waiting line 

will build until traffic is reduced or c~pacity is increased, Even with 

average capacities sufficient to handle average arrivals, temporary or 

even permanent congestion may occur because of :fluctuation in the actual 

rates of service and arrivals. For example, the interval between arriv­

als .and ti.me required for service may be expected to vary from unit to 

unit. A series of short arrival intervals coupled with requirements for 

lengthy service will generally result in waiting. The variation of ar~ 

rival and service rates is a measurable numeric quantity and must be re­

cognized as inherent to any system of traffic. 

In very simple terms, a description has been given of queueing, 

congestion, or waiting line problems, Queueing problems abound in ar­

chitectural design. Buildings are not inanimate objects, but dynamic 

systems of traffic flow in which queuein.g situations a:re the rule rather 

than the exception, As the complexity of architectural st:ruetures in= 

crease, there is a resultant increase in the number of causes :for wait­

ing. As waiting increases, the necessity for the architect to satisfy 

service demands also increases. Traffic flows must be handled ef:Ei.-

c ient ly. Ticket and baggage counters must have sufficient · "service 

channels" to avoid unreasonable queue lengths and waiting periods. Res­

taurants and parki.ng lots must provide enough space so that service is 

available immediately or with very short delays. 

It is the responsibility of the architect to evaluate the demand, 

establish the appropriate level of service~ estimate. the various c.ost:s 



associated with the .satisfaction of demand, and determine the optimum 

level for system capacity. Unfortunately, he is not well-equipped to 

handle detailed analyses of these .situations. His primary tools are 

past experience, judgement, and many questionable rules of thumb. 
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The architect would be better prepared in the analyses of traffic 

systems if he could answer any one of the following questions. What is 

the expected number of units in the system and in the queue at any given 

time? How many service channels are required so that waiting does not 

exceed a predetermined amount of time? How long will an arrival unit 

have to wait before service is performed and completed? What proportion 

of time will instantaneous service be available? What proportion of 

time will more than a given number of units be in the system? And, what 

is the· "efficiency" of the system? Queueing theory, a recent develop­

ment associated with the telephone industry, offers an approach to the 

evaluftion of these questions. 

Applications of Queueing Theory 

In the design of automatic telephone exchanges, necessary informa­

tion includes the effect of service demand fluctuations as varying numq 

hers of customers dial different numbers. Most of the pioneering work 

in queueing theory is attributed to A. K. Erlang, a.European electrical 

engineer. Beginning about 1905 and up to 15 years ago, most study on 

the theory of queues was accomplished by Erlang.and others in connection 

with tel.ephone·problems. With the advent of post-World War II "opera­

tions research," this theory has been extended to other fields :involving 

operation~l problems. Industrial applications of queueing theory in 

production and maintenance are now widely accepted. ·Particularly in 



highway design and airline operations, progress in queueing theory has 

been significant in many areas of transportation, 
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Arrival intervals and service times characterize the queueing sys; 

tem, each following a measurable probability distribution. A probabil­

istic "model" of the system may be mathematically constructed. The sys­

tem may exist in any number of possible states as specified by the num­

ber of units in the system - those waiting for service, and if any, 

those that are in service. Based upon the laws of probability, the pro­

bability that the system is in each of its possible states may be com­

puted. From these "state probabilities," numeric relationships involv­

ing system parameters may be derived • 

. System parameters may be considered as "measures of effectiveness" 

relating in numeric terms the long-run behavior of the system over time. 

Measures of effectiveness include any relationship which may be objec­

tively or subjectively evaluated in determining the adequacy of system 

performance, As most queueing systems involving the architect will deal 

with the flow of people, the ultimate evaluation will generally be sub~ 

jective . 

. Most published material on queueing theory adheres to a rigid math­

ematical discipline to the extent that several models have been studied 

more for their mathematical interest than potential applications,· These 

publications require that the reader have at least a fundamental kpow­

lepge of statistics, probability theory, and advanced mathematics. The 

derivations of state probabilities are complex, tedious, and difficult 

for an individual unfamiliar with principles in these areas. Unfortu­

nately, these basic prerequisites generally open a wide gap between the 

architect and the analysis of queueing problems. 
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Proposed,Method of·Study 

The purpose of this paper is to bridge the gap betw~en operations 

research and the architect. The primary goal is 'to provide the archi­

tect with a usable set of relationships, graphically presented, with 

which to gain an intuitive insight to the workings of elementary queue­

ing systems. Instead of deriving complex state probabilities, a quali­

tative approach to queueing theory is taken. The presentation of mea­

sures of effectiveness is limited to a brief introduction followed by 

the relationship itself. In most cases, the derivations for these mea­

sures require their entire presentation for clarity. Any attempt to 

present a brief or abridged derivation would lead to confusion and mere• 

ly clutter the objective of the text material. Almost all relationships 

have been graphically ill~strated so that the behavior of the system un­

der several conditions may be evaluated without repeating lortg, mathe­

matical computat;i.ons. 

The first four chapters introduce the statistical, probabilistic, 

and structural concepts of queueing theory .. The remaining chapters are 

devoted to the application of these concepts in the evaluation of system 

performance. Chapter II, an introduction to the fundamentals of statis­

tics and probability, is included to provide the reader with a founda~ 

tion on which to evaluate the cause and effects of random variation. 

These fundamentals are applied in Chapter III to the development of pro­

bability distributions for service and arrival times. The basic ele~ 

ments of queueing models are structured and defined in the form of an 

organization chart in Chapter IV. 

The total number of possible queueing situations, and therefore , 
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mQdels, approaches infinity in the real-world. The organization chart 

of Chapter IV defines system elements which have received mathematical 

attention and allows the constr~ction of over 22,000 different models. 

Obviously, this study will consider a sma 11 number of these models. The 

few models selected have been chosen for their potential architectural 

applications and should adequately represent a great many queueing prob-

lems encountered in the design of real-world systems. · Applicable as-

sumptions to these models are clearly stated with particular attention 

to their proper use. 

The material presented in the first four chapters will suggest a 

necessity for the collection, enumeration, and analysis of large amounts 

of data to determine the mean and distribution of arrival and service 

times. Beicause of cost, time, and insufficient personnel or capability, 

it is anticipated that many architects could not follow the procedures 

outlined. This does not negate the potential usefulness of this study, 

as most often rather simple assumptions and estimates may be made. In 

most cases, the architect will be able to reasonably estimate the aver~ 

age arrival and service rate. By making the additional assumption that 

arrivals and service follow specific distributions, many of which are 

quite valid for a large majority of architectural problems, the most im-

portant structural elements of a queueing system are defined. 

"Traffic·intensity" or the ratio of arrival to service rates is the 

primary variable in almost all measures of effectiveness. In many in-

stances, it will be useful to make an optimistic and pessimistic esti-

mate of traffic intensity.·/ The model· investigated may th~n be studied 

in terms of"numeric intervals in which actual measures of effectiveness 

are likely to occur. Models developed.in this study ,!'Ire presented in 
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Chapters V and VI. The objective of these chapters is to apply queueing 

theory to real-world problems as demonstrated through the use of several 

example problems. 



CHAPTER II 

FUNDAMENTALS OF STATISTICS AND PROBABILITY 

It has been indicated that there are two distinct phases common to 

any queueing system. First, the arrival of units to the system; and 

second, the performance of service, Both the arrival and service rates 

may be expressed as numeric values in units of time, Estimates for 

these values are usually based upon data collected through observation. 

Differences between one queueing system or another, ignoring their 

physical or theoretical structure, are most obvious in their differences 

in arrival or service rates. A system servicing 20 units per hour with 

15 arrivals per hour will behave quite differently from a system servic­

ing 20 units per hour but with 20 arrivals per hour. They are two dis­

tinctly different systems. 

In their raw form, the collected data from which rates are derived 

usually communicate very little information. The body of analytical 

techniques directed to the description of collected data is called "de­

scriptive statistics," It is the purpose of descriptive statistics to 

place raw data into a usable, compact form. The most commonly employed 

methods to accomplish this task are calculations of measures for "cen;.. 

tral tendency, 11 measures for "dispersion," and t;he development of a 

"frequency distribution." 

Before discussing the concepts of descriptive statistics, a parti­

cular characteristic of queueing systems should be understood .. Most 

8 



queueing systems involve the random occurrences of chance events. That 

is, in any interval of time, an arrival, service completion, or change 

in queue length may or may not have occurred as the result of chance. 

9 

At any instantaneous point in time, these same events may or may not be 

about to occur as the result of chance. Because of random chance, vari­

ation is an inherent characteristic of most queueing systems. The con­

cepts of random chance will be further discussed under the topic of pro­

bability. For the present, consider only that variation is also a 

measurable numeric quantity and in descriptive statistics is analyzed as 

a measure of dispersion. 

Attempts to deal wi.th qqeueing problems without acknowledgement of 

variation are usually m~de by providing for at least as many service 

completions as arrivals per unit time. For example, if there are always 

20 arrivals per hour, at least 20 service c.ompletions per hour must al­

ways occur to prevent permanent congestion of the system. However, the 

inherent variation in arrival or service rates may cause temporary or 

even permanent congestion since in any pa:rti.cular hour, there could be 

30 arrivals and only 10 service completions. 

In the long run covering several one hour intervals, 20 arrivals or 

service completions are expected. In any particular one hour i:n.terval., 

the actual nuniber of arrivals or service completions are subject to 

fluctuation. In thi.s case, an engineer might attempt to increa.se the 

average service rate to 25 or 30 service completions per hour. As jus­

tification for this procedure, he might state that he is '~llowi.ng for a 

margin of error," In reality, he is not allowing for error but: for nat­

ural variation due to fluctuation, in the arrival and service rates of 

the system. 
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It is the pu:rpose of queueing theory, based upon concepts of sta-

tistics and probability, to account for and recognize variation as an 

inherent characteristic. Once recognized, inference towards the pre-

dieted behavior of the system may be made with a greater degree of as-

surance. 

Measures for Central Tendency and Dispersion 

Several methods are available to describe the central tendency of a 

collection of data. The "median" is defined as that value lying in the 

middle of an ordered set of data, An ordered set is one which has been 

ranked from the smallest to largest value or largest to smallest value, 

The "mode" is defined as that value which occurs most frequently in a 

set. The most common and widely used measure for central tendency is 

the "arithmetic mean" or "average." The mean is that point about which 

all values of a set of numeric data tend to cluster. It: may be express-

ed as: 

x 
n 

l X/n = (X1 + X2 + X3 + ... +.Xn)/n 

i=l 

{2 .1) 

By analogy, the mean is identical in concept to the centroid or center 

of gravity in structural mechanics. 

Consider the three sets of numeric. data shown in Table L Using 

the mean as an analytical. tool, note that the summation of individual 

elements is 100 in each set, making the means equal to 100/5 or 20. By 

inspection, it is evident that the three sets of data are different so 

that the mean alone does not provide a unique description. In addition 

to a measure for central tendency, another method must be employed to 

make a numeric differentiation between sets. 
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TABLE I 

THREE SETS OF NUMERIC DATA 

,' ,_ -- " " 

x. SET A SET B SET c 
1 

i = 1 20 10 10 
2 20 15 10 
3 20 20 20 
4 20 25 30 
5 20 30 30 

n 

l x. 
l. 

100 100 100 

i=l 

n 

x =I X./n 
1 

20 20 20 

i=l 
-· 

n 

02 = l (Xi-.:X)z /n 0 50 80 

i=l 

For this purpose, two measures of dispersion may be employed. The 

"range" is the least complex and is obtained by calculating the arithme= 

tic difference between the largest and smallest value of the set, How~, 

ever, note that both Sets Band C of Table I have identical ranges of 

(30 - 10) or 20. While the ease of computing the range is a great id-

vantage, a unique description of the set is not available since only two 

values of the set are utilized. 

The "variance" is a much better measure of dispersion as it uti-

lizes each element of the set. The.variance may be expressed as: 
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n 

a2 = l - a (X. - X) /n 
l. 

(2.2) 

i=l 

cr = .fcr2 = standard deviation 

The square-root of the variance is defined as the ''standard deviatio~' i . 

or "root-mean-square-deviation." The variance for each of the three 

sets pf data are shown in Table I. Note that the gre1:1ter the variance 

or dispersion of individual elements about the mean, the greater the 

numeric value of the variance or standard deviation. 

Engineers will reGognize that the standard deviation is identical 

in concept to that of radius of gyration (r). In Figure 1, three timber 

beams of equal area (A) are showri. It should be obvious that the load 

capacity of the,three beams are not equal. The load capacity is a 

Y1,a 
NA. 

Y3 ;4,: 

a1 aa 

83 84 

Beam A 

IA = 1. 33 

IB ·= 0.33 

IC= 5.33 

Beam B 

a. = unity 
]. 

A = I ai = n 

n n 

I = l aiyf = I' (Xi - X)~ 

i=l i=l 

r = ·/(I/A) = cr 

-Figure 1. .. Three,Timber Beam.s 
,,', ; .,, 

al 

Ba 

a3 

a4 

Beam C 

~l 

, ... ra_ 
' 



i3 

function of its moment of inertia (I) which in turn is a function of to 

what extent the area of the beam is distributed about its centroidal 

axis. The approximate moment of inertia is the summation of elemental 

areas (a.), each muLtiplied by the square of the distance from the re­
l. 

ference axis to its centroid (y~). Radius of gyration is defined as 
l. 

/"(I/ A). Considering each elemental area (a.) as unity, y~ is equivalent 
l. l. . 

to (X. - X) and A is equivalent ton. The anaLogy should be clear. The 
l. 

greater the distribution of elemental areas about a neutral axis, the 

greater the numeric value of moment of inertia and radius of gyration. 

The greater the distribution of individual values in a set of numeric 

data, the greater the numeric value of the variance and standard devia-

tion. As the description of a beam is not unique by its total area and 

location of its neutra.l axis, the description of a set of numeric data 

by average alone is insufficient. Some measure of dispersion, the ex-

tent to which individual values are distributed about the mean, is al-

ways required. 

Frequency Distributions 

When summarizing large masses of raw data, it is often useful to 

distribute the data into classes or categories and to determine the num-

ber of individuals belonging to each. A tabular arrangement of data by 

classes together with the corresponding class frequencies is called~ 

Hfrequency distribution" or "frequency table." 

Table II represents 30 items of raw data. It may be assumed that 

they represent the time required for service, in minutes, on randomly 

selected arriving units. Calculations are shown for the mean and stan-

dard deviation. It its present form, the data in, Table II conveys 



Unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

TABLE II 

SERVICE TIMES FOR 30 RANDOM UNITS 

Service Time (X. - x) 
l. 

31 6 
18 - 7 
30 5 
25 0 
42 17 

8 -17 
32 7 
25 0 
27 2 
14 -11 

12 -13 
44 19 
34 9 
31 6 
52 27 
28 3 
21 - 4 
31 6 

9 -16 
24 1 

13 -12 
11 -14 
16 - 9 
25 0 
21 - 4 
23 - 2 
40 15 
17 - 8 
12 ... 13 
34 9 --750 

n 

X = l Xi/n = 750/n = 25.0 

i=l 
n 

cr2 = l (Xi - X) 2 /n = 3536/30 - 117.8667 

i=l 

a= /117.8667 10.85 

14 

(X. - X) 2 
l. 

36 
49 
25 

0 
289 
289 
49 

0 
4 

121 

169 
361 

81 
36 

729 
9 

16 
36 

256 
1 

144 
196 
81 

0 
16 
4 

225 
64 

169 
81 --3536 
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little information. A grouped frequency table is developed in Table III 

to express the same data in a more compact form. Six classes have been 

arbitrarily defined, each of 10 minute intervals. The number of times 

an observed service time falls within each class iqterval is tabulated 

and the tabulated frequencies are plotted in the :form of a frequency 

histogram as shown in Figure 2. 

TABLE III 

FREQUENCY TABLE 

Class Interva 1 Freq Fraction 'Rel""Freq Cumul Freq 

1 0-10 2 2/30 .0667 .0667 
2 11-20 8 8/30 .2667 .3334 
3 21-30 10 10/30 .3333 .6667 
4 31-40 7 7/30 .2333 ,9000 
5 41-50 2 2/30 .0667 .9667 
6 51-60 1 1/30 .0333 1.0000 

30 30/30 1.0000 

The relative. frequency of a set of data is simply the frequency di-

vided by the total number of observations. In Figure 3, the ordinate of 

Figure 2 has been changed from absolute to relat;i.ve frequency by divid-

ing by 30 so that;: the area under the relative frequency distribution is 

equal to unity. Relative frequency may be accumulated and plotted as a 

cumulative distribution. Each cell interval then represents the cumula-

tive relative frequency up to and including that interval. The 
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intervals will then have the appearance of a series of uneven ascending 

steps terminating at unity as shown in Figure 4. 

Probability and Probability Distributions 

Probability may be defined as either a measure of certainty or un-

certainty. It provides a means for mathematically expressing a degree 

of assurance or doubt. As a concept, probability may be used to de-

scribe the outcome of a random event. An event with a proba~ility of 

unity is certain to occur while an event w;i..th a probability of zero is 

certain not to occur. 

There are two traditional definit;i..ons of probability. The "class-

ical definition" has a mathematical origin and may be expressed as fol-

lows. If an event may happen in A ways and fail to happen in B ways, 

and all of these ways are mutually exclusive1 and equally likely to oc-

cur, the probability of the event happening is A/(A+B), the number of 

ways favorable to the event divided by the total number of possible, 

ways. 

Suppose that the physical limitations to a space are limited so 

that a queue may never contain more than three persons. The possible 

lengths of the queue are therefore 0, lj 2, or 3 persons. Furthermore~ 

assume that these queue lengths are mutually exclusive and equally like-

ly to occur. The probability of exactly O, 1, 2, or 3 persons in the 

queue are 1/(1+3) or 1/4. The probability of 1 or less persons in the 

queue is 2/(2+2) or 2/4; of 2 or less 3/4; of 3 or less 4/4. 

1 Events are mutually exclusive if the occurrence of any one of them 
makes impossible the simultaneous occurrence of any of the others. 



Conversely, the probability of O or more, 1 or more, 2 or more, and 3 

or more persons in the queue are 4/4, 3/4, 2/4, and 1/4 respectively. 

Note that in the cases of 3 or less or O or more, the probability of 

occurance is equal to unity as the possibility of all events are in­

cluded. 
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The classical definition above is necessary for mathematical mani­

pulations involving probability statements. However, from the stand­

point of useful applications, probability may be thought of as relative 

frequency in the long run, This is the "empirical or relative fre­

quency" definition which may be stated as follows. If a large number 

of trials are made under the same condi,tions, the number of trials in 

which a certain event happens divided by the total number of trials will 

approach a limit as the total number of trials is increased indefinite­

ly. This limit is called the probability that the event will happen 

under the same conditions, 

. The word "limit" in the frequency definition of probability is not 

used in its conventional mathematical sense .. That is, a function does 

not asymptotically approach a limit as some variable increases or de­

creases. It is rather a "stati,stical or stochastic limit" which is 

continually fluctuating as additional trials are made. As the number 

of trials a:re increased indefinitely, the degree of fluctuation de­

creases to the extent that a relatively constant value is approached. 

Table II represents a mass of service time data for a hypothetical 

facility. Table III and Figure 3, the relative frequency table and re­

lative frequency diagram were developed from this data. Assuming that 

the service times are valid in their representation, Figure 3 may be 

considered a probability distribution from which future service times 



1.9 

may be predicted. The probability of a service time falling in the in­

terval 21-30 minutes is .3333. Similarly, from Figure 4, the probabil­

ity of service time being less than 30 minutes is .6667. 

Probability distributions ~hould be differentiated from frequency 

distributions. The frequency distribution describes what has occured 

in the past while the probability distribution predicts what is expect­

ed to occur in the future. Probability distributions provide a means 

for assigning the likelihood of occur~ence to all possible events. 

Variables described in terms of probability distributions are called 

"random variables." The specific value of a random variable is deter­

mined by the distribution and the occurrence of that value is governed 

by the associated probability. 

Probability distributions may be either discrete or continuous, 

depending upon the nature of the event they are used to predict. If 

used to predict the number of persons in a queue, the distribution 

would be discrete. If used to predict service times, the distributions 

would be discrete over the interval of times selected. However, as the 

intervals are made small, the distribution will approach a continuous 

function. Continuous functions are often used to approximate discrete 

functions so that integration can be applied. Likewise, discrete func­

tions are used to approximate continuous functions, particularly in ap­

plications using a digital computer, so that a sununation process will 

perform the required integration. 

Many mathematically derived probability distributions have been de­

veloped which closely approximate the occurrence of random events in 

real-life situations, The most important of all distributions is the 

normal or Gaussian probability distribution. It is defined as: 
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-(x-µ.)2 /2cr2 
e 

f ( x) = -----,,--­o/"2TI 
(-co s; x ~ co) ' (2 .3) 

The mean and variance are µ, and, a= respectively, , The normal distribu-

tion is symmetric about the mean as a bell-shaped curve •. The amount of 

humping, or steepness of the curve, about the mean is a function of its 

variance. The smaller the variance, the steeper the curve. 

The normal distribution possesses several useful properties ~ith 

regard to its shape. , Where distances from the mean are expressed in 

terms of standard deviation, cr, the relative area defined between two 

such distances will be constant from one distribution to another. , All 

normal distributions, when defined in terms of a commonµ, and cr,will be 

identical in form and corresponding probabilities may be tabulated. , As 

the normal distribution describes every possible event, the total area 

under, the curve is equal to unity. The cumulative ·probabilities from 

.co to any value expressed in standard deviation units are given in-Table . ' 

IV.a The table gives the-probability of a value falling within the 

range -co to Z, where Z is a standard normal variate defined as: 

z = ( x .- µ.) I cr {2 .4) 

If the service time data of Table· II were assumed normally distri-

buted, the-probability that service on a randomly selected unit would be 

less than 10.0 minutes would be computed as follows. 

Z = (10.0 - 25.0)/10,85 = ~l.382cr 

111 W. J. Fabrycky and Paul E,. Torgersen,, Operations Economy,., (New 
Jers~y, 1966), pp. 452~453. 
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From Table IV, 

P(-m to -1,382) = .0835 

Similarly, the probability that service on a randomly selected unit 

would be less than 40. 0 minutes would be computed as follows. 

· Z = 40.Q - 25.0/10.85 = +1.3820 

From Table IV, 

P(-= to +1.382) = .9165 

The probability that service time on a randomly selected unit fell with-

in the interval 10.0 to 40.0 minutes would be .9165 ·~ .0835 = .8330. 

These calculations have been graphically portrayed in Figure 5. 

Total Area= 1.000 

Area(-= to +1. 382cr) 
= ·a 9165 

. I 

µ. = 25.0 

a= 10.85 

Area -1. 382cr +1.382a - Area = • 0835 

-3cr 

Area = 1• 8330 

I -la 

x = 10.0 

lcr I x 

2cr 

40.0 

Figure 5. . Service Time$ as .a Norma 1 Distribution 

3cr 
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Two particular probability distributions of g:r:eat importance to 

queueing theory are the exponential and Poisson distribution. The num­

ber of arrivals and service completions per unit time for most models 

illustrated in this study, are assumed to follow a Poisson distribution . 

. Most of the service time and all of the arrival interval distributions 

are 1:1ssumed to be exponential. Because of the significance .of these as­

sumptionl;l, the exponential and Poisson distributions are introduced in 

Chapter·111. 

Inferential Statistics and Sampling 

Thus far, masses of raw data have been described by calculating 

meas~res for central tendency and dispersion. . It was stated that the 

data was collected through observation and was representative of a char­

acteristic of interest. In Table II, 30 items of data were introduced 

as individual measurements of service time for a hypothetical facility. 

From this data, a frequency distribution was developed from which in­

ference was made towards the future. ·An alternative inference was made 

by assuming that the service times measured followed a normal distribu­

tion .. To the extent that the data in Table II is representative of the 

true behavior of the facility over time, these inferences may be cor­

rect. The body of statistics that deals with the formulation of infer-

·ehces or conclusions from raw data is called· "inferential statistics." 

· A ."population" consists of al-1 possible objects, states, or events 

within an arbitrarily defined boundary and may be· either· finite or in­

. finite. Tl;le ·population of service times for the hypothetical facility 

above consists of the time required to.service every.arriving unit 

throughout the life-time of the facility, The total number of service 



24 

completions accomplished by the facility is therefore a very. large, fi­

nite poptilation. It is usual to consider very large populations as in­

finite in size for computational purposes. 

Large or infinite populations are a characteristic in most archi­

tectural queueing problems, For example, the population of arriving 

automobiles to a shopping center parking lot consists of every auto­

mobile in the surrounding state, county, city, or neighborhood, depend­

ing on where the arbitrary boundary is defined. Similarly, customers at 

a supermarket, passengers arriving at a termina 1, or a life-time of ser­

vice times·for a facility comprise extremely large populations. From 

these large populations, a means by which arrival and service rates may 

be obtained with a degree of assurance is necessary. 

Complete enumeration of each element from a very large population 

is generally impractical or uneconomical. In many cases, it may be in­

accessible as a whole. For these reasons, a "sample'' is drawn from the 

population. A sample is simply a part or portion of the total popula-

tion and is usually assumed as typical of the population~ at: least in 

regard to the parameter under consideration. Samples taken must be se­

lected at· "random" where randomness implies that each element of the 

population has an equal chance for selection. 

Properties of a population as the mean or variance are termed 

"parameters" while properties of samples are termed "statistics." The 

distinction is important as a population has only one mean or variance. 

Samples may have different means and variances as each sample is com­

posed of different, randomly selected elements of the population. 

Through sampling, the limited observation of a population, inferential 

statistics attempts to estimate population parameters. 
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The means of samples taken from a population in turn from another 

sub-population of sample means. The mean and variance of sample means 

may be calculated as any other set of numeric data. The mean of sample 

means is considered the best estimate of the population mean. The true 

population mean will be approached as a statistical limit as samples are 

taken indefinitely. The variance of sample means is related to the 

variance of the populations by the relationship: 

(2,5) 

where n is the sample Size. Equation·(2,5) holds true for any popula-

tion, regardless of its distribution. Recall that if the population is 

normal and its mean and variance are known, the population is fully de-

scribed. However, populations in real-life situations will very often 

follow a distribution other than normal. 

The "central limit theorem" is a mathematical proof which. states 

that the population of sample means will approach normality as the size 

of the.sample and number of samples taken tends towards infinity •. It 

has been demonstrated that sample means taken from any population, re-

gardless of·its distribution, will approach normality even with sample 

sizes as small as four. 

Once again, consider the data in Tab le II. Assume that each of the 

values represent the mean of a sample size four so that 120 observations 

have been made. The population mean is therefore estimated as the mean 

of sample means or 25,0. The standard deviation of sample means, a-, is 
x 

10.85. From this-information, .it is desired to calculate the .95 "con-

f;idence interval." The confidence interval is defined by limits between 

which the stated proportion of observations will be expected to fall. 
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Table IV may be used since, according to the central limit theorem, the 

sample means are expected to approach a normal distribution .. Since the 

normal distribution is symmetric, enter the body of Tal;>le IV with the 

probabilities .025 and .975 which yield Z values of :I: 1.96. From Equa-

tion (2.4),,X = µ. ::!: 1.960-x = 25.0 ::1:(1.96)(10.85) = 3.73 and 46,27. The 

preceding calculations allow the following statement. If sampling is 

continued from the same population, in the .long run 95 out of 100 sample 

means may be e~pected to fall between 3.73 and 46.27. 

From·Equation (2.5), the variance of the population is equal to the 

variance of sample means multiplied by the sample size .. Taking the 

square~root of both sides of the equation, the standard deviation of the 

population, cr, is seen to equal twice the standard deviation of sample 

means, 2(cr~), with a sample size four. Table IV may be used to infer 
x 

any probability of interest concerning the population only if the popu-

lat ion is assumed normally distributed. - It should be intuitively clear 

that the smaller the· variance of the population, the smaller the inter';" 

val for a stated percentage of confidence. The calculations above are 

illustrated in Figure 6. 

Summary of. Statistics and Probability 

In the analysis of any queueing system, the arrival and service 

rates must be known or estimated. These .rates are generally deriv.ed 

from very large populations making the techniques of random sampling a 

necessary procedure. . The result of observing every possible element of 

a population would be a specific distribution of numeric values. A com-

plete description of a population is available when the distribution of 

individual elements is knoWn, The distribution of elements within a 
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Figure 6, A Confidence Interval for Sample Means 

population may be numerically described by calculating the mean and var-

iance or standard deviation. Without recognition of variation within 

the arrival and service rate populations, proper inference about the 

predicted behavior of a queueing system cannot be made with assurance. 

The degree of assurance associated with any inferential statement is ex-

pressed in terms of a probability. Probability statements give the pro-

portion of times a partic.ular event may be expected to occur or not oc-

cur as repeated opportunity for occurrence is extended indefinitely. 

Even a superficial study of statistics and probability would entail 

a complete volume of work .. Hundreds of books and a countless number of 

technical papers and articles have been published in these subject 

areas. The purpose of this chapter has been limited to the introduction 

of the language of statistics and probability as they broadly apply to 

queueing theory. A rudimentary knowledge of the concepts involved will 

facilitate understanding of topics introduced in subsequent chapters. 



.CHAPTER .III 

PROBABILITYDISTRIBUTIO~S OF·SERVICE 

AND AR.RIVAL TIMES 

The rate at which units arrive and are serviced in the queueing 

model has been only briefly discussed. Further study requires a more 

·definitive approach •. It should be understood, however, that units ar-

rive for service in a more or less irregular pattern with service per-

formance subjeqt to random variability. In sµbsequent chapters, arrival 

and service times will be assumed as .independent random variables with 

probability distributions having known form anq parameters. Upon this 

assumption, the probability distribution defines a population of arrival 

and service times for all units consecutively entering the s-ystem. 

Distribution of Service Times 

Service time is simply the amount of time that has·passed from the 

beginning of service to its completion. In the case of a sales·counter, 

service begins when the· "customer" arrives at the head. of the line, if 

one exists, and received attention from the clerk. Service ends when 

all transactions have been completed and the customer moves away from 

the counter. The mean service time will be represented by T while its s 
;i·.!· 

reciprocal, 1/Ts will be represented by. µ, and defined as the service 

rate. The serv.ice rate .is seen tc;> represent the mean number of service 

completions per unit time. 

.28 
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Once the service times of a considerable nµmber qf customers are 

obtained, preferably 200 or more, they should be plotted on a time base 

to establish their stability. Tests for stability indicate whether ob~ 

served service times have been taken from the same population. They are 

p1;3rtict4laily important in architectural applications as rush-hour peaks 

and off-hour· lull$ are typical in many building t-ypes. 

The use of "control chart" techniquesl as applied to industrial 

quality control are based upon the central limit theorem and the normal 

distribution introduced in Chapter II. · Recall that sample means taken 

from a population of any distribution may be expected to approach'a nor-

mal distribution. The mean and standard deviation of sample means 

therfore define a particular normal distribution or population. · From 

· Table IV, .. it is seen that the interval ::!: 30- define boundaries within 
x 

99.7% of the sample means may be expected to fall. The inclusive range 

of this interval leads to the conclusion that sample means falling out-

side .of the boundaries have been drawn from a different population. 

Experience has shown that population parameters may be reasonable 

estimated a:fter 20 samples have been drawn. Once established, these 

parameters may be used to graphically construct "upper and lower control 

chart limits" corresponding to the·::!: 3o-- limits of the normal curve .. A . x 

central line, midway between the two, corresponds to the mean of sample 

means. Values of the sample means may then be plotted as a function of 

time by maintaining the order of sampling. As long as the plotted 

values. remain within the control chart limits, there is reasonable 

.. •Eugene -L. Grant, Statistical Quality Control (New York,. 1964), pp. 
65-90~ · 
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ass1.,1rance that the sampling process is continuing from the same poptila-

tion. J?rolonged runs above or below the central li.ne indicate that a 

Shift in population mean has occurred. Points falling outside both con-

trol limits indicate a change in the population dispersion about the 

mean .. In either case, a new population of service times exist which 

differs from the original population whose parameters were originally 

es.t ima t ed. 

Tests for independence~are made to insure that the service time for 

any particular unit does not depend in any way upon the service time of 

the preceding unit or units. Several methods are available for such 

tests but require statistical concepts be~ond those introduced in this 

study. Tests for independence make up a significant portion of many 

texts on statistics, some of which are listed in the bibliography .. It 

is a reasonc1ble assumption, however, that the types of service times en-

countered in architectural queueing models are independent. Service 

time populations are generally very large and center about the activi~ 

ties of people. The service time required of one arriving individual 

will usually not depend upon the service time required of preceding in-

dividuals. The preceding comments pertaining to stability and independ-

ence also apply to arrival intervals . 

. Any logical procedure may be used to construct a frequency diagram 

so that the sequence of service times in Table·II may be graphed in or-

der of decreasing length. The resultant plot is the cumulative number 

of service operations that take longer than a given time (t) as illus• 

trated in Figure 7. By dividing the ordinate by the total number of 

service times, a scale that represents an estimate of the probability, 

S (t), that a service operation will take longer than time twill be 
0 
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obtained. As sampling is continued indefinitely, the curve will ap-

proach a continuous function as illustrated in Figure 8. If the situa-

tion remains the same, another sample, of measured times will yield an .. 

other empirically determined probability curve which will be roughly 

equal to the first. 

This probability function or· "service-time-distribution,," S (t), is 
0 

all that is required to represent the service facility since it defines 

the service time for all units consecutively entering the system. -All 

curves of S ·(t) will start with a probability of unity at t = 0 since it 
0 

is certain that a service operation will take longer than zero time. A 

special case of S~(t) occurs when all operations take the same amount of 

time. This is the case of constant service which-is illustrated in 

Figure 9 by the dashed-line. The service time for every arriving unit 

I 
1-

1,0 

o.s 

r-1-Re-gion of Erlangian ·Distributions; f(k) 
,/ j · (er~ Ts or Ta) 

rConstant .Service.(~ = O) 

r----1-----The · Exponential Distribution 
(0 = Ts or Ta) 

~~~.,-.~~Region,of Hyperexponential 
Distributions~ f(j)~ 
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Figure 9 •. S0 (t) or-A0 (t) Curves 
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takes exactly time T8 so that it is certain (S0 (t) = 1] that every serv­

ice takes longer than (t) if (t) is less than T and certain that no 
s 

service·(S0 (t) = -OJ is longer than (t) if (t) is greater than Ts. Con-

stant services are very usual for architectural queueing systems and 

most. S0(t) curves will tend monotonocally toward zero as·(t) approaches 

in;i:inity . 

. A large number of service operations will exhibit ·i,0(t) distribu­

tions which are closely approximated by the exponential curve. The ex-

ponential curve is illustrated as tµe solid line in Figure 9 and repre~ 

sents the case where the probability of prolongation of service is inde-

pendent of how long ago the service started •. The probability function 

S0 (t) for the exponentiql case is expressed .as: 

· -11.t S (t) = ·e I"' 
0 

(2. 1) 

where ·e ·= 2. 718182 ... , the bqse of the natural logarithms and µ. = l/T 8 , 

tl;ie mean number of expected service completions per unit time, The ex-

ponential distribution is peculiar since its mean, T, and standard de­s 

viation,. a, are exac~ly equal. Exponential distributions are extremely 

important because of their wide scope of applicability and will be used 

extensively within this study. They have a further theoretical impor-

tance because they enable the mathematical solution of queueing problems 

by the use of linear equations. 

The curves in Figure 9 have been plotted as a function of time in 

units of T as the term µ.tis equivalent tot/Ts .. It is interesting to s 

note that when the multiple of T,s is unity,. ~0(t) = e- 1 = 1/2. 718182 = 

.368 which means that 36. 8% of the time the·. expected service duration 

will be greater than T. The complementary statement would be that s 



63.2% of the time the expected service duration will be less than T . 
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The significance of these st~tements is that whel;'e exponential distribu-

tions apply, serv~ce times less than~ are more frequent than service 
'5 

times greater than T. 
'S 

, While exponential distributions are very common, it will be found 

that in rn.any cases the service time d:i,.stribution departs significantly 

fi;om the cr = T5 or exponential distribution, In other words, the nurn.er­

ic value of the disperson about the mean, expressed in terms of standard 

deviation, will be greater or less than the mean. Those distributions 

with less. variation (cr < T ) than the exponential case are known as s 

Erlagian distributions while those distributions with greater variation 

(cr > T ) are known as hyperexponential distributions. s 

The probability function,.S (t), for Erlagian service distributions 
0 

may be expressed as: 

k-1 

S~(t) = e-kµt l (kµt)n/n! (2.2) 

n=O 

where k may be considered an integer constant indicating the degree of 

departure from the exponential case. When k = 1, Equation (2.2) reduces 

to Equation·(2.1), the exponential distribution while when k approaches 

infinity, S ·(t) approaches the special case of constant service times. 
0 

The standard deviation of an E:dagian distribution may be expressed 

as: 

cr = T //k s (2.3) 

from which. the distribution plotted in Figure 8 is the case of k approx-

imately equal to five. Erlagi,an distributions are plotted for k = 1, 2, 
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4, .. 10, 50, and infinity in Figui;-e 10 •. These types of distr;i.bution may 

be-expected where se-.rvice pe+formance is relatively the.same for a 

~ajortty of arrivals. A typical example might be an airline ticket 

counter handling only th.ose passenger.a traveHng short distances. 

The ·probability funct;ion, S (t) · for hyperexpo.nential service dis­o · 

tribut ions inay be expressed as: 

(2 .4) 

where "TI is defined in terms of. an ;integer j by the·· relationship: 

(2 .5) 

·, 

(j) may be considered an integ.er constant indicating the. degree of de-

-parture from t:he exponential case. When j = 1, -rr = .500 so that Equa-

tion (2.4) reduces to Equat:ion·(Z.1), the exponential distribution. As 

j increases, the de8iree·of variation increases. From·Equation·(2.5), 

when TT= .2U3, j = 2; when TT= .• 1127, j = 4; when rr = .0478, j = 10; 

and when TT = , 0244, j = 20 • 

.. The. standard deviatiqn of a hyperexpc;mential distribution may be 

·expressed as: 

(! = T ·/3' ·s 
(2. 6) 

Hypetexponential distJ;"ibutions for j.= 1, 2, 4, 10, and 20 are plotted 

in Figure· 10 •. These. types of distributions may be expected where serv-

· ice performance is c;:haracterized. by very long and very short dur1;1.tions • 

. In the ticket counter 13xample, suppose that tranecontinental as well as 

.· short distance tickets were handled, Assuming that arriving passengers 



-,l,J 

'=' 
0 

1. 00 .......... ..__ ............___ j ---....:'™ == wwwm mr =, I I 

o.9o W~i:---~.---~c--+--=~---\---t---------r--------1 

0.801--~~~~== 
o.1or-~-~~~~:---~~-'--~:---4~-\-~~---------+----------J 

k = a, 

(constant service or arriv.ls) 

Erlagian Distributions, f(l) 

<tl• 0.60 
l-l 

\ ~ ~ ~ k: :0~04 
0 

-~·· 
'=' 

°" "- .... ,~ k=2 

00.501--~~~~~~~~~,_-~-+ ........ .--~~ ...... ~~---''l.-~'l.--+"Ll---'-~~~~~~~~~~--1~~~~~~~~~~~~-i 
~ '\. '1 The Exponential Dist;fibution ro 

:>,. 
.;J 
•F-1, 
,-l 

j k = 1, j = 1 

j 
·~ 0.40 t-~~~~~~~~~~~-'l<t-'ll:~~...-~~.,..,.,~~~~...,..~ ...... """~~~~~~~~~~~-t-~~~~~~~~~~~~--1 
..n. 

Cl! 
..0 
0 
H 

Pol 

j 

0.30 I I ,..._, ""'-.: ~ ..... '• "-~ I I 

o. 20 I I ............._ .............._ ~ v--,......._ '- ~ --.?"k::: ---....__ I 

o.,. 1 . I 

o.o O.ST I.OT l.ST 

Figure 10. Probability Distributions for Mean Service Time, 'l's' 
or Mean Interval Between Arrivals, Ta 

2.0't 

w 

°' 



37 

traveling transcontinental distances require substantially longer serv-

ice perfo:rmance, long and short durations would predominate yielding a 

large variation about the mean. In both Erlagian and hyperexponential 

distributions, it is not the magnitude of service times that govern but 

the extent that individual service times are distributed about their 

mean. 

Distribution of.Arrival Times 

Irregular arrivals to the qµeueing system may be described in terms 

of probabilities quite analogous to service times. The arrival time is 

the amount of time that has eiapsed between successive arrivals to the 

system. The mean arrival time or interval between arrivals shall be 

symbolicaUy represented by T.. . The reciprocal of the mean arrival 
a 

time, 1/T shall be represented by~ and defined as the arrival rate or a 

expected mean number of arrivals per unit time. 

The interval between arrivals may be collected as data and plotted 

identically as the service time of Figure 7. By dividing by the total 

number of arrivals, the arrival distribution function A· (t) similar to . 0 

the curve in Figure 8 may be derived. The curve A0 (t) yields the pro-

bability that the next arrival comes later than time t after the pre-

vious arrival, or than no arrival occurs in time t after the previous 

arrival. 

The e:icponentj_al curve closely approximates the real-world condition 

where the probability of occurrence for the next arrival is independent 

of the elapsed tJme.since the last arrival. The distribution function 

for exponential arrival times may be expressed as: 
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(2. 7) 

In most architectural sys.terns, there are a greater number of chance 

factors influencing arrival times than service times. It is therefore 

reasonable to assume that arrival tim.es come closer to being random in 

the sense that they are· exponentially distributed .. While the service 

times of a great many facilities may tend towards regularity, the arriv-

al times are in most cases completely unpredictable. For example, it is 

all but impossible to p:t;'edict the moment a customer will arrive at a 

sales counter, or passenger to a ticket counter, or automobile to a 

parking lot • 

. It may be shown that when the distribution function A (t) is expo­
o 

nential, the dist;ribution A/t) · follows tp.e well known and widely ap­

plied Poisson distribution. An(t) gives the probability of exactly n 

arrivals within an interval of time t and may be expressed as: 

(2. 8) 

Situations to which the Poisson distribution has been shown to be appli-

cable are so numerous and so diversified that it has sometimes been~· 

called the law of small numbers. For example, many architects will be 

bmiliar with rainfall intensity charts which give the number of yearly 

periods in which a specified amount of rainfall accumulated within a 

specified amount of tim.e. These particular charSs follow the Poisson 

distribution. 

A special distinction is characteristic of the Poisson distribution 

which may be stated as follows. The area for opportunity. of occ.urrence 

for an event is extremely large relative to the chance that the event 
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will occur at any given opportunity, There are many opportunities for a 

rainstorm to occur. However the chance that a rainfall of one-half inch 

or more will occur in any particular 10 minute time pe:r;iod is extremely 

small. Similarly, there are many opportunities for an automobile to ar-

rive at a large shopping center parking lot or passengers to arrive at a 

baggage check-out counter. However, in both cases, the chance that an 

arrival occurs within any particular short interval is small in relation 

to its opportunity for occurrence. 

Because of these distinctive characteristics and its wide scope of 

applicabili,ty, the Poisson distribution is particularly usef(ll to queue-

ing theory. In addition, with the relative simplicity of the exponen-

tial distribution function, there is much less difficulty encountered in 

the mathematical derivations of queueing model parameters. Most queue-

ing theory texts devote extensive coverage to models incorporating this 

particular distribution function. For these reasons, all models in this 

study consider only those systems with Poisson arrivals._ 

Of course, it must be acknowledged that other arrival distributions 

exist. Under these conditions, the A0 (t) curves may be described in 

terms of Erlagian or hyperexponential ciassifications. The relation-

ships for Erlagian or hyperexponential arrival distributions are iden-

tical to those of Equations (2.2) and (2.4) replacing the valueµ by·~ . 

. The mathematical derivation of parameters for these conditions becomes 

so comp lex that they are impractical for inclusion to this ·study. . In 

many cases, other methods such as· ''Monte Car lo analysis" or "computer 

·simi,ilati,ori" are far ·superior. A fa(llily of A (t) curves is shown cor:re-o . 

sponding to S (t) curves in Fi,gure 10. 
0 



CHAPTER IV 

THE STRUCTURAL ASPECTS OF QUEUEING·SYSTEMS 

It has been established previously that the arrival and service 

distributions are essential elements to any queueing system. However, a 

complete description of queueing systems requires additional statements 

concerning their physical and theoretical structure. Statements in-

valving physical st:i;ucture relate to aspects as the total number of 

service facilities, how service facilities are physically arranged, or 

possible limitations to the maximum length of queue. Theoretic.al con-

siderations include assumptions concerning the logical order in which 

units are serviced or the manijer in which arriving units enter the sys-

tern. 

Several methods of classification have been developed to describe 

queueing systems, The objective of these systems is mainly to provide a 

concise notation for those persons dealing in mathematical applications 

of queueing theory. As this is an introductory study of real-world ap-

plications, a more qualitative approach is desirable .. James M. Moore1 

has provided this approach by summarizing the interrelati.onships of ele-

ments within a queueing system in terms of an organizational chart . 

. Moore's chart, which describes models for which a relatively large 

1 J,;1mes M. Moore, "To Queue or Not to Queue," Journal of Industrial 
Engineering, Vol. XII, No. 2, MarchmApril, 1961, pp. 119-121. 
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In order to define a given queueing model~ information must be ob-

tained for each of the five blocks at the top of the chart. These five 

basic structural elements include the customer population~ number of 

channels, queue discipline, arrival distribution, and service distribu-

tion. . Eac;.h particular element is fully described when a dead-end branch 

is reached.· Where the appropriate information is not available, reason-

able assumptions must be made. 

The Customer Population 

The customer population refers to the population from which 
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arri,vals enter the -system. When the number of customers is very large 

and their demands for service are correspondingly small, it is conven­

ient to assume that the customer population is "infinite." This assump­

tion simplifies the computational effort in deriving system parameters 

and is the more usual case in archit,ectural situations ... Where this as­

sumption cannot be made, the customer population must be considered "fi­

nite." The importance of this differentiation may be illustrated in a 

prooabilistic example. 

Consider two hypothetical restaurants, one open to the public and 

the other private, limited to a membership of 200 persons .. The public 

restaurant has a customer population which includes all persons living 

within reasonable distance and may be considered very large. The de-­

mands for service pl.aced upon the public restaurant are relatively small 

when compared to the population size. Because the population is large, 

the demand and therefore the probability of an arrival is relatively 

constant reg1;1rdless of the number of arrivals which have previously oc­

curred. However, suppose that 100 customers have arrived at the private 

restaurant. This small population has been reduced by one-half so that 

a substantial decrease in demand may be expected .. The arrival distribll­

tion for the public restaurant is independen,.t of the number of previous 

arrivals while the private restaurant is highly dependent upon the ntJm­

ber of previous arrivals. 

- The Number of Channels 

The number of channels refers to the number of facilities available 

for service. -A theater with one. ticket booth is a "single" channel fa(" 

cility while a oank with several tellers is a "multiple" channel 
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facility. When a customer ha-s the option of service from any one of 

several channels, the channels are said to be in "parallel." The vast 

majority of queueing problems found in architecture involve parc;\llel, 

multi-channel :j:acilities, Service facilities are in "series" when serv­

ice is rendered consecutively by more than one channel. For example, 

departure :l:rom an inter-continental airline terminal might require the 

consecutive service of a ticket counter, baggage counter, customs in­

spection, and passport inspection in that specific order, "Infinite," 

multi-channel facilities rarely, if ever, exist in practical applica­

tions, They are primarily of mathematical interest because of the ease 

in computing their system parameters. 

The Queue Discipline 

The queue discipline is the logical procedure by which customers 

receive service. In some respects, the queue discipline also refers to 

the manner in which customers arrive. Figure 11 indicates many varia­

tions in queue discipline as several either/or decisions must be made, 

For example, customers may be "patient:" or "impatient." Patient custom­

ers refer to the possibility of an unlimited or infinite quehe. All ar­

rivals enter the system and r~m.ain for service regardless of the sys­

tem's condition. This situation is particularly applicable where no 

other alternatives a~e available as in a single exit from a parking lot, 

However, the patient customers or unlimited queue condition may al.so be 

applied in less rigid situations as, for example, a theater ticket line. 

The theater queue will certainly not reach infinity, but all customers 

will remain in the system as long as they are reasonably assured of en­

try, On the other hand, impatient customers will either "depart 



immediately" or·"renege" if the system is in any condition whichdis­

courages their entry. The·latter condition assumes some measurable 

amount of time was spent in the system before departure. 

44 

Once the customer has decided to remain in the system, he may re­

c;eive servic~ in several ways. . The most common, particularly in archi­

tectural situations, is the "first come, . first serve" discipline which 

requires no explanation. In other instances, customers may receive 

service at· "random," for example as in a crowded bar or concession stand 

where no defined queue has formed, 

The "priority" discipline exists where one type of customer has 

preference over another. The "head-of-line" priority is the condition 

where customers with higher priorities move directly to the front of the 

waiting line. The ''preemptive" priority occurs when an arriving custom­

er with higher priority bumps out of the facility the customer receiving 

service, This is the hospital case where the routine treatment of a 

patient is interrupted to provide emergency treatment for an accident 

victim. The bumped patient may. "resume" service at the point of inter­

ruption or be required to "repeat" the service cycle from the beginning. 

The number of priorities by which the system is governed may vary from 

the .. simple case of· 11two" to any "finite" number if three or mqre levels 

of customers exist. When many finite·levels of customers are consider-

·ed, their priorities are often treated as "continuous" functions to sim­

plify their mathemc:1tical computations . 

. The "bulk" discipline refers to conditions in which customers ar­

rive or are serviced as a group. For example, passengers disembarking 

from an airplane arrive as a group while the passengers in an elevator 

arrive indiv;i.dually but are serviced as a group .. Sometimes both the 
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arrivals and service use the bulk queue discipline. Under these condi· 

tions, it is much simpler to consider the entire group as one arrival 

and the service time as·the amount of time required to service the·en-

tire group. 

The Arrival and·Service Distributions 

·Arrival and service ·distributions were discussed in Chapter ·III in 

ter.ms of probability curves. Th~se curves were classified into families 

desc:ribed aa constant,, E:rlagian, exponential, or hyperexponential dis-

tributions, corresponding with Moore's chart. - When the probability 

curve or dii;tribution is known, together with the mean interval between 

arrivals,·Ta' or:the mean service time,.Ts, the arrival or service dis-

tributions are completely defined. 

Traffic Intensity 

The arrival and service times may be expressed .in terms of a single 

variable,. p, the·· "tra_,ffic intensity." Traffic· intensity is the ratio of 

the mean ·service time, and the mean .interval between arrivals. Written 

in terms of their rates, pis the ratio of the mean arrival and service 

rates. 

(4.1) 

When p < 1, on.the average, mqre service completions than arrivals 

· occur per· unit time. As >i; increases or µ. decreases, traffic intensity 

increases and it becomes more likely that a customer will have to wait. 

When p ·~ 1, the arrival rate is greater than the service rate and 

a greateJ;" number of customers arrive than are serviced per unit time, 



46 

.Two conditions will result.. First, the queue will grow without bound; 

and second, a steady state condition will not be reached. A steady 

state occurs when· "state probabilities" reach a point of equilibrium and 

become independent of time. Independence of time means that a specific 

state probability is constant for a. particular syste~ at any point in 

time during its operation. 

Since all ~easures of effectiveness developed in this study are in­

dependent -of time, investigation·will be limited to the condition of 

p · < 1. This is a log:i,.cal approach since unbounded systems are unrealis­

tic in most architectural problems. However, it should be recognized 

that the condition.p .~ 1 may exist irregularly for ·short periods of time 

in real-world systems. One of the primary advantages of queueing theory 

is that it recognizes the occurrence of these irregularities in its 

measµres of effectiveness on a probabilistic basis. 



CHAPTER V 

SINGLE CHANNEL MODELS 

As discussed in Chapter IV, all models considered in this study 

shall have an infinite customer population, ~ Poisson's arrival distri-

bution, and shall be serviced in a first come, first serve discipline. 

Except as discussed in the next section, the service time distribution 

shall be assumed exponential. :In this particular chapter, models con-

sisting of a single service facility will be considered under conditions 

of either patient or impatient customers. It is assumed that impatient 

customers immediately depart the system. Figure·ll shows that a queue-

' 
ing mag.el is cqmpletely described by the assumptions above as dead-end 

branches are reached under each of the five major blocks . 

. Patient Customers 

·Modeh with patient c;:ustomers assume that all arrivals enter the 

. system to remain for service regardless of the system condition. Graph-

ically represented in Figure 12, the open-ended queue indicates that 

this model is the case for which an infinite queue is allowed. The sym-

bol n represents the number of units in the system at any point in time. 

The·simplicity.of this model allows consideration of a few measures of 

effectiveness for non-exponential service distributions, These measures 

include the expected mean number of units in the system and in the 

queue,· L and Lq, and the expected mean waiting time of units in the 
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The general state probability, P , is the probability that there 
n 
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are exactly n units in the system at any point in time. It may be shown 

that when the service distribution is exponential, P is expressed as: 
n 

(5 .1) 

In the case of n = 0, the probability of zero units in the system, Equa-

tion (5.1) reduces to r 0 = (1 - p). P0 represents the proportion ~f 

time that the facility is completely idle .. Hence, the expression 

(1 - P0) always represents the proportion of time that the facility is 

occupied. It is a direct measure of facility efficiency and shall be 

defined as the "utilization factor." 

For single channel systems'with infinite queues allowed, P0 is in­

dependent of the service distribution, Whether the service distribution 

is exponential, Erlagian, hyperexponential, or constant, P0 is always 

(1 ... · p). For these particular models, the traffic intensity, 
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p = (1 - P0) is the utilization factor, making it a useful measure of 

effectiveness. 

The summation of probabilities for all possible states of the sys-

tern mllst eq1,1al unity as the probability of occurrence for every possible 

event is considered. The number of possible states is infinite as an 

unlimited queue is allowed when all customers are ass1,1med patient. 

Since each value of Pn represents the proportion of time that the system 

contains exactly n units, the produccl n(P) summed from Oto= yields 
n 

the mean number of units in the system. The value of L may be expressed 

and evaluated as: 

L = In(Pn) = p/(1 - p), (5.2):, 

n=O 

Values for Lare plotted as a f1,1nction of pin Figure 13 as the curve 

designated for exponential services. 

By similar reasoning, the expected mean number of units in the 

·queue may be expressed and evaluated as: 

co 

Lq = I (n - l)Pn = p2/(l - p) 

n=l 

L L -·p, 
q 

(5,3a) 

(5.3b) 

Since p represents the proportion of time that the facility is occupied, 

L expressed in terms of L as in Equation (5.3b) is valid regardless of 
q 

the service distribution. Figure 13 may be used to determine L by 
q 

first determining Land making the subtraction of p, 

The expected mean time a unit spends in the system, W, may be 
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· expressed as: 

W = 1/(µ - ,)_) (S.4a) 

W =·L/). (S.4b) 

and the e;xpected mean time a unit spends in the queue,· W , may be shown 
q 

to be: 

W . - (L - p) /). 
q 

(5. Sa) 

(S.5b) 

Values for W or W are plotted as functions of L or L for incremental 
q . q 

values of·>.. in Figl).re 14. When Wand W are expressed in terms of Las 
q 

in Equations (S,4b) and (5. Sb), the relationships are valid, regardless 

of the service distribution. Thus, Equations (S.3b), (5.4b), and (S.Sb) 

may be used whether the distribution is constant, exponential, ·Erlagian, 

or hyperexponential aftei'·the proper value.of L has been determined. 

Erlagian and Hyperexponential Services:· L 
I 

Because of the relationships just discussed, measures of effective-

ness for Erlagian and hyperexponential service ,distri,buti,on!;l are limited 

to Lalone. The derivation and expression of the general state proba-

bility, P , is well beyond the scope of this study .. However, for· Erla~ 
n 

gian service distributions, L may be expressed as: 

where k may be considered an integer constant indicating the degree of 
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departure from the exponential case. · When k = 1, the service distribu-

tion is e~ponential and Equation (5.(i) :reduces to Equation (5.2). Ask 

increases service ti~e variability decreases. Constant service times 

are approached ask approaches~. Values for Lare plotted as functions 

of· p for k := 1, 2, 4,, 10,. and 50 in Figure 13. When k = 50, k may be 

considered as infinite or representative of the constant service time 

condition • 

. Hyperexponential service.distributions are characterized by very 

long and very short.service times. The mean numbet of units in the sys-

tern, L, may be expressecl as: 

(5. 7) 

where TT may be expressed in terms of an integer constant, j, Csee Equa-

tion (2. !>) J indicating the degree of departure from the exponential 

case.· When rr = .50, j = 1 and -Equation (5. 7) reduced to Equation •.(5.2), 

the exponent;i.al case. Values of L are plotted as functions of 'p for· 

j = 1, 2, 4, 10, and 20 in Figure 13. 

Example-Problems 

The use of Figures·l3 and 14 to determine the preceding mec:l,Sures of 

effectiveness is best illustrated through the use of example problems; 

The presentation of these measures in graphic form allows rapid investi-

gation of the system under several different conditions. In addition, 

many characteristics of the measures which are not readily apparent in 

their mathematical form become clearly evident when presented as shown . 

. Problem No. 1: An airline ticket counter is subject to _Poisson 
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arrivah, as all models of this study, with a mean interval between ar .. 

rivals of 10 minutes. A mean seryice duration of 5 minutes per customer 

has been determined. ·As both local and intercontinental tickets are 

sold, very short and very long :service durations p:i;:edominate. A greater 

number of local tickets are sold.so that there are more short service 

. durations. than long . . },. cumulative frequency diagram of service times is 

constructed, as· in Figure 7, an~. compared to the family of curves in 

Figure 10. Assume that the service distribution is determined as hyper-

exponential with j = 10. What are the operating characteristics of the 

system expressed in numeric terms as measures of effectiveness? 

Solution: T = 10 minutes; ·A= 1/T = 0.10 arrivals/minute. T = a - a s 

5 minutes;.µ. = 1/Ts = 0.20 service completions/minute, . Traffic int en·< 

sity, p = Alµ. = 0.10/0.2-0 = o. so. 

Ert~er Figure 13 on the oidinate with p = 0.50 and move horizontally 

until inter13ecting the curve j = 10. Move vertically from the inter-

section to the abscissa where L = 3. 2 customers. · From Equation (S.3b), 

L = L - p = 3;2 ~ 0.5 = 2.7 customers. 
q 

-Enter Figure 14 on the aqscissa with:L = 3,2 customers and move 

vertically until inter .. secting the curve·A = .10. -Move horizontally from 

the intersection to the ordinate where W = 32 minutes, To determine W, 
.• q 

enter Figure 14_with-Lq = 2.7 for whic·h Wq =-27 minutes. -Alternatively, 

the relationships W = L/)., o~ Wq = L/A may be used in lieu of Figure 14. 

Comments: For any one hour interval or other short period of time, 

the mean values determined may vary significantly from the values above. 

}lowever, . in the long rl,l.n operation of the system, . the values above will 

be approached_as stat;i.stical limits. The expression, P0 = (1 - p) = 

.50, indicates that 50% of the time an arriving customer-will find the 
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· counter empty and enter for immediate service. The utilization factor, 

. (1 - l'~) = 0.50, indicates the proportion of time that the counter is 

occupied ... It seems incongruous that although the facility is idle 5070 

of the time, the mean number of units in the system is still 3.2 custom-

ers. From Figure 10, 82io of the customers will require services taking 

less than T or 5 minutes while 58% will take less than .5T or 2.5 s s 

minutes. As the mean interval between arrivals is 10 minutes, the large 

idle period appears to be a reasonable result. Figure 10 also indicates 

that 7% of the customers will require more than 2T or 10 minutes for 
s 

service. The arrival of these few customers, although infrequent in oc-

currence, blocks the service channel causing the build-up of units in 

the system. 

It would seem intuitively correct for the mean time spend in the 

system to·equal the mean time spent in the queue plus the mean duration 

of service. This may be expressed as W = W + T . q s 

32 = 27 + 5 = 32 minutes. 

Substituting values, 

Problem No. 2: In the same airline ticket counter, assume that 

sales are now limited to· intercontinental tickets so that the measured 

variation of service times has decreased .. Furthermore, assume that the 

service distribution is now exponential with the same arrival and serv-

ice rates as in the previous problem . 

. Solution: The traffic intensity, p = 0.50 remains the same. EnQ 

tering Figure 13 with· p = 0. 50 and using the exppnential service curve, 

L = 1.0 and L =L - p = 0.50. From Figure 14,W = 10.0 and W = 5.0 q q 

minutes~ 

Comments: The effect of service time variabi.lity is demonstrated 

by comparing the measures of effectiveness for these problems. Where 
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the service distribution was· hyperexponential with j = 10, the standard 

deviation, cr = Ts/j = 15.BL Where the distribution was exponential, 

cr = 'l'.s = 5.0. The corresponding change in L was from 3,2 to 1.0 custom­

ers. It may be concluded that as the variation within the service dis-

tribution increases or decreases, there is a corresponding increase or 

decrease in ·L, L , W, and Wq. This is clearly illustrated in Figure 13 
q . 

as the curves are plotted from left to right in terms of increasing 

service time variability. 

The corresponding increase in L when the.service distribution is 

changed from the constant curve, k = 50, to the exponential curve, k = 1 

is relatively small. A careful examinati.on of Figure 13 will show that 

t:he greatest possible change in magnitude is by a factor of two which 

occurs only asp approaches unity. 

The service distributions for most architectural service mechanisms 

exhibit variability s.omewhere between constant and exponential distribu-

tions, that is, they have standard deviations between zero and Ts. If 

the ·exponential case is assumed where the distribution is less variable, 

resultant·:inferences will be po:nservative and never more incorrect than 

by a factor of two. . It is for this reason that all further models will 

be limited to exponential service distributions. 

Problem No. 3: Assume that with the addition of computerized tick-

et handling aids, the mean service time of the counter is reduced to 2. 5 

minutes. The service distribution remains exponential and the arrival 

rate remains as before. What are the·effects upon the measures of ef-

fectiveness? 

Solution: ·!,Ji= 1/2.5 = 0~40; p = .10/.40 = 0,25. From Figure 13, 

using the exponential service curve and entering with p = 0.25, .L :=:: 0.33 
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cust(')mers,·Lq;:: 0.33 - 0.25 = 0.08 customers. From Figure 14,,W and Wq 

-are 3,3 arid 0.8 minutes respectively. 

Comments:. A comparison of these results with the previous problem 

will indicate that asp decreases,.a corre~ponding decrease in the meas .. 

ures of effectiveness will resµlt. . However_, since PO = (1 - · p) in<ii"' ': 

cates the proportion of idle periods, a decrease in p also indicates a 

decrease in system·"efficiency." In this case, customel;' service has im-

proved by reducing W from 10, 0 to 3. 3 minutes but at a "cost" of doq;., .. 

bling the speed of service which increases the proportion of idle time 

-from 50% to 75%. 

',['he effect of facility ut:i,lization, p;;;:(l - P0), upon L are clearly 

evident in Figure 13. It should now be apparent that the magnitude of L 
.:·· -

depends upon both the. speed and the varia9ility of 'service times. 

Problem No •. 4: It has been determined that the mean wait time in 

. the. system, W, -should not exceed. 20 minutes. The arrival rate remains 

'A= .10 arrivals/minute. Assuming that the service -distribution is ex-

ponential, at what rate must the service facility operate to satisfy 

the condition above? 

Solution: Enter Figure·14 on the ordinate with W = 20 minutes and 

move horizontally until intersecting the·'1, = .10 curve .. Move-vertically 

from the intersection to the abscissa where L ;:: 2. 0 customers. 

· · Enter Figure 13 on the abscissa with ·L = 2. 0 and move vertically 

until :intersecting the exponential service curve. . Moye horizontally 

·from· the. intersection to the ordinate where· p = • 67 . 

. Since·p =,)../µ., µ, ='K./p = .10/.67 =-,15 service completions/minute. 

T = l~l = 1/.15 = 6.68 minutes/customer. L = L - ·p = 2.0 - .67 = 1.33 
·s '"" q 

customers. W = 1.33/.10 = 13.3 minutes. 
q 
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Comments: This problemdemonstrates than any one of the measures 

of effectiveness may be predetermined, after which, system behavior may 

be investigated, In most cases, an architect has no control over the 

arrival rate but to some degree is able to control the service rate. 

In some conditions, ;it may be desirable to solve this type of prob-

lem in reverse. For example, assu!Ile that the service rate is fixed, 

The parameter of interest would now be the maximum arrival rate that the 

system is capable of handling; The versatility of queueing theory and 

the ease of graphic computations will become more apparent as further-

graphs and measures of effectiveness are introduced. 

Discussion to this point has been limited to mean or average values 

for measures of effectiveness. While averages are very useful, partic-

ularly in an economic analysis, most architectural problems involve 

traffic units composed of individual persons. Therefore, it is far more 

critical to investigate system behavior as it affects individuals rather 
I 

than grouped units. For this purpose, .two additional measures of ef-

fectiveness are introduced which apply only to exponential service dis-

tributions. The first, QN and QNq' are the probabilities of N £!.~ 

units in the system and in the queue. The second, G(T) and G·(T ), the . s q s 

latter being read, ''G sub q, a function of T '" are the probabilities s ' 

that time spent in the system and queue exceeds a multiple of Ts. In 

both cases, probability represents the relative proportion of time that 

the stated event may be expect-ed to occur . 

. Recall that the general, state probability of an exponential 
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service.system was expressed as Pn =·(l ··p)pn, .where L·Pn = 1.0. 

n=O 
. Therefore, QN may be expressed as: 

0:, Cl;) 

PN or mare = QN = l ~ n = l (1 - p) P n 
n=N· n,;.N 

59 

N = p (5. 8) 

A family of curves for Q:t-1 has been plotted for ~everal values of Nin 

Figul;'e ·15. The complimentary statement, the probability of N £!_ .~ 

units in the system can therefore be written in terms of QN as: 

N N 

PN of le1;1s = lpn = l (l - ·p)pn = -1.0 - QN+l. (5. 9) 

n=O n=O 

Equations (5.8) and (5.9) are cumulative probabilities comprised of 

the summation of individual state ·probabilities. Figure 15 may be a-. 

dapted to compute a state probability by rewriting Pn in terms of QN. 

(5.10) 

,Problem No, 5: In Problem No. 2, traffic intensity wasp= 0.50 

and L = ·1.0 customers. Determine QN' PN or less' and Pn for nor N = 0 

to 6 customers in the system. State any conclusi.ops that may be drawn 

·. from the computation of these ·probabilities • 

. Solution: !he results are shown in Table V. :For demonstration 

purposes, six decimal places have been carried, .The values of QN may 

be checked by using Figure 15. 
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N 

·= QN p 

0 • 50° =l. 000000 
1 .501 =0.500000 
2 .50a=o.250000 
3 . 5a3 =O .125000 
4 . 504 =0. 062500 
5 .50°=0.031250 
6 · .506 =0.015626 
7 .507 =0.007812 
. . .. . 
. 

. co .SOco=0.000000 

TABLE V 

SOLUTIONS TO PROBLEM NO. 5 

10-Q =P · N+l Nor less 

1.0-.500000=.500000 
1.0-.250000=,750000 
1.0-.125000=.8]5000 
1.0-.062500=.937500 
1.0-.031250=~968750 
1.0-.015625=.984375 
1.0-.007812=.992817 

1.0-.000000=1.00000 

Q Q - p 
N - N+l - n=N 

l.000000-.500000=.500000 
0.500000-.240000=.250000 
0.250000-.125000=.125000 
0.125000-.062500=.062500 
0.062500-.031250=.031250 
0.031250-.015625=.015625 
0.015625-.007812=.007812 

o.000000-.000000~.oooooo 

co 

lpn = 1. 00000 

n:;::0 

61 

Comments: Observe that the mean number of units in the system, .L = 

1.0 customer or P1 is expected to occur 25% of the time .. The mean num-

ber or less,. P1 1 , may be expected 75% of the time while the mean or ess 

or greater,· Q1 , may be ·expected 50% .of; the time. P6 = • 0078 indicates 

that exactly six customers in the system will occur . 78% of the time. 

Q6 = .0156 indicates that six or more customers in the system may be ex-

pected 1.56% of the time. Thu~, the practical limit to the number of 

customers in the system is about six. 

Problem No. 7: As in all previous problems, assume that the arriv-

al rate has been determined as A= 0.10. Suppose that no more than 
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three customers in the system are desired five or less percent of the 

time. What is the required service rate to sat:i,sfy the condition above? 

Solution: Enter Figure 15 on the abscissa with QN = .OS and move 

vertically until intersecting the N = 3 curve .. Move horizontally from 

the intersection to the ordinate where p = 0.37. The required service 

rate is therefore~ =,~/p = .10/.37 = ,27 customers/minute. Ts= 1/µ = 

1/,27 = 3.7 minutes/customer. From Figure 13, with p = .37, L = .59 

customers. From Figure 14, W = 5.9 minutes. 

Comments: This problem again demonstrates that any measure of ef-

fectiveness may be established as a governing relationship. Once estab-

lished,. all other measures of effectiveness may be determined. The con-

ditions of this problem are more demanding than those in Problem No. 6 

so that an increase in required service speed results. The proportion 

of time that the facility is occupied decreases, increasing the idle 

periods and decreasing all other measures of effectiveness. 

The probability of Nor more units in the queue is the probability 

of N + 1 or more units in the system and may be expressed as: 

( 5. 11) 

n=N+l 

Similar types of probabilistic statements may be made concerning 

the time spent in the system by individual customers. G(T ), the prob­s 

ability that time spent in the systeP1 exceeds a multiple of T may be 
s 

expressed as: 

(5.12) 



where c is a constant indicating a multiple of T and e = 2.718182 •.. , s 
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the base of natural logarithms. The probability that time spent in the 

queue will exceed a multiple of T may be expressed as: 
s 

G. (T ) = pG(T ) . q s s (5. 13) 

A family of curves for G(T) has been plotted in Figure 16 for several 
s 

multiples of Ts. 

Problem No. 8: In Problem No. 2, p = .50, Ts= 5 minutes/customer, 

and W = 10 minutes. ·What proportion of time will time spent in the.sys~ 
I 

tern exceed 5, 10, 15, 20, 25, 30, and 40 minutes? If the arrival rate 

is')..= .10 arrivals/minute, what service rate ts necessary to·insure 

that 10 percent or less of the time, customers spend more than 20 min~ 

utes in the system? 

Solution: .Enter Figure 16 on the ordinate with p = .SO and move 

horizontally until intersecting the curve l.OT. Move vertically from s 

the intersection to the abscissa where G(S) = .61 or 61% of the time, 

the total time spent in the system will exceed 5 minutes .. Similarly, 

G(lO) = .37; G(lS) .23; G(20) = .14; G(25) = .082; G(30) = .050; and 

G(40) .018. For the second part of the problem, enter Figure 16 on 

the abscissa with G(T ) = .10 and move vertically until intersecting the s 

4.0T or 20 minute curve. Move horizontally from the intersection to s 

the· ordinate where p = . 425. The required service rate, µ, = ,>../ p = 

.10/.425 = .235 service completions/minute. The required mean service 

duration, T = 1/.235 = 4.26 minutes/customer. s 

. Comments: • This problem demonstrates the procedure to rapidly de ... · 

termine the proportion of time total time spent in the system exceeds a 

given multiple of Ts. Stated in other words, it determines the 
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proportion of customers for which time spent in the system will exceed a 

given value. This problem also demonstrates how G(T) may be used as a s 

governing measure of effectiveness. 

Impatient Customers 

In this study, models considered shall assume that impatient cus-

tomers depart the system immediately. A customer is defined as impa-

tient whenever there are exactly N' units in the system or (N' - 1) 

units in the~ueue. For this reason, systems of this kind are often 

called "limited queue system$." For example, where N' = 3, the queue 

length is limited to two customers. When the queue is full, an arriving 

customer is refused entry to the system and departs immediately. The 

departing customer is lost to the system, becoming anonymous by rejoin-

ing the pustomer population. This means that the lost customer is 

treated as any other eligible unit within the infinitely large popula-

tion, receiving no special consideration upon attempting to re-enter the 

system. The limited queue model is schematically illustrated in Figure 

17. 

when full, 
impatient customers 

A_ depart immediately 
\!--· i 

I 
.. I 

arrivals--f>-1 ~I _ ...... I _ __._ 
N' N'-1 

~1D-t 
4 3 2 

the service 
facility 

service 
completion 

Figure 17. Single Channel Service, Limited Queue 
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This model is applicable wherever the value of N' may be objective-

ly or subjectively determined. In many cases, physical limitations to 

queue length may govern •.. For example, the available space in front of a 

counter may limit queue length to four persons. . All 1;1rriva ls occurring 

while the queue length is four are lost to the system. Thus, the proba-

bility of a full system must be made small if it is desired that few or 

no customers are to be lost. 

The State Probability 

The state probability of exactly n units in the system may be ex-

pressed as: 

[ 1 - p J pn = _N'+l rff. 
1 - p 

. (5 .14) 

In this case, the -summation of state probabilities from n = 0 to N' nmst 

equal unity. The ·probability of no units in the system, .P0 , describes 

the prop or ti.on of time that the facility is completely idle. 

PO= N'+l 
1 - ·p 

1 - .P (5.1.5) 

The probability that the facility is busy is the complement of Equation 

(5.15) or (1 - P0) and is the measure of facility utilization. Since p 

is always less than unity, the term l '+l in Equations (5.14) and (5.15) 

approaches zero as N' increases. Except for values of p > 0.90, this 

term may be considered as zero for N' > 20 wit_hout significant loss of 

accuracy •. Substituting-into Equations (5.14) and(5.15) with N' > 20, 

they become P0 = (1 - p)pn and P0 ={J - p) respectively. Since these 
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are the state probabilities for the infinite queue or patient customer 

condition, the infinite queue model may be used where N' is greater than 

20, A review of Figure 15 will indicate the validity of this conclu-

sion. The probability of more than 20 units in the system is insignifi-

cant so that proportion of lost customers is small. If no customers are 

.lost, all customers must be patient so that the necessity to use a lim-

ited queue model does not exist. 

A family of curves for P0 have been plotted for different values of 

N' in Figure 18. Equally important to the investigator is the probabil-

ity that the system is full,. PN', .which indicates the proportion of lost 

customers. Substituting N' for n in Equation (5.14), 

[ 1 - P J N' 
. p N I = p fu 11 = 1 l '+ 1 pc (5.16) 

A famiiy of curves for PN, have been plotted for different values of N' 

in Figure 19. 

QN N' shall be defined as the probability of Nor more units in a 

' 
system· limited to a maximum of N' units. · It may be expressed as: 

N' N' 
f N' 

QN N' =I p =1G 1 /+l}n - ~ 

' n 1 
N'+l 

n=N 
... p 

(5. 17) 

A complete set of graphs for the relationship above would require a 

separ~te figure for each value of N'. For expediency, Figures 20, 21, 

and 22 illustrate. several combinations of N and N' to demonstrate the 

behavior of systems under these conditions. Q2 3 is found by entering 
' 

Figure 20 on the ordinate with a predetermined value of p and moving 

horizontally until intersecting the N,N' = 2,3 curve .. Moving vertically 



1.00 .--~~~-,-~~~~-.-~~~~.--~~~-,-~-'--~~-,-~~~--,.--~~~-.-~~~~-.-~~~--,,--~~~ ..... 

0.90 i--~~~-r~~~---j~-'l~~rl-~~-\---J~~~~-+---\-~~--1-~~~~~~~~---+~~~~...l-~~~_J 

0.80 LJ~~~~-4~-+-++-~r-r~,--, 
0.70 

::!. ....... 
.-< 

II 

Q 

0.60 
;,... ..., 

..... 
"' i:: 
(!) 

'\:l 0.50 
H 

{.) ..... 
..... ..... 
~ 0.40 

e-< 

0.30 

0.20 

0.10 

o.o 0.10 0.20 0.30 0.40 0.50 0.60 0.70 o.so 

Figure 18. P0 ~ The Probability of No Units in the System, Single Exponential 
Channel, Limited Queue Allowed 

0.90 1.00 

0-, 
CX) 



1.00 

o.9o I I I I :;;;.,....... I X I I Y / / II Ir I / I I I I I I 

o. so I N tig...,........... I :.,,{' I 11'1 I ;,r I / I I I I I /. I I I I I I 

::l. ....... 
..< 

0.70 

a. 0.60 

t' L-/ I I IA I ·;;; ,,,...- I 17 
i:: I ;>' ~ 0.50 I I / I I I 1-- 1' I I 1 · I I I 
i:: 

H 

tJ 
..-! 
4-1 

~· 0.40 
;., 

E-< 

0.30 

0.20 

0.10 

0.01 0.05 0.10 0.50 

Figure 19. PN,, The Probability that the System is Full; Single Exponential 
Channel, ,Limited Queue Allowed 

1.00 

(J'\ 
\0 



.1.00 

0.90 

0.80 

..,2-0.70 
..< 

H 
a_ 

::,'.: 0.60 
,I.I .... 
ti) 

i:: 
Q) 

,I.I 

~ 0,50 
0 .... 

·11-1 
11-1 

"' i... 
H 0.40 

0.30 

0.20 

0.10 

" -~·. 

~ ' ..... 

_,,,,.,. 

~ 

~ 

~ 

~ 

0.01 

/ 

v 
/ 
~ 

v 
~ 

v v / 

v v v y v 
~ / 

L,/ v v 

,/ v 
/ ... v y 

~ / 

~ 
.,, 

y 
v 

. :/ v .. 
v 

. _,,.,, 

~ 
1-i..--

0.05 

l,,I V//./ I ,:_ v / 
/ v VJ/ I v l./ 

/ 

v v/ I v 
/ l 

v v I / 

v / I J 

2 j / I 
v v ,/ v N,N'=l, 

v 

/ 
v POISl:i ON ARR VALS 

SINGLE EXb ONENTL I\L cru NNEL 
LIMITED R UEUE C DNDITJ ON 

~ SYSTEM Slt E LIMI' ED T( N' 

i.,....---
0.10 0.50 

Figure 20. · QN N', The Probability of N or More Units in the System, N = N' - 1 
· ' Single ,Exponential Channel,. Limited Queue Allowed 

--

1.00 

-..J 
0 



:l ...... 
.< 

1.00.--.,.._~~~~~.--~~~..-~--,.--~...-~,---,---,,---.-...-~~~~~~...-~~~-.-~~...-~-.-~-.---,,--...--,---, 

0.90 ....... ~~~~~~1--~~~+--~----!1--~--~+---+-----!l--+---~~---~.,_--,.,.___,,.__~--~-----~--~-+-----!l-----+---f 

0. 80 I I I I I I I ...,..,., I /'. / / I ff I I I 11 I I I I I 

o. 701 I N,tf' 7,9 1;.,.....- I J,,< I i :;,1r I / :A' f I I I I I I 

a_ ,........I ,_ I ..,.. 1 I I .,.I I 7< I / I I I I I I I I I o. 60 I ;, ~ ~ 1 ... .,. 

;,., 
.u .... 
"' i:: 
QJ 
.u O 50 I ,.......- ...... t5 • ;,,,- I :...> I I ,'"9 I I I 1,-<1 - • · 'I I > l I I I I I I 

CJ .... .... .... 
~ 0.4ol J.-..-,........ I I I;.,' I I I I I ,,. e,., ,,- I I / I I I I I I I 

0.30 1--t----, 

o.2or--~~~~~~t-~~-:j:::::::;;;;-""r:::::_-f~-t~-f--t--j~f--~~~~~";?'~~~~-t~~-+-~~~__j~j__j~..LJ 

0.101-== 1 1 1 1 1 1 1 L>r 1 ,,,,.,,.wn ..,+ .. k ...... , ... "' 11 ~"" I 1 1 1 1 

0.01 0.05 0.10 0.50 1.00 

Figure 21. QN N;, The Probability of Nor More Units in the System, N = N' - 2 
' Single Exponential Channel, Limited Queue Allowed ...... 

I-' 



:l ...... 
..< 

1.00 .---------,------r----r---"T"""--r--~-.--....-"T"""------....----........ --"T"""--r---.---,,--"T""""""T""-. 

o. 9o I I I I I I I I I ! A / / I/ / I I I I I I I I 

0.80 

o. 70 I I ·I. · .1 I:;.,,~ I ::;,r I I / / I / I / I I f I I I 

~ 0. 6o I J.>,.......... I :;...>4 I .....+< I I I Y :/ I A I 'i I I I I I 
.., 
-..! 

"' c 
(l) 

~ o. 5o I ~--= I :::.;.>,q I L,....-:i I I I i ,£ , k / I I I I I I I I I 

u 
-..! ..... ..... 
~ 0.40 

E-< 

o. 30 I I ;;, .,c I I I I I I :;,'"F I I ;,ti I I I I I I I 

0.20 

0.10 i..-=------~--

0.01 0.05 0.10 0.50 1.00 

Figure 22. QN N'' The Probability_ of Nor More Units in the System, N = N' - 3 
' Single Exponential Channel, Limited Queue Allowed -...J 

N 



from the intersection,. Q2 ;s is on the abscissa and indicates the propor-

tion -0f time that a system limited to size 3 contains either 2 or 3.~us-

tomers. Stated. in other words,· Q2 ,s is the probability of this ·p~rticu­

. lar system being 2/3 or 67% or -~ full. . The use of Figu?;"es · 18 .thru·,22 

as governing system relationships are· identical to tho.se presented in 

previous sections. 

· The Entry Rate: . ).. . e 

Since all customers who arrive when the system is ftill are lost, 

the arrival rate to the system,,)., is not the same as the arrival rate 

to the service facility •. Thus,,). is defined as the· "entry rate" at the 
e 

service facility in a limited queue system. -If the system is never:. 

full, the-arrival rate must equal the entry rate as no customers are 

·lost. It may th,erefore be coneluded that the entry.rate-is d:Lrectly 

proportional to the amount of time that the system.is not full, or: 

N' .. 1 

: A.e = ,). I 
n=O 

p = :).0 - -~N') ·n (5 .18) 

where values of PN' may be found in-Figure 18. In'Equation (5.18), .it 

is,seen that).e is always less than').., Thus, the consequence of a lim-, 

ited queue is to increase the mean-interval between arrivals or decrease 

the total number of customers serviced per unit time. For this reason, 

all measures of effectiveness for limited queue conditions are less than 

the corresponding measures where-infinite queues are allowed. -As the 

·length of queue allowed becomes more limited,.N' decreases and the cor-

responding decrease in measures of effectiveness from the infinite queue 
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condition become larger. This is clearly evident in the comparison of 

related figures for the limited and infinite queue conditions . 

. Measures of Effectiveness: L, L, Wand W 
q q 

The mean number of units in the system may be expressed as: 

N' 

L = l n(P~) = l 
- (N' + l)pN' + N'pN'+l 

N'+l (5.19) 

n=O (1 - p)(l - . p ) 

A family of curves for Lare shown in Figure·23 for several values of 

N'. T.he arrival rate,. A., is used for determining p as Equation (5.19) 

accounts for lost customers. The use of Figure 23 is identical to the 

use of Figure 13. 

The mean number of units in the queue, ·L, was developed as L - p 
q 

for infinite queue systems where p represented the proportion of time 

that the system was occupied with one unit in service. Thus,.L is log­q 

ically equal to L minus the proportion of time that the facility is busy 

multiplied by one, representing the expected number of units in service. 

The proportion of time that the facility is occupied for limited queue 

systems is 1 - P0 where P0 is defined in Equation (5.15) . 

be expressed as: 

L q 

L =-L-l+·P q O 

. Hence, L may 
q 

(S.20a) 

(5, 20b) 

L may be determined from Equation (5.20a) by using Figures 18 and 23. 
q 

The expression for Equation (5.20b), however, is shown as a family of 
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curves for several values of N' in Figure 24. 

The mean wait time in the ·'8y.stem and in the queue may be· expressed 

as Equations (5.21a) and (5,2lb) respectively. 

· W L/i.. e 
(5.21a) 

W = L /";., q q e 
( 5, 2 lb) 

Problem No, 9: Using the same ticket counter introduced in pre-

vious problems and making the assumption that: all customers arriving 

when there are three persons in the system are lost, what general con: 

clusions may be made of system behavior? 

Solution: From previous problems, T = 10 minutes; T = 5 minutes; 
a s 

.~ = .10; µ = .20; p = .50; and the arrival and service distributions are, 

·exponential. Where direct compari.sons·a:re applicable, solutions for the 

infinite queue condition are shown in brackets . 

. N' = .3. From Figure 18, P0 = 0.53 which indicates that the facil­

ity will be completely idle 53i. of the time. [P0 = l - p = .50] From 

Figure 19, PN' = .067.which indicates that 6.7% of all arriving custom­

ers will be lost to the system. It also indicates that 1 - .067 or 

93 . .3io of the time, there will be 3 or less units in the system. 

[P3 1 = .9375] From Figure 20, Q2 s = .133 which indicates that · or .ess , 

1.3.3% of the time, there will be two or three units in the system. 

[Q3 = • 250, which includes two to an infinite number of units in the 

syste~] From Figure 23, L = .72 customers. [L = 1.0 customer~] From 

Figure 24, Lq = .25 customers. Alternatively, Lq = L - 1 +PO= .72 -

1.0 + .53 = .25 customers. [L = l - p = .50] ~ = (1 - PN') 
q e 

,10(1.0 - .067) = .0933. W = L/~ = .72/.0933 = 7.72 minutes. 
e 
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[w = 10.0 minutes] W =L /~ = .25/.0933 = 2.68 minutes. [W q q e q 5.0 

minutes] 

Comments: As expected~ all measures o.f effectiveness in this exam-

ple are less than those found with an infinite queue allowed. As N' is 

increased, the measures of effectiveness will approach the in.finite 

queue case, in this case at about N' = 6. Any measure of effectiveness 

may be predetermined as a governing. limit from which all other measures 

may be found. 



CHAPTER VI 

MULTIPLE EXPONENTIAL CHANNEL MODELS 

The most common queueing systems found in architecture are those 

with multiple service channels in parallel. . Banks with several tellers, 

supermarket checkout stands, entrances and exits of stadiums, parking 

lots, and convention halls, or an array of ticket boothes are all exam-

ples of multiple channel service facilities, When the arriving unit has 

the option of receiving service from any one of sev~ral channels, the 

channels are said to be in parallel, 

This chapter will consider systems having M, parallel exponential 

channels, each with equal mean service ratesµ, Arriving units are as­

sumed to follow a Poisson distribution with mean arrival rate·~. If the 

operational system allows a queue, a single queue.is formed when all M 

channels are occupied, Customers are served in a first come, first 

serve discipline, Upon reaching the front of the queue, the customer 

will depart the queue and enter the first unoccupied service channel, 

As in single channel systems, the state of the system i.s character­

ized by n, the total number of uni.ts present, When n is less than M, 

there is no queue .since all units present are oc.cupying a servic.e chan-

neL When n is larger than M, there is a. queue of length N equal to 
q 

the quantity (n - M), Note that the single channel systems of Chapter v 

are the special case of M equal to one, 

79 
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Traffic Intensity for Multiple Channel Models 

Traffic intensity for the entire system is defined as the ratio of 

the mean rate of arrivals and the maximum possible rate of service for 

all M channels combined. System traffic intensity may be expressed as: 

p = ,)./Mµ (6. la) 

The traffic intensity for a single service channel is·Afµ and is repre-

sented by the symbol~· In terms of Equation (6.la), -~maybe expressed 

as: 

( 6. lb) 

from which Equation (6.la) may be rewritten, 

p = cp/M ( 6. le) 

As discussed in Chapter V, a steady state solution is obtained only when 

·pis less than one. All models considered in this study will satisfy 

this condition where the combined rate of all M channels is greater than 

the rate of arrivals. 

The General State Probabilities 

· The general state ·probabilities for any multiple channel system 

with·exponential services and Poisson arrivals may be expressed as: 

-~ p = I p 
n n. 0 

(O s n s M) (6,2a) 

· (M s n s N) (6,2b) 

where P0 is the probability of no units in the system and N is the 



maximum size of the system if it is limited. 

The Functional Variables 

To express subsequent measures of effectiveness compactly and to 

facilitate their computation, a set of functional variables, E (x), 
m· . 

D (x), and e (x) are defined as: 
m n 

m 
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E (x) = e-x \ 
m . L 

n 
(x /n!) (6. 3) 

n=O 

= E (x) - E 1(x)(x/m] m m-

( ) ( . n · -x1 , ) e x = x e n. 
n 

(6.4) 

(6. 5) 

The definitions above are in general form. The function.(x) is 

always cp or Mp, the traffic intensity of one service facility .. The 

numeric expansion of these functional variables are found in Table VI as 

functions of p and M. Linear interpolation may be accomplished with no 

significant loss of accuracy. 

-Given a system of four·service channels (M = 4), each with a traf-

fie ·intensity of 2.0 (cp = 2.0), system traffic.intensity,. p, woold equal 

cp/M or 2.0/4.0 = 0.50 .. From·Table VI, EM(cp) = 0.9473; EM-l(cp) :.: 

0.8571; EM+l (ep) = 0.9834; DM-l (cp) = ·0.5188; and eM(ep) = 0.0902. For 

large systems of M::?: 100 and p < 0.80, the functional variables approach 

the constants listed in the last line of Tal,le · VI. 

,,,/ The remainder of this chapter will be concerned with two extreme 

queueing conditions. In the first, system size will be limited to Mor 

less units and no queue will be allowed to·form, In the second, the 

formation of an infinite queue will be allowed. 
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TABLE VI 

FUNCTIONAL VARIABLES 

M p ~(cp) ~-1 (cp) ~+l (cp) DM-1 (cp) eiqi) 
1 • 10 .9953 .9048 .9998 .9048 .0905 
1 .20 .9825 .8187 .9989 .8187 .1637 
1 .30 .9631 .7408 .9964 .7408 .2222 
1 .40 .9384 .6703 .9921 .6703 .2681 
1 .50 .9098 .6065 .9856 .6065 .3033 
1 .60 .8781 .5488 .9769 .5488 .3293 
1 .70 .8442 .4966 .9659 .4966 .3476 
1 .80 .8088 .4493 .9526 .4493 .3595 
1 .90 .7725 .4066 .9371 .4066 .3659 
1 1 .00 .7358 .3679 .9197 .3679 .3679 

2 • 10 .9989 .9825 .9999 .9006 .0164 
2 .20 .9921 .9384 .9992 .8044 .0536 
2 .30 .9769 .8781 .9966 .7135 .0988 
2 .40 .9526 .8088 .9909 • 6291 .1438 
2 .50 .9197 .7358 .9810 .5518 • 1839 
2 • 60 .8795 .6626 .9662 .4819 .2169 
2 • 70 .8335 .5918 .9463 .4192 .2417 
2 .80 .7834 .5249 .9212 .3634 .2584 
2 .90 .7306 .4628 .8913 .3141 .2678 
2 1.00 .6767 .4060 .8571 .2707 .2707 

3 • 10 .9997 .9964 1.{IJ00!1i .9001 .u!li33 
3 .20 .9966 .9769 .9996 .8013 .0198 
3 .30 .9865 .9371 .9977 .7054 .0494 
3 .40 .9662 .8795 .9923 .6144 .0867 
3 .50 .9344 .8088 .9814 .5299 • 1255 
3 • 60 .8913 .7306 .9636 .4529 • 1607 
3 .10 .8386 .6496 .9379 .3839 • 1890 
3 .80 .7787 .5697 .9041 .3230 .2090 
3 .90 .7141 .4936 .8629 .2698 .2205 
3 1.00 .6472 .4232 .8153 .2240 .2240 

4 • 10 .9999 .9992 1 • {1)000 .9000 .0007 
4 .20 .9986 .9909 .9998 .8004 .0077 
4 .30 .9923 .9662 .9985 • 7024 .0260 
4 .40 .9763 .92!2 .. 9940 .6078 .0551 
4 .50 .9473 .8571 .9834 .5188 .0902 
4 • 60 .9041 .7787 .9643 .4369 • 1254 
4 .70 .8477 • 6919 .9349 .3633 .1557 
4 .80 .7806 • 6025 .8946 .2986 • 17 81 
4 .90 .7064 .5152 .8441 .2427 • 1912 
4 1.00 • 6288 .4335 .7851 • 1954 • 1954 

5 • 10 1.1u000 .9998 1. 0000 .9000 .VJ002 
5 .20 .9994 .9963 .9999 .8001 .0031 
5 .30 .9955 .98i4 .9991 • 7011 .0141 
5 .40 .9834 .9473 .9955 .6045 .0361 
5 .50 .9580 .8912 .9858 .5124 .0668 
5 • 60 .9161 .8153 .9665 .4269 .1008 
5 .10 .8576 .7254 .9347 .3498 .1322 
5 .80 .7851 .6288 .8893 .2821 • 1563 
5 .90 .7029 .5321 • 8311 .2240 • 1708 
5 1.00 .6160 .4405 .7622 .1755 • 1755 
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TABLE VI - Continued 

M p Eicp) ~-1 (cp) ~+l (cp) DM-1(~ eM(cp) 

10 • 10 1.0000 1.0000 1.0000 .9000 0.0000 
10 .20 1.0000 1.000vi 1.0000 .8000 0.0000 
10 .30 .9997 .9989 .9999 .7000 .0008 
10 .40 .9972 .9919 .9991 .6004 .0053 
10 .50 .9863 .9682 .9945 .5022 • 0181 
10 .60 .9574 .9161 .9799 .4077 .0413 
10 .70 .9015 .8305 .9467, .3201 .0710 
10 .80 .8159 • 7166 .8881 .2426 .0993 
1 0 .90 .7060 .5874 .8030 • 177 3 • 1186 
10 1.00 .5830 .4579 .6968 .1251 • 1251 

20 • 10 1.0000 1.10000 1.0000 .9000 0.Yl000 
20 .20 1 • 0000 1.0000 1.0000 .8000 0.0000 
20 .30 1.0000 ' 1.0000 1.0000 .1000 0.0000 
20 .40 1.0000 1.0000 1. 0000 • 6000 0.0000 
20 .50 .9984 .9965 .9993 .5001 .0019 
20 • 60 .9884 .9787 .9939 .4012 .VJ097 
20 .70 .9521 .9235 .9712 .3056 .0286 
20 .80 .8682 .8122 .9108 .2184 .0559 
20 .90 .7307 .6509 .· • 7991 • 1449 .0798 
20 1.00 .5591 .4703 .6437 .0888 .0888 

40 • 10 1.0000 1.0000 1.0000 .9000 0.0000 
40 .20 1.vJ000 1.0\jfl)\3 1.0000 .8000 0.0000 
40 .30 1.0000 1 .qJ000 1 .v.)000 .Ul00 0.ro000 
40 .40 1.0000 1.0000 1.0000 .6000 0.0000 
40 .50 1.0000 1.0000 1.0000 .5000 0.0000 
40 • 60 .9990 .9983 .9995 .4001 .0007 
40 .10 .9875 .9810 .9920 .3008 .• 1J065 
40 .80 .9293 .9044 .9488 .2058 .0249 
40 .90 • 7771 .7263 .8217 .1234 .0508 
40 1 • (d0 .5419 .4790 .6033 .0629 .0629 

60 • 10 1.0000 1.0000 1 .0000 .9000 0.0000 
60 .20 1 • ()0(d0 1. y'.1000 1 • 00y)0 .8000 0.0000 
60 • 30 1.0000 1.,1000 1.0000 • 7000 0.0000 
60 .40 1.0000 1.0000 1.0000 • 6000 0.0000 
60 .50 1.00vi0 1.0v100 1.0000 .5000 0.0000 
60 • 60 1.v;000 1.(J\iM0 l .~J000 .4000 0.0000 
60 .70 .9965 .9948 .9977 .3002 .0017 
60 .80 .9605 .9477 .9706 .2024 .0128 
60 .90 .8133 .7760 .8463 • 1149 .037 3 
60 1.00 .5343 .4828 .5849 .0514 .0514 

100 .80 .9869 .9829 .9900 .2005 .0039 
100 .82 .9768 .9705 .9819 .1810 .0063 
100 .84 • 9611 .9516 .9690 • 1618 .0095 
100 .86 .9383 .9248 .9498 • 1430 .0135 
100 .88 .9066· .8884 .9225 • 1248 .0182 
100 .90 .8651 .8418 .8859 • 1075 .0233 
100 .92 .8134 .7849 .8393 .0912 .0284 
100 .94 .7518 .7187 07825 .0762 .0330 
100 .96 • 6818 • 6451 • 7167 .0625 .0367 
100 .98 .6058 .5667 .6437 .0504 .0391 
100 1.00 .5266 .4867 .5661 .0399 .0399 
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TABLE VI - Continued 

M p ~(q,) ~-1 (r.o) EM+l (q,) DM-1 (q,) eM(q,) 

200 .80 .9993 .9990 .9995 .2001 .0003 
200 .82 .9974 .9967 .9980 .1801 .0007 
200 .84 .9930 .9914 .9944 • 1602 .0016 
200 .86 .9837 .9804 .9864 • 1405 .U032 
200 .88 .9658 .9599 .9710 • 1211 .0059 
200 .90 .9351 .9254 .9437 .1022 .u097 
200 .92 .8873 .8730 .9005 .0842 .0143 
200 .94 .8199 .8005 .8380 .0674 .0194 
200 .96 .7329 .7090 .7558 .0523 .0239 
200 .98 .6303 .6032 .6567 .0392 .0271 
200 1 .1A) .5190 .4908 .5471 .ki282 .0282 

300: .80 1.0000 1.0000 1.v.,000 .2000 0.0000 
300 .82 1 .fl000 1.0000 1.0000 • 1800 0.0000 
300 .84 .9992 .9989 .9994 • 1601 .0003 
300 .86 .9958 .9950 .9966 • 1402 .0009 
300 .88 .9871 .9849 .9890 • 1204 .kJ022 
300 .90 .9673 .9627 .9715 • 100'.) .0046 
300 .92 .9291 .9207 .9368 .0820 .0084 
300 .94 .8650 .8519 .8773 .IJ642 .0131 
300 .96 .7714 .7533 .7886 .0481 .0180 
300 .98 .6513 .6297 .6725 .w343 .0217 
300 1.00 .5158 .4928 .5388 .0231 .0231 

400 .80 1.0000 1.0000 1.1u000 .2000 0.0000 
400 .82 1.0000 1.0000 1.0000 • 1800 0.0000 
400 .84 1.0000 1.tu000 1.0000 • 1600 0.0000 
400 .86 1.0000 .9997 1.0002 • 1402 .0003 
400 .88 .9959 .9950 .9967 • 1203 .l'.J009 
400 .90 .9839 .9815 .9860 .1005 .0023 
400 .92 .9549 .9498 .9597 .0811 .0052 
400 .94 .8974 .8880 .9063 .VJ627 .0094 
400 .96 .8022 .7878 .8159 .0459 .0144 
400 .98 .6698 .6514 .6878 .0315 .v.,184 
400 1 • ~J0 .5142 .4942 .5341 .0200 .w200 

500 .80 1 • ~ 00 lb 1 .0000 1.0000 .2000 0.0000 
500 .82 1 .0000 1.00160 1.0000 • 1800 0.0000 
500 .84 1. 0000 1.VJ000 1.\'.ieJ00 • 1600 0.0000 
500 .86 1 • IJl!J00 1.0000 1 • U000 • 1400 0.0000 
500 .88 .9999 .9996 1.0002 • 1203 .0004 
500 .90 .9928 .9916 .9939 • 1004 .0012 
500 .92 .9716 .9683 .9747 .0808 .0033 
500 .94 .9216 .9146 .9281 .~619 .0070 
500 .96 .8278 .8159 .8391 .0445 .0119 
500 .98 .6863 .6702 .7022 .0296 .0162 
500 1 .v)0 .5134 .4955 .5312 • ~) 179 .0179 

100 0.01 
to to 1. 0000 1. 0000 1. 0000 1 .0 - p 0.0000 
500 0.79 
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The No Queue Condition 

The particular condition of no queue allowed receives special at-

tention because of its application to a common architectural system.., 

the parking lot. To some extent, it also applies to certain rest.au- ,.t 

rants. ·Where no queues are allowed,· system size has been limited to the 

number of available service channels, M •. It is assumed that all arriv-

als occuring when all.M service channels are occupied immediately depart 

the system. In a sense, they are refused service and entry to the sys-

tern and may be considered as lost customers ... In parking· lots and res-

taurants, the number of available channels corresponds to the number of 

parking spaces or boothes and tables, respectively . 

. It should be recognized that restaurant arrivals must be considered 

as btilk arrivals and not as individual units. The arriving unit is com-

posed of any number of individuals that will occupy one. service channel. 

. The no queue condition is schematically illustrated in Figure 25. 

customer a:rrivals 
at rate,.1', 

all customers 
if n ~ M 

M exponential 
chana:'llels in 
parallel 

service 
completions 

M - 1 

[~} 
· Figure 25. Mt,J:itiple C'hannels, .No Queue Allowed 
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The State Probabilities: P0 , Pn, l:'M 

M 

By using the property that l Pn = 1.0, Equation (6,2a) may be .solv.­
n=O 

ed for P0 in terms of the functional variables as: 

(6.6) 

P0 indicates the proportion of time that there are no units in the sys-

tern. System facility utilization, (1 - P0), indicates the proportion of 

time at least one service channel is occupied and is a measure of rela-

tive system efficiency. A family of curves for P0 have been plotted in 

Figure 26 for several values of. M. 

Substituting Equation (6.6) into Equation (6.2a), the general state 

probability of exactly n units in the system may be expressed as: 

(6. 7) 

The probability that all channels are occupied is the probability of 

exactly M units in the system. From Equation (6. 7), PM may be expressed 

as: 

(6.8) 

Since all customers arriving when the system is full will depart immedi-

ately, l:'M indicates the proportion of lost customers .. A family of , · 

curves for PM have been plotted in Figure 27 for several values of M. 

Measures of Effectiveness; QM N' L 
' 

The probability of Nor more units in a system of M service chan~ 

nels, ·QM W may be determined by summing the state probability of 
' 
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.· Equation (6. 7) from N to M. l!:xpressed in terms of the· functional varia-

bles: 

(6.9) 

m=N n=N 

A family of curves for QM N have been plotted in Figures 28 and 29. . In 
. , 

Figure 28, the ratio of N/M.is 75% so that the graphs indicate the pro-

portion of time that a multiple channel system of size Mis three-quar-

ters or more foll. Similarly, in Figure 29, the ratio of N/M is 50% so 

that the graphs indicate the proportion of time that the system is one-

half or mo.re full. . Thus, Figures 27 to 29 allow the investigation of 

system performance at the 100%, 75% and 50% .levels of system capacity • 

. The mean number of units in the.system is equivalent to the mean 

number of occupied channels and may be expressed as: 

M 

-L = I 
n=O 

(cp) EM-1 (cp) 
n(P) = 

n . EM(ep) 
· (6.10) 

A family of curves for·L have been plotted in Figure 30 for several 

values of M. The- mean time spent· in the system may be expressed in 

terms of Las: 

W =· 0L/"A. · (6.11) 
e 

where ··).e has been previously defined as' ).(1. 0 - -~M). .Since no queue. is 

allowed,· L and W must equal zero. . The use of Figures 26 to 30 are 
q q 

best illustrated through· the presentation of the· following example prob-

lems. 



1.00 

o. 90 I '..: I I '<l I I I I I'\ I I ,, i I I \ I I I I I 

o. so k: I '..: I i f\: I I I I I '\ I '\ I I I \ I I I I I 

i- o. 70 I ,.._ I I ""- I I I 1'. I I I " I \I I I ll I I I I 
........ 
.-< 

a. . I I :::-..t I !'.... I I I I '\l \. I I \ I I I\ I I I I ·~ o. 60 
::,., 
.µ 
..-1 ., 
r:: 

~ o. 50 I ........_.....! I I ""t-...:: I I 1'-J I "- I '\.. I \ I I \ I I I I 
0 

..-1 
IM 
IM 
Ill 

J:: o.4o I ~...J: I ~ I _......._ I I I ~I "-.... 1' I\. I \ I I ~ I I I 

0.30 j M EXPDNENTtAJ CHANNEl.S ~. I I ~ 

o 20 I ==---- -L...::: I I I ' I ' I I .........._ ........,, • I I as..;..:.:: le;;;: 

··'T 1. M~, 1.1111rr:~1 
0.01 0.05 0.10 0.50 

Figure 26. P0 , The Probability of No Units in the System,. M Exponential 
Channels in Parallel, No Queue Allowed 

1.00 

00 
00 



1.oor--~~~~-,-~~~-r-~-,-~-,-~r---r-r-r.-~~~~~.-~~-,-~--,.-----.~.........--.---.--.~ 

~ r r rr, • I I I I 0.90~ ""' I -=---r l:::::..a-'4 b'I I I 1-= ' 'I ' ' ' 11 • I I I I 

0.801 :::;....--,,......... I 49 ~I I I l....,,'I I I I / / r ~ f l I I I I I I I I I I 

? 0.701 
..< 

Q_ 

..-- I I I ~ I I :.A" I I ; , ·1 11 I I I I I I 

:>.. o 6 o i---== I .u • , I • I I I I I I I ,,,. , ., I r • I lct.,,""'" I :Y I I 7'F I ~ ~ , 
.... 

~ I • I I I I I I I CV - , § • ~ I :v= I ... I ~I ' i:: ~.,. >, H 0. 50 1-- :;.p"""7" 
u 

~ I • 1 I I I I I I I ~ ~ I - I 1-1 I #' I ~ 17"'1 I 1.,. I E-< 0.40 b-- .,= ~ 

0.30 I ~..,....-- I ..... ,,........ I I :,l'" I I I i;! Y I / I I I I I I I I 

O • 20 I ::......--'I"""'"" I I J.,.,-.,- I I I I I / I I I I I I I I I 

0.10 I =-=------=I I I I I I b..!#'I I I I I I I I I I 

0.01 0.05 0.10 0.50 

Figure 27. PM: The Probability that the System is Full, M Exponential Channels 
- in Parallel, No Queue Allowed 

1.00 

00 

'° 



1.oor-~~~~-,-~~-i-~--ir-~~i-.--r.-.--~~~~-.-~~--,~~-r---,.----.----,----.-~ 

0.90 I I I I I I I I I I I I I I •1 1 'V 1/JIHI V Y)7 I 

0.801 I I I I I I I I I I I I ii<M'l/,'::1,,'....,5-'I I 

0.70l~~~~~~~~~~~~~~;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ M,N=300,225 

f 20 ....... t~~~~~~~~Ll:..~~~~--~::~~~==~~~~~~~~~;::::.::::~~~~::::~~~~~~lf~~~~-+~~~~~~ ~ 0.60 
ff 

Q ~n h~ 

t- --= I j I l=..P1"~' 7 r /I I I I I I I I ~ o. so I -===----=t- " ,., 
i;:: 
C1l 

..... 
i;:: 

1-1 
U" ,_n, 
~ V • "i'V 1 -=--== ....--::r ~ ,,,,...-::::::: ~ I ~~ I I 1~.......-M ,r I I ea I I I I II 

0.30L---- -= I L:....-----=1 I I I I I 1.7,..... I I I I I I I I I 

o.201--~~~~~~+-~~~-t-~~-+--=,.....ci'---+~-+--+~t--+-~~~~~~-+-~~~-+~~-+~~1----11---+--11--+-~ 
POI 

MEXP~ 
NO 

.VALS 
HANNJlLS 
OWED 

o.101--~~~~~--1~~~~1--~--1~~+-~1---1---1~-1--+-~~~~~~-1--~~~+-~~-1--~-+-~+---+~-1---+--i 

0.01 

% 

0.05 0.10 o.so 

Figure 28. QM N' The Probability of Nor more Units in a System of M Exponential 
' Channels in Parallel, No Queue Allowed, N/M = 75% 

1.00 

\.0 
0 



1• 001 I I I I I I I I I I I I I I I I ,_ ~. I 

o. 9ol I I I I I I I I I I I I I I I II HI H 

.. sol I I I I 11111 I I I I I lffm 
1 O. 70,---P-~ISSON 

M EXPONENT 
a_ NO QUEUE 
fto.601--~~~~~~-1-~~~-t-~~-t-~---jf----+~-+---+·~+--1-~~~~~~-t-~~~-+~~-+~~+-~1--,"'1--+-V..-YJ-J 

:>.. 
!: N/M = 50% 
Ill 
r:: 
QI 

~ 0.50 
1-1 

u .... 
:t: M,N=300,15 

"' _;..; O.':O, 
~ ·oo,5o 

60,20 
0,20 

b::::==::t=:=~g=t::tffi==--::~7:~ 0.30 

0.20 b:::===+--+~-+::1~U~7 

0.01 0.05 0.10 0.50 

Figure 29. QM N' The Probability of Nor more Units in a System of M Exponential 
' Channels in Parallel, No Queue Allowed, N/M = 50% 

I 

1.00 

\0 
I-"' 



1.00 

0.90 

0.80 

0.70 

i 
..< o. 60 
II 

a. 

ft 

:,-, .., 
";;i o. so 
i:: 
Q) .., 
i:: 

1-1 

.;I 0.40 
u, 
...; 
t1l 
1-1 

E-< 

0.30 

0.20 

0.10 

I ' MFl i 

' 

I ' J I ., j 
4 I ) I /, 'j 5 

6 

J 8 1( 

I 'i j I I 
r 

I I ) J J I I j j 

I I I I I I I ;· 1 10 I ,; I // I , I 2i0 

I I I I I J I I I J '°11 l, I I DO 
j l .. , I // I , I I I I /// I J I ) I 

I 
, f 

1/1; IJ I 1; v I 111 Iv / I I 

J ~ I / Iii; v I ~ 

/ v v ',/ , 

~ v ',/ ~/ / I II/ 
,I 

/ v 1, 
/v v / POIS BON A mrv 

/ v v/ / lilv I/ / v M EXPON ~NTIA ~ v v v .,, / / NO Q iJEUE ,U.C / v I/ ~ ,/ I/ I/ / 

~ ~ ~ ~ 
v v ., ,,. ., 

~ 
v / 

,,.., 
i,~ ~~ ~ ~ 

v 
~ 

..... 

~ 0 ~ --::;::. ~ v ,......v ............ ......... ......... .... ~ -~ -...- -- -.-- -
0.10 1.0 10.0 100.0 

Figure 30. L, The Mean Number of Units in the System, M Exponential Channels 
in Parallel, No Queue Allowed 

I 

I 

~Ll 
•;;- ~ 

WEI 

1000.0 

"' N 



93 

Problem No. 1: A small commercial establishment is to be provided 

with eight parking spaces. At the present time, it is estimated that 

vehicles will arrive at the rate of eight per hour and remain for an 

average duration of 30 minutes. The client advises that within the next 

two years, a 50% increase in business is anticipated. It is assumed 

that there will be a corresponding increase in the arrival rate to 12 

vehicles per hour. Using Figures 26 to 30, what are the measures of ef-

fectiveness under the present conditions? To what extent will the anti-

cipated increase in arrival rate influence system performance? 

Solution: Enter all Figures using the appropriate value of p and 

the curve for M = 8. The results are listed below . 

. Present Future 

arrival rate, A 8.0 12.0 

service rate, µ. 2.0 2.0 

system traffic Lntensity, 
p -· "-IMµ a.so 0.75 

Po (Figure 26) 0.018 << 0.01 

PM (Fi.guxe "•7) ~n I 0.03 0.12 

Q8,6 (Figu:r.e 28) 0.02 0.48 

Qs 4 (Figure 29) 0.56 0.82 
• 

L (Figu1Jce 30) 3.80 5.20 

w L/>.. -· L/'i,.. (:LO co p ) 0.490 hrs 0.492 hrs 
e. e M 

Com~ts,,: 1,1fuen the combined service rate Mµ is held constant, 

traffic intensity will increase as the arrival rate increases. Under 

this condition, Figure 26 logically indicates that P0 , the probability 

of no units in the system decreases as the arrival rate increases. With 

the present arri.val :rate, a completely empty lot is expected 1.8% of the 
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time. As the arrival rate increases from eight to·12 vehicles per hour, 

P0 becomes insignificant. 

The most important measure of effectiveness for this problem is 

found in Figure 27. . PM indicates the proportion of arrivals who will 

find the system full and depart immediately. With the present arrival 

rate, 3% of three out of 100 arrivals will find all eight channels oc­

·cupied and be lost to the system. With the future arrival rate, the 

number of lost customers will increase to 12'7o, Thus, a 50% increase in 

the arrival rate will result in a 300% increase in the total number of 

lost customers • 

. The proportion of time that 75% and 50% of system capacity is ex­

ceeded is given by Q8, 6 and Q8, 4 respectively. For example,.with the 

present arrival rate, four or more vehicles are expected in the lot 56% 

of the time. With the futul:e arrival rate, the same condition may be 

expected ai% of the time. 

The average number of vehicles in the lot at any given time are 3.8 

now and 5.2 in the future. Considering the system deterministically, 

that is, ignoring variation within the arrival and $ervice rates, exact­

ly eight arrivals and two service completions occur every hour. Thus, 

the mean number of units in a deterministic system would be 8.0/2.0 = 

4.0 vehicles.· Similarly, with the future arrival rate, the mean number 

of units in a deterministic system would be 12.0/2.0 = 6.0 vehicles . 

. The difference between any probabilistic arid 'deterministic analysis may 

be attributed to inherent variation in the arrival and service rates. 

In this instance, however, much of the difference involved may be attri­

buted to the effect of lost customers. In the deterministic analysis, 

. no customers are ever lost. The greater the proportion of lost ,· 
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customers, the greater the expected difference between probabilistic and 

deterministic analysis. With 3% lost customers, the difference is 4.0 -

3.8 = 0.2 while with 12% lost customers, the difference is 6.0 - 5.2 = 

0.8. 

Calculations for W Show that unless a substantial proportion of 

customers are lost, the expected time .spent in the system will be very 

close to the expected value of Ts . 

. Problem No._2: The parking '.lot for. a community medical cen,ter-is 

to be designed so that no more than 5% of the arriving vehicles will: 

find the lot full. lt is estimated that arrivals will occur at 1 minute 

intervals and that each vehicle will remain an average-of 30 minutes • 

. How many spaces are required to satisfy the condition above? What pro-

portion of time will the lot be more than 75% or 50% full? 

Solution: T = 1 minute; T = 30 minutes 
a s 

).. = 1/T = a 1/1 = 1 arrival per minute 

µ, = 1/Ts = 1/30 = 0.033 departures per minute 

. cp = )../µ = l/0.033 = 30 

p = cp/M = 30/M 

The value of M must be known or assumed before entering any figure for 

multiple channel systems. Since only conditions of p < 1 are consider-

ed, and p =-cp/M, the numeric value of M must be greater than the numeric 

value of t:p· The most logical app·roach to problem solution is to assume 

a value of M just greater than cp, test the required condition, and in-

crement M to repeat the ·process if necessary .. Using Figure 27, this 

process is illustrated below. 

try.M -32; p = 30/32 = 0.94; P32 = 0.11; new trial required 

try·M = 34; p = ·30/34 --0~87; P34 = -0.07; new trial required 
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try M = 36; p = ,30/36 = -0.83; :P36 = 0.05; condition satisfied. 

Entering Jigures 28 and 29 with'.J = -0.83 andM = 36,,Q39 . 27 = 0.67 and 
' 

.Comments: Summarizing the results, 36 spaces are required if no 

more than 5% of the arriving vehicles are to find the lot full, .!£ 36 

spaces are provided~ 67% o_f the time, the lot will contain 27 or more 

vehicles and _approximately 92% of the ti!I).e, the lot will contain 18 or 

more veh;Lcles. To give a useful description of system performance, the 

probability statements have been made at the 100%, 75%, and 50% capacity 

levels .. In this particular example,. the governing relationship was set 

at the 100% capacity level. The subsequent values of Mand p automatic-

ally determines the probability of occurrence for the remaining two ·lev-

els of capacity, that is, the probability of occurrence at. all three 

levels of capacity are mutually interdependent •. It should be understood 

that-any one of the three levels of capacity may he used as the govern-

ing relationship . 

. The opportunity to evaluate these types of systems at three capa-

city level.a have been provided because· different systems are best eval-

uated _at different levels. Small. systems of less than 20 channels are 

generally most critical at the 100% capacity level. . In some systems, 

notably school, hospital, and employee parking lots, lost customers will 

seek a parking space elsewhere and return to the desiredrdestination. 

In these instances, an analysis at the-100% capacity level would be ap-

propriate. 

· For very large parking lots, a sizeable proportion of the spaces 

must necessarily be located long distances from the desired destination, 

Especially where the facility is· highly competitive, observation will 
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show that customers will be lost even though the system is only 75% or 

50% full. . In these instances, it would be more appropriate to make the 

analysis at one of the lower levels of system capacity . 

. It is emphasized that Figures 28 and 29 ~ the 75% and 50% capacity 

levels, are cumulative probabilities. Q is the sum bf individual M,N 

state probabil.ities of from N to M units in the system. It is often 

difficult to comprehend the relationships between cumulative probabili-

ties. Therefore, it is unwise to arbitrari.1.y select either the 75% or 

50% capacity level as the governing relationship without consideration 

of system behavior at the other levels of capacity. The best approach 

will be to make several analyses with incremental values of Mat all 

three levels of system capacity. Several complete .descriptions of the 

system wUl then be avail,;1.ble for evaluation from which one may be se~ 

lected as the final solution. This method is demonstrated in the fol-

lowing example problem, 

Problem No. 3: In the preliminary design for a large shopping cen-

ter complex, it is estimated that customers will enter the parking lot 

at 15 second intervals. It is further estimated that each parking space 

will be occupied for an average of·30 minutes. Market analysis indi-

cates that the complex will be highly competitive in a suburban, private 

transportation-oriented area.· Subjectively, what is the preferred range 

of parking spaces for the conditions above? 

Solution: ~ = 240 arrivals/hour;µ= 2 departures/hour;~= 120; 

p = 120/M. Using the iterative procedure introduced in Problem No. 2, 

the results are listed in Table VII. 
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TABLE ·vrr 

ALTERNATIVE SOLUTIONS TO PROBLEM NO. 3 

Proportion of Time Capacity 
Level is Exceeded 

Analysis 
·Assumed Number Capacity Level 

of Spaces, M 

100% 75% 50% 

1 140 1% 90% ·100% 

2 160 <1% 50% 100% 

3 180 <<1% 12% 98io 

4 200 ·<<1% 1% 96% 

5 220 <<1% <1% 85% 

6 240 <<1% <<1% 75% 

Comments: If 140 spaces are provided, approximately 1% of the ar~ 

riving vehicles will find the system full. The lot will be 75% or more 

full 90% of the time and almost always be more than 50io full. If the 

appearance of a full lot will discourage the entry of customers, 140 

spaces will not be an adequate solution. 

·At the other extreme, the provision of 240 spaces will result in a 

system that is seldom more than 75% full. Only 75% of the time will the 

lot be more than 50% full. As the number of spaces provided increases 

beyond 160, the probability of a full lot becomes progressively more in-

significant. Similarly, as the number of spaces provided increases be-

yond 200 spaces, the probability that the lot is more than 75% full 



becomes progressively more insignificant. In addition, all systems of 

more than 200 spaces are meaningful only. at the 50% capacity level. 
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-A p~eferred solution lies between 180 and 220 spaces. Even with 

the relatively small incr~mental values ·of M, substantial differences in 

the probable appearance of the lot are noted. . The most meaningful indi-

cators of system performancfa within this range are the proportion of 

times that the system is 50% .or more foll. . The ultimate solution,. in 

most cases, will be governed by costs and the geometry of site lay-out. 

However, using the procedures above, an architect ·should have an ex-· 

tremely useful picture of the probable behavior of the system, 

Infinite Queue Allowed 

This section c;onsiders systems of multiple exponential channels in 

parallel where the fotmation of an -infinite queue.is allowed .. The in­

finite queue condition assumes that all arriving customers enter and re­

ma;i.n in the system until serv;i.ce is completed,.regardless of the system 

condition upon their arrival. . In other words,. all customers are patient 

and none are lost. 

Literally interpreted,. the condition that no customers are lost is 

too rigid for most architectural systems .. Since all customers independ­

ently exercise the option to join or not join the.system according to· 

theit personal neec;Is, .a few customers will generally always be lost . 

. However, in satisfying the condition that system traffic intensity be 

less than unity, queues of excessive length will generally not occur . 

. Consequently, the proportion of lost customers will be small relative to 

the total number of arrivals, 

If the condition beyond which lost customers will occur can be 
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identified, the proportion of time that the condition occurs must be 

made small if a ~inimum number of lost customers is desired. Procedures 

by which the preceding level of system performance .may be achieved are 

considered in this section. When the proportion of last customers is 

small, the infinite queue condition may be assumed, The loss of accura-

cy will generally be no greater than the error incurrf;:!d by estimating 

rather than measuring the arrival and service rates . 

.. The measures of effectiveness developed in this section assume that 

a single queue is formed when all channels are occupied. In contrast, 

.most architectural systems will consist of separate queues for each 

service channel.· When. faced with the alternative of joining any one of· 

several queues, the individual customer will almost always choose the 

.shortest. J:n addition, each channel is assumed to operat:e at the same 

rate of service, Thus, multiple queues will almost always be of equal 

length. Although deviating from the exact theoretical structure of the 

model, the lei;igth of multiple queues may be considered as approximately 

equal to the length of a theoretical single queue divided by the number 

of available channels. For example, if there are two service channels 

and the theoretical single queue contains six customers, the system may 

be thought of as two .separate queues with approximately three customers 

in each. The model for multiple exponential channels in parallel with 

an infinite queue allowed is schematically illustrated in Figure 31. 

co 

By using the·property that l:Pn = 1.0, .Equations (6.2a) artd (6.2b) 
n=El 

may be solved far·P0 and expressed in terms of the functional variables 

as: 



may 'be considered as M 
queues of length~ /M 

q 

[;] 1 

G} 
single infinite 

queue allowed 2. r------J 
..,,...,..._._l'~I __..__. ~......+--,ol ---II j ; M-1 
N M+4 M+3 M+2 Mi-1 L._j 

q 

arrivals 

-r-T--1 n 
--!- _ _J_ _ _J LJM 

101 

service 
completions b 

F;i.gure 31. . Multiple Channels,. Infinite Queue Allowed 

(6.12) 

P0 is the-probability of no units in the system, for which a family of 

curves have been plotted in Figure·32 for seperal values of M. P, the 
n 

probability of exactly n units in the system may be determined by sub-

stituting Equatiqn (6.12) into Equations (6.2a) or (6.2b). By st,imming 

Equation (6. 2b) frc;,m M to infinity, the ·probability of M or more units 

in the. system, QM, may be determined. When n ·~ M, all channels are oc­

cupied .. QM therefore represents the proportion of arrivals that are re­

quired to joi,n a.queue and may be expressed in terms of the functional 

variables as: 

QM= l pn 
n=M 

(6.13) 



A family of curves for QM have been plotted in Figure 33 for several 

values of M. 
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Using previous definitions, the quantity (1 - ·:E>0) is the facility 

utilization and represents the proportion of time at least one serv;i.ce 

channel is occupi~d .. The quantity (1 - QM) is a valuable measure of ef­

·fectiven~ss as it indicates the proportion of time that instantaneous 

serv-ice is available, that ;i.s, there. is no queue and. at· 1east one. serv-

ice channd is unoccqpied, 

For single channel systems in which an infinite queue.is allowed, 

traffic intendty, p = ,X,/µ., was 'shown to represent the proportion of 

time that the channel is occupied.i Thus, in single channel systems, p 

may be thot:ight o~ ,as the mean fl;'action of channel occupied. For mul;.. · 

tiple channel systelll&, p = ,~JMµ. has been defined as the system traffic 

intensity where Mµ :repl;'esents the rate of service for all M channels 

combined, Hence, where infinite queues are allowed, system traffic in­

tensity similarly represents the mean fraction of channels occupied. · 

The state prob~bilities for multiple channel systems have been 

defined using two relationShips,-Equations (6,2a) and (6.2b), because 

multiple channel systems operate under two,. distinct, operational condi­

tions .. Ip the first condition, (O .::;;; n ::;;; M), no queue· exists as all 

units presept •re in the p~ocess of service .. Units {n the system ad-

vance at a rate equal toµ., the mean service rate of an indi~idual chan­

nel .. In the second condition, (M ~ n -~ ~), a single infinite queue has 

formed.as all M channels are occupied .. ·While in the queue, .units will 

. advance at a ;ate of Mµ •. Upon entering .the service channel, the , 

1 See Chapter V, pp. 48-49. 
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advancement rate for any particular unit will .. decrease toµ. . 

. Because me,i'lsures of effectiveness must consider every probable 

state of the. ijySte!ll f?;"om O _to -cc, and two operational conditions exist, 

the derivation of any subsequent system parameter becomes highly com­

plex; .The derivation and expression of measures of effectiveness, .par­

ticularly those concerning individual units, .are simplified greatly ·if 

limited to thl:l condition of Ms:- n .. H,;mce, most of the following discus­

sion will ~e conce-,:ned with the second condition of (M $; n -s: cc). 

-From these concepts of state probability, several broad generaliza­

t_ions concerning the relative merits o-f fewer, high-speed channels as 

opposed to a greater number of slower channels can be made .. In addi­

tion, most arch;i.tectural systems are subject to eventual increases in 

arrival rates d~e to expansion or growth. Therefore, methods by which 

system capacity may be in~reased are -of great importance. Two commonly_ 

applied options are available. First, the.service rate of existing 

channels may be increased; or second, retaining the same service rate, 

the number of channels may be increased. Inherent to·each scheme are 

_several advantages and d;i.sadvantages. 

For a g:i.ven nu!llber of channels,._ an increase in service -rate ·will 

involve a c-orresponding _ incre~se. in the ·proportion of time that any one 

channel is CO!llplet;elyidle. 2 Since p = 'AIMµ indicates the mean fraction 

.of occupied channels, a decrease in r·elative efficiency will also occur . 

. However, as ehe capacity and service rate are increased, the number of 

customers serviced and the speed by which they are serviced may be sub­

stantially increased. The advantages are therefore mostly to the 

2 See-Chapter V, Problem No, 3, pp. 56-57. 
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customer. 

As the number of channels i:s increased in proportion to the in-

crease in arrival rate, no loss of system efficiency will result if the 

same service rate is retained. Since the number of units that may be 

simultaneously serviced has increased, the number of units in the queue 

relative to the number of units in the system will decrease. With units 

advancing in the queue at rate Mµ., the mean delay in the queue will be 

correspondingly reduced .. As shown in Figure 32, the probability of in-

stantaneous servic~ increases as M increases for a given value of p, 

Most important, the system mat be operated nearerrto full utilization, 

that is, p nearer to unity, before queues of excessive length occur. 

However, the speed of the service channel has not been increased so that 

time spent in service rema:j.ns unchanged. Thus, the advantages are most-

ly .to the efficiency of the system rather than the customer. 

The mean number of units in the queue may be determined by sul:lsti~ 

tutingEqt,iation (6.12) into Equation (6.2b) and summing from M to o:i, 

.Alternate terms in the summation will cancel out so that L may be ex­q . 

pressed in terms of the functional variables as: 

(n - M)P 
n 

(6.14) 

Since· p represents the mean fraction of channels occupied, the product 

pM gives the mean number qf units in service .. Hence, the mean number of 

units in the system may be expressed as: 
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L = L + -pM 
q 

(6.15) 

L has been plotted for several values of Mas a function of system traf-

fie intensity in F~gure 34. 

As developed for previous models, the mean time spent in the sys~ 

tern, W = L/i.; the mean time spent in the queue,· W 
q 

L Ji., Figure 34 
q 

demonstrates clearly that for a given value of p, an increase in M re-

stilts in a corresponding increase inL and decrease in L. Expanding 
q 

the concepts·introduced in the-previous section, assume that the initial 

costs and operating costs of individual channels are proportional to the 

rate of service .. Consequently, two -slow channels will cost as much as 

one channel operating twice as fast. Whenever the most important re~ 

quirement·is to minimize the length of queue, it is advantageous to have 

many channels operating at slower rates. However, whenever it is more 

important to minimize total delay time W, it is better to have fewer, 

high-speed channels. 

Q . is defined as the probability. of N or more units in the 
M·N q . ' q 

queue, Since all channels must be occupied before the fo:rm.ati.on of a 

queue, QM,Nq is also the probability of (Nq +M) or more units i.n the 

system. Q N may be expressed in terms ~f the functional variables as: 
M, q 

00 00 N 

Q =I p = Ip -~ (6.16) 
M,Nq n M+N +n. - DM-1 (cp) 

n=N n=O q 
q 

Four basic variables are involved in the expression of Q N. They are 
M, .. q 

QM N, M, N and p, Since two-dimensional graphs are limited to three 
) q q 

variables, any one of the variables must be assumed or held constant. 

Consequently, Figures 35 to 39 are plotted separately for values of 



1.00......-~~~-.-~~-,-~-,---,,~,--,-,,-.,.-,-~~~~.--~--,,~,-.,.~-,--r--r--,-..--.r--~~~-,-~~-,-~-,--,----,r--r-,r--r~ 

o. 90 I I I I I I I I I I I I I I I I Ld.!! 

o.so I I I I I I I I I I I I ,.V/,r/VA VIA f I I J 1 11 ! I l I I 

o. 70 I I I I I I I I I I I I ,'I/ /11' L V 1/1 I I I I 11 11 I I l I I I 

~ o. 60 I I I I I I I I I I / /I / II / JI f f I I I I I I I I I I I I I I H 

a. 

I I. I II I , l I • I I v 1 

, F Ir r I I I I 
I I I I I Ji' ' I I 

I I , I 
I ' • I I ' 

, o so I , , I I I ' ~ • , , y f Ir • • I l,"I r ' i:: I I 'I ' a, I , ~ I 1-1 
(.) 

..-( 

..... ..... 
<U ... 

E-< 
O. 30 I I I I/ I I /I I V ~ / / / I / lQI' I I § I I I I / / 1 ;r I I I I I I I 

0.20 I I / I 1,.r I ).' I ff I I / / ,r I i' I I I f I A2, / ,r I I I I I I I I 

0.10 I .c ~ ;;,r ;;,r~~b,,r".,.,Y :;A" I ~ I~, I J...,r' I I I I I I I I I 

0.10 1.0 10.0 

Figure 34. L, The Mean Number of Units in the System, M Exponential 
Channels in Parallel, Infinite Queue Allowed 

100.0 

I-' 
0 
00 



109 

M = 2, 3, 4, 5, and 6, and 8 and 10, respectively. In each figure, 

. curves for N are given in even increments ofM. For example, in Figure 
q 

35 where M = 2, curves for N 
q 

2, 4, 6, 8, 10, and 12 have been pro-

vided, N represents the length of a single infinite queue. 
q 

However, 

it has been established that the single queue may be thought of as M 

queues, each approximately Nq/M in length. Hence, the same curves above 

may be thought of as two separate queues of length 1, 2, 3, 4, 5, or 6, 

respectively. 

A related set of graphs are provided in Figures 40 to 44 for 

G M(T ), which represents the probability that time spent in the queue 
q s 

by an individual unit exceeds a multiple of T. The derivation of 
s 

G M(T ) is well beyond the scope of this study. . However,. it may be 
q s 

. shown that G. M(T ) may be expressed in terms of the function.al variables 
q s 

as: 

G M(T ) q s 
·-(M(l-p)cTs'] 

= QMe (6.17) 

where QM is defined in Equation (6.13) and c represents a multiple of 

'r . s 

The use of Figures 32 to 44 is best illustrated through the use of 

the following example problems. 
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Problem No. 4: An airline ticket counter has been provided with 

accomodations for two clerks, in front oLwhiaµ, ,s.eparate queues .. will 

f9rm. The average interval between arrivals and average duration of 

· service are estimated as 5.0 and 7.5 minutes, respectively. Using Fig-

ures 32 to 44,. describe the e:x;pected system performance. 

Solution: T = 5.0 . a minutes;. T :;:: 7.5 minutes s 

';.. = 1/5.0 = 0.20; µ = i/7. 5 = 0 .1.33 

cp = 0.20/0.133 = 1. 5; p = 1. 5/2 = 0.75 

Since there are two channels, enter ;3.ll figures withM = 2. With p = 

0.75, the appropriate figure and results are: 

(Figure 32) P0 = 0.15 

(Figure 33) QM = 0 . 6 3 ; ( l. 0 - QM) = 0 . 3 7 

(Figure 34) L 3.5; Lq = L ~ cp = 3.5 - 1.5 = 2.0 

W = L/).. = 3.5/0.20 = 17.5 minutes; 

W = L /).. = 2.0/0,20 = 10.0 minutes. q q 

(Figure 35) Nq/M - 1 2 "-3 4 }.~-6 
_Q ______ 3_6--.-2-0--.-l-2--.~0-6-- . 035 . 02 . 

M,Nq 

(F:Lgure 40) GqM(7. 5 minutes) = 0.38 (1. or,s) 

Gqll5.0 minutes) 0.23 (2.0T) s 

GqM(30.0 minutes) 0.084 (4.0T) s 

GqM(45.0 minutes) = 0.030 .(6.0T) s 

Comments: P0 indicates that 15% of the time, the system will ,con­

tain no units. · Consequently, both elerk·s wil1 be completely idle. Fa-

cility utilization, (1 - P0), indicates that 85% of the time, at least 

one of the two clerks will be busy. QM indicates that 63% of the time, 
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two or more units will be present, and therefore represents the·propor-

tion of time a queue will have formed .. The complementary statement, 

O - QM), indicates that 37% of the time, at least one channd is unoc .. 

cupied, and therefore represents the proportion of time that instantane-

ous service is available. 

FromFigure 35, the expected proportion pf time that N /Mor more q 

customers are waiting in each of the separate queues has been deter,-· 

mined. For example,. when N/M = 1, QM,Nq = 0.36. This indicates that 

queues of one or more in length may be expected 36% of the time. Since 

there are two queues and two thannels, this also represents the proper-

tion of time four or more customers may be expected in the system. 

The set of values for G M{T) give the proportion of time that cus .. q . s 

tamers are delayed in the queue longer than a specified duration, For 

example, 7. 5 and 45. 0 minutes in the queue are. exceeded. 3~% and 3'7o of 

the time respectively. 

Problem No. 5: A franchise for additional routes has been granted 

to the airline in Problem No. 4. The increase in traffic is reflected 

in customer traffic which has doubled. Thus, the average interval be-

tween arrivals has decreased to 2.5 minutes. If the airline wishes to 

maintain the same level of customer service, system capacity must be in-

creased. With computerized ticket handling aids, the airline estimates 

that the average duration of service may be reduced to 3.75 minutes, 

However, sufficient space and personnel are availc1ble to simply increase 

the number of channels to four. , What description of system performance 

may be given for each of the alternatives above? 

Solution A: . T 
a 2.5 minutes; .T = 3,75 minutes; M ,s 

· >.. 1/2.5 = 0.40; µ. = 1/3. 75 = 0.267 

2 
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µ = 0,40/0,267 = 1.5; p = 1.5/2 = 0.75 

Since M and p remain unchanged, the description of system per fo:t;"m .. 

ance remains iqentical to that of Problem No. 4 with two exceptions • 

. The mean time spent in the system and in the queue are functions of the 

a:rrival rate, Thus, W = L/~ = 3.5/0.40 = 8.75 minutes; and W = q 

2.0/0,40 = 5.0 minutes. Even though the arrival rate has doubled, the 

reduction in service time has more than compensated for its effect on 

system performance .. Since Ts is now 3.75 minutes, GqM(l,OTs) = 0.38 

now represents the proportion of time delay ;in the queue exceeds 3.75 

rather than 7.5 minutes. 

Since 

0.75, 

Solution B; T = 2 .5 minutes; T = 7.5 minutes; M a s 

.); = 1/2,5 = 0.40; µ = 1/7 .5 = 0 .133 

ep ' = 0.40/0.133 = 3.0; p == 3.0/4 = 0.75 

there are four channels, enter all figures with M = 

the appropriate figure and results are: 

(Figure 32) P0 = 0.04 

(Figure 33) QM= 0.50; (LO - QM) = 0.50 

(Figure 34) 

(Figure 37) 

(Figµre 43) 

L:C = 4. 5; L = L - q, = 4. 5 - 3. 0 = 1. 5 q 

W. L/~ = 4.5/.40 = 11,25 minutes; 

W. =L/i. .. = 1.5/. 40 = 3.75 minutes. q q 

N /M = 1 2 3 4 5 q 

Q = 0,16 .048 .017 <,01 <.01 M,Nq -

GqM(?, 5 minutes) O.IB (1. 01: ) s 

GqM(lS .0 minutes) 0.11 (2.QTS) 

G M(30.0 minutes) = <0.01 (4.0T) q s 

= 4 

4. · With p 

6 

<.01 

= 

-• Comments: By doubling the speed of the existing service channels, 
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almost all benefits are directed to the customer. Total time spent in 

the system is substantially reduced. B;owever, improvement of parameters 

concerrling the queue are not as gr,eat when compared to the second i:llter­

native. By doubling the number of channels to four~ the mean time spent 

in the queue is reduced from 10.0 to 3.75 minutes. Queue lengths of 

greater than three seldom occur and the probability of spending mote 

than 15 minutes in the queue is reduced from 0,23 to 0,11, The propor­

tic;,n of time that instantaneous service -is ava~bble has increased by 

13%; facility utilization has improved by· 11%. Eowever, since the serv.,. 

ice rate has not been improved, the total time spertt in the system is 

11.25 minutes. Hence, most of the benefits are directed to the system 

rather than the customer. 

If the cost of both altl;lrnatives is the same, the decision must be 

based upon the relative merits of fast customer service or slow customer 

service with relatively shorter qul;lue lengths and delays .. The appear­

ance of short queues is usually more important where the facility is 

highly competitive .. In addition, the number of lost or reneging custom­

ers is generally smaller if thl;l queue has the appearance of advancing 

rapidly. In this case, however, assuming that customer service is of 

greater importance, increasing the speed. of e;idsting service channels 

would generally be the pref;erred solution. 

Problem No. 6: -An architect has been commissioned to design a 

branch bank for a large financial concern. The bank president, a pio­

neer in the suburban.banking business, demands and insures excellence in 

customer service by making unannounced visits to his branch facilities . 

. Through these expl;lriences, he has established a firm, organizational 

policy .. In a brief interview with the architect, the president had 



124 

stated, ··"we are._ in business for our customers and· only their sati,s;fac .. 

ticm w:i.11 keep l,lS · in business. ·Whenever· I enter any of my ·branches as a 

routine customer, . I do not expect to , find m,ore tha1;1 one customer pre­

ceding me in line. In fact, even having to wait in line 1,,1psets me a 

great deal. .If I must wait, nine times out of ten·l do not expect a de .. 

lay greater than one-half the time it wpuld ordinarily take to comp hite 

my ~ransaction." 

From the president's 1;1taff, the arch;i.tect is· advised to expect a 

ma~imum of .80 routine customers during a peak hoµr period. -During these 

hours, bank reseijrch indicates that transactions average 3.0 minutes • 

. the staff. also advises to design for peak conditions. · During lulis, un-. 

occupied tellers are busy at their stations with other tasks essential 

to, the organizat:i,on. With this information, the architect: must piesent 

. his preliminary design. . How many tellers should· he provide? · What 

statements concerning system performance ,;nay, the architect make to en­

hance the acceptability of his proposal? 

Solution: The manner in which this problem is presented is typical 

of those· encountered by practicing architects •.. A feas;i.ble solution ma,y 

be obtained in three basic steps. -First;, assumptions must be made so 

that the concepts of this study may be applied •.. Second, the data and 

constraint relationships provided by the president and his staff must be 

interpreted or translated into terms of queueing variables,. And third, 

u1:1ing the variables of the second step, inference is made of the proba­

ble behavior of th,e proposed solution. 

· .Assumptions, (Step No. 1): a) the customer population is infinite 

oi; very large; b) the arrival rate follows a Pois~;on' s distribution; 

o) the service times follow an exponential distribution; d) customers 
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receive service on a first come, first serveo basis; C;?) all arriving 

customers remain in the system until service is completed, that is, an 

;l.nfinitC;? queue is allowed; and f) a finite nµmber of service channels 

are to be arranged in parallel. 

Interpretation, (Step No. 2): 

Is= 3.0 minutes;µ.= 1/3.0 = 0.333 service completions/minute; 

· ~ = (80 customers/hour) (1/60 hour /minute) = 1. ,333 Customers/minute; 

T = 1/1.333 = 0. 75 minutes; a 

cp = \/µ. = 1.~33/0.333 = 4.0; p = ~/M = 4.0/M, 

The·probability of M customers in the queue, Nq =Mor Nq/M = 1.0, 

is to be made insignificant. (" •..... I do not e}l:pect to find more than 

one customer preceding me in line.'i Insignificance is a relative term 

which may be evaluated.after analysis on several solutions·is completed. 

~he proper relationships to be used are found in Figures 35 to 39, 

The time spent in the queue should not e}l:ceed T /2 more than 90% o;f s 

the time. ('' .•. nine times out of ten I do not expect a delay greater 

than one-half the time it would ordinarily take to complete my trans-

action.") Translated into terms of Figures 40 to 44, the probabil;i.ty · 

that time spent in the queue exceeds O. SOT or 1. 5 minutes is to be made s 

s;; 0.10. 

Solution, (Step No. 3): Since cp = 4.0, the number of channels pro-

vided must be greater than four if p is to be less than unity. Thus, 

the minimum number of channels required is five. Using the iterative 

procedure previously introduc~d: 

Try M = 5; p = 4.0/5 = 0.80; 

from Figure 38, QM,Nq = Qs,s = 0.18; 

;from Figure 43, G M.(T) = G 5(0.5T) = -0.33 > 0.10; new trial required. q s q ·s 
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Try~= 6; p = 4.0/6 = 0,67; 

from Figure 38, QM,Nq = Qs,a = 0.027; 

from Fig1,1re 43, G M(T) = G 6(0.ST) = 0.11 = 0.10; condition setisfied; q s q · ·s 

q6 ~6 indicates that 27 out of 1000 customers will arrive to find 

six or more customers in line or the equivalent of one or more customer 

waiting at each teller's station. Q9 18 , where N /M ~ 2.0, is less than 
~ q 

0.01 which indicates that two or more customers in each line wil~ occur 

infrequently. Hence, the probability that a c1,1stomer will be preceded 

by two customers in line may be considered insignificant. 

With M established as six and p = 0.67, thes~ additional statements 

may be made: 

from Figure 33, Q9 = 0.28; (1.0 - Q9 ) = 0. 72. 

from Figure 34, L = 4·.6; L = L - cp = 4,6 - 4.0 = 0,6i 
q 

W = 4.6/1.33 = 3.45 minutes; wq = 0,6/1.33 = 0.45 

minutes, 

As the president has emphasized short queues and delays, he should be 

impressed with the statistics above. Instantaneous service, that is, no 

wait in a queue, is available 72% of the time, Tbe aven:ige time spent 

in the queue for all customers is less than 30 seconds. 

Comments: In many instances, the problem may be complicated by the 

potential of variable service rates. For example, the installation of 

· sophisticated communications systems or similar equipment coul.d sulD-

stantially reduce . service time. ..If the cost of time spent in the sya;,. 

tem, ~oth in waiting and in service can be economically evaluated, a 

system,resulting in minimum cost at a stated level of service may be de-

terQli,ned, . Methods of optimization have been developed in the operations 

research field. However, the simplicity of techµiques presented in this 
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study allow the rapid investigation of several systems. Consequently, a 

triai and error process of analysis will not be overly t~dious, whi~h 

again illustrates the versatile usefulness of the concepts presented. 



CHAPTER·vrr 

· SUMMARY AND CONCLUSIOt'l'S 

The purpose of this study has been to provi9e the architect with a 

usable set of graphically presented reiationShips with which to analyze 

1:he performance of elementary queueing systems, · Written for the purpose 

of applications in the field of architecturd design, it; was as;sumed 

that the reader was unfamiliar with the topics of statistics, probabili• 

ty, random variation, and the theory of queues. Hence, discussion was 

initiated with an introduction to the fundamentals of statistics for the 

measurement of arrival and service rates. 

Probabilit>7 distributioni;; wei;e shown to represent pOp\llations of 

arrival and service times subject to random variation. $ince architec­

tural queueing systems are subject to random variation, evaluation was 

made in probabilistic terms. . Probability was established as a concept 

whi~h indicates t];ie prol?ortion of time a stated event is expected to oc­

cur or not occur. 

The·five basic elements of all queueing systems were introduced 

with the use qf Moore's Organization Chart. The t:lements were customer 

population, number of channels, queue discipline, ar+ival distribution, 

an~ service distribution. From these elements, several models were con­

structed, representative of many systems commonly found in architecture. 

Assoc:iated vi7Vh each model, measures of effectiveness wet."e present­

ed which provided a means for evaluating system performance. Measures 
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of effect;;i.veness were considered as any relationship which e!Kpressed in 

numeric terms an indication of the long .. run behavior of the system. Th.e 

determination of measures of effectiveness from their graphic presenta-

tion was explained in detail by the use of several e~ample problems. 

Through ~ppropriate comments, their interpretation and use in the making 

of inference towards predicted system behavior were discussed subjec-

t;i.vely. 

In reviewing Moore's Organization Ch,art, it will be seen th,at ·1ess 

than one-half of the elements have been cons;i.de:red. Con,sequently, it is 

obvious that this study is i+1,complete, Many elements commonly found.in 

real-world ,architecture have been neglected. . Some of the r;nore impor-

tant, in order of their frequency of occurrencE!, may be listed as fol-

lows: a) .arrival .and service distribu,tiori. other th.an exponential; b) 

systems:,ith time-dependent arrival and servi~e rates; c) systems with 

reneging customers; d) bulk queue disciplines;. e) multiple channel sys-

tems in series; and f) systems with priorities, 

Any further extensions of this study should continue with graphic 

presentations as many of the relationships ate highly GOmplex. However, 

ftirther studies will also increase the number of graphs until they be-

come too numerous for practical usefulness. Hence, consolidation of re-

lationships in the form of more involved nomographs, even if they re-

quire additional or simplifying assumptions, is highly recommended. 

The importance of queueing theory applicatiOIJ.S to architectural 

design is empric1sized by quoting a portion of Chapter I. 

Queueing problems abound in architectural design. Buildings 
are not inanimate objects, but dynamic systems of traffic flow 
in which queueing situations are the rule father than the ex­
ception. As the complexity of architectural struct1.u:es in­
crease, there is a. resultant ;i.ncrea1:1e · in the number of causes 



for waiting. As waiting increases, the qecessity for the ar­
chitect to satisfy service demands all:!o · increases ~· . . It :i,.s 
the responsibility of the architec;:t to evaluat;:e the demand, 
establish the appropriate level of service, esti~at~ the 
various costs associated with the satisfaction of demand, and 
determine the opti~um level for system caracity. 
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This st1+dy., in an attempt to expand the technic;:al capabilities of 

the architect, is '~ Graphic Introduction to Problems in Queueing Theory 

fot Architects and Engineers." 
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