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PREFACE

‘One of the initial courses in my graduate program of study intro-
‘duced me to a computerlanguage known as GPSS, or General Purpose. Sys-
tems Simulator, III. GPSS is a problem-oriented language, generally
used in the_electronic simulétion of traffic systems. .Usiﬁg the extra-
ordinary speed of the computer to its utmost advantage, the language
simulates operational systems by creating electronic impulses represen-
tative of individual traffic units.  Within the computer, the electronic
units’flowvthrough a pattern bf iogic which has been defined by‘the ana=
lyst,

-In structuring the pattern of logic, the ﬁodel of a real-world sys-
‘tem has been constructed., Real-world traffic systems are characterized
by provisions for service, delayé, points of decision, and transfers.
The computer automatically maintains a complete record for each traffic
unit as it passes through the system, including its time of origination,
arrival, and departure to and from various points in the model. Upon
the conclusion of simulgtion, data from these records provides a com=-..
‘plete description of system behavior and performance.

Given the freédOm to pursue my interests, I investigated various
facets of GPSS by structuring many example problems. I was most im-
pressed by the scope, versatility, and applicability of the language to
the vafiety of traffic systems commonly occurring in architecture. .In

_improvising hypothetical problems, . I began to encounter information
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which would be extremely useful in the architectural design of build-
ings. From my own experiences and discussioné‘with members of the fac-
ulty, many of whom were practicing architects; the conclusion was made
that the investigation of architectural traffic systems has long been a
neglected area of applicatioms.

In continuing my studies with GPSS, I beéan to realize its limita-
tions. GPSS is complex, demanding a great deal of programming experi-
ence, both in using the language and evaluating its results. Few prac-
ticing architects have access to the GPSS language or the equipment on
‘which it is implemented. Finally, resultant inference of probablg sys=
tem behavior applies only to the model simulated .so that no general so=-
lutions are‘aVaiiable.”-Hence, a means of system analysis independent of
the computer and surmounting these difficulties was necessary if inves--
tigations of traffic systems were to be practical.

In expanding my research, I found that tﬁe theories of probability
have been extensively applied to traffic systéms in the area broadly re-
ferred to as queueing theory. While GPSS gives a description of system
performance by physical simulation, queueing theory accomplishes the
same task mathematically. The great advantage of mathematical analysis
was its use to achieve solutions which were general in nature.

In some respects, the mathematical approach to traffic analyses is
even more difficult than simulation. The derivation of queueing para-
meters requires concepts well beyond the capabilities of most archi-
tects. Thus, the ultimate goal of this study consisted of an effort to
present queueing theory in terms of easily understood variables and in a
manner that would facilitate their application. In order to bypass the

difficulties of mathematics and to provide a rapid means of
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investigation, a family of relationships descriptive of system perform-
ance have been presented in graphic form.

To accomplish these goals, over 50 separate computér programs were
written for the IBM 7040 and 1620 computers. -All of the illustrative
material, some -of which required several thousand calculations, were
executed on plotting equipment attached to the 1620. Direct cross ref-
erencing of the subject material has been limited since only the most
fundamental concepts of queueing theory have been discussed. Most texts
dealing with basic operations research or queueing theory, including all
of those in the bibliography, contain a detailed presentation of these

concepts. Two of the included references, Queues, Inventories, and

Maintenance by Philip M. Morse and Waiting-Line Models by Ernesto Ruiz-

Pala, Carlos Avila-Beloso, and William W. Hines, were used extensively,

I would iike to take this épportunity to acknowledge the efforts of
Dr. Thomas S, Dean of the School of Architecture and Dr. Palmer M., Ter-
rell of the Industrial Engineering Department. They provided me with
encouragement, constructive criticism, and the inter~disciplinary guid-
ance required for the completion of this study. .In addition, the ef-
forts of Mrs, Nancy Wolfe should be recognized for her excellent prepa-
ration of the manuscript.

As an active member of the United States Air Force, special acknow-
ledgement is reserved for the Air Force Institute of Technology, to
which I have been attached during my course of study. -I hepe that upon
return to duty, I am able to fylfill the objectives of my assignment

with a contribution of professionalism to military engineering.
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CHAPTER I
INTRODUCTION
‘Architectural Traffic Systems

A "system' may be defined as 'an assemblage of objects united by
some form of regular interaction or interdependence; an organic or-

1 The complex buildings of today's technology typify

ganized whole."
Webster's definition of a system. In the modern passenger terminal, the
assemblage of objects may be'thought of as a collection of sub-systems.
These sub-systems may consist of arterial roads, parking lots, ticket
counters, restaurants, lobbies, baggage stands, and loading aprons. .In-
teraction and interdependence within the system are characterized by
traffic flows within and between sub-systems. Traffic flows may be com-
Vposed of vehiéles3 people, baggage, communications, products, or innu-
merable like units.

Two distinct phases are commen to traffic within any architectural
system. First, the "arrival of units to the system for "''service'; and
second, the actual performance of service, upon completion of which the
unit is discharged. The arriving unit may receive.immediate service 1if
it is available. .Otherwise, the unit must join a queue or waiting line

and be delayed in its passage through the system.

‘Webster's New. Collegiate Dictionary, Second Edition (Springfield,
Mass., 1960).




In the design of systems, the architect must insure that service
‘capacities are capable of handling arrival traffic so that unreasonable
waiting periods do not occur.  ILf the systemvis not designed so that the
service capacity is at least as large as arrival traffic, a waiting line
will build until traffic is reduced or capacity is inmcreased. Even with
average capacities sufficient to handle average arrivals, temporary or
even permanent congestion may occur because of fluctuation in the actual
rates of service and arrivals, For example, the interval between arriv-
als and time required for service may be expected to vary from unit to
unit. A series of short arri§a1 intervals coupled with requirements for
lengthy service will generally result ia waiting. The variation of ar-
rival and service rates is a measurable numeric quantity and must be re-
cognized as inherent to any system of traffic.

In very simple terms, a description has been given of queueing,
congestion, or waiting line problems, Queueing problems gbound in ar- .
chitectural design. Buildings are not inanimate objects, but dynamic
systems of traffic flow in which queueing situations are the rule rather
than the exception., As the complexity of architectural structures in-
crease, there is a resultant increase in the number of causes for wait-
ing. As waiting increases, the necessity for the grchitect to satisfy
service demands also increases. Traffic flows must be handled effi-
ciently, Ticket and baggage counters must have sufficient '"service
channels" to avoid unreasonable queue lengths and waiting periods. Res-
taurants and parking lots must provide enough space so that service is
available immediately or with very short delays,

It is the responsibility of the architect to evaluate the demand,

establish the appropriate level of service, estimate the various costs



associated -with the .satisfaction of demand, and determine the optimum
level for system capacity. Unfortunately, he is not well-equipped to
handle detailed analyses of these situations. His primary tools are
past experience, judgement, and many questionable rules of thumb,

The architect would be better prepared in the analyses of traffic
systems 'if he could answer any one of the following questions. What is
the expected number of units in the system and in the queue at any given
time? ‘How many service channels are required so that waiting does not
exceed a predetermined amount of time? How long will an arrival unit
have to wait before service is performed and completed? What proportion
of time will instantaneous service be available? What proportion of
time will more than a given number of units be in the system? :And, what
is the "efficiency" of the system? Queueing theory, a recent develop-
ment associated with the telephone industry, offers an approach to the

evaluation of these questions.

Applications of Queueing Theory

In the design of automatic telephone exchanges, necessary informa-
tion includes the effect of service demand fluctuations as varyiag num-
bers of customers dial different numbers. Most of the pioneering work
in queueing theory is attributed to A. K. Erlang, a. European electrical
engineer. Beginning about 1905 and up to 15 years ago, most study on
the theory of queues was accomplished by Erlang and others in connection
with telephone -problems. With the advent of post-World War LI "opera-
tions research,' this thecry has been extended to other fields involving
operational problems. ZIndustrial applications of queueing theory in

production and maintenance are now widely accepted. Particularly in



highway design and airline operations, progress in queueing theory has
been significant in many areas of transportation. |
-Arrival intervals and service times characterize the queueing Sys=
tem, each following a measurable probability distribution. A probabil~
istic "model" of the system may be mathematically constructed. The sys~
tem may exist in any number of possible states as specified by the num-
ber of units in the system - those waiting for service, and.if any,
those that are in service., Based upon the laws of probability, the pro-
‘bability that the system is in each of its possible states may be com-

" numeric relationships involv-

puted. From these ''state probabilities,’
ing system parameters may be derived.

- System parameters may be considered as 'measures of effectiveness"
relating in numeric terms the long-run behavior of the system over time.
.Measures of effectiveness include any relafionship which may be objec-
tively or subjectively evaluated in determining the adequacy of system
performance. As most queueing systems involving the architect will deal
with the flow of people, the ultimate evaluation will generally be sub-
jective.

-Most published material on queueing theory adheres to a rigid math-
ematical discipline to the extent that several models have been studied
more for their mathematical interest than potential applications. .These
publications require that the reader have at least a fundamental know-
ledge of statistics, probability theory, and advanced mathematics. The
derivations of state probabilities are complex, tedious, and difficult
for an individual unfamiliar with principles in these areas. .Unfortuy-
nately, these basic prerequisitesbgenerally open a wide gap between the

architect and the analysis of queueing problems.



Proposed Method of Study .

The purpoée of this paper is to bridge the gap between operations
‘research and the architect. The primary goal is to provide the archi-
tect with a usable set of relationships, graphically presented, with
which to gain an intuitive insight to the workings of elementary queue-
ing systems. Instead of deriving complex state probabilities, a quali-
tative approach to queueing theory is taken. The presentation of mea-
sures of effectiveness is limited to a brief introduction followed by
the relationship itself. In most cases; the derivations for these mea-
sures require their entire presentation for clarity. Any attempt to
present a brief or abridged derivation would lead to confusion and mere-
ly clutter the objective of the text material. Almost all relationships
have been graphically illustrated so that the behavior of the system un-
der several conditions may be evaluated without repeating long, mathe-
matical computations.

The first four chapters introduce the statistical, probabilistic,
and structural concepts of queueing theory. .The remaining chapters are
devoted to the application of these concepts in the evaluation of system
performance., Chapter IL, an introduction to the fundamentals of statis-
tics and probability, is included to provide the reader with a founda-
tion on which to evaluate the cause and effects of random variation.
These fundamentals are applied in Chapter IIL to the development of pro-
bability distributions for service and arrival times. The basic ele~
ments of queueing models :are structured and defined in the form of an
organization chart in .Chapter IV,

The total number of possible queueing situations, and therefore :



models, approaches infinity in the real-world. The organization chart
of Chapter IV defines system elements which have received mathematical
attention and allows the construction of over 22,000 different models.
Obviously, this study will consider a small number of these models. The
few models selected have been chosen for their potential architectural
applications and should adequately represent a great many queueing prob-
lems encountered in the design of real-world systems. - Applicable as-
sumptions to these models are clearly stated with particular attention
to their propér use,

The material presented in the first four chapters will suggest a
necessity for the collection, enumeration, and analysis of large amounts
of data to determine the mean and distribution of arrival and service
times. Because of cost, time, and insufficient personnel or capability,
it is anticipated that many architects could not follow the procedures
outlined. This does not negate the potential usefulness of this study,
as most often rather simple assumptions and estimates may be made. 1In
most cases, the architect will be able to reasonably estimate the avers
age arrival and service rate. By making the additional assumption that
arrivals and service follow specific distributions, many of which are
quite valid for a large majority of architectural problems, the most im-
portant structurél‘éiements of a queueing system are defined.

"Traffic intensity' or the ratio of arrival to service rates is the

primary variable in almost all measures of effectiveness.  In many in-
stances, it will be useful to make an optimistic and pessimistic esti-
mate of traffic intensity.. The model investigated may then be studied

in terms of*numeric intervals in which actual measures Qf:effectiveness

are likely to occur. _Models developed in this study;aré-presented in

r



Chapters V and VI, The objective of these chapters is to apply queueing
theory to real-world problems as demonstrated through the use of several

example problems.



CHAPTER 1I
FUNDAMENTALS OF STATISTICS AND PROBABILITY

It has been indicated that there are two distinct phases common to
any queueing system. First, the arrival of units to the system; and
second, the performance of service. Both the arrival and service rates
may be expressed as numeric values in units of time. Estimates for
these values are usually based upon data collected through observation.

Differences between one queueing system or another, ignoring their
physical or theoretical structure, are most obvious in their differences
in arrival or service rates. A system servicing 20 units per hour with
15 arrivals per hour will behave quite differently from a system servic-
ing 20 units per hour but with 20 arrivals per hour. They are two dis-
tinctly different systems.

In their raw form, the collected data from which rates are derived
usually communicate very little information. The body of analytical
techniques directed to the description of collected data is called "de-

scriptive statistics." It is the purpose of descriptive statistics to

place raw data into a usable, compact form. The most commonly employed

methods to accomplish this task are calculations of measures for "cenw

tral tendency,' measures for "dispersion,' and the development of a
"frequency distribution."
Before discussing the concepts of descriptive statistics, a parti-

cular characteristic of queueing systems should be understood.  Most



queueing systems involve the random occurrences of chance events. That
is, in any interval of time, an arrival, service completion, or change
in queue length may or may not have occurred as the result of chance.

- At any instantaneous point in time, these same events may or may not be
about to occur as the result of chauce. Because of random chance, vari-
ation is an inherent characteristic of most queueing systems. - The con-
cepts of randcm chance will be further discussed under the topic eof pro-
bability. For the present, consider only that variation is also a
measurable numeric quantity and in. descriptive statistics is analyzed as
a measure of dispersion.

-Attempts to deal with queueing problems without acknowledgement of
variation are usually mgde by providing for at least as many service
completions as arrivals per unit time. For example, if there are always
20 arrivals per hour, at least 20 service completions per hour must al-
ways occur to prevent permanent congestion of the system. However, the
inherent variation in arrival or service rates may cause temporary or
even permanent congestion since im any particular hour, there could be
30 arrivals and only 10 service completions.

-In the long run covering several one hour intervals, 20 arrivals or
service completions are expected. In any particular ome hour interval,
the actual number of arrivals or service completions are subject to
fluctuation. In this case, an engineer might attempt to increase the
average .service rate to 25 or 30 service completions per hour. As jus-

n

tification for this procedure, he might state that he is "allowing for a

margin of error."

In reality, he is not allowing for error but for nat-
ural variation due to fluctuation in the arrival and service rates of

the system.
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It is the purpose of queueing theory, based upon concepts of sta-
tistics and probébility, to account for and recognize variation as an
‘inherent characteristic. Once recognized, inference towards the pre-
dicted behavior of the system may be made with a greater degree of as=-

surance.
-Measures for Central Tendency and Dispersion

~Several methods are available to describe the central tendency of a
collection of data, The '"median" is defined as that value lying in the
middle of an ordered set of data. -An ordered set is one which has been
ranked from the smallest to largest value or largest to smallest value,
The '"mode" is defined as that value which occurs most frequently in a
set. The most common and widely used measure for central tendency is

the "arithmetic mean'" or "average."

The mean is that point about which
- all values of a set of numeric data tend to cluster. It may be express-

ed as:

n
X = E:Xi/n = (X, + Xy +X3 + .. +,Xn)/n (2.1)
i=1 '

By analogy, the mean is identical in concept to the centroid or center
of gravity in structural mechanics.

Consider the three sets of numeric data shown in Table L. Using
the mean as an analytical tool, note that the summation of individual
elements is 100 in each set, making the means equal to 100/5 or 20. By
inspection, it is evident that the three sets of data are different so
that the mean alone does not provide a unique description. . In addition
£o a measure for central tendency, another method must be -employed to

make a numeric differentiation between sets,
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TABLE I

THREE SETS OF NUMERIC DATA

X, SET A SET B SET C

i=1 20 10 10

2 20 15 10

3 20 20 20

4 20 25 30

5 20 30 30
I1

X, 100 100 100
i=1
n

X =z X /n 20 20 20
=1
n

o° = E:(ximi)z/n 0 50 80
i=1

For this purpose, two measufes of dispersion may be employed. The
"range" is the least complex and is obtained by calculating the arithme-
tic difference between the largest and smallest value of the set, How-
ever, note that both Sets B and C of Table I have identical ranges of
(30 ~ 10) or 20. While the ease of computing the range. is a great ad-
vantage, a unique description of the set is not available since only two
values of the set are utilized.

The "wvariance' is a much better measure of dispersion as it uti-

lizes each element of the set. The variance may be expressed as:
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n
o =z (X, - %)%/n (2.2)

i=1

c = /bz = standard deviation

The square-root of the variance is defingd as the '"standard deviation"
or "root-mean-square-deviation.'" The vafiance for each of the three
sets pf data are shown in Table I. Note that the greater the wvariance
or dispersion of individual elements about the mean, the greater the
numeric value of the variance or standard deviation,

Engineers will recognize that the standard deviation is identical
in concept to that of radius of gyration (r). In Figure 1, three timber
beams of equal area (A) are shown. It should be obvious‘that the load

capacity of the:three beams are not equal. The load capacity is a

a,
Y1
V1,2 a, ag 43 J
N.A s dg——~ag - e -
a a a
354 3 4 Beam B 3
Beam A
ay
IA =1.33 a, = unity
Beam C
IB\='0°33 A= E:a. =n
i
IC =.5,33 n n
£33 B = .= X 2’
I -zaiyl Z(Xi X)
i=1 i=1
r=/(I/A) =¢

Figure 1. Three.Timber Beams
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function of its moment of inertia (I) which in turn is a function of to
what extent the area of the beam is distributed about its centroidal
axis., The approximate moment of inertia is the summation of elemental
areas (ai), each‘multiplied by the square of the distance from the re-
ference axis to its centroid (yi). Radius of gyration is defined as
/(I/A). Considering each elemental area (ai) as unity, yi is equivalent
to (Xi - X) and A is equivalent to n. The analogy should be clear. The
greater the distribution of elemental areas about a neutral axis, the
greater the numeric value of moment of inertia and radius of gyration.
The greater the distribution of individual values in a set of numeric
data, the greater the numeric value of the variance and standard devia-
tion. As the description of a beam is not unique by its total area and
location of its neutral axis, the description of a set of numeric data
by average alone is insufficient. Some measure of dispersion, the ex-
tent to which individual‘values are distributed about the mean, is al-

ways required.
Frequency Distributions

When summarizing large masses of raw data, it is often useful to
distribute the data into classes or categories and to determine the num-
ber of individuals belonging to each. A tabular arrangement of data by
classes together with the corresponding class frequencies is called a
"frequency distribution" or '"frequency taBle."

Table II represents 30 items of raw data. It may be assumed that
they represent the time required for service, in minutes, on randomly
selected arriving units. Calculations are shown for the mean and stan-

dard deviation. It its present form, the data in Table II conveys



TABLE II

SERVICE TIMES FOR 30 RANDOM UNITS

Unit Service Time (X, - X X, - X)*®
1 31 6 36
2 18 -7 49
3 30 5 25
4 25 0 0
5 42 17 289
6 8 -17 289
7 32 7 49
8 25 0 0
9 27 2 4

10 14 -11 121
11 12 -13 169
12 b4 19 361
13 34 9 81
14 31 6 36
15 52 27 729
16 28 3 9
17 21 -4 16
18 31 6 36
19 9 -16 256
20 24 1 1
21 13 -12 144
22 11 -14 196
23 16 -9 81
24 25 0 0
25 21 -4 16
26 23 -2 4
27 40 15 225
28 17 -8 64
29 12 ~13 169
30 34 9 8l

750 3536

n
X = E:xi/n = 750/n = 25.0

i=1
n

o° = E:(xi - X)%/n = 3536/30 - 117.8667

i=1

o=/117.8667 = 10.85
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little information. A grouped frequency table is developed in Table III
to express the same data in a more compact form. Six classes have been
arbitrarily defined, each of 10 minute intervals. The number of times
an observed service time falls within each class interval is tabulated
and the tabulated frequencies are plotted in the form of a frequency

histogram as shown in Figure 2,

TABLE III

FREQUENCY TABLE

Class Interval Freq | Fraction "RelFreq Cumul Freq
1 0-10 2 2/30 .0667 .0667
2 11-20 8 - 8/30 .2667 .3334
3 21-30 10 10/30 .3333 .6667
4 31-40 7 7/30 .2333 ,9000
5 41-50 2 2/30 .0667 .9667
6 51-60 1 1/30 .0333 1.0000
‘W e e e e
30 30/30 1.0000

The relativg frequency of a set of data is simply the frequency di-
vided by the total number of observations. 1In Figure 3, the ordinate of
Figure 2 has been changed from absolute to relative frequency by divid-
ing by 30 so that the area under the relative frequency distribution is
equal to unit?. Relative frequency may be accumulated and plotted as a
cumulative distriBution. Each cell interval then represents the cumula-~

tive relative frequency up to and including that interval. The
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intervals will then have the appearance of a series of uneven ascending

steps terminating at unity as shown in Figure 4,
Probability and Probability Distributions

Probability may be defined as either a measure of certainty or un-
certainty. It provides a means for mathematically expressing a degree
of assurance or doubt. As a concept, probability may be used to de-
scribe the outcome of a random eﬁent. An event with a probability of
unity is certéin to occur while an event with a probability of zero is
certain not to occur.

There are two traditional definitidns of probability. The '"class-
ical definition" has a mathematical origin and may be expressed as fol~
loﬁs. If an event may happen in A ways and fail to happen in B ways,
and all of these ways are mutually exclusivé1 and equally likely to oc-
cur, the probability of the event happening is A/(A+B), the number of
ways favorable to the event divided by the total number of possible
ways.

Suppose that the physical limitations to a space are limited so
that a queue may never contain more than three persons. The possible
lengths of the queue are therefore 0, 1, 2, or 3 persons. Furthermore,
assume that these queue lengths are mutually exclusive and equally like-
ly to occur. The probability bf exactly 0, 1, 2, or 3 persons in the
queue are l/(1+3) or 1/4, The probability of 1 or less persons in the

queue is 2/(242) or 2/4; of 2 or less 3/4; of 3 or less 4/4.

'Events are mutually exclusive if the occurrence of any one of them
makes impossible the simultaneous occurrence of any of the others,
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Conversely, the probability of O or more, 1l or more, 2 or more, and 3
or more persons in the queue are 4/4, 3/4, 2/4, and 1/4 respectively.
Note that in the cases of.3 or less or O or more, the probability of

occurance is equal to unity as the possibility of all events are in-

cluded.

The classical definition ébove is necessary for mathematical mani-
pulations involving probability statements. However, from the stand-
point of useful applications, probability may be thought of as relative
frequency in the long run, This is the "empirical or relative fre-
quency" definition which may be stated as follows. If a large number
of trials are made under the same conditions, the number of trials in
which a certain event happens divided by the total number of trials will
approach a limit as the total number of trials is increased indefinite-~
ly. This limit is called the probability that the event will happen
under the same conditionms,

. The word '"limit" in the frequency definition of probability is not
used in its conventional mathematical éensé, That is, a function does
not asymptotically approach a limit as some variable increases or de-
creases, It is rather a "statistical or stochastic limit" which is
continually fluctuating as additional trials are made. As the number
of trials are increased indefinitely, the degree of fluctuation de-
creases to the extent that a relatively constant value is approached.

Table II represents a mass of service time data for a hypothetical
facility. Table III and Figure 3, the relative frequency table and re-
lative frequency diagram were developed from this data. Assuming that
the service times are valid in their representation, Figure 3 may be

considered a probability distribution from which future service times
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may be predicted. The probability of a service time falling in the in-
terval 21-30 minutes is .3333. Similarly, from Figure 4, the probabil-
ity of service time being less than 30 minutes is .6667,

Probability distributions should be differentiated from frequency
distributions. The frequency distribution describes what has occured
in the past while the probability distribution predicts what is expect~
ed to occur in the future. Probability distributions provide a means
for assigning the likelihood of occurrence to all possible events.
Variables described in terms of probability distributions are called
"random variables." The specific value of a random variable is deter-
mined by the distribution and the occurrence of that value is governed
by the associated probability.

Probability distributions may be either discrete or continuous,
depending upon the nature of the event they are used to predict. If
used to- predict the number of persons in a queue, the distribution
would be discrete. If used to predict service times, the distributions
would be discrete over the interval of times selected. However, as the
intervals are made small, the distribution will approach a continuous
function. Continucus functions are often used to approximate discrete
functions so that integration can be applied. Likewise, discrete func=-
tions are used to approximate continuous functions, particularly in ap-
plications using a digital computer, so that a summation process will
perform the required integratiom.

Many mathematically derived probability distributions have been de-
veloped which closely approximate the occurrence of random events in
real-life situations, The most important of all distributions is the

normal or Gaussian probability distribution. It is defined as:
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o (x-)%/20°
£(x) = o/ (-® < x g @) 1 (2.3)

The mean and variance are y and.¢® respectively, The normal distribu-
tion is symmetric about the mean as a bell-shaped curve. - The amount of
humping, or steepness of the curve, about the mean is a function of its
variance. The smaller the variance, the steeper the curve.

The normal distribution possesses several useful properties with
‘regard to its shape. - Where distances from the mean are expressed in
terms of standard deviation, g, the relative area defined between two
such distances will be constant from one distribution to another. .All
normal distributions, when defined in terms of a common 4 and ¢, will be
identical in form and corresponding probabilities may be tabulated. - As
the normal distribution describes every possible event, the total area
under the curve is equal to unity. The cumulative probabilities from
- to any value expressed in standard deviation units-are given in Table
“IV.® The table gives the -probability of a value falling within the

range -» to Z, where Z is a standard normal variate defined as:
Z =(x=-ulc (2.4)

If the service time data of Table-IL were assumed normally distri-
buted, the probability that service on a randomly selected unit would be

less than 10.0 minutes would be computed as follows.

Z = (10.0 - 25.0)/10.85 = -1.382g

_EW, J. Fabrycky and Paul E. Torgersen, QOperations Economy, {(New
Jersey, 1966), pp. 452-453.
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From Table IV,

P(-o to -1.382) = ,0835

Similarly, the probability that service on a randomly selected unit

would be less than 40.0 minutes would be computed as follows.
+Z = 40.0 - 25.0/10.85 = +1.382¢

From Table IV,

P(~= to +1.382) = .9165

The probability that service time on a randomly selected unit fell with-
in the interval 10.0 to 40.0 minutes would be .9165 - .0835 = .8330.

These calculations have been graphically portrayed in Figure 5.

25,0
10.85

=
i

]

Total Area =-1.000

Area(-®» to +1.3820) ‘
= .9165 \\\\\
Area = .0835 “:‘ -1.382¢ l +1.382¢0 s ’\\
553 Area = ,8330
=éo :25 mic lé
x = 10.0 x = 40,0

Figure 5. Service Times as a Normal Distribution
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Two particular probability distributions of great importance to
‘queueing theory are the exponential and Poisson distribution. The num-
-ber of arrivals and service completions per unit time for most models
illustrated in this study.are assumed to follow a Poisson distribution.
.Most of the service time and all of the arrival interval distributions
are assumed to be exponential. Because of the significance of these as-
-sumptions, the exponential and Poisson distributions are introduced in

Chapter. III.
Inferential Statistics and Sampling

Thus far, masses of raw data have been described by calculating
measures for central tendency and dispersion. It was stated that the
data was collected through observation and was representative of a char-
acteristic of interest. .In Table II, 30 items of data were introduced
as individual measurements of service time for a hypothetical facility.
From this data, a frequency distribution was developed from which in-
ference was made towards the future. An alternative inference was made
by assuming that the service times measured followed a normal distribu-
tion. .To the extent that the data in.Table LI is representative of the
true behavior of the facility over time, these inferences may be cox-
rect. The body of statistics that deals with the formulation of infer-
ences or conclusions from raw data is called "inferential statistics."

"A "population'" consists of all possible cbjects, states, or events
within an arbitrarily defined boundary.and may be either finite or in-
-finite. The population of service times for the hypothetical facility
above consists of the time required to service -every. arriving unit

throughout the life-~time of the facility. The total number of service
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completions accomplished by the facility is therefore a very large, fi-
nite population.. It is usual to consider very large populations as in-
finite in size for computational purposes.

-Large or infinite populations are a characteristic in most archi-
tectural queueing probléms. For example, the population of arriving
automobiles to a shopping center parking lot consists of every auto-
mobile in the surrounding state, county, city, or neighborhood, . depend-
ing on where the arbitrary boundary is defined. Similarly, customers at
a supermarket, passengers arriving at a terminal, or a life-time of ser-
vice times for a facility comprise extremely large populations.  From
these large populations, a means by which arrival and service rates may
be obtained with a degree of assurance is necessary.

Complete enumeration of each element from a very large population

-is generally impractical or uneconomical. In many cases, it may be .in-
accessible as a whole. ¥For these reasons, a ''sample'" is drawn from the
-population. A sample is simply a .part or portion of the total popula-
tion_and is usually assumed as typical of the population, at least in
regard to the parameter under consideration. . Samples taken must be se=-
lected at "random' where randomness implies that each element of the
-population has an equal chance for selection.

Properties of a population as the mean or variance are termed
"parameters' while properties of samples are termed 'statistics.' The
distinction is important as a population has only one mean or variance.
Samples may have different means and variances as each sample is com-
‘posed of different, randomly selected elements of the population.
.Through sampling, the limited observatiom of a population, inferential

statistics attempts to estimate population parameters.
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The means of samples taken from a population in turn from another
sub-population of sample means. The mean and variance of sample means
may be calculated as any other set of numeric data. The mean of sample
means is considered the best estimate of the population mean. The true
popuiation mean wiil be approached as a statisticalrlimit as samples are
taken indefinitely. The variance of sample means is related to the

variance of the populations by the relationship:

‘c?{ = g% /n (2.5)

where n is the sample size.  Equation-(2,5) holds true for any popula-
tion, regardless of its distribution. -Recall that if the population is
normal and its mean and variance are known, the popiulation is fully de-
scribed. However, populations injreal-life.situations will very often
follow a distribution other than normal.

The '"central limit theoren' is a mathematical proof which states
that the population of sample means will approach normality as the size
of the sample and number of samples taken tends towards infinity. It
has been demonstrated that sample means taken from any population, re-
gardless of its distribution, will approach normality even with sample
sizes as small as four.

Once -again, consider the data in Table IIL. Assume that each of the
values represent the mean of a sample size four so that 120 observations
have been made. The population mean is therefore estimated as the mean
of sample means or 25.0. The standard deviation of sample means, ‘G, is
10.85. From this information, it is desired to calculate the .95 'con-
fidence interval." The confidence interval is defined by limits between

- which the stated proportion of observations will be expected to fall.
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Table -IV may be used since, according to the central limit theorem, the
.sample means are expected to approach a normal distribution. . Since the
normal distribution is symmetric, enter the body of Table IV with the
-probabilities .025 and .975 which yield Z values of £ 1.96. From Equa-
tion (2.4), X =y =% 1.960}.i = 25.0 £ (1.96)(10.85) = 3.73 and 46.27. The
‘preceding calculations allow the following statement. If sampling is
continued from the same population, in the .long run 95 out of 100 sample
-means may be expected to fall between 3.73‘and 46.27,

From Equation (2.5), the variance of the population is equal to the
variance of sample means multiplied by the sample size, Taking the
squére—root of both sidés of the equation, the standard deviation of the
population, g, is seen to equal twice the standard deviation of sample
means, 2(02), with a sample size four. -Table IV may be used to infer
any probability of interest concerning the population only if the popu-
lation is assumed normally distributed. . It should be intuitively clear
that the smaller the variance of the population, the smaller the inter=-
val for a stated percentage of confidence. -The calculations gbove are

illustrated in Figure 6.
Summary of Statistics and Probability

"In the analysis of any queueing system, the arrival and service
rates must be known or estimated. These rates are generally derived
from very large populations making the techniques of random sampling a
necessary procedure. .The result of observing every possible element of
a population would be a specific distribution of numeric values. - A com-
‘plete description of a population is available when the distribution of

individual elements is known, .The distribution of elements within a
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population may be numerically described by calculating the mean and var-
iance or standard deviation. -Without recognition of variation within
the arrival and service rate populations, proper inference about the
predicted behavior of a queueing system cannot be made with assurance.
The degree of assurance associated with any inferential statement is ex-
pressed in terms of a probability. Probability statements give the pro-
portion of times a particular event may be expected to occur or not oc=
cur as repeated opportunity for occurrence is extended indefinitely.
Even a superficial study of statistics and probability would entail
a complete volume of work. .Hundreds of books and a countless number of
technical papers and articles have been published in these subject
areas. The purpose of this chapter has been limited to the introduction
of the language of statistics and probability as they broadly apply to
queueing theory. A rudimentary kunowledge of the concepts involved will

facilitate understanding of topics introduced in subsequent chapters.



CHAPTER IIIT

PROBABILITY DISTRIBUTIONS OF SERVICE

AND ARRIVAL TIMES

The rate at which units arrive and are serviced in the queueing
model has been only briefly discussed. -Further stﬁdy requirés a more
~definitive approach. It should be understood, however, that units ar-
rive for service in a more or less jrregular pattern with service per-
formance subject to random variability: In subsequent chapters, arrival
and se;vice times will be assumed as independent random variaBles with
probability distributions having known form and parameters.v Upon this
assumption, the probability distribution defines a population of arrival

and service times for all units conéecutively entering the system.

‘Distribution of:Service-Times

Service time is simply the amount of time that has passed from the
beginning of service to its completion, Ih the case of a sales counter,
service begins when the '"customer' arrives at the head of the line, if
one exists, and received attention from the clerk. ‘Service ends when
all transactions have been completed and the customer moves away from
the counter., The mean service time will be represented by‘TS while its
rate. -The service rate is seen to represent the mean number of service

completions per unit time.

28
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Once the service times of a considerable number of customers are
obtained, preferably 200 or more, they should be plotted on a time base
‘to establish their stability., Tests for stability indicate whether ob=-
served service timés have been taken from the same‘populatibn. They are
‘particularly important in architectural applications as rush%hour’peaks
and off-hour lulls are typical in many building types.

The use of '"control chart' techniques® as appliea to industrial
quality control are based upon the central limit theorem and the normal
distribution introduced in Chapter .II. Recall that sample means taken
from a population of any distribution may be expected to approach'a nor-
mal distribution. The meanvand standard deviation of sample means
therfore define a particular normal distribution or population., From
-Table-IV, it is seen that the interval % 30§ define boundaries within
99.7% of the sample means may be expected to fall. The inclusive range
of this interval leads to the conclusion that sample means falling out-
side of the boundaries have been drawn from a different population.

Experience has shown that population parameters may be reasonable
estimated after 20 samples have been drawn. Once established, these
‘parameters may be used to graphically construct "upper and lower control
chart limits" corresponding to the % 30§ limits of the normal curve. A
central line, midway between the two, corresponds to the mean of sample
means. Values of the sample means may then be plotted as a function of
time by maintaining the order of sampling. As long as the plotted

values remain within the control chart limits, there is reasonable

_ 'Eugene ‘L. Grant, Statistical Quality Control (New York, 1964), pp.
65-90. e .
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aésurance that the sampling process is continuing from the same popula-
tion. Prolonged runs above or below the central line indicate that a
shift in population mean has occurred. -Points falling outside both con-
trol limits indicate a change in the population dispersion about the
mean. .In either case, a new population of service times»exist‘which
differs from the original population whose parameters were originally
estimated.

Tests ‘for independencerare made.to insure that the service time for
any particular unit does not depend in any way upon the service time of
the preceding unit or ynits,  Several methods are available for such
tests but require statistical concepts beyond those introduced in this
study. Tests for independence make up a significant portion of many
texts on statistics, some of which are listed in.the bibliography. It
is a reasonable assumption, however, that the types of service times en-
countered. in architectural queueing models are independent. .Service
time populations are generally very large and center about the activi~:
ties of people. The.service time required of one arriving individual
will ysually not ‘depend upon the service time required of preceding in-
-dividuals. The preceding comments pertaining to stability and independ-
ence also apply to arrival intervals.

-Any logical procedure may be used to construct a frequency diagram
so that the sequence of service times in. Table-II may be graphed in or-
der of decreasing length. The resultant plot is the cumulative number
of service operations that take longer than a given time (t) as illus-
trated in Figure 7. By dividing the ordinate by the total number of
service times, a scale that represents an estimate of the probability,

'So(t), that a service operation will take longer than time t will be



Observations Ranked in Order of
Décreasing’ Service Duration’ .

S (t), The Probability that Service
Takes Longer than Time (t)

(o)

31

i ——
5
=l
' ;j# Graphic Presentation of  Service
20+ —1__  -Time Data in Table-IIX
]
I .
-~ N
: j -
10-.*—__._,.._ ——- PO . 71_“7—
1
1
L
1
- ; g + t 41
0o 10 20 30 40 50

Service Time, (t)

Figure 7. Cumulative Service Time Data From Table- IL

1.01

0.51

0.0 : : — = n
10 20 30 40 50

‘Service Time, . (t)

Figure 8. ,Sd(t)s Service -Time-Distribution Function



32

obtained. As sampling is continued indefinitely, the curve will ap-~-
‘proach a continuous function as illustrated in Figure 8. If the situa-
tion reﬁains the same, another sample of measured times will yield an-
other empirically determined probability curve which will be roughly
equal to the first.

This probability function or'”service-timemdiétribution," Sd(t)’ is
all that is required to represent the service facility since it defines
the service time for all units consecutively entering‘the syétem. All
curves of S (t) will start with a probability of unity at t = 0 since.it
is certain that a service operation will take longer than zero time. A
special case of'Sd(t) occurs when all operations take the same amount of
time. -This is the case of constant service which is illustrated in

Figure 9 by the dashed line. The service time for every arriving unit
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takes exactly Eime Ts so that it ‘is certain [So(t) = 1] that every serv-
ice takes longer thén (t) if (t) is less than T, and certain that no
service [So(t) = 0] is longer than (t) if (t) is greater than TS. Con-~
stant ~services are very usual for architectural queueing sysfems and
most&Sd(t) curves will tend monotonocally toward zero as (t) approaches
infinity.

A large number of service operations will exhibit'So(t) distribu=
tions which are closely approximated by the exponential curve. The ex-
ponential curve is illustrated as the solid line in Figure 9 and repre=~
sents the case where the probability of prolongation of service is inde-~
pendent of how long ago the service started. .The probability function

.So(t)'forvthe exponentigl case is expressed as:

5,(t) = o HE (2.1)

where e = 2,718182..., the base of the natural logarithms and y = l/Ts,
the mean number of expected service completions pef‘unit.time, The ex~
ponential distribution is peéuliar since its mean, Tsp and standard de-
viation, ¢, are exactly equal. Exponential distributions are extremely
important because of their wide scope of applicability and will be used
extensively within this study. They have a further theoretical impor-
tance because they enable the mathematical solution of queueing problems
by the use of linear equations.

-The curves in Figure 9 have been plotted as a function of time in
units of Ts as the term yt is equivalent to t/TS. It is interesting to
note that when the multiple of Is’is unity,_Sd(t) ="t = 1/2.718182 =
.368 which means that 36.8% of the time the: expected service-duration

will be greater than Ts. The complementary statement would be that
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63.2% of the time the‘expected service duration will begleSS'than Ts'
‘The significance of these statements is that where-exponential distribu-
tions apply, service times less fhan»Is are mofevfrequent than service
times greater than Is.

-Whilé'exponential distributions are very common, it will be found
that ‘in many Casesvthe service time distribution departs significantly .
from the ¢ = Ts or exponential distribution. .In other words, the numer-
-ic value of the disperson about the mean, expressed in terms of standard
deviation, will be greater or less than the mean. -Those distributions
with less variation (¢ < Is) than the exponential case are known as
Erlagian distributions while those -distributions with greater variation
(o > Té) are known as hyperexponential distributions.

The probability function,.Sd(t), for Erlagian service distributions
may be -expressed as:

k-1
5.(t) = 7 Z(kp,t)n/n! (2.2)

n=0

where k may be considered an integer constant indicating the degree of
departure from the exponential case. When k =1, Equation (2.2) reduces
to Equation (2.1), the exponential distribution while when k approaches
infinity,‘Sd(t) approaches the special case of constant service times.
The standard deviation of an Erlagian distribution may be expressed

as:

o =T //k (2.3)

from which the distribution plotted in Figure 8 is the case of k approx-

imately equal to five, Erlagian distributions are.plotted for k =1, 2,
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4,.10, 50, and infinity in Figure 10.  These types of distribution may
be -expected where service performance isvrelatively-the,same for a
‘majority of arrivals., A typibal example might be an airline ticket
counter handling only those»péssengers\traveling short distances.
Thé-probability function, So(t)-for'hyperexponential service dis-

‘tributions may be -expressed as:
5,(6) = me 2ME 4 (1 . me2ut(d - (2.4)
where-mm is defined in terms of.an integer j by the relationship:

(3) = [1 +3_%(§——fﬂ$§ | (2.5)

(j) may be considered an intéger constant indicating the degree of de-
»pérture from the exponential case. When j =1,.-m = .500 so that Equa-
tion (2.4) reduces to Equation (2.1), the exponential distribution. As
j increases, the degree of variation increases. From'Equatién'(Z.S),
when m = .2113, j = 2; when 7 = ,1127, j = 4; when 7 = .,0478, j = 10;
and when 1 = ,0244, j = 20. |

ufhe.standard deviation of a hyperexponential distribution may be

-expressed as:

o =T4/3 . (2.6)

‘Hyperexponential distributions for j.= 1, 2, 4, 10, and 20 are plotted
in Figure 10. These types of distributions may be expected where serv-
ice-performancé is characterized by very long and very short durations.
,In‘the ticket counter example, suppose that transcontinental as well as

‘short .distance tickets were handled, Assuming that arriving passengers
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traveling transcontinental distances require substantially longer‘serv-
ice performance, long and short durations would predominate yielding a
large variation about the mean. In both Erlagian and hyperexponential
- distributions, it is not the magnitude of service times that govern but
the extent that individual service times are distributed about their

mean.
Distribution of Arrival Times

‘Irregular arrivals to the queueing system may be described in terms
of probabilities quite anaiogous to Servicé times. The arrival time is
the amount of time that has elapéed'between successive‘arrivals to the
system. .The mean afrival time or jinterval between arrivals shall be
symbolically represented by Ta. .The reciprocal of the mean arrival @ -
time, 1/Té shall be represented by )\ and defined as the arrival rate or
expected mean number of arrivals per unit time.

The interval between arrivals may be collected as data and plotted
identically as the service time of'Figure 7. By dividing by the total
number‘of arrivals, the arrival distribution function“Ad(t) similar to
the curve in Figure 8 may be derived. The curve_Ad(t) yields the pro-
bability that the next arrival comes later than time t after the pre-
vious arrival, or than no arrival occurs in time t after the previous
"arrival,

The :exponential curve closely approximates the real-world condition
where the probability of occurrence for the next arrival is independent
of the elapsed time since the last arrival. .The distribution function

-for exponential arrival times may be expressed as:
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A(e) =M (2.7)

In most architectural systems, there are a greater number of chance
factors influencing arrival times than service times. It is therefore
reasonable -to assume that arrival times come closer to being random in
the sense that they are exponentially distributed.. While the service
times of a great many facilities may tend towards regularity, the arriv-
al times are in most cases compietely unpredictable. For example, it is
all but impossible to predict the moment a customer will arrive at a
sales counter, or passenger to a ticket counter, or automobile to a
parking lot.

It may be shown that whenithe distribution function:Ad(t) ié'expo-
nential, the distribution‘Ah(t)lfollows the well known and widely ap-
‘plied Poisson distributionm. -Aﬁ(t) gives the probability of exactly n

arrivals within an interval of time t and may be -expressed as:
A_(6) = () e M /n! (2.8)

Situations to which the Poisson distribution has been shown to be appli-
cable are so numerous and so diversified that it has sometimes been wi... .
called the law of small numbers, For example, many architects will be
familiar with rainfall intensity charts which give the number of yearly
periods “in which a specified amount of rainfall accumulated within a
specified amount of time. These particular charts follow the-Poisson
distribution.

A épecial distinction is characteristic -of the Poisson distfibution
which may be stated as follows. The area for opportunity -of occurrence

.for an event is extremely large relative to the chance that the -event
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will occur at .any given opportunity, There are many opportunities for a
rainstorm‘té occur. However the chance that a rainfall of one-half inch
vor more will ocecur in any particular 10 minute time period is extremely
small. Similarly, there are many opportunities for an automobile to ar-
rive at a large shopping center parking lot or passengers to arrive at a
baggage check-out counter. However, in both cases, the chance that an
arrival occurs within any particular short interval is small in relation
to its opportunity for occurrence.

Because :of these distinctive characteristics and its wide scope of
applicability, the Poisson distribution is particularly useful to queue-
ing theory. -In addition, with the relative simplicity of the exponen-
tial distrxibution function, there is much less difficiulty encountered in
the mathematical derivations of queueing -model parameters. Most queue-
‘ing theory texts devote extensive coverage to models incorporating this
particular distribution function. tFor these reasons, all models in this
study consider only those systems with Poisson arrivals.

. 0Of course, it must be-acknowledgéd that other arrival distributions
exist, Under these conditions, the Ao(t) curves may be described in
‘terms of Erlagidn or hyperexponential classifications. .The relation-
ships for Erlagian or hyperexponential arrival distributions are iden-
tical to those of Equations (2.2) and (2.4) replacing the value by A.
.The mathematical derivation of parameters for these conditions becomes
‘s0 complex that they are impractical for inclusion to this-study,van
mény cases, other methods such as '"Monte Carlo analysis'" or "computer
‘simylation' are far ‘superior. A family oand(t) curves is shown corre-

-sponding ‘to Sd(t) curves in Figure 10,



CHAPTER IV
THE STRUCTURAL ASPECTS. OF QUEUEING SYSTEMS

It has been established previously that the arrival and service
distributions are essential elements to any queueing system. .However, a
complete description of queueing systems requires additional statements
concerning their physical and theoretical structure. = Statements in-
volving physical structure relate to aSpeéts as the total number of
service facjlities, how service facilities are physically arranged, or
possible limitations to the.maximum length of queue. Theoretical con-
siderations include assumptions concerning the logical order in which
units are serviced or the manper ‘in which arriving units enter the sys-
tem. |

,Several methods of classification have been developed to describe
queueing -systems, The objective of these systems is mainly to provide a
concise notation for thoée‘persoﬁs dealing in mathematical applications
of queueing theory. . As this is an introductory study of real-world ap-
plications, a more qualitative approach is desirable. . James M. Moore*
has providea this approach by summarizing the interrelationships of ele-
ments within a queueing system in terms of an organizational chart.

.Moore's chart, which describes models for which a relatively large

~YJames M. Moore, 'To Queue or Not to Queue," Journal of Industrial
-Engineering, Vol. XII, No. 2, March-April, 1961, pp. 119-121,

40
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amount of published material is available, is shown in Figure 11.

In order to define a given queueing model, information must be ob-

tained for each of the five blocks af the top of the chart. These five

basic -structural elements include the customer population, number of

channels, queue discipline, arrival distribution, and service distribu-

tion.. -Each particular element is fully described when a dead-end branch

is reached. Where the appropriate information is not available, reason-

able assumptions must be made.

. The -Customer ‘Population

The customer population refers to the population from which
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arrivals enter the system. When the number of customers is very large
and their demands for service are corresponding1y7small, it is conven-

ient to assume that the customer population is "infinite."

This assump-
tion simplifies the computational effort in deriving system parameters
and is the more usu31 case in architectural situations. -Where this as-
sumption cannot be made, the customer population must be considered "fi-
‘nite.'" The importance of this differentiation may be illustrated in a
probabilistiC’example;

Consider two hypothetical restaurants, omne open to the public and
the other private, limited to a membership of 200 persons, .The public
restaurant hés a customer population which includes all persons living
within reasonable distance and may be considered very large. The de-
mands for service placed upon the public restaurant are relatively 'small
when compared to the population size. Because the population is large,
the demand and therefore the probability of an-arrival is relatively
constant regardless of the numbér of arrivals which:have-previéusly oc-
curred. However, suppose that 100 customers‘havé arrived at the private
restaurant. -This small population has been reduced by one-half so that
a substantial decrease in . demand may be -expected. .The arrival distribu-
tion for the public restaurant is’independept of the number of previous
arrivals while the private restaurant is highly dependent upon the num-

ber of previous arrivals.
. The Number of Channels

The number of channels refers to the number of facilities available
for service. - A theater with one. ticket booth is a "single" channel fae

cility while-a bank with several tellers is a "multiple" channel
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facility. When a customer has the option of service from any one of
several channels, the channels are .said to be in ''parallel.'" The vast
majority of queueing problems found in architecture involve parallel,
multi-channel facilities. Service facilities are in '"series' when serv-
ice is rendered consecutively by more than one channel., For example,
departure from an inter-continental airline terminal might require the
consecutive service of a ticket counter, baggage counter, customs in-
spection, and passport inspection in that specific -order. '"Infinite,”
multi-channel facilities rarely, if ever, exist in practical applica-
tions. They are primarily of mathematical interest because of the ease

in computing their system parameters.
The Queue Discipline

The queue discipline is the logical procedure by which customers
receive service. -In some respects, the queue discipline also refers to
the manner in which customers arrive, Figure 11 indicates many varia-
tions in queue discipline as several either/or decisions must be made.

- For example, customers may be 'patient' or "impatient.'" Patient custom-
ers refer to the possibility of an unlimited or infinite queue. -All ar-
rivals enter the. system and remain for service regardless of the sys~
tem's condition. This situation is particularly applicable where no
other alternatives are available as in a single exit from a parking lot.
.However, the patient customers or unlimited queue condition may alsoc be
applied in less rigid situations as, for example, a theater ticket line.
The theater queue will certainly not reach infinity, but all customers
will remain in the system as long as they are reasonably assured of en-

try. On the other hand, impatient customers will either 'depart
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‘immediately' or 'renege' if the system is in any condition which dis-
courages their entry. .The latter condition assumes: some measurable
amount of time was spent in the  system before -departure.

-Once the customer has decided to remain in the system, he may re-
ceive service in several ways. The most common, particularly in archi-
tectural situations, is the "first come, first serve'" discipline which
requires no explanation. .In other insténces, customers .may receive
service at 'random,'" for example as in a crowded bar or concession stand
where no defined queue has formed.

The "priority" discipline exists where one type of customer has
preference over another. The "head-of-line" priofity is the condition
where customers with higher priorities move directly to the front of the
waiting line. The '"preemptive" priority occurs when an arriving custom~
er with higher priority bumps out of the facility the customer receiving
service, This is the hospital case where the routine treatment of a
patient is inferrupted to provide emergency treatment for an .accident
victim. The bumped patient may ''resume" service at the point of inter=-
ruption or be required to '"repeat' the service cycle from the beginning.
The number of priorities by which the system is governed may vary from
the simple case of "two'" to any "finite'" number if three or more levels
of customers exist. When many finite levels of customers are consider=-
-ed, their priorities are often treated as '"continuous' functions to sim-
plify their mathematical computations.

‘The "bulk' discipline refers to conditions in which customers ar-
‘rive or are serviced as a group. -For example, passengers disembarking
from an airplane arrive as a group while the passengers in an elevator

arrive individually but are serviced as a group. .Sometimes both the
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- arrivals and service use the bulk queue discipline. Under these condi-
tions, it is much simpler to consider the entire group as one arrival
and the service time as the amount of time required to service the en-

‘tire group.
The Arrival and Service Distributions

‘Arrival and service -distributions were discussed in Chapter "IIT in
terms of probability curves. These curves were classified into families
described as constant, Erlagian, exponential, or hyperexponential dis-
tributions, corresponding with Moore's chart. - When the probability
curve or distribution is known, together with the mean interval between
arrivals,-Ta, or the mean. service time,,TS, the arrival or service dis-

N

‘tributions are completely defined,
Traffic Intensity

The arrival and service times may be expressed in terms of a single

variable, .p, the "traffic intensity."

Traffic intensity is the ratio of
the mean service time and the mean interval between arrivals. Written

in terms of their rates, p is the ratio of the mean arrival and service

rates.
p =T /T = (L/py/(1/N) =%/ (4.1)

When p < 1, on the average, more service completions than arrivals
‘occur per unit time. As X increases or | decreases, traffic intensity
increases and it becomes more likely that a customer will have to wait.

When p > 1, the arrival rate is greater than the service rate and

a greater number of customers -arrive than are serviced per unit time,
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Iwo conditions will result. First, the queue will grow without bound;
and second, a steady state condition will not be reached. A steady
state occurs when '"state probabilities" reach a point of equilibrium and
become independent of time. .Independence of time means that a specific
state probability is constant for a particular system at any point in
time during its operation.

Since all measures of effectiveness developed in this study are in-
dependent of time, investigation will be limited to the condition of
p'<1l. This is a logical approach since unbounded systems are unrealis-
tic in most architectural problems. However, it should be recognized
that the condition p = 1 may exist irregularly for -short periods of time
in real-world systems. -One of the primary advantages of queueing theory
is that it recognizes the occurrence of these irregularities in its

measures of effectiveness on a probabilistic basis.,



CHAPTER V
SINGLE CHANNEL MODELS

As discussed in Chapter IV, all models considered in this study
shall have an infinite customer population, a Poisson's arrival distri-
bution, and shall be serviced in a first come, first serve discipline.
Except as discussed in the next section, the service time distribution
shall be assumed exponential. :In this particular chapter, models con=
sisting of a single service facility will be considered under conditions
of either patient or impatient customers, It is assumed that impatient
customers immediately depart the system. Figure 11 shows that a queue~-
ing-moael is completely described by the assumptions above as dead~end

branches are reached under each of the five major ‘blocks.
-Patient Customers

‘Models with patient customers assume that all arrivals enter the
.system to remain for service regardless of the system condition. Graph=-
-ically represented in Figure 12, the open~ended queue indicates that
this model is the case for which an infinite queue is allowed. The sym=
bol n represents the number of units in the system at any point in time.
The simplicity.of this model allows consideration of a few measures of
effectiveness for non-exponential service distributions, These measures
include the expected mean number of units in the system and in the

queue,-L and Lq, and the expected mean waiting time of units in the

47



48

patient customers,
infinite queue allowed

1 ' service
arrivals -completions

the service
facility

. Figure 12, Single Channel Service, Infinite Queue Allowed

system and in the queue, W and Wﬁ.

-Exponential Services: L,-Lq, W, and Wq

The general state probability, Pn’ is the probability that there
are exactly n units in the system at any point in time. It may be shown

that when the service distribution is exponential,,Pn is expressed as:
n
Pn =(l - p)p . (5.1)

In the case of n = 0, the probability of zero units in the system,:Equa-

0 represents the proportion of

time that the facility is completely idle. .Hence, the expression

tion (5.1) reduces to PO =(l-9p). P

(1 - PO) always represents the proportion of time that the facility is
occupied. Lt is a direct measure of facility efficiency and shall be
defined as the '"utilization factor."

For single channel systems with infinite queues allowed, PO is in=~

dependent of the service distribution. Whether the service distribution

‘is exponential, Erlagian, hyperexponential, or constant, P, is always

0

(1 = p). For these particular models, the traffic intensity,
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p = (1 - PO) is the utilization factor, making it a useful measure of
“effectiveness.

The summation of probabilities for all possible states of the sys-
tem must equal unity as the probability of occurrence for every possible
event is considered. The number of péssible states is infinite as an
unlimited queue is allowed when all customers are assumed patient.

Since -each value of'Pn represents the proportion of time that the system
contains'eéactly n units, the~producﬁ-n(Pn>»summed from 0 to « yields
the mean number of units in the system. The value of L may be expressed

and evaluated . as:

L = E:n(Pn) =p/(1 - p). (5.2),
n=0

Values for 'L are plotted as a function of p in Figure 13 as the curve
designated for exponential services,
By similar reasoning, the expected mean number of units in the

-queue may be expressed and evaluated as:

-tq:;z_(n - 1P = p®/(L - p) O (5.3a)
n=1

L =1L -p. (5.3b)

Since g represents the proportion of time that the facility is occupied,
»Lq expressed in terms of L as in Equation . (5.3b) is valid regardless of
the service distribution. Figure 13 may be used to determine'Lq by
first determining’L and making the subtraction of p.

The expected mean time a unit spends in the system, W, may be
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-expressed as:
W= 1/(u - N) (5.4a)

- W =1L/)\ (5.4B)

and the expected mean time a unit spends in the queue, Wd, may be . shown

to be:
Wy = Mulu -0 =T/ (5.5a)
W= (L= ) /A ~ (5.5b)

Values for W or Wq a;e-plotted as functions of L or Lq for incremental

values of )\ in Figure 14. When W and Wq are expressed in terms of L as
in Equations (5.4b) and (5.5b), the relationships are valid, regardless
of the service distribution. Thus, Equations (5.3b), (5.4b), and (5.5b)
‘may bebused-whether the distribution 1s constant, exponential, Erlagian,

or hyperexponential ‘after the proper value of L has been determined.

Erlagian and Hyperexponential Services: L

Because of the relationships just discussed, measures of effective-
ness ‘for Erlagian and hyperexponential service.distributions are limited
to'L, alone. The derivation and expression of the general state proba-
bility, Pn’ is well beyond the scope of this study. -However, for Erla-
‘glan service distributions, L may be expressed as:

1 = ZkQZszgké) 1) (5.6)

where k may be considered an integer constant indicating the degree of
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departure from- the exponential case. -When k =-1, the service distribu-
tion is exponential and Equation (5.6) reduces to Equation (5.2). As k
increases service time variability decreases. Constant service times
are approached as k approaches ®, Values for L are plotted as functions
of p for k =1, 2, 4,.10, and 50 in Figure 13. When k = .50, k may be
considered as infinite or representative of the constant service time
condition.

.Hyperexponential service distributions are characterized by very
long and very short service times. The mean number of units in the sys-
tem, L, may be expressed as:

I ol T € M) 1. [ R
=T a T - .7

where-mm may be expressed in terms of an integer constant, j, [see Equa-
tion (2.5) ] indicating the degree of departure from the expomential
case., When m = .50, j = 1 and Equation (5.7) reduced to Equation . (5.2),
the exponential case. Values of L are plotted as functions of p for

j=1, 2, 4, 10, and 20 in Figure 13.

Example Problems

The use of Figures 13 and 14 to determine the preceding measures of
effectiveness is best illustrated through the use of example problems.
The presentation of these measures iﬁ giaphic form allows rapid investi-
-gation of the system under several different conditions. - In addition,
many characteristics of the measures which are not readily apparent in
their mathematical form become clearly evident when presented as shown.

Problem No. 1:  An airline ticket counter is subject to Poisson
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arrivals, as all models of this study, with a mean interval between ar-
rivals of 10 minutes. A mean service duration of 5 minutes per customer
‘has been determined. - As both local and intercontinental tickets are
sold, very short and very long service durations ﬁredominate. A greater
number of local tickets are sold so that there are more short service
~durations than long. A cumilative frequency diagram of service times is
constructed, as in Figure 7, and compared to the family of curves in
Figure 10. -Assume that the service distribution is determined as hyper-~
exponential with j = 10. What are the operating characteristics of the
system expressed in numeric terms as measures of effectiveness?

Solution: Ta =10 minutes; .} =-1/Ta =-0.10 arrivals/minute. TS =
5 minﬁtes;.u = l/TS = 0.20 service completions/minute. .Traffic inten-"
sity, p =:A/u = 0.10/0.20 = 0.50.

Edter Figure 13 on the ordinate with p‘= 0.50 and move horizontaily
until intersecting the curve j =10, Move vertically from the inter~
section to the abscissa where L = 3.2 customers. From Equation (5.3b),
'Lq =L ~-p=23.2+0.5=2.7 customers.

-Enter Figure 14 on the abscissa with'L = 3.2 customers and move
vertically until intersecting the curve:-)\ = .10. .Move horizontally from
the intersection to the ordinate where W = 32 minutes, To determine’Wﬁ,
enter Figure 14 withfLq =-2.7 for which Wq =.27 minutes. :Alternatively,

" the relationships W =L/) or Wh =‘Lq/X may be used in lieu of Figure 14,

Comments: For any one hour interval or other short period of time,

the mean values determined may vary significantly from the values above.
However, in the long run operation of the system, the values above will
be approacheﬂ as statistical limits. The expression, F, =(1 =-p) =

.50, indicates that 507 of the time an arriving customer will find the
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-counter empty and enter for immediate service. The utilization factor,
(1 —»Pd) = 0.50, indicates the proportion of time that the counter -is
occupied.. It seems incongruous that although the facility is idle 50%
of the time, the mean number of units in the system is still 3.2 custom-
-ers. From Figure 10, 82% of ‘the customers will require services taking
less than'Ts or 5 minutes-while 58% will take less than °5Ts or 2.5
‘minutes. -As the mean interval between arrivals is ‘10 minutes, the large
idle period appears to be a reasonable result. Figure 10 also indicates
that 7% of the customers will require more than-ZTS or 10 minutes for
service..vThe arrival of these few customers, although infrequent in oc-
currence, blocks the service channel causing the build-up of units in
the system.

It would seem-intuitively correct for the mean time spend in the
system to equal the mean time spent in the queue plus the mean duration
of service. - This may be expressed as W =‘Wq + Ts. Substituting values,

32 =27 4+ 5 =-32 minutes.

Problem No, 2: -In the same airline ticket counter, assume that
sales are now limited to intercontinental tickets so that the measured
.variation of service times has decreased. Furthermore, assume that the
service distribution is now exponential with the.same arrival and serv-
ice rates as in the previous problem.

-Solution: The traffic iﬁtensity,‘p =»0.Sd reméins the same. En=
tering Figure 13 with.p = 0.50 and using the exponential service curve,
-L .=-1.0 and—Lq =L - p =0.,50, From Figure 14, W = 10.0 and-Wq = 5.0
minutes.

Comments: The effect of service time variability is demonstrated

by comparing the measures of effectiveness for these problems. . Where
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the service distribution was hyperexponential with j = 10, the standard
deviation, o =~Té/ﬁv=-15.81Q Where the distribution was exponential,
o= TS’= 5.0. The corresponding change in L was from 3.2 to 1.0 custom-
ers. . It may be concluded that as the variation within the service dis-
tribqtion increases or decreases, there is a corresponding increase or
decrease in‘L,:Lq, W, and Wq. This is clearly illustrated in Figure 13
as the curves are plotted from left to right in terms ofbincreasing
service time variability.

The corresponding increase in'L when the service distribution is
changed from the comstant curve, k = 50, to the exponential curve, k =1
is relatively small. A careful examination of Figure 13 will show that
the greatest possible-change in magnitude is by a factor of two which
‘occurs only as p approaches unity.

The service distributions for most architectural service mechanisms
‘exhibit variability éomewhere between constant and exponentlal distribu=~
tions, that is, they have standard deviations between zero and Ts. If
the»éxponential case 1s assumed where the distribution is less variable,
restltant inferences will be ponservative and never more incorrect than
by a factor of two. It is fo? this reason that all further models will
be limited to exponential service distributions.

-Problem No. 3: Assume that with the addition of computerized tick-

‘et handling aids, the mean service time of the counter is reduced to 2.5
minutes. .The service distributidn remains exponential and the arrival
rate remains as before. What are the effects upon the measures of ef-
fectiveness?

‘~Solution: n ='l/2.5>= 0.40; p = .10/.40 = 0.25. From Figure 13,

using the exponential service curve and entering with p =:0.25,.L = 0.33
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customers,=Lq.= 0.33 -v0.25 = 0,08 customers. From Figure 14, -W and Wd
~are 3.3 and 0.8 minutes respectively.

Comments: A comparison of these results with the previous problem
will indicate that as p decreases, a corresponding decrease in the meas-
ures -of effect;veness will result.  However, since P0 =:(1 - p) indi- =
cates the proportion of idle periods, a decrease in p also indicates a

decrease in system '"efficiency."

In this case, customer service has im-
‘proved by reducing W from 10.0 to 3.3 minutes but at a "cost" of douy-.-
bling the speed of service which increases the proportion of idle time
from 50% to 75%.

_ The effect of facility utilizatiop, p;(l -‘Po), upon L are clearly

evident in Figure 13. It should now be apparent that the magnitude of L

depends upon both the speed and thé variability of 'service times.

~Problem No., 4: It has been determined that the mean wait time in
.the .system, W, shoild not exceed 20 minutes. The arrival rate remains
‘A = .10 arrivals/minute. Assuming that the service .distribution is ex-
ponential, at what rate must the service facilify operate to satisfy
the condition above?

:Solution: Enter Figure 14 on the ordinate with W = 26 minutes and
move horizontally until intersecting the-} ='.10 curve. .Move vertically
from the intersection to the abscissa where L =-2.0 customers.

- Enter Figure 13 on the abscissa with'L = 2.0 and move vertically
until intersecting the exponential service curve. Move horizontally
‘from the intersection to the ordinate where p = .67.

Since p =\/u, y =-k/p = ,10/.67 =..15 service completions/minute.
T_=1/y =1/.15 = 6.68 minutes/customer. L =T -p =2.0 - .67 = 1.33

s q
customers, Wq = 1.33/.10.= 13.3 minutes.
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Comments: This probleﬁldemonstrates than ‘any one of the measures
\of'effectiveneSS'ﬁay be -predetermined, after which, system behavior may
be investigated. - In most cases,»an architect has 'no control over the
arrival rate but to some degree is éble to control the service rate.

In some conditions, it may be desirable to solve this type of prob-
lem in reverse. For example, assume that the service rate is fixed.

. The ~parameter of interést would now be the maximum arrival rate that the
-gystem is capable of handling. - The versatility of queueing theory and
the -ease of graphic computations will become more apparent as further

graphs and measures of effectiveness are introduced.

Exponential Service: QN’ QNq"G(Té)’ Gq(Té)

Discussion to this point has been limited to mean or average values
‘for'measures of effectiveness, -While averages are very useful, partic-
ularly in an economic analysis, most afchitectural problems involve
t;affic units composed of individual persoﬁs. Therefore; it is far ‘more
critical to/investigate4system behavior as it affects individuals rather
-than grouped units. For this purpose,.two additional measures of ef-»
-fectiveness are introduced which apply only to exponential service dis-
tributions. The first,-QN and Q g’ are the probabilities of N or more
units in the system and in the queue. .The second,,G(Té) and Gd(Té)’ the
‘latter being-read, "G sub q, a function of Té", are the probabilities
that time spent in the system and queue exceeds a multiple of IS. -In
both cases, probability represents the relative proportion of time that
‘the stated event may be expected to occur.

-Recall that the genéral, state probability of an exponential
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[>+]

service system was expressed as'Pn =-(1 --p)pn, where E:Pn =-1.0.

n=0
. Therefore, QN may be -expressed as:
[~
PN or more’=Q z Z(l- p)p
n=N n=N
. A
Q=0 (5.8)

A family of curves for QN has been plotted for several values of N in
Figure '15. The complimentary stateméent, the probability of N or less

units in the system can therefore be written in terms of QN as

(1 - p)p" =1.0 - Qu (5.9

u p\/]z

N
PN of less Z

Equations (5.8) and (5.9) are cumiulative probabilities comprised of
the summation of individual state probabilities. Figure 15 may be a-_

dapted to compute a state probability by rewriting'Pn in terms of QN.

N N+1

N
Py = =pdp =0 =p " =Qu - Quy (5.10)

‘Problem No, 5: In Problem:No. 2, traffic intensity was p = 0.50

and L =1,0 customers., Determine QN’ P

PN or less’ and Pn‘for norN=20

to 6 customers in the system. State any conclusions that may be drawn
:from the computation of these probabilities.

2Solution: The results are shown in Table V. ‘For demonstration
‘purposes, six decimal places have been carried, .The values of—QN may

be checked by using Figure 15.
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TABLE V

‘SOLUTIONS TO PROBLEM NO. 5

N _ _ . i -
N p=Q 10 = Qi1 = PN or less W " U1 = Fa
0 | .50°=1.000000 | 1.0-.500000=.500000 | 1.000000-.500000=.500000
1 | .50*=0.500000 | 1.0-.250000=,750000 | O.500000-.240000=.250000
2 | .50%=0.250000 | 1.0-.125000=.875000 | 0.250000~.125000=.125000
3 | .50%=0.125000 | 1.0-.062500=.937500 | 0.125000~.062500=,062500
4 | .50%=0.062500 | 1.0-.031250=,968750 | 0.062500-.031250=,031250
5 | .508=0.031250 | 1.0-.015625=.984375 | 0.031250-.015625=.015625
6 | .50°=0.015626 | 1.0-.007812=.992817 | 0.015625-.007812=.007812
7 | .507=0.007812 ' :
‘@ | .50%=0.000000 | 1.0-.000000=1.00000 | 0.000000-.000000=.000000
. =]
B, = 1.00000
‘n
n=0

.Comments: Observe that the mean number of units in the system, L =
1.0 customer or P, is expected to occur 25% of the time. .The mean num-

ber or less,. , may be expected 75% of the time while the mean

P1 or less
or greater, Q,, may be -expected 50% of the time. P, = .0078 indicates
that exactly six customers in the system will occur .78% of the time.
Qg = .0156 indicates that six or more customers in the system may be ex-
pected.1.56%.of the time. Thus, the practical limit to the number of

customers ‘in the system is about six.

-Problem No. 7: As in all previous problems, assume that the arriv-

al rate has been determined as’') = 0.10.  Suppose that no more than
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three customers ‘in the system are desired five or less percent of the
time, What is the required service rate to satisfy the condition above?

Solution: Enter Figure 15 on the abscissa with QN = .05 and move
vertically until intersecting the N .= 3 curve, .Move ﬁorizontally from
the intersection to the ordinate where p = 0.37. The required service
rate is therefore y =:A/p = ,10/.37 = .27 customers/minute. .TS =1/y =
1/.27 = 3.7 minutes/customer. : From Figure 13, with p =..37, L = .59
customers. From Figure 14, W = 5.9 minutes.

-Comments: This problem again demonstrates that any measure of ef-
fectiveness may be established as a governing relationship. Once estab-
lished, all other measures of effectiveness may be determined. The con-
ditions of this problem .are more demanding than those in Problem No. 6
so that an increase in required service speed results. The proportion
of time that the facility is occupied decreases, increasing the idle
periods and decreasing all other measures of effectiveness.

The probability of N or more units in the queue is the probability

of N + 1 or more units in the system and may be expressed as:

n+l
QNq N ‘E: Pn P - QN+1 ' (5.1
n=N+1

Similar types of probabilistic statements may be made concerning
the time spent in the system by individual customers. G(Té), the prob-
ability that time spent in the system exceeds a multiple of TS may be

-expressed as:

G(T) - & (17p)eTg (5.12)
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where ¢ is a constant indicating a multiple of TS and e =’2.718182...,
the base of natural logarithms. .The probability that time spent in the

queue will exceed a multiple-of TS may be expressed as:
‘G»q(Té) = pG(TS'). (5.13)

A family of curves for GCTé) has been plotted in Figure 16 for several
multiples of TS.

Problem No. 8: 1In Problem No. 2, p = .50,,TS = 5 minutes/customer,

;and W = 10 minutes. - What proportion of time will time spent in the sys=
tem exceed 5, 10, 15, 20, 25, 30, and 40 minutes? .If the arrival rate
ié’x = .10 arrivals/minute, what service rate is necessary to insure
that 10 percent or less of the time, customers spend more than 20 min-
utes in the system?

.Solution: Enter Figure 16 on the ordinate with p = .50 and move
horizontaliy until intersecting the curve 1.0TS. -Move: vertically from
the intersection to the abscissa where G(S) = .61 or 61% of the time,

the total time spent in the system will exceed 5 minutes. . Similarly,

G(10) = .37; G(15) = .23; G(20) = ,14; G(25) = .082; G(30) = .050; and

G(40)

.018. For the second part of thelproblem, enter Figure 16 on
the abscissa with G(TS) = .10 and move vertically until intersecting the
4.0TS or 20 minute curve. -Move horizontally from the intersection to
the ordinate where p = .425. The required service rate, y =:i/p =
.10/.425 = .235 service completions/minute. The required mean service
duration,a'l‘S =-1/.235 = 4.26 minutes/customer.

-Comments: :This problem demonstrates the procedure to rapidly de=~"
termine the proportion of time total time spent in the syétem exceeds a

given multiple of Tg. Stated in other words, it determines the
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proportion of customers for which time spent in the system will exceed a
given value. This problem also demonstrates how G(TS) may be used as a

governing measure of effectiveness.
Impatient Customers

‘In this study, models considered shall assume that impatient cus-
tomers depart the system immediately. -A customer is defined.as impa-. :
tient whenever there are exactly N' units in the system or (N' =~ 1)
units in the queue. For this reason, systems of this kind are often

called "limited queue systems."

For example, where N' = 3, the queue
length is limited to two customers. When the queue is full, an arriving
customer is refused entry to the system and departs immediately. . The
departing customer is lost to the system, becoming anonymous by rejoin-
ing the gustomer population. .This means that the lost customer is
treated as any other eligible unit within the .infinitely large popula-
‘tion, receiving no special consideration upon attempting to re-enter the

system. The limited queue model is schematically illustrated in Figure

17.

when full,
impatient customers
depart immediately

arrivals -1 1 serv1c?
v completion

N' N'-1 4L 3 2

the service
facility

Figure 17. Single Channel Service, Limited Queue
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'This model is applicable wherever the value of N' may be objective-
ly or subjectively determined. In many cases, physical limitations to
queue length may govern. .For example, the available space in front of a
counter may limit queue length to four persons. -All arrivals occurring
while the queue length is four are lost to the system.  Thus, the proba-
bility of a full system must be made small if it is desired that few or

no customers are to be lost.

The State Probability

The state probability of exactly n units in the system may be -ex-

‘pressed as:

1 -
P = [—_ﬁ] o (5.14)

In this case, the summation of state probabilities from n = 0 to'N' must
equal unity. The probability of no units in the-system,.PO, describes
the proportion of time that the facility is completely idle.
l1=_p

= 1
07 LN

(5.15)

The probability that the facility is busy is the complement of Equation
(5.15) or (1 -'PO) and is the measure of facility utilization.  Since p
is always less than unity, the term-pN!+1 in Equations (5.14) and (5.15)
approaches zero as N' increases. Except for values of p > 0.90, this
term may be considered as zero for N' > 20 without significant loss of

accuracy. Substituting into Equations (5.14) and (5.15) with N' > 20,

they become'Pn =(1 - p)pn and PO =l - p) respectively.  Since these
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are the state probabilities for the infinite queue or patient customer
condition, the infinite queue model may be used where N' is greater than
20. -A review of Figure 15 will indicate the validity of this conclu-
sion. The probability of more than 20 units in the system is insignifi-
cant so that proportion of lost customers is small. If no customers are
lost, all customers must be patient so that the necessity to use a lim-
ited queue model does not exist. .

A family of curves for P, have been plotted for different values of

0
‘N' in Figure 18. Equally important to the investigator is the probabil-
ity that the system is full,vPN,,,which indicates the proportion of lost

customers, Substituting N' for n in Equation (5.14),

- | —Ll=-f | N
Py = FPrann ‘L i pN’+ljl P (5.16)

A family of curves for‘PN, have been plotted for different values of N'
in Figure 19.
-QN N shall be defined as the probability of N or more units in a
2

system limited to a maximum of N' units. It may be expressed as:

Yot =) P T) | TR n e (5.17)
N,N' “n L. NPT N .
- n=N =N 7P TP

A complete set of graphs for the relationship above would require a
separdate figure for each value of N'. For expediency, Figures 20, 21,
and 22 illustrate several combinations of N and N' to demonstrate the
behavior of systems under these conditions. Q2’3 is found by entering
. Figure 20 on the ordinate with a predetermined value of p and moving

horizontally until intersecting the N,N' = 2,3 curve. . Moving vertically
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Traffic Intensity, p = A/y
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Traffic Intensity, p = \/p
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from the intersection, Q, 5 is on the abscissa and indicates the propor-
tion of time -that a system limited to size 3 contains‘either 2 or 3 cus-
tomers. .Stated in other words,vQE’3 is the probability of this particu-
lar system being 2/3 or 67% or more full. .The use of Figures 18 thru-22
as governing system relationships are identical to those presented in

previous sections.

-The Entrvy. Rate: 'ke

Since all customers who arrive when the system is full are lost,
the arrival rate to the system, .\, is not the same as the arrival rate
to the service facility. ‘Thus, -A, is defined as the "entry rate' at the
service facility in a limited queue system. -If the system is never
.full, the arrival rate must equal the entry rate as no customers are
‘lost. It may therefore be concluded that the‘entryvrate-is directly

proportional to the amount of time that the .system is not full, or:

N'-1
ike =zxz Pn = k(l --PN') (5,18)

n=0

where values of P, may be found in Figure 18. In Equation (5.18), it

Nl
is:seen that xe-is always less than'}. Thus, the consequence of a lim-
ited queue is to increase the mean interval between arrivals or decrease
the total number of customers serviced per unit time., For this reason,
all measures of effectiveness for limited queue conditions are less than
the corresponding measures where infinite queues are allowed. - As the

‘length of queue allowed becomes more limited, N' decreases and the cor-

responding decrease in measures of effectiveness from the infinite queue
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condition become larger. This is clearly evident in the comparison of

related figures for the limited and infinite queue conditions.

-Measures of Effectiveness: L, Lq’ Wand W

The mean number of units in the system may be expressed as:

Nl

; _ ' N'  pN'+1
L = z:n(Pﬁ) Lo W 4o N
n=0

(5.19)

(1 --9)(1 ~'pN'+15

A family of curves for L are shown in Figure 23 for several values of
N'. The arrival rate,.}), is used for determining p as Equation .(5.19)
accounts for lost customers. -The use-of Figure 23 is identical to the
use of Figure 13.

The mean number of units ‘in the queue3~Lq, was developed as'L - p
for infinite queue systems where p represented the proportion of time
that the system was occupied with one unit in service. .Thus,\Lq is log-
-ically equal to 'L minus the proportion of time that the facility is busy
multiplied by one, representing the expected number of units in service.
The proportion of time that the facility is occupied for limited queue
systems is' 1 - P  where P, is defined in Equation (5.15). .Hence, Lq may

0 0

be expressed as:

:Lq =L -1 +i-P0 (5.20a)
L ,pN'-—l ' N'
Ly = o 2N oL (5.20b)
(L =-p)(1l =p )

Lq may be determined from Equation (5.20a) by using Figures 18 and 23.

The expression for Equation :(5.20b), however, is shown as a family of
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Traffic Intensity, p = A/y
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curves for several values of N' in:Figure 24,
The mean wait time in the.system and in the queue may be expressed

as Equations (5.21a) and (5.21b) respectively.

W = ?L/xe (5.213)
‘Wé = Lq/ke (5.21b)

Problem No, 9: Using the same ticket counter introduced in pre-

vious problems and making the assumption that all customers arriving
when there are three persons in the system are lost, what general con-
clusions may be made of system behavior?
Solution: From previous problems,uTa = 10 minutes; TS = 5 minutes;

‘A= .10; w = .20; p = .50; and the arrival and service distributions are
‘exponential. - Where direct comparisons are applicable, solutions for the
infinite queue condition are shown in brackets.

"N' = 3. From Figure 18, P

0
ity will be completely idle 53% of the time. [P, =1 - p = .50] From

= 0,53 which indicates that the facil-

Figure 19,.P_, = ,067 which indicates that 6.7% of all arriving custom-

Nl

ers will be lost to the system. It also indicates that 1 = .067 or

93.3% of the time, there will be 3 or less units in the system.

EP3 or less ~ .9375] From Figure 20, Q25s = ,133 which indicates that

13.3% of the time, there will be two or three units in the system.

[Qa = ,250, which includes two to an infinite number of units in the

system] From Figure 23, L = .72 customers. [L = 1.0 customers] From

Figure 243-Lq = ,25 customers. Alternativelya-Lq =L -1 +~PO = ,72 =
= ] = - - = = . 1

1.0 + .53 = .25 customers. ELq 1L =-p=.50] Ae (1 PN )]

it

.10(1.0 - .067) = .0933. W= L/ke-= .72/.0933 = 7.72 minutes.
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[W = 10.0 minutes] Wq ='Lq/)\e = .25/.0933 = 2.68 minutes. \qu = 5.0
minutes ]

Comments: As expected, all measures of effectiveness in this exam-
ple are less than those found with an infinite queue allowed. -As N' is
increased, the measures of effectiveness will approach the infinite
queue case, in this case at about N' = 6. - Any measure of effectiveness
may be predetermined as a governing limit from which all other measures

may be found.



CHAPTER VI
MULTIPLE EXPONENTIAL CHANNEL MODELS

The most common queueing systems found in‘architecture are those
‘with multiple service channels in parallel.  Banks with several tellers,
supermafket checkout stands, entrances and exits of stadiums, parking
lots, and convention halls, or an array of ticket boothes are all exam-
‘ples of multiple channel service facilities. When the arriving unit has
the option of receiving service from any one of several channels, the
channels are said to be in parallel,

This chapter will consider systems having M, parallel exponential
channels, each with equal mean service rates y. -Arriving units are as-
sumed to follow a Poisson distribution with mean arrival rate:). If the
operatiocnal system allows a queue, a single:.queue is formed when all M
channels are occupied. Customers are served im.a first come, first
serve discipline. Upon reaching the front of the queue, the customer
will depart the queue and.enter the first unoccupied service channel.

As in single channel systems, the state of the system is character=
ized by n, the total number of units present. When n is less than M,
there is no queue .since all units present are occupying a service chan-
nel. When n is larger than:M, there is a qﬁeue of length\Nq equal to
the quantity (n .- -M). .Note that the single channel systems of Chapter V

are the special case of M equal to one.

79
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Traffic Intensity for Multiple Channel Models

‘Traffic intensity for the entire system is defined as the ratio of
‘the mean rate of arrivals and the maximum possible rate of service for

all M channels combined. System traffic intensity may be expressed as:

p = A/ My (6.1a)

The traffic intensity for a single service channel is'}/y and is repre-
sented by the symbol q. In terms of Equation (6.la), ¢ may be expressed
as:

o =\ = Mp ' (6.1b)
from which Equation (6.la) may be rewritten,
o =:cp/M (6.1c)

As discussed in Chapter V, a steady state solution is obtained only when
‘p 1s less than one. All models considered in this study will satisfy
this condition where the combined rate of all M channels is greater than

the rate of arrivals.
The General State Probabilities

"The general state probabilities for any multiple channel system

with exponential services and Poisson arrivals may be expressed as:

n
P ='é§-§192,=—=.90 0 <n <M (6.2a)
P= %E P, (Msn sN) (6.2b)

where-PO is the probability of no units in the system and N is the
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‘maximum size of the system if it is limited.
The Functional Variables

To ‘express subsequent measures of effectiveness compactly and to
facilitate their computation, a set of functional variables, Em(x),

Dm(x), and eh(x) are defined as:

m
£, () = e"’Xz x/n!) (6.3)
n=0
D 1(x) =E (x) - E__,(x)[x/m] (6.4)
e (x) = (x"e %/n!) (6,5)

The definitions above are in gemeral form. The function (x) is
always ¢ or Mp, the traffic intensity of one service facility. The
numeric expansion of these functiomnal variables are found in Table VI as
functions of p and M. Linear interpolation may be accomplished with no
significant loss of accuracy.

Given a system of four  service channels (M = .4), each with a traf=
fic intensity of 2.0 (o = 2.0), system traffic intensity,.p, would equal
©/M or 2.0/4.0 = 0.50. . From Table VI, EMﬂqD = 0.9473;'EM_1(¢g =
O.8571;‘EM*1(®) = 0,9834; DMﬁl(qﬁ =-0,5188;. and eM(@) = 0.0902. For
large systems of M > 100 and p <« 0.80, the functional variables approach
the constants listed in the last line of Table 7T,

///// The remainder of this chapter will be concerned with two extreme
queueing -conditions. -In the first, system size will be limited to'M or
less units and no queue will be allowed to-form, - In the second, the

formation of an infinite queue will be allowed.



TABLE VI

FUNCITONAL VARIABLES
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Moo By (@) By 1 (9 B (@ Dy 1 (o) ey(®
1 .10 . 9953 9048 .9998 . 9048 0905
1 20 .9825 .8187 .9989 .8187 1637
1 .30 .9631 7408 9964 .7408 2222
1 L .9384 .6703 9921 .6703 .2681
1 .50 .9098 . 6065 .9856 . 6p65 .3033
1 .60 .8781 .5488 .9769 .5488 3293
1 .70 8442 1966 .9659 14966 .3476
1 .80 .8p88 L4493 .9526 L4493 «3595
1 .90 7725 466 9371 L4066 . 3659
1 1wl .7358 .3679 9197 .3679 .3679
2 0 .9989 .9825 .9999 9006 L0164
2 .20 .9921 .9384 .9992 8oLk 0536
2 .30 .9769 .8781 .9966 .7135 .¥988
2 Y .9526 .8p88 «.99¢9 .6291 . 1438
2 .50 9197 .7358 .9810 .5518 .1839
2 .60 .8795 .6626 .9662 L4819 .2169
2 .70 .8335 .5918 .9463 4192 2417
2 .80 .7834 5249 L9212 . 3634 .2584
2 .90 .7306 1628 .8913 <3141 .2678
2 | 1.00 . 6767 L6y .8571 2707 2707
3 .10 9997 .99 64 1.wdy 9001 JWP33
3 .20 .9966 .9769 +9996 8013 0198
3 <30 .9865 .9371 9977 . 7954 <049k
3 Lo .9662 .8795 9923 . 6144 0867
3 <50 9344 .80188 .9814 .5299 . 1255
3 . 60 .8913 .7306 .9636 4529 . 1607
3 70 .8386 6496 .9379 .38639 .189¢
3 .80 .7787 « 5697 9841 .3230 2090
3 .90 7141 .4936 .8629 2698 .2205
3 | 1.00 LBh72 L4232 8153 224p L2240
I 10 .9999 .9992 1. wpge <9000 0p7
L .20 .9986 «9909 .9998 L8004 077
L .30 .9923 .9662 .9985 924 0260
L g .9763 .9212 <9940 .6078 L0551
4 .50 9473 .8571 .9834 5188 <9902
A .60 L9041 .7787 L9643 14369 . 1254
L .70 .8L77 .6919 .9349 .3633 » 1557
L .8¢ .78@6 6025 .8946 .2986 . 1781
L .99 . 706k 5152 8Lk L2427 L1912
L 1.0@ . 6288 .4335 .7851 1954 . 1954
5 .10 1wlpy .9998 1,600 9000 JPP2
5 .20 .9994 .9963 .9999 .8001 REY
5 .30 +9955 9814 .9991 7011 L1k
5 L .9834 9473 9955 6045 «$361
5 .50 .958¢ .8912 .9858 5124 668
5 . 61 .9161 8153 29665 L4269 . 1098
5 .70 .8576 .7254 9347 .3498 . 1322
5 .80 .7851 .6288 .8893 2821 .1563
5 .90 7029 .5321 .8311 2240 . 1708
5 1.49 .616p .uums .7622 1755 1755




TABLE VI - Continued
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M P Ey(o) By 1 (@) Epga () Dy.1 (o) ey(o)
10 .0 1.6060 1.0000 1.0000 9000 D000
19 o 20 1.0000 1.0000 1.6050 8000 D 0000
10 .30 .9997 49989 .9999 « 7000 0098
10 JAp 29972 .9919 «9991 « 6004 .B¥53
19 «50 .9863 .9682 <9945 «5022 L3181
10 .60 9574 9161 .9799 4077 BL13
10 <70 9015 .8305 29467 .3201 0719
10 .80 .8159 .7166 .8881 2426 .$993
19 .90 7060 .5874 .8030 .1773 .1186
10 1.08 5830 L4579 . 6968 . 1251 1251
20 .10 1.0000 1,600 1.,0080 9000 P.0000
20. 020 1,0000 1.0060 1.0090 . 8000 D000
20 «30 1,0000 " 1,000 1.0000 7080 P.0000
20 U0 1.00800 -1.0090 1.0009 . 6000 B.0000
20 .50 .9984 <9965 «9993 5001 H019
20 .60 .9884 .9787 »9939 Lp12 <0097
20 .70 .9521 09235 09712 .3056 .0286
20 .80 .8682 8122 .9108 2184 «9559
20 <90 .7307 .6509 -« 7991 . 1449 <6798
20 1.60 «5591 4703 . 6437 ./888 .1888
Lo .10 1.000¢ 1.6000 1,000 . 9000 Lol
Lo 20 1. 5000 1.0669 1.06060 8000 AT
Lg .30 1.0080 1.0000 10000 .7000 0.6000
Lp ) 1.6000 1.0600 1.0000 « 6000 Do L0D0
Lo o 50 1.0000 1.0000 1.6000 5080 /o]
Lo .60 «9990 .9983 «9995 Lg01 0067
Lo o719 .9875 .9810 .9920 . 3008 065
Ly .80 .9293 L904LY .94 88 .2(058 0249
Ly .90 7771 .7263 .8217 . 1234 <508
Lo 1.00 5419 L4790 6033 629 0629
60 .10 1.0600 1.0000 1.0008 + 9000 0. 0000
60 .20 1.00808 1.0009 1.06p0 8009 B 00pe
60 .30 1.0000 1.06000 1.0000 L7000 B.0000
60 Y 1.0800 1.0000 1.0600 . 6000 L]
60 .50 1.0000 1.0000 1.6068 5000 Y
60 .60 16080 1.56009 1. 0660 090 P.0p0Y
60 .70 9965 .9948 .9977 3002 0017
60 .80 .9605 9477 .9706 2024 128
60 .90 .8133 7760 .8463 1149 0373
60 1.00 .5343 14828 .5849 514 0514
100 .80 .9869 .9829 9900 « 2005 «P¥39
100 .82 .9768 29705 .9819 .181p 0163
100 .84 .9611 29516 .9690 .1618 .0095
]@@ 986 '9383 392"}8 09""98 ‘ILI'BQ) .9135
100 .88 .9066 .8884 09225 . 1248 0182
100 .90 .8651 .8418 .8859 . 1075 5233
100 .92 8134 .7849 .8393 9912 0284
100 9L «7518 .7187 .7825 762 20330
190 .96 .6818 .6L51 .7167 11625 8367
100 .98 . 6058 .5667 61437 504 09391
100 1.00 .5266 L1867 .5661 .#399 .$399




TABLE VI -~ Continued
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M p Ey(o) Py-1(0) Eva1 (@) Py-1 (9 (e
200 .8¢ <9993 9990 9995 2001 VP03
200 .82 9974 .9967 .9980 . 1801 L0007
200 .84 .9930 9914 <9944 . 16102 B016
200 .86 .9837 .98k .9864 . 1405 <9032
200 .88 .9658 « 9599 .9710 .1211 0059
200 .90 9351 .,9254 9L 37 . 1022 D897
200 .92 .8873 .8730 .9005 0842 143
200 .94 .8199 .8005 .838¢ 674 194
200 .96 .7329 7099 .7558 .%523 0239
200 .98 .6303 6032 . 6567 «5392 Jw271
200 Towl .519¢ 4908 <5471 0282 5282
308 | .8¢ 1,000 1.0000 1.0000 2000 0,600
300 .82 1.6009 1.0000 1.60008 . 180¢ QP0G
3¢p0 .84 .9992 .9989 .9994 . 1601 B0 3
300 .86 .9958 . 9950 .9966 . 14p2 LOPB9
3p0 .88 .9871 .9849 .989¢ . 1204 022
300 .90 .9673 .9627 .9715 . 1909 P46
300 .92 9291 .9207 .9368 0820 JP8L
309 .94 .8650 .8519 8773 Lubl2 <0131
390 .96 714 .7533 .7886 <0481 <0189
300 .98 .6513 .6297 .6725 o343 w217
3v0 1.69 .5158 4928 .5388 o231 9231
Lo .80 [RY73U610 1.0600 16009 <2000 Q.u00e
Log .82 1.0000 1.0000 1.5668 . 1800 Dby
Lpp | .84 1.600p 15060 1,061V L1600 06509
Lo .86 1.0009 . 9997 1.u002 . 1402 003
Lpg .88 .9959 29950 .9967 .1203 ~0PP9
Lpg .90 .9839 .9815 .9860 . 1005 o023
Log | .92 - 9549 . 9498 . 9597 5811 0052
Lopo .94 8974 .888¢ .9063 .1627 LHU9L
Lpp .96 .8022 .7878 .8159 <0459 o6 1kh
Lo .98 .6698 L6514 .6878 L6315 .18l
Lop | 1.0u 5142 49k 2 5341 5200 200
500 .8¢ 1w 1.6UHE 1.0000 .2000 B 0000
500 .82 1.000¢ [IRVY1 1.ubiy . 1800 P BHO
500 .84 1. 6Py Ten@® 1.0bgy . 16pp Deppd
5p00 .86 1.0Wpp 1.06pP 1.00e9 1400 Pouded
500 .88 .9999 .9996 1.0b0E2 1203 JUEUh
504 | .90 9928 9916 9939 . 100k W12
50¢ .92 L9716 .9683 9747 08p8 033
500 o 9L .9216 L9146 .9281 w619 U770
500 .96 .8278 .8159 .8391 <BhhL5 0119
509 .98 .6863 . 6702 7022 0296 0162
500 1.v:@ «5134 4955 5312 L0179 W179
100 .01
to to 1.,0000 1.0000 1,0000 1.0 -9 ?.0000
500 | 8.79
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The No Queue Condition

The particular condition of no queue allowed receives special at=
tention because of its application to a common architectural system =
the parking lot. -To some extent, it also applies to certain restau=- i
rants. - Where no queues are a110wed3‘system size has been limited to the
number of available service channels, .M. It is assumed that all arriv-
als occuring when all M service channels are occupied immediately départ
the system., .- In a sense, they are refused service and entfy to the sys-
tem and may be considered as lost customers. .In parking lots and res-
taurants, the number of available channels corresponds to the number of
parking spaces or boothes and tables, respectively.

.It should be recognized that regtaurant arrivals must be considered
as bulk arrivals and not as individual units. The arriving unit is com=-
‘posed of any number of individwals that will occupy ome . service channel.

.The no queue condition is schematically illustrated im Figure. 25.

i 1
customer grrid
at rate, A
1* : w2 gervice
[ completions
all customers depart ' ‘
ifn2M Qﬁ_ﬁ_ﬁ_l M -1
M expomential
channels in mn M
parallel

‘Bigure 25, Multiple Channels, No Queue Allowed
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The State Probabilities: PO,.Pn,.PM

M

By -using the property that E:Pn =-1.0, Equation (6.2a) may be solv-

n=0
ed for'P0 in terms of the functional variables as:

By = e Y/E () (6.6)

Po indicates the proportion of time that there are no units 'in the sys-

tem.  System facility utilization, (1 - Po),.indicates the proportion of
time at least omne service channel is occupied and is a measure of rela-

tive system efficiency. -A family of curves for P

0 have been . plotted in

Figure 26 for several values of ‘M.
Substituting Equation (6.6) into Equation (6.2a), the general state

‘probability of exactly n units in the system may be expressed as:

Pn = en(tp) /EM(QP) . - (6.7)

The probability that all channels are occupied is the probability of

exactly M units in the system. From Equation (6.7), P

v may be expressed

as:

B, = ey(@ /B o). (6.8)

-8ince all customers arriving when the system is full will depart immedi-

ately, P, indicates the proportion of lost customers. -A family. of < .

M

ccurves for P have been plotted in Figure 27 for several values of M.

M

.Measures of Effectiveness: L

QM’NB

The probability of N or more units in.a system of M service chan=

nels,-Q N may be determined by summing the state probability of .
H

M
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"Equation (6.7) from N to M. Expressed in terms of the functional varia-

bles:

M ‘M
Quy =) Pa =) eu(@/Ey(o (6.9)
=N n=N

A family of curves for QM,N have been plotted in Figures 28 and 29. 1In
Figure 28, the ratio of N/M is 75% so that the graphs indicate the pro-
portion of time that a multiple channel system of size M is three-quar-
teré or more full. Similarly, in Figure 29, the ratio of N/M is 50% so
that the graphs indicate the proportion of time that the system is one-
half or more -full. .Thus, Figures 27 to 29 allow the investigation of

system performance at the 100%, 75% and 50%_lévels of system capacity.

.The mean number of units in the system is equivalent to the mean

number of occupied channels and may be expressed.as:

() Ey. 1 (0)

n(Pﬁ) - ,.EM(qO

(6.10)

£
5 0
L=

A family of curves for L have been plotted in Figure 30 for several
values of M. The mean time spent in the system may be expressed in °

term# of L as:

1) =*L/ke -(6.11)

whereﬂxe has been previously defined as 'A(1.0 u~PM). Since no ‘queue.is
allowed, Lq and-wq must equal zero., The use of Figures 26 to 30 are
best illustrated through the presentation of the following example prob-

lems.
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Problem No, 1: A small commercial establishment is to be provided

with eight parking spaces. At the present time, it is estimated that
vehicles will arrive at the rate of eight per hour and remain for an
average duration of 30 minutes. The client advises that within the next
two years, a 507% increase in business is anticipated. It is assumed .
that there will be a corresponding increase in the arrival rate to 12
vehicles per hour. Using Figures 26 to 30, what are the measures of ef-
fectiveness under the present conditions? ‘To what extent will the anti-
cipated increase in arvival rate influence system performance?

Solution: Enter all Figures using the appropriate value of p and

the curve for M = 8. The results are listed below.

.Present Future

arrival rate, A 8.0 12.0
_service rate, 2.0 2,0
system traffic intensity,

o = A/ My 0.50 0.75
PO (Figure 26) 0.018 << 0.01
PM (Figure 27) 0.03 0.12
Q. . (Figure 28) 0.02 0.48

8,6

Q8,4 (Figure 29) 0.56 0.82
L {(Figure 30) 3.80 5.20
W= L/ke = L/)_(1.0 m'PM) 0.490 hrs 0.492 hrs

Comments: When the combined service rate My is held constant,
traffic intensity will increase as the arrival rate increases. Under

this condition, Figure 26 logically indicates that P the probability

01

of no units in the system decreases as the arrival rate increases. With

the present arrival rate, a completely empty lot is expected 1.8% of the
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time. -As the arrival rate increases from eight to 12 vehicles per hour,

.fo becomes insignificant.

The most important measure of effectiveness for this problem is
found in Figure 27. PM indicates the proportion of arrivals who will
find the system full and depart immediately. With the present arrival
rate, 3% or three out of 100 arrivals will find all eight channels oc-
cupied and be lost to the system. With the future arrival rate; the
number of lost customers will increase to 12%. Thus, a 50% increase in
the arrival rate will result in a 300% increase in the total number of
lost customers.,

.The proportion of time that 75% and 50% of system capacity is ex-
ceeded is given by Q8,6 and Q8,4 respectively. For example, with the
present arrival rate, four or more vehicles. are expected in the lot 567%
of the time. Wifh the futdte arrival rate, the same condition may be
‘expected 82% of the time.

The average number of vehicles in the lot at any éiven time are 3.8
now and 5.2 in the future. ‘Considering the system deterministically,
that is, ignoring variation within the arrival and sefvice»rates, exact=-
ly eight arrivals and two service completions occur every hour. Thus,
the mean number of units in a deterministic system would be 8.0/2.0 =
4,0 vehicles. Similarly, ﬁith the future arrival rate, the mean number
of units in a deterministic system would be 12.0/2.0 = 6.0 vehicles.

The difference between any probabilistic and deterministic analysis may
be attributed to inherent variation in the arrival and service rates.
In this instance, however, much of the difference involved may be attri-

buted to the effect of lost customers. In the deterministic analysis,

.no customers are ever lost. The greater the proportion of lost -
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customers, the greater the expected difference between probabilistic and
deterministic analysis. With: 3% lost customers, the difference is 4.0 -

3.8 = 0.2 while with 12% lost customers, the difference is 6.0 - 5.2

0.8.

.Calculations for W show that unless a substantial proportion of
customers are lost, the expected time spent in the system will be very
close to the expected value of TS.

Problem No., 2: The parking lot for a community medical center is

to be designed so that no more than 5% of the arriving vehicles will : .
find the lot full. It is estimated that arrivals will occur at 1 minute
intervals and that each vehicle will remain an average of 30 minutes.
.How many spaces are required to satisfy the condition above? What pro-
portion of time will the lot be more than 75% or 50% full?

Solution: Ta = -1 minute; TS = 30 minutes

A= l/Ta =1/1 =1 arrival per minute

b = l/TS =-1/30 =-0.033 departures per minute
‘o = My = 1/0.033 = 30

p = @/M = 30/M

The value of M must be known or assumed before entering any figure for
multiple channel systems. Since only conditions of p < 1 are consider=-
ed, and p =-@/M, the numeric value of M must be greater than the numeric
value of ¢. The most logical approach to problem solution is to assume
a value of 'M just greater than @, test the required condition, and in-
crement M to repeat the process if necessary. .Using Figure 27, this

process is illustrated below.

]
L]

try M = 32; p =-30/32 = 0.94; Py, = 0.11; new trial required

-30/34

]
1]
il

try M = 34; p 0.87; Py, =0.07; new trial required
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try M = 36; p =:30/36 = 0.83; Py, = 0.05; condition satisfied.
Entering Figures 28 and 29 with.p = 0.83 and M =-36,.Q36;27 = 0,67 and
-Qé'e;la = 0.92,

.Comments: Summarizing the results, 36 spaces are required if no
more than 5% of the arriving vehicles are to find the lot full, If 36
spaces are provided, 67% of the time, the lot will contain 27 or more
vehicles and approximately 92% of the time, the lot will contain 18 or
more -vehicles, To give a useful description of system performance, the
probability statements have been made -at the 100%, 75%, and 50% capacity
levels. .In this particular example; the governing relationship was set
at the 1007% capacity level. The subsequent values of M and.p automatic-
ally determines the probability of occurrence for the remaining two lev-
‘els of capacity, that is, the probability of occurrence at all three
-levels of capacity are mutually interdependent. . Lt should be understood
that any one of the three levels of capacity may be uéed as the govern-
ing relationship.

-The opportunity to evaluate these types of systems at three capa-
city levels have been provided beéause different systems are best eval-
uated at different levels. Small systems of less than 20 channels are
‘generally most critical at the 100% capacity level. .In some systems,
notably school, hospital, and employee parking lots, lost customers will
seek a- parking ‘space elsewhere and return to the desired-destination.

.In these instances, an analysis at the 1007% capacity level would be ap~-
‘propriate.

For very large parking lots, a sizeable prOportioh cf the spaces

‘must necessarily be located long distances from the desired destination,

-Especially where the facility is highly competitive, observation will
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show that customers will be lost even though the system is only 75% or
50% full. .In these instances, it would be more appropriate to make the
analysis at one of the lower levels of system .capacity.

‘It is emphasized that Figures 28 and 29, the 75% and 50% capacity
levels, are cumulative probabilities. QM,N is the sum of individual

state probabilities of from N to'M units in the system. It is often

\

difficult to comprehend the relationships between cumulative probabili-
ties. Therefore, it ié un@ise to arbitrarily select-either the 75% or
50% capacity level as the governing relationship without consideration
of system behavior at the other ‘levels of capacity. The best approach
-will be to make several analyses with incremental values of M at all
three levels of system capacity. Several complete descriptions of the
system will then be availabie for evaluation from which one .may be se-
lected as the final solution., This method is demonstrated in the fol-
lowing .example problem,

Problem No. 3: In the preliminary design for a large shopping cen-

ter complex, it is estimated that customers will enter the parking lot
at 15 second intervals, It is further estimated that each parking space
-will be occupied for an average of ‘30 minutes. Market analysis indi=- .
cates that the complex will be highly competitive in a suburban, private
transportation-oriented area, . Subjectively, what is the preferred range
of parking spaces for the conditions above?

‘Solution: ‘A = 240 arrivals/hour; |, =.2 departures/hour; ¢ = 120;
p = 120/M. Using the iterative procedure introduced in Problem No. 2,

the results are listed in Table VIX,
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TABLE VII

ALTERNATIVE SOLUTIONS TC PROBLEM NO, 3

L

‘Proportion of Time-Capacity
Level is Exceeded
-Analysis 'Azzug;:cz:TPEF Capacity Level

1007 75% - 50%
1 140 'i% 90% -100%
2 160, -<1% 50% 100%
3 180 <«<1% 12% h 98%
4 200 <<1% 1% 96%
5 220 <17 <1% 85%
6 240 «<1% <<% 75%

Comments: .Lf 140 spaces are provided, approximately 1% of the ar-
‘riving vehicles will find the system full. The lot will be .75% .or more
full 90% of the time and. almost always be more than 50% full. If the
appearance of a full lot will discourage the entry of customers, 140
spaces will not be an adequate solution.

-At the other extreme, the provision of 240 spaces will result in a
system that is seldom more than 75% full. Only 75% of the time will the
lot be mere than 507% full. As the number of spaces provided increases
‘beyond 160, the probability of a full lot becomes progressively more in-
significant., .Similarly,.as the number of spaces provided increases be-=

yond 200 spaces, the probability that the lot is more than 75% full
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becomes progressively more. insignificant. In addition, all systems of
more than 200 spaces are meaningful only at the 50% capacity level.

A preferred solution lies between 180 and 220 spaces., Even with
-the relatively smail incremental values of M, substantial differences in
the probable appearance of the lot are noted.  The most meaningful indi-
‘cators of system performance within this range are the proportion of
times that the syétém is 50% or more full., .The ultimate solution, in
most .cases, %ill be -governed by costs and the geometry of site lay-out, -
However, using the procedures above, an architect should have an ex=~

-tremely useful picture of the probable behavior of the system.
Infinite Queue Allowed

This section considers systems of multiple exponential channels in
parallel where-the formation of an infinite queue is allowed. . The.in-
finite queue copndition assumes that all arriving customers enter and re~
‘main in the system until service is completed, regardless of the system
condition upon their arrival. 1In other words, all customers are patient
and none are lost.

Literally interpreted, the condition that no customers are-lost is
too rigid for most architectural systems. Since all.customers independ-
‘ently exercise the option to.join or not join the system according to-
theit personal needs,. a few customers will generally always be lost.
.However, in satisfying thé condition that system traffic intensity be
less than unity, queues of excessive length will generally not occur.

- Consequently, the proportion of lost customers will be small relative to
the total number of arrivals.

If the condition beyond which lost customers will occur can be



-100

identified, the proportion of time that the condition occurs must be
made small if a minimum number of lost customers is desired. . Procedures
by which the preceding level of system performance may be achieved are
considered in this section. When the proportion of lost customers is
small, the infinite queue condition may be assumed, The loss of accura-
¢y will generally be no greater than the error incurred by estimating
rather than measuring the arrival and service rates.

The measures of effectiveness developed in this section assume that
a single queue is formed When all channels are occupied. 1In contrast,
most architecturél systems will consist of separate queues for each
service ‘channel. - When .faced with the alternative of joining any one of
several queues, the individual customer will almost always choose the
shortest. In addition, each channel is assumed to operate at the same
rate of service. 'Thus, multiple queues will almost always be of equal
length., Although deviating from the exact theoretical structure of the
model, the length of multiple queues may be considered as approximately
equal to the length of a theoretical single queue divided by the number
of available channels. For example, if there are two service channels
and the theoretical single queue contains six customers, the system may
be thought of as two separate éueues with approximately three customers
in each. The model for multiple exponential channels in parallel with

-an infinite queue allowed is schematically illustrated in Figure 31.

State Probabilities: PO"Pn"QM

(=]
By using the property that E}Pn = 1.0, Equations  (6.2a) and (6.2b)

n=0 _
may be solved for'Po and expressed in terms of the functional variables

as:
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Figure 31. Multiple Channels, Infinite Queue:Allowed

- 0)e ¥
P Ll -pe™ (6.12)

PO is the probability of no units in the system, for which a family of
curves have been plotted in Figure 32 for se&eral values of M. Pn’ the
‘probability of exactly n units in the system may be determined by sub-
gtituting Equation (6.12) into Equatioms (6.2a) or (6.2b). Byisumming
~Equation (6.2b) from M to infinity, the probability of M or more units
in the system, QM’ may be determined. When n > M, all channels are oc~
cupied,. ‘QM therefore represents the proportion of arrivals that are re=-
quired to. join a. queue and may be expressed ‘in terms of the functional

variables as:

@ ev(_qp)
Q. = an .—_-'T];\-Lwam (6.13)
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A family of curves for QM have been plotted in Figure 33 for several
values of M.

Using previous definitions, the quantity (1.--Po) is the facility
utilization and represents thé proportion of time at least one service
channel is Occupied. .The quantity (1 - QM) is a valuable measure of ef-
fectiveness as it indicates the proportion of time that instantaneous
service is available, that is, there.is no queue and. at least one.serv-
ice-channel is unoccuypied.

For :single channel systems in which an infinite queue is allowed,
traffic intensity, p = A/K, was shown to represent the proportion of
time that the channel is occupied.* Thus, in single channel systems, p
may be thought of as the mean fraction of channel occupied. For mul~’
tiple channel systems,.p = 'A/Mu has been defined as the system traffic
intensity where My represents the rate of service for all M channels
combined., Hence, where infinite queues are allowed, system traffic in-
tensity similarly represents the mean fraction of channels occupied. -

The state probabilities for multiple channel systems have been
defined using fwo relationships, .  Equations (6.2a) and (6.2b), because
multiple chanﬁel systems operate under two, distinct, cperational condi-
tions., .In the first condition, (0 < n < M), no queue exists as all.
units present are. in the process of service. .Units in the system ad-
vance ‘at a rate equal to, the mean service rate of an individual chan-
nel. In the second condition, (M < n < =), a single infinite queue has
formed as all M channels are occupied. -While in the queue, units will

-advance at a.rate of My, Upon entering the service channel, the .

—

1See Chapter V, pp. 48-49.
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advancement rate for any particular unit will decrease to .

.Because measures of effectiveness must consider every probable
. state ofvtﬁevsystem-from 0 to «, and two operational conditions exist,
the derivation of any subsequent system parameter becomes highly com-
plex, The dérivatiqn and expression of measures of effectiveness, par-
ticularly those concerning individual units, are simplified greatly if
‘limited to the condition of ‘M < n. Hence, most of the following discus-
sion will pe conderned with the second condition of (M < n-< ®).

.Frnm‘these cohcépts of state probability, several broad generaliza-
tions concerning the relative merits of fewer, high-speed channels as
opposed to a greater number of slower channels can be made. . In addi-
tion, most architectural systems are subject to eventual increases in
arrival rates due to expansion or growth, Therefore, methods by which
system capacity may be increased are of great importance. Two commonly
applied options are available. First, the service rate of existing
channels may be increased; or second, retaining the same service rate,
the number of channels may be increased. Inherent to-each scheme are
. several advantagesband.disadvantages.

‘For a given number of'channels, an increase in service rate will
involve a corresponding increase. in the-proportion of time that any one
channel is completely idle:® Since p =:\/Muy indicates the mean fraction
of occupied channels, a decrease in relative efficiency will also occur.
.However, as the capacity and service rate are increased, the number of
customers serviced and the speed by which they are serviced may be sub-

stantially increased. The advantages are therefore mostly to the

aSeerC_hapter V, Problem No, 3, pp. 56-57.
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customer.

“As the number of channels is increased ‘in proportion to the in-
crease. in arrival rate, no loss of system éfficiency will result if the
same service rate is retained. . Since the number of units that may be
simultaneously serviced has increased, the number of units in the queue
relative to the number of units in the system will decrease. With units
advancing in the queue at rate My, the mean delay in the queue will be
correspondingly reduced. . As shown in‘'Figure 32, the probability of in-
stantaneous service increases as M increases for a given value of p.
‘Most important, the system may be operated nearer-to full utilization,
that is, p nearer to unity, before queues of excessive length occur,
.However, the speed of the service channel has not been increased so that
time spent in service rémains unchanged. Thus, the advantages are most-

ly .to the -efficiency of the system rather than the customer.

:Measures of Effectiveness: Lq"L"QM,NqS GqM(TS)

The mean number of units in the queue may be determined by sulisti-
tuting Equation (6.12) into Equation (6.2b) and summing from M to e,
.Alternate terms in the summation will cancel out so that Lq may be ex-

pressed in terms of the functional variables as:

® | peM(m)
qu = z: (n w.M)Pn T (1 - p>DMa1(¢9 (6.14)
n=

Since p represents the mean fraction of channels occupied, the product
PM gives the mean number of units in service. .Hence, the mean number of

units in the system may be expressed. as:
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L ='Lq + pM (6.15)

L has been plotted for several values of M as a function of system traf-
fic intensity in Figure 34.

-As developed for previous models, the mean time spent in the.sys-
tem, W =1L/); the mean time spent in the queueg‘WA =’Lq/k. Figure 34
demonstrates clearly that for a given value of p, an increase in'M re-
-sults in a corresponding increase -in ‘L and decrease inquu -Expanding
the concepts introduced in the previous section, assume that the initial
costs and operating costs of individual channels are proportional to the
rate of service. -Consequently, two slow channels will cost as much as
one channel operating twice as fast, Whenever the most important re-
‘quirement is to minimize the length of queue, it is advantageous to have
many. channels operating at slower rates, . However, whenever it 1is more
important to minimize total delay time W, it is better to have fewer,

high-speed .channels.

Q

: is defined as the probability of N or more units in the
.M,Nq q

queue, .Since all channels must be occupied before the formation of a

queue,‘QM Ng is also the probability of (qu+-M) or more units in the
> -

system, »QM N may be expressed in terms .of the functional variables as:
adet | q
P eyl
Z P ZPM-I-N 4 =m {6.16)
n—N =0 q

Four basic variables are-  involved in the -expression of Q They are

“M,Nq’
Q

M. N , M, Nq and p, Since two-dimensional graphs are limited to three
H q -

variables, any one of the variables must be assumed or held constant.,

Consequently, Figures-35 to 39 are plotted separately for values of
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M=2, 3, 4, 5, and 6, and 8 and 10, respectively.. In each figure,
.curves for Nq are given in even increments of M. . For example, in Figure
35 where M =-2, curves for Nq =2, 4, 6, 8, 10, and 12 have been pfo~
vided, Nq represents the length of a single infinite queue.  However,
it has been established that the single queue may be thought of as M
queues, each approximately Nq/M in length, . Hence, the same curves above
may be thought of as two separate queues of length 1, 2, 3, 4, 5, or 6,
respectively.

A related set of graphs are provided in Figures 40 to 44 for
GqM(Té),.which represents the probability that time spent in the queue
by an individual unit exceeds a multiple of TS. The derivation of
-GqM(Té) is well beyond the scope of this: study. . However,. it may be
.shown that GqM(TS) may ‘be expressed in terms of the functiopal variables
as:

Go(Tg) = QMé“EM(l“p)CTéj (6.17)

where QM is defined in Equation (6.13) and c represents a multiple of

T_.
s

The use of Figures 32 to 44 is best illustrated through the use of

the following example problems.
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‘Problem No. 4:

120

-An airline ticket counter has been provided with

- accomodations for two clerks, in front of which, separate queues.will

form. . The average interval between arrivals and average duration of

- service are estimated as 5.0 and 7.5 minutes, respectively.

ures 32 to 44, describe the expected

Solution:

Since there are two channels, enter all figures with M = 2,

]

5.0 minutes;iTs =

1/5.0 = 0.20; H

]

0.20/0.133 = 1.5;

system performance.

7.5 minutes

1/7.5 = 0.133

p =1.5/2 =0.75

0.75, the appropriate figure and results are:

(Figure
(Figure

(Figure

(Figure

(Figure

32)
33)

34)

35)

40)

Comments:

tain no units.

P_=0.15

e
=
]

L =35 L =L=-¢=23.5-15=2.0
q

=]
1]

=]
]

0.63; (1.0 - QM) = 0.37

L/A = 3.5/0,20 = 17.5 minutes;

Lq/k = 2,0/0,20 = 10.0 minutes.

Using Fig-

With p =

N /M = "“ 1 I 2 T 3 I 4 I 5 ] 6

QM,Nq= n .36 J .20

1]

GqM(7°5 minutes)

GqM(15'0 minutes)

GqM(BO.O minutes)

1

GqM(45.O minutes)

J .12 J .06 l .035_1,02 )

0.38

0.23

0.084

0.030

Q(l.O?S)

(2.01 )

(4.0T )

(6.0T)

indicates that 15% of the time, the system will con-

-Consequently, both clerks will be completely idle. Fa-

cility utilization, (1 - PO), indicates that 85% of the time, at least

one of the two clerks will be busy.

-QM indicates that 63% of the time,
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two or more units will be present, and therefére represents the propor-
tion of time a queue will have formed... The complementary statement,
(1 - QM), indicates that 37% 6f the time, at least one channel is unoc-
-cupied, and therefore represents the proportion of time that instantane-
ous service is available,

From Figure 35, the expected proportion of time that Nq/M or' more
customers are waiting in each of the separate queues has been deter-- .

mined. For example, when Nq/M = = 0.36. This indicates that

L O,
queues of one or more in length may be expected 36% of the time. . Since
there are two queues and two channels, this also represehts the propor-
tion of time four or more customers may be expected in the system.

-The set of values for GqM(Té) give the proportion of time that cus;
tomers are delayed . in the queue longer than a sPecified-duration; -For
example, 7.5 and 45.0 minutes in the queue~are.excéeded:38%,énd.3%'of
the time respectively.

‘Problem No. 5: A franchise for additional routes has been granted

to the airline. in Problem No. 4. The increase in trafficvis reflected
in customerrtraffic which has doubled. - Thus, the . average interval be-
tween arrivals has decreased to 2.5 minutes. .If.the airline wishes to
maintain the same level of customer service, system capacity must be in-
creased. With computerized ticket handling aids, the airline estimates
that the average duration of service may be reduced to 3.75 minutes,
However, sufficient space and personnel are available to simply increase
the number of channels to four. -What description of system performance

may be given for each of the alternatives above?

n
]

-Solution A: ’Ta 2.5 minutes; ATS 3,75 minutes; M = 2

1/3.75 = 0.267

>J
I

1/2.5 = 0.40; -y

I
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~w = 0.40/0,267 = 1.5; p ='1.5/2 = 0.75

Since M and. p remain unchanged, the description of system perform—
ance remains identical to that of Problem No. 4 with two exceptions.
.The mean time spent in the system and in the queue are functions:.of the
arrival rate. Thus, W =L/} = 3.5/0.40 =‘8.75 minutes; and wq =
2.0/0,40 = 5.0 minutes. -Even though the arrival rate has doubled, the‘
reduction in service time has more tﬁan c0mpénsated‘for its effect on
system performance. hSince‘Ts»is now 3.75 minutes,»GqM(l,OTs) = 0.38
now represents the propdrtion of time delay in the queue exceeds 3.75

rather than 7.5 minutes.

I
i

Soluytion B: T 2.5 minutes; - T

a 'S
-1/2,5 =-0.40; | =1/7.5 = 0.133

7.5 minutes; M = 4

N

1

¢ =0.40/0.133 = 3.0; p =3.0/4 =-0.75
Since there are four channels, enter all figures with'M =4,  With p =
‘0.75, the appropriate figure and results are:

(Figure 32) P 0.04

(Figure 33) 0.50; . (1.0 -'QM) =-0.50

O
=
i

(Figure 34) L.

4.5; L =1L = ¢@=4.5-3.0=1.5
q

i

‘L/\ = 4.5/.40.= 11,25 minutes;

W,
q

(Figure 37) N /M = ] 1 ]' 2 ]' 3 ]. 4 T 5 T 6

'QM N J 0.16_[0048J-.017J-<.01J_<.01l <.01
24'q :

Lq/k =1.5/.40 = 3.75 minutes.

(Figure 43) (7.5 minutes) = :0.18 ‘(1.OTS)

GqM

GqM(IS.O minutes) = 0.11 (2.0Is)

YGqM(so.o minutes) = <0.01 (4.0T)

Comments: By doubling the speed of the existing service channels,
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almost all benefits are directed to the customer. Total time spent in
‘the system is substantially reduced. However,. improvement of parameters
concerning the queue are not as great when compared to the second alter-
ﬁative. By ‘doubling the number of channels té four, the mean time spent
in the queue i8 reduced from 10.0 to 3.75 minutes. Queue lengths of
gréatér than three seldom occur and the probability of spending more
than 15 minutes in the queue is reduced from 0;23 to 0,11, .The:propor-
tion of time that instantaneous service is available has increaSed‘by
13%; facility utilization has improved By'll%. .However, since the serv-
~ice rate has not been improvéd, the total time spert in the system is
11.25 minutes. Hence, most of the benefits are directed to tﬁe system
rather than the customer.

Lf the cost of both alternatives is the same, the decision must be
based upon the relative merits of fast customer. service or slow customer
‘service with relatively shorter queue lengths and delays. .The appear-
ance of short queues is usually more important where the facility is
'highly competitive. .In addition, the number of lost or reneging custom-
ferS'is generally smaller if the queue.has the appearance of advancing
rapidly. .In this case,. however, assuming that custOmerkservice.is of
greater importance, increasing the. speed.of existing service channeis
would generally be the preferred solution.

.Problem No. 6: -An architect has been commissioned to design a

branch bank for a large: financial coﬁcern. .The’Bahk—president, a pio—
neer in the suburban banking business, demands and insures excellence in
customer service by making unannounced Qisits to his branch facilities.

- Through these experiences, he has established a:firm, organizational

policy. .In a brief interview with the architect, the president had
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-stated,ﬁ“We are in business for our customers and 6n1y theéir satisfac~-
‘tiqn will keep us in business. - Whenever I enter any of my branches as a
routine customer,.l do not expect to find more than one customer pre-
ceding me in line, In fact, even having to wait in line upéets me a
vgfeat‘deal. If I must waiﬁ, nine times out of_ten:I do not expect-é de~
1ay greater -than one-~half the time it would ordinarily take to complete
my transaction."

From the president's staff, the architect is advised to expect a
maximum of 80 routine customers during a peak hour period, During these
hours, bank research indicates that transactions average 3.0 minutes.
':The staff also advises to design for peak conaitions. -During lulls, un-
occupied tellers are busy ét their stations with other tasks essential
to the organization. With this information, the architeﬁt must present
‘his preliminary design.  How many tellers should he‘provide? "What
statementé concerning system performance may the archifect make to en-
hance the acceptability of his pfoposal?

Solution: 'The manner in which this problem is presented is typical
of those-encountered by practicing architects. . A feésible solution may
be obtained in three basic steps. First, assumptions must be made so
that the concepts of this study may be applied. .Second, the data and
constraint relationships provided by the president and his staff must be
interpreted or translated into terms of queueing variables. . And third,
using the variables of the second step, inference is made of the proba-
ble behavior of the proposed solution.

‘Assumptions, (Step No. 1): a) the customer population is infinite
or very large; b) the arrival rate follows a Poisson's distribution;

¢) the service times follow an exponential distribution; d) customers
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‘receive service on a first come, first served basis; e) all ar:iving
customers remain in the system until service is cowmpleted, that is, an
infinite queue. is allowed; and f) a. finite number of service channels
are to‘be arranged in parallel.

-Interpretation, (Step No. 2):

T, = 3.0 minutes; y = 1/3.0 = 0.333 service completions/minute;

A =-(80 customers/hour) (1/60 hour/minute) = 1.333 customers/minute;
T, = 1/1.333 = 0.75 minutes;

© = A = 1.333/0.333 = 4.0; o =‘w/M = 4.0/M,

The ‘probability of M customers in the queue, Nq =M or Nq/M.='1.0,
is to be made insignificant. ('.....I do not expect to find more than
éne customer preceding me in line.') Insignificance is avfelative term
which may be evaluated after analysis on several solutions is completed;
The proper relationships to be used are found in Figures 35‘to 39.

The time spent in the queue shotild not exceed Ts/2 more than 90% of
the time. (". . . nine times out of ten I do not expect a delay greater
than one~-half the time it would ofdinarily take to complete my trans-
action.") Translated inta terms of Figures 40 to 44, the probability:
that fime spent in the queue exceeds 0.50TS or 1.5 minutes is to be made
< 0.10.

Solution, (Step No. 3): Since ¢ = 4.0, the number of channels.pro-
-vided must be greater than four if p is to be less than unity. Thus,
the minimum number of channels required is five. Using the iterative
‘procedure previously introduced:

Try M =5; o = 4.0/5 =0.80;

from Figure 38, Q

"M, Nq = Qg 5 =0.18;

from Figure 43, GqM(TS) = GqS(O'STQ) =0.33 > 0.10; new trial required.
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Try' M = 6; p = 4.0/6 = 0,67;
from Figure 38, QM,Nq = Qe,e =0.027; |
»from Figur§v43, GqM(Té) = Gq6(0'5Té) =0.11 =.0.10; condition satisfied.
Qs iﬁdicates that 27 out of 1000 customers will arrive to find
six or more customers in line or the equivélent of one of more customer
- 'waiting at each telleris station. Q6512’7Wher¢ Nq/M = 2.0, is less than
0.01 which indicates that two or more cuétome;S'in each line will occur
infrequently. Hence, the probability that a customer will be precedéd
by two customers in line may be considered insignificant.
With M established as six and p =-o.6j, these additional statements
"may be made: |

from Figure 33, Q, = 0.28; (1.0 - Q) = 0.72.

1

from Figure 34, L = 4.6; L =1 - g = 4,6 - 4,0 = 0,6;

W

0.6/1.33 = 0.45 .

4.6/1.33 = 3.45 minutes; Wﬁ
minutes,

:As'the president has emphasized short'queues and'delays,'he should be
impressed with the statistics above. Instantaneous service, that is, ﬁo
wait in a queue, is available 72% of fhe time. The average time spent
in the queue for all customers is less than 30>seconds.

Comments: .In many instances, the problem may be complicated by the
potential of variable service rates. For example, the installation of
”Sophisticated.communications'systems or similar equipment could sub—
vstantially reduce -service time. -If the cost of time spent in the sys+ .
tém, both in waiting and in:service can be economically evaluated, a
system resulting in minimum cost at a stated level of service may be de-
~termined. . Methods of optimization have been developed in the operations

research field. However, the simplicity of techniques presented in this
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study allow the rapid investigation of several systems. Consequently, a
trial and error process of analysis will not be -overly tedious, which

‘again-illustrates the versatile usefylness of the concepts presented.



CHAPTER VII
" SUMMARY AND CONCLUSIONS

The purpose of this study hés been to provide the architect with a
usable set of graphically presented relationships with which to analyzé
the performance of elementary.queueing'systems. ‘Written for the purpese
of applications in the field of architectural design,‘it was assumed
that the reader was unfamiliar with the topics of statistics, probabili-
ty, random variation, and the theory of queues, Hence, disCussion-was
initiated with an introduction to the fundamentals of statistics for the
measurement of arrival and service rates.

Pfobability distributions were shown to represent populations of"
karrival and sefvice times ‘subject to random variation. Since architec-
tural queueing‘systems are subject to random variation, evaluation was
made in probabilistic terms. .Probability wés‘established as a concept
whiph‘indicates the proportion of time a statedvevent is expeéted to oe-
cur or mnot occur.

The - five basic elements of all queueing systems were introduced
with the use of Moore's Organization Chart. The_elements‘were customer
population, number of channels, queue discipline, arrival distribution,
and service distribution. From these elements, several models were con-
- structed, representative of many systems commonly found in architecture.
‘Associated with each model, measures of effectiveﬁesé-were present-

ed which provided a means for evaluating system performance.  Measures

128
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of effectiveness-were considered as any relationship which expressed in
numeric terms an indication of the long-run behavior of thevsystem. The
determination of measures of effectiveness from their graphic presenta-
tion was explained in detail by the use of several example problems.
Through appropriate comments, their interpretation and use.in the making
of inference towards predicted system behavior.were discussed subjec-
tively.

In reviewing Moore's Organization Chart,vit will be seen that 1ess‘
thén one-half of the elements have been considered. Consequentlf? it is
obﬁious that this study is incomplete, Maﬁy elementé commonly found. in
real-world architecture have been neglected. Some of the more impor;
tant, in order of their frequency of occurrence, may be listed as'fol-.
lows: a) arrival and service distriBuﬁion other than exponential; b)
systems with time-dependenf arfival and service rates; c) systems with.
reneging customers; d) bglk queﬁe disciplines;,e) multiple channel sys-
tems in series; and f) systems with priorities,

Any further extensions of this study should continue with gfaphic
preéentations as many of the relationships are highly complex. ‘waever,
'_further studies will also increase the number of graphs uyntil they be-
come too numerous for practical usefulness, Hence, consolidation of re-
lationships in the form of more involved nomographs, even if they re-
‘quire additional or simplifying assumptions, is highly recommended.

The importance of queueing theory applications to architectural
design is emphasized by quoting a portion of Chapter I.

Queueing problems abound in architectural design. Buildings

are not inanimate objects, but dynamic systems of traffic flow

in which queueing situations are the rule rather than the ex-

ception. - As the complexity of architectural structures in-
crease, there is a.resudltant increase in the number of causes



130

_for waiting. As waiting increases, the necessity for the ar-
chitect to satisfy service demands also increases ., . .. It is
the responsibility of the architect to evaluate the demand,
establish the appropriate level of service, estimate the -
various costs associated with the satisfaction of demand, and
determine the optimum level for system capacity. o

This -stydy, in an attempt to expand the technical capabilities of -
the architect, is "A Graphic Introduction to Problems in‘Quéueinngheory

for Architects and Engineers."
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