## REFLUX TO TRAYS CORRELATION FOR MULTICOMPONENT

DISTILLATION SYSTEMS

Ву

JOHN RICHARD GRAY

Bachelor of Science

Lamar State College of Technology

Beaumont, Texas

1960

Submitted to the faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1968 andra an State and State State and State

na series de la companya de la compa Na series de la companya de la company Na series de la companya de la compa

• •

,

Thesis 1968 Gangal Cop 2

.

·

. .

.

.

OKLAHOMA STATE UNIVERSITY

OCT 25 1968

### REFLUX TO TRAYS CORRELATION FOR MULTICOMPONENT

## DISTILLATION SYSTEMS

Thesis Approved:

Adviser HE Dean of Graduate College

## PREFACE

A correlation has been developed which relates operating reflux ratio and number of stages to the minimum reflux ratio and number of stages for multicomponent systems.

A comparison of results from the correlation was made with results from plate to plate calculations.

I am grateful for the guidance given me by my adviser, Professor Robert N. Maddox. I also appreciate the assistance give me by Mr. Don DuBois.

I wish to thank Phillips Petroleum Company for the use of its computer.

# TABLE OF CONTENTS

| Chapter                                                                         | Page       |
|---------------------------------------------------------------------------------|------------|
| I. INTRODUCTION                                                                 | 1          |
| Limitations of the Study                                                        | 3          |
| II. SURVEY OF THE LITERATURE                                                    | 5          |
| III. METHODS                                                                    | 13         |
| IV. RESULTS AND DISCUSSION OF RESULTS                                           | 16         |
| V. CONCLUSIONS AND RECOMMENDATIONS                                              | 4 <b>2</b> |
| LIST OF NOMENCLATURE                                                            | 44         |
| A SELECTED BIBLIOGRAPHY                                                         | 46         |
| APPENDIX A - SPECIFICATIONS FOR MINIMUM TRAY AND MINIMUM REFLUX<br>CALCULATIONS | 47         |
| APPENDIX B - RESULTS OF MINIMUM REFLUX AND MINIMUM TRAY<br>CALCULATIONS         | 49         |
| APPENDIX C - RESULTS OF TRAY BY TRAY CALCULATIONS                               | 53         |

# LIST OF TABLES

| Table |                                                                                                                                                                                    | Page       |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| I.    | Feed Compositions                                                                                                                                                                  | 4          |
| II.   | Comparison of Results from Figure 10 with Results from<br>Tray By Tray Calculations Based on Minimum L/V Ratios<br>at the Average Column Temperature                               | 22         |
| III.  | Comparison of Results from Figure 10 with Results from<br>Tray by Tray Calculations Based on Minimum L/V Ratios<br>at the Higher of the Feed and the Average Column<br>Temperature | 27         |
| IV.   | Comparison of Results from Figure 10 with Results from<br>Tray by Tray Calculations Based on Minimum L/V Ratios<br>Calculated by the Modified Underwood Method                     | 31         |
| V.    | Results from This Work Compared with Results from<br>Erbar's Work                                                                                                                  | 34         |
| VI.   | Comparison of Minimum Reflux Rates Used in This Study                                                                                                                              | 38         |
| VII.  | Specifications for Minimum Tray and Minimum Reflux<br>Calculations                                                                                                                 | 48         |
| VIII. | Results of Minimum Reflux Calculations at the Average<br>Column Temperature                                                                                                        | 50         |
| ·XX • | Results of Minimum Tray Calculations and Minimum Reflux<br>Calculations at the Feed Temperature                                                                                    | 51         |
| X.    | Results of Minimum Reflux Calculations by the Modified<br>Underwood Method                                                                                                         | 5 <b>2</b> |
| XI.   | Results of Tray by Tray Calculations                                                                                                                                               | 54         |

# LIST OF FIGURES

| Figure |                                                                                                               | Page |
|--------|---------------------------------------------------------------------------------------------------------------|------|
| 1.     | Relation of Operating Stages and Reflux Ratio to<br>Minimum Stages and Reflux Ratio for a Given<br>Separation | 7    |
| 2 。    | Brown and Martin Correlation of Minimum and<br>Operating Reflux Ratio and Stages                              | 8    |
| 3.     | Gilliland Correlation of Minimum and Operating<br>Reflux Ratio and Stages                                     | 9    |
| 4.     | Mason Correlation of Minimum and Operating<br>Reflux Ratio and Stages                                         | 11   |
| 5.     | Erbar Correlation of Minimum and Operating<br>Reflux Ratio and Stages                                         | 12   |
| 6.     | Data for Separations 1, 5, 9, 13, and 17 of<br>Table XI Plotted In the Form of the Proposed<br>Correlation    | 17   |
| 7.     | Data for Separations 2, 6, 10, 14, and 18 of Table<br>XI Plotted In the Form of the Proposed<br>Correlation   | 18   |
| 8.     | Data for Separations 3, 7, 11, 15, and 19 of Table<br>XI Plotted In the Form of the Proposed<br>Correlation   | 19   |
| .9.    | Data for Separations 4, 8, 12, 16, and 20 of Table<br>XI Plotted In the Form of the Proposed<br>Correlation   | 20   |
| 10.    | Proposed Correlation of Minimum and Operating<br>Reflux Ratio and Stages                                      | 21   |

### CHAPTER 1

#### INTRODUCTION

A few years ago, short cut techniques for distillation calculations were a matter of necessity. The complexity of most distillation problems would not permit solution by rigorous methods in a reasonable period of time with hand calculations. In that era considerable effort was devoted to developing short cut methods. Then came development and widespread use of the digital computer which made the application of rigorous methods not only possible, but practical. The result was a decreased emphasis on short cut techniques. While it is true that short cut methods for distillation calculations are no longer a matter of necessity, they do remain attractive tools in certain areas of engineering work, even when a digital computer is available. In the area of design, answers sufficiently reliable for preliminary cost estimates may be obtained considerably cheaper by short cut methods. In the area of plant simulation by computer, the limitation of computer storage space may dictate the use of a short cut method.

A frequently used approach to short cut distillation calculations involves calculation of minimum values for the reflux ratio and number of stages required for a specified separation and the estimation of operating values based on the calculated minimum values. This approach requires a means of relating the operating values to the minimum values. Many correlations have been presented in the literature

which relate these variables with varying degrees of accuracy. Errors up to and even exceeding 100 percent may be noted between results from these correlations and plate to plate calculations. Such errors may stem from the fact that a consistent basis was not used for the determination of the correlation parameters. However, in most cases, sufficient data were not given with the original presentation of the various methods to allow one to determine the sources of data or the methods used in determining the parameters. Other reasons for poor results may be that poor enthalpy or vapor-liquid equilibrium data were used to develop the correlation or the data were plotted on a single curve when a family of lines may have represented that data more accurately.

Of the many correlations that have been presented, the correlation of Erbar (6) appears to be particularly useful. Erbar plotted reflux ratios, L/V, against ratios of minimum trays to operating trays for separations representing various minimum reflux ratios. Such a plot results in a family of curves, each passing through the points L/V=1at Sm/S=1 and the minimum L/V at Sm/S=0. Although the Erbar correlations represents a considerable advance in correlations of this type, it does have several limitations. The first limitation involves the conclusion by Erbar that the enthalpy and equilibrium data used in the development of the correlation left something to be desired. The second limitation is based on the possibility of errors caused by development of the correlation from data representing only relatively high minimum reflux ratios.

While the Erbar correlation offered many advantages over the correlations which preceded it, it appeared that an even more useful

correlation would result, if a similiar correlation could be developed using better, or at least more consistent, enthalpy and equilibrium data. An additional objective of the study was to check the reliability of the correlation for separations representing lower values of minimum L/V ratios.

### Limitations of the Study

The study was limited to multicomponent systems which contained paraffin hydrocarbons between methane and decane. The various systems used in the study are presented in Table I. In addition, only cases pertaining to the simple fractionator with a bubble point feed were considered. A correlation relating the minimum and operating reflux ratio and the minimum and operating number of stages was developed.

. 3

## TABLE I

|                 | Feed Composition - Moles |                                               |              |      |      |      |         |     |     |   |
|-----------------|--------------------------|-----------------------------------------------|--------------|------|------|------|---------|-----|-----|---|
| Component       | 1                        | 2                                             | 3            | 4    | 5    | 7    | 8       | 11  | 12  |   |
| C               | , , ,                    | , <u>, , , , , , , , , , , , , , , , , , </u> |              |      | 1    |      | <u></u> |     |     |   |
| t 1<br>C        |                          |                                               |              | 5    | 5    | 5    |         |     |     |   |
| . 2<br>C        |                          |                                               | . <b>1</b> 0 | 20   | 24   | 15   |         | 20  | 25  |   |
| 3<br>1C4        |                          | 20                                            | 20           | 15   | -15  | . 10 |         | 20  | 25  | • |
| nC4             | 25                       | 20                                            | 20           | 15   | · 15 | 10   | . 1     | 20  |     |   |
| iC <sub>5</sub> | 25                       | 20                                            | 20           | 15   | 15   | 10   | 4       |     |     |   |
| nC <sub>5</sub> | 25                       | 20                                            | 20           | 15   | 15   | 10   | 45      | 20  | 25  |   |
| C <sub>6</sub>  | 25                       | 20                                            | 10           | . 15 | 10   | 10   | 50      | 20  | 25  |   |
| C <sub>7</sub>  |                          |                                               |              |      |      | 10   |         |     |     | , |
| C <sub>10</sub> |                          |                                               |              |      |      | 20   |         |     |     |   |
| Totals          | 100                      | 100                                           | 100          | 100  | 100  | 100  | . 100   | 100 | 100 |   |

FEED COMPOSITIONS

### CHAPTER II

#### SURVEY OF LITERATURE

To achieve a specified separation between two components of a given feed stream, a fractionator must be operated between two limits, which are: (1) the minimum reflux which occurs at an infinite number of stages, and (2) the minimum number of stages which occurs at infinite reflux. The operating stages and reflux must lie between these limits.

One short cut technique frequently used to solve distillation problems involves calculation of the minimum reflux ratio and the minimum number of stages required to make a desired separation, selection of a practical number of operating stages above the minimum, and estimation of the operating reflux ratio needed at the chosen number of operating stages. Such an approach is strongly dependent on the correlation relating the operating and minimum values for its reliability. A number of correlations relating these variables have been presented in the literature. Most of these correlations are inadequate for many distillation problems and will result in reflux rates which differ by 100 percent or more from values calculated by plate to plate methods. Such errors may result because a consistent basis was not used to determine the correlation parameters, but in most of the presentations no mention of the sources of equilibrium and enthalpy data or the methods of determining the parameters is given. Other possible explanations for errors of this magnitude include: (1) unreliable equilibrium and/or

enthalpy data were used in the development of the correlations, and (2) the data were correlated with a single curve when a family of curves would have been more suitable.

A typical plot of the number of stages versus reflux ratio for a given separation is shown in Figure 1 (14). The curve in Figure 1 may be represented by an equation of the form

$$(g)(z)^{c} = C \tag{1}$$

Underwood (14) has suggested the form

$$(R-R_m)(S-S_m) = C$$
 (2)

for purposes of correlating operating reflux, operating stages, minimum reflux, and minimum number of stages.

Brown and Martin (2) presented a correlation in 1939 that was based primarily on binary systems. Brown and Martin checked this correlation for multicomponent systems and found it to have nearly the same degree of accuracy for multicomponent systems as was noted for binary systems. The Brown and Martin correlation appears in Figure 2. The quantities V and L refer to vapor and liquid rates in the entire rectifying or stripping section of the fractionator. Usually, the assumption of constant molal overflow is applied to facilitate the choice of the vapor and liquid rates.

Gilliland (9) has presented a correlation based on multicomponent systems as well as binary systems. This correlation appears in Figure 3. Gilliland presents the correlation as a distinct line, but suggests that perhaps a better correlation would be a series of lines having approximately the same shape as the line presented. The assumption of constant molal overflow is made by Gilliland also.

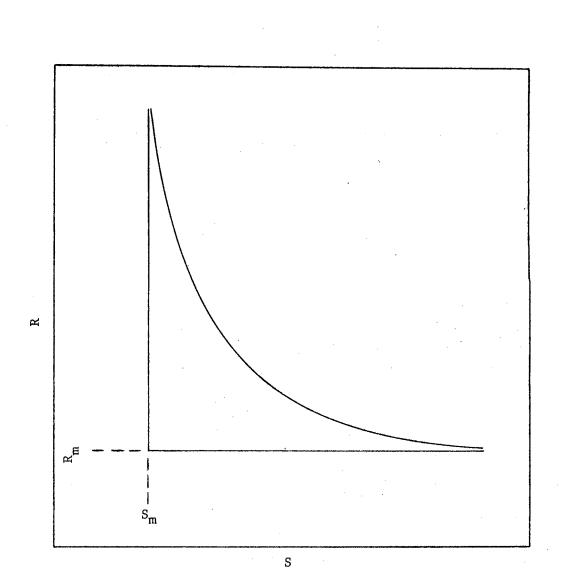
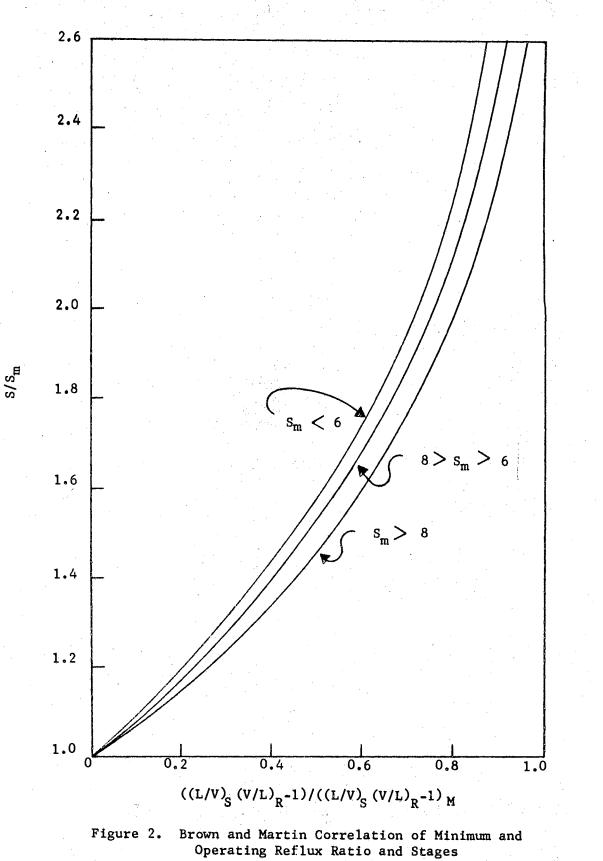




Figure 1. Relation of Operating Stages and Reflux Ratio to Minimum Stages and Reflux Ratio for a Given Separation



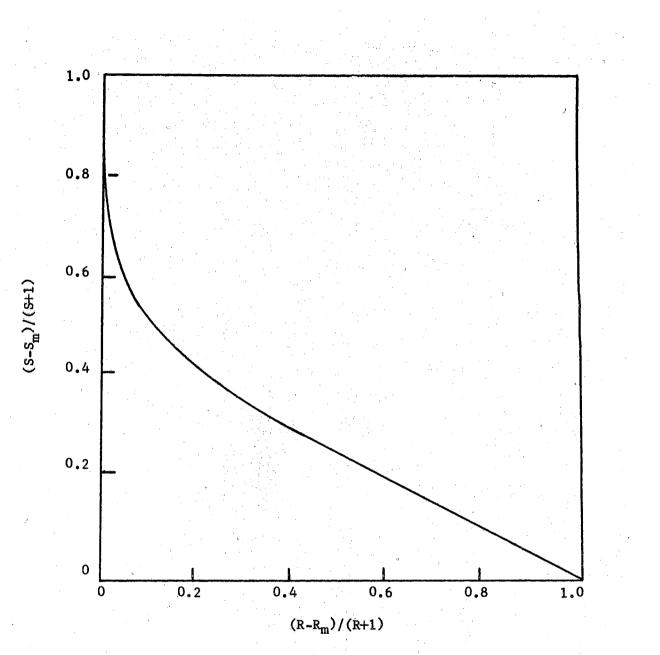



Figure 3. Gilliland Correlation of Minimum and Operating Reflux Ratio and Stages

Donnell and Cooper (4) have presented a correlation relating the number of stages to the boilup vapor, which was intended for use in determining the optimum steam requirement. With modifications, this correlation has been used to determine the reflux ratio from the minimum parameters. The correlation was based on binary and multicomponent systems, but what systems were studied was not specified. The assumption of constant molal overflow was not stated as a basis of the correlation, but it was used as a basis for solving sample problems presented in the article.

Mason (11) has presented the correlation shown in Figure 4. This curve has a hyperbolic form, which is entirely different from the forms presented by preceding authors. The method of determining the different variables was not mentioned in the presentation.

Erbar (6) has presented the correlation shown in Figure 5. This correlation was based on multicomponent systems containing paraffin hydrocarbons between methane and decane. In addition only cases pertaining to the simple fractionator were studied. Actually two separate correlations were presented. In one correlation the method of Underwood (13) was used to determine the minimum reflux ratio. In the other correlation the method of Erbar (7) was used to determine the minimum reflux ratio. In both correlations the minimum number of stages was determined by the method of Winn (15) and operating values were deterby plate to plate calculations.

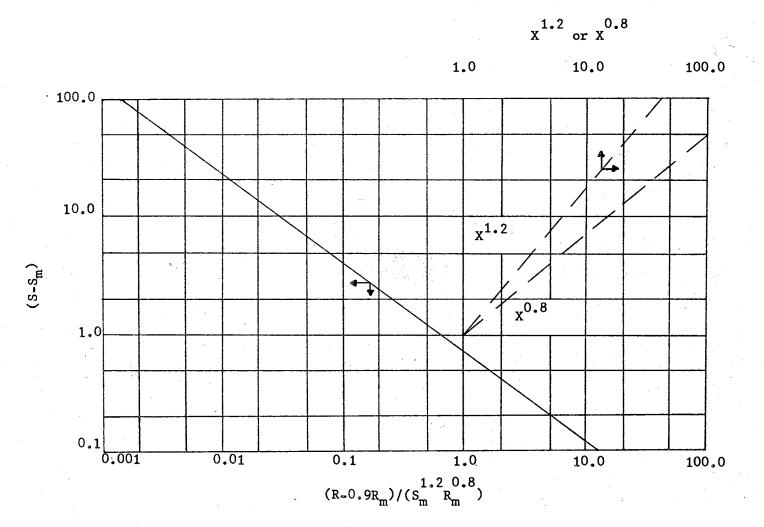



Figure 4. Mason Correlation of Minimum and Operating Reflux Ratio and Stages

<u>در</u> در

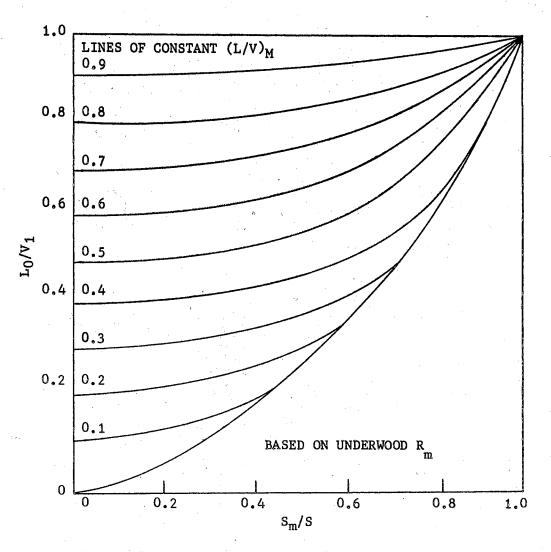



Figure 5. Erbar Correlation of Minimum and Operating Reflux Ratio and Stages

### CHAPTER III

#### METHODS

All calculations used as a basis for the correlation presented in this thesis were carried out on an IBM 7094 Digital Computer.

Plate to plate calculations were made with an available program based on the principles of the Thiele-Geddes (12) approach using conventional Lewis and Matheson (10) tray calculations. In each problem the number of stages, the feed location, and the separation between two adjacent key components were specified and the plate to plate program computed the reflux rate required to make the specified separation between the key components.

Two methods were available for the minimum tray calculations. These were the short cut methods which have been presented by Fenske (8) and Winn (15). The analytical expression for Fenske's method is

$$cc^{Sm} = (x_D/x_B)_{LK}(x_B/x_D)_{HK}$$
 (3)

The Fenske equation is based on the assumption of average relative volatility. Winn's method is expressed similarly. It is

$$B_{e}^{Sm} = (X_{D}/X_{B})_{LK}(X_{B}/X_{D})_{HK}^{b}(B/D)^{1-b}$$
(4)

The terms  $B_e$  and b are used to relate the equilibrium K values of the key components at the distillate and bottoms temperatures.

Erbar (6) indicates that the minimum number of stages as calculated by the Fenske and Winn methods are approximately the same. The Fenske method was chosen arbitrarily for use in this study.

Many methods have been presented for calculating the minimum reflux ratio. In most of these methods, constant molal overflow and constant relative volatility were assumed. A few investigators have made a third assumption, namely, that the distillate composition that would be obtained at an infinite number of stages and the minimum reflux ratio can be obtained at a finite reflux ratio and number of stages. This third assumption has been shown to be in error (7).

Bachelor (1) presented the first method which did not rest upon the classical assumptions. R. Erbar (7) modified Bachelor's approach to obtain a plate to plate calculation for the determination of the minimum reflux ratio. R. Erbar also presents a comparison of results between her method and several frequently used short cut methods. The comparison indicates that the method of Underwood (13) agrees best with the theoretically correct values of R. Erbar. The average difference between the results of these two methods was about 10 percent. R. Erbar also presents evidence that results of calculations by the method of Underwood (13) are improved if the calculations are performed at the higher temperature of the feed temperature and the average column temperature.

DuBois (5) has proposed a modification of the Underwood minimum reflux correlation, which attempts to correct for the assumption of constant molal overflow.

In this study both the traditional Underwood method and the Underwood method as modified by DuBois were used to make minimum reflux calculations.

The vapor-liquid equilibria data used in this study were calculated

from the correlation presented by Chao and Seader (3). Enthalpy data were obtained by the method of Yen and Alexander (16).

All calculations were performed on the feed systems presented in Table I. The results of the calculations are presented in the appendices of this thesis.

To facilitate problem interpretation and identification, a unique problem numbering system was employed. Each problem number consisted of nine digits which may be broken down as follows:

#### FFPPP.RRRR

where: FF - refers to the feed composition from Table I

- PPP refers to the number of operating stages exclusive of the reboiler and partial condenser, if present
- RRRR refers to the minimum reflux ratio, L/V, computed at the average column temperature

For example, problem number 01038.6337 means that:

- 1. Feed composition number 1 was used.
- There were 38 operating stages in the fractionator excluding the reboiler.
- 3. The specified separation required a minimum reflux ratio of .6337.

### CHAPTER IV

### RESULTS AND DISCUSSION OF RESULTS

The results of this investigation are presented on the following pages. The data from which the results were determined are presented in the appendices. Results are presented in both tabular and graphical form.

A total of one hundred and forty-six tray by tray calculations were made. These calculations represented nine different feed compositions and thirty-seven distinct separations. Minimum reflux and minimum tray computations were made for each of the separations. Minimum tray calculations were made at the average column temperature. Minimum reflux calculations were performed at both the feed temperature and the average column temperature. Plots of the raw data from these computations are presented in Figures 6 through 9. For the purpose of plotting Figures 6 through 9, the data from the tray by tray calculations were combined into nineteen groups with each group having the same, or nearly the same L/V ratio. Each of these groups of data is represented by a minimum L/V line in Figures 6 through 9.

Figure 10 is the correlation recommended for use. A comparison of results from Figure 10 and results of tray by tray calculations is presented in Table II. Percent deviations and absolute deviations between estimated and calculated L/V ratios are given. Results estimated from Figure 10 and presented in Table II are based on standard Under-

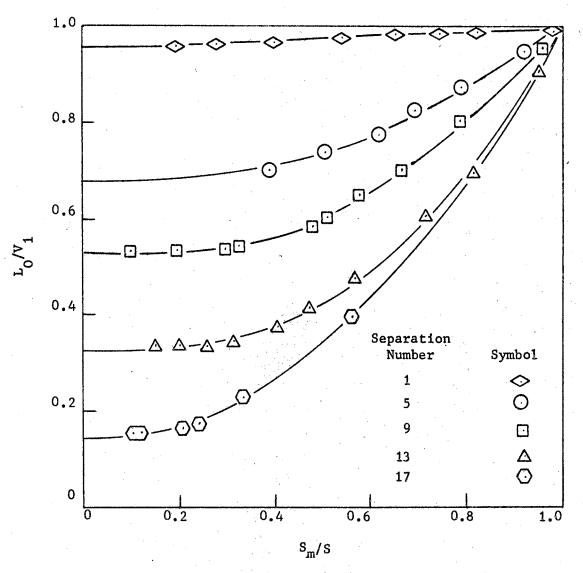



Figure 6. Data for Separations 1, 5, 9, 13, and 17 of Table XI Plotted in the Form of the Proposed Correlation.

· · .

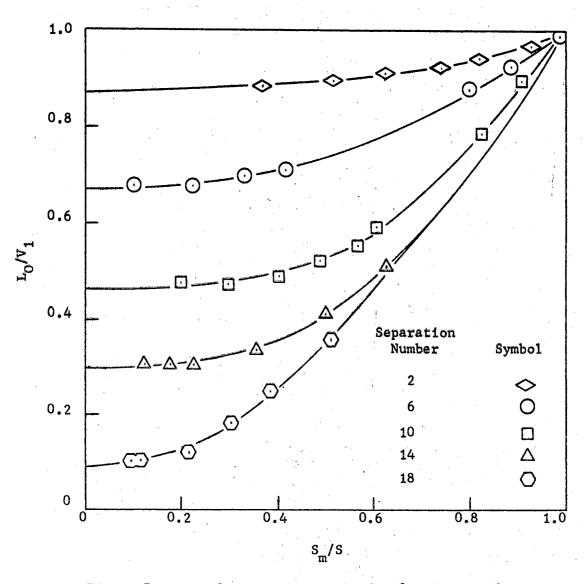
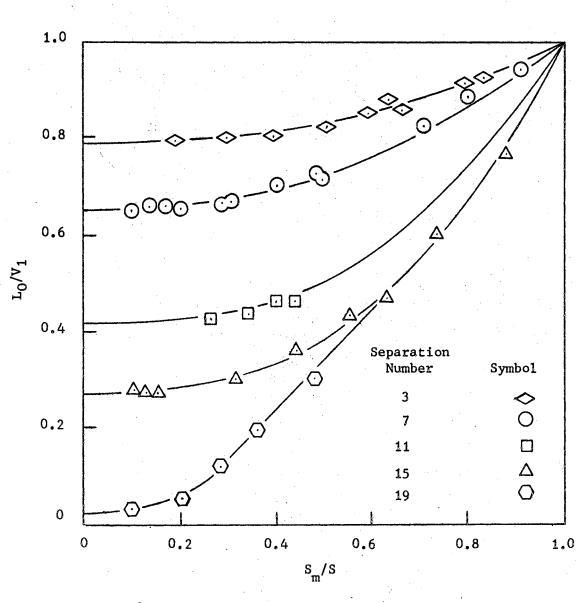
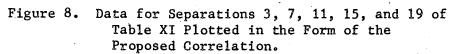
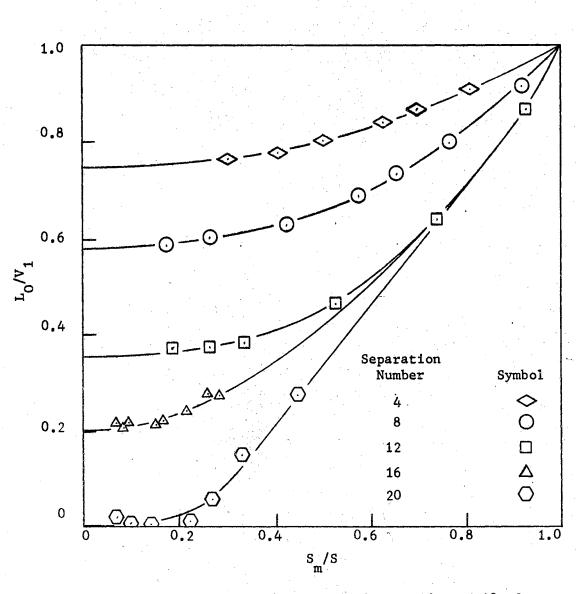






Figure 7. Data for Separations 2, 6, 10, 14, and 18 of Table XI Plotted in the Form of the Proposed Correlation.





,



 $\mathbf{\hat{c}}$ 

Figure 9. Data for Separations 4, 8, 12, 16, and 20 of Table XI Plotted in the Form of the Proposed Correlation.

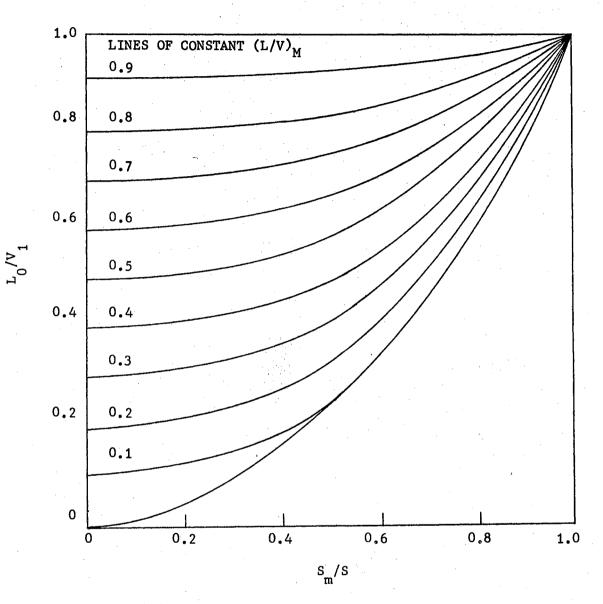



Figure 10. Proposed Correlation of Minimum and Operating Reflux Ratio and Stages

## TABLE II

## COMPARISON OF RESULTS FROM FIGURE 10 WITH RESULTS FROM TRAY BY TRAY CALCULATIONS BASED ON MINIMUM L/V RATIOS AT THE AVERAGE COLUMN TEMPERATURE

| PROBLEM    | Sm op                    | $\frac{L}{V}$ min       |                | V)op           | ABS.    | Percent       |
|------------|--------------------------|-------------------------|----------------|----------------|---------|---------------|
| NUMBER     | S op                     | $\overline{\mathbf{v}}$ | CALC           | CORR           | DEV.    | Dev.          |
| 08157.9523 | •1991                    | .9523                   | .9590          | .9531          | .0059   | 62            |
| 08111.9523 | .2809                    | •9523<br>•9523          | .9630          | •9542          | .0088   | 02<br>91      |
| 08077.9523 | .4034                    | •9523                   | .9688          | •9542<br>•9570 | .0118   | - 1.22        |
| 08057.9523 | • <del>•</del> • 5 4 2 5 | •9523                   | .9754          | .9622          | .0132   | - 1.36        |
| 08047.9523 | • 5425<br>• 6555         | •9523<br>•9523          | •9754<br>•9804 | .9682          | .0122   | - 1.25        |
| 08041.9523 | •0555<br>•7492           | .9523                   | •9861          | .9746          | .0115   | - 1.17        |
| 08037.9523 | .8280                    | .9523                   | .9884          | .9811          | .0073   | <b>-</b> .74  |
| 08031,9523 | .9893                    | •9523                   | .9961          | .9977          | .0016   | .16           |
| 02059.8630 | .3702                    | .8630                   | .8815          | .8738          | .0077   | 87            |
| 02029.8630 | .7403                    | .8630                   | .9283          | .9251          | .0032   | <b>-</b> .34  |
| 02026.8630 | .8226                    | .8630                   | .9432          | •9444          | .0012   | .12           |
| 02023.8630 | .9254                    | .8630                   | •9452<br>•9647 | .9735          | .0088   | .92           |
| 02041.8667 | • 9254<br>• 6225         | .8667                   | .9110          | .9057          | .0053   | 59            |
| 02058.8697 | •0225<br>•5142           | .8697                   | .8993          | .8932          | .0055   | <b>-</b> .68  |
| 03021.8121 | °3142<br>°8398           | .8121                   | .9298          | .9298          | .0000   | <b>.</b> .01  |
| 01109.7952 | .3037                    | .7952                   | .8013          | •9290<br>•8051 | .0038   | .47           |
| 01055.7952 | .5966                    | •7952                   | .8551          | .8490          | .0061   | 72            |
| 01041.7952 | .7955                    | •7952<br>•7952          | .9177          | .9068          | .0109   | - 1.19        |
| 01038.7844 | .6643                    | .7844                   | .8664          | •9000<br>•8587 | .0077   | <b>.</b> 89   |
| 03031.8189 | .6403                    | .8189                   | .8807          | •9507<br>•8757 | .0050   | <b>⊶</b> .56  |
| 01151.7922 | .0403<br>.1972           | .7922                   | .7949          | .7956          | .0007   | <b>-</b> .09  |
| 01074.7922 | .3997                    | .7922                   | •7949<br>•8092 | .8121          | .0029   | .36           |
| 01058.7922 | .5081                    | .7922                   | .8293          | .8286          | .0007   |               |
| 02109.7481 | .2992                    | .7481                   | •0295<br>•7647 | .7598          | .0049   |               |
| 02081.7481 | °2992<br>°4014           | .7481                   | 。7794          | .7725          | .0069   | 04<br>88      |
| 02065.7481 | •4987                    | .7481                   | 。8017          | .7902          | .0115   | - 1.43        |
| 02040.7481 | 。<br>\$028               | °7481                   | .9095          | .8886          | .0209   | - 2.30        |
| 02050.7540 | .6981                    | .7540                   | .8678          | .8501          | .0177   | <b>-</b> 2.04 |
| 02060.7562 | .6211                    | .7562                   | .8427          | .8270          | .0157   | - 1.86        |
| 05026.6993 | .3972                    | .6993                   | .7001          | .7277          | °°157°° | 3.94          |
| 05020.6993 | .5056                    | .6993                   | .7374          | .7513          | .0139   | 1.89          |
| 05016.6993 | .6179                    | .6993                   | •7733          | ,7855          | .0122   | 1.58          |
| 05014.6993 | .6952                    | .6993                   | .8246          | .8155          | .0091   | - 1.10        |
| 05012.6993 | •7945                    | .6993                   | .8762          | .8626          | .0136   | = 1°±°        |
| 05010.6993 | .9269                    | .6993                   | .9487          | .9430          | .0057   | <b>_</b> 60   |
| 01079.6503 | °0993                    | .6503                   | .6779          | .6513          | .0266   | - 3.92        |
| 01035.6503 | 。<br>2208                | .6503                   | .6795          | .6579          | .0216   | - 3.18        |
| 01023.6503 | .3312                    | .6503                   | .6942          | .6712          | .0230   | - 3.31        |
| 01018.6503 | .4183                    | .6503                   | .7064          | .6879          | .0185   | - 2.62        |
| 01009.6503 | .7948                    | .6503                   | .8794          | .8404          | .0390   | - 4.43        |
| 01008.6503 | 。<br>8831                | .6503                   | •9225          | .8998          | .0227   | - 2.46        |
| 01007.6503 | .9935                    | .6503                   | .9897          | .9930          | .0033   | .33           |

Sm op (L/V)op  $\frac{L}{v}$  min ABS. PROBLEM Percent CALC NUMBER CORR DEV. Dev. 01065.6223 .0254 - 3.92 .0972 .6223 .6488 .6234 .0284 01048.6223 .1310 .6223 .6529 .6245 - 4.35 01031.6223 .2006 .6223 .6539 .6288 .0251 - 1 3.85 01020.6223 .3056 .6668 .6408 .0260 3.90 .6223 -01015.6223 .4011 .7008 .0419 - 5.99 .6223 .6589 - 5.88 01012.6223 .4937 .7266 .6839 .0427 .6223 .0494 01008.6223 .7131 .6223 .8274 .7780 - 5.97 .0536 - 6.05 01007.6223 .8022 .6223 .8862 .8326 .9446 .0249 2.63 01006.6223 .9169 .6223 .9197 . .0169 - 2.37 04015.6351 .4932 .6351 .7113 .6944 04025.6316 .2973 .6316 .6680 .6484 .0196 - 2.93 .6382 .0222 - 3.37 01038.6337 .6337 .6604 .1751 - 4.38 02034.5613 .2613 .5613 **.**6022 .5758 .0264 .0249 - 3.61 .5613 .6895 .6646 02015.5613 .5715 .0301 - 4.08 02013.5613 .6531 .5613 .7361 .7060 .0245 3,06 02011.5613 .7620 .5613 .7999 .7754 -.0110 - 1.20 02009.5613 .5613 。9043 .9144 。9153 02024,5668 .5668 .6300 .0157 - 2.49 .4217 .6143 - 5.75 .0339 02044.5493 .1708 .5493 .5883 .5544 03085.5098 .1009 .5098 **.**5325 .5113 .0212 - 3.98 .0174 - 3.25 03043 5098 .1972 .5098 .5352 .5178 .0055 - 1.03 03028.5098 .2992 .5098 .5381 .5326 03017.5098 .5098 •5893 .5851 .0042 .72 .4821 **5**.0 03014.5098 .5098 .6289 .0236 3.62 .5785 .6525 -.0230 - 3.27 03012.5098 .5098 .7037 .6807 .6675 - 3.72 03010.5098 。7888 ,5098 .0298 .8010 .7712 .5098 .0155 -1.60 03008.5098 .9641 。9668 .9513 03027.5137 .3272 .5137 .5453 .5420 .0033 cə .61 03017.5137 .0061 \_ 1.00 .5091 .5137 .6054 .5993 .4960 .0211 4.45 05089.4874 .1995 .4874 .4749 .0348 7.31 .4761 05059.4874 .2976 .4874 .5109 .0491 10.05 05043.4874 .4034 。4874 .4886 .5377 ,5696 05035.4874 .4906 .4874 .5223 .0473 9.06 .0520 9.39 05030.4874 .4874 .6059 。5673 .5539 05023.4874 ,4874 °5928 .6269 .0341 5.74 .6051 .0049 .62 05020.4874 .8251 ,4874 .7893 **~7942** .0186 - 2.07 05018.4874 .9076 .4874 .8990 .8804 .0692 14.88 07033.4676 。4446 .4676 .4651 .5343 .4478 .0186 4.34 04045.4284 .2641 .4284 .4292 .4005 .4663 04029.4284 .4284 .4835 .0172 3.69 04041.4248 .3460 .4248 .4383 .4632 .0249 5.69 .0031 .84 11039.3659 .1849 .3659 .3716 .3747 .3734 °0140 3.76 11027.3659 .2641 .3659 .3874 .4053 .0238 6.25 .3815 11021.3659 °3365 .3659 11013.3659 .5283 .3659 .4634 .4885 .0251 5.41 .6527 .0134 2.10 11009.3659 .7396 .3659 .6393 11007.3659 .8762 .0097 1.12 .9245 .3659 .8665

TABLE II (Continued)

 $\frac{S_m}{S}$  op (L/V) PROBLEM  $\frac{L}{V}$  min op ABS. Percent CALC CORR DEV. NUMBER Dev. .0018 11039.3313 .1434 .3313 .3344 .3362 .55 11027.3313 .2049 °3313 .3349 .3433 .0084 2.52 .0150 4.44 11021.3313 .2608 .3313 .3383 .3533 11017.3313 .3187 .3313 .3477 .0120 5.75 .3677 5.46 11013.3313 .3313 .0207 ,4098 .3789 .3996 .0168 11011.3313 .4781 .3313 .4151 .4319 4.04 11009.3313 .5737 .3313 .4799 .4903 .0104 2.18 11007.3313 ,0068 1.13 .7171 .3313 .6041 .6109 11006.3313 4.23 .8196 .3313 。6953 .7247 .0294 11005.3313 .9562 .3313 .9059 .9203 .0144 1.58 11039.3061 .3061 .3075 .3098 .0023 .74 .1254 11027.3061 .3061 .0075 2.45 .1791 .3075 .3150 11021.3061 .2280 .3061 .3096 .3224 .0128 4.14 11013.3061 .0180 5.32 .3583 .3061 .3387 .3567 11009.3061 .5016 .3061 .4153 .4238 .0085 2,05 .31 11007.3061 .6270 .3061 .0016 .5110 .5126 11039.2784 .1110 .2784 .2789 .2817 .0028 1.01 11033.2784 .1306 .2784 .2788 .2831 .0043 1.55 11027.2784 .1586 .2784 .2787 .2857 .0070 2.53 11013.2784 .2784 .3012 .0165 5.47 .3172 .3177 11009.2734 .4441 .2784 .3620 .3690 .0070 1.93 11007.2784 ,2784 .4388 .0021 .47 .5551 .4367 11006.2784 .6344 .2784 .4712 .5000 .0288 6.10 11005.2784 .7402 .2784 .6080 .6058 .0022 .37 11004.2784 .2784 .0299 3.87 .8882 .7714 .8013 ,0152 - 6.95 12033.2017 .2017 .0767 .2181 .2029 12031.2017 .0815 .2017 .2177 .2031 .0146 - 6.69 12027.2017 .2037 .0138 **- 6.34** .0931 .2017 .2175 12016.2017 - 4.06 .1534 .2017 .2175 .2087 .0088 12015.2017 ,2098 - 5.37 .1629 .2017 .2217 .0119 12011.2017 .2172 .2017 2450 .2183 .0267 -10.88 12009.2017 .2607 .0492 -17.76 .2017 .2772 .2280 12008.2017 .2897 .2017 .0395 -14.34 .2754 .2359 12031.1725 .0225 .1054 .1725 .1539 .1764 13.92 12027.1725 .1204 .0213 14.57 .1725 .1540 .1753 12015.1725 .2108 .0239 14.52 .1725 .1646 .1885 10.64 12013.1725 .2409 .1725 .1761 .1948 .0187 12009.1725 .0053 - 2.29 .3372 .1725 .2296 .2243 12005.1725 .5620 .1725 .3594 .0387 - 9.73 .3981 12029.1508 .1026 .1508 .1003 .1535 .0532 53.05 .0542 12025.1508 .1184 ,1508 .1005 .1547 53.91 12013.1508 .2199 .1508 .1218 .1691 .0473 38.79 12009.1508 .3078 .1931 ,0055 2.95 .1508 .1876 12007.1508 .0252 -10.09 °3848 .1508 .2501 .2249 12005.1508 .5130 **.**1508 .3563 .3032 .0531 -14.90 12017.1244 .1244 241.12 °1035 .1272 .0899 .0373 .2065

.1244

.0557

.1405

.0848

152.21

12013.1244

TABLE II (Continued)

| <del></del> |                    | · · · · · · · · · · · · · · · · · · · | ·····             |       | ····· | ······         |
|-------------|--------------------|---------------------------------------|-------------------|-------|-------|----------------|
| PROBLEM     | $\frac{S_m}{2}$ op | L min                                 | (L/               | V)op  | ABS.  | Percent        |
| NUMBER      | S                  | V min                                 | CALC              | CORR  | DEV.  | Dev.           |
| 10000 40//  | 0004               | 10//                                  | 4000              | 4(47  | 02.00 | 24200          |
| 12009.1244  | .2891              | .1244                                 | .1228             | .1617 | .0389 | 31.69          |
| 12007.1244  | .3614              | <b>.12</b> 44                         | .1995             | .1897 | .0098 | - 4.93         |
| 12005.1244  | .4818              | .1244                                 | .3084             | .2586 | .0498 | -16.14         |
| 12025.0769  | .1036              | .0769                                 | .0010             | .0799 | 。0789 | 7892。          |
| 12017.0769  | ,1496              | .0769                                 | .0013             | .0845 | .0832 | 6498.          |
| 12011.0769  | <b>.</b> 2244      | 。0769                                 | .0137             | .0978 | .0841 | 613.65         |
| 12009.0769  | °2693              | .0769                                 | .0553             | .1098 | 。0545 | 98.63          |
| 12007.0769  | °3366              | 。0769                                 | .1482             | .1345 | 。0137 | - 9.26         |
| 12005.0769  | 。4488              | .0769                                 | .2757             | ,1953 | .0804 | <b>~29</b> °15 |
| 07016.0001  | .0757              | <sub>0001</sub>                       | <sub>°</sub> 0150 | .0783 | 。0633 | 421.86         |
| Total abs   | olute dif          | ference                               |                   |       |       | 2.225          |
| Average a   | bsolute d          | lifference                            | ·                 |       |       | 。017           |
| Average p   | ercent de          | viation                               |                   |       |       | 3.438          |

TABLE II (Continued)

wood (13) minimum reflux ratios computed at the average column temperature.

R. Erbar (7) reports some improvement in minimum reflux values by the Underwood method using the higher of the feed temperature and the average column temperature. Estimated results from Figure 10 using the feed and the average column temperature are compared with results of tray by tray calculations in Table III.

Table IV is a presentation of results estimated from Figure 10 using the Underwood method as modified by DuBois (5). Table IV results are based on minimum reflux ratios calculated at the average column temperature.

Some of the problems used in this study are identical to problems used by Erbar (6). A comparison of results for these common problems from Erbar's work and Table II are presented in Table V.

Table II shows the results of one hundred and forty-six problems used in this study. Calculations are based on the standard Underwood method and the average column temperature. The percentage deviation for  $(L/V)_{min}$  values greater than .20 are very low. Between  $(L/V)_{min}$ values of .15 and .20, the percentage deviations are reasonable. Below  $(L/V)_{min}$  equal to .15, the percentage deviations are very high. A comparison of the  $(L/V)_{min}$  values and the calculated  $(L/V)_{op}$  values of Table II shows many points where the  $(L/V)_{op}$  value is much less than the predicted  $(L/V)_{min}$  value. The  $(L/V)_{min}$  values are incorrect for these points and cannot be used with Figure 10 to calculate reliable  $(L/V)_{op}$  values. Therefore, deviations for problems below  $(L/V)_{min}$ equal to .15 are not included in total and average deviations presented. The total absolute deviation for Table II is 2.225. The average

...**2**6

## TABLE III

## COMPARISON OF RESULTS FROM FIGURE 10 WITH RESULTS FROM TRAY BY TRAY CALCULATIONS BASED ON MINIMUM L/V RATIOS AT THE HIGHER OF THE FEED AND THE AVERAGE COLUMN TEMPERATURE

| PROBLEM    | $\frac{S_m}{S}$ op | $\frac{L}{v}$ min  | (L/           | V)op          | ABS.          | Percent       |
|------------|--------------------|--------------------|---------------|---------------|---------------|---------------|
| NUMBER     | S                  | V                  | CALC          | CORR          | DEV.          | Dev.          |
| 08157.9523 | .1991              | .9551              | .9590         | .9559         | .0031         | 33            |
| 08111.9523 | .2807              | ،9551              | 。9630         | •9569         | .0061         | <b>.</b> 64   |
| 08077.9523 | 。4034              | 。9551              | 。9688         | .9595         | .0093         | <b>-</b> ₀96  |
| 08057.9523 | <b>.</b> 5425      | <b>°95</b> 51      | <b>.</b> 9754 | <b>.</b> 9644 | .0110         | - 1.13        |
| 08047。9523 | .6555              | <b>.</b> 9551      | 。9804         | 。9701         | .0103         | - 1.06        |
| 08041.9523 | .7492              | .9551              | .9861         | .9761         | .0100         | - 1,02        |
| 08037.9523 | .8280              | .9551              | .9884         | 。9822         | 。0062         | 63            |
| 08031.9523 | <b>.</b> 9893      | <b>.</b> 9551      | .9961         | .9978         | .0017         | .17           |
| 02059.8630 | .3702              | .8699              | <b>.</b> 8815 | .8802         | .0013         | 15            |
| 02029.8630 | .7403              | <b>.</b> 8699      | .9283         | .9289         | .0006         | .06           |
| 02026.8630 | <u>8226</u>        | .8699              | .9432         | 。9472         | 。0040         | .42           |
| 02023.8630 | 。9254              | 。8699              | <b>.</b> 9647 | .9749         | .0102         | 1.05          |
| 02041.8667 | ₀6225              | <b>.873</b> 4      | 。9110         | .9104         | 。0006         | 07            |
| 02058.8697 | .5142              | <b>.8763</b>       | .8993         | .8986         | .0007         | 07            |
| 03021.8121 | .8398              | .8131              | <u>。9298</u>  | .9302         | .0004         | <b>.</b> 04   |
| 01109.7952 | .3037              | <b>.</b> 7952      | <b>.</b> 8013 | <b>.</b> 8051 | 。0038         | .47           |
| 01055.7952 | s5966 ،            | <b>.7952</b>       | .8551         | <b>.</b> 8490 | .0061         | <b>-</b> ₀72  |
| 01041.7952 | <b>،79</b> 55      | 。7952              | .9177         | 。9068         | .0109         | - 1.19        |
| 01038.7844 | .6643              | .7844              | <b>.</b> 8664 | .8587         | .0077         | 89            |
| 03031.8189 | 。6403              | .8199              | <u>。8807</u>  | .8764         | .0043         | 49            |
| 01151.7922 | .1972              | .7922              | .7949         | .7956         | .0007         | ° 09          |
| 01074.7922 | .3997              | 。7922              | .8092         | .8121         | 。0029         | .36           |
| 01058.7922 | 。5081              | 。7922              | .8293         | .8286         | 0007          | s0a 🛁         |
| 02109.7581 | .2992              | 。7481              | .7647         | ₀7598         | .0049         | <b></b> 64    |
| 02081.7481 | .4014              | .7481              | .7794         | .7725         | .0069         | 88            |
| 02065.7481 | 。4987              | 。7481              | .8017         | .7902         | °0112         | - 1.43        |
| 02040.7481 | 。8028              | 。7481              | 。9095         | <b>。8886</b>  | 。0209         | - 2.30        |
| 02050.7540 | .6981              | ₀7540              | .8678         | <b>.85</b> 01 | .0177         | <u>⊸</u> 2.04 |
| 02060.7562 | .6211              | .7562              | 。8427         | 。8270         | .0157         | - 1.86        |
| 05026.6993 | .3972              | <b>.</b> 6993      | .7001         | .7277         | 。0276         | 3.94          |
| 05020.6993 | <b>。5</b> 056      | .6993              | .7374         | .7513         | .0139         | 1.89          |
| 05016.6993 | 。6179              | 。6993              | .7733         | .7855         | .0122         | 1.58          |
| 05014.6993 | 。6952              | 。6993              | .8246         | .8155         | 。0091         | - 1.10        |
| 05012.6993 | 。7945              | .6993              | .8762         | .8626         | 。0136         | - 1.55        |
| 05010.6993 | 。9269              | 。6993              | 。9487         | 。9430         | .0057         | <b>-</b> ,60  |
| 01079.6503 | 。0993              | 。6573              | .6779         | .6583         | .0196         | - 2.89        |
| 01035.6503 | 。2208              | ۵ <b>657</b> 3،    | <b>679</b> 5  | .6647         | °0148         | - 2.17        |
| 01023.6503 | .3312              | ۵ <b>6573</b> ،    | 。6942         | .6778         | <b>。</b> 0164 | - 2.36        |
| 01018.6503 | 。4183              | .6573              | 。7064         | 。6941         | .0123         | - 1.73        |
| 01009.6503 | 。7948              | 。6573              | <b>.</b> 8794 | .8436         | 0358 。        | <u>-</u> 4.07 |
| 01008.6503 | .8831              | .6573              | <b>.922</b> 5 | 。9018         | .0207         | - 2.24        |
| 01007.6503 | .9935              | ۰6573 <sub>م</sub> | 。9897         | .9931         | .0034         | .34           |

| PROBLEM    | Sm op                   | $\frac{L}{V}$ min      |                         | V)op                | ABS.           | Percent              |
|------------|-------------------------|------------------------|-------------------------|---------------------|----------------|----------------------|
| NUMBER     | <u>s</u>                | V                      | CALC                    | CORR                | DEV.           | Dev.                 |
| 01065.6223 | 。0972                   | .6283                  | .6488                   | .6293               | .0195          | - 3.00               |
| 01048.6223 | .1310                   | .6283                  | 。6529                   | .6305               | .0224          | - 3.43               |
| 01031.6223 | <b>2006</b>             | .6283                  | .6539                   | .6346               | .0193          | - 2.94               |
| 01020.6223 | .3056                   | .6283                  | .6668                   | .6465               | .0203          | - 3.04               |
| 01015.6223 | 。4011                   | .6283                  | .7008                   | .6643               | .0365          | - 5.21               |
| 01012.6223 | . 4937                  | .6283                  | .7266                   | .6889               | .0377          | - 5.19               |
| 01008.6223 | .7131                   | .6283                  | <u>8274</u>             | .7815               | .0459          | - 5.54               |
| 01007.6223 | .8022                   | .6283                  | .8862                   | .8352               | .0510          | - 5.75               |
| 01006.6223 | .9169                   | .6283                  | .9446                   | .9210               | 0236           | - 2.50               |
| 04015.6351 | .4932                   | .6371                  | .7113                   | .6961               | .0152          | <b>-</b> 2.14        |
| 04025.6316 | .2973                   | .6335                  | .6680                   | .6503               | .0177          | - 2.66               |
| 01038.6337 | .1751                   | .6401                  | .6604                   | .6445               | .0159          | - 2.41               |
| 02034.5615 | .2613                   | •5613                  | •6022                   | .5758               | .0264          | - 4.38               |
| 02015.5613 | .5715                   | .5613                  | .6895                   | .6646               | .0249          | - 3.61               |
| 02013.5613 | .6531                   | .5613                  | .7361                   | .7060               | .0301          | - 4.08               |
| 02011.5613 | .7620                   | ° 5613                 | \$7999                  | 。7 <b>7</b> 54      | .0245          | - 3.06               |
| 02009.5613 | 。9144                   | .5613                  | .9153                   | ,9043               | .0110          | - 1.20               |
| 02024.5668 | 。<br>4217               | .5668                  | .6300                   | .6143               | .0157          | <u> </u>             |
| 02044.5493 | .1708                   | 。5493                  | •5883                   | °0140<br>°5544      | .0339          | - 5.75               |
| 03085.5098 | . 1009                  | 。5098                  | .5325                   | .5113               | .0212          | - 3.98               |
| 03043.5098 | 。1972                   | .5098                  | .5352                   | °5178               | °0212<br>°0174 | - 3°25               |
| 03028,5098 | ° 1972<br>° 2992        | • 5098                 | .5381                   | .5326               | .0055          | <u>- 1.03</u>        |
| 03017.5098 | °2992<br>°4821          | ° 5098                 | 。5893                   | •5920<br>•5851      | 00.55<br>0042  | = .0J                |
| 03014.5098 | 。<br><u>-</u> 5785      | 。5098<br>。5098         | 。<br>6525               | .6289               | 。0042<br>。0236 | - 3.62               |
| 03012.5098 | 。9709<br>。6675          | 。5098<br>。5098         | .0 <u>5</u> 25<br>.7037 | .6807               | °0230          | = 3.02<br>= 3.27     |
| 03010.5098 | 。7888                   | 。5098                  | .8010                   | .7712               | 。0298<br>。0298 | - 3.72               |
| 03008.5098 | 。9641                   | 。5098<br>。5098         | 。9668                   | .9513               | °0290          | - 1.60               |
| 03027.5137 | .3272                   | •5137                  | 。9000<br>。5453          | .5420               | °0133          | = <u>1</u> .00<br>61 |
| 03017.5137 | .5091                   | • 5137                 | 。<br>6054               | .5993               | 。0055<br>。0061 | <b>–</b> 1.00        |
| 05089.4874 | .1995                   | 。<br>3137<br>。<br>4874 | 。<br>。<br>4749          | 。<br>4960           | .0211          | 4.45                 |
| 05059.4874 | · 1995                  | 。4874<br>。4874         | 。4749<br>。4761          | .4900<br>.5109      | °0211<br>°0348 | 7.31                 |
| 05043.4874 | .4034                   | 。4874<br>。4874         | 。4701<br>。4886          | 。5109<br>。5377      | 。0348<br>。0491 | 10.05                |
| 05035.4874 | 。40 <u>5</u> 4<br>。4906 | 。4874<br>。4874         | 。4888<br>。5223          | 。5577<br>。5696      | °0491<br>°0473 | <u>10.05</u><br>9.06 |
| 05030.4874 | 。<br>4900<br>。<br>5673  | 。4874<br>。4874         | .5539                   | ° 9090<br>° 6099    | 。0475<br>。0520 | 9.39                 |
| 05028.4874 | 。9073<br>。6051          | 。4874<br>。4874         | 。5928                   | 。6269<br>。6269      | 。0320<br>。0341 | 5.74                 |
| 05020.4874 | .8251                   | 。4074<br>。4874         | .7893                   | 。7942               | °0049          | 。<br>62              |
| 05018.4874 | 。0251<br>。9076          | 。4074<br>。4874         | .8990                   | .8804               | 。0049<br>。0186 | - 2.07               |
| 07033.4676 | 。9070<br>。4446          | 。4074<br>。4676         | .0990<br>.4651          | .5343               | 。0100<br>。0692 | 14.88                |
| 04045.4284 | 。4446<br>。2641          | 。4076<br>。4284         | 。4651<br>。4292          | 。<br>3343。<br>34478 | 。0692<br>。0186 | 4.34                 |
| )4029.4284 | 。2641<br>。4005          | 。4284<br>。4284         | 。4292<br>。4663          | 。4476<br>。4835      | .0188          | 4.34<br>3.69         |
| 04029.4284 | 。4005<br>。3460          | 。4248                  | .4003                   | 。4035<br>。4632      | .0172          | 3.69<br>5.69         |
| 11039.3659 |                         |                        |                         |                     | .0249<br>.0031 | .84                  |
| 11039.3659 | .1849<br>2641           | 。3659<br>。3659         | .3716                   | .3747<br>2874       | .0031<br>.0140 | 。04<br>3.76          |
| 11027.3659 | °2641                   |                        | .3734                   | .3874<br>4052       |                | 3°76<br>6°25         |
|            | °3365                   | ·3659                  | .3815                   | 。4053               | 0238           |                      |
| 11013.3659 | 5283° م                 | ·3659                  | °4634                   | .4885               | .0251          | 5.41                 |
| L1009.3659 | 。7396                   | .3659                  | .6393                   | 。6527               | .0134          | 2.10                 |

TABLE III (Continued)

٠

é.

Sm op (L/V)op  $\frac{L}{V}$  min ABS. PROBLEM Percent CALC DEV. CORR NUMBER Dev. 11007.3659 .9245 .0097 1.12 .3659 .8665 .8762 .0018 .1434 11039.3313 .3313 .3344 .3362 .55 .2049 11027.3313 .3313 .3433 .0084 2.52 .3349 11021.3313 .2608 ,0150 4.44 .3313 .3383 .3533 11017.3313 .3187 .3313 .3477 .3677 .0120 5.75 。4098 11013.3313 .3313 .3789 .3996 .0207 5.46 .4781 .4319 .0168 4.04 11011.3313 .3313 .4151 11009.3313 .5737 .3313 .4799 .4903 .0104 2.18 11007.3313 .0068 1.13 .7171 .3313 .6041 .6109 11006.3313 .8196 .6953 .7247 .0294 4.23 .3313 11005.3313 .9562 .3313 .9059 .9203 .0144 1.58 11039.3061 .3098 .0023 .74 .1254 .3061 .3075 11027.3061 .1791 .3061 .3075 .3150 .0075 2.45 11021.3061 .2280 .3061 .0128 4.14 .3096 .3224 .3583 .3061 11013.3061 .3387 .0180 5.32 .3567 11009.3061 .5016 .3061 .4153 .4238 .0085 2.05 11007.3061 。6270 .3061 .5110 .5127 .0016 .31 11039.2784 .0028 1.01 .1110 .2784 .2789 .2817 11033.2784 .0043 1.55 .1306 .2784 :2788 .2831 11027.1784 .1586 .2784 .2787 .2857 .0070 2.53 11013.2784 .3172 .2784 .3012 .3177 .0165 5.47 11007.2784 .5551 .2784 .4388 .4367 .0021 <u>.</u>47 11006.2784 。5000 .0288 6.10 ,6344 .2784 .4712 11005.2784 .7402 .2784 .6080 .0022 .37 .6058 • .8882 .8013 11004.2784 .2784 .7714 .0299 3.87 12033.2017 .0767 .2017 .2181 .2029 .0152 - 6.95 .0146 12031.2017 .0815 .0217 .2177 .2031 - 6.69 12027.2017 .0138 .0931 。2017 .2175 .2037 - 6.34 .0088 - 4.06 12016.2017 .1534 .2017 .2175 .2087 12015.2017 .1629 .2017 .2217 .2098 .0119 - 5.37 12011.2017 .2172 .2017 .0267 -10.88 .2450 .2183 12009.2017 .2607 .2017 .2772 .2280 .0492 -17.76 12008.2017 .2897 .2017 .2754 .23.59 .0395 -14.34 .0214 13.92 12031.1725 .1054 .1725 .1539 .1753 12027.1725 .1204 .1725 .1540 .1764 .0024 14.57 14.52 12015.1725 .2108 .1725 .1646 .1885 .0239 12013.1725 10.64 .2409 .1725 .1761 .1948 .0187 12009.1725 .3372 .1725 .2296 .2243 .0053 - 2.29 .0387 12005.1725 。5620 .1725 .3981 .3594 - 9.73 12029.1508 .1026 .1508 .1003 .1535 .0532 53.05 12025.1508 .0542 53.91 .1184 .1508 ,1005 .1547 12013.1508 .2199 .1508 .1218 .1691 .0473 38.79 12009.1508 .3078 .1508 .1876 .1931 .0055 2.95 12007.1508 -10,09 .3848 .1508 .2501 。0252 。2249 12005.1508 .5130 .1508 .3563 .3032 .0531 -14.90 12017.1244 .1032 .1244 .0373 .1272 。0899 241.12

TABLE III (Continued)

| PROBLEM                     | Sm<br>Sop      | L min              | (L/            | V)op           | ABS.         | Percent        |  |
|-----------------------------|----------------|--------------------|----------------|----------------|--------------|----------------|--|
| NUMBER                      | sob            | $\overline{v}$ min | CALC           | CORR           | DEV.         | Dev.           |  |
| 12013.1244                  | .2065          | .1244              | .0557          | .1405          | .0848        | 152.21         |  |
| 12009 <b>,12</b> 44         | 。2891          | .1244              | .1228          | .1617          | .0389        | 31.69          |  |
| 12007。1244                  | <b>.</b> 3614  | .1244              | .1995          | .1897          | .0098        | - 4.93         |  |
| 12005.1244                  | .4818          | .1244              | <b>;3</b> 084  | .2586          | .0498        | -16.14         |  |
| <b>1202</b> 5.0769          | .1036          | .0769              | .0010          | .0799          | .0789        | 7892.          |  |
| 12017.0769                  | <b>.</b> 1496  | .0769              | .0013          | .0845          | .0832        | 6398.          |  |
| 12011.0769                  | .2244          | .0769              | .0137          | .0978          | .0841        | 613.65         |  |
| 12009.0769                  | . 2693         | 。0769              | 。0553          | <b>.</b> 1098  | 。0545        | 98.63          |  |
| 12007.0769                  | °3366          | .0769              | . 1482         | <b>.</b> 1345  | °0132        | - 9.26         |  |
| 12005.0769                  | <u>,</u> 4488  | .0769              | .2757          | .1953          | ,0804        | -29.15         |  |
| 07016.0001<br>11009.2784    | .0757<br>.4441 | 。0355<br>。2784     | 。0150<br>。3620 | 。0783<br>。3690 | 0633<br>0070 | 421.86<br>1.93 |  |
| Total abs                   | olute dif      | ference            |                |                |              | 2.112          |  |
| Average absolute difference |                |                    |                |                |              |                |  |
| Average percent deviation   |                |                    |                |                |              |                |  |

TABLE III (Continued)

## TABLE IV

|            |                    | UNDERWOOI        | ) METHOD              |                |               |               |
|------------|--------------------|------------------|-----------------------|----------------|---------------|---------------|
| PROBL EM   | S <sub>m</sub>     | L                | (L/                   | /V)op          | ABS.          | Percent       |
| NUMBER     | $\frac{S_m}{S}$ op | $rac{L}{V}$ min | CALC                  | CORR           | DEV.          | Dev.          |
| 08157,9523 | .1991              | •9566            | .9590                 | .9573          | .0017         | 17            |
| 08111.9523 | .2807              | .9566            | •9630                 | .9583          | .0047         | <b>⊶ .</b> 49 |
| 08077.9523 | 。4034              | .9566            | <b>.</b> 9688         | 。9609          | .0079         | <b>-</b> "82  |
| 08057.9523 | 。5425              | <b>.</b> 9566    | 。9754                 | .9656          | .0098         | - 1.01        |
| 08047.9523 | ۰6555<br>۵         | °9266            | .9804                 | <b>。9711</b>   | .0093         | 95            |
| 08041.9523 | .7492              | ₀9566            | <b>.</b> 9861         | .9769          | .0092         | 93            |
| 08037.9523 | <b>.</b> 8280      | .9566            | •9884                 | .9828          | .0056         | 57            |
| 08031.9523 | .9893              | .9566            | .9961                 | .9979          | .0018         | .18           |
| 02059.8630 | .3702              | .8946            | .8815                 | .9029          | .0214         | 2.43          |
| 02029.8630 | .7403              | .8946            | .9283                 | •9424          | .0141         | 1.52          |
| 02026.8630 | .8226              | .8946            | .9432                 | •95 <b>7</b> 2 | .0140         | 1.48          |
| 02023.8630 | .9254              | .8946            | .9647                 | .9796          | .0149         | 1.55          |
| 02041.8667 | °6225              | .8978            | .9110                 | .9277          | .0167         | 1.83          |
| 02058.8697 | .5142              | .9006            | .8993                 | .9185          | .0192         | 2.14          |
| 03021.8121 | .8398              | .8489            | .9298                 | .9435          | .0137         | 1.48          |
| 01109.7952 | .3037              | .8353            | .8013                 | .8432          | .0419         | 5.23          |
| 01055.7952 | s966 ه             | .8353            | .8551                 | .8785          | .0234         | 2.74          |
| 01041.7952 | <b>₀79</b> 55      | <b>.83</b> 53    | .9177                 | .9250          | .0073         | .80           |
| 01038.7844 | .6643              | .8264            | .8664                 | <b>.</b> 8862  | .0198         | 2.28          |
| 03031.8189 | .6403              | <b>.</b> 8548    | <b>.</b> 8807         | <b>,</b> 9004  | .0197         | 2.23          |
| 01151.7922 | .1972              | <b>。8329</b>     | .7949                 | <b>.</b> 8356  | ,0407         | 5.12          |
| 01074.7922 | <b>.</b> 3997      | .8329            | .8092                 | .8489          | .0397         | 4.91          |
| 01058.7922 | <b>.</b> 5081      | .8329            | .8293                 | .8622          | .0329         | 3.96          |
| 02109.7481 | 。2992              | .7987            | <b>.</b> 764 <b>7</b> | .8080          | .0433         | 5.67          |
| 02081.7482 | <u>。4014</u>       | .7987            | .7794                 | .8182          | .0388         | 4.98          |
| 02065.7481 | 。4987              | .7987            | .8017                 | .8323          | .0306         | 3.82          |
| 02040.7481 | <u>。8028</u>       | .7987            | 。9095                 | .9110          | .0291         | 3.20          |
| 02050.7540 | 。6981              | ,8038            | .8678                 | .8804          | .0126         | 1.46          |
| 02060.7562 | 。6211              | .8056            | .8427                 | .8621          | .0194         | 2,30          |
| 05026.6993 | °°39 <b>7</b> 2    | 。7267            | 。7001                 | <b>.</b> 7525  | <b>.</b> 0524 | 7.49          |
| 05020.6993 | 。5056              | <b>.7267</b>     | •7374                 | <b>.77</b> 40  | .0366         | 4.96          |
| 05016.6993 | .6179              | .7267            | .7733                 | <u>。8051</u>   | .0318         | 4.11          |
| 05014.6993 | .6952              | .7267            | .8246                 | .8323          | .0077         | .94           |
| 05012.6993 | .7945              | <b>.7267</b>     | .8762                 | .8751          | .0011         | 12            |
| 05010.6993 | .9269              | .7267            | <b>。</b> 9487         | .9482          | .0005         | <b>_</b> _ 06 |
| 01079.6703 | .0993              | <b>.72</b> 55    | •6779                 | .7263          | .0484         | 7.14          |
| 01035.6503 | .2208              | .7255            | .6795                 | .7315          | .0520         | 7.65          |
| 01023.6503 | .3312              | <b>.72</b> 55    | .6942                 | .7419          | <b>。</b> 0477 | 6.88          |
| 01018.6503 | .4183              | <b>.72</b> 55    | .7064                 | .7550          | 。0486         | 6,88          |
| 01009.6503 | .7948              | <b>°</b> 7255    | .8794                 | .8747          | .0047         | <b>-</b> • 53 |
| 01008.6503 | .8831              | .7255            | 。9225                 | .9214          | .0011         | 12            |
|            |                    |                  |                       |                |               |               |

COMPARISON OF RESULTS FROM FIGURE 10 WITH RESULTS FROM TRAY BY TRAY CALCULATIONS BASED ON MINIMUM L/V RATIOS CALCULATED BY THE MODIFIED UNDERWOOD METHOD

TABLE IV (Continued)

| PROBLEM    | S <sub>m</sub> op  | $\frac{L}{V}$ min  | (L/            | V)op          | ABS.                    | Percent                |
|------------|--------------------|--------------------|----------------|---------------|-------------------------|------------------------|
| NUMBER     | $\frac{S_m}{S}$ op | $\overline{v}$ min | CALC           | CORR          | DEV.                    | Dev.                   |
| 01007.6503 | .9935              | .7255              | .9897          | .9945         | .0048                   | . 48                   |
| 01065.6223 | <b>.</b> 9072      | •6994              | .6488          | .7002         | .0514                   | 7,93                   |
| 01048.6223 | .1310              | .6994              | .6529          | .7012         | .0483                   | 7.40                   |
| 01031.6223 | 。2006              | .6994              | .6539          | .7046         | .0507                   | 7.75                   |
| 01020.6223 | .3056              | .6994              | .6668          | .7141         | .0473                   | 7.09                   |
| 01015.6223 | .4011              | .6994              | .7008          | .7285         | .0277                   | 3.95                   |
| 01012.6223 | ۰493 <b>7</b>      | <b>.</b> 6994      | .7266          | .7485         | .0219                   | 3.01                   |
| 01008.6223 | .7131              | 。6994              | .8274          | .8233         | .0041                   | <b>"</b> "50           |
| 01007.6223 | .8022              | .6994              | .8862          | .8668         | 。0194                   | - 2.19                 |
| 01006.6223 | .9169              | .6994              | .9446          | .9020         | .0426                   | - 4.51                 |
| 04015.6351 | .4932              | .6918              | .7113          | .7419         | .0306                   | 4.30                   |
| 04025.6316 | .2973              | .6888              | .6680          | .7030         | .0350                   | 5.24                   |
| 01038.6337 | .1751              | .7099              | .6604          | .7134         | .0530                   | 8.03                   |
| 02034,5613 | .2613              | .6585              | .6022          | .6698         | .0676                   | 11.23                  |
| 02015.5613 | °5715              | .6585              | .6895          | .7389         | .0494                   | 7.17                   |
| 02013.5613 | .6531              | .6585              | .7361          | .7711         | .0351                   | 4.76                   |
| 02011.5613 | 。7620              | .6585              | .7999          | ,8252         | .0253                   | 3.16                   |
| 02009.5613 | \$9144             | .6585              | .9153          | .9255         | .0102                   | 1.11                   |
| 02024.5668 | .4217              | .6631              | .6300          | .7001         | .0701                   | 11.12                  |
| 02044.5493 | .1708              | .6480              | .5883          | .6520         | .0637                   | 10.83                  |
| 03085.5098 | . 1009             | .6380              | .5325          | .6391         | .1066                   | 20.02                  |
| 03043.5098 | .1972              | °6380              | •5352<br>•5352 | .6439         | .1087                   | 20.31                  |
| 03028.5098 | .2992              | .6380              | .5581          | .6548         | .1167                   | 21.69                  |
| 03017.5098 | 。4821              | .6380              | 5893           | .6936         | .1043                   | 17.70                  |
| 03014.5098 | ° 40 21<br>° 5785  | .6380              | .6525          | .7259         | .0734                   | 11.25                  |
| 03012.5098 | .6675              | .6380              | .7037          | .7642         | .0605                   | 8.60                   |
| 03010.5098 | .7888              | °6380              | .8010          | .8310         | .0300                   | 3.75                   |
| 03008.5098 | 。<br>9641          | .6380              | .9668          | .9640         | .0028                   | <b>∽</b> .29           |
| 03027.5137 | .3272              | .6413              | °5453          | .6621         | .1168                   | 21.43                  |
| 03017.5137 | .5091              | 。6413              | °6054          | .7045         | 0991                    | 16.36                  |
| 05089.4874 | 。1995              | °6085              | 。<br>4749      | .6151         | °1402                   | 29.52                  |
| 05059.4874 | 。<br>2976          | °0005<br>°0085     | 。476 <u>1</u>  | ,6269         | °1402<br>°1503          | 31.58                  |
| 05043.4874 | .4034              | 。6085<br>。6085     | .4886          | .6469         | ° 1583                  | 32.41                  |
| 05035.4874 | 。4906<br>。4906     | 。6085<br>。6085     | .5223          | .6713         | ° 1490                  | 28,53                  |
| 05030.4874 | 。<br>4 900<br>5673 | 。6085<br>。6085     | • 5539         | .6990         | .1451                   | 26.20                  |
| 05028,4874 | ° 5075<br>° 6051   | .6085              | •5928          | .7150         | °1431<br>°1222          | 20.20                  |
| 05020.4874 | .00J1<br>.8251     | .6085              | .7893          | .8428         | ° 1222<br>° 0535        | 6.78                   |
| 05018.4874 | 。9076              | °0085<br>°6085     | .8990          | .9086         | 。0 <u>9</u> 99<br>。0096 | 1.07                   |
| 07033.4676 | .9070<br>.4446     | .6085              | .4651          | .9000         | 。1925                   | 41.38                  |
| 04045.4284 | •4440<br>•2641     | •0005<br>•5992     | .4292          | .6128         | •1925<br>•1836          | 42.78                  |
| 04029.4284 | • 2041<br>• 4005   | • 5992<br>• 5992   | •4292<br>•4663 | .6378         | •1830<br>•1715          | 36.79                  |
| 04029.4284 | .4003<br>.3460     |                    |                | .6230         | •1847                   | 42,14                  |
| 11039.3659 |                    | .5960<br>5474      | °4383          |               | .1847                   | 42.14<br>49.0 <u>1</u> |
|            | •1849              | .5474              | .3716          | •5537         | • 1821<br>• 1894        |                        |
| 11027.3659 | ·2641              | .5474              | .3734<br>2815  | .5628         |                         | 50.72<br>50.86         |
| 11021.3659 | ·3362              | ·5474              | ·3815          | ·5755         | 。1940<br>1715           |                        |
| 11013,3659 | <u>،</u> 5283      | <b>.</b> 5474      | <b>.</b> 4634  | <b>.</b> 6349 | .1715                   | 37.00                  |

TABLE IV (Continued)

| <b></b>    |               |                       |               | . <u> </u>            | <u></u>       |               |
|------------|---------------|-----------------------|---------------|-----------------------|---------------|---------------|
| PROBLEM    | Sm op         | L                     | (L/           | V) op                 | ABS.          | Percent       |
| NUMBER     | S             | $\frac{L}{V}$ min     | CALC          | CORR                  | DEV.          | Dev.          |
| 11009.3659 | .7396         | •5474                 | .6393         | .7521                 | .1128         | 17.65         |
| 11007.3659 | •9245         | <b>.</b> 5474         | .8665         | .9117                 | .0452         | 5.21          |
| 11039.3313 | <b>.</b> 1434 | .5198                 | .3344         | .5233                 | .1889         | 56.50         |
| 11027.3313 | .2049         | .5198                 | .3349         | .5284                 | .1935         | 57.79         |
| 11021.3313 | .2608         | .5198                 | .3383         | .5356                 | .1973         | 58.33         |
| 11017.3313 | .3187         | .5198                 | .3477         | <b>.</b> 5459         | .1982         | 57.01         |
| 11013.3313 | .4098         | .5198                 | .3789         | .5688                 | .1899         | 50.13         |
| 11011.3313 | .4781         | .5198                 | .4151         | .5920                 | .1769         | 42.62         |
| 11009.3313 | .5737         | .5198                 | .4799         | .6340                 | .1541         | 32.11         |
| 11007.3313 | .7171         | <b>\$5198</b>         | .6041         | .7206                 | <b>.1165</b>  | 19.29         |
| 11006.3313 | .8196         | <b>5198</b> ٥         | .6853         | .8023                 | .1070         | 15.39         |
| 11005.3313 | .9562         | .5198                 | .9059         | .9427                 | .0368         | 4.07          |
| 11039.3061 | <b>.12</b> 54 | .4997                 | .3075         | .5023                 | .1948         | 63.36         |
| 11027.3061 | .1791         | .4997                 | .3075         | .5061                 | .1986         | 64.60         |
| 11021.3061 | .2280         | <b>.</b> 4997         | .3096         | .5115                 | .2019         | 65.20         |
| 11013.3061 | °3583         | .4997                 | .3387         | .5362                 | .1975         | 58.31         |
| 11009.3061 | .5016         | <b>.</b> 499 <b>7</b> | •4153         | 5846 ،                | .1693         | 40.76         |
| 11007.3061 | 。6270         | .4997                 | .5110         | .6486                 | .1376         | 26.93         |
| 11039.2784 | <b>.</b> 1110 | .4780                 | ,2789         | .4800                 | .2011         | 72.12         |
| 11033.2784 | <b>。1</b> 306 | .4780                 | .2788         | .4810                 | .2022         | <b>72</b> .54 |
| 11027.2784 | .1586         | .4780                 | .2787         | .4830                 | <b>.</b> 2043 | 73.29         |
| 11013.2784 | <b>3172</b>   | .4780                 | .3012         | .5061                 | <b>.</b> 2049 | 68.02         |
| 11009.2784 | <u>。4441</u>  | .4780                 | .3620         | <b>.</b> 5432         | .1812         | 50.06         |
| 11007.2784 | .5551         | .4780                 | .4388         | .5922                 | .1535         | 34.97         |
| 11006.2784 | <b>.</b> 6344 | .4870                 | .4712         | <b>.</b> 6380         | .1668         | 35.40         |
| 11005.2784 | .7402         | °4780                 | 。6080         | .7146                 | .1066         | 17.54         |
| 11004.2784 | .8882         | .4780                 | ₀7714         | .8561                 | 。0847         | 10.98         |
| 12033.2017 | .0767         | 。4452                 | <b>。2181</b>  | .4461                 | .2280         | 104.52        |
| 12031.2017 | <b>.</b> 0815 | .4452                 | .2177         | <b>.</b> 446 <b>2</b> | <b>.228</b> 5 | 104.96        |
| 12027.2017 | .0931         | .4452                 | .2175         | <b>.</b> 4466         | .2291         | 105.33        |
| 12016.2017 | <b>1534</b>   | .4452                 | <b>.</b> 2175 | 。4500                 | <b>.</b> 2325 | 106.92        |
| 12015.2017 | .1629         | .4452                 | .2217         | <b>.</b> 4508         | .2291         | 103.35        |
| 12011.2017 | .2172         | <b>.</b> 445 <b>2</b> | <b>.2</b> 450 | .4568                 | .2118         | 86.43         |
| 12009.2017 | <b>.</b> 2607 | 。445 <b>2</b>         | .2772         | .4635                 | .1863         | 67.19         |
| 12008.2017 | <b>₀1897</b>  | .4452                 | .2754         | <sub>°</sub> 4690     | 。1936         | 70.29         |
| Total abs  | olute dif     | ference               |               |                       |               | 11.780        |

| Average | absolute difference |
|---------|---------------------|
| Average | percent deviation   |

。097

22.211

•

## TABLE V

#### RESULTS FROM THIS WORK COMPARED WITH RESULTS FROM ERBAR'S WORK

|                   | ERBA             | R'S WORK                    |               | T                           | HIS WORK                    |             |  |
|-------------------|------------------|-----------------------------|---------------|-----------------------------|-----------------------------|-------------|--|
| PROBLEM<br>NUMBER | (L/V)<br>CALC op | (L/V) <sub>op</sub><br>CORR | DEV.          | (L/V) <sub>op</sub><br>CALC | (L/V)<br>CORR <sup>op</sup> | DEV.        |  |
| 01018.6503        | .692             | .655                        | 037           | .706                        | .694                        | 012         |  |
| 01038.7844        | .645             | .600                        | <b>-</b> .045 | .660                        | .644                        |             |  |
| 01048.6223        | .630             | .598                        | 032           | •653                        | <b>-630</b>                 | 023         |  |
| 01038.7844        | .862             | .845                        | 017           | <b>.</b> 866                | .859                        | 007         |  |
| 01058.7922        | .826             | .830                        | .004          | .829                        | .829                        | .000        |  |
| 02026.8630        | .907             | <b>.</b> 895                | 012           | .943                        | .947                        | .004        |  |
| 02041.8667        | .875             | <b>.</b> 875                | .000          | .911                        | .910                        | 001         |  |
| 02058.8697        | .865             | <b>.</b> 865                | .000          | .899                        | .899                        | .000        |  |
| 02024.5668        | .576             | .576                        | .000          | .630                        | .614                        | 016         |  |
| 02034.5613        | .565             | •555                        | 010           | .602                        | .576                        | .026        |  |
| 02044.5493        | .555             | .532                        | 023           | .588                        | .554                        | 034         |  |
| 02040.7481        | .805             | .875                        | .070          | .910                        | .889                        | 021         |  |
| 02050.7540        | .780             | <b>.</b> 840                | .060          | .868                        | .850                        | 018         |  |
| 02060.7562        | .760             | .817                        | .057          | .843                        | .827                        | <b></b> 016 |  |
| 03021.8121        | .858             | .858                        | .000          | .930                        | .930                        | .000        |  |
| 03031.8189        | .825             | .825                        | .000          | .881                        | .876                        | .005        |  |
| 03017.5137        | .540             | .505                        | 035           | .605                        | .599                        | 006         |  |
| 03027.5137        | .505             | .480                        | 025           | .545                        | .542                        | 003         |  |
| 04015.6351        | .725             | .667                        | 058           | .711                        | .694                        |             |  |
| 04025.6316        | .667             | .640                        | 027           | .668                        | .648                        | 020         |  |
| 04029.4284        | .465             | .440                        | 025           | .466                        | .484                        | .018        |  |
| 05016.6993        | .730             | .701                        | 029           | .773                        | .786                        | .013        |  |
| 05026.6993        | .675             | .661                        | 014           | .700                        | .728                        | .028        |  |
| 05020.4874        | .550             | • 555                       | .005          | .789                        | •794                        | .005        |  |
| 05030.4874        | .500             | .531                        | .031          | •554                        | .606                        | .052        |  |
| 07033.4676        | .440             | .400                        | 040           | •465                        | •534                        | .069        |  |
| Total abs         | olute diff       | erence                      | .656          |                             |                             | .430        |  |
| Average a         | bsolute di       | fference                    | .025          |                             |                             | .016        |  |

absolute deviation is .017. The average percent deviation is 3.438.

Table III results are based on standard Underwood minimum reflux ratios calculated at the higher of the feed temperature and the average column temperature. Absolute and average percent deviations are presented for all one hundred and forty-six problems studied, but values for problems below  $(L/V)_{min}$  equal to .15, where calculated  $(L/V)_{op}$  values are less than corresponding  $(L/V)_{min}$  values, are omitted from total and average deviations presented. The total absolute deviation is 2.112 and the corresponding average absolute deviation is .0165. The average percent deviation is 3.313.

Results based on the Underwood method as modified by DuBois are presented in Table IV. The modified method failed to converage on minimum reflux rates for problems where  $(L/V)_{min}$  was less than .15, therefore, total and average deviations include all values presented in Table IV. The total absolute deviation is 11.78. The average absolute deviation is .097 and the average percent deviation is 22.11.

For the twenty-six problems common to this work and Erbar's (6) investigation, the average absolute deviation for Erbar's results is .0252. The results from this work, taken from Table III, show an average absolute deviation of .0165 for these twenty-six problems.

The purpose of this study was to develop a correlation identical in form to the Erbar (6) correlation. The primary objectives of the study were three in number. These were:

1. To base the new correlation on more consistent enthalpy and equilibrium data than the Erbar correlation was based upon.

 To test the reliability of the new correlation in the region of low minimum reflux ratios.

3. To see if results from the correlation would be improved by using the Underwood minimum reflux method as modified by DuBois.

The degree to which the first objective was achieved can not be measured directly or accurately, however an examination of Figures 6-9 gives a good indication of the degree of success that was achieved with respect to the first objective. As shown by Figures 6-9, the raw data obtained from the tray by tray calculations plots with only nominal scatter. Since the enthalpy and equilibrium data exert a strong influence on the results of tray by tray calculations, the general smoothness and consistency of the raw data are good indications that the enthalpy and equilibrium data also possess a high degree of consistency. Thus, success is indicated in the first objectives of the study.

To assure success in reaching the second goal of the study, a large number of problems were selected for use in the study, which represented all regions of the  $(L/V)_{min}$  parameter. A total of one hundred and forty-six tray by tray calculations were performed. The data from these calculations are presented in the appendices. Results of the tray by tray calculations have been compared with results from the proposed correlation in Tables II through IV. Table III represents the better results, which were obtained using the minimum reflux ratio calculated at the higher of the feed and average column temperatures. The results of Table III indicate three distinct regions of reliability for the correlation presented in Figure 10. For problems with an  $(L/V)_{min}$  greater than .2, an average error of only 2.7 percent was noted for one hundred and forteen data points. In comparison, Erbar obtained an average error of 4.35 percent for thirty-nine points in the same region. For problems with an  $(L/V)_{min}$  between .15 and .2, an

average error of approximately 10 percent was obtained for fourteen data points using the correlation presented in Figure 10. In the region of  $(L/V)_{min}$  below .15, eighteen data points indicated the new correlation was completely unreliable in that region with many errors exceeding 100 percent. Erbar did not present any data with an  $(L/V)_{min}$ less than .2, so no comparisons can be made.

The failure of the correlation in Figure 10 to predict operating reflux ratios for problems with low  $(L/V)_{min}$  values can be attributed to failure of the Underwood method to accurately estimate minimum reflux values in this region. This failure of the Underwood minimum reflux method in the low  $(L/V)_{min}$  region is pointed out by the fact that the tray by tray calculations for many of the problems in that region indicate an operating reflux rate smaller than the minimum reflux rate predicted by the Underwood method.

To demonstrate why the correlation in Figure 10 fails to predict operating reflux ratios accurately for problems with low values of  $(L/V)_{min}$ , the Underwood predicted minimum reflux values are compared with minimum reflux rates estimated from Figures 6-9. The comparison is shown in Table VI. Table VI shows that on a percentage basis, the Underwood method does not predict reflux ratios accurately for lower values of  $(L/V)_{min}$ .

Table VI also shows why results that were obtained using the standard Underwood minimum reflux ratio calculated at the higher of the feed temperature and average column temperature are better than those that were obtained using the standard Underwood minimum reflux ratio calculated at the average column temperature or those that were obtained with the modified Underwood method. For the standard Underwood reflux

# TABLE VI

| FIGUR            | ES 6-10      | STANDARD UNDI | RWOOD METHOD | MODIFIED METHOD |
|------------------|--------------|---------------|--------------|-----------------|
| L/V              | REFLUX       | AVE. TEMP.    | FEED TEMP.   |                 |
|                  |              |               |              |                 |
| .955             | 212.         | 200.          | 213.         | 221.            |
| .864             | 127.         | <b>12</b> 5。  | 133.         | 168.            |
| <u>.</u> 864     | 127。         | . 130 .       | 138.         | 176.            |
| .864             | 127.         | 134.          | 141.         | 181.            |
| 。791             | 114.         | 129.          | 130.         | 168.            |
| ،791             | 189.         | 195.          | 181.         | 255.            |
| .791             | 189.         | 182.          | 169.         | 238.            |
| :791             | 114.         | 136.          | 136.         | 176.            |
| .791             | 189.         | 191.          | 177.         | 249.            |
| °22°             | 182.         | 179.          | 155.         | 240.            |
| .752             | 182.         | 184.          | 160.         | 246.            |
| <del>،</del> 752 | 182。         | 187.          | 162.         | 250.            |
| 。693             | 68.          | 69,           | 57.          | 79.             |
| 。670             | 5 <b>1</b> . | 47。           | 48.          | 66.             |
| 。640             | 45。          | 43.           | 44.          | 60.             |
| 。640             | 44.          | 42.           | 43.          | 55.             |
| 。640             | 44.          | 42.           | 42 •         | 54.             |
| 。640             | 45。          | 44.           | 45.          | 63.             |
| <b>582</b> ،     | 56.          | 51.           | 50.          | 76.             |
| 。582             | 56.          | 52.           | 51.          | 78。             |
| 。582             | 56.          | 48.           | 47.          | 73.             |
| 。530             | 57。          | 52.           | 48.          | 89.             |
| 。530             | 57。          | 53.           | 49.          | 90.             |
| 。470             | 53。          | 57.           | 37.          | 93 .            |
| 。420             | 29。          | 35.           | 27.          | 62.             |
| .420             | 40。          | 41.           | 32.          | 83.             |
| <b>.</b> 420     | 40。          | 41.           | 31.          | 82.             |
| .365             | 35.          | 35.           | 27.          | 73.             |
| <b>.328</b>      | 29。          | 30.           | 23.          | 65.             |
| .300             | 25。          | 26.           | 20.          | 60.             |
| . 273            | 19.          | 23.           | 17.          | 55.             |
| .200             | 13.          | 13.           | 8.           | 40.             |
| .150             | 9.           | 10 .          | 6.           |                 |
| 。100             | 6.           | · 9 .         | 5.           |                 |
| .027             | 1.           | 7.            | 3.           |                 |
| .001             | 0.           | 4.            | 0.           |                 |
| 。001             | 0.           | 0.            | 0.           |                 |

## COMPARISON OF MINIMUM REFLUX RATES USED IN THIS STUDY

calculations, the higher value, representing the higher temperature, agrees best with the reflux rate estimated from Figures 6-9 in twentysix of the thirty-seven cases. In almost every case the modified method calculated rates which were too high and in poor agreement with the rates estimated from Figures 6-9.

Based on the observations discussed previously, the correlation in Figure 10 is recommended for use in estimating operating reflux values for problems which have an  $(L/V)_{min}$  value, calculated by the standard Underwood method of .2 or greater. The correlation may be used also in the region of  $(L/V)_{min}$  between .15 and .2, but with a little less than the high degree of reliability that exists for the region of  $(L/V)_{min}$  greater than .2. The correlation is not recommended for use when  $(L/V)_{min}$  is less than .15. Based on the data of Tables II, III, and VI the higher of the feed temperature and the average column temperature is recommended to compute the standard Underwood value of the minimum reflux.

Best results will be obtained from the proposed correlation if it is used in a manner consistent with its development. Therefore, a definite step by step procedure will be suggested for estimating the operating reflux necessary to make a given separation. The steps are:

1. Estimate the minimum number of trays by the Fenske method.

2. Choose a reasonable number of operating trays greater than the minimum. Compute the ratio of minimum trays to operating trays.

3. Use the Underwood method to compute the minimum reflux ratio and the average column temperature. If the average column temperature is greater than the feed temperature, proceed to step 5.

4. If the feed temperature is greater than the average column

temperature, compute the Underwood minimum reflux ratio at the feed temperature.

5. Compute (L/V)<sub>min</sub> from equation 5, if necessary,

$$(L/V)_{\min} = \frac{R}{1+R}$$
(5)

6. Locate the point  $S_m/S$  and  $(L_0/V_1)_{min}$  by use of the abscissa and the parameters of Figure 10. Read  $(L_0/V_1)_{op}$  from the ordinate of Figure 10.

7. If necessary, convert  $(L_0/V_1)_{op}$  to  $R_{op}$  by equation 6.

$$R_{op} = \frac{(L_0/V_1)_{op}}{1 - (L_0/V_1)_{op}}$$
(6)

In Table V the calculated L/V values were obtained from tray by tray calculations. There is considerable variation in values from Erbar's work and this work. In fact the average absolute deviation between L/V values from the two studies is .046. This is considerably more than the average deviation between the calculated and predicted results for either correlation. The differences were the result of using different vapor-liquid equilibria and enthalpy data. Table V shows why consistent data must be used in developing and using correlations of the type with which this study is concerned.

In developing the recommended correlation, every effort was made to obtain consistent data. To obtain dependable results in the application of the correlation, similar precautions must be employed. This involves using:

1. A specific set of thermodynamic data which includes K values by the Chao-Seader correlation and enthalpies by the Yen and Alexander correlation. 2. The standard Underwood minimum reflux method.

3. The Fenske method for calculating minimum trays.

4. A feed condition corresponding to a bubble point feed at the tower conditions.

5. Problems relating only to simple fractionators.

No problems were used with other than a feed condition corresponding to a bubble point feed at the tower conditions. Erbar (6) presented a correlation relating reflux ratios corresponding to partially vaporized feed conditions to reflux ratios at bubble point feed conditions.

This study was limited to systems of paraffin hydrocarbons between  $C_1$  and  $C_{10}$ . Although it has not been checked in this study, the proposed correlation need not be limited to such systems. Since the equilibrium and enthalpy data determine the consistency of results and since both the Chao-Seader and Yen-Alexander correlations are generalized correlations, the proposed correlation should hold for all systems for which the enthalpy and equilibrium correlations are relaible. This also would mean limiting the use of the proposed correlation to problems where the operating temperatures and pressure are within the range for which the enthalpy and equilibrium correlations are recommended.

#### CHAPTER V

#### RECOMMENDATIONS AND CONCLUSIONS

An improved correlation has been developed relating operating reflux ratios and trays to minimum reflux ratios and trays. The correlation is recommended for use with problems having  $(L/V)_{min}$  value of .15 or greater as calculated by the standard Underwood method.

To obtain reliable results the correlation must be applied using the same tools with which it was developed namely, the Fenske equation for minimum trays, the Chao-Seader correlation for equilibrium data, and the Yen-Alexander correlation for enthalpies.

The standard Underwood minimum reflux, calculated at the higher of the feed temperature and the average column temperature, is recommended for use with the proposed correlation to predict operating reflux ratios.

Several areas exist for future study and possible improvement of the proposed correlation. The most obvious need for improvement is in the prediction of the minimum reflux value to be used with the correlation in the area of low  $(L/V)_{min}$  values. Other possibilities for further study include checking the proposed correlation for use with systems containing components other than the light paraffin hydrocarbons and basing minimum tray calculations on the Winn equation rather than the Fenske equation.

Used within the guidelines previously discussed, the proposed

correlation should be a useful and convenient tool for arriving at rapid estimates of the final fractionator design required to make a given separation. The results provided by the proposed correlation should be more than adequate for making preliminary design cost estimates.

## LIST OF NOMENCLATURE

| В                    | -          | total moles of bottoms product per unit time                                         |
|----------------------|------------|--------------------------------------------------------------------------------------|
| Be                   | •          | defined by the equation $B_e = K_{LK} / K_{HK}^b$                                    |
| D                    |            | total moles of distillate per unit time                                              |
| К                    | <b>4</b> 0 | vapor-liquid equilibrium constant defined as y/x                                     |
| L                    | Ð          | total liquid rate per unit time at a given point in a fractionator                   |
| (L/V) <sub>min</sub> |            | minimum reflux ratio, related to $R_m$ by the equation $(L/V)_{min} = R_m/(R_m + 1)$ |
| R                    | -          | reflux ratio, defined as L <sub>O</sub> /D                                           |
| R <sub>m</sub>       | -          | minimum reflux ratio, defined as $(L_0/D_m)$ , occurs at S = $\infty$                |
| S                    | Ð          | number of stages in a fractionator                                                   |
| s <sub>m</sub>       | 8          | minimum number of stages, occurs at $R = \infty$                                     |
| V                    | 9          | total vapor rate per unit time at a given point in a fractionator                    |
| X<br>D               | в          | moles of any component in the distillate product per unit<br>time                    |
| x <sub>B</sub>       | -          | moles of any component in the bottoms product per unit time                          |
| b                    | 9          | exponent, defined by the equation b = log $K_{LK}/log \stackrel{B}{e} * K_{HK}$      |
| С                    |            | exponent, unknown variable                                                           |
| g                    | 67         | algebraic variable                                                                   |
| x                    | 8          | mole fraction of any component in the liquid phase                                   |
| У                    | , =        | mole fraction of any component in the vapor phase                                    |
| Œ                    |            | relative volatility, defined by the equation $\mathbf{c} = K_1/K_2$                  |

44.

## Subscripts

| 0          | - pertains to reflux rate, moles                                         |
|------------|--------------------------------------------------------------------------|
| <b>, 1</b> | - pertains to stream quantities leaving the top tray of the fractionator |
| HK         | - pertains to heavy key component                                        |
| LK         | - pertains to light key component                                        |
| m          | - pertains to minimum quantity                                           |
| min        | - pertains to minimum quantity                                           |
| op         | - pertains to operating conditions                                       |

# A SELECTED BIBLIOGRAPHY

| 1.  | Bachelor, J. B., <u>Pet. Ref., 36</u> , No. 6, 161 (1957).                                                                                                                                                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .2. | Brown, G. G. and H. F. Martin, <u>Trans. A.I.Ch.E.</u> , <u>35</u> , 679 (1939).                                                                                                                                     |
| 3.  | Chao, K. C. and J. D. Seader, <u>A.I.Ch.E. Jour.</u> , <u>7</u> , No. 4, 598 (1961)                                                                                                                                  |
| 4.  | Donnell, J. W. and C. M. Cooper, Chem. Engr., 57, 121 (1950).                                                                                                                                                        |
| 5.  | DuBois, D. P., "A Short-cut Calculation of Minimum Reflux,"<br>Unpublished memorandum, School of Chemical Engineering,<br>Oklahoma State University, Stillwater, Oklahoma (1967).                                    |
| 6.  | Erbar, J. H. and R. N. Maddox, <u>Pet. Ref.</u> , <u>40</u> , No. 5, 183 (1961).                                                                                                                                     |
| 7.  | Erbar, R. C. and R. N. Maddox, <u>Can. Jour. of Chem. Engr., 40</u> ,<br>No. 1, 25 (1962).                                                                                                                           |
| 8.  | Fenske, M. R., Ind. Eng. Chem., 24, 482 (1932).                                                                                                                                                                      |
| 9.  | Gilliland, E. R., Ind. Eng. Chem., 32, 1220 (1940).                                                                                                                                                                  |
| 10. | Lewis, W. K. and G. L. Matheson, <u>Ind. Eng</u> . <u>Chem.</u> , <u>24</u> , 494 (1932).                                                                                                                            |
| 11. | Mason, W. A., <u>Pet. Ref</u> ., <u>38</u> , No. 5, 237 (1959).                                                                                                                                                      |
| 12. | Thiele, E. W. and R. L. Geddes, <u>Ind. Eng</u> . <u>Chem.</u> , <u>25</u> , 289 (1933).                                                                                                                             |
| 13。 | Underwood, A. J. V., <u>Chem. Engr. Prog.</u> , <u>44</u> , No. 8, 603 (1948).                                                                                                                                       |
| 14。 | Underwood, A. J. V., <u>Trans. Inst. Chem. Engr</u> . (London), <u>10</u> , 119<br>(1932).                                                                                                                           |
| 15. | Winn, F. W., <u>Pet</u> . <u>Ref</u> ., <u>37</u> , No. 5, 216 (1958).                                                                                                                                               |
| 16. | Yen, L. C. and R. E. Alexander, "Estimation of Vapor and Liquid<br>Enthalpies," presented at the 53rd National Meeting of the<br>American Institute of Chemical Engineering, Pittsburg,<br>Pennsylvania (May, 1964). |
|     |                                                                                                                                                                                                                      |

# APPENDIX A

# TABLE VII

| SEP. | FEED |       |             | COMPONENTS      |                 | MOLS TO I | MOLS TO DIST.          |  |
|------|------|-------|-------------|-----------------|-----------------|-----------|------------------------|--|
| NO.  | NO.  | TEMP. | PRESS.      | LK              | HK              | LK        | HK                     |  |
| 1    | 8    | 149.8 | 25.         | iC <sub>5</sub> | nC <sub>5</sub> | 3.95      | 5.05                   |  |
| 2    | 2    | 132.0 | · 50.       | i04             | nC5             | 19.0167   | .8230                  |  |
| . 3  | 2    | 132.0 | 50.         | iC4             | nC4             | 19.4908   | ٥5598 ،                |  |
| 4    | ÷2   | 132.0 | 50.         | iC4             | ոCլ             | 19.7064   | .3130                  |  |
| 5    | - 3  | 156.8 | 100.        | iC4             | $nC_4$          | 17.9053   | 1.9481                 |  |
| 6    | . 1  | 106.8 | 25.         | iC5             | $nC_5^4$        | 24.5      | <b>•7</b> 5            |  |
| 7    | 1    | 106.8 | 25.         | iC <sub>5</sub> | $nC_5$          | 23.6463   | 1.3584                 |  |
| 8    | . 3  | 156.8 | 100.        | iĊ4             | nC4             | 18.3657   | 1.6194                 |  |
| 9    | 1    | 106.8 | 25.         | iC <sub>5</sub> | nC <sub>5</sub> | 24.1181   | .8831                  |  |
| 10   | 2    | 132.0 | 50.         | iC <sub>5</sub> | $nC_5$          | 19.2798   | 1.1144                 |  |
| 11   | 2    | 132.0 | 50.         | iC <sub>5</sub> | nC <sub>5</sub> | 19.3722   | .7880                  |  |
| 12   | 2    | 132.0 | 50.         | iC <sub>5</sub> | nC <sub>5</sub> | 19.5389   | .7120                  |  |
| 13   | 5    | 135.0 | 300.        | Cg              | iC <sub>4</sub> | 22.8894   | .9587                  |  |
| 14   | 1    | 106.8 | 25.         | nC4             | iC <sub>5</sub> | 24.1961   | .9160                  |  |
| 15   | 1    | 106.8 | 25.         | nC <sub>4</sub> | iC <sub>5</sub> | 23.817    | 2.1466                 |  |
| 16   | 4    | 149.6 | 150.        | C <sub>3</sub>  | iC4             | 18.668    | .663                   |  |
| 17   | 4    | 149.6 | 150.        | C3              | iC4             | 18,564    | .776                   |  |
| 18   | . 1  | 106.8 | 25.         | $nC_4$          | iC <sub>5</sub> | 23.8938   | 1.6548                 |  |
| 19   | 2    | 132.0 | 50.         | nC4             | iC5             | 19.1639   | .4498                  |  |
| 20   | 2    | 132.0 | 50.         | nC4             | iC <sub>5</sub> | 19.4792   | .2581                  |  |
| 21   | 2    | 132.0 | 50.         | nC4             | iC5             | 18.7838   | .8932                  |  |
| 22   | 3    | 133.8 | 75.         | nC4             | iC5             | 19.2792   | 1.1044                 |  |
| 23   | 3    | 133.8 | 75.         | nC <sub>4</sub> | iC <sub>5</sub> | 19.4087   | .9684                  |  |
| 24   | 5    | 83,6  | 150.        | nC <sub>4</sub> | iC5             | 14.9508   | 0872                   |  |
| 25   | - 7  | 131.5 | 100.        | nC <sub>4</sub> | iC5             | 9.975     | .216                   |  |
| 26   | - 4  | 89.8  | 75.         | nC4             | iC5             | 14.9143   | .3658                  |  |
| 27   | . 4  | 89.8  | <b>7</b> 5. | nC4             | iC5             | 14.9888   | <b>.</b> 48 <u>8</u> 0 |  |
| 28   | 11   | 117.6 | 75.         | $nC_4^{-1}$     | nC <sub>5</sub> | 19.25     | .75                    |  |
| 29   | 11   | 117.6 | 75.         | nC4             | $nC_5$          | 18.5      | 1.5                    |  |
| 30   | . 11 | 117.6 | 75.         | nC4             | nC <sub>5</sub> | 18.       | 2.                     |  |
| 31   | 11   | 117.6 | 75.         | $nC_4$          | nC <sub>5</sub> | 17.5      | 2.5                    |  |
| 32   | 12   | 115.0 | 75.         | $iC_4$          | $nC_5$          | 21.75     | 3.25                   |  |
| 33   | 12   | 115.0 | 75.         | iC4             | nC5             | 21.25     | 3.75                   |  |
| 34   | 12   | 115.0 | 75.         | iC4             | nC <sub>5</sub> | 20.9      | 4.1                    |  |
| 35   | 12   | 115.0 | 75.         | iC4             | nC <sub>5</sub> | 20.5      | 4.5                    |  |
| 36   | 12   | 115.0 | 75.         | iC4             | nC <sub>5</sub> | 20.5      | 5.                     |  |
| 37   | 7    | 292.4 | 400.        | C2              | iC4             | 2.378     | 1.252                  |  |
| -    | -    |       | -           | - Z             | 14              |           |                        |  |

## SPECIFICATIONS FOR MINIMUM TRAY AND MINIMUM REFLUX CALCULATIONS

ł

## APPENDIX B

## TABLE VIII

| SEP. | AVE. COLUMN | MI       |          |               |
|------|-------------|----------|----------|---------------|
| NO.  | TEMPERATURE | REFLUX   | VAPOR    | L/V           |
| 1    | 136.7       | 199.7483 | 209.7483 | .9523         |
| 2    | 116.8       | 125.0259 | 144.8656 | .8630         |
| 3    | 116.8       | 130.3439 | 150.3945 | .8667         |
| 4    | 116.7       | 133.6663 | 153.6857 | 。8697         |
| . 5  | 155.1       | 128.9871 | 158.8405 | .8121         |
| 6    | 122.2       | 195.1489 | 245.3989 | 。7952         |
| 7    | 122.0       | 181.9322 | 231.9369 | .7844         |
| 8    | 155.1       | 135.5993 | 165.5843 | .8189         |
| 9    | 122.0       | 190.6373 | 240.6384 | .7922         |
| 10   | 161.3       | 179.4019 | 239.7961 | .7481         |
| 11   | 161.1       | 184.3715 | 244.5327 | .7540         |
| 12   | 161.2       | 186.9306 | 247.1815 | .7562         |
| 13   | 202.9       | 69.4256  | 99.2737  | 。6993         |
| 14   | 98.7        | 46.7046  | 71.8177  | ,6503         |
| 15   | 100.4       | 42,7838  | 68.7474  | .6223         |
| 16   | 147.2       | 42.3556  | 66.6864  | .6351         |
| 17   | 147.4       | 41.7314  | 66.0713  | .6316         |
| 18   | 99.7        | 44.1964  | 69.7450  | .6337         |
| 19   | 137.3       | 50,6831  | 90.2968  | .5613         |
| 20   | 137.4       | 51.9853  | 91.7226  | .5668         |
| 21   | 137.6       | 48.3573  | 88.0342  | <b>.</b> 5493 |
| 22   | 158.2       | 52.3972  | 102.7808 | . 5098        |
| 23   | 158.2       | 53.2236  | 103.6007 | . 5137        |
| 24   | 201.8       | 57,0876  | 117.1256 | .4874         |
| 25   | 204.7       | 35.3036  | 75.4947  | .4674         |
| 26   | 153.4       | 41.4319  | 96.7120  | .4184         |
| 27   | 153.8       | 40.9794  | 96.4562  | 。4248         |
| 28   | 165.0       | 34.6211  | 94.6211  | .3659         |
| 29   | 165.8       | 29,7312  | 89.7312  | .3313         |
| 30   | 165.7       | 26.4703  | 86.4703  | .3061         |
| 31   | 165.6       | 23,2090  | 83.2090  | .2784         |
| 32   | 158,8       | 12.6352  | 62.6352  | .2017         |
| 33   | 159.0       | 10.4261  | 60.4261  | .1725         |
| 34   | 159.1       | 8.8770   | 58.8769  | .1508         |
| 35   | 159.2       | 7.1009   | 57.1029  | ،1244         |
| 36   | 163.6       | 4.2290   | 54.9617  | .0769         |
| 37   | 310.3       | 0.       | 10.0537  | .0000         |

#### RESULTS OF MINIMUM REFLUX CALCULATIONS AT THE AVERAGE COLUMN TEMPERATURE

#### TABLE IX

#### RESULTS OF MINIMUM TRAY CALCULATIONS AND MINIMUM REFLUX CALCULATIONS AT THE FEED TEMPERATURE

| SEP. | MINIMUM | MI       | NIMUM VALUES | <u></u> |
|------|---------|----------|--------------|---------|
| NO.  | TRAYS   | REFLUX   | VAPOR        | L/V     |
| 1    | 31.465  | 212.5239 | 222.5239     | .9551   |
| 2    | 22.210  | 132.7111 | 152.5508     | .8699   |
| 3    | 26.147  | 138.2891 | 158.3397     | .8734   |
| : 4  | 30.336  | 141.8423 | 161.8617     | .8763   |
| 5    | 18.475  | 129.8626 | 159.7160     | .8131   |
| 6    | 33.412  | 181.4120 | 231.6620     | .7831   |
| 7    | 25.908  | 169.1296 | 219.1343     | .7718   |
| 8    | 20.491  | 136.4887 | 166.4738     | .8199   |
| 9    | 29.979  | 177.3430 | 227.3441     | .7801   |
| 10   | 32,916  | 155.5311 | 215.9252     | .7203   |
| 11   | 35.601  | 160,2120 | 220.3704     | .7270   |
| 12   | 37.88   | 162.3980 | 222.6489     | .7294   |
| 13   | 11.123  | 57.2740  | 87.1221      | .6574   |
| 14   | 7.948   | 48,1704  | 73.2839      | .6573   |
| 15   | 6.418   | 43.8903  | 69.8538      | .6283   |
| 16   | 8.385   | 42.7202  | 67.0511      | .6371   |
| 17   | 8.027   | 42.0678  | 66.4077      | .6335   |
| 18   | 6.828   | 45.4454  | 70.9940      | .6401   |
| 19   | 9.144   | 49.4991  | 89.3128      | ₅5565   |
| 20   | 10.543  | 50,9731  | 90.7104      | .5619   |
| 21   | 7,686   | 47.3463  | 87.0232      | .5441   |
| 22   | 8.677   | 47.7859  | 98.1695      | .4868   |
| - 23 | 9.163   | 48.5875  | 98.9646      | .4910   |
| 24   | 18.153  | 37.0852  | 97.1232      | .3818   |
| 25   | 15.561  | 26.8026  | 66.9937      | .4001   |
| 26   | 12.414  | 31.9676  | 87,2477      | .3664   |
| 27   | 14.876  | 31.4509  | 86.9276      | .3618   |
| 28   | 7.396   | 27.4306  | 87.4306      | .3137   |
| 29   | 5.737   | 22.9115  | 82.9115      | .2763   |
| 30   | 5.016   | 19.8987  | 79.9897      | .2490   |
| 31   | 4.441   | 16.8859  | 76.8859      | .2196   |
| 32   | 2.607   | 8.4850   | 58.4850      | .1451   |
| 33   | 3.372   | 6.3972   | 56.3972      | .1134   |
| 34   | 3.078   | 4.9358   | 54.9358      | .0898   |
| 35   | 2.891   | 2.5520   | 53.0746      | .0481   |
| .36  | 2.693   | 0.       | 50.7132      | .0000   |
| 37   | 1.363   | .3691    | 10.3887      | .0355   |

•

,

## TABLE X

| SEP. | AVE. COLUMN | <u> </u> | INIMUM VALUES     |                   |
|------|-------------|----------|-------------------|-------------------|
| NO.  | TEMPERATURE | REFLUX   | VAPOR             | L/V               |
| 1    | 236.7       | 220.6110 | 230.6110          | .9566             |
| 2    | 116.8       | 168.3926 | 188.2323          | .8946             |
| 3    | 116.8       | 176.2237 | 196.2742          | .8978             |
| 4    | 116.7       | 181.3578 | 201.3771          | .9006             |
| 5    | 155.1       | 167.7101 | 197.5634          | .8489             |
| 6    | 122.2       | 254.8858 | 305.1357          | .8353             |
| : 7  | 122.0       | 237.9609 | 287 <b>.9</b> 656 | .8264             |
| 8    | 155.1       | 176.4567 | 206.4418          | .8548             |
| 9    | 122.0       | 249.2438 | 299.2449          | .8329             |
| 10   | 161.3       | 239.6462 | 300.0403          | .7987             |
| 11   | 161.1       | 246.4124 | 306.5725          | ,8038             |
| 12   | 161.2       | 249.6054 | 309.8562          | <b>.</b> 8056     |
| .13  | 202.9       | 79.3464  | 109,1944          | .7267             |
| 14   | · 98 • 7    | 66.3624  | 91.4754           | .7255             |
| 15   | 100.4       | 60.3973  | 86.3609           | .6994             |
| 16   | 147.2       | 54.6018  | 78.9326           | .6918             |
| 17   | 147.4       | 53.8633  | 78,2032           | .6888             |
| 18   | 99.7        | 62.5329  | 88.0815           | .7099             |
| 19   | 137.3       | 76.3983  | 116.0120          | .6585             |
| 20   | 137.4       | 78,1962  | 117.9334          | .6631             |
| 21   | 137.6       | 73.0519  | 112.7288          | .6480             |
| 22   | 158.2       | 88.7977  | 139.1811          | .6380             |
| 23   | 158.2       | 90.0640  | 140.4410          | •6413             |
| 24   | 201.8       | 93.3172  | 153.3550          | .6085             |
| 25   | 204.7       | 62.4642  | 102.6552          | .6085             |
| 26   | 153.4       | 82.6348  | 137.9148          | 5992 <sub>ہ</sub> |
| 27   | 153.8       | 81.8417  | 137.3185          | ₀596C             |
| 28   | 165.0       | 72.5697  | 132.5697          | 。5474             |
| 29   | 165.8       | 64.9512  | 124.9511          | .5198             |
| 30   | 165.7       | 59.9232  | 119.9231          | • 4997            |
| 31   | 165-6       | 54.9351  | 114.9350          | .4780             |
| 32   | 158.8       | 40.1247  | 90.1247           | 。4452             |

4

## RESULTS OF MINIMUM REFLUX CALCULATIONS BY THE MODIFIED UNDERWOOD METHOD

# APPENDIX C

#### TABLE XI

| PROBLEM                                |              | OPERATIN           | NG VALUES                               |                       |                        |
|----------------------------------------|--------------|--------------------|-----------------------------------------|-----------------------|------------------------|
| NUMBER                                 | TRAYS        | REFLUX             | VAPOR                                   | L/V                   | S <sub>m</sub> ∕S      |
|                                        | <u> </u>     | SEPARATION NU      | JMBER ONE                               |                       |                        |
| 08031.9523                             | 32.          | 2537.49            | 2547.49                                 | .9961                 | •9833                  |
| 08037.9523                             | 38.          | 853.512            | 863.512                                 | .9884                 | .8280                  |
| 08041.9523                             | 42.          | 639.847            | 649.847                                 | .9861                 | .7492                  |
| 08047.9523                             | 48.          | 499.75             | 509.75                                  | .9804                 | .6555                  |
| 08057.9523                             | 58.          | 397.043            | 407.043                                 | •9754                 | .5425                  |
| 08077.9523                             | 78.          | 259.993            | 320.098                                 | .9688                 | .4934                  |
| 08111.9523<br>08157.9523               | 112.<br>158. | 259.993<br>233.819 | 269.993<br>243.819                      | .9630<br>.9590        | .2809<br>.1991         |
|                                        |              | ,                  |                                         |                       |                        |
|                                        |              | SEPARATION NU      | JMBER TWO                               |                       |                        |
| 02023.8630                             | 24.          | 541.949            | 561.789                                 | .9647                 | .9254                  |
| 02026.8630                             | 27.          | 329.757            | 349.597                                 | .9432                 | ,8226                  |
| 02029.8630                             | 30.          | 256.786            | 276.626                                 | <b>,928</b> 3         | .7403                  |
| 02059.8630                             | 60.          | 147.598            | 167.437                                 | .8815                 | .3702                  |
|                                        | S            | EPARATION NUM      | IBER THREE                              |                       |                        |
| 2041.8667                              | 42.          | 205.26             | 225.311                                 | .9110                 | <b>.</b> 62 <b>2</b> 5 |
|                                        | S            | EPARATION NUM      | 1BER FOUR                               |                       |                        |
| 02058.8697                             | . 59.        | 178.774            | 198.794                                 | .8993                 | .5142                  |
| · .                                    | S            | EPARATION NUN      | MBER FIVE                               |                       |                        |
| 03021.8121                             | 22.          | 395.676            | 425:530                                 | •9298                 | .8398                  |
|                                        |              | SEPARATION NU      | JMBER SIX                               |                       |                        |
| 01041.7952                             | 42.          | 560.649            | 610.899                                 | <b>.</b> 91 <b>77</b> | <b>.7</b> 955          |
| 01055.7952                             | 56.          | 296.478            | 346.728                                 | .8551                 | •5966                  |
| 01109.7952                             | 110.         | 202.701            | 252.951                                 | .8013                 | .3037                  |
|                                        | . 5          | EPARATION NUM      | BER SEVEN                               |                       |                        |
| 01038.7844                             | 39.          | 3 <b>2</b> 4.51    | 374.255                                 | .8664                 | •6643                  |
|                                        | ·<br>· · S   | EPARATION NUM      | MBER EIGHT                              |                       |                        |
| 03031.8189                             | 32.          | 221.426            | 251.411                                 | <b>.</b> 8807         | .6403                  |
| ************************************** | ·····        |                    | ••••••••••••••••••••••••••••••••••••••• |                       | متحصيصني               |

## RESULTS OF TRAY BY TRAY CALCULATIONS

TABLE XI (Continued)

| PROBLEM                  |            | OPERATIN           | G VALUES           |                |                      |
|--------------------------|------------|--------------------|--------------------|----------------|----------------------|
| IUMBER                   | TRAYS      | REFLUX             | VAPOR              | L/V            | S <sub>m</sub> /S    |
|                          | S          | EPARATION NUM      | BER NINE           |                |                      |
| 01058.7922               | 59.        | 242.951            | 292.952            | .8293          | .5081                |
| 01074.7922               | 75.        | 212.122            | 262.123            | .8092          | .3997                |
| 01151.7922               | 152.       | 193.758            | 243.759            | .7949          | .1972                |
|                          |            | SEPARATION NU      | MBER TEN           |                |                      |
| 02040.7481               | 41.        | 607.130            | 667.524            | .9095          | .8028                |
| 02065.7481               | 66.        | 244.127            | 304.521            | .8017          | .4987                |
| 02081.7481               | 82.        | 213.342            | 273.737            | .7794          | .4014                |
| 02109.7481               | 110.       | 196.302            | 256.696            | .7647          | .2992                |
|                          | SE         | PARATION NUMB      | ER ELEVEN          |                |                      |
| 02050.7540               | 51.        | 394.981            | 455.141            | .8678          | .6981                |
|                          | SE         | PARATION NUMB      | ER TWELVE          |                |                      |
| 02060.7562               | 61.        | 322.75             | 383.001            | .8427          | .6211                |
|                          | SEP        | ARATION NUMBE      | R THIRTEEN         |                |                      |
| 05010.6993               | 12.        | 554.228            | 584.218            | .9487          | •9269                |
| 05012.6993               | 14.        | 212.243            | 242.223            | .8762          | .7945                |
| 05013.6993               | 16.        | 140.853            | 170.822            | .8246          | .6952                |
| 05016.6993               | 18.        | 102.188            | 132,138            | .7733          | .6179                |
| 05020.6993               | 22.        | 84.0553            | 113.994            | .7374          | ,5056                |
| 05026。6993               | 28。        | 69.8164            | 99.7296            | .7001          | <u>.3972</u>         |
|                          | SEP        | ARATION NUMBE      | R FOURTEEN         |                |                      |
| 01007.6503               | 8.         | 2438,09            | 2463.35            | .9897          | <mark>، 993</mark> 5 |
| 01008.6503               | 9.         | 300.896            | 326.162            | .9225          | .8831                |
| 01009.6503               | 10.        | 184.157            | 209.406            | ·8794          | .7948                |
| 01018.6503               | 19.        | 60.6723            | 85.8863            | .7064          | .4183                |
| 01023.6503<br>01035.6503 | 24.<br>36. | 57.1195<br>53.2799 | 82.2754<br>78.4050 | .6942<br>.6795 | .3312<br>.2208       |
| 01079.6503               | 30.<br>80. | 52.8558            | 77.9690            | .6779          | .2208                |
| <u> </u>                 | 000        |                    | 11.9090            | 00/17          | •099J                |
|                          | SEP        | ARATION NUMBE      | R FIFTEEN          |                |                      |
| 01006.6223               | ÷7.        | 451.649            | 478.121            | •9446          | .9169                |
| 01007.6223               | 7.         | 205,872            | 232.296            | .8862          | .8022                |
| 01008.6223               | 9.<br>12   | 126.863            | 253.319            | ·8274          | .7131                |
| 01012.6223               | 13.        | 70.0494            | 96.4132            | .7266          | •4937                |
|                          |            |                    |                    |                |                      |

| PROBLEM    | OPERATING VALUES |              |              |                       |                   |
|------------|------------------|--------------|--------------|-----------------------|-------------------|
| NUMBER     | TRAYS            | REFLUX       | VAPOR        | L/V                   | s <sub>m</sub> /s |
|            | SEPARATIC        | N NUMBER FIF | TEEN (Contin | ued)                  |                   |
| 01015.6223 | 16.              | 61.5118      | 87.7703      | .7008                 | .4011             |
| 01020.6223 | 21.              | 52.4221      | 78.6227      | .6668                 | .3056             |
| 01031.6223 | 32.              | 49.2316      | 75.2871      | .6539                 | .2006             |
| 01048.6223 | 49.              | 48.8366      | 74.8048      | <b>.</b> 65 <b>29</b> | .1310             |
| 01065.6223 | 66.              | 48.0254      | 74.0180      | .6488                 | .0972             |
|            | SEF              | ARATION NUME | BER SIXTEEN  |                       |                   |
| 04015.6351 | 17.              | 60.1383      | 84.5468      | .7113                 | .4932             |
|            | SEPA             | RATION NUMBE | ER SEVENTEEN |                       |                   |
| 04025.6316 | 27.              | 49,0454      | 73.4186      | .6680                 | •2973             |
|            | SEPA             | RATION NUMBE | R EIGHTEEN   |                       |                   |
| 01038.6337 | 39.              | 49.7624      | 75.3478      | .6604                 | .1751             |
|            | SEPA             | RATION NUMBE | CR NINETEEN  |                       |                   |
| 02009.5613 | 10.              | 427.382      | 466.950      | .9153                 | 。9144             |
| 02011.5613 | 12.              | 158.035      | 197.574      | .7999                 | .7620             |
| 02013.5613 | 14.              | 110.292      | 149.829      | .7361                 | .6531             |
| 02015.5613 | 16.              | 87.8118      | 127.360      | .6895                 | 。5715             |
| 02034.5613 | .35.             | 59.9664      | 99.5773      | .6022                 | .2613             |
|            | SEF              | ARATION NUME | BER TWENTY   |                       |                   |
| 02024.5668 | 25。              | 67.6525      | 107.379      | ,6300                 | .4217             |
|            | SEPAR            | ATION NUMBER | R TWENTY-ONE |                       |                   |
| 02044.5493 | 45。              | 56.6975      | 96.3796      | .5883                 | .1708             |
|            | SEPAR            | ATION NUMBER | R TWENTY-TWO |                       |                   |
| 03008,5098 | 9.               | 1471.98      | 1522.49      | .9668                 | .9641             |
| 03010.5098 | 11.              | 203.159      | 253.642      | .8010                 | .7888             |
| 03012.5098 | 13.              | 119.841      | 170.312      | .7037                 | .6675             |
| 03014.5098 | 15.              | 94.7783      | 145.248      | .6525                 | .5785             |
| 03017.5098 | 18.              | 72.4681      | 122.969      | .5893                 | .4821             |
| 03028.5098 | 29.              | 58.7836      | 109.234      | .5381                 | 。2992             |
| 03043.5098 | 44.              | 58.0364      | 108.444      | .5352                 | .1972             |
| 03085.5098 | 86.              | 57.3916      | 107.776      | <b>۵532</b> 5 ء       | .1009             |

| TABLE | XI | (Continued) |
|-------|----|-------------|

| TUDDO VI (OOUCTUGOG) | TABLE | XI | (Continued) |
|----------------------|-------|----|-------------|
|----------------------|-------|----|-------------|

| PROBLEM                                |            | OPERAT             | IVE VALUES         |                | ·                 |
|----------------------------------------|------------|--------------------|--------------------|----------------|-------------------|
| NUMBER                                 | TRAYS      | REFLUX             | VAPOR              | L/V            | S <sub>m</sub> /S |
| ······································ | SEPAR      | ATION NUMBER       | IWENTY-THREE       |                |                   |
| 03017.5237                             | 18.        | 77.4325            | 127.907            | .6054          | .5091             |
| 03017.5137                             | 28.        | 60.4841            | 110.927            | .5453          | .3272             |
|                                        | SEPA       | RATION NUMBER      | TWENTY-FOUR        |                |                   |
| 05018.4874                             | 20.        | 534.489            | 594.540            | .8990          | .9076             |
| 05020.4874                             | 22.        | 224.058            | 224.998            | <b>.78</b> 93  | .8251             |
| 05028.4874                             | 30.        | 87.4119            | 147.451            | .5928          | 。6051             |
| 05030.4874                             | .32.       | 74.5371            | 134.579            | ۰5539          | .5673             |
| 05035 <b>.487</b> 4                    | 37.        | 65.6396            | 125.678            | • 5223         | .4906             |
| 05043.4874                             | 45.        | 57.3694            | 117.408            | .4886          | .4034             |
| 05059.4874                             | 61.        | 54.5681            | 114.606            | .4761          | .2976             |
| 05089.4874                             | 91.        | 54.3054            | 114.343            | •4749          | .1995             |
|                                        | SEPA       | RATION NUMBER      | TWENTY-FIVE        |                |                   |
| 07033.4674                             | 35.        | 34.9538            | 75.1516            | <u>.4651</u>   | • 4446            |
|                                        | SEP.       | ARATION NUMBE      | R TWENTY-SIX       |                |                   |
| 04029.4284                             | .31.       | 48.3141            | 103.603            | .4663          | .4005             |
| 04045.4284                             | .47 •      | 41.5666            | 96.8492            | .4292          | .2641             |
|                                        | SEPAR      | ATION NUMBER '     | TWENTY-SEVEN       |                |                   |
| 04041。4248                             | 43。        | 43,2887            | 98.7721            | <u>. 4383</u>  | <u>.3460</u>      |
|                                        | SEPAR      | ATION NUMBER '     | TWENTY-EIGHT       |                |                   |
| 11007.3659                             | 8.         | 388.072            | 447.887            | .8665          | 。9245             |
| 11009.3659                             | 10.        | 1.05.978           | 165.761            | .6393          | .7396             |
| 11013.3659                             | 14.        | 51.6777            | 111.513            | °4634          | \$5283            |
| 11021.3659                             | 22.        | 36.9601            | 96.8893            | .3815          | .3362             |
| 11027.3659                             | 28.        | 35.7309            | 95.7021            | .3734          | .2641             |
| 11027.3659                             | 40.        | 35.4773            | 95.4681            | .3716          | .1849             |
|                                        | SEPA       | RATION NUMBER      | TWENTY-NINE        |                |                   |
| 11005.3313                             | 6.         | 572.920            | 632.442            | .9059          | .9562             |
| 11006.3313                             | 7.         | 135.760            | 195.257            | .6953          | .8196             |
| 11007 <sub>°</sub> 3313                | 7 •<br>8 . | 90.6759            | 150.096            | .6041          | .7171             |
| 11009.3313                             | 10.        | 54.8961            | 114.381            | .4799          | .5737             |
| 11011.3313                             | 10.        |                    | 101.843            |                | . 4781            |
|                                        | 12。<br>14. | 42.2749            |                    | .4151          |                   |
| 11013.3313<br>11017.3313               | 14.        | 36.3924<br>31.8544 | 96.0364<br>91.6173 | 。3789<br>。3477 | 。4098<br>。3187    |

| TABLE | XI | (Continued) |
|-------|----|-------------|
|       |    |             |

| TRAYS       | REFLUX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VAPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VAPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ц/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s <sub>m</sub> /s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SEPARATION  | NUMBER TWENTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y-NINE (Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22.         | 30.5920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.4363                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28.         | 30.1787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.1124                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40.         | 30.1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.1075                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SEI         | PARATION NUMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ER THIRTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.          | 61.8161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .6170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>.</b> 5016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .3583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .2280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 26.5994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86.5001                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40.         | 26.6235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86.5882                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SEPAI       | RATION NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THIRTY-ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.          | 198.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 275.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .7714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .8882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.          | 91.1304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 149.878                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .6080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 。7402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.          | 52.5111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.451                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .6344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.          | 46.0300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.902                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .5551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10.         | 33.5060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92.5570                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 。444 <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14.         | 25.5823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84.9259                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .3172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28.         | 23,1321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82,9906                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1586 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .34.        | 23.1581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.0625                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>.</b> 2788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 。1306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40.         | 23.1810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.1282                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1110_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SEPAI       | RATION NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THIRTY-TWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9.          | 18.9888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.9467                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 2897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u>1</u> 0. | 19.1473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69,0583                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>.2772</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12.         | 16.2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66.2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>.</b> 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .2172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16.         | 14.2483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64.2806                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1629 ،                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 17.         | 13.9134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63.9661                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 。2 <b>17</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .1534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28。         | 13.8981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63.9059                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>.217</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 。0931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 32.         | 13.9161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63.9194                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .34.        | 13.9455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63.9475                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 。0767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SEPAR       | ATION NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THIRTY-THREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.          | 32.7753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82.3217                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .3981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .5620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10.         | 14.8934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64.8742                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>3372، 3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14.         | 10.7480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.0388                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16.         | 9.9250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60.3111                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2108 ،                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28.         | 9.1935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59.6788                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1204<br>.1054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -           | 22.<br>28.<br>40.<br>SEI<br>8.<br>10.<br>14.<br>22.<br>28.<br>40.<br>SEPAI<br>5.<br>6.<br>7.<br>8.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>14.<br>28.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>12.<br>16.<br>17.<br>28.<br>32.<br>34.<br>40.<br>SEPAI<br>9.<br>10.<br>12.<br>16.<br>17.<br>28.<br>32.<br>34.<br>40.<br>SEPAI | 22. 30.5920<br>28. 30.1787<br>40. 30.1301<br>SEPARATION NUMBI<br>8. 61.8161<br>10. 42.1093<br>14. 30.4799<br>22. 26.8083<br>28. 26.5994<br>40. 26.6235<br>SEPARATION NUMBER<br>5. 198.900<br>6. 91.1304<br>7. 52.5111<br>8. 46.0300<br>10. 33.5060<br>14. 25.5823<br>28. 23.1321<br>34. 23.1581<br>40. 23.1810<br>SEPARATION NUMBER<br>9. 18.9888<br>10. 19.1473<br>12. 16.2180<br>16. 14.2483<br>17. 13.9134<br>28. 13.8981<br>32. 13.9161<br>34. 13.9455<br>SEPARATION NUMBER | 22. 30.5920 90.4363   28. 30.1787 90.1124   40. 30.1301 90.1075   SEPARATION NUMBER THIRTY   8. 61.8161 120.967   10. 42.1093 101.383   14. 30.4799 89.9804   22. 26.8083 86.5828   28. 26.5994 86.5001   40. 26.6235 86.5882   SEPARATION NUMBER THIRTY-ONE   5. 198.900 275.854   6. 91.1304 149.878   7. 52.5111 111.451   8. 46.0300 104.902   10. 33.5060 92.6570   14. 25.5823 84.9259   28. 23.1321 82.9906   34. 23.1581 83.0625   40. 23.1810 83.1282   SEPARATION NUMBER THIRTY-TWO   9. 18.9888 68.9467   10. 19.1473 69.0583   12. 16.2180 66.2007   16. 14.2483 | 28. 30.1787 90.1124 .3349   40. 30.1301 90.1075 .3344   SEPARATION NUMBER THIRTY   8. 61.8161 120.967 .5110   10. 42.1093 101.383 .4153   14. 30.4799 89.9804 .3387   22. 26.8083 86.5828 .3096   28. 26.5994 86.5001 .3075   40. 26.6235 86.5882 .3075   SEPARATION NUMBER THIRTY-ONE   5. 198.900 275.854 .7714   6. 91.1304 149.878 .6080   7. 52.5111 111.451 .4712   8. 46.0300 104.902 .4388   10. 33.5060 92.5570 .3620   14. 25.5823 84.9259 .3012   28. 23.1321 82.9906 .2787   34. 23.1810 83.1282 .2789   SEPARATION NUMBER THIRTY-TWO   9. 18.9888 68.9467 .2754   10. |

| PROBLEM           | OPERATING VALUES |                         |             |               |                   |
|-------------------|------------------|-------------------------|-------------|---------------|-------------------|
| NUMBER            | TRAYS            | REFLUX                  | VAPOR       | L/V           | s <sub>m</sub> /s |
|                   | SEPAI            | RATION NUMBER           | THIRTY-FOUR |               |                   |
| 12005.1508        | 6.               | 27.4057                 | 76.9185     | .3563         | .5130             |
| 12007.2508        | .8.              | 26.6218                 | 66.4521     | .2501         | .3848             |
| <u>12009.1508</u> | 10.              | 11.5815                 | 61.7448     | .1876         | .3078             |
| 12013.1508        | 14.              | 7.0353                  | 57.7644     | .1218         | .2199             |
| 12025.1508        | 26.              | 5.6901                  | 56.6304     | .1005         | .1184             |
| 12019.1508        | . 30.            | 5.6771                  | 56.6201     | .1003         | .1026             |
|                   | SEPAI            | RATION NUMBER           | THIRTY-FIVE |               |                   |
| 12005.1244        | 6.               | 22.0701                 | 71.5704     | .3084         | .4818             |
| 12007.1244        | 8.               | 12.4621                 | 61.4515     | .1995         | .3614             |
| 12009.1244        | 10.              | <b>7.</b> 0 <b>8</b> 40 | 57.7044     | .1228         | .2891             |
| 12013.1244        | 14.              | 3.0238                  | 54.2902     | .05 <b>57</b> | .2065             |
| 12017.1244        | 28.              | 1.9959                  | 53.4582     | .0373         | .1032             |
|                   | SEPAI            | RATION NUMBER           | THIRTY-SIX  |               |                   |
| 12005.0769        | 6.               | 19.0671                 | 69.1680     | .2757         | .4488             |
| 12007.0769        | 8.               | 8.8502                  | 59.7138     | .1482         | .3366             |
| 12009.0769        | 10.              | 3.0278                  | 54.7319     | .0553         | .2693             |
| 12011.0769        | 12.              | .7239                   | 52.8198     | .0137         | 。2244             |
| 12017.0769        | 18.              | .0689                   | 52.3389     | .0013         | .1496             |
| 12015.0769        | 26.              | .0514                   | 52.3409     | .0010         | .1036             |
|                   | SEPAR            | ATION NUMBER T          | HIRTY-SEVEN |               |                   |
| 07016,0000        | 18.              | <b>.</b> 1478           | 9.8673      | 。0150         | .0757             |

r

. ..

Ð

#### TABLE XI (Continued)

#### VITA

#### John Richard Gray

#### Candidate for the Degree of

#### Master of Science

# Thesis: REFLUX TO TRAYS CORRELATION FOR MULTICOMPONENT DISTILLATION SYSTEMS

Major Field: Chemical Engineering

Biographical:

- Personal Data: Born in Beaumont, Texas, February 7, 1937, the son of Hayes A. and Bonnie E. Gray
- Education: Attended public schools in Beaumont, graduating from French Elementary School, James Bowie Junior High School, and French High School; received the Bachelor of Science degree from Lamar State College of Technology in May, 1960; completed the requirements for the Master of Science degree in May, 1968; professional affiliation is with the American Institute of Chemical Engineers.
- Professional experience: Employed by the Phillips Petroleum Company, Borger, Texas as a process engineer from 1960 to 1962; employed in the Computing Department of Phillips Petroleum Company, Bartlesville, Oklahoma, 1962 to present.