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CHAPTER l 

INTRODUCTION 

Low frequency a~oustical measurements of Young's modulus and the 

associated attenuation coefficient as a function of magnetic field have 

been performed on single crystal and poly crystalline niobium (Nb) in 

tbe superconducting region. The purpose of this investigation is to 

detect changes in these physical properties of the Nb crystal which may 

give a better insight into type II superconductivity. The experiment 

utilizes a parallel plate capacitor transducer technique with the sample 

serving as one plate of the capacitor, This method may be used for 

comparison with data taken by other m~ans. The shear modulus may also 

be measured with this same apparatus. Moduli .changes may be measured to 

one part in 109. Typically a Q of 106 is measured in Nb. The attenua­

tion is measured by the free decay method (1) within an experimental 

error of less than 5%, The time rate of change of the voltage amplitude 

from the resonant frequency signal of the cylindrical Nb rod was used to 

measure the attenuation coefficient, or loss factor. The velocity of 

sound in the material may also be computed from this data. Magnetiza­

tion measurements have been made in conjunction with this work in order 

to determine when the sample began to change phase into the mixed state, 

8cl O 
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CHAPTER II 

THEORY 

Superconductivity has several general.features. The word.llsuper-

conductor'' arose from a state of matter with zero electrical resistivity, 

i.e. , it ·is a "sup.er" conductor. A superconductor is better character-

ized by its .diamagnetic suseptibility. The perfect diamagnetism result-

ing in the Meissner effect. (2) is. the fundamental basis of superconduc-

tivity., At the transition temperature between superconducting and 

normal states other physical parameters also experience unusual changes, 

e.g., the heat capacity is discontinuous (3). 

Superconductivity 

Superconductors can'be.classified by two types. (3). Type I is 

distinguishable by an.abrupt.change'in.resist:1.vity, and other parameters, 

at. the,interphase between superconducting and normal states. Type II is 

distinguished by a gradual .. change· of magnetization, or other parameters, 

from one state to the other through what is termed the intermediate, or 

mixed state. Nb is a type II material, as ·are most alloys. Most pure 

metals are type I. The penetration depth, ">t, gives the, depth that an 

external magnetic field can penetrate into the superconducting sample. 

(4). Another term, the coherence lengtht, is the.distance between 

-4 strongly interacting electrons and is.usually the order of 10 cm (4). 

The superconducting state is a lower energy state than the normal state 

2 



by an energy gap of A. Electron pairs, called Cooper pairs (5), form 

and drop the system to tbe lower energy of the superconducting ground 

state. The relation of the coherence length to the penetration depth 

(letermines the type of superconductor. For())\, type I superconductors 

are formed, and s<A indicates a type II superconductor. 

3 

Type I superconducting properties have been formulated into a micro­

scopic, or quantum mechanical, theory called the B.c.s. theory (5). This 

theory has accounted for all of the experimentally observed phenomena 

up to date. It accounts for the electron pairing, the energy ground 

state of a superconductor, the penetration depth, the coherence length, 

the Meissner effect, and the transition temperature. It is the electron' 

pairing that reduces the resistivity to zero in.,t·be superconducting 

state. Attenuation of acousticalwaves is due partly to the conduction 

electron scattering from the pbona1 (or lattice) field while in the no~­

mal state. When the material undergoes a superconducting transition, the 

attenuation is reduced as the electron pairs themselves lower their 

energy. 

The B.C.S. theory fails to predict type II superconductivity. While 

the mechanism of both types is the same, i.e., electron-phonon interaction 

(3), the magnetj.c properties of the superconducting-normal transition 

are entirely different between the two types. This type II supercon­

ducting transition may be caused in several ways. lt is necessary to 

supply the electron pairs with enough energy to jump the gap into the 

normal state. The temperature may be raised above the critical tempera­

ture to restore the normal state. Critical temperatures for all 

materials known today are below 20°K. Raising the temperature amounts 

to supplying thermal energy. It is also possible to optically excite 
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electron pairs across tbe gap into the normal state (6). Alternately, 

a magnetic field of sufficient intensity will destroy the superconducting 

state and restore the normal state by decreasing the energy gap. Lower 

temperatures require higher magnetic fields for this transition. 

The Meissner effect is observed in a material immersed in a uniform 

magnetic field when it is cooled below the transit ion temperature. ln 

the superconducting state the lines of flux Bare ejected out of the 

sspecimen (2), When a type I specimen in the superconducting state is 

exposed to a uniform critical field,Hc, the magnetic field suddenly 

penetrates the specimen fully, and the normal state is regained. ln 

type IJ materials at a lower critical field, HCl' the magnetic field 

lines begin to penetrate the sample. Tben at a higher field, HC 2, the 

field finally penetrates the material completely and the normal resis­

tivity returns" The mixed state exists between Hcl and Hc2 where the 

normal and superconducting states are believed to coexist. As the 

field begins to penetrate a type II material, it enters the sample in 

quanta with flux jumps observed in some materials (7), To satisfy 

Maxwell's electrodynamic equations, the magnetic field B must have only 

a tangential component at the surface of the material. A normal com­

ponent would imply a discontinuity in the magnetic field and contradict 

div B = 0. The surface currents of the superconductor shield the inner 

material from the magnetic field, leading to the Meissner effect. 

Thermodynamics can be used to describe the phase transition from 

the superconducting to normal state by means of the magnetic energy 

term (4). When the first law of thermodynamics is extended to include 

the magnetic term, it becomes 

d U = TdS - PdV + HdM 
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where His the magnetic field and Mis the magnetization per unit volume. 

For a perfectly diamagnetic superconducting state 

M = -H/47r. 
Therefore, 

dU = TdS PdV HdH/4ir _ 
Using the Gibbs potential, 

dG = VdP - SdT + HdH/4Tr. 
Thus, at constant temperature and pressure, 

L\G = Hc2/8ir 
where He is the critical field. He for a type 11 superconductor is de· 

fined so that Hc2/81'requals the difference of thermodynamical potential 

density between the normal and superconducting states in zero magnetic 

field (3). The free energy difference between the superconducting and 

normal phase is 

l1F = H/IBTT = LlU - T~S. 
Nernit Os Law states tbat at absolute zero of temperature, ~S must be 

zero. The ref ore, the energy gap is given by 

b. U = He 2(0)/ 8Tr 
where Hc(O) is the critical field at absolute zero in temperature. From 

the B.C.S. theory (5) for type l superconductors, this energy gap is 

calculated to be 3,52kTc, where k is Boltzmann's constant and Tc is 
I 

the critical temperature. The latent heat of tran1ition from the super• 

conducting to normal phase is given by 

L = -(T Hcl4rr) ~ ~c • 
This latent heat of transition implies a first order phase tra.ns.ition 

for type I superconductors. A second order phase transition would mean 

a discontinuity in dS/dT, rather than a discontinuity in S, a, is the 

case for a latent beat. As tbe temperature approach•• the critical 

temperature, the magnetic latent heat approache1 zero. For a tran1ition 

in zero magnetic field, a first order phase transition occur,. Another 
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term involving the stres~ and strain may be added to the differential 

Gibbs•s function equation: 

dG = -SdT + VdP MdH ~ T;dOT 
wbere 7[ is the strain per unit volume andO"f is the stress (8). Phase 

transitions are related to the discontinuities that appear in the 

derivatives of the Gibb•s function. A discontinuity in the Nth deriva-

tive implies an Nth order phase change. 

oG 77t. 
dOT 

Thus, a discontinuity in the strain would mean a first order phase 

transition. Since the strain in related to the stress by 

T = ""S··ur L £....J. ~J j 
where Sij is a stiffness constant. 

Therefore, 

S .. DC 
IJ 

wbere7nis the effective elastic constant, or modulus. Then a second 

order phase transition 

It is reported (9) that 

would result by a discontinuity in 

~2G 
o0-2 

oc ill-1 
H in niobium is a second order phase transi­

Cl 
tion, since there was a discontinuity in dB/dH observed, and not a dis-

continuity in the attenuation. The attenuation is related to the strain, 

but is a complex quantity. A first order phase transition must have a 

discontinuity in the magnetization and the attenuation measurements. 

Velocity 

The change in velocity as a function of temperature may also be 

calculated in the superconducting state (10). A velocity measurement 

requires the measurement of the length of the sample and its resonant 

frequency. The tabulated values for the linear coefficient of expansion 
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can only account for approximately 10% of the observed change in fre-

quency from room temperature to liquid helium temperature in our sample. 

The coefficient of expansion of Nb is relatively small in the 40K-200K 

range, and this effect is neglected in this paper. The lattice itself 

causes a shift in frequency due to the change in lattice constant with 

temperature. 

Elastic Modulus 

The elastic moduli are functions of the lattice constants (11) and 

wave propagation direction in ~he crystal. A wave directed along the 

· CuoJ direction would have an effective .e.l.astic constant for that direc-

tion. These effective elastic constants have special names and are 

called elastic moduli. For exemple, Young's m9(iulus is the effective 

elastic constant that results when considering a tension along the length 

of a long thin rod. Young's modulus is defined as the ratio of unit 

stress to unit deformation. The velocity of propagation of the acousti-

cal wave is then given by 

V : (7()/J')J.12 

where,7Hs the modulus, or effective elastic constant, f is the density, 

and'\! is the velocity. Since at the fundamental resonance, measured by 

an oscillator, the length of the rod is half the wavelength, the velocity 

can be calculated. Knowing the density of the material as a function of 

temperature then allows computation of the effective elastic constant. 

The elastic constants define the longitudinal modulus for different 

crystal directions as given below (3): 

. y;J.O 

:~~Yi11 

-- t ( Cu + Cu + 2 C...,) 

~ C Cu+ 2C11 + 4 C4+) 
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1100 = c 11 • 

There is a difference between isothet:mal and adiabatic elastic constants; 

however, this difference is small at low temperat~res. This research 

i• concerned with adiabatic elastic constants only. 
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EXPERIMENTAL TECHNIQUE 

Method In General 

The experimental technique involves a capacitor transducer (12) 

with the sample used as one plate of the capacitor. The electronic 

signal is terminated in a brass electrode of approximately tbe same 

diameter as the sample and aligned coaxial with it. The electrode 

and cylindrical sample form a parallel plate capactior. The spacing 

between the electrode and sample is adjustable in order to insure 

sufficient driving power to convert the electrical signal in the elec• 

trode into an acoustic signal in the sample. The A·C signal in the 

electrode causes a varying force on the other plate of the capacitor 

and at the same frequency as the A·C source, when the signal is biased 

completely above ground. Thus, the oscillator is tuned to the resonant 

frequency of the rod as detected by the voltage output signal from the 

rod. 

When the plates of this capacitor are approximately parallel, the 

longitudinal resonance of the rod is easily found. When the plates are 

not very parallel, a bending mode in the sample is excited, due to one 

side of the sample end being driven harder than the opposite side. If 

a fin is cut on the end of the sample and the electrode fit to each side 

of the fin, a shear wave may be excited (Figure 1). Each mode has been 

observed; although, the primary Diode of itlterest in th is work was the 

··-· .. : ... ..... ::, 
.. ~_,,;-.;._,.;f,i* -... 
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longitudinal resonance and Young's modulus. 

The sample was clamped at its center, because this was the nodal 

plane for the fundamental resonance. Since a nodal plane experiences no 

motion at resonance, clamping at this position interfered in a minimum 

way with the attenuation measurement. The resonant frequency was the 

actual measurable quantity with its change directly proportional to the 

change in modulus, 

f' = = v/2l -vinlf 1 
/ 2 l 

where f = frequency, '1J" = velocity, \ = length of sample, A= wavelength, 

6fTI= modulus, and?= density. It is shown in Appendix B that 

,..._, - 2 ~f 
f 

Therefore, the accuracy in the modulus changes depends only on the 

accuracy of the frequency. 

Control Experiments 

In otd•r to have accurate measurements, all possible influencial 

factors must be investigated. In this experiment there were several 

important variables to consider. A method of measuring the temperature 

accurately was the first project. A thermocouple of gold•cobalt versus 

silver-gold was used. This combination gives a high thermoelectric 

power, i.e. a large change in voltage per degree change in temperature. 

Since calibration tables for this thermocouple were not readily avail· 

able, a calibration was necessary. Tbe relation of voltage to tempera· 

ture within a third order approximation was sufficient for temperature 

readings of O .1°K. 

EMF - d:. T + ,B T 2 + YT 3 

Using three known temperatures as calibration points, three equations 

with three unknowns were obtained. These equations were used to solve 



for~' ,S, and Y. With these constants known ( o(. :::= 10-2 , ~-= 10·5, 

Y ~ 10~7), the computer was able to calculate the voltages for any 

desired temperature. The program for the computer is included in 

Appendix A. 

12 

Clamping the specimen effected the measurement of tbe attenuation 

and velocity and was investigated seperately. Two methods of clamping 

were devised, One way was to clamp the specimen between two wires at 

the center nodal plane. Those wires served as an electric,d contact and 

ground for the specimen. It proved to be very difficult to apply the 

correct tension in these fine wires in order to both support the speci· 

men and not break the wires upon thermal contraction at low temperatures. 

A successful conf igurat i.on used a nylon monof ilament with a fine wire 

coiled around it to serve as a ground connection. A small groove wascut 

around the center of the specimen to facilitate the assembly procedure. 

The rod was so loosely suspended now that the slightest vibration in 

the building would cause the entire rod to move. This motion of the 

specimen made measurements difficult to obtain. 

An alternate method comprised of four needle-pin supports proved to 

be much more easily assembled and more reliable at low temperatures. 

Witb tbe groove cut around the perimeter of the nodal plane, the needle 

points allowed the specimen to hang relatively free on the four contact 

points. The pressure that the pins applied on the sample caused a change 

in the attenuation, as seen in Figure 2. The minimum pin pressure was 

sought for each time. It was easier to achieve this optimum pin pressure 

than to gamble with the wire suspension. The position of clamping is, 

as would be expected, an optimum in attenuation on the nodal plane 

( 'Figure 3). 
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The amplitude dependence of the attenuation was investigated (10). 

There were two ways to adjust this variable:· 1) by the oscillator out­

put voltage adjustment, and 2) by the electrode spacing of the capacitor 

plates. When the electrode spacing becomes too small, the resonant 

frequency of the rod gradually increases, as does the attenuation. This 

effect is corrected by increasing the spacing in the capacitor by backing 

the electrode away until any further adjustment would not change the 

resonant frequency. Any spacing greater than this critical spacing has 

no effect on the attenuation. The oscillator amplitude proved to have 

no effect in the normal state. In the superconducting state, however, 

an increase in amplitude slightly lowered the resonant frequency, but 

did not effect the attenuation. This is shown graphically in Figures 4 

ands. 

A check was run on the resonant frequency of the poly crystalline 

rod to make sure that this resonance was the longitudinal one. The 

resonant frequency should have a harmonic approximately double the 

fundamental. It will be slightly less than double due to dispersion. 

It should be noted .that the bending mode does not Simply double. By 

checking tbe resonances between the fundamental and the first harmonic, 

the type of resonance can be determined. The differences between the 

bending harmonics vary in a smooth fashioh. For the bending mode a plot 

of taf • fn•l - fn versus f should yield a smooth half parabola type 

curve. 

As stated by others (13) the ambient pressure also effects the 

attenuation measurements. As long as the pressure is kept below 500 

microns, there is no pressure dependence. Above that value, the 

attenuation increases. Also, surface dirt on the sample causes a slight 
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increase in attenuation. 

The effects of an external magnetic field were also investigated 

(14). The magnet used 'f8S calibrated with a Hall probe and gau•s ~ter. 

The residual field was about 50 gauss. Four inch cylindrical pole faces 

with a four inch gap were used. The field was applied perpendicular to 

the sample's cylindrical axis. The field varied approximately.so gauss 

from the center to one end of the sample and only a few gaus1 acroas its 

width out of a 2000 gauss field, 

Apparatus and Measurements 

The block diagram in Figure 6 gives an overall view into the 

instrumentation required for these measurements. The origin of the 

electronic signal is an oscillator, a General Radio Frequency Syntbe· 

1izer, Type 1161 • A. lt operates from O • 100 kHz and has an accuracy 

of nine significant figures in the frequency. The output voltage of the 

oscillator is O • 2.2 vpp. The signal next sees a 50:1 step-up trans• 

former which increases tbe maximum driving voltage to 110 vpp. A micro· 

switch is added to the signal line in order to be able to cut off the 

driving signal when desired, The divider network channels the incoming 

signal into the sample and directs the outgoing signal" from the sample 

onto the F~M detector. The divider network and F·M detector were 

designed and built by J. F. Guess and G. B. Thurston (15) for a similar 

purpose in the audible frequency range. 1f the driving signal is 

referenced about the ground voltage, then the input frequency is 

doubled between the electrode and the sample. Thus, a driving frequency 

of one-half the resonance of the rod is required. However, if the input 

signal is referenced completely above, or below, ground voltage, then 
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the frequency is not doubled in the capacitor formed by the sample. The 

motion of the end of the sample due to the capacitive driving force 

c~uses a change in capacitance of the capacitor formed by the electrode 

and sample. This capacitor is in parallel with the tank circuit of the 

10.7 ?ifiz F•M detector and modulates the detector about the 10.7 MHz 

center frequency. This center frequency is adjustable by a variable 

capacitor in the tank circuit. The modulation frequency is generally 

around 40 kHz. The F·M detector feeds the signal into a discriminator 

which picks out the resonant frequency of the rod. When the resonant 

frequency is centered correctly, a D.C. voltmeter will null at zero 

volts between the discriminator output and ground. This 40 kHz signal 

is then amplified by means of a tuned amplifier and recorded on a higb 

speed level recorder, as well as being monitored on an oscilloscope. 

The attenuation can be measured in two ways. The Q may be measured 

directly, f/~f, by observing the frequency at the 3 db points (band· 

width) on each side of the resonant frequency. This method is prefer­

able when the Q is low and the resonant frequency is not well defined. 

The Q is a measure of the total energy in the sample as compared to the 

decrease in energy per cycle dissipated by the sample. The second 

method is called the free decay method. In this method the signal that 

drives the sample at its resonance is cut off via the micro-switch. The 

rate of decay of the energy is used to determine the attenuation. This 

decay of output signal is exponential, but when recorded on a logarithmic 

recorder as a function of time, it gives the time constant, or decay 

time, directly by the slope of a straight line. This decay time is 

related to the Q of the sample directly by 

Q = 1tf r 
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where f is the frequency and 'Tthe decay time. One usually talks about 

~- Q-1, since 7\ is proportional to the attenuation. Therefore, 

7"\. = (#db decay)/ 8~68 Trf T nepers . 
The temperature was measured by a Au· Co versus Ag· Au thermo-

couple. A Leeds and Northrup Potentiometer, Type K-4 was used with an 

electronic D·C Null Detector. The potentiometer is accurate to O.J..µV, 

giving a temperature accuracy of better than 0.1°K. As mentioned 

earlier, the thermocouple was often calibrated to insure accuracy. 

The pressure was measured by a Kinney Vacuum Gauge, Model KTG·3. 

This was calibrated with a Kinney McLeod Gauge, Type TDl·MK 111 below 

100 microns of pressure. 

The sample was suspended on four pin supports inside a brass can, 

so that the sample chamber could be evacuated, The sample chamber (see 

figure 7) contained the electrode, tbe sample, the temperature thermo• 

couple, and a resistor for heating the chamber. The chamber was sur· 

rounded by the conventional double dewar system for liquid helium, Then 

the entire assembly was injected between the pole faces of the electro· 

magnet. The magnetic field could be read within 2%, 

Niobium crystals are body centered cubic. Both the single crystal 

and poly crystalline samples were obtained from Materials Research Cor-

poration, Orangebury, New York. A typical mass spectroscopic analysis 

was included with each sample. 100 ppm of tantalum was reported with 

only a few ppm, or less, of all other impurities. The single crystal is 

oriented along the (117) direction. The single crystal is 1,725 inches 

long and .25 inch in diameter. The poly crystal is 1.600 inches long and 

.25 inch in diameter. The resonant frequency of the single crystal was 

about 45 kHz, and that of the poly crystal was about 40 kHz. 
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CHAPTER IV 

RESULTS 

The results of this work can be classified into the following four 

groups: 

A. Resonances, 

B. Temperature drift measurements, 

C. Attenuation measurements as a function 

of magnetic field, and 

D. Changes in Young's modulus as a function 

of magnetic field, 

Resonances 

The poly crystal resonances were found at 41,438,4 hz and 81,978.2 

hz at nitrogen temperature. This shows a 2,17% dispersion at the first 

harmonic. 

In the single crystal two resonances were found close to the ex­

pected frequency. They were approximately 46.5 kHz and 46.7 kHz at 

liquid helium temperature and approximately equal magnitudes. This led 

to an inve~tigation of a possible bending mode, presupposing that the 

sample was not alligned well. This did not turn out to be the case. 

Many small resonances were found, but only a few had an attenuation 

coefficient similar to the original two ( Table 1 and Figure 8). 

However, it was found that many of the resonances appeared in 
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TABLE I 

RESONANT FREQUENCIES 

Nb Single Crystal at Nitrogen Temperature 

F reguency (Hz) 

10,125. 
10,481. 
11, 962. 
13,080. 
15,665. 
16,681. 
17 ,010. 
19,955. 
20,938. 
25,260. 
27,585.02 
30,855. 
33,562. 
36,305. 
37,620. 
39,310. 
41,420. 
45,250. 
46,229.18 
46,374.08 
48,040.93 
49,455. 
50,200. 
51,840. 
59,580. 
69,850.5 
75, 170. 
75,660. 
78,520. 
79,328. 
90, 172.0 
99,235. 

Comments. 

large 
small 
large; decay time about 1 second 
small 
small 
small 
small 
large 
large 
large 
very large; decay time about 30 seconds 
small 
small 
small 
small 
Sll\all 
la,rge 
medium 
£110; 
f 111; 
large 
small 
small 
small 
small 
large 
small 
small 
small 
small 
large 
small 

decay time about 10 seconds 
decay time about 10 seconds 
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closely group pairs. This brings about a theory that the crystal itself 

caused the two resonances. Since the crystal is oriented in a (117) 

direction, this proves to be possible. The [770 direction is not an 

easy direction in which to propagate an acoustical wave. However, the 

pure mode directions, [oo:y , [111], and (ilo], are easy directions in 

which acoustical propagation occurs. The [110] is closest to the 1)71], 

and the [111] is the next closest of these three pure modes. The wave 

finds it easier to split and propagate partly along the ~10] and partly 

along the [111] than to propagate in the (77Q direction (see Figure 9). 

This is understandable for high frequei:l~i,u, but rather odd for these 

low frequencies. However, it appears to be what is happening. From 

published tables (15) 

C 11 = 1920 , C 12 = 1340 , C ++ = 568 

Therefore, the longitudinal effective elastic constants are 

m 110 - [ 11 oJ L = i ( cu + cu ... 2 c"l-+) = z 19 B 
and 

m111 = [1 l 1Jl.. = t(C11 +2Cn +-4-C.4) = 2291. 
Therefore, 

Since 

then 

or 

7T7110/ m1u = 0. 96 

v = f ;\ = -lfn/f. 

c f1 1 r?. )2 == mi I m2 
' 

( £10/ f111 )2 =- ( 4 5.13 k Hi I 4 5. 39k l-li)2 = 0. 99 
This is in reasonable agreement. The [llq} direction should have the 

lower frequency:; since its modulus is less than that of the [111) direc-

tion. 
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Temperature 

This area is not restricted to the superconducting region, but it 

includes a large temperature range for comparison. Figure 10 shows the 

Bordoni Peak (17) in the single crystal of Nb. Figure 11 &bows the 

changes in Young's modulus as a function of temperature. A relaxation 

process is observed around 40°K. Since this temperature is hard to 

attain and this is not the primary concern of this paper, no further 

investigation was conducted. Note, however, that the relaxation process 

does correspond to the second peak on the Bordonj graph. The third 

graph shows the changes in modulus for the poly crystalline Nb sample 

as a function of temperature. No relaxation process is seen in Figure 

12. 

Attenuation 

The attenuation measurements were first made in· the normal sta·te at 

nitrogen temperature in order to show the normal magnetic effect. Any 

dependence observed in the normal state must be subtracted from the 

superconducting effect to find the dependence due only to the super­

conducting state. The single crystal showed no magnetic effect in the 

normal state, j.e., the niobium single crystal attenuation is independent 

of field up to 2700 oersted (Figure 13). The poly crystalline samp,le 

showed a very small magnetic effect in the attenuation measurement. This 

normal state effect was small enough . to be neglected in the supercon· 

ducting measurements (Figure 14). 

The superconducting results proved to be interesting. The poly 

crystalline sample (Figure 15) recorded a spike in the attenuation at 

800 oereteda, wbicb is believed to be Rei· Tbe attenuation changed 
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slope at 1700 oersteds and again at 2600 oersteds. Although only one 

point indicates this last change in slope, this occurs at a value of 

magnetic field believed to be HC2 . The first change in slope occurs 

when the field intervals were increased. This should be repeated when 

equal field and time intervals between all measurements can be attained 

to insure no long relaxation process is connected with the changing 

field. Neuringer and Shapira (18) report that the slower changes in 

field reduce the number of flux jumps. The single crystal [110] data 

is somewhat similar (Figure 16). A spike in the attenuation occurs 

at 750 oersteds, believed to be indicative of HCl' 'nlis is followed by 

a generally positive slope up to 2000 oersteds. The bumps in this part 

of the graph are believed to be representative of flux penetrations. 

The negative slope in the higher field region corresponds to the poly 

crystalline data. The single crystal [111] data is odd, because the 

spikes in the attenuation occur at 400 and 1000 oersteds. This oddity 

may be explained, since the (111] direction is nearly 45° to the [77~ 

direction, causing the [111] propagation to be partly shear in nature. 

All field runs in the superconducting state were made after raising the 

temperature and letting the sample return to the normal state in order 

to allow any trapped flux to be released, unless the run is labeled 2nd. 

It should also be noted that the decay time measurement in the 

region of HCl' or toe spike, is unusual, since a double slope is seen. 

However, it is not a high attenuation process followed by a lower at­

tenuation process. It is just the opposite, 1.e., a low attenuation is 

interupted by a high attenuation. Since on both sides of this unusual 

measurements at Hcl the attenuation measurements are very uniform and 

indicate a single relaxation process, this phenomenon cannot be attribu-
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ted to the recording apparatus" This oddity is left unexplained, 

Young 1 s Modulus 

As in the attenuation measurements~ the Young 1 s modulus measure$ 

ments were performed at nitrogen temperature to recognize any background 

effect of the normal state which must be substracted from the super­

conducting measurements to see the true superconducting effect. As 

before~ no appreciable magnetic effect was recorded in Young's modulus 

for the normal state in either the single crystal or poly crystalline 

samples (Figures 18 and 19). 

The superconducting data for the poly crystalline specim@n indicates 

a discontinuity in the modulus at 800 oersteds, believed t6 be Hci· A 

change in slopie is also indicated at 1600 oersteds. Hc2 is possibly 

not rea.ched as implied by th is data j since the nol!lllal state should show 

no fu,rther change in modulus. The single crystal [110] data also shows 

a discontinuity in the modulus at 800 oersteds 9 Hcl IFigure 21). This 

is :foUowed by a generally positive slope with possible flux penetration 

blUlllps superimposed on it. Again Hc2 is not believed to be reached. The 

[111J direction data is different than that above. Minima in the modulus 

occur at 400 and 1000 oersteds with a large maximum at 600 oersteds. 

This correapoo::ls with the attenuation data and is believed to be due to 

the partly shear mode, Tne 010J direction in the single crystal and 

the poly crystalline sample are always perpendicular to tbe magnetic 

field. The [111] direct ion is only perpendicular to the field for two 

possible orientations of the sample with the field. For other orienta0 

tions it may be off 45"' with respect to the field. This orientatipn was 

not known for each run. 
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CHAPTER V 

DISCUSS ION 

Young's modulus measurements give the most accurate results of this 

investigation, capable of recording changes of parts per million. Since 

this accuracy is attainable only in the modulus measurements, they should 

give the most detailed analysis of what is happening. In the temperature 

drift measurements, however, the drift of temperature was probably too 

rapid to assure sufficient thermal equilibrium for the most accurate 

measurements. Thus, the Bordoni peak results and the relaxation peak may 

only be considered as giving a rough indication of tbe actual shape of 

the curve for temperatures between 4.2°K and 77°K. The data between SOOK 

and 77°K can be attained more accurately by pumping on the surface of the 

liquid nitrogen, but this region is of little interest. 

The meaaurements in the superconducting range depended only on the 

tightness of the supporting pins from run to run. The unHormity of the 

magnetic field was not particularly good, but at 'e.Pst H was a constant 

factor throughout the investigation. lt has been shown that a more unJ.• 

form field would increase Hcl due to a more uniform tlux penetration 

over the aurface of the material. Both the aingle crystal 01oJ and 

poly cryatalline data indicate that Hcl ii approximately 800 oersteds 

at 4.2°K. The discontinuity in Young's modulua at Hcl agrees with the 

thermodynamic arguement of a second order phase transition. A point dis• 

continuity is apparent in the attenuation measurement. Thia sudden rise 
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and fall of the attenuation at Hc1 could be due to a change in phase of 

the resonant signal with the initial flux penetration in to the specimen. 

The attenuation is a complex quantity in which the phase is representative 

of the additional impedance of the lattice to the signal velocity. Since 

the attenuation returns to approximately the same value after Hcl as it 

had prior to Hc1, this variable is also thought to be in agreement with 

the thermodynamics of a second order phase transition at Hcl· 

The attenuation increases after Hcl as more flux enters the sample. 

The single crystal cr1<TI data indicates flux penetration~ by the ripples 

in the attenuation and modulus above Hcl· This is in agreement with the 

mixed state description of the region between Hcl and Hc2• However, the 

slope \hen begins to decrease prior to what is thought to be Hc2 . Ther­

modynamics predicts an He for type 11 materials which is defined by the 

difference in Gibb•s potential between the superconducting and normal 

.6G = H: /BTT . 
Since both the attenuation and modulus graphs show a change in slope at 

approximately the same field, this could be related to an He for type II. 

superconductors. The change of slope near 2700 oersteds is believed to 

be indicative of Hc2 . The modulus data did not reach this high field 

value. Thus, due to insufficient high field data, Hc2 is not discussed 

further. Also, since the nitrogen temperature data showed little or no 

field dependence in the normal state, there was no correction taken into 

account for the superconducting data. 

The [i.1{} direction data is significantly different from the other 

data to merit a separate discussion. Since the ~lU direction is ap­

proximately 45° off the 010] direction, the magnetic field is not per• 

pendicular to the wave propagation direction. This idea coupled with the 
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belief that the (iq) wave is partly a shear wave is sufficient argument 

to explain the difference between the Q.11J and ~l<ll data. The dif· 

ference in the data has not been reproducible due to the orientation 

prob 1 em of the ~ 11] direct ion in the magnetic field. 

On the last run magnetization measurements were taken by Gordon 

1 Nelson, Jr., of this same laboratory. His measurements indicated little 

or no field dependence for the (111] direction and showed large changes 

with field in the 010J direction. This is also evidence in support of 

the [111] propagation as being partly shear in nature. 

Agreement has also been shown with the reports of Fujii and Suzuki 

(9) that Hcl was a second order phase transition. Their work was con· 

ducted at a much higher frequency, 70 MHz, and utilizes the ultrasonic 

pulse technique. Since the resonant frequency method is more accurate 

than the ultrasonic method, it is believed to show more details. 

There are many experiments that could now be conducted with the 

apparatus. The mixed state can be studied for various fixed temperatures 

below 4.2°K by reducing the vapor pressure of the liquid helium to the 

desired level. Flux jumps could poasibly be defined from these measure· 

ments by varying the field as a function of time and recording the 

changes in the variables studied herein. The possibility of studying 

optical excitation in the mixed state by means of a laser beam would be 

an interesting study. Other type 11 superconductors, such as vanadium, 

tantalum, and many alloys, can be studied by this set-up, and the results 

could possibly lead to a satisfactory explanation of type II supercon· 

ductivity. 

1 The use of the results of Mr. Nelson's magnetization measurements 
prior to publication is appreciated. 



BIBLIOGRAPHY 

(1) Van Buren, H. G. Imperfections in. Crystals, 2nd ed. Amsterdam: 
North-Holland, 1961. 

(2) Meissner, W., and R. Ochsenfed. "Kurze Originalmitteilungen." 
Die Naturwissenschaften, Vol. 21 (1933), 787-788. 

(3) Kittel, Charles. Introduction SQ. Solid State Physics, 3rd ed. 
New York: John Wiley and Sons, 1966. 

(4) Newhouse, Vernon L, Applied Superconductivity, New York: John 
Wiley and Sons, 1964. 

(5) Bardeen, J., N, Cooper, and J, R, Schrieffer. "Theory of 
Superconductivity.'' Physical Review, Vol. 108 0957), 1175. 

(6) Tinkhamj M, "Superconductivity." Low Temperature Physics. Ed. 
De Witt et al. New York: Gordon and Breach, 1962, pp. 149-230. 

(7) Claiborne, Lewis T., and Norman G. Einspruch. "Ultrasonic 
Observation of Magnetization and Flux Jumping in a 
Superconducting Nb-Zr Alloy •11 Journal of Applied Physics, 
Vol. 37 (1966), 925-927. 

(8) Callen~ H. B. Thermodynamics. New York: John Wiley and Sons, 1963. 

(9) Fujii, A. I. M., and T, Suzuki. "Ultrasonic Attenuation and 
Magnetic Properties of Superconducting Niobium in the Mixed 
State." Technical Report of lSSP, Ser. A (1965), 161. 

( 10) Alers, G. A. "the Measurement of Very Small Sound Velocity Changes 
and Their Use in the Study of Solids." Physical Acoustics. 
Ed. Mason. New York: Academic Press, 1966, Vol. IVA, Ch. 7. 

CJ 

( 11) Alers~ G. A,, and D. L, Waldorf. "Variation of the Elastic Moduli 
at the Superconducting 'transit ion." IBM Journal of Research 
and Development, Vol. 6 (1962), 89-93. 

(12) Bordoni, P. G. "Elastic and Anelastic Behavior of Some Metals at 
Very Low Temperatures. 11 Journal of the Acoustical Society of 
America, Vol. 26 (1954), 495. 

(13) Kramer, E, J., and C. L. Bauer. ''Internal-Friction and Young',s 
Modulus Variations in the Superconducting, Mixed, and Normal 
States of Niobium.'' Physical Review, Vol. 163 0967), 407-419. 

45 



46 

( 14) Alers, G. A., and P. A. Fleury. 11 Modification of the Velocity of 
Sound in Metals by Magnetic Fields." Physical Review, Vol. 129 
(1963), 2425-2429. 

( 15) Guess, J. F., and G. B. Thurston. ''Measurement of the F lexual 
Response of Beams and Plates." (unpup. Research Contract 
Report, Oklahoma State University, 1963). 

(16) Anderson, 0. L. "Determination and Some Uses of Isotropic Elastic 
Constants of Polycrystalline Aggregates Using Single-Crystal 
Data." Physical Acoustics. Ed. Mason. New York: Academic 
Press, 1966, Vol. IIIB, Ch. 2. 

(17) Niblett, D. H. "Bordoni Peak in Face Centered Cubic Metals." 
Physical Acoustics. Ed. Mason. New York: Academic Press, 
1966, Vol. IIIA, Ch. 3. 

( 18) Neuringer, L. J., and Y. Shapira. ''Nb-25% Zr in Strong Magnetic 
Fields: Magnetic, Resistive, Ultrasonic, and Thermal 
Behavior." Physical Review, Vol. 148 (1966), 231-246. 



APPEfiDIX A 

THERMOCOUPLE CALIBRATION PROGRAM 

The program is written in Fortran lV and is given in table II. It 

is built to average any four emfs for one temperature and use this 

average emf as the mean emf for that temperature. When the average 

emfs are found for the three fixed points,o<:,~, and Y are computed. 

Note that one of the fixed points may not be the reference junction 

temperature. The computed emfs ando<,/J, and Yare printed, followed 

by a table ranging from 0.5°K to 300°K in 0.5°K steps. The table gives 

the delta of emf per 0.1°K, the emf, the temperature, and 1000/T. 

It should be noted that this thermocouple is accurate to changes 

of O.lcK. A more accurate thermocouple is the resonant frequency 

itself. At 77°K the frequency changes 4Hz/°K. Since changes of O.OlHz 

are recorded, temperature changes of 1 x 10-4°K can be detected. The 

' resonant frequency changes slightly from run to run and causes calibra-

tion to be necessary for each run. However, relative changes can be 

observed without knowing the absolute temperature. The frequency 

thermocouple is useful only when other factors are known not to influ-

ence the frequency. 
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TABLE 11 

'IHERMOCOUPLE PROGRAM 

$JOB WATFOR G.W.GOOORICH 2233-40015 
C G W GOODRICH THERMOCOUPLE CALIBRATION 5-24-67 

READl5,67) Tl,TO,TN,Ell,E12,El3 1 El4 
67 FORMAT(7Fl0.0I 

READl5,68l E01,E02,E03,E04,EN1,EN2,EN3,EN4 
68 FURMATl8Fl0.0) 

EI ~(Ell+ El2 + El3 + El41/4.0 
FO =IEOl + E02 + E03 + E041/4.0 
EN =(ENl + EN2 + EN3 + EN41/4.0 
CD~ Tl*IT0**2*TN**3 - TN**2*TD**31 - TO*ITl**2*TN**3 - TN**2*TI** 

131 + TN*ITl**2*T0**3 - T0**2*TI**31 
A=, IEl*IT0**2*TN**3 - TN**2*T0**31·- EO*ITI**2*TN**3 - TN**2*TI** 

131 -t:, EN*ITl**2*T0**3 - T0**2*Tl**31 I/CD 
B = 'I-El*ITO*TN**3 - TN*T0**31 + EO*ITl*TN**3 - Tl**3*TNI - EN*ITI 

l*T0**3 - TO*Tl**3ll/CD 
C = HI*ITO*TN**2 - TN*T0**21 - EO*ITl*TN**2 - TN*Tl**21 + Er-.J*ITI* 

lTO**.Z·- TO*Tl**21>/CD 
~RlTE(6,731 El,EO,EN,A,B,C 

73 FORMATl1X,lP6E20.71 
T = O.OO 
EMF= A*IT - 273.16) + B*IT - 273.161**2 + C*IT - 273.161**3 
T = 0.5 

74 N = 0 ' 
WRITEl6,751 

75 FORMATl1Hl,54H DELTA/0.lK EMF IMVI TEMP K 1000/ 
lTKo/ I 

79 Y = EMF 
EMF ='A*IT - 273.161 + B*1T - 273.161**2 + C*IT - 273.161**3 
l - IV - EMFl/5.0 
X = 10.0**3/T 
WRITEl6,81) Z, EMF, T, X 

Bl FORMATl1X,/,1X,Fl5.5,Fl5.5,Fl2.l,Fl2.21 
L = 1 
GO TO 78 

69 Y = EMF. 
EMF= A*IT - 273.161 + H*IT - 273.161**2 + C*IT - 273.161**3 
l = IV - EMFl/5.0 
X = 10.0**3/T 
WRITEl6,771 Z, EMF, T, X 

17 FORMATl1X,2Fl5.5~Fl2.l,Fl2.21 
L = L + 1 

78 IFlT-300.J 71,76,70 
71 T = T + 0.50 

N = N + 1 
IF I N-50 I 80, 74, 74 

80 IF1L-101 69,79,79 
70 WRITEl6,991 
99 FORMAT I lHl I 

$ENTRY 

STOP 
END 

-268.90 -195.80 24.2 -10.0605 -10.0605 -10.0605 -10.0605 
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APPENDIX B 

YOUNG'S MODULUS: Y 

Small variations in Young's modulus are shown to be related 

directly to the changes in the resonant frequency. 

Y = Yo + A Y = Yo ( 1 + t>) 
where O = AY/Yo and is a function of the magnetic field, H. At 

H = 0, 5 = O. The frequency is 

fo = 1.T / 2 l = -/ Yo/ f 1 
/ C 1 

and 

For 6 1 << 1 , 
(1 + & )1/2 = 1 + 8/2. • 

Therefore, 

f' = f c ( 1 + cS/2) • 

6f - f- fo = fo 6/2 -
and 

6 = ~Y/Yo • Thus, 

6f !Fo - t-/JY/Yo -
or 

6. Y IY. - 2 D.f If. -
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