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PREFACE

This paper was conceived with the purpose of finding necessary
and sufficient conditions for a metric on an arc.; to be a strictly isosceles
metric on the arc. Four such conditions have been found and listed.
Most of this paper is a study of the properties of two of these conditions,
namely, whether an arc has a D-kink and the value of the index k for

which an arc is k-flat. Definitions of common topological concepts

. used in this paper are those of Elementary Topology by Hall and
Spencer [3]. |

I would like to take this opportunity to express my appreciation
to geveral persons to whom I am deeply indebted for the preparation of
this paper: to Dr. John Jobe, my adviser, for his generous and invalu-
able assistance; to Dr. L., Wayne Johnson and Dr. John Jewett, through
whom a graduate assistantship and NSF Traineeship have been generously
provided; to my wife Kathie for her understanding and encouragement;

and to the Lord, without whose help I could accomplish nothing.
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CHAPTER I
SYNOPSIS

This paper is an investigation of certaiﬁ metric properties of
arcs. The basic question to be answered is when a given metric on an
arc is a strictly isosceles metric. In Chapter II a metric D on a set
is defined to be an isosceles metric (i-metric) if for every two distinct
points x, z of the set, there is a third point y of the set such that
D(x,vy) = D(y, z). An isosceles metric is a strictly isosceles metr‘ic
(si-metric) if the third point in each case is unique.

'The properties of i-metrizability and si.metrizability are
topological properties, One result of this fact is that every arc is
si-metrizable, Also, the metric ofba. metric space is an i-metric on
each connected subset. However, not every subset on which the metric
is an i-metric is connected. Any set which contains a simple closed
curve is not si-metrizable, and for this reason no locally connected
compact continuum which separates the plane is si-metrizable,

While it is true that every arc is si-metrizable, not every metric
on an arc is a si-metric. In Chapter III it is shown that a metric D is
a gsi-metric on arc A if and only if A has no D-kink. Arc A is said to
have a D-kink at x, z whenever x and z are distinct points of A and
D(x,vy) = D{y, z) for some point y in A - [x,z]. If an afc has a D-kink
at some pair of points, it must have a D-kink at an uncountable number

of pairs of points.



Chapter III gives two other ways besides the existence of a D-
kink to tell whether D is a si-metric on arc A, Metric D is a si-metric
on A if and only if D(x, z) > D(y, z) and D(x, z) > D(y, x) for every three
points x, vy, z of A with y between x and z, and if and only if for every
three points x, y, z of A with y between x and z there is a number p > Q
such that [D(x, y)]p + [D(‘y, z)]‘p < [D(x, z)]p°

Chapter IV introduces a further classification of arcs. Arc A
ig said to be k-flat with respect to metric D if and only if k is the infimum

of all quotients of the types

D(Xs Z) il D(Y: Z:)
D(y, =)

D(x, z) - D(y, %)
D(y, z)

and

for every three points x, y, z of A with y between x and z., Arc A is
said to be (+) - flat if all such qﬁotients are positive and (-) - flat if
there are non-positive quotients of these types. Arc A is said to be at
least k-flat if A is m-flat for some m > k. FEach arc is k-flat with
respect to a given metric for some unique value of k in the range

-1 <k <1. Metric D is a si-metric on arc A if and only if A is (+) -
flat with respect to D.

Values of the index k for several types of arcs in the plane are
computed in Chapter IV. For example, it is found that a circular arc
of angular measure a, where 0 < a< 2w, is cos a/2 - flat. An arc
consisting of the union of two line segments is (~cos B) - flat, where f
ig the least positive angle between the two segments. If a polygonal
arc of n > 2 line segments is inscribed in a circular arc of angular
measure o, then the polygonal arc is cos a/2 - flat.

Let {An }be a sequence of arcs converging to an arc A in a

metric space with metric D. Chapter V investigates when the limit



arc A inherits from the sequence {An} the properties of having a D-
kink, having no D-kink, and being k-flat for a given value of k. Examples
are given to show that the sequence {An} may either lose a.D-kink or
create a new one on the limit arc A Another example shows that arc
A need not be k-flat just because each a.rcAr1 is k-flat, at least for

k < 1. However, it is true that if U—Kn is compact and if each arc An is
at least I;"nfl.a,ﬂ:, then arc A must be at least k-flat also. The following
three staﬁements are corollaries to this result. The limit arc of a
sequence of 1-flat arcs is 1-flat. If each arC'An.is at least k-flat and
k > 0, then D is a si-metric on arc A, If D is a si-metric on each arc
An, then arc A has the following two properties: if y is between x and
z on A, then D(x, z) > D(y, z) and D(x, z) > D(y, x); if y is in'A-[x, z] and
D{x, y) = D(y, 2), ’then D(t,y) = D(y, z) for every point t in the -subarc

{x, ?] of A,



CHAPTER II
ISOSCELES METRICS AND STRICTLY ISOSCELES METRICS

A topological space S is a metric space with metric D if D is a
real-valued function with domain S x S such that if x, y, and z are
points of S,

(i) D(x, y) >0

(ii) D(x, y) =0 1if and only if x = y.

i

i}

(iii) D(x, y) = D(y, %)

(iv) D(x, z) < D(x, y) +.D(Y, z)
and the topology of S is precisély the collection of subsets of S which
is generated by all spherical neighborhoods determined by D. In this
paper the spherical neighborhood about a point x consisting of all points
y such that D(x, y) < € for a given € > 0 is denoted by Ne (x).

Metrics with various properties may be obtained by adding
further requirements to their definition. Menger in [5] defines a metric
to be a convex met;‘ic if it satisfies the additional requirement

{v) for each pair of points x, v of S there exists a

point u of S such that D(x, u) = D(u, y) = D(x, y)/2.
Glynn in [2] defines a metric to be a strictly convex metric by the
further requirement

(v') for each pair of points %, y of S there exists a

unique point u of S such that D(x, u) = D(u, y) =

D(x, y) /2.



The following definition is suggested by those of Menger and Glynn.

Definition 2, 1. Let S be a metric space with metric D. The

metric D is an isosceles metric, or simply an i-metric, on S if it
satisfies the requirement

(vi) for each pair of points x,y of S there exists a point

u of S such that D(x, u) = D(u, y).
The metric D is a strictly isosceles metric, or a si-metric, on S if it
satisfies the requirement

(vi') for each pair of distinct points x, v of S there exists

a unique point u of S such that D(x,u) = D(u, y).
If for a given subset M of a topological space T there is a metric D
which is an i- (or si-) metric on M and for which M is a metric sub-
space of T, then M is said to be i~ (or si-) metrizable,

If follows from these definitions that a (strictly) convex metric
is a (strictly) isosceles metric. Although these metrices are defined
in a similar manner, it is not the purpose of this paper to compare
their properties. However, they do enjoy some properties in common,.
For instance, it is shown by Glynn in [2] that convex and strictly convex
metrizability are topological properties. The same result is obtained

for isosceles and strictly isosceles metrics.

Theorem 2. 1. Both i-metrizability and si-metrizability are

topological properties.

Proof, Let S and T be two homeomorphic topological spaces
such that S is i~ (or si-) metrizable under metric D. Let f be a homeo-
morphism from S onto T. Define D!(x,vy) = D(fml(x)g fml(y) ) for every

two points x,y of T. Then f is an isometry from(S, D) onto (T, D') as



well as a homeomorphism, and thus D' is an i~ {or si-) metric for T,
Before stating a corollary to Theorem 2.1, some necessary
terminology on arcs is given. An arc is defined to be a homeomorphic
image of the subspace of real numbers consisting of the closed interval
[0, 1] and is characterized by being a compact, connected, separable
metric space having exactly two non-cut points [3-p. 168]. If the two
non-cut points of an arc A are a and b, A is often called an arc from
atob. If x,y, and z are three distinct points of an arc A, then v is
said to be between x and z, written xyz, if A-{y} is the union of two
sepérated sets, one containing x and the other containing z. This
property of '"betweenness' may also be considered a consequence of a
natural linear ordering of the points of the arc. If x and y are distinct
points of an arc A, then the set of all points between x and z, together
with x and z, is called the subarc of A from x to z and is denoted [x, z]

or [z,x]). A subarc of an arc is itself an arc.

Corollary 2.1, 1. Every arc is si-metrizable,

Proof. The subspace [0, 1] of real numbers has a si-metric
which induces its topology, namely, the usual distance function. Since
every arc is topologically equivalent to [0, 1], the previous theorem
shows that every arc inherits si-metrizability,

A large class of examples of i-metrizable spaces is provided
by the following theorem, which is fundamental to the remaining results

of this paper.

Theorem 2,2. Let S be a metric space with metric D. If M is

a connected subset of S, then D is an i-metric on M.



Proof. If M is degenerate, then D is vacuously an i-metric on
M. If M is non-degenerate, let u and v be distinct points of M. Define
a real-valued function f on M in the following way:

D(u, x)

fx) = D(y, %) + D(v, X)

for every x in M. Since D(u,x) + D(v,x) > D(u, v) > 0, f is well defined
on M, Now f is also continuous on M, for let x in M and € > 0 be given.
Let 6 = ¢D(u,v) > 0. Whenever D(x,y) < 6 for some y in M, then
|D(u,%) - D(u,y)| <D(x,y)< & and |D(v,y) - D(v,x)] <D(x,y) < &
by the triangle inequality. Therefore, |
ID(u, x) [D(u,y) + D(v,y)] - D(u, y) [D(u,x) + D(v,x)]|
= |D(u,x) D(u,y) + D(w,%) D(v,y) - D(u,y) D(u,x) - D(u,y) D(v, )]
= |D(u,x) D(v,y) - D(u, y) D(v,%)]
= |D(u,x) D(v,y) - D(u,x) D(v,x) + D(u,x) D(v,x) - D(u,y) D(v,x)|
< [D(u,x) D(v,y) - D(u, %) D(v,x)| + [D(u, %) D(v,x) - D(u,y) D(v,x)]
- D(w, % |D(v,y) - D(v,%)| + D(v,%) |D(v, %) - D(u, y)]
< D(u,x)6 + D(v,‘x) &
= [D(u,x) + D(v,x)] &
= [D(u,x) + D(v,x)] e D(u, v)

[D(u,x) + D(v,x)] [D(u,y) + D(v,y)]e.

IA

It follows by division that

. " D(u, x) D(u, y)
Hix) - £f(y)] = D(u, %) + D(v, %) D(u,y) + D(v, y)

Hence f is continuous on M.

Every real-valued continuous function defined on a connected
set has the intermediate value property [4-p. 200]. In'pa.i'ticula.r, f
has this p-ro-perty-, .and since »f(u)«:, 0.and f(v) = 1, it follows that there

exists a point w in M such that f(w) = 1/2. That is,



D(u, w) _ 1
D(u,w) + D(v,w) ~ 2

and therefore D(u, w) = D(v, w) for this win M. Thus D is shown to be

an i-metric on M, completing the proof.

Pi

Figure 1.

Example 2.1, Let-M ={(m, En): m and n are integers, m+n

is even }be a subset of E2 with the usual topology. M consists of the
vertices of a system of congruent equilateral tria.ngles:which, with
their interiors, cover the plane, as illustrated in Figure 1. Let P1
and P2 be any two points of M. Since the axes may be translated with-
out affecting distances, let P1 = (0, 0) and P2 = (m, /3n). P2 is repre-
sented in Figure 1 withm = -5 and n = -3, Consider the following two
points, whose coordinates are determined by analytic methods:

Q, = ((m+3n)/2, V3(n-m)/2) and Q, = ( (m-3n)/2, V3 (n+m)/2}.



Now (mi--3n)/2 = (m1n)/2 in 1is an integer since min is even, and
(ntm)/2 is likewise an integer. Also, (m+3n)/2 + (n-m)/2 = 2n and
(m-3n)/2 + (ntm)/2 = m-n are both even integers. Therefore, Q1 and
QZ are points of M. Also, direct calculation shows that D(Pl, Ql)
D(Pz, Ql) = D(Pl’ QZ) = D(PZ’ QZ) where D is the usual distance function.
Hence D is an i-metric on M, but not a si-metric.

It may also bbe noted that a si-metrizable space need not be
connected, for the three vertices of a single equilateral triangle in the
plane is si-metrizable but not connected. Two corollaries to Theorem

2.2 follow,

Corollary 2. 2.1, If a set contains a simple closed curve, it is |

not si-metrizable.

Proof, Suppose a subset M of a topological space contains a
simple closed curve C, and suppose D is a metric on M which generates
the subspace topology. ILet a and b be two distinct points of C. Then
C =PU Q, where P and Q are independent arcs from a to b [3-p. 171].
Since P is a connected set, D is an i-metric on P by Theorem 2. 2.
Therefore there exists a point u of P such that D(a,u) = D(u,b), and u
is distinct from a and b since a and b are distinct. Similarly, there
exists a point v of Q distinct from a and b such that D(a, v) = D(v, b).
Since P and Q are independent, Pn Q ={a,b}, and therefore u # v.
Hence D isnot asi-metric on C and certainly not on M, which contains

C. This shows that M is not si-metrizable.

Corollary 2.2.2. No locally connected compact continuum .

which separates the plane is si-metrizable,
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Proof. If M is a locally connected compact continuum which
separates the plane, then M contains a simple closed curve [6-p. 34].

By Corollary 2,2, 1, M cannot be si-metrizable.



CHAPTER III

ARCS AND THEIR D-KINKS

In Corollary 2. 1.1 vit was noted that every arc is si-metrizable
and therefore i-metrizable. Also, in the light of Theorem 2.2, every
metric on an arc which induces its topology is an i-metric on the arc.
However, not every metric on an arc which induces its topology is a
si-metric on the arc. This fact is illustrated in Figure 2, where A is
an arc in the plane and D is
the usual distance between
points. For every pair of
distinct points x, z of A, since
the subarc [x, z] is connected,
according to Theorem 2.2
there will always be a point
y in [x, z] such that D(x,y) = .

D(y, z). However, the arc

may bend so much that there
is some other point y', which
may or may not be in [x, z],

such that D(x, y') = D(y!', z).

Figure 2,

(Whenever A is an arc in the
plane and D is the usual metric,

the points y and y' are found as

11
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the intersection of A and the perpendicular bisector of the line segment
between x and z, as in Figure 2.) For this arc, D is not a si-metric.
Such possibilities raise the fundamental question of this paper: What
are necessary and sufficient conditions for a metric on an arc to be a
si-metric?

One answer to this question is provided by the notion of a D-kink.
Unless otherwise stated, the setting for all definitions and theorems in

the remainder of this paper is a metric space S with metric D,

Definition 3. 1. An arc A is said to have a D-kink at x, z if and

only if x and z are distinct points of A with the property that D(x,vy) =
D(y, z) for some point y in A - [x,z]. Arc A is said to have a D-kink

if and only if A has a D-kink at x, z for some pair of points x, z of A,

Theorem 3.1, If D is a si-metric on arc A, then A has no

D-kink,

P_{_ﬂf_; The proof is given by contraposition, Suppose that A
has a D-kink at x, z for some pair of points x, z. Then there is a point
y in A - [x, z] such that D(x, y) = D(y, z). But by Theorem 1. 2 there is
a point y' in [x, z] such that D(x, y') = D(y', z). Since y # y', D cannot
be a si-metric on A.

It should be noted that whether a given arc has a D-kink depends
only on the metric D rather than on the arc. Since each arc is si-
metrizable, the previous theorem implies that there is always some
metric D for which it will have no D-kink, The property of having no

D-kink actually characterizes when D is a si~-metric on an arc.

Theorem 3.2. If an arc A has no D-kink, then D is a si-mettic

on A,
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Proof. The proof is again given by contraposition. If D is not
a si-metric on A, then there are four pair wise distinct points x, z, p, q
of A such that D(x, p) = D(p, z) and D(x,q) = D(q, z). If one of p or q is
in A - [x,z], then A has a D-kink at x, z, and the theorem is proved,
If p and q are both between x énd z, then without loss of generality let

xpq and pqz, as in Figure 3,

Figure 3.

It cannot be true both that D(x, p) < D(x, q) and D(z, q) < D(z, p), for then
D(x, p) < D(x,q) = D(z,q) < D(z, p) implies D(x, p) # D(z, p). Therefore
let D(x, p) > D(x, q), again without loss of generality. If D(x, p) = D(x, q),
then since x is in A - [p, q], A has a D-kink at p, q»and the theorem is
proved,

Hence suppose D(x,p) > D(x, q), and let G = {t: t is in [x, p],

D(t, p) > D(t,q)}and H = {t: t is in [x, p], D(t,p) < D(t, q)} , Sets G and
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H are nonempty since x is in G and p is in H. Also, G and H are open
in [x, p], for let s be in G, for instance. Then for 2e = D(s,p) - D(s,q) >0,
let U = 'Ne (s)N[x,p) SetUis open in [x, p] and contains s, Iftis in
U, then

D(t,q) <D(t,s) + D(s,q) <e+ D(s., q) = D(s,p) -€< D(s,t) - €+ D(t,p) <D(t,p),
which shows that t is in G; that is, UecG. Hence G is open in [x, p],

and similarly H is open in [x,p). Since GAH = ¢, the equation (x,p] =
GUH is a separation of the connected set [x,p], which is a contradic-
tion. Therefore there must be a point r in [x, p] which is neither in G
nor H; that is, D(p, r) = D(f, q). Since r # x and r # p, then xrp. There-
fore rpq, f is in A-[p, q], and A has a D-kink at p,q. This completes

the proof.

Theorem 3.3. Metric D is a si-metric on arc A if and only if

‘A has no D-kink.

Proof. Theorem 3.1 gives the necessity,and Theorem 3. 2 the
sufficiency of the D-kink condition.
There follow two corollaries which state other equivalent con-

ditions for D to be a si-metric on A,

Corollary 3.3.1. Metric D is a si—metrié on arc A if and only

if D(x, z) > D(y, z) and D(x, z) > D(y, x) for every three points x, vy, z of

A such that xyz.

Proof. Both sufficiency and necessity are proved by contra-
position. If D is not a si-metric on A, then A has a D-kink at some
pair of distinct points x, z; that is, there is a point y such that yxz or

xzy such that D(x,y) = D(y, z). This contradicts the inequality condition.
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Conversely, if there are points x,y, z of A with xyz and D(x, z) <
D(y, z), for instance, there are two cases to consider, First, if D(x,z) =
D(y, z), then A has a D-kink at x,y. Second, if D(x, z) < D(y, z), let
G = {t; tis in [y,‘s_z], D(y,t) < D(t,x)} and H ={t: t is in ly, z], D(y, t) >
D(t,x)} Since y -:is in G and z is in H, G and H are nonempty disjoint
sets which are open in [y, z]., Therefore [y, z ] = G Uy H would be a
separation of thevvconnected set [y, z] unless there is a point r of [y, z]
such that D(y, r) = D(f,x). The existence of such a point r, together
with xyr, implies that A has a D-kink at x,y. In either case A has a

D-kink, and therefore D is not a si-metric on A, This completes the

proof,

Corollaryf;_3. 3,2. Metric D is a si-metric on arc A if and only
if for every three points x,y, z of A with xyz there exists a number

p > 0 such that [D(x,y)F + [D(y, 2) P < [D(x, 2) P.

Proof. The necessity is proved directly, If D is a si-metric
on A, let x,vy,2 bé points of A with xyz. By Coroilary 3.3.1,
D{x, z) > D{(y, z) and D(x, z) > D(x,y). If p> 0 is chosen so that
[D(x, z)]p > Z[D(y,:z)]? and [D(x,- z)]p > Z[D(x, y) ]p, then [D(x, y)]P +
[D(y. 2) P < [D(x, 2) P.

The sufficiency is proved by contraposition. If D is not a si-
metric on A, then A has a D-kink at x, y for some pair of points x, y.
Then D(x, z) = D(z, y)' for some z in A-[x, y], and without loss of gener-
ality xyz. Therefore Dp(x, z) = Dp(’y, z) and hence Dp(x, y) + Dp(y, z) >
Dp(xg z) for every number p, which contradicts thé exponent condition
of the theorem. |

Once these equivalences are proved, the question then arises:
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May an arc have a D-kink at one pair of points only? The following

definition will aid in answering that question.

Definition 3. 2. For a point x of an arc A, the set A'(D;x) of

all points y of A such that A has a D—kiﬁk at %,y is called the deleted
D-kink set of x. The set A(D;x) = A'(D;x)U {x} is called the D-kink
set of x. |

The following example illustrates how large the D-kink set of

a point may be and at how many pairs of points an arc may have aD-

kink,

Example 3.1. Let A be an arc in the plane composed of two

sides of an equilateral triangle which meet at vertex ¢, and let D be
the usual distance metric, Then A(D;c) = A and A'(D;x) # § for every
point x in A,

The next example illustrates that the subset {x: A'(D;x) # ¢}

of an arc A need not be closed.

Example 3.2, Let arc A in the plane be constructed in the

following way: let b, = (1/2'71,0) and a, = (3/2",-5/2) for i = 1,2,....

0 -
Let A={0}y U (aibiU b where 0 = (0, 0) and pq denotes the

.a.,q),
i=1 ii+l
line segment from p to q. A is shown in Figure 4. Triples of the

form a, b, a, ;are vertices of right 30° - 60° triangles. If D is the

+1
usual distance metric, then A'(D;bi) # 0 for every i since D(ai+1’ bi+1) =
D(bi,bi_l_l)' shows a4 is in A'(D;bi)., Also, the sequence {bi} converges

to 0. However, A'(D;0) = @, for let p be any point in A-{0}. There

exists an n such that p is in a'nbﬁ U bna Let L be the perpendicular

n+l°’

bisector of Op. If p = a s L is the line passing through bn and a i1



wad T

. Thatis, LNAc[0,p). If a pb , then LN A

and hence LA A = bnan+1

is a point between a,n_k1 and bn+1’ and again LN A c[0,p] Ifp= bn,
LNA={b_, } whichis in [0,p]

If bn:pan+1’ then L. N A is some

point between b and a

n+l n+2’

and again LN A c:[O, p]. Hence
p is not in A'(D;0) and AYDJ0) =
@. Thus the set {x: A'(D;x) # 0}

is not closed since the accumu-

lation point 0 is not included in
the éet. However, the follow-
ing theorem shows that the D- Figure 4,
kink set of a point is always

closed,

Theorem 3.4, If x ig a point of arc A, then the set A(D;x) is

closed.

Proof. Let X be an accumulation point of A(D;x). There
exists a sequence {xn }of distinct points of A(D;x) which converges to
X [3-p. 70]. Since the xn‘s are distinct, we may assume that X # x
fér every n. Since for eachn A has a D-kink at x, X s then fo¥ each
n there exists a point z_ in A-[x, xn]'such that D(x, Zn) = D(zn, xn). The
sequence {zn_} in A so defined has a subsequence gzk}which converges
to a point"z;O of A since A is compact. The associated subsequence
{x 1 of {xn} converges‘ to x .

If X # x, then it can be shown that A has a D-kink at x, X s for

lete> 0 be given. There exists a number k such that D(x_,x,) <e /3
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and D(zo, z, ) < €/3, Since D(x, zk) = D(zk, Xk)’ D(zo,x )< D(z ,z

o, — o] k)
),.it follows that

K
) + D(x

+

D and D(x, zo) > D(x,z,) - D(

e *x K %o k Zx’ %o
D(ZO’XO) = D(X; ZO) < D(ZO, Zk) + D(Zk, Xk) + D(stxo) - D(X:Zk) + D(Zk:zo)

= D(zo, zk) + D(Xk’ xo) + D(zk, Zo)
< €.
Similarly
Dx, zo) - D(zo,xo) < D(x, zk) + D(zk, ,ZQ) - D(zk, xk) + D(zk,zo) +D(xo,xk)
= D(.zk, zo) + D(zk, zo) + D(xo, xk)
< €.

Therefore D(x, zo) D(zo, xo), and A has a D-kink at X,x_ once it is
shown that z is in A-[x, xo].

Since D(x, zo) = D(zo,xp) and x # X then x # z # X implies
that either xz X _or z isin A."'[X:XO]- If X2 X let bR be a point in A
such that z Y X, Let a and b be endpoints of A, and without loss of
generahty let 2z X and zoyob. Since A-([a, x]U [yo,b]) and A-[a, yo]
are open sets in A containing z and X respectively, there exists a
number €> 0 such that if s is in N (zo)ﬂ A and t is in N (xo) N A, then
X8y and yotb. Since{xk} converges to X and{ zlg converges to Z s
<€, There-

there exists a number k such that D(z <€ and D(xo,x

%K/ K/
fore X2y Y and yoxkb, which imply XZy Xy But by the definition of D-

‘kink, z, is in A-[x, xk]. This contradiction shows that Xz X is false.

k
Hence z(; is in A-[x, xo], A has a D-kink at x, x_, and the accumulation
point X is in A(D;x). Therefore A(D;x) is closed.

Now the question which motivated the definition of the D-kink set
of a point is to be answered. The answer is that if an arc has a D-kink

at some pair of points, it has a D-kink at an uncountable number of such

pairs. The following two theorems sharpen this statement in different

ways.
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Theorem 3.5, If there exist distinct points x,y, z of an arc A

such that y is in A-[x, z] and D(x, y) = D(y, z), then there are two subarcs
in [x, z] which intersect in only one point and have the property that for

every point r in one subarc there is a point 8 in the other such that

D(r,y) = D(y, s).

Proof. Let x,v,z be points of A such that y is in A-[x, z] and
D(x,y) = D(y,z). There are three cases to consider.

(1) 1If there exists a point p in [x, z] such that D(p,y) < D(x,v),
then let I = [t: t is in [x, z], D{(t, y) < D(x, y) }. Let C be the component
of I which contains p. The set C is closed in I [3-p. 171]. Since I is
closed in A, C is closed ih A, Therefore C must be either a subarc or
the singleton {p}. But C #{ g, for since 0 ={t:t is in [x, z], D(t,y) <
D(x, y)} is a set open in A and containing p, there are distinct points ¢
and d such that the set M = {t: ctd} contains p and is contained in 0 and
therefore in I. Since M is con- N
nected, McC. Therefore C #
{p} . Hence C is some subarc
[u, v]in [x,z], where D(u, y) =
D(v,y) = D(x,y) and without loss
of generality pvy, as in Figure
5. Since { y} and [u, v] are dis-
joint compact sets, there is a

point q in [u, v] such that D{(q,y)

< D(t, y) for any t in [u, v]
[3-p.91]. Also, since D(q,y)

< D(p,y) < D(u,y) = D(v,y),

Figure 5.

thenu # q # v. The subarcs
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[u, q] and [q, v] are the ones required in the theorem, for let r be a
point in [u,q]. If D(r,y) = D(q,y), then q is the required point in [q, v].
If D(f, y)= D(u, y), then v is the required point in [q, v] since D(u, y) =
D(v,y). If D(q,y) < D(r,y) < D(u, y), then let G = {t: t is in [q, v], Dit, V)
<D(r,y)Yand H = {t: t is in [q, v], D(t,y) > D(r, y)}. If [q,v]= GUH,
then this representation is a separation of the subarc [q, v] since G and
H are both open in [q, v] and contain q and v, respectively. The impos-
sibility of such a separation implies the existence of a point s in [q, v]
such that D(r, y) = D(y, s). FSimilarly, for any given point r in [q, v]
there is a point s in [u, q] such that D(r,y) = D(y, s).

(2) If there exists a point p in [%, z] such that D(p,v) > D(x, v),
then the proof is entirely similar to the preceding argument.

(3) 1If every point p of [x, z] has the property that D(P, y) =D(x,vy),
then fdr any point q between x and z the subarcs [x,q] and [q, z] possess

the property required by the theorem.

Theorem 3 6. Ifarc A has a D-kink at x, z, then either A'(D;x)

or A'(D;z) contains a subarc of [x,z], and [x,z]c A'(D;x)U A'(D;z).

Proof. If A has a D-kink at x, z, then there is a point y in
A-[x, z] such that D(x,y) = D(y,z). Without loss of generality let xzy.
As in the proof of the previous theorem, there are three cases to
consider.

(1) If p is a point of [x, z ] such that D(p, y) > D(y, x) then since
p is in the set M = {t:t is in [x, z], D(t, y) > D{y, x)} , which is open in
[x,2], and x # p # z, then there are distinct points ¢ and d of M such

that {t: ctd} contains p and is contained in M. There are points u and v

such that cup and pvd, so that the subarc [u, v] is in M, as illustrated
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in Figure 6. Subarc [u, v]is con-
tained in A'(D;x), for let r be a
point of [u,v]. Let G =[t: t is in
'[r, y], D(t,x) < D(t,r)} and H =
{t: t is in [r, y], D(t,x) > D{t, r)}.

Since G and H are both open sets

in [r, y] and contain y and r,

respectively, then if [r,y] =
G U H, this representation is a

separation of the subarc [r, y].

Figure 6

Hence there is a point s in [r,y]
such that D(s,x) = D(s, r), and
since r # x, 't“hen rsy and s isl
in A-[x,r], Hence r is in A-[x,r]. Hence r is in A‘('D‘;x“), and
[u, v]e AY(D;x).

(2) If pis a point of [x, z] such that D(p, y) < D(y, %), then it can
be shown similarly that there is a subarc [u, v] of [x, z] which contains
p and is contained in A‘,(D;z).

(3) if D(p, y) = D{y,x) = S(y, z) for every point p in [x, z], then
the subarc [x, z ] is contained in both A'(D;x) and A'(D; z).
| In fact, if p is a point of [x, z] such that D(p, y) = D(y, x), then p

ig in A'(D;x) and A'(D;z). This completes the proof.

Corollary 3.6.1. It is not possible for the following two con-

ditions to hold simultaneously on an arc A:
(i) AYD;x) n“.A‘(D;y) = @ for every two distinct points x,y of A,

(ii) A'(D;x) # @ for every x in A.
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Proof. Suppose (i) and (ii) both hold. For each x in' A, A'(D;x)
| # . If y and z are points of A!(D;x), then A has a D-kink at x,y, and A
has a D-kink at x, z.; that is, x is in A*(D;y) N A'(D;z). . But since this
intersection is empty if y and z are distinct, then y = z.  Hence A'(D;x)
is a singlefon for each x in-A. But by Theorem 3.6, if A'(D;x) = {y],
then A'{D;y) must contain a subarc, which a singleton cannot do. Hence

(i) and (ii) cannot be satisfied simultaneoﬁsly.



CHAPTER IV
K-FLAT ARCS

The present chapter introduces a further classification of arcs

according to metric properties.

Definition 4. 1. Arc A is said to be k-flat with respect to metric

: «p‘ o
D if and only if k is the infimum of all quotients of the types

D(xi Z) - D(Y, Z) ‘ D("X, Z) - D(Y: X)
Dy, =) 2nd Dy, z)

for every three points x,y,z of A such that xyz. Arc A is said to be
(+) -flat if all such quotients are positive and (-) -flat if there are non-
positive quotients of these types for points of A. Arc A is said to be
at least k-flat if and only if A is m-flat for some m > k.

Since D(x, z) - D(y, z) > -1+ D(y, x) for any three points of A by
the triangle inequality, all quotients of the types given in Definition
4, 1 will be bounded below by -1. Hence an infimum of such quotients
will exist,. and every arc will be k-flat for some unique value of k.
Also, since D(y, x) > D(x, z) - D(y, z) by the triangle inequality, such
guctients are bounded above by 1. Therefore, the range of values of

k for which an arc may be k-flat is -1 <k < 1.

Theorem 4.1. Metric D is a si-metric on an arc A if and only

if A is (+) - flat with respect to-D.

23



24
Proof. This theorem is simply a restatement of Corollary
3.3.1, for quotients such as

D(x,2z) - D(y, z) D(x, z) - D(y, x)
D(y, %) ' and D(y, =)

are positive if and only if the numerators are positive,

It should be noted that if an érc A is k-flat with respect to
metric D, thenif k> 0, D is a si-metric on A; if k< 0, D is not a si-
metric on A; if k = 0, D is a si-metric on A if and only if D is a proper
‘ “infimum for the quotients in question on:A. Thus for an arc A which
is 0-flat with respect to metric D, the metric may or may not be a si-
‘metric on A. Both types of 0-flat arcs will be exhibited later, in the
first two examples of Chapter V.

As in the case of arcs with D-kinks, whether a given arc is k-
flat for a given value of k depends upon the metric under consideration.
In fact, for any given arc A and for any value of k in the range -1<k< 1,
A can be made-into a k-flat arc with respect to some metric D which is
defined in an appropriate way. One such way to define metric D is a.sv |
follows. Let A be an arc which is k-flat with respect to a metri(‘:‘;]j and
let f be a homeomorphism from A onto A, For any two points-x,? c;f A
define D{x, y) = Dif (x), f(y) ). Then A is a metric space with metric D,
and A is k-flat with respect to D. The metric D was constructed under
the assumption that for the given value of k there is another .a.rc A
which is k-flat already with respect to some metric D. The remainder
of this chapter is devoted to exhibiting families. of arcs in thevpl‘ane.

which have k-flat arcs for a wide range of values of k.

Example 4. 1. Let Aabe a circular arc in the plane of radius

Po and angular measure a, where 0 < a< 2w By means of polar
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coordinates it can be shown that
Aa is cos a/2 ~ flat. Let the arc

lie on the circle p = Po and let

the endpoints be given by a =

0

{p~, 0) and b = (p,,a), as in Fig-
0 0 Fi
_ -Figure 7.
ure 7. Lety = (po,.ﬁ) be any
point of A(1 between a and b, so

that 0 < B <a < 2m It will be

DEEL -DE.B) ,, 5
D(y, 2)

approaches a is cos a/2, and then that cos a/2 is a lower bound of such

shown first that the limiting value of the quotient

quotients.

Let f(B) =

2 2 2 2
/-Zpo - Zpo cosa - /Zpo - Zpo cos (a-B)

2 z
/Zpo - 2p0 cos B

V1 - cosa - /1 -cos (a-~f)
vVl - cos Bb

Y2 _sin o/2 - Y2 sin (a-B)/2
2 sin P/2 ‘

sin ao/2 -~ sin (a-B) /2
sin B/2

Thus f(B) is independent of the value of Py

limit f{B) = limit i-(—l/(?)/ZC)O(S:O(SQB—/ﬁZ)/Z = cos-a/2 by the use of
g-0" g0t

L'Hospital's rule. Now if it can be shown that f(B) > cos a/2 for

0<B<a<?Zm then cos a/2 is actually the infimum of f(p).
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'fu(ﬁ) . 8in p/2 [-cos (a-ﬁ)/Z](-—l/Z) -[sin a/2 - sin (a—ﬁ)/Z]cos B/2 (1/2)
sin2 5/2

.sin B/2 cos (a-B)/2 - sin a/2 cos . p/2 + sin (a-B)/2.cos B/2
: — :
2 sin™ B/2

_sin a/2 (1 - cos @/2)

> > 0.
2 sin” B/2 -

Hence f(B) increases as P increases in 0 < § < a, and therefore
f() > cos a/2.
In fact, Aa, is cos .a/2 ~flat, for let ;r—be betweenlg andvE on‘.Aa.
Without loss of generality x has a smaller angular coordinate thanl z,
and without loss of generality x = (po,fO) for computational purposes since

the value of the quotient

will be unchanged whenever these points are equally rotated, Then z is
given by z = (p05\(), where Yy <a. But since x and z may now be consid-

ered as endpoints of the arc Ay’ then

— ——

D(x,z) - D(y, 2)
D(y, x)

> cos. v/2 > cos a/2

by the previous computation. Hence Au. is cos a/2-flat.

Example 4.2, Let arc B consist of the union of two line seg-

ments. in the plane with a .common endpoint and B the least positive
angle between them, so that 0< p <m. The following computation
shows that B is (~cos f)-flat.

By means of polar coordinates'B may be represented as an arc

fromv.at_: (a,0) to b = (b,p) with the origin 0 = (0, 0) as the common end-
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Figure 8.

point of the segments, as in Figure 8 (A). The proof that B is (-cosp)-

flat consists of two steps: one, showing that quotients of the types

D(x,z) - D(y, 2)
Dy, %) D(y, z)

come arbitrarily close to the value -cos B for Xy z; two, showing that
-cosPis a lower bound for all quotients of these types.
First, let 0 be the point between x = (x,0) and b = (b,g). The

quotient

D(x,b) - D(0,b)
X

is given by

/2, 2
Flx) = /x4 b - IxbcosB-b

where x approaches 0 from the right. Then

x-b cosf

limit F(x) = limit

't £ = -cos f
x>0 x—0 ‘/XZI+ b2

- 2xb cos P

by the use of LL'Hospital's  Rule. Thus quotients of the type
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come arbitrarily close to the value -cosf.
Next, it will be shown that -cosf is a lower bound for all quo-

tients of the types

‘D(x,2) - D(y,2) , 4 D(x,2) - D(y,x)

D(y, x) D(y, z)

for Q;Z. If.;c-, y, z are on the same line segment of B, then distances
: between the points are additive, and these quotients have the value
1> -cosp. If ; = 0, then a circular arc A from x to ;may be construct-
ed passing through y, as in Figure 8(B). If A has angular measure a,
then the geometrical relationship a/2 = w - holds. Since A is cos a/2-
flat, then

D(x,z) - D(y, %)

D(y, x)

> cos a/2 = -cos B.

If y is not at the vertex of B, then let x and y be together on one
segment with z on the other, as in Figure 8(C). By connecting y to z
with the line segment M, a new arc MU [x,y] with vertex y and angular

measure y > P is formed. With y at the vertex, . it follows that

D(;C-, Z) ’D(ya E)

D(y, x)

> -cos Y > -cos B.

Thus -cosP is a lower bound for all quotients in question on. B, and B
is {-cos P) -flat,
In the proof of the previous.example, a circular arc was circum-
scribed about a polygonal arc with two segments, as in Figure 8(B).
The following example shows that a simple relationship in terms of the

index k exists in a more general situation.
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Example 4.3. Let B be a polygonal arc in -the plane composed

of n> 2 line segments inscribed in a circular arc A of angular measure
~.a, where 0 <a < 2 w. The following geometrical argument shows that
B is cos a/2-flat,
For n=2, let B denote the angle between the two segments of B.
The geometrical relationship a/2 = w-f and the results obtained in the
previous example show that B is cos a/2-flat, since cos a/2 = ~cos B.
For n > 2, let the line segments of B be denoted in order by

a,a The ith segment a,a

1227 #2%3° -0 FnPntle il

subtends the ith circular subarc of A, denoted by é’-i\éi

is a chord of A which

+1° Figure 9

illustrates this situation when n = 5,
First, for any three points x,y, z of B with xyz it will be shown

‘that the quotient

: D(X, Z) - D(Y: Z)
Diy, x)

Figure 9.
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exceeds cos a/2. If x,y,z lie on the same segment of B, then the quo-
tient is 1 > cos a /2. 1f these points are not on the same segment, with-
out loss of generality let x be on the ith segment, y be on the jth segment,
and z be on the kth segment, where i Sj <k, IfM is the chord of A
Fpassing through x and y, the endpoints p and q of M are in g;ai+1 and

~

ajaj+1” respectively. I N is the chord of A starting at q and passing

——

through z, the other endpoint r of N is in aydy i The circular subarc
Pr of A is of some angulat measure < a, and the arc MU N is inscribed

in pr. Hence M U N is cos p/2-flat, and therefore

- D(x,z) - D{y, z)
- Dy, x)

> cos B/2 > cosa /2.

Therefore B is at least cos a/2-flat,

To show that B is exactly cos a/2-flat, construct the line seg-

ment a,a .. Thearc a,a,U asa ., is cos a/2-flat, and by the

methods of Example 4. 2, the value cos a/2 is obtained as

where t is a point of a,a,. Hence quotients of B come arbitrarily close
.to the value cos a/2, and therefore B is cos a/2-flat,

The previous examples of this chapter exhibit k-flat arcs for k
in the range -1 <k < 1. A simple example of a (-1)-flat arc is now

given,

" Example 4.4. Let A be an arc in the plane composed of the

upper half of the unit circle together with the segment [-1, 0] of the x-

D(Xs Z) - \D(Y, Z)
D(y, %)

x={(0,0), v = (-1,0), and z = (1, 0), has the value -1, Thus arc A is

axis, as shown in Figure 10. The quotient , when
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Figure 10.

(-1 -flat,
In this paper, the greatest contribution of the index k is to be

found in the following chapter,



CHAPTER V
CONVERGING ARCS

Thgs far two basic properties of an arc A with respect to a
metric D ila.ve been studied: whether or not A has a D-kink, and the
value of k such that A is k-flat with respect to D. The present chapter
presents various answers to the following question: When a sequence
of arcs converges to an arc, which of these properties are preserved?
The most general answer is that noﬁe of them are. The two folloWing
examples show that converging arce may either lose a D-kink or create

a new one on the limit arc,

Example 5.1, For each natural number n let An be an arc in

the plane composed of the union of two line segments of length 1 which

intersect at an angle of m(1-2"7)/2,
so-that A = Lim An’ as shown in
-Figure 11, i3 an arc whose line
segments intersect at an angle
of w/2. FEach arc An has a D-
kink, where D is the usual dis-

tance Irletric, In fact, An(D;'cn)z

A_, where c_ is the point of in-
I n

tersection of the two line seg-
ments that compose An. How-

ever, A has no D-kink, Therefore , Figure 11.

32
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D is a si-metric oh A, and by Theorem 4.1 arc A is (+)-flat with res-
pect to D. Since Example 4, 2 shows that A is 0-flat, A is an example

of a Q0-flat arc which is (4)-flat,

Example 5,2, Let each arc An' in the complex plane be the
union of two circular arcs, each of angular measure m/3 and radius 1,
which meet at the origin, and let the endpoints of each arc An be 1 and
ei(1+2'n+1)"rr/3g

Then A = Lim‘An will be the arc from 1 to el'n/?’

composed of two circular arcs of angular measure w3 and radius 1

m/3

with centers at 1 and éi , as in Figure 12. No arc An has a D-kink,
Hewever, A has a D-kink; in fact, A(D;0) = A, Therefore D is not a

si-metric on A, and by Theore.m 4.1 arc A is (-)-flat with respect to D.
Since Theorem 5.1 will show that A must be at least 0~flat with respect

toc D, then A is exactly 0-flat and is therefore an example of a 0-flat

arc which is (-)-flat,

Figure 12,



34

The next example shows that, at least for k < 1, a sequence of
k-flat arcs converging to an arc does not force the limit arc to be k-

flat,

Example 5.3, For each n let An be an arc in the plane from
(0, 1/n) to (2, 1/n) consisting of a line segment broken by a semicircle
with center (1, 1/n) and radius 1/n, as shown in Figure 13. The limit
arc A is the line segment from (0, 0) to (2, 0). With respect to the usual
distance metric each arC'An‘ is 0-flat, but A is 1-flat.

In this example each
arc An could have been con-
structed k-=flét for any 0 <k <1

by reducing the semicircle to

A
a circular arc of lesser angular l
measure. Further deforma-
tions in the middle section of A

each An could have given each

st}

re A any chosen permissible

> E

negative value of the index k.

However, if each A_ is k-flat, Figure 13.

the limit arc in any case is at

least k-flat. The next theorem,

which 'is the fundamental result of this chapter, shows that this'is

inevitable,

Theorem 5, L Let[An}be a sequence of arcs converging to an

arc A such that UA  is compact. If each arc An is at least k-flat with
regpect to metric D for some fixed value k, then A is at least k-flat

with respect to D.
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Proof. If k= -1, the theorem is obvious since every arc is at
least (-1)-flat. For k > -1 the proof is given by contraposition. If A
is noﬁ at least k-flat, then there are points x,y, z of A with xyz and
D(x, z) - D(y, z) < kD{(y,x). Since A = Lim An, there are se%uences
{xr} s {Yn}’ and{ zn} converging respectively to x,y, and z, Wlhere
X s Y5 2, 2T€ points of arc An for each n,

Let 6e¢ = min{D(x,y), D(x-, z), D(y,z), kD(y,x) - D(x, z) + D(y, z),
2(1+k) D(y,z)/3, 2(1+k) D(y,x)/3}.

There is a number N such that

D(x, xn) <e, Diy, yn) <e, D(z, zn) < € for all n > N. If follows that

D(xn, zn) f__D(Xan) + D(x, z) + D{z, zn) < D(x,z) + 2¢ and

D(y, z) <Diy,y_) + Dly_,z ) + D(z, zn) <D(y_,z_) + 2e for suchn,

Hence D{x_, zn); D{y,.z ) < D(x, z) - D(y, z) + 4e <kD(x,y) - 2¢.

If k> 0, then since D(x,y) < D(x, xn) + D(xn, y) + Dy, yn) < D(xn, yn) + 2¢€,

it fqllows that k D(x,y) < kD(xn, yn) + 2ke, and therefore kD(x,y) - 2€

< kD(x,y) - 2ke ikD(xn, yn) since k < 1. If k < 0, then since D(xn, yn)

< D{x,x ) + Dix,y) + D{y,y,) < D{x,y) + 2¢, it follows that kD(x,y) - 2€

< kD(x,y) + 2ke < kD(Xn, yn) since k > -1, In either case kD(x,Vy) - 2

< kD‘(an yn), and thereforé D(xn, zn) - D(yn, Zn) < kD(xn, yn) when com-

bined with the previcus inequality. This last result cdntradicts the

fact that An is at least k-flat if it can be shown that x y z on Any_

which is in fact the case for large enough n.,

There exist points p and'q of A N Ne (y) such that xpy and yqz,
as in Figure 14, If A is represented as [a,b], where x is in [a, y] and
z. is in [y,,bq]g then the subarcs [a, p] and [q,b] are disjoint, non-empty,
compact sets, and the:rr’efore-D([a9 p]s [q,b]) is a positive number. Let
6 = min {G_, D [a»;p], [jq,b])/?.},, and let U = U{Né(t) -t is in [a,p]} and

MACRERUREEEEACRNE
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Figure 14.

The sets U and V are disjoint, for suppose s is in U N V. Then
there are points t! in [a,p] and t' in [q,b] such that D(t',s) < 6 and
D(s,s) < § . Hence D(t',vt”) < D(t',s) + D(t",s) < 26- < D([a, p], [g,b]),
and the strict inequality contradicts the definition of distance between
two sets. Hence U and V are disjoint, Let W = U U N, (y)U V. Since
W is an copen set containing A and since U—A-n is compact, there is 'a
number M such that if n > M, then:'Anc. W [3-p.105]. Let n> N+M be
an integer such that D(x, xn) <6, Dy, yn) <6, and D(z, Zn) < 6.

Suppoese that v, is not between x and z_- The choice of the

constant € will lead to a contradiction in this event.  First of all, since
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Dly,»x_ ) > D{y,x) - D{y,y ) - D(x,x ) > D(y,x) - 26 > D(y, x) -2¢> 4e >0,
y_ and x_ are distinct. Similarly y_and z_ are distinct, and x_ and z
n n n n n n
are distinct, Therefore if Vg is not between X and Z then either
y.x z_orx z vy . For the sake of definiteness, let y x z . The proof
nn'n n'n’n n"n'n
for x 2.y is completely analogous.
Since A_ ¢ W, the subarc [x.,2z ] of A is contained in W. If
n n’ n n .
[x ,z. ]cUUYV, then, [x ,z ]=U UV , where U =UN[x ,z ] and
n’ “n n’ “n n n n n’ “n ,
V_ =V Nlx_,z] Since D(x,x)<é and D(z,z_) <§, x_is in U_ and z
n n’ i n n n n n
is in V_; and therefore U_and V_ are nonempty. U_and V_ are disjoint
n n n n n
since Un M an;U ANV = }?5 Also, Un and Vn are both open in [xn, zn]
since U and V are open sets. Therefore [Xn’ zn]'-: Un U Vn is a separa-
tion of [x_, z_], which is impossible, Hence there is a point t_ of [x ,z ]
T n’ “n : n n’“n
in Ne (v). Now X # tn” for D(xng tn) > D(xn, yn) - D(ynp tn) >4¢ - € =
3¢ > 0. Therefore it is true thaty x t .
nnn
Now since 6€ < D(y,x) and 6€ < 2(1+k) D(y, x)/3, it follows that
2D(y,x)/3 < D(y,x) - 2¢ , and therefore that 6€ < (1+k) [D(y, x) - 2¢].
But since D(y, x) < D{y, yn) + D(Yn” xn) + D(x,xn) < D(yn, Xn) +26<
D(yngxn) + 2€, then D(y,x) - 2e¢ < D\yny xn), Hence 6e < (1+k) D(Yn’xn)’

or be - D(y x,) <kDly_, Xn)q The following inequalities also hold:

D(Yn» tn) SZD(YQYn) + D{(y, tn) <& +e < 2

Dy, x) < D{y, ‘tn) + D(xn,, tn) + D(x, xn) < D(Xn’ tn) +te+6< D(xn, tn) + 2€

Diy_.x_ ) < D(y,y,) + D{y,x) + D{x,x ) < D{y,x) + 26 < D(y,x) + 2e.

It follows that D((yn, tn) - D(Xn9 tn) < 4e - D(y,x) < be - D(yﬁ, Xn)

< kD(y_x_).

That is,




38

fory.x t on arc A_,
nnn n

But this inequality contradicts the fact that An
is at least k-flat, This contradiction to the hypothesis completes the

proof,

Corollary 5. 1.1. Let [An} be a sequence of arcs converging to
an arc A such that UTAn is compact. If each arc An«is 1-flat with res-

pect to metric D, then A is 1-flat with respect to D.

Proof. By Theorem 5.1 arc A is at least l1-flat, that is, A is
1-flat.
Thus the value 1 is the only value of k which is always preserved

under convergence,

Corollary 5.1, 2. Let [Ar} be a sequence of arcs converging to

an arc A such that U-Kn is compact. If there is a value k > 0 such that

each arc-An:is at least k-flat, then D is'a si-metric on A.

Proof. Arc A is at least k-flat and .is therefore (+)-flat. By

Theorem 4.1, D is a si-metric on:A.

. Corollary 5, 1,3, Let {An} be a sequence of arcs converging to

an arc A such that U—TAn is compact, If D is a si-metric on each arc
An’ then D{x, z) > D{y, z) and D(x, z) > D(y, x) for every three points

%, v,z of A with xyz.

Proof. By Theorem 4.1 each arc An. is at least O-flat, and by
Theorem 5.1 arc A is at least 0-flat, Therefore all quotients

D(x, z) - D{y, z)
D(y, x)

D(x, z) - D(y, x)
Diy, z)

and

for xyz on A are non-negative, and the corollary follows.

The previous corollary shows that the limit arc of a sequence
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of arcs which have no D-kink must come very close, in a sense, to
being an arc with no D-kink, That is, Corolllary‘ 3.3.1 shows that D

will be a si-metric on the 1irﬁit arc A if D(x, z) > D(y, z) and D(x, z) >
D(y, x) for every three points x, vy, z of A with xyz, and Corollary 5.1.3
almost insures this conditiqn on.A. In effect, Corollary 5.1, 3 says

that if such a limit arc A does have a D-kink, it must be a rather special
kind of arc. Corollary 5. 1,4 will describe such an arc explicitly, An
.illustration of both the previous corollary and the following one is found

in Example 5.12.

Corollary 5.1.4, Let {An} be a sequence of arcs converging
to arc A such that-'Ul—A.n is compact. If D is a si-metric on each arc An
and if there are points x,y,z of A with y in A-[x, z] and D(x, v) = D(y, z),

then D(t,y) = D(y, z) for every point t in the subarc [x, z] of A.

Proof. Without loss of generality let xzy. According to
Corollary 5.1.3, D(y,t) < D(x,vy) »since xty and D(z, y) < D(y, t) since tzy,
Therefore, D(z,v) = D{y, t) = D(x, y).

In conclusion, the author would like to mention some questions
for further study which remain, to his knowledge, unanswered. With
reference to the characterization given in Corollary 3, 3, 2 of when a
metric is a si-metric on an arc, do the exponents p yield some index
which describes the geometrical configuration of the arc? If so, how
does this index relate to the index k developed in Chapter IV? May the
index k for sections of the graphs of algebraic and transcendental func-
tions be determined analytically? In particular, what relationship, if
any, is there between the index k and the derivatives of such functions?

Finally, for a sequence {An} of arcs converging to an arc A, what is a



necessary and sufficient condition on the arcs An so that the metric for

the space will be si-metric on A?
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