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CHAPTER I 

INTRODUCTION 

Synthesis.of the enzymes.of·certain catabolic pathways of 

metabolism is.generally recognized to be·initiated by the presence.of 

specific inducer molecules which interact with the product of a 

regulatory gene (the repressor) and determine its functional state 

(1), In the absence·of.inducer, the repressor.acts.on the operator to 

preventthe functioning of the genes under its control. Theinducing 

molecule renders the repressor inattive in its inhibitory function.· 

Synthesis of catabolic enzymes.may also be subject to the 

regulatory mechanism which has been labeled "catabolite repression" 

(2). The end products·of biosynthetic pathways are unique and 

specific, whereas the catabolic ,pathways.are convergent, leading to a 

relatively restricted group of.dommon catabolites. The metabolism of 

glucose, and certain other substrates which allow a rapid rate of. 

growth~ may be expected.to result in an.accumulation of·catabolites 

within the cel.L CB;tabql.ite repression r~fers to the repression of 

the synthesis·of those enzymes which would tend to incr~ase,the 

concentration of ·. this intracellular pool of compounds. 

Recently, data have been.presented which show·that·mechanisms. 

exist for.· the regulation of enzyme activity in ca,tabolic pathways 

which are similar to the .feedl;>ack inhibition of.anabolic pathwayso 

Komolrit and Gaudy (3) have.shown that cells which were growing 
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exponentially on various different polyalcohol,substrates ceased.to 

utilize them immediately on the addition of glucose·to the medium. 

Reeumption of utilization of the original·substrlilte abruptly follqwed 

the depletion of glucose, Zwaig and Lin (4) have described,a specific 

case of feedback·inhibition in the pathway of glycerol dissin;lilat,ion 

in EscherichiE;t coli. Glycerol kinase was fo1,1nd to be subject to. 

inhi~itic,n by the glycolytic intermediate, fructose-1,6-diphosphate. 

The -elucidation of the mechani.sms. of metabolic· control has 
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largely. been. conducted using E • .£2.!i• Genetic_ data_ are· also avail1:1.ble __ 

for E_ • .£.21!.·and Salmonella typhimurium indic~ting clustering of related, 

genee (5). No genetic data have been obtained for catabolic pathways 

in,Pseudomonas aeruginosa, however, and comparative~y little,has been 

done.in the area of control mechanisms for degradatiye pathways. 

Ma.ndelstam and Jacoby (6) have examined the enzymes·of mandelate 

degradation in P~ fluorescens and found three distinct operons for the 

eight enzymes of .the pathway. The enzymes of each operon are induced 

ae a group by t~e product of t~e preceeding operon, and the synthesis 

of .each_ group of enzymes· is __ "multi_;sensitive''. to repression by the 

products of succeeding operons. · 

A more recent stuc;ly of•• the mandelate pathway in Pseudomonas, 

putidl! (fluorescens) showed.similar CC>Ordinat~ control of the three 

groups of enzymes -- (7, 8, 9) • The· first group of five enzymes. was 

found to be.coordinately induced n9t·only·by-the first,intermediate.of 

the pathway, but also by benzoylformate, the third intermediate of the 

sequence. The ph1;momenon, was demonstrated by. employing mutante which 

were specifically blocked so as to be una~le either to further degrade 

benzoylformate or to produce back-induction by its endogenous 



conversion to mandelateo A non-metabolizable inducer, phenoxyacetate, 

was tested with similar results; all five enzymes of the mandelate 

group were formed simultaneously without induction of the enzymes of 

the subsequent groups. 

The present studies were.undertaken as a preliminary to future 

investigations into the genetic and metabolic control mechanisms of 

degradative pathways in R_. aeruginosa. A general survey of the growth 

characteristics of the organism on various carbon sources led to the 

choice of the glycerol pathway for more extensive investigation. The 

enzymes of the glycerol pathway appeared to be inducible, repressible 

by glucose, and also subject to inhibition during the metabolism of 

glucose. Therefore, the pathway appeared to be a fruitful one for the 

purpose of investigating mechanisms of metabolic control. A necessary 

first step of such an investigation is the determination of the 

reactions involved in the pathway. 

Two principle pathways for the dissimilation of glycerol have 

been found among bacteria. These are shown in Figure 1. In one 

pathway, glycerol is phosphorylated to form glycerophosphate and 

subsequently oxidized to dihydroxyacetone phosphate (reactions 1 and 

2). In the other pathway, glycerol is first oxidized to dihydroxy

acetone prior to phosphorylation to triose phosphate (reactions 3 and 

4). The former pathway has been demonstrated for Mycobacterium (10), 

Streptococcus.faecalis (l,O), Escherichia.freundii (10), Aerobacter 

aerogenes. (10), and!!.· coli (11), The latter pathway has been found 

in Acetobacter suboxydans (10), Aerobacter aerogenes (10), and!!.· coli 

(12)o The presence of both pathways in A. aerogenes.strain 1033 was 

described by Lin, et al (13)o This organism contains an inducible 
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NAD-linked glycerol dehydrogenase when grown on glycerol under 

anaerobic conditions.· When expose~ to aerobic·conditions, the glycerol 

dehydrogenase is rapidly destroyed and glycerol is converted to glycero

phosphate, followed by oxidation to.triose phosphate by a glycero

phosphate dehydrogenase which does not require NAD. The electron 

carrier has not been identified. 

Different pathways have also been described for]_. coli in 

independent investigations. Asnis and Brodie (12) reported the 

conversion of glycerol to dihydroxyacetone by extracts of]_. coli, but 

no data were presented as to the conditions of growth of the cells. 

More recently, Koch, et al (11), studied the aerobic dissimilation of. 

glycerol in!· coli strain KlO. The aerobic pathway.was shown.to 

proceed via the glycerophosphate intermediate. These investigators· 

reported the absence of the anaerobic pathway. 

A third pathway of metabolism, characteristic of the lactobacilli, 

involves the transformation of glycerol into.,6-propionaldehyde, 

{J-hydroxypropionic acid and. trimethylglycol (14). 

Glycerol has been shown to penetrate bacterial cells readily. 

Hayashi.and Lin (15) have determined that free diffusion of glycerol 

into cells of]_. coli.Kl2 is not rate-limiting for growth even at very 

low concentrations. No active transport,system was found for glycerol, 

but several mutant organisms were isolated which had lost the wild

type ability to accumulate the labeled substrate. These mutants were 

further shown to lack glycerol kinase and were therefore unable to 

"trap". the substrate by its conversion to 1-t.r-glycerophosphate, the 

latter compound being unable to.diffuse freely across the cell 

membrane. 
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Experiments by Lin, et al (16), showed that E.~ coli KlO was 

capable of using exogenous L-c(-glycerophosphate without hydrolysis prior 

to uptake, This was reported by Hayashi, et al (17), to be due to the 

presence of a specific transport mec~anism for L-£X'-glycerophosphate 1 

The enzymes of the transport system, glycerol kinase~ and L~-glycero

phosphate dehydrogenase were all subject to induction by both glycerol 

and L~<X-glycerophosphate, but an analysis of mutants which were unable 

to synth~size the particular enzymes revealed that L-t:r-glycerophosphate 

was the actual inducer of all three enzymes (11). 

In the present studies, cell-free extracts were employed to 

determine which of the pathways for glycerol metabolism is utilized by 

P. aeruginosa. 



CHAPTJl:R II 

MATERIALS AND METHODS 

A, Organism 

Pseudomonas.aeruginosa, strain 1 (PA-1), and.the mutants·derived 

from it were used for all studies. The, organism was originally 

obtained from B. W. Holloway of the University of Melbourne, 

B. Cultivation Media~ Conditions of Growth 

The cells were grown at 3 7 ° in a minimal, medium of. M-9 salts . (18) 

contai~ing (g per lit~r): NH4c1, 1,0; Na2HP04·7H2o, 11.3; KH2Po4 , 3.0; 

NaCl,· 5. 0; MgS04 • 7H2o, 0, 2; distilled wate'lc, · Carbon sources were 

autoclaved separately and added to the desired concentration. Two 

per cent agar was .. included for the preparation of plates. All liquid 

c~ltures were aerated by shaking. 

C. · Measurement of Growth . 

Cell suspensions were read against appropriate blanks at 540 mµ 

on a Coleman Junior Spectrophotometer, Model 6-D, 

D. Chemicals .· 

D-glyceraldehyde-3-phosphate (diethylacetal barium salt), 

disodium DL...(.(-glycerophosphate, penicillin-G (potassium salt, B grade), 

nicotinamide adenine dinucleotide (NAD) and its reduced form (NADH), 
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and adertosine triphosphate (ATP) were obtained from Calbiochem. 

Muscle 0(-glycerophosphate dehydrogenase, urocanic acid, and thiazolyl 

blue (MTT) were products of Nutritional Biochemicals Corporation. 

N-methyl-N'-nitro-N-nitrosoguanidine was obtained from Aldrich 

Chemical Corporation. All chemicals used in the preparation of growth 

media were reagent grade. 

E. Chemical Analyses 

1, G],.ucose,. 

Glucose was determined according to the Glucostat method.of 

Worthington Biochemical Corporation. One ml samples containing 0.05 

to 0.3 mg glucose were added to 9.0 ml of the prepared Glucostat 

reagent and allowed to stand at room temperature for exactly 10 

minutes. The reaction was stopped by adding one drop of 4M HCl and 

the tubes were allowed to stand at room temperature at least five 

minutes prior to reading on a.Coleman Junior Spectrophotometer at 

400 mµ. · 

2. Histidine 

Histidine was det.ermined by the method described by Jorpes .· (19). 

A diazoniu~ solution was prepared by combintng 1.5 ml of 5% sodium 

nitrite sol~tion with 1.5 ml of a solution containing 0.9% sulfanilic 

acid and 9% HCl. The mixture was cooled on ice for 5 minutes. Then 

6.0 ml of the.nitrite solution were added with shaking, the solution 

was cooled again for 6 minutes~ and water was added to.a volume of 

50 ml. Two ml of the diazonium solution were combined with 1,0 ml of 

the histi4ine sample (neutral to faintly acid, with histidine at 0.05 
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to 0,005 mg/ml). After 1 to 3 hours, 5.0 ml of 1.1% sodium carbonate 

were added, The tubes were read 4 to 8 minutes after the addition of 

the carbonate at 500 mµ. 

3, Glycerol 

Komolrit's modification (20) of the method of Neish (21) was used 

to determine glycerol. Periodate oxidation of glycerol allowed 

colorimetric determination of the formaldehyde formed. An aliquot 

containing 0.2 to 0.025 mg of glycerol was made up to 2.0 ml with 

distilled water and 0.5 ml of freshly prepared 0.1 M periodic acid 

was added to the sample. Exactly 10 minutes later, 0.5 ml of 1.0 M 

freshly prepared sodium arsenite was added with thorough mixing. 

About 10 minutes after addition of the arsenite, 6.9 ml of absolute 

ethanol were added with thorough mixing. A 1.0 ml sample of that 

solution was combined with 10.0 ml of chromotropic acid reagent 

(60% H2so4 containing chromotropic acid at 0,1%) and heated in a 

boiling water bath for 30 minutes under diffused light. The tubes 

were cooled to room temperature and read at 570 mµ. 

4. Protein 

The protein content of cell extracts was determined according to 

the ll).ethod 0£ Sutherland, et al (22). The extracts were diluted 1:20 

and aliquots made up to 1.0 ml with water. Five ml of a reagent 

containing sodium carbonate (4%), sodium-potassium tartrate (0.04%), 

and Cuso4 (0.02%) were added to the protein sample. The tubes were 

allowed to stand for 40 minutes at room temperature. Phenol reagent, 

2 N, (Fisher Scientific Company) was diluted 1: 2 with water, 0. 5 ml 
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was added to the tubes and they were mixed immediately 0 The tubes 

were read at 660 mp,with appropriate standardsa 

F, Isolation of Mutants 

L Selection for Mutants Using Nitrosoguanidine and Penicillin 

PA-1 was inoculated into 10 ml of nutrient broth and grown to 

8 8 x 10 cells/mL The cells were centrifuged, washed with 10 ml of 

Oa05 M citrate buffer at pH 6a0, resuspended in 10 ml of citrate 

buffer which contained nitrosoguanidine at 20 µg/ml (100 µg/ml was 

used in some experiments), and incubated for 2a5 hours at 37@ C with 

shaking, The cells were harvested by centrifugation, washed with 

0,85% NaCl, divided into 10 separate tubes, each containing 6 ml of 

nutrient broth, and allowed to grow to stationary phasea, In some 

cases, the cells were further subcultured by growing up 0,1 ml of the 

stationary-phase broth cells to stationary phase in glucosea They 

were then collected, suspended in saline and incubated for 7 hours 

with shakingo Tubes were prepared which contained glycerol (1%), 

penicillin (189 mg), and M-9 salts in a total volume of 6 ml. Cells 

from the saline suspensions were added to the penicillin tubes to a 

concentration of 2.0 x 108 cells/ml and incubated for 5.0 hourso A 

dilution series (plated on glucose agar) provided the range to allow 

subsequent plating of the cells on glucose agar at about 100 cells/ 

platea The glucose plates were replicated onto glucose and glycerol 

agaro Colonies which were capable of growth on the glucose medium, 

but not on glycerol~ were selected for further studyo 

10 
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2o Direct Plating Method 

Plates were prepared which contained Oo5% glycerol, Oo02% glucose, 

and 5 pg/ml nitrosoguanidine in minimal medium solidified with 2% agar. 

Cells were grown up in nutrient broth, diluted in saline, and plated at 

about 100 cells/plateo Organisms which were incapable of growth on 

glycerol appeared as small colonies among the larger wild-type 

colonieso 

G. Preparation of Phage Plate Stocks 

The bacteriophage used in the preparation of plate stocks and for 

transduction was E-l·PA-1, and was obtained from Ro Ro Greeno The 

media used for phage cultivation were prepared as described by 

Holloway, et al (23). One drop of log phase cells and Ool ml of a 

phage suspension containing about 5 x 106 phage/ml were combined in 

2o5 ml of soft phage agar and poured over the surface of a plate 

containing 30 ml of phage bottom-layer agaro After 12 hours incubation 

at 37@ C, the plates were soaked with 5 ml Pseudomonas phage broth for 

30 minutes; the broth was pipetted from the plates and the cells 

removed by centrifugationo The supernatant was filtered through a 

Millipore (HoAo Oo45 p pore size), 

H. Transductions 

Nutrient agar slants. of the organisms were inoculated 15 hours 

prior to useo Each slant was flooded with 2 ml saline and 0.1 ml of 

the cell suspension was spread over the surface of a glycerol minimal 

agar plateo One-tenth ml of each phage suspension used was placed in 

a localized, labeled area on the plate and allowed to dry prior to 



incubation at 37© Co Growth of transductants was counted after 48-72 

hours, 

Io Preparation of Cell-Free Extracts 

12 

Cells were grown in 800 ml of the appropriate medium (0.5% glucose 

or glycerol), collected by centrifugation during late log phasej 

washed with Oo85% NaCl, and frozeno The cells were thawed~ resuspended 

in 20 ml 0.02 M potassium phosphate buffer~ pH 7,0, and subjected to 

six to eight lO~second bursts of sonic oscillation with intermittent 

cooling in iceo Whole cells and cell debris were eliminated by 

centrifugationo All extracts were dialyzed for 4 hours against 4 

liters of Oo02 M potassium phosphate buffer, pH 7,0, prior to use in 

enzyme analyses, In addition, each extract used in.the determination 

of triose-phosphate isomerase activity was dialyzed against Oo02 M 

bicine, pH 8.5, using 200 ml volumes.consecutively through 5 changes 

of buffer, each treatment of 30 minutes durationo 

J, Preparation of Cells for Assay of L::l(-glycerophosphate Dehydrogenase 

Mutant organisms which were capable of growing in glucose .but not 

in glycerol were prepared for assay of L--Or-glycerophosphate 

dehydrogenase activity in whole-cell formo Endogenous substrates 

which could affect the reduction of MTT via other dehydrogenase enzymes. 

in the cell were largely removed by treating the cells with distilled 

water at 0° C. Forty ml of Oa2% glucose were inoculated with Ool ml 

of a saline suspension of cells from a nutrient agar slanto The 

culture was removed from the shaker during late log phase and divided 

into two 20-ml portions, To one portion of cells (A), glycerol was 
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added to a .concentration of 1%, and the culture was returned to the 

shaker o The. remaining cells (B) were c~ntrifuged, rinsed with. 

distilled wa~er, resuspended in 20 ml of distilled water~ and placed in 

an ice bath for 4 hours prior to final centrifugation and freezing of 

the pelleto The glycerol-treated cells (A) were removed from the 

shaker after 4 hours, suspended in disti~led water for 4 hou~s and 

treated .in the manner described .for "B"o 

Ko Enzyme Assays 

lo Glycerol Kinase 

The phosphorylation of glycerol was measured by.coupling with the 

L-OC-glycerophosphate dehydrogenase reaction according to the procedure 

described by Lin, et al (16) o The assay mix tu.re contained: 0 o 3 ml of 

Ool M glycerol, 0.3 ml of 3 N hydrazine, Oo5 ml of l.M sodium carbonate. 

buffer at pH 9o5, Oo2 ml of Ool M ATP, 006 mlof Ool M MgC:t,2 , Oo2 ml· 

of Oo02 M NAD, Oo3 mg L-0(-glycerophosphate dehydrogenase, and cell-:-free 

extract in a final volu111e of . 3 o O ml o The.· glycerol was . omitted in the • 

blank,, NAI)H formation was measured at 340 mµ in a Cary Recor<ling 

Spectrophotometer, Model 14 (Applied Physics Corporation)o 

2o L-«-glycerophosphate Dehydrogenase .Q.f.. Cell-Free Extract 

L~-glycerophosphate d~hydrogenase was assayed according to Lin, 

et al (16) by measuring the rate of reduction of the tetrazolium dye, 

MTT (thiazolyl blue)j to its formazan which absorbed maximally at 

550 mµo Meas~rement of dehydrogenase activity was enhanced by the 

addition of KCN which prevented the passage of electrons·through the. 

cytochrome·systemo The assay mixture contained: cell-free extract; 
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0.1 M phosphate buffer at pH 7~5, 0.1 ml of 1.0 M_DL-glycerophosphate. 

(rx,{Jmixture), 0.1 ml of MTT (1 mg/ml), and 0.2 ml of 0.15 M KCN in 

a final volull).e of 3.1 ml_. - The substrate ·was omitted .in the blank. 

The reaction was followed in a Cary Recording Spectrophotometer. 

3. L~«-glycerophosphate _ Dehydrogenase .2£. Whole~ell . Preparation 

The differential rate of dye reduction by induced and non...-;1.nduced, 

preparations of whole cells on the addition of substrate was taken.as -

a measure of ,L-K-glycerophosphate dehydrogenase _activity. The frozen 

cells were thawed, sueipended in 2.0 ml of ,0.1 M phosphate buf~er, 

pH 7. 5; and O. 2 ml of the cell suspens.ion was added to a solu t;f.01;1 

coµ.taining: 1.6 ml -of 0.1 M phosphate b~ffer, pH 7.5, 0.2 ml of 

0.15 M KCN, and 0.1 ml of MTT (l mg/ml,). The reaction was.followed. 

for 6 ,minutes at 25° using a Coleman Junior -Spectrophotometer at s·so tnp'.. 

At 6 minutee, 0.2 ml of 1.0 M DL-ff-glycerophosphate was added to both_ 

the induc~d and non-ind~ced.preparations. The opti<;:aldensity was 

recorded at one minute intervals for another s-10 minutes.· 

4. Triose-phosphate .Isomerase 

Triose-phosphate isomerase.activity was determined by coupl:lng 

with added glycerophospbate _ dehydrogenase· ari.d'meaf3uting· ·oxidation -- of 

NADH -on the _ addition of :D L :..glyceralclehyde-3-phosphate ~ The reaction 

mixture contained: 0.2 llll of 0.02 .. .M NADH, 0,1 to .-0.3:mLextract, 

0.3 mg L--«~glycerophoephate dehydrogenase (muscle), 0.5 ml of 0.025 M 

L-glyceraldehyde-3-phosphate and 0.1 M bicine, pH 8.5; to a.total 

volume of 3.7 ml. The substrate was replaced with water in the.blank. 

Oxi_dation of -NADH was followed at 340 mµ using a -Cary Recording 



Spectrophotometer, by reversing the positions of cuvettes contai~ing 

blank and sample& 
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CHAPTER III 

EXPERIMENTAL RESULTS 

A. Control of Degradative·Pathways in Pseudomonas aeruginosa 

1. Inducibility of Degradative Pathways. 

Preliminary data, were obtained. demonstrating the·. ability of PA-1 

to use as,sole.source of.carbon and energy the following c~rbon 

sources; fructose, sorbit9l, mannitol, histidine, glycerol, and 

glucose.· To.determine which of these catabolic pathways involved the 

production of inducible enzymes, glucose-grown lqg phase cells were. 

inoc1,1lated into minimal media containing each of the COI!lpciunds·at a 

concentration of 0.5% and:the growth of the cultures was recorded 

subsequently at 30 minute intervals. These growth curves are·shown 

in Figure 2. The·glucose medium was.observed to. allow an ~ediate 

resumption of,growth. A lag in growth was observed for the,othe+ 

media tested. Fructose evi4enced a very slow rate of growth 

initially, which increased significantly after several·, hours of 

incubation. Neither glycerol nor.fructose supported growth at a rate 

col!lparl;lble · .. to that, on glucose even after an apparent maximum growth 

rate·was rel;lched. 

The inducibility of these pathways was further tested by growing 

PA-1 to log phase,in eachof the above,medic';l, resuspending half of. 

each.culture in fresh medium containing the same carbon source on 

16 



Figure 2. Growth of glucose..;.grown cells on glucose and 
other carbon sources. 
Wild-type cells were grown to log phase in glucose· 
minimal mediumj harvested, and inoculated into 
minimal media containing various.carbon so1,1rces, 
each at a concentration of.0.5%. Optical density 
was recorded at 30-~minute intervals. (Not all 
readings are shown.) 
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which it was grown and the.other half in glucose minimal med~um. 

Growth re:mmed in all cases without the lag period observed when cells 

were trans~erred from a glucose mediumo Growth it). glucose.was not 

delayed on transfer from the several different media. These data are.· 

shown in Figures·3, 4, and 5. As in the previous experiments using 

non-induced cells, growth rates on fructose.and glycerol were quite 

slow compared to that on glucose even though fully-induced cells were 

used as inoculum. · 

2. Loss . .Qf Induced Enzyn1es 

Cells were inoculated iI).to minimal media containing 1.0% 

concentrations of fructose, sorbitol, mannitol, and histidine, and. 

allowed to grow to stationary phase~ Incubation of the cultures was 

continued. for about two hours after maximum growth was reached. The 

cells wer_e then tri;tnsferred into fresh media of the, same composition 

and also into glucose. In each case, growth was noted withiI). one.hour. 

in glucose but a considerable lag period was not~d for the other 

substrates. Induced enzymes- for all four substrat~s appeared to be 

degraded within a fairly short time after the substrate was.exhausted 

from the.medi-umo These.data.are·shown. in Figures 6·and 7~ 

3. Repression .!!z. Glucose, 

The biosynt,hesis of inducible catabolic enzyme~ may,besubject, to 

repression by glucose~ This mechanism is someti~es·observed to 

produce a characteristic effect on t~e growth.curve whet). the organism 

is incubated in a medium containing both the inducing substrate and 

glucose. ("diauxie11 )o 



Figure 3o Growth of induced cells on glucose and on the. 
inducing substrate:, 
Wild-:type cells were grown to log phase in 
minimal medium containing a carbon source other 
than glucose at a concentration of 0.5%o Cells 
were harvested, inoculated into minimal medium 
containing the substrate on.which they had been. 
grown and into glucose minimal medium. Optical 
density was recorded at 30-minute intervals. 
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Figure 4. Growth of induced cells op glucose and on the 
inducing substrate. 
The experiment.was performed as descril;,ed for 
Figure 3 except that different carbon sources 
were used for growing cells •. 
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Figu")'.'e 5. Growth of. induced . c1e.lls on glucose· and on the · 
inducing substrate. 
The experiment was.performeq as described .for 
Figure 3 except.that histidine was used for 
growit1g cells. 
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Figui::e 6. Loss . of · induced enzym~s .. in· the absence , of · 
sul::istrate,; 
Wild-type . cells . w~ri:? grown . in· minimal. medium 
containing 1. 0% carbon, sourGe and incubation w~s 
continued f9r twq hours·after growth ceased. Cells 
were harvested·and transferred.to fresh mediuiµ of 
the sa~e composition and also to glucose minimal 
medium. Optici:i.l·density was.recot;."ded.at 30 to 
60.minu~e in~ervals~ 



1.0 

0 GLUCOSE 

I> SORBITOL 
0.8 

>-
t,.- . 

_(/) 

z 0.6 
Lu . 
0 

....J 
<( 

0.4 u 
t,.-
Q_ 

0 

0.2 

oo __ _._ __ ..,_ _____ .,..__._ __ _,___... __ ..,.._ _______ ....... ____ ,._. __ ~ 
1.0 2.0 3.0 4.0 · 5.0 6.0 170 20.0 

>
t,.-

008 

(/) 0.6 
z 
Lu 
0 

....J 

5 04 
I-
Q_ .· 

() 

o GLUCOSE 
v MANN ITOL 

HOURS 

0o!""·---~w--'"'"!2~.0---3~.o-· __..._4~.o-· --5~.o--6~.o~-"'1~1.0~20.0 

HOURS 

27 



Figure 7. Loss.of induced enzymes 1 in the absence.of 
substrate. 
The experiment was performed as described for 
Figure 6. 
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If glucose is capable of repression, and assuming that glucose is 

used by the.cells preferentially, th1=n a "two-step" growth curve could 

result. On depletion of the glucose in the medium, a stationary period 

or lag would be evident prior to a resumption of growth on the second 

substrate. Growth curves of this type are often cited as a criterion 

for·presence·of the "glucose effect". Log phase·cells, grown in. 

glucose, were suspended in 0.1% gluGose, and in mixtures of 0.1% 

glucose with: 1) 0.1% histidine, and 2) 0.1% glycerol. The optical 

density of each culture was recorded every 30 minutes. These data are 

shown in Figure 8. Neither mixture of substrates resulted in diauxic 

growth and this method, therefore, afforded no evidence of glucose 

repression. 

Because repression by glucose.may not·be.evidenced in growth data, 

analyses of.substrate uptake during growth on glucose plus histidine 

and glucose.plus glycerol were undertaken. Cells from the log growth 

phase in glucose were transferred to: 1) 0.1% glucose, 2) 0.1% glucose 

plus 0.1% histidine, 3) 0.1% glucose plus 0.1% glycerol. Aliquots 

were taken from the mixtures hourly and analyzed for the quantities of 

substrates present. Growth was measured as optical density every 

thirty minutes for all three flasks until stationary phase~ These. 

data are shown.inFigures 9·and 10. The utilization of.histidine and 

glucose was found tp be conconunitant. In contrast, the level of 

glycerol in the medium remained unchanged until the glucose was 

largely depleted. From these data, it can be.concluded that glucose 

represses the utilization of glycerol but not that of histidine. 

Again, no diauxie was shown in growth on glucose plus glycerol •. 



Figur:e 8. Growth on glucose and on. mixtures of substrates •. 
Wild-type cells were harvested during the log 
phase from glucose .minimal medium and resuspended 
in glucose.medium and in medium contain:i.ng 
glucose·combin~d with a second carbon source. 
Optical density was recorded at frequent intervals. 
Experiment 1: 0.1% glucose·(o); 0.1% glucose 
plus 0.1% glycerol (c). Experiment 2: 0.1% 
glucose (o); 0.1% glucose plus 0.1% histidine (A). 
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Figure 9. Effect of glucose on utilization of.histidine by 
glucose~grown cells, 
Wild-type cells were harvested during the log 
phase from glucose minimal medium and inoculated 
into minimal media containing: (1) 0.1% glucose 
and (2) 0.1% glucose+ 0.1% histidine. Optical 
density was recorded for both f],asks hourly and 
sample$ were removed from the mixture and 
analyzed for glucose and histidine. Glucose 
concentration (e); histidine concentration(.&); 
optical density in.glucose alone (o); optical 
density in glucose plus histidine (A). 
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Figure 10. Effect of glucose on utilization of glycerol by 
glucose-grown cells. 
The experiment was performed as described for 
histidine (Figure 9) except that the mixed 
substrate was composed of.0.1% glucose plus 0.1% 
glycerol. Glucose concentration (e) ; glycerol·. 
concentration(•); optical density in glucose 
alone (o); optical·density in glucose plus 
glycerol (ti). 
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4. Inhibition EY_ Glucose 

Because the degradation of glycerol had been shown to involve the 

production of inducible enzymes that were sensitive to repression by 

glucose, further investigations into the glycerol pathway were 

initiated. Although glucose was seen to repress the formation of the 

enzymes of the pathway, no evidence was available on the effect of 

glucose on the activity of pre-formed enzyme. 

To test the response to glucose addition of cells fully induced 

to glycerol degradation, PA-1 was grown overnight from a small inoculum 

in glycerol minimal medium. The culture was diluted with fresh 

glycerol minimal medium and incubated to log phase. Cells were then 

harvested by centrifugation, resuspended in one-fourth the original 

volume of M-9 salts and used to inoculate six flasks with test tube 

side-arms. One flask contained 0.25% glucose medium (glucose control) 

and the other five contained 0.25% glycerol. Glucose was added to 

one flask of glycerol medium at zero time and to the remaining three 

flasks after one, two and three hours, respectively. The final 

concentration of glucose in all cases was 0.25%. The fifth flask 

containing glycerol was used as a control. All flasks were shaken at 

37°, and at hourly intervals optical density was recorded and a 

sample removed from each flask for determination of substrate 

concentrations. 

These data are shown in Figures 11 through 15. In Figure 11, 

which shows the two control cultures, it may be seen that glycerol

grown cells utilize glucose much more rapidly than glycerol. Glucose 

was depleted within 3 hours, whil~ 11 hours were required for complete 

removal of glycerol. Figures 12 through 15 show the effect of 
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Figure llo Growth and substrate utilization by glyceroi
grown cellso 
Wild-type cells were grown in glycerol minimal 
medium, .diluted into fresh glycerol medium, 
harvested during log phase and used to inoculate 
five flasks of glycerol minimal medium (Ool% 
glycerol) and one flask of glucose minimal 
medium (Ool% glucose)o Optical density was 
recorded for each flask hourly and samples were 
removed for determination of .substrate concentra
tion. Data for control flasks.are shown.in this 
figure and for flasks receiving substrate 
mixtures in Figures 12 through 15. Optical 
density in glucose (o); optical density in 
glycerol (o); glucose concentration(•); glycerol 
concentration (a). 
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Figure·l2. Inhibition of glycerol utilization by glucose 
added at zero timE~. 
Glucose was added at zero time to one flask of 
glycerol medium to a concentration of 0.1%. 
Preparation of flasks was described for Figure 11. 
Optical density (o); glucose concentration(•); 
glycerol concentration (o). 
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Figure 130 Inhibition of glycerol utilization 
added after one houro 
Glucose (Ool%) was added after one 
flask containing glycerol mediumo 
of flasks was described for Figure 
density Co); glucose concentration 
concentration (o). 

by glucose 

hour to a 
Preparation 
11. Optical 
(•) ; glycerol 
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Figure 14. Inhibition of glycerol utilization 
added after two hours. 
Glucose (0,1%) was added after two 
flask containing glycerol medium, 
of flasks .was described for Figure 
density (o); glucose concentration 
concentration (a), 

by.glucose 

hours to a 
Preparation 
11. Optical 
(•); glycerol 
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Figure 15. Inhibition of glycerol utilization by glucose 
added after three hourso 
Glucose (Ool%) was added after three hours to a 
flask containing glycerol medium" Preparation 
of flasks was described for Figure 11. Optical 
density (o); glucose concentration(•); glycerol 
concentration (D)o 
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additiqn of ,glucose to cells fully adapted to growth on glycerol. In 

each case, glycerol utilization wa,s promptly suspended upon addition of 

glucose .and did not resume until a basal low level of glucose .had been 

reached. This experiment clea,rly shows tha~ glucose .inhibits glycerol 

utilization e~en though the .required enzymes have been fully induced. 

5. Induction of Histidine . Deg,radative Enzymes ·ll Urocani-e Acid 

Urocanic .acid .has been shown ,to be .the true inducer of the enzymes 

for histidine degradation in Aerobacter aerogenes (24). P. aeruginosa 

was.tested for that·characteristic by growing cells to log phase in 

urocanic aci4, resuspending the cells in histi,dine and . in urocanic aci,d 

media, and comparing the course of growth for these organisms with the 

growth of glucose-:-grown cells which .had been resuspended in .histidine. 

Growth .curves are shown in Figure 16. No increase in cell density was 

observed fqr the non-:-induced .culture during a 2.5 hour period of 

. incubation. However, both.the urocanate .and histidine .cultµres '.which 

had been previously grown on urocanate · res.urned growth within one .hour 

at an .exponential rate. Therefore, it can be concluded that in P.: 

aeruginosa, as in A. aerogenes, the enzymes for his ti.dine degradation 

are induced by,urocanic ,acid. 

B •· Glycerol Pathway. in .Pseudomonas aeruginosa 

1. Glycerol Permease,. 

A 100 ml cul,ture of PA,-1 i.n glycerol minimal.medium was grown for 

15 hoµrs .and the ·log phase cells were c~ntrifuged, washed twice with 

a minimal salts soluti,on, and suspended. in 10 ml of minim.al medium 

containing glycerol a~ approximately 3 mg/ml., Samples (0. 5 ml) were 



Figure 16. Induction of enzymes for histidin,e degradation 
by·urocal;}.:i,c·acid. 
Wild~type cells were grqwn to log phase in 
mi,nimal • medium contail;l.ing O ~ 5% uroca.nic, acid, 
harvested,, and. inoe1,ilated into minimal media 
containing ;urocEJ.ni.c '.acid, and histidine, 
respectively. Cells harves.ted . from. a log phase 
culture, in gluc.ose were simultaneoui:tlY 
inoculated into. histidine minimal. medium. . Optical 
density was recqrd.ed at 30-minute. _intervals. 
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taken at zero, 10, and 20 minutes, and filtered immediately through a 

Millipore filter. The samples were frozen until the time of assay for 

glycerol content. The glycerol in the medium was found to have been 

reduced from an original concentration of 3.25 mg/ml to 3.10 mg/ml 

after 20 minutes. 

In a second experiment using the same procedure, a 100 ml, 23-hour 

log phase culture was concentrated into a 10 ml volume containing 

glycerol at a slightly lower concentration of 2 mg/ml. As before, the 

glycerol in the medium was seen to decrease by about 0.1 mg/ml during 

the 20 minute period. Data fo+ both experiments are shown in Figure 17. 

Since fully-induced cells were used in both experiments and essentially 

no upta~e of glycerol occurred beyond that which might result from 

simple diffusion, it may be concluded that there is no mechanism for 

active concentration of glycerol in P. aeruginosa. 

2. Growth .Q!!. ~-Glycerol Phosphate 

Although the cell is generally considered to be impermeable to 

the passage of phosphorylated compounds, a specific transport mechanism 

for the uptake of ~-glycerol phosphate has been reported for 

Escherichia coli (1°7). :eA-1 was tested for ability to grow on this 

compound with negative results in all cases. Since or-glycerol 

phosphate was shown in later experiments, described below, t,o be a 

normal me.tabolite of glycerol in l.· aeruginosa, the inability of the 

cells to use th:i,s ·compound for growth must be ascril;>ed to lac~ of 

permeability. 



Figure 17, Accumulation of glycerol by glycerol-grown cells. 
In Experiment 1, (o), a 15-hour log phase culture 
from glycerol minimal medium was harvested, 
washed, and resuspended in one-tenth the original 
volume of mtnimal medium containing glycer9l at 
a con~entration of ,3.25 mg/ml. Samples were 
removed, filtered and assayed for glycerol 
content. Experiment,2 (6) was similar except 
that· a.· 23-hour log phase culture was used and 
the initial concentration of glycerol was 2.1 
mg/ml. 
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3. Enzyme Assays 

The enzymes of the glycerol degradative pathway in PA-1 (wild 

type) were assayed in extracts of cells which had been: 1) grown 

solely on glucose, 2) grown solely on glycerol, and 3) grown on 

glucose, then transferred to glycerol medium for a 4-hour period of 

induction. Each extract was assayed for glycerol kinase, 

(X-glycerophosphate dehydrogenase, and triose phosphate isomerase 

activities. Enzyme activity levels for the three types of extract are 

shown in Table I. 

Substitution of NAD for the tetrazolium dye in the dehydrogenase 

assay showed that no NAD-linked C(-glycerophosphate dehydrogenase 

activity was present in either glucose- or glycerol-grown cells. 

Based on these data, it may be concluded that the pathway for 

glycerol catabolism in P. aeruginosa involves glycerol kinase, a 

non-NAD-linked c(-glycerophosphate dehydrogenase, and triose phosphate 

isomerase. This pathway is the same as that reported for_!. coli. 

Only the dehydrogenase was shown to be completely absent in non-

induced cells. Growth on glyc;erol resulted in somewhat lower levels 

of kinase and dehydrogenase than were found in cells grown on glucose 

and induced by exposure to gl)l'cetol for four hours. Glycerol kinase 

was not completely absent in non-induced cells, btitinduction with 
,t 

glycerol increased the level of this enzyme almost three-fold. No 

evidence was obtained for induction of the triose phosphate isomerase 

by glycerol. The activity of this enzyme was considerably higher than 

those of the other two enzymes in all extracts, and the highest level 

found occurred in glucose-grown cells. Therefore, it would appear 

that this enzyme either is constitutive or is induced by growth on 
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TABLE·.I 

SPECIFIC ACTIVITIES OF GLYCEROL ENZYMES IN 

CELL-FREE·· EXTRACTS OF · WILD-TYPE CELLS 

Enzyme Type·of Cells 

Glycerol-grown Glycerol-induced Glucose-grown 

Kinase 0.013 0.023 0.008 

Dehydrogenase 0.010 0.028 0.000 

Isomerase 0.932 0.976 1.415 

Assays .were carried out as . described in tb,e text~ Specific 
activities are expressed as cliange in optical density (MTT or NAD) 
per mg protein. 
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glucose. 

C. Isolation and Characterization of Mutants 

1. Isolation of Glycerol Mutants 

a. Direct Plate Method 

On plates containing 800 to 1000 colonies on glycerol-glucose-

nitrosoguanidine agar, two distinct sizes of colony were noted. 

Numerous pinpoint""-sized growths were observed among the larger wild 

type colonies; 183 of these small colonies were picked for further 

study. Each colony was transferred with an inoculating needle to 

nutrient agar, glucose minimal agar and glycerol minimal agar. Of the 

183 colonies tested, 56 grew on neither glucose nor glycerol. 

b. Nitrosoguanidine and Penicillin 

Several unsuccessful attempts at isolation of glycerol mutants 

using nitrosoguanidine followed by penicillin selection prompted 

investigation of the effectiveness of penicillin as a selective agent 

and the optimal conditions for its use. One mutant organism which 

was capable of growth on glucose but not on glycerol had been isolated 

from prior sets of replica plates. A time study was run using this 

mutant organism and the wild-type (PA-1) to determine the relative 

mortality during treatment with penicillin. Both types of organism 

were grown up in nutrient broth, incubated for 4 hours in saline to 
. 8 

deplete the metabolic pool, suspended at a concentration of 1.5 x 10 

cells/ml in 6 ml of 1% glycerol containing 189 mg of penicillin, and 

incubated at 37° C with shaking. Samples were taken every 2 hours 
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and diluted for plate counts of viable cells. These data are shown in 

Figure 18. As a.result of this experiment, an incubation time of five 

hours was chosen for the penicillin step in subsequent experiments. 

Using this technique, a total of 7 independent mutants were obtained 

from replica plates of nitrosoguanidine and penicillin-treated cells. 

2. Characterization o.f Glycerol Mutants 

a. Growth Studies 

Mutants which had been isolated as very small colonies from 

nitrosoguanidine-containing plates (PA-1-623 through PA-1-678), were 

found to be unable to grow on either glucose, glycerol, or a medium 

containing both of these substrates. The addition of 0.02% yeast 

extract to the three media, however, revealed that the organisms were 

capable of growth on glucose to a level limited by the amount of yeast 

extract added. Yeast extract did not allow the utilization of the 

glycerol as carbon source. These mutants were further shown to require 

added yeast extract to grow on any of the carbon soqrces which had 

been tested originally with PA-1. In addition, the ability to grow on 

sorbitol and on mannitol was lost even with yeast extract present. 

PA-1 was checked for its ability to grow on the compounds te.sted at 

the beginning o~ the research and was found to be unable to use 

sorbitol, but growth on mannitol was the same as that previously 

observed. The loss of the ability to grow on both glycerol and on 

mannitol was therefore considered to be characteristic of these 

mutants. These mutants, all of which had identical growth patterns, 

were designated group II mutants. 

Mutants which were obtained from replica plates (cells which had 



Figure 18~ Survival of mutant and wild-type cells in glycerol 
medium containing penicillin. 
A glycerol mutant and the wild-type parent were. 
grown in nutrient broth, aerated in 0.85% saline 
for.4 hours; st1spended at a concentration of 
LS x 108 cells/ml .in 1% glycerol minimai' medium 
containing 31~5 mg/ml of penicillin G, potassium, 
and incubated at 37° •. Samples were 'removed from 
each culture at two-hour int~rvals for plate 
counts. Wild~type (6); mutant (o). 
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been treated with both nitrosoguanidine and penicillin) grew readily on 

glucose but were unable to grow on glycerol. These mutants were 

designated group I mutants. 

b. Enzyme Studies R!!h, Whole Cells 

Four mutants from group I were tested for the presence of 

c.r-glycerophosphate dehydrogenase. Preparations of whole cells which 

had been specially treated as described before were used in the assays. 

One of these failed to show dehydrogenase activity by this method. 

The other three preparations showed marked increases in rate of dye 

reduction, on the addition of substrate, for the induced cells 

relative to the glucose-grown cells. The optical density readings for 

one mµtant, C, are shown in Figure 19. Similar results were obtained 

with mutants E and 20 of group I. Mutant F had no dehydrogenase 

activity, as measured by this method. 

c. Enzyme Studies With Cell Extracts ~--

Extracts were prepared from one mutant of each group. Since all 

the mutants of group I had appreciable rates of reversion to wild 

type, only mutant E was used for enzyme studies. This mutant was 

chosen because its rate of reversion was the lowest of the group as 

judged by numbers of colonies obtained from glucose-grown cells plated 

on glycerol minimal agar. Only one mutant of group II was studied 

because it appeared that all these mutants possessed identical 

defects. 

The enzyme activities measured in extracts of these two mutants 

are given in _Table II. Neither of the extracts examined was found to 



Figure •. 19 ~ Measu:t;"ement · of :{X-glycerophosphate dehydrogenase · 
activity in whole cells. 
Mutant C (group II) was prepare(! as described in 
the text by growth on glucose, induction of·one
half the cells with glycerol, washing and 
storage.· in ice-cold distilled water·. to remove. 
endogettol!,s·sul?strates .and freezing tQ inci::ease 
permeability. Dehydrogenase activity was 
measured as reduction of MTT before, .and after 
addition of substrate, 0(-glycerophosphate. The 
non-,.induced portion of the ,culture, similarly 
treated, served as a control.· The optical 
density o~ the control remained at 0.0 through
out · the. experiment. 
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TABLE II 

SPECIFIC ACTIVITIES OF GLYCEROL ENZYMES IN 

CELL-FREE EXTRACTS OF MUTANT CELLS 

Enzyme Mutant 

group I group II 

Kinase 0.015 0.025 

Dehydrogenase 0.018 0.001 

Isomerase 0.283 0.287 

Cells of group I were grown in glucose minimal medium, Cells of 
group II were grown in glucose medium containing 0.02% yeast 
extract, Both groups of cells were induced for four hours in 1% 
glycerol. Specific activities are expressed as change in optical 
density (MTT or NAD) per minute per mg protein. 
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lack glycerol kinase activity. Both the extract that was prepared from 

a replica plate isolate (group I mutant) and the extract of a yeast 

extract-requiring organism (group II mutant) showed enzyme activities 

about equal to the wild type glycerol-grown or glycerol-induced 

extracts. Only the extract from the group II mutant was shown to lack 

appreciablec:(-glycerophosphate dehydrogenase activity. The activity of 

the other mutant extract was intermediate between that of the glycerol-

grown and the induced wild type extractso The extracts from both 

groups of mutants were shown to have a basal level of isomerase 

activity which was significantly lower than the enzyme activity 

observed for the wild type. 

3. Transduction Studies 

The organisms of group I yielded plate stocks with·titers of 1010 

11 ( 
to 10 phage/ml. Attempts to prepare plate stocks of the organisms 

of group II were unsuccessful. Although all plates were prepared 

simultaneously, using the same media and phage suspension, no lysis 

occurred on plates containing any of five mutants from group II. 

Therefore, it was not possible to study transduction between the two 

groups of mutants. 

Transduction studies were done between the members of group I, 

each mutant being treated with phage obtained from the other mutants 

of the group. The frequency of reversion to wild type growth was 

observed to be very high, making it impossible to determine whether 

transduction had occurred. The number of colonies observed within 

the area where phage had been applied was about equal to the number of 

revertants in other areas of the plateso Control plates using a 



non-reverting auxotrophic mutant gave excellent results, indicating 

that the phage stocks used were capable of transduction. 

D, Susceptibility to Phage 

The initial attempt to prepare plate stocks of group II mutants 

showed that no lysis of cells occurr.ed with treatment with E-l ·PA-1. 

Twelve other strains of phage were tested for their ability to lyse 

two group II mutants and also a group I mutant. Eleven of the twelve 

phage were seen to lyse the group I organism, but none of these were 

observed to lyse either of the group II organisms. 

The lack of susceptibility of the group II mutants to phage 

suggested a possible aberration of the cell wall structure which 
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could be related to the use of glycerol as a biosynthetic component. 

Hauser and Karnovsky (25) have shown that glycerol is a precursor in 

the formation of rhamnose, and that fructose is an intermediate in 

that biosynthetic pathway. Furthermore, rhamnose has been found to be 

an integral component of the cell wall mucopeptide in Pseudomonas 

aeruginosa (26), Rhamnose and fructose were both checked to determine 

if the presence of these substrates in the growth medium could support 

growth of the mutants in the same manner as added yeast extract. The 

mutants were inoculated into: 

1) 0.4% fructose 

2) 0.2% fructose + 0.2% glycerol 

3) 0.4% fructose + 0.02% yeast extract 

4) 0.2% fructose + 0.2% glucose 

5) 0.4% rhamnose 

6) 0.2% rhamnose + 0.2% glycerol 
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7) 0,4% rhamnose + 0,02% yeast extract 

8) 0,2% rhamnose + 0,2% glucose 

Of these media, only the fructose plus yeast extract was observed to 

allow growtho The wild type (PA-1) was also shown to be unable to use 

rhamnose as carbon source, The possibility that rhamnose may be 

involved in the phenomenon has not been excluded, however, because no 

data are yet available concerning the permeability of the cells to 

that substrate, Preliminary data have been dbtained for non-adsorption 

of phage to the mutants, revealing a relative resistance as compared 

to the wild type cello 

. ·"·· 



CHAPTER IV 

DISCUSSION 

In general, the data obtained in these studies support the 

conclusion that P, aeruginosa is subject to control mechanisms for 

catabolic pathways of the same types as those found in E. coli. 

Growth data obtained under three different conditions for several 

carbon sources indicate that pathways for these compounds are subject 

to genetic repression; i.e., the enzymes are not formed except in the 

presence of an inducer. The long induction periods required for growth 

of glucose-grown cells on other carbon sources (Figure 2), the 

immediate utilization of these same compounds by induced cells 

(Figures 3, 4 and 5) and the loss of induced enzymes after exhaustion 

of substrate (Figures 6 and 7) are evidence for genetic repression. 

Failure of glucose-grown cells to utilize glycerol in the presence of 

glucose is presumptive evidence for catabolite repression, or the 

"glucose effect". A newer control mechanism, inhibition of glycerol 

utilization by glucose in cells fully-induced by glycerol, was also 

demonstrated .. 

The two phenomena, repression by glucose and inhibition by 

glucose, are difficult to distinguish experimentally. Both mechanisms 

are seen to prevent the normal utilization of specific substrates in 

the presence of glucose. The differentiation of the two mechanisms 

has been somewhat complicated recently by a report that diauxic growth 
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of_!. coli on glucose and lactose is caused by interference·of glucose 

with the uptake of lactose; tqus reducing the internal concentration of 

inducer. (27) o 

The data for uptake of histidine from a glucose-histidine mixture 

clearly show that neither mechanism affects histidine catabolism in 

PA-1. In contrast, Lessie and Neidhardt ,(28) have found the histidine 

pathway of another strain of the same·organism to.be quite sensitive 

to repression by glucose or by succinate~ 

Glucose·was effective in.preventing the dissimil,ation of glycerol 

by f.. aeruginosa, strain 1, in all cases. The abrupt halt·in uptake of 

glycerol by induced cells on the addition of glucose possibly implies 

that the enzyme, glycerol kinase, had been rendered inactive. Glycerol 

was shown not to be actively transported into the cell at a.rate 

greater than that of free diffusion. The rate of uptake of glycerol 

prior to addition of glucose, therefore, probably represents the rate 

of·one-way diffusion of glycerol into.the cells where phosphorylation 

by glycerol kinase prevents its exito The uptake of glycerol would 

continue at a constant rate per cell in the presence of the.active 

kinase. Very low levels of glucose were seen to prevent.the use of 

glycerol. If competitive uptake.of the substrates were involved to a 

significant degree,.some evidence of increased glycerol uptake should 

have become increasingly apparent at these low levels of glucose. 

The uptake data which were obtained for non-induced cells growing 

in a mixture of glucose. and glycerol are· typ!i.cal of ·. the results which· 

have been cited as evidence of.glucose repression by many different 

investigators. Some of.these investigators have also corroborated· 

their uptake data by specific enzyme analyses, demonstrating the 



absence of the repressed enzyme during the metabolism of glucose. 

Such assays were not carried out in the present studyo 
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Since it does not appear that in R.~ aeruginosa, strain 1, a 

permease is involved in glycerol accumulation, prevention of induction 

by a hindrance of glycerol accumulation,~ se, appears unlikely. In 

view of the other data obtained, another explanation for the "glucose 

effect" can be advancedo The glycerol enzymes (or at least one. 

required step in glycerol utilization) are clearly subject to 

inhibition by glucoseo This inhibitory effect of glucose would prevent 

the detection of any induced enzymes of the glycerol pathway until the 

glucose had been depletedo The possibility exists that induction by 

'glycerol is not prevented by glucose; instead, the enzymes are 

synthesized normally but are rendered inactive until the metabolism of 

glucose ceases. Considerable further study will be required to 

clarify the exact mechanism involvedo 

The absence of a discreet lag period between the time at which 

glucose is depleted from the medium and the observed uptake of glycerol 

indicates that the induction of the glycerol enzymes must be very 

rapid if true repression of enzyme synthesis had occurred during 

glucose metabolism. 

The pathway of glycerol dissimilation in R_o aeruginosa, strain 1, 

was found to involve the.same intermediates as in aerobically-grown 

!_. aerogenes strain 1041 or 1033 and.§_. coli strain KlO. Both of 

these organisms differ, however, in certain aspects of.their treatment 

of glycerol from the strain of R_. aeruginosa used in this study. The 

NAD-linked pathway of anaerobically-grown!_. aerogenes strain 1033 

may be considered absent in PA-1 as in E. coli and A. aerogenes 
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strain 1041; since no redu~tion of NAD was observe4 in f~lly induced 

cell-extracts, The· formation of dihydroxyacetone by an NAD-linked 

glycerol dehydrogenase·and the.participation of NAD in.the oxidation of 

0(-glycerophosphate were e~cluded as possible rouies of metabol:l..sm by 

testing .the cell extracts for their c~pacity to reduce NAD on·the 

addition of 0(-glycerophosphate or glycerol as substrate~ 

];_. coli differs from PA:-1 in its ability to. transport Of-glycero

phosphate into the cell~ Both organisms.are impermeable to 4'-glycero

phosphate by free diffusion; therefore, PA-1 may be considered to trap 

glycerol on its diffusion into the cell in the same manner.as has been 

noted for·];_~ coli. In ];_.· coli 7 the glycerophosphate · pe:i;:mease and 

dehydrogenase;. and· glycerol kinase . are induce.d by growth'. on, either 

tr-glycerophosphate or glycerol. In.mutant cells which .lacked the 

glycerol kinase, howeyer, glycerol was ineffective as an inducer, but 

~-glycerophosphate induced both the permease and. the dehydrogenase 

(11), Since,no mutants were obtqined during the present research 

which lacked·glycerol kinase·activityt it is not·possible·to.speculate 

as to whether the true inducer for the pathway is glycerol, or whether 

the enzym~s·are induced.bylX'--glycerophosphate a~ in E.coli. The lack 

of ,a transport system for C(-glycerophosphate would seem to preclude 

any direct advantage to tqe cell of such.a mechanism of,induction. · 

The isomerase data obtained for the wild~type cell extracts show 

little significant·difference,between the induced and non-:1..nduced 

cells. Constitutive synthesis of the isomerase could account for this 

cqndi~ion, Alternatively, the high levels of enzyme formed during 

both cond:l..tions of:growth could be explained by induction by.glucose 

and by.glycerol. The·latter possibility cannot be excluded since no. 
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data are· available for this enzyme during growth on substrates which 

are not degraded by the glycolytic route. Furthermore~ the data do 

not preclude the possibility that two isomerase enzymes are present in 

this organism, one enzyme, formed during growth on glucose, mediating 

the conversion of glyceraldehyde-3-phosphate to dihydro~yacetone 

phosphateand a second enzyme mediating the reverse of that reaction,. 

which is specifically inducible by glycerol.. Although the isomerase 

reaction is normally considered to be reversibly mediated by a single 

enzyme, the peculiar pathway.for glucose degradation in Pseudomonads 

gives the isomerase step two distinct functions, one.anabolic and 

another catabolic, depending on the substrate being metabolizedo 

Separate enzymes are synthesized for.other reactions of intermediary 

metabolism which function in both synthesis and catabolism (29). 

Therefore, teleonomic·reasons may be seen which could give credence to 

the possibility that special control mechanisms may have evolved for 

this organismo Breakdown of glucose via the Entner-Doudoroff pathway 

does not involve the formation of dihydroxyacetone phosphate; instead, 

glyceraldehyde phosphate and pyruvate are formed directly from 

cleavage of a six-carbon precursor (Figure 1). During growth on 

glucose, therefore, biosynthesis of triglyceride and any other 

derivative of glycerophosphate would be dependent on the formation of. 

dihydroxyacetone phosphate and its subsequent conversion to glycero

phosphate;, Because glycerophosphate is readily available to the cell 

during catabolism of glycerol, the isomerase step would have the. 

single function of shuttling dihydro~yacetone phosphate into the 

mainstream of glycolysis. 

Dihydroxyacetone.phosphate was.not specifically tested as a. 
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substrate with cell extracts. However, the assay method used required 

that dihydroxyacetone phosphat;:e·be produced.from glyceraldehyde~3~ 

phosphate·by an isomerase present in the extract~ If two distinct 

isomerases:are formed by the cell, the·en~yme.measured 1need.not have 

been induced by.glycerol, since the highest levels were observed in, 

glucose-grown extracts. This explanation appears.· improbable; however, 

since,cells grown on.glycerol possessed high levels of isomerase·when 

measured in.the same way.· 

The low level of ,isomerase activity for both extracts.prepared 

from mutants deserves particular attention. If the isomerase is 

cqnstitut~ve or is inducible by either glucose.or glycerol, the low 

activity could be,due to production of an altered enzyme molecule. If 

there.are two isomerases, one.inducible by glucose·and the other by 

glycerol, the activities measured in the mutant extracts may represent 

residual glucose~induced enzyme.which had been formed during growth of 

the cells on glucose.prior to a four~hour period of induction by, 

glycerol. In the latter case, the glycerol-induced isomerase could be 

completely absent and this could explain the inability of the two 

mutants to grow on glycerol •. If a single constitutive, reversible. 

isomerase is produced, then it must be assumed t~at the level of 

activity measure~ in the group I m~tant is inadequate to produce a 

rate of growth sufficient to sustain viability when glycerol is the 

sole carbon source. If a single enzyme, inducible by_either glucose 

or glycerol is involved, then the mutation could have occurred in the 

regulator gene; producing a repressor insensitive to glycerol, thus 

preventing growth.on glycerol but allowing growth on glucose. In 

this c~se as well, the activity measured would represent residual 
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glucose.;.induced enzyme.· Genetic studies and extensive purification of 

the enzyme produced under different conditions of growth will be 

required to distinguish between these possibilities • 
... ,.-.··-

The resistance of group II mutants t9 infection by.phages capable 

of attacking the wild-type, PA-1, and mutants.of group I.is of.consider-: 

able int~rest. · Preliminary data (R. R. Green, personal .. communication) 

indicate that the phage are not.adsorbed by group II mutants. Since 

adsorption depends upon the presence of specific.sites in the cell 

wall, these mutants may be assumed to have an altered cell wall. This 

alteration does not affect viability since.cells grow quite well in 

media in which phage adsorption does not occur. It is possible that 

the alteration in the cell wall is the result of a second.mutation 

distinct.from that involved in ability to grow on glycerol. However, 

the occurrence of a nutp.ber of apparently identical, independent, · 

double mutations seems less likely.than the occurrence of a single 

mutation affecting both glycerol utilization and cell wall composition 

or structure •. The most obvious explanation for such a single mutation 

is a requirement for glycerol or a product formed.from it in cell wall 

synthesis. A glycerol-containing teichoic acid would present one 

possibility but these have not been reported inf.. aeruginosa to our 

knowledge. Triglycerides or other glycerol-containing lipids may also 

be components of the cell wall and these.compounds could be.involved 

in phage·adsorption. · Based on present knowledge of the cell wall of 

R_. aeruginosa, it appeared quite possible that rhamnose might.be the 

compound involved in the cell wall alteration. Both Collins (30) and 

Eagon and Carson (26) have reported that rhamnose is a component of 

the cell wall of P. a~ruginosa, although neither.has specified its 
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exact· locatiot).. · Since rhamnose is a component of the .. lipopolysacclla

ride layer. in Salmonella typhimurium (31) and.· a rhamnose-contai11-ing 

lipid.is.produced.in·la~ge quantities by P. aeruginosa growing on. 

glycerol or fructos.e (25), it is poss:Lble. that: .rhamnose. occul;'s in a 

lipopolysaccharic;le·layer.in the wall.of P. aeruginosa. This.layer, in· 

E. coli, contains sites.for adsorption of phages T3;.T4·and T7 (32). 

Hauser and Karnovsky (25) showed.by labelling studies that·glycerol is 

the prec~rsor for rhamnose.synthesis inf.. aeruginosa, and.that 

fructose is an intermediate in the pathway •. Neither fructose nor 

rhamnose was capable of replacing the yeast extract requirement of 

group. II mutants for growth·. on glucose, nor did they promote growth on 

glycerol. This does not preclude the,poss:Lbility that rhamnose is the 

compound.involved in phage.sensitivity, sine~ the.cell.wall.alteration 

may have no effect on growth; i .• e., tl).e two phenomena may have a 

common,origin in.glycerol metabolism but may.result from effects on. 

different pathways of utilization of :glycerol for synthesis .. of· cell 

components~ The· fact.· that these mut~nts. lack (X-glycerophosphate 

dehydrogenase;, but have· glycerol kinase. activity, · would tend to . ·· 

indicate that rhamnose, rather than.glycerol~lipids,.is involved in. 

the cell wall alteration since glycerol phosphate, which can be 

produced by the$e cells is the.usual precursor for glyceride synthesis. 

Sit).ce these. mutants do not, grow. on a combinatic;m of. glucose and· 

glycerol, it does not. appear likely. that a defect in synthesis of:

glycerol-lipids is the.primary lesion in tq.ese.cells. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The growth of Pseudomonas aeruginosa on various substrates was 

characterized, The enzymes.of inducible degradative pathways were 

contrasteq with the constitutive enzymes of glucose dissimilation; 

evidence was cited indicating the rapid degradation of inducible 

enzymes on incubation in the absence of substrate, whereas.the 

constitutive glucose enzymes did not appear to lose activity on 

similar treatment. The presence of glucose in the growth medium was 

shown to have no effect on the synthesis or activity of the inducible 

enzymes of the histidine degradative pathway. The enzymes of glycerol 

degradation, however, appeared to be subject to both repression and 

inhibition by glucose, The.first intermediate in the pathway for 

histid,ine, urocanic acid, was found.to be. the inducer of histidase, 

the enzyme required for its own.formatiol)., as.well as enzymes required 

for its further degradation. 

Data were accumulated elucidating the pathway of .. glycerol 

catabolism for this organism. No mechanism for the active 

incorporation of,glycerol into the cells was found to be present. 

~-Glycerophosphate did not support growth, presumably because of 

impermeability of the cells to this substrate. Analyses of cell 

extracts for enzymic activities showed that glycerol is first 

converted to L-0(-glycerophosphate by glycerol kinase. The transforma-
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tion.of L~JX'-glycerophosphate to dihydroxyacetone phosphate is mediated 

by an NAD-independent L-a'-glycerophosphate dehydrogenase. Triose 

phosphate isomerase effects the conversion of.dihydroxyacetone 

phosphate to glyceraldehyde-3-phosphate. The levels of the first two 

enzymes of the pathway were shown.to vary markedly betwee~ induced and 

non-induced cells. Variation in levels of triose pho$phate isomerase 

activity was not significant .for these conditions. 

T~o groups of mutant organisms were isolated for the,glycerol 

pathway. These groups were distinguished by their ability to use 

glucose as sole.carbon so~rce in a minimal medium. Although both 

groups of mutants were unable to use glycerol as substrate, only.the 

group I mutants.had retained the ability to grow in a glucose minimal 

medium. The mutants of tlle second group were able to use glucose only 

when yeast extract was also present in the medium. The·ability to 

utilize mannitol was also lost in the.latter group, even in the 

presence of yeast extract. 

Enzyme data for two mutants were obtained. No appreciable loss of 

glycerol kinase activity was found for either mutant. lX-Glycero

phosphate dehydrogenase activity was observed for an extract of a 

group I mutant; but was absent in a similar extract,of a group II 

mutant~ Triose phosphate isomerase activity was greatly reduced for 

both mutants as compared to the wild type, A basal level of isomerase 

activity persisted in both extracts, however. 

A new method for measuring glycerophosphate dehydrogenase 

activity in whole cells was developed for use in this study. By its 

use, one mut~nt of group I was shown to lack dehydrogenase activity. 

A marked difference in susceptibility to phage was observed for 
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the.two set.s of mutants~ Whereas the group I cells were readily lysed 

by E-l 0 PA~l, none of 13 strains of phage tested was.able.to lyse the 

other mutants. Preliminary.dat~ were obtained indicating that a change 

in.the cell wall structure,may be involved in the phenomenon, since 

phage adsorption is probably affected in group II cells. 
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