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CHAPTER I 

INTRODUCTION 

One of the most intensive areas of re!iiearch in soi 1 chemistry and 

clay mineralogy in recent years has been the study of mechanisms respon

sible for the occurrence of aluminum interlayers in 2:1 type layer clay 

minerals. This mechanism may be important in understandin9 the chemi~try 

of soil phosphorus solubility, ammonium fixation, cation exchange capac

ity, acidity, alkalinity, clay surface area and shrink-swell. These 

factors in soils are supposedly related to the character of the soil 

c 1 a y i n te r 1 a ye r. 

It is believed that the source of alumin1,1m interhyers in soil 

clays resulted from the decomposition of alumina-silicate minerals and 

the solubiliiation of aluminum from parent rock by the action of a very 

dilute sulfuric or other acid solution. The magnitude to which aluminum 

inter1ayers occur in soil clays increases with proximity to the surface 

c;lnd the soil usually exhibits a low cation exchange capacity. Weak 

acid conditions, low organic matter and the nature of the parent mate

rial are among the most important factors which govern the abundance 

and occurrence of aluminum interlayers in soil clays. 

Present concepts convey the idea that aluminum interlayers are re

sponsible for soi I acidity and also act as clay preservatives. Clay 

minerals may acquire aluminum interlc1yers as a result interlamellar 

penetration which causes replacement of other exchange cations. Such 
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a reaction provides the clay with interlayers more soluble than the oc-

tahedral aluminum layer and thus prevents further destruction of the 

2 : 1 1 at ti c e st r uc tu re • 

The first objective of this study was to investigate hydroxy-

aluminum polymer fixation by the use of A1 2(so4) • 18H20 and NcilOH. Be

cause sulfate ions usually occur in soils and in large amounts, it is 

believed that the solubilization of aluminum in the parent rock was 

caused by the action of a very dilute sulfuric acid solution. 

The clays in soils and parent shales of the southwestern part of 

the United States have been exposed to dilute sodium aluminum sulfate 

solutions sufficiently long enough to have reached equilibrium with the 

soil solution. Therefore, a correlation between the amount of aluminum 

hydroxide (hydrated oxide) polymers against known hydroxy-aluminum so-

lutions should exist. This correlation should allow us to predict the 

type of weathering or synthesis process that these clays have been ex-

posed to and the translocation and deposition of weathering products. 

A second objective of this study was to investigate the ability of 

clays, with no interlayers, to fix artificial aluminum interlayers. 

Further study will include an attempt to explain why coarse clays fix 

more aluminum interlayers than fine clays. Recent studies conducted by 

various soil chemists and clay mineralogists reported that hydroxy-

aluminum polymers can be prepared artificially and introduced into clay 

interlayer spaces. This reaction usually causes clay minerals to ex-

• 0 
hibit basal spacings of 14A, low CEC, and reduced shrinkage and swell-

ing. 

It is believed that the type of clay mineral, degree of layer 

charge, bonding strength of the clay layer structure and clay particle 
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size are the factors to be considered for maximum artificial aluminum 

interlayer fixation. The data presented in this thesis will increase 

our knowledge of alumina-silicate formation and provide a better under

standing of clay mineral characteristics. 



CHAPTER II 

LITERATURE REVIEW 

Occurrence and Importance of Aluminum Interlayers in 2:1-2;2 Type 

Layer Silicates. Soil chloritization is defined as the formation of 

aluminum interlayers in the interlayer spaces of 2:1-2:2 type layer sil-

icates. The appearance of aluminum interlayers in vermiculite and mont
o 

morillonite is believed to contribute to an increasingly stable 14A 

spacing which is a diagnostic characteristic of chlorite. In this re-

spect, aluminum interlayers may be considered as unstable forms of 

chloritic material which is deposited in the interlayer spaces of clay 

minerals during weathering. The first aluminum interlayer was reported 

by Brown (4) in a stable dioctahedral vermiculite in some soil clays in 

Great Britain. Since that time, numerous examples of stable minerals 

with 14~ spacings and interlayer aluminum have been reported by (37, 16, 

28, 47, 39). Jefferies (q6) observed a similar mineral in the surface 

horizon of two soil clays and referred to it as 11Chloritic-like11 mate-

rial. Sawhney (30) reported that the degree of chloritization ih layer 

silicates may be measured by cation exchange determination after inter-

layer extraction. Sawhney (41) showed that an intensive treatment of 

a particular clay by various interlayer extraction methods did not cause 
0 

an increase in basal spacings from 14 to 18A. This identifies a mineral 

as vermiculite with alumin1,1m inter1ayers. Aluminum interlayers inhibit 
0 

the expansion of montmorillonite from a 14 to 18A and also resist 

4 



contraction of both vermiculite and montmorillonite from 14 to 10~ on 

K-saturation and heating to 100° C. 

An interlayered montmorillonite will resist expansion when Mg-

saturated and ethylene glycol solvated and also resists collapse when 

K-saturated and heated to 100° C. Temperatures above 500° C. usually 
0 

cause collapse and a resultant lOA peak due to dehydroxylation of the 

aluminum interlayer polymer structure. 

Sawhney {40) believed that aluminum-interlayers occurred in soils 

5 

as essentially chloritization of the expanding 2:1 type layer silicates, 

and are probably comprised of hydrated polymers of Al{OH) 2+ ions which 

are most abundant at a pH of 5. Jackson {22) stated that the release 

of aluminum from 2:1-2:2 type layer silicates in soi ls occurs at a rate 

which is required for abundant aluminum interlayering. This acidic cat-

ion is ascribed as aluminohexahydronium which has a greater acid strength 

than the common weathering acid, H2co 3• Jackson {22) also reported that 

the chemical weathering relationship of acid soils makes it clear that 

interlayer precipitation of Al{OH) 3 gel in expansible layer silicates 

tends to occur preferentially to precipitation of a separate free gibb-

site phase. This is analogous to saying that crystalline gibbsite does 

not precipitate within the interlayer spaces. The argument used to 

support this theory is based on two lines of evidence: {a) clays inter-

layered with the so-called 11 aluminum polymers 11 occur widely in both 

acidic and alkaline soils, {b) additional absorption of aluminum from 

solution by aluminum saturated montmori]lonite {with a concomitant low-

ering of pH, which signifies hydroxy-aluminum polymerization), occurs 

at a Ksp less than that of gibbsite. The selective accumulation of ex-

changeable aluminohexahydronium ions in the interlayer spaces of 
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expansible layer silicates causes polymeric hydroxy-aluminum precipita

tion. This occurs while the Ksp in the equilibrium so1 uti on is approxi -

mately equal to or slightly less than that of free gibbsite. This again 

supports the idea that gibbsite precipitation does not occur within the 

clay interlayer spaces. 

Jackson (22) surmised that layer silicates serve as templates for 

interlayer polymerization and that aluminum released by weathering tends 

to be deposited in 2:1-2:2 intergrades with aluminohexahydronium inter

layers rather than gibbsite. These layers may also serve as negatively 

charged surfaces for adsorbing the positively charged OH-ion units. A 

classical example of this was noticed by Nagelschmidt (33) in some red

ye11ow podzolic soils in the southeastern United States. These soils 

were derived from mica schist which developed aluminous interlayers and 

weathered further to yield kaolinite. No detection of gibbsite appeared 

while weathering occurred in this particular case, but it has been ob

served in the weathering of basic rocks. Bates (2) reported that the 

common end products of the weathering processes of basic igneous rocks 

of Ha.waii are gibbsite, goethite, anatase and ilmenite. The intermediate 

state of these clay mineral are halloysite and iron montronite. No de

tections of mica or kaolinite appeared in the weathering products of 

these basic igneous rocks. His conclusion was that micaceous minerals 

could only be formed by weathering of granitic potassium feldspars. 

Gibb.site occur in some soils and not in others. An explanation for this 

has been attempted by Jackson (22), who postulated that the presence of 

expansible layer silicates in soils is responsible for the absence of 

gibbsite. No gibbsite occurs when the interlayer precipitation of 

alumina prevents the Ksp of free Al(OH) 3 from being reached in the 
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matrix solution. Such a process is ascribed to an 11 anti-gibbsite effect•• 

in chemical weathering. 

Schwertmann and Jackson (43) reported that both vermiculite and 

montmorillonite have the ability to produce hydrolysis and polymeriza

tion of aluminum in the presence of exchangeable aluminum. They re

ported that this aluminum is liberated from the structure when attacked 

by exchangeable hydronium and that the non-exchangeable hydroxyl alumi

num formed exhibits a third buffer range. These ions which are weath

ered from the terminal edges of the clay mineral 2;1 layer structure 

are solubilized by a trace to several hundred parts per millioh of sul

fate ions. Aluminum as a part of the complex sodium or magnesium alum

inum sulfate is quickly moved to the basal oxygen planes of the mineral 

and deposited where it is polymerized with other hydrated oxides of 

aluminum. These hydrated aluminum oxide polymers serve as preservative 

of the clay mineral with resultant reduction in cation exchange. The 

preservation effect is due to: (1) replacement of other cations by 

positively charged a1uminum polymers; (2) general protection of the 2:1 

lattice by providing an interlayer more soluble than the octahedral 

layer; and (3) a source of aluminum for reacting with lattice destruc

tive phosphates. Harrison and Murray ( 13) found that clays are more 

weathered in the upper horizons than in the lower horizons. Clay found 

in the surface contained a mixed layer of aluminum-silicate heavily 

intetlayered with aluminum hydroxide polymers. They noted several x-ray 

diffraction peculiarities of the clays such as; asymmetry of the 001, 

broadening of the 002, and asymmetry of the 003 reflection toward the 

high angle side. These effects are characteristic of interlayering 

with aluminum hydroxide polymers. They reported that the weathering 



8 

environment was acidic in nature and that potassium had moved out of the 

micaceous minerals, thereby allowing expansion fo1lowed by hydroxy-

aluminum interlayering. 

It has been speculated by (40, 22, 36) and others that vermiculite 

holds aluminum interlayers in its interlayer spaces more tightly than 

montmorillonite. It has also been suggested by Jackson (22), that the 
0 

cation exchange sites are more c 1 ose 1 y concentrated in expansible 14A 

minerals than in swelling intergrades and provide a more extensive and 

stable exchange site. This causes a greater extent of covering by 

positively charged aluminum interlayer groups which appears to result in 

polymerization of aluminum into hexa-aluminohydroxyhydronium units. 

These uni ts appear as po 1 ymers of~ 16 OH 12 -OH 126~ and 1 arger, 

which deposite in vermiculite and montmorillonite interlayer spaces. 
0 

Since vermiculite has its characteristic 14A spacing (001), the 

positively charged polymers can attach to both surfaces, and the inter-

layer positive(+) proximity to the negative(-) charge of the layers is 

closer than that for swelling intergrade. As a result, less extensive 

interlayer building is necessary in vermiculite than rnontmorillonite for 

a drastic cation exchange decrease. It is believed by Jackson (22) 

that since the layers of vermiculite have a higher negative charge due 

to a greater amount of isomorphous substitution in the silica tetra-

hedra, the positively charged aluminum polymers have a greater affinity 

for these sheets and provide greater interlayering. Frink (11), re-

ported that soils that contain an abundance of interlayered aluminum 

such as vermiculitic soils usually undergo the largest loss in cation 

exchange, contain the most citrate extractable aluminum and suffer the 

largest weight loss on extraction. 
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,Magnitude and Stability of Alumin~m Interlayers. Aluminum inter

layers have been found to be most abundant in soils derived from parent 

materials of granite, gneiss and micaceous schist. The stability of 

these interlayers is usually measured by the temperatures (c0 ) required 
0 0 

to cause complete collapse of a 14A basal spacing to lOA. Rich (36) 

indicated that the extent of chloritization varies between soils derived 

from different parent materials. It was also stated by Rich that a 

soil's environment exerts a marked influence on its formation. A clas~ 

sical example of this has been observed by Nagelschmidt et al. (33) in 

some Highland soils. His reports showed that the mineralogy of a well 

drained soil was altogether different from that of a poorly drained soil 

in the same area. Analysis of these samples showed kaolin formation to 

be dominant in the poorly drained soils of that same region. Sawhney 

(41) found that the cation exchange capacity increased as much as 30-

40% after interlayer-aluminum removal with the increase being more pro-

nounced in well drained than in poorly drained soils. Rich and Oben-

shain (37) obtained similar results when KCL+KOH or HCL+NH4F was used 
0 

to extract the interlayer material from some stable 14A minerals. 

They reported that after interlayer-aluminum removal, the samples 
0 

collapsed to a basal spacing approaching lOA. Tamura (47) extracted 

these aluminum-interlayers with N Na-citrate and reported similar re-

sults, but also observed a marked increase in cation exchange capacity 

from 72.3 to 115.6meq/100 grams. Dixon and Jackson ( 10) suggested that 

these interlayer groups can be removed by preheating 0.1 gm. samples to 

4oo 0 c. followed by 2.5 minutes of boiling in lOOml of 0.5N NaOH. They 

reported similar results and postulated a more complete extraction of 

interlayer material than (37, 47). 
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Increases in cation exchange capacity following interlayer ... aluminum 

removal have been shown by Sawhney (41) to be more pronounced in the 

upper horizons. This was attributed to the greater interlayering abil

ity of the upper horizon in weak acid soils. Further study showed that 

clays from the 821 and Al horizons in some cases did not collapse to a 
0 

sharp JOA peak""'even after heating to 450° C. Further heating above 

500° c. did result in complete collapse of these minerals due to dehy-

droxylation of the interlayer polymer structure. This very well clari-

fi ed the hypothesis that a greater intensity of weathering occurs near 

the surface thus releasing abundant amounts of aluminum ions. Since 

these ions are more abundant in upper horizons than in the lower hori-

zons this explains the reason for greater interlayering and stability 

property of upper horizon clay aluminum interlayers as compared to low-

er horizons. Recent data reported by Sawhney (40), on a series of Holy-

oke and Whethers 11 Fi e 1 d soi 1 s of the northeastern United States••, fu 11 y 

supported this theory. The data showed that 6 to 9 hours of citrate 

extraction was needed ta extract the aluminum interlayers from the Al 
0 

horizon before a sharp JOA peak was observed. In contrast, only 3 hours 

of extraction was needed for extr~ction of the 82 horizon clays. This 

also supported the theory that aluminum interlayers and interlayer sta-

bility increases with proximity to the surface. After interlayer ex
o 

traction, increases in spacing from 14 to 18A have also been observed 

in some intergradient chlorite-montmorillonite, The expansion from 14 
0 

to 18A could also result from a lowering of the layer charge by the 

aluminum extraction if some of the aluminum is pulled out of the tetra-

hedral or octahedral position. Dixon and Jackson { 10) reported that 

removal of interlayer-aluminum leaves a defect in the clay str1.,1cture, 
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which is probably compensated for by terminal hydroxyls on the silica 

tetrciihedra. They i:11 so showed that iii 1 umi nous inter 1 ayers found in coarse 

clays have greater heat stabilities than those in the more montmori11o-

nitic or fine clay fraction. Sawhney {41) reported that the increase in 

cation exchange capacity is higher in clays where the interlayers are 

more stable. This was conclused after interlayer extraction and an in-

crease in cation exchange from 35 to 37% was observed in stable upper 

horiions. This was compared to only a 15% increase in the less stable 

lower horizon of the same region. From these data, the conclusion was 

that since a higher cation exchange occurs ·after extraction in the 

highly chloritic clays, it is plausible that aluminum interlayers are, 
0 

in part, responsibJe for the stability of the 14A {001) diagnostic spac-

ing and reduced cation exchange as found in some soils. 

In some Gloucester soils Sawhney (40) observed that aluminum inter-

layer production was completely inhibited due to a low pH and high or-

ganic matter content. The f i 11 i ng of c 1 ay inter 1 a.yer spaces is be 1 i eved 

by some soil chemists to be only partial and still others believe that 

these aluminum groups exist in sheets throughout the interlayer space. 

Frink { 11) postulated the theory of island polymerization. This 

is analogous to an atoll w1th a few islands in a central lagoon. Data 

which supported this theory is based on a recovery of 95% of the cation 

exchange capacity after only 2 hours of citrate extraction and con
o 

comitant collapse of the mineral to lOA. Frink further hypothesized 

that these islands appear to be more concentrated near the edges of the 

clay sheets and, in fact, they must form an almost completely closed 

ring or fence which prevents smaller cations from entering the inter-

layer spaces. Aluminum continued to be extracted for at least 6 hours, 
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but only minute changes in cation exchange resulted. This indicated 

that all of the citrate-soluble aluminum is not contained in interlayer 

positions. 

Results analogous to thiie have also been reported by Dixon and 

""' ' Jackson ( 10), while examining some Ap and A2 horizons of Cookeville, 

Crosby and Tatum soils. They reported a reduction in glycerol retention 

relative to exchange capacity by aluminous interlayers. This also in-

dicated a concentration of the hydroxy-aluminohydronium (or allophanic) 

islands near the edges of the crystal plates, thus blocking entry of the 

large glycerol molecules while admitting the smaller exchangeable 

cations. 

Soil Acidity as c1n Aluminum H:tdrogen-Ion System. Extensive studies 

which have been made on cation exchange by soil chemists have been a 

substantial contribution to a better understanding of soil reactions in 

relation to acidity. One of the concepts emerging in recent years has 

been that of soil acidity as an aluminum-hydrogen ion system. In the 

late 1920 1 s the concept that acid clays were hydrogen clays became we11 

established, particularly in the United States. This concept later gave 

way to the current concept of soil acidity as an aluminum-hydrogen ion 

system. If we are to consider that soil acidity is actually ionized 

aluminum, then it becomes necessary to explain the mechanism by which 

aluminum ions provide the hydrogen or hydronium ions necessc1ry to give 

low soil pH values. + Jenny (27) discussed the possibility that the H 

ions are provided by hydrolysis on the surface of aluminum claysq Rich 

and Thomas (38) also considered hydrolysis as the mechanism by which 

hydrogen ions are supplied to the soil solution. This concept indicates 

that hydrolysis continues only if there are absorbents present to hold 



13 

the hydrolysis products. The results of such a reaction may be the 

formation of various hydroxy-aluminum compounds. A number of techniques 

were involved in the experiments which led to the relatively general 

acceptance of soil acidity as an aluminum-hydrogen ion system. Extrac

tions revealed that acidity developed in the interaction between a hy

drogen clay and neutral salt solutions. The clear salt extracts usually 

contain aluminum and ferrous ions which were directly exchanged for the 

cations of the added salt. The subsequent hydrolysis of the aluminum 

and iron salts gave rise to the acidity observed in the supernatant 

liquid. There are other opinions which seem to indicate that the re

placement is one of hydrogen ions associated with neutral salts to give 

rise to free acid which then dissolves the aluminum and iron oxides 

present in the soil or clay. Differences in opinion also exist regard

ing the total amount of aluminum which can be displaced on the addition 

of neutral salts to hydrogen clays. Marshall and Paver (31) observed 

that there is a limit to the amount of aluminum ions which can be dis

placed from hydrogen clays by leaching with neutral salts. Brown and 

Kelly (5) found that aluminum ions are liberated as often as the clay 

is rendered unsaturated by leaching with dilute hydrochloric acid and 

then treated with neutral salts. Mukherjee et al. (32) found that at 

a given equilibrium pH, the amount of aluminum brought into solution by 

HCL constituted a small fraction of that liberated by BaC1 2• At a con

stant pH and concentration of barium solution, the amount of aluminum 

liberated increased as the pH of the hydrogen clay decreased along with 

increases in salt concentration. The relationship between these two 

reactions is illustrated by a curve that closely resembles an absorption 

isotherm. These data seem to indicate that aluminum ions are directly 
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exchanged for the cations of the added salts and not brought into solu

tion by a secondary process. Marshall and Paver (31) indicated that 

unsaturated clays (clays which had been saturated by electrodialysis), 

are actually mixtures of aluminum-hydrogen clays. These findings ap

parently did not influence the prevalent concept of that time that acid 

clays were hydrogen clays. Mukherjee et al. (32), in their study of 

two soil clays, one predominately kaolinite; found that the replacement 

of cations with 0.02N HCL produced acidity in the supernatant solution. 

The total acidity displaced included hydrogen, aluminum, and small 

amounts of other ions. The aluminum content exceeded the hydrogen con

tent in the original extracts for both clays, but the difference was 

greater for montmorillonite. In successive desaturations, the aluminum 

decreased until it tended to approach a constant value. Following this 

experiment, Chatterjee et al. (6) conducted a similar study on pure 

clay minerals bentonite, kaolinite, and pyrophyllite. The results were 

similar in most respects to those of the previous experiments, however, 

only in the case of kaolinite did the aluminum content exceed the hydro

gen content in the first extracts. The decrease in displaceable acidity 

in succeeding desaturations was greater in bentonite than in the other 

minerals. The large decrease in displaceable acidity was apparently due 

to decomposition of bentonite because the cation exchange capacity also 

decreased and large amounts of Si0 2 were present in the extract. The 

indications were that pyrophyllite and bentonite were slightly affected 

by decomposition and that kaolinite was practically unaffected. Cole

man et al. (8) noted that neutral salt leaching displaces both hydrogen 

and aluminum ions. It was further concluded that electrostatically 

bonded hydrogen ordinarily does not exist in important amounts in soils 
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and that exchangeable hydrogen as measured by buffer solutions is ac

tually the sum of exchangeable aluminum and whatever weakly acidic groups 

that are ionized in the course of the dete~mination. Coleman et al. (8) 

divided the soil charge into two components. The components were called 

permanent charge and a pH dependent charge. The two separate charges 

were defined as follows: (1) Permanent charges:;: all metallic cations 

in KC1 extracts, and (2) pH dependent charge= the exchangeable acidity 

extracted by a BaCL2 - Tri-ethanolamine solution following the neutral 

salt extraction. 

It was found that the more strongly weathered soils tended to have 

smaller ratios of permanent charge/pH dependent charge than the less 

strongly weathered soils. This was probably due to a higher content of 

interlayer aluminum in the strongly weathered as compared to the less 

weathered soi ls. The permanent charge was countered almost exclusively 

by metallic cations and only negligible amounts of electrostatically 

bonded hydrogen was present in any of the soi ls studied. In soi ls hav

ing a pH below 6, aluminum was an important cation in neutralizing the 

permanent charge. 

Heddleson et al. (17) found that exchange acidity consists of both 

aluminum and hydrogen, The strongly weathered, highly acid soils con

tained more aluminum on their exchangeable complex than less strongly 

weathered, less highly acidic soils. However, the less strongly weath~ 

ered soils released more aluminum when they were acidified and extracted 

t.han,did the strongly weathered soils when treated similarly. Th1s is 

probably due to the fact that when the less weathered soils were treated 

with AICJ 3 more exchangeable aluminum co1,1ld get in to the exchange sites. 

This is not the case with the highly weathered, highly acid soills simply 
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because they contain more aluminum interlayers which block or occupy 

exchange sites whereas in the less weathered soils these aluminum groups 

are fewer in number and only interfere minutely with aluminum exchange. 

The highly weathered soils containing more aluminum in extractable form 

is not easily explained by the observations above. It is then specula

tive that the acidification and extraction probably created the Ksp of 

free gibbsite around the edges of the clay layers, thus causing release, 

dissolution and crystallization of gibbsite which was determined in the 

extracts as exchangeable aluminum. 

This is apparently not the case in the less highly weathered soils, 

because the aluminum interlayer groups do not appear in large quantit1es. 

Considerably less aluminum can be extracted from topsoils high in or

ganic matter than from topsoils low in organic matter. Low (29) con

ducted a potentiometric and conductimetric titration study of electro

dialized bentonite, acid washed bentonite, and bentonite with various 

degrees of aluminum-hydrogen as determined by displacement with silver. 

He discovered that the titration curves of these clays had two inflec

tion points, the first due to hydrogen and the second due to aluminum. 

It was concluded that hydrogen displaces aluminum in the layers, thus 

allowing exchangeable aluminum to increase at the expense of exchange

able hydrogen. Goates and Anderson (12) also found evidence for two 

types of acidic sites on clay minerals. No definite statements were 

made concerning the nature of these sites but it was noted by Harward 

and Coleman ( 14) that these sites could represent hydrogen and aluminum 

sites. Schwertman and Jackson ( 43), in a study uti 1 i zing a potenti o

metric titration procedure for acid saturated montmorillonite found a 

third acid site. This site was attributed to the basic aluminum 
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compounds formed in the presence of negative charges of montmorillonite, 

Sawhney and Frink (42) obtained results similar to those of (43) 

except that the third acidic site was interpreted as being due to a 

complex alumino-si licate liberated from the clay by acid decomposition. 

This cone 1 usi on was based in part on the fact that the amounts of ti tr ant 

required for the third acidic component increased both with aging and 

strength of the acid treatment. 

The nature of the aluminum ions on the exchange complex may ap

parently be quite variable. The first aspect of this variability con

sidered was the effect of pH on the type of acidic components. Scho

field (44) found that clays develop additional negative charges above 

pH 6, but develop essentially no negative charges between pH 2.5-5. 

He also observed that acid washed clays exhibited buffering below pH 

6, when titrated with alkali, but the buffering was attributed to the 

precipitation of exchangeable aluminum as aluminum hydroxide. Schofield 

stated that the aluminum ions must have been liberated during acid wash

ing and retained as exchangeable ions. Pratt (34) found that the pH 

dependent cation exchange capacity between pH 3 and pH 8 was equivalent 

to the exchange acidity not displaced by neutral salts. The displace

ment was due to the presence of buffered BaC1 2-tri-ethanolamine solution. 

Apparently, at least two acidic components were present and one was dis

placeable only at a higher pH. Hsu and Rich (20) reported that the only 

exchangeable ion is the Al3+ ion, and that in the correct acid range 

non exchangeable aluminum becomes fixed. Bhumbla et al. (3) found that 

the addition of lime to soils decreased both the exchangeable and pH 

dependent acidity. It was also reported that the pH dependent acidity 

measured by tri-ethanolamine extraction following KCL leaching decreased 



marked1y with the rate of 1iming. 

C1ay minera1 properties affect the acidic properties of soi1s. 

Co1eman et al. (7) studied acidity of bentonite~sesquioxide mixtures 

which had been artifica11y prepared by adding to separate c1ay samp1es 

A1 2c1 3 along with either an equiva1ent amount of NaOH or 2/3 of an 

equiva1ent amount. After comp1eting the preparation, a11 samples were 
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washed with A1 2c1 3 solutions. The aluminum was determined, and as wou1d 

be expected, the exchangeable aluminum levels were higher for the samples 

which had received a high level of a1uminum in the sesquioxide additions 

than in the samp1es which had received a low leve1 of aluminum. The 

hydrogen, (titratab1e but nonexchangeable acidity), was appreciable for 

a11 samples, but it was highest for those where the least aluminum was 

displaced. Similar, but less pronounced, effects were observed on sam-

pies which had received additions of iron. Considerable evidence has 

been accumulated in favor of the concept of soil acidity as an aluminum-

hydrogen system. These new concepts have resulted in the explanation 

of o1d problems such as aluminum toxicity, estimating lime requirements, 

and pedochemical weathering. For a number of years it was not under-

stood why old leached soi1s were not as acid as they would be expected 

to be if hydrogen c1ays were the u1timate product of soil weathering. 

The new concept is that the so-called hydrogen clays are products of 

weathering which formed during leaching and decomposed to mixed 
3-x 

H-Al(OH)x - clays. The aluminum ions then polymerize to form chemically 

inert interlayer sheets which reduce the exchange capacity and thus pre-

serve the c 1 ay from further decomposition. 

Why are aluminum clays acid and what are the exchange character-

istics of aluminum? The mechanism by which aluminum is exchanged is 
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still not clearly understood. However, recognizing the replacement of 

clay layer cations by hydroxy-aluminum polymers and recalling the old 

observation that aluminum exchanged by KCL often exceeds titratable 

acidity, requires modification of some earlier views. First, clay layer 

replacement wi 11 remove exchangeable hydrogen 'and increase the number of 

aluminum ions on the clay surface. Second, to maintain low pH values, 

viz., having sorbed ions on the clay, and to account for replacement of 

some ions by di 1 ute KCL and H-resi n, the process of pol ymeri zati on may 

be considered. The resulting surface may then be depicted as follows~ 

There are four aluminum ions on the exchange complex instead of three, 

and the hydrogen ions tend to remain stationary because they cannot 

readily migrate to the crystal edges to release internal aluminum. Pre

sumably, absorbed hydrogen ions move by exchange-diffusion switching 

positions with other surface cations (bulky aluminum-hydroxy-ions) which 

may become a rate limiting step that retards the breakdown of clays at 

the edge. The layer of aluminum-hydroxy-ions are very difficult to re

place by dilute KCL and H-resins because these polymers cannot penetrate 

into the fine resin pores. But concentrated KCL should break up some 

of the polymers because of 11 anion penetration11 , Cl-replacing hydroxyl 

and aluminum hydroxyls becoming exchangeable. The aluminum ion do not 

appear to enter a hydrogen clay by exchange, and its behavior is d1f

ferent from that of the ferrous or lanthanum ion. In addition to 

studies made on the reaction of aluminum and its removal on saturated 

clays:, there has also been some work performed on unsaturated clays. 

Brown (5) found that the reaction proceeded so quickly that pH 

measurements made at various times from the start of the reaction gave 

no significant differences. He used this fact as an argument against 
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the theory that aluminum ions appear by a secondary process in solution. 

It has been pointed out that there is no conclusive proof that aluminum 

is directly exchanged but considering all facts involved, the exchange 

is of great importance. 

Artificial Preparation of Hydroxy-Aluminum Interlayers. Aluminum 

interlayers in soil clays were observed to occur easily in the presence 

of a stable dioctahedral vermiculite by Brown (4). This observation 

has caused others to become curious as to the mechanism by which these 

naturally occurring aluminum groups form in the weathering process. 

Reports of artificial preparation of aluminum interlayers in ver-

miculite were reported by Sawhney (40), and Rich (36). The choice of 

vermiculite was made apparently due to its high surface charge and great 

affinity for positively charged ions. This is probably due to the fact 

that most of the isomorphous substitution that occur in vermiculite is 

in the tetrahedral layer and since this layer is closer to the clay 

surface, vermiculite has a strong surface charge. Another factor to 

consider is that the vermiculite mineral is characteristically spaced 
0 

at 14A whic;:h is intermediate in JJcJJ spacing of the hydroxy-aluminum 

polymers occurring at pH 5 in an Al salt solution upon addition of alka-

li. Sawhney (41) showed that the treatment of clays from the lower soil 

horizons with hydroxy-aluminum saturations showed a greater affinity 

for polymer fixation as compared to those of the upper horizons. The 

effect is not as great in all clay types, which may be the results of 

poor crystallinity and a lower number of available exchange sites. This 

could result in slow diffusion of bulky hydroxy-aluminum polymers into 

interlayer positions which would partially compensate for the variation 

in fixation of the different horizons. Rich (36) discovered that the 



presence of aluminum interlayers in soil clays reduces ammonium fixa-

tion to a great extent, and that treatment of soil clays with OH/Al 

solutions produces similar results. He also showed that clays that 
0 

previously contained no interlayers refused to collapse to lOA, after 

treatment with hydroxy-aluminum solutions, upon potassium saturation 

and heating to 100° c. 
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Repprts concerning the change in cation exchange capacity of clays 

after hydroxy-aluminum treatment have been given by (36, 43) and many 

others. Among the most classifical reports was that of Rich (36) who 

reported a decrease in CEC from 134 to 1 meq/lOOg in a hydroxy-aluminum 

interlayered vermiculite. 

Hsu and Bates ( 19) reported that the addition of vermiculite to 

hydroxy-aluminum solutions contairriti'.g A1 2c1 3 andNaOH resulted in fixa

tion of hydroxy-aluminum polymers by the clay at much faster rates when 

the NaOH/Al ratio was in the range (0.3) to (2. 1). The polymers pro-

duced from solutions in this range are of nearly constant composition 

and are very close to the formula 50 (OH) 2J8+ (double ring)o 

These polymers are believed to be present in the interlayer spaces as 

singJ,e layers. By increasing the molar ratio from (2.25) to (2.70), 

the polymers held by clays gradually increase in size and decrease 1n 

net positive charge per aluminum atom. Increase in the molar ratios to 

(3.00) resulted in failure of the clay to fix aluminum inter]ayers. As 

a result crystalline Al(OH) 3 formed outside the clay layers within a 

two week aging time. No crystal 1 ine gibbsi te occurred in the specimens 

treated with OH/Al (2.7) even though samples had been aged for six 

months. Clay mineral particles are usually negatively charged and may 

be considered as large anions. From this point of view, clays with 
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hydroxy-aluminum polymers may be regcirded as bi:lsic salts and may be ex-

pected to vciry in stability. Barn.hisel and Rich ( l) reported that inter-

layer aluminum polymers in montmorillonite, prepared by treating clay 

with hydroxy-aluminum solution of NaOH/Al of (2.55) were not stable and 

were converted to gibbsite after prolonged aging. This suggested that 

the ability of gibbsite to form probably depends on how tightly the 

polymers are held in the interlayer spaces of montmori 1 loni tic and 

kaolinitic clay minerals. Hsu and Bates (19) reported that when extra 

sodium hydroxide was added to a solution of NaOH/Al (2.7) to increase 

the molar ratio, the aluminum was completely removed from the solution 

after aging for two weeks, but the CEC of this specimen was similar to 

the untreated sample. X-ray di ffrac ti on patterns showed that the 
0 

specimen col laps.ed to JOA upon K-saturation and the formation of crys-

ta)line Al (OH) 3 was detected by OTA. This suggests that aluminum pre

cipitated as Al(OH) 3 outside the clay jnterlayer space and did not 

mechanically block the exchange reaction sites. Samples treated with 

hydroxy-aluminum solutions in the range of NaOH/Al (0.3) to ( 1.2) re-

duced the pH of the original solution. This change in pH, however, was 

completed within the first two weeks and then remained constanto The 

pH of solutions with ratios above (2.1) in the presence of vermiculite 

were slightly higher than that of the original solution. The increase 

in pH was probably due to partial breakdown of the larger hydroxy-

aluminum polymers into smaller units. 

Rate of Fixation. In discussing the rate of fixation both the 

amount of aluminum fixed and the time required to reach equilibrium 

should be considered. Shen and Rich (45) showed that in hydroxy

aluminum solutions of NaOH/Al (0.3) to (2.7), aluminum fixation 
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incre,ased with an increasing ratio. Hsu and Bates (19) observed that 

the process of fixation far the above molar ratios reached equi 1ibrium 

in two weeks. This was indicated by a constant concentration of alumi-

num in solution. A sudden break in the rate of fixation between ratios 

of (2.1) and (2.25) was observed, i •. e., less aluminum was removed from 

solution. The process of fixation continues either unti I a11 of the 

aluminum is removed from solutions or possibly until the cation exchange 

positions are completely filled. 

Polymer Size and Population. The hydroxy-aluminum polymers ih a 

solution of Na0H/A1 (2.1) and below are believed to be in the farm of 

single ring unHs of composition, E6 (OHJ 1~ or double ring units 

]3o (OH) 22]8+. :sawhney (40) reported that these polymers are of 

the structure AI\OH) 2 which are most abundant at pH 5. These polymers 
0 0 

are relatively sma11, approximc1tely 10 to 14A in diameter and 5A in 

thickness and will fit the interlayer space. 

At molar ratios of (2.75) and above the polymers gradually in-

creased in size with increasing NaOH/A1. The development in the 11a11 

and 11b11 directions occur and possibly build;,, the 11c 11 direction into 

two or more layers. If this is the case, then these large polymers 

would have to be sheared into one layer before they could enter the 

interlayer space of vermiculite. This might explain why the sudden 

break in the rate of fixation occurs in high molar ratios. When clay 

interlayer spaces become somewhat crowded, the entrance of other uni ts 

may be retarded physically due to lack of space between clay layers or 

chemically as a result of unfavorable charge distribution. Consequently 

any further fixation of hydroxy-aluminum polymers must be accompanied 

by a redi stri buti on of the earlier occupants. The more tight I y the 
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clay holds hydroxy-aluminum polymers the more slowly the polymers al-

ready present in the clay interlayer space redistribute themselves. 

When vermiculite was treated with an OH/Al of {0.6), Hsu and Bates ( 19) 

noticed an equilibrium of fixation was reached within two weeks of ag-

ing. Another sample of the same size was treated with an increased 

volume of NaOH/Al (0.6) and equilibrium did not occur in two wee.ks. 

This is probab 1 y due to the fact that the number of po 1 ymers present 1 n 

the first solution were so low that all of them could easily enter the 

clay. This was not the case with the inc.reased volume of the same value 

because a greater number of polymers were provided which could not be 

as readily taken up by the clay as in the smaller volume solution. It 

is believed that the higher the molar ratio of these solutions the 

greater the polymers are in numbers and in size. 

Sawhney ( 40) has shown that an increase in ca ti on exchange capacity 

is a measure of the stability of Al-interlayers, but found little or no 

correlation between the change in cation exchange capacity and the 

amounts of aluminum extracted by Na-citrate. Soil clay interlayers are 

generally assumed to be composed largely of aluminum, but there have 

been reports of nearly pure iron interlayers on one soil by Deshpande 

et al. (9). They reported that iron oxides are no.t important as cements 

in clay particles. The properties of the precipitate that is formed 

upon addition of an alkali hydroxide solution to a solution of alum1num 

salt has been the subject of much discussion. MacKenzie (30) has in

dicated that the freshly formed gelatinous precipitate from aluminum 

chloride or nitrate exhibits the struct1,.1re of boehmite (o(. Al(OH) 

and upon a.ging the boehmite structure changes into bayeritep' A1(0H) 3 

and f'i.nally into gibbsite "'(Al(OH) 3 Barnhisel and Rich (1) showed 
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that the amount of gibbsite formed in clay samples after one month of 

aging when treated with OH/Al solutions of (2.,55) and (3.oo) increased 

with time. The interlayers formed in these samples were not stable and 

x-ray diffraction patterns showed complete closure of the interlayer 
0 

space from 14 to lOA. This was attributed to the poor holding capacity 

of the c 1 ay which a 11 owed hydroxy-a 1 umi num po 1 ymers to mi grate from 

within the interlayer spaces and precipitate as gibbsite in the aging 

solution. It was also reported that it is significant that gibbsite 

forms in montmorillonite systems under acid conditions. This is in con-

trast to a neutral to alk.aline pH apparently required for gibbsite for-

mation in a pure or clay free system. Gibbsite has been found in many 

acid soils of the Piedmont and Coastal Plain regions. In many of these 

soils, gibbsite was only a minor part of the clay fraction ((.1%); how-

ever, in some soils gibbsite amounted to over 40% of the clay fraction. 

It is then pla.usible that the gibbsite in some of these acid soils may 

have .formed with an intermediate step involving aluminum interlayers. 

This suggests that gibbsite formation may be active particularly if the 

soils are not limed. The possibility of A1(0H) 3 being absorbed on the 

clay surface and that its solubility is related to this sorption is 

suggested by Ragland and Coleman (35) and discussed by Jackson (22). 

Barnhisel and Rich (1) reported that considerable time is needed for 

g;ibbsite to form and that the time required may be affected by the pre-

sence of clay so that the magnitude of A1(0H) 3 would be a function of 

time. Ragland and Coleman ( 35) reported that some montmori 1 loni te and 

kaolinite samples revealed some precipitation of Al(OH) 3 between their 

interlayer spaces and prevented the collapse of these minerals on heat-

ing. Samples that contained 440 and 880 meq. Al(OH) 3 per 100 g. clay 
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retai1ned their interlayer hydroxide., whereas the samples with 1 lOOmeqa 

lost their interlayer hydroxide and collapsed on K~saturation and heat-

ing to 100 0 c. It was also shown that as much as 0.2 mmol. of aluminum 

was removed from a solution of 10:- 3M Al Cl 
2 3 

by 1-gram of montmorillonite 

and kaolinite over a two day period. 



CHAPTER III 

LABORATORY METHODS AND PROCEDURES 

Fifty gram samples of Hartsell and Choteau soils were fractionated 

and the 2-0.2),J and£.0.2JJ size fractions were prepared for x-ray dif

fraction analysis according to a procedure described by Jackson (23). 

Interlayer material was extracted with 100m1 portions of lM sodium cit

rate from approximately 1.0 gram samples heated in a water bath at 80-

900 c. The citrate solution was renewed hourly and samples were removed 

after 6 hours of extraction for CEC determination by calcium saturation 

and sodium replacement. 

Hydroxy-aluminum polymers were int.reduced into clay interlayer 

positions by the dropwise addition of O.lM NaOH and 0.2M A1 2(so4)3• 

18H2o to the clay fractions in suspension form. Clay suspensions were 

kept in a mobile state by the use of a magnetic stirrer while salt and 

base were added. The amount of aluminum left in solution at the end 

of each aging period was determined by the method of Hsu ( 18). Samples 

were al lowed to age for a period of six months and then washed free of 

excess a.1 umi num and sodium with deionized water. Surf ace area of a! 1 

clay fractions was obtained by the use of a recent method of Jacobs and 

Morin (25). Potassium oxide content of illite was determined on each 

clay fraction by digesting 0.1 gram samples with HF • 

.After digestion, samples were brought to a 100 ml volume with 5 ml 

of 0.5N HCL and 95 ml of deionized water. The amount of potassium in 

27 
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the extracts was measured by atomic absorption spectrophotometry. A 1 u

mi num in the amorphous material and inte.rlayer spi;ices was determined by 

rapid dissolution of clay samples by the method of Hashimoto and Jackson 

(15). 



CHAPTER IV 

RESULTS AND DISCUSSION 

The addition of hydroxy-aluminum solutions of var-iable NaOH/Al to 

Hartse.lls and Choteau clay fractions resulted in aluminum polymer fixa~ 

tion. Coarse chy (2-0.2,J) fractions of both soils fixed more aluminum 

polymers than fine clay (~0.2J,J). The reason for a greater polymer f1X 

ation in coarse clay than in fine clay has not been fully explained. 

The fine clays of these soils have high CEC and low K20 contents. Coarse 

clays show a higher K20 content and lower CEC. These values given in 

Table I suggest a mixed clay mineralogy with 10-20% illite. Since the 

fine clays appear to be largely montmorillonitic, it can be concluded 

that hydroxy-aluminum polymers were not held tightly enough in the inter

layer space for substantial fixation. As a result, these polymers m1-

grated to the clay crystal edges and bac.k into solution. Hydroxy

alumihum polymers are not held in the interlayer spaces of montmori11o

nite as tightly as vermiculite or beidellite c;:Jue to a lower surface 

charge and weak bonding in the octahedral-tetrahedral coordination. 

X-ray diffraction patterns (Figure 1) show that the crystallin,ty 

of the fine clay is not as pronounced as the coarse clay as shown in 

Figure 2. Rapid dissolution of these clays by the method of Hashimoto 

and Jackson (15) further clarifies the poor crystalline structure ex

hi.bited by the fine clay fractions. Table II shows that as much as 20% 

A1 2o3 was extracted from fine clay while only 9% A1 2o3 was extracted 

29 
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TABLE I 

SURFACE AREA AND ILLITE CONTENT OF CLAYS STUDIED 

Spec~ fie Surfac::e % K20 % Hydrous Mica')'r 
Sample 

Choteau { ~ 0. 2}1) 

{ 2-0. 2µ) 

Hartsel 1 s{.(. 0.2JJ) 

{2-0.2)-1) 

m /g. 

Total 

479 

310 

602 

240 

clay 

Ext~rna 1 

373 

179 

346 

139 

1. 36 

1. 16 

2.38 

1.92 

{ i 11 i te) 

13.6 

11 •. 6 

19.2 

19.2 

*Percent mica was obtained by assuming that 10% of the soil clay 
mica mineral was 10% K2o by weight. 



K - 550°C 
OH-AL MOLAR RATI0(3.0) 
< 0.2µ. 

I< - 550°C I 
OH-AL MOLAR 'RATI0(0.5) 
,c;, 0.2µ. 

K - 550°C 
OH-AL MOLAR RATIO ( ~5) 
< 0. 2µ. 

mg,.. 25°C 
OH-AL MOLAR RATIO ( 1.5) 
< 0.2µ. 

7.1 I 0.0 14.0 

ANGSTROMS 

Figure 1. X-ray Oiffractograms of Choteau Fine 
Clay ("'- 0.2µ) 
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K • 550°C 
OH·AL MOLAR RA.TIO (1.5) 

K - 550°C 
OH·AL MOLAR RATI0(0.5) 

mg • 25°C 
OH-AL MOLAR RATIO(l 5) 

I . 

mg- 25°C 
OH-AL MOLAR RATl.0(0.5) 

rng - 25°C 
l~O TREATMENT 

495 7.1 10.0 124140 
ANGSTROMS 

Fi gurie 2.. x .. ray Di ffrc;1c tograms- of Hc;1rtse 11 s 
Co·arse Clay (2-0.2)J) 
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TABLE II 

DISSOLUTION ANALYSIS OF CLAYS FOR AMORPHORUS CONSTITUENTS 
AND INTERLAYER ALUMINUM 

33 

Amorphorus 
Sample Amorphorus Interlayer (check);', 

r'cA 120 3 

Choteau k. 0. 2JJ) 19.2 32.4 19.6 

Hartse 11 s (L o. 2JJ) 20. 3 27.6 20.9 

Choteau (2-0.2JJ) 9.2 15. I 8.5 

Hartse] Is ( 2-0. 2JJ) 7.6 17. 7 7.3 

-·-"Analysis made to determine if samples were free of prec i pi ta ted 
gibbsite. 
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from coarse clays using the procedure designed to only extract amorphous 

a 1 umi num. The amount of A 120 3 was very high as compared to 1-2% usua 11 y 

exhibited by crystalline clay minerals. These data indicate that the 

fine and coarse clays are both poorly crystalline with the poor crystal-

1inity in the fine clay fraction. X-ray diffraction pc1tterns show that 

these clays are al\Jmino-si licates and are not completely amorphous. 

When these clays were K-saturated and heated to 550° C. they collapsed 
0 

to lOA. This type of response is typical of layer alumina-silicates. 

It is surmised that a considerable quantity of the fine clay fr.ac-

tions of these soils is amorphous, but a haphazardly arranged c::rys.talline 

structure still exists. Clays of these characteristics are not expected 

to fix hydroxy-aluminum polymers to any great extent because of their 

weak configuration, poor bonding strength between crysta 1 I ayers and 

random distribution of exchange sites. Chemical data (Table I) indicate 

that the type of clay in these two soils are similar and as a result, 

the variation in aluminum polymer fixation was small. There were small 

indications of a greater fixation of occurring aluminum in Choteau than 

in Hartsells coarse clay. 

Variation in Cati on Exchange Capacity. Treatment of Hartse.11 and 

Choteau clay fractions with hydroxy-aluminum solutions produced reduc-

ti ons in cation exchange capacity. These changes can be observed in 

Table III which shows that the exchange capacities of the coarse clays 

were reduced cons.iderably more than fine clays. These changes in cation 

exc::hange capacity correlate very well with the sorption data as shown 

in Tables IV and V, It may be observed that the c::oarse clay sample 

sorbed more hydroxy-aluminum polymers and as a result suffered a greater 

loss in c::ation exchange. L.ittle or no change in CEC was obs.erved in 



TABLE IIl 

VARIATIONS IN CATION EXCHANGE CAPAC I TY 
DUE TO ALUMlNUM TREATMENT 

Meq,/lOOg. c 1 ay: 
.,. 

NaOH/Al Choteau " 

2-. 2JJ <0, 2JJ 

o.oo 42. 1 86. 1 

8.2 82,7 

1.00 a.a 88.5 

1. 50 5.3 82.8 

2.00 9.1 82.7 

2.50 14. 1 79.3 

2.75 43.4 83.7 

3.00 45.3 88.8 

Original CEC: 

* Choteau (2-,2f) = 52,lmeq./lOOg. clay 

11 11 11 11 (~0.2,-.) = 92.4 IJ II II 

+ Hartsell (2-.2µ):;: 47.9 11 11 11 

II II II II 

II JI 11 II 

II II II II << Q.2u);:: 67,Q II II II II II II II 

2-. 2JJ 

35.7 

13. 0 

11. 5 

7.4 

19.3 

29. 1 

37.2 

43. 1 
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Hartse 11+ 

Oo2JJ-

62o3 

57.7 

55.2 

57. 1 

53.7 

50.3 

62.8 

68.9 



NaOH/Al 

TA6LE IV 

CHANGES IN CONCENTRATION OF ALUMINUM IN SOLUTION 
DURING AGING OF ORIGINAL CLAYS 

Concentration of Al in solution* 
(150m1 solution/gram clay) 
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~---.------------------------------· µg Al/ml~-----....... -------

CHOTEAU COARSE CLAY (2~0.2J,J) 

1-week 6-weeks 6-rnonths 

a.co 418.3 402.1 401.2 

0.50 325.0 312.3 310.2 

1.00 318.7 309.6 308.6 

1. 50 306. 3 294 •. 3 293.8 

2~00 256.3 214.2 240.6 

2.50 193.7 186.3 185. 3 

2.75 325.0 319.3 318.8 

3.00 318.7 306.4 305.9 

HARTSELL COARSE~ (2-0.2~) 

o.oo 486.2 443.2 442.5 

0.50 350.0 3.27.6 326. 1 

1.00 318.7 303. 1 303.0 

1.50 304. 7 293.6 292.3 

2.00 259.4 243.4 241. 9 

2.50 196.9 190.2 188.2 

2.75 331. 3 322.3 320.6 

3.00 324.8 320.4 318.3 

1''ori gi na 1 concentration of aluminum solution ;:: 540,ug/ml 
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TABLE V 

CHANGES IN CONCENTRATION OF ALUMINUM IN SOLUTION 
DURING AGING OF ORIGINAL CLAYS 

Concentration of Al in solution~ 
( 150m1 solution/gram clay) 
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----------------JJ9 Al/ml --------

CHOTEAU~~ ( < 0. 2;i) 

2-weeks 6-weeks 6-months 

o.oo 499.4 468.2 467.2 

0.50 456.3 461. 3 460. 1 

1.00 456.3 445.3 443.2 

1. 50 431.3 433.3 429.3 

2.00 422.4 422.1 421. 3 

2.50 410. 3 409.2 408.9 

2.75 421.1 480 .. 6 515.2 

3.00 515.2 514.2 512.8 

HARTSELLS FINE CLAY ( t... 0.2,u) .--
o.oo 485.8 440.0 439.3 

0.50 465.6 427.5 426.2 

1.00 443.7 413.3 413.3 

1. 50 428.1 401.9 402.3 

2.00 421.3 389.2 390.2 

2.50 396.8 364.8 363.5 

2.75 475.0 448.6 449.0 

3.00 525 .. 0 510.4 511. 1 

irOriginal concentration of aluminum solution= 540pg/m1 
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clays treated with solutions of NaOH/A1 (0.00), (2.75), and (3.00). At 

NaOH/Al (0.00), there was very little polymer fixation due to the ab-

senc:e of free hydroxyls needed to form the aluminohexahydronium ion con-

figuration. Results show that there were small amounts of aluminum lost 

frqn the reference solution. This loss is probably due to certain ex-

change reactions and error in the determination of aluminum. The smal I 

amount of polymer fixation that occurred with solutions of NaOH/Al 

(2.75) and (3.00) was probably due to the formation of polymers too 

large to fit freely into the interlayer space. Reports by Hsu and 

Bates (18) postulated that the hydroxy-aluminum polymers formed in a 

solution of NaOH/Al above (2.50) exist as double ring units of composi

tion [A1 10 (OH) 22 ]· Other polymers of smaller sizes formed in 

NaOH/Al solutions 2.75 probably entered the interlayer space freely and 

thus reduced the cation exchange capacity. 

The fine clay of these soils exhibited entirely different charac-

teristics. There was essentially no aluminum interlayer fixation. The 

data in Table VI shows that citrate treatment only caused smal 1 increases 

in CEC. The reason for this is that the fine clay fractions of these 

soils contain little or no initi.,~1 aluminum interlayers. Therefore, 

citrate treatment did not affect the cation exch,:inge capacity since all 

of the exchange complexes were a 1 ready in a free state, The data given 

in Table IV also shows that the Cl;;C of the fine clays were not affected 

by the aluminum treatment to any noticeable extent which indicates that 

little or no hydroxy-aluminum polymer fixation occurred. These types 

of results would indicate that the mechanisms responsible for aluminum 

inter 1 ayer fixation is not one mere 1 y of charge attraction. The other 

factors to be considered consist of crystallinity, mineral type, 



TABLE VI 

CHANGES IN CEC OF CLAYS AFTER CITRATE EXTRACTION 
AND OH.-ALUMINUM TREATMENT 

Cati on Exchange Capacity 

Citrate 
Sample NaOH/Al Initial extracted 

meq./lOOg. clay 

Chotea1.1 (40.2µ} 0.5 92.4 105.3 

II II U II II 11 11 II 11 11 1, 5 92.4 105. 3 

Hartsel ls (<'... 0,2,,...) 0.5 67.4 79.2 

11 II 11 II II II II II II II 1, 5 67.4 79,2 

Choteau (2-0.2},l) 0.5 52. 1 89.5 

II !I II II II 11 II 11 11 II 1. 5 52.1 89.5 

Hartsel h ( 2-0. 2JJ) 0.5 47,9 74,2 

II II 11 II If 11 II 11 11 If 1. 5 47.9 74.2 

.,., 
solution 100mg. clay. 50ml of per 
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OH~A i",._ 
treated 

103.6 

97.7 

66.9 

61 • .5 

22.3 

3.4 

18.5 

13. 7 



40 

interlayer spacing between clay crystal layers and possibily clay par

ticle she. 

Pre-citrate extracted samples treated with hydroxy-aluminum solu

tions of molar ratios {0.5-1.5) produced the largest reduction in cation 

exchange in coarse clays and are shown in Table VI. These data indicate 

that the CEC of these soils are greatly influenced by the degree of 

interlayer deposition wliich is a function of the clay mineral type. 

La.rgest reduction in cation exchange capacity was observed in 

Choteau coarse c1ay treated with solutions of NaOH/Al of {1.50). The 

extraction of interlayer aluminum from these clays with!:! Na-citrate 

increased their cation exchange capacity. The results shown in Table 

IV indicate that the 1argest increase occurred in the coarse clay frac

tions. From these data it was concluded that during the chemical weath

ering process, aluminum interlayers preferentially deposited in the 

coarse clay fraction of these soils rather than in the fine clay. 

NaOH/Al treatment of pre-citrate extracted clays also suffered a 

loss in cation exchange capacity due to aluminum polymer fixation. The 

fixation of hydroxy-aluminum polymers in fine clay was less than in 

coarse clay. The coarse clays fixed aluminum polymers to such an extent 

that their cation exchange capacity was lowered below the initial value. 

This indicated that the artificially prepared hydroxy-aluminum polymers 

were able to migrate into the interlayer spaces of the coarse clay frac

tions more free 1 y and cling to the negative 1 y charged surfaces. This 

was made possible when these clays were extracted with citrate which 

removed the interlayer aluminum and freed the exchange sites. This ex

traction increased the ability of the clay particles to attract the 

positively charged hydroxy~aluminum groups which resulted in greater 
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polymer fixation within the clay interlayer spaces. 

Rate of Hydroxy-Aluminum Polymer Fixation. A variation in hydroxy

aluminum polymer fixation rate was noticed in Hartsell and Choteau clay 

fractions. These variations were primarily a result of clay mineral 

type and the NaOH/Al employed. The data in Tables IV and Vindicate 

that the largest portion of polymer fixation occurred within the first 

two weeks. A continuation of the aging period to 6 months produced no 

noticeable change in the amount of aluminum fixed. The sorption of 

hydroxy-aluminum polymers was more pronounced in coarse than in fine 

clay. The fine clays sorbed less aluminum from solution possibly due 

to their poor crystallinity. The rate of fixation occurring in pre-

citrate extraction samples was considerably higher than samples that 

were not citrate extracted. Hydroxy ... c;1luminum polymer fixation was es-

sentially ended in the first two weeks of aging and no noticeable fixa-

tion occurred throughout the 6 month aging period. 

Citrate extracted samples were able to fix more hydroxy-aluminum 

polymers because of the destruction of naturally occurring interlayer 

material. Polymers were able to migrate into the interlayer spaces 

freely and distribute themselves at will. The highest amount of aluminum 

fixation occurred using a NaOH/Al of (1.5) and is shown in Table VII. 

Hsu and Bates (19) reported that artificially prepared hydroxy-aluminum 

polymers increase in size with increasing NaOH/Al. They also reported 

that these polymers are relatively small and exist in sizes ranging 
0 0 0 

from JOA to 14A in diameter and 5A in thickness. Considering these 

reports, it was concluded that hydroxy-aluminum polymers formed in a 
0 0 

solution of NaOH/Al 1.5 was very close to 14A in diameter and:!:_ 5A in 

thickness. It appears that the polymers formed in a solution of this 



TABL.E VII 

CHANGES IN CONCENTRATION OF ALUMINUM IN SOLUTION 
DURING AGING OF CITRATE EXTRACTED CLAYS 
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Concentration of Al in solution 
Sii!mple NaOH/Al $0m1 sol uti on/lOOmg. c 1 ayJ: 

JJ9 Al/ml 

1-week 6-weeks 6-months 

Choteau ( 2-0. 2µ) 0.5 287.5 252.3 251. 3 

II II II II II ti II II II l. 5 112.8 99.B 89.2 

Hartsells ( £ o. 2µ) 0.5 531. 3 479.2 479.0 

II II II II II II II II II 1.s 518.8 505.3 502.5 

Chotea1J (<.0,2JJ) o.s 531.3 501.9 507.3 

II II II II II II II II II 1. 5 468.8 465.5 465.3 

Hartsel 1 s ( 2-0. 2;i) 0.5 325.0 278.2 276,9 

II II II 11 II II II II II 1.5 187.5 135.5 134.5 

*original concentration of aluminum solution= 540µg/m1 
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ratio were able to migrate into and attach themselves to the clay crys-

tal sheets in greater quantities and at faster rates than the other si:ze 

polymers. 

X-Ray Diffraction Analysis. The coarse clay fraction of Choteau 
0 

and Hartse11s soils did not expand to lBA when Mg++-saturatedJ and ethy-
o + 

lene glycol solvatedJ but did partially collapse to lOA upon K -

saturation at room temperature. The degree of col lapse was greater in 

Choteau coarse clay than Hartsells coarse clay which indicates that less 

interlayer aluminum was present. 0 
Heating these samples to 550 c. caus.ed 

0 
complete collapse to 10A. These results suggest a vermiculitic type 

clay with aluminum interlayers. Representative patterns of these clays 

are shown in Figures 3J 4J and 5. These figures a ho show that there 

is a difference in the amount of aluminum interlayers present in eae:h 

clay. It should be noticed that Choteau coarse clay exhibited a sharper 
0 

lOA peak than Hartsells coarse clay after 2 hours of citrate extraction. 

This would indicate that essentially all of the interlayer aluminum 

present in the Choteau coarse c 1 ay was removed by citrate extraction, 

however, there is still a considerable amount of interlayer material 

left in the Hartsells coarse clay which accounts for the broadness of 
0 

the lOA peak as illustrated in figures 3 and 4. 

ihe fine clay of these soils appeared essentially amorphous to 

++ x-ray diffraction when they were Mg -saturated i:lnd ethylene glycol 

solvated at room temperature. This created difficulty in identifica ... 

tion of the dominant mineral present and gave poor indications pertain-

ing to aluminum interlayer content. 
0 

Heating these samples to 550 C. 

resulted in collapse to 10~ which is a diagnostic characteristic of 

layer alumina-silicates, and is shown in Figure 5. Following hydroxy-



4,95 

K- 2s0 c 
CITRATE EXTRAC 

· 2-.21,1 

K--25° C 
2-.21,1 

7.1 

ANGSTROMS 
IQO 14.0 

Figure 3. X-ray Diffractograms of Hartsel ls Coarse 
Clay (2-0.2)-1) 
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K • 550°0 
OH·AL MOLAR RATIO(l.5) 
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·~ 

I 
495 71 14.0 

ANGSTROMS 

Figure 4. X-ray Diffractograms of Choteau 
Coarse Clay (2-0.2)-1) 
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4.95 

1(-550° C 
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2-.21,1 
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10.0 

figure 5. X-ray Oiffractograms of Choteau Coarse Clay 
(2-0.2JJ) 
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aluminum treatment of citrated extracted Hartsell and Choteau coarse 

0 + . 
clay, a stable 14A peak was observed upon K -saturation at room tempera-

ture. Figure 6 shows that the basal spacing of these clays approached 

1oi as the temperature was increased to 550° c. This would indicate 

that the hydroxy-alumin1,.1m polymers fixed fo the interlayer spaces of 

these clays were very sta.ble, 



K - 550°C 

495 

K - 2s•c 
CITRATE EXTRACTED 
OH -.AL MOLAR RATIO ( 1.5) 

I 

I 

K - 300°K 
I 

71 100 
ANGSTR·)MS 

140 

Figure 6. X-ray Oiffractograms of Hartsells 
Coarse Clay (2-0.~) 
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CHAPTER V 

SUMMARY AND CONCL.,USION 

The fixation of hydroxy-aluminum polymers varied among fine and 

coarse clay fractions of Hartsells and Choteau soils. Aluminum fixa

tion was more pronounced in coarse clays than in fine clays and as a 

result the coarse clays showed the greatest loss in CEC. The sorption 

of hydroxy-aluminum polymers from solution was also higher among coarse 

c 1 ays than in fine c 1 ays. Choteau coarse c h1y fixed more hydroxy-

a 1 umi num polymers than Hartsells and was less resistant to interlayer 

extraction. It is concluded that Choteau coarse clay fixed more hydroxy

aluminum polymers than Hartsells coarse clay because of grei;.lter openings 

that existed within its interlayer spaces. The fine clay fraction of 

these soils did not fix hydroxy-aluminum polymers to any noticeable ex

tent, This is believed to be a result of its poorly crystalline struc

ture, and the existence of montmari 11 oni te as the predominant c 1 ay 

mineral. The coarse clay fraction of both soils showed a loss in CEC 

when they were pre-citrate extracted and then aluminum treated. The fine 

clays showed only a small increase in CEC when they were treated in the 

same manner. These results would indicate that the magnitude of alumi

num interlayer deposition is not one mainly of clay crystal charge, but 

includes other factors such as crystallinity and size of clay particles. 

A more pronounced hydroxy-aluminum polymer fixation oi;:curred in pre

citrated extracted coarse clay samples due to an increase in available 
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exchange sites and the ability of these polymers to distribute them

selves in the clay interlayer spaces. An occurrence of more aluminum 

interlayers in the original Hartsells coarse clay than in Choteau is 

probably due to a variation in parent material from which the two soils 

were derived. 

The natural or artificial occurrence of aluminum interlayers in 

soils have many important effects on the properties of the clays present. 

The degree of effect depends upon the type of mineral present which wi 11 

govern the magnitude of aluminum interlayer deposition. 
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Hartsells fine sandy loam 

Location: Pittsburg County, Oklahoma. About 800 feet east and 350 feet 
south of the half mile line an the north side of Section 8, T5N~ R13E. 

Native Vegetation: Post oak, blackjack oak, and hickory trees with a 
tall grass understory. Used for rangeland. 

Parent Material: Noncalcareous sandstone of Pennsylvanian Age. 

Slope and Land Form: Slope is 2 percent on erosional upland. 

Al 
17144 

A 21 

A22 
17146 

B~lt 
17147 

B22t 
17148 

B3 
17149 

3-1011 

10 .... 1711 

17-2711 

36-481 1 

Dark grayish brown ( lOYR 4/2) fine sandy loam, 
grayish brown (lOYR 5/2) dry, weak fine granu
lar structure; very friable, slightly hard, 
pH 5.5; clear boundary. 

Grayish brown ( lOYR 5/2) fine sandy loam; 
light gray (lOYR 7/2) dry, weak fine granular 
structure; very friable, slightly hard; pH 
5.5; diffuse boundary. 

Pale brown (10 YR 6/3) fine sandy loam, light 
gray (10 YR 7/2) dry; weak fine granular 
structure; very friable, slightly hard; pH 
5.5; clear boundary. 

Yellowish brown ( lOYR 5/6) light sandy clay 
loam; few grayish brown mottles; light yellow
ish brown (lOYR 6/4) dry; moderate medium 
subangular blocky structure; friable, hard; 
sand gra!ns on ped faces are coated with clay 
films; pH 6.0; diffuse boundary. 

Brownish yellow (lOYR 6/6) sandy clay loam; 
common medium distinct yellowish red and gray
ish brown mottles; yellow ( lOYR 7/6) dry; 
moderate medium subangular blocky structure; 
friable, hard; sand grains on ped faces are 
coated with clay films; pH 5.0; gradual 
boundary. 

Brownish yellow ( lOYR 6/6) sandy clay loam; 
many medium distinct light gray mottles and 
common medium protninant strong brown mottles; 
yellow (lOYR 7/6) dry; moderate medium sub
angular blocky structure; friable, hard; a 
few sandstone fragments are present; pH 5.0; 
clear wavy boundary. 



Rl 
17150 

R2 
17151 

48-6611 

66-8011 

Highly weathered, loosely cemented, fine 
grained sandstone that has thin stratified 
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and mottled layers of grayish brown to yellow
ish red sandstone; an average color of the 
horizon would be yellowish brown ( lOYR 5/6); 
an average texture would be sandy clay loam; 
massive structure; friable, hard; about 15 
percent of the mass is sandstone fragments; 
pH 5.0. 

Sarne as the Rl horizon except color. This 
horizon is yellowish brown (10YR 5/8) mottled 
with light brownish gray ( lOYR 6/2). 
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Choteau silt loam - L 

Location: Southeast of Muskogee on the Oklahoma State University 
Pasture station. 685 feet north and 280 feet east of the southeast 
corner of SE 1/4, of Section 32, T14N; R17E. 

Native Vegetation: Tall grass prairie, but near the forest-grass 
tension zone. Prairie consisted of Big Bluestem (Andropogon gerardi), 
Little Bluestem (~. scoparius), Land is now in cultivation. 

Parent Material: Weathered siltstone or silty shales. 

Topographr: Smooth 2-2.5% north facing footslope joining soils on 
steeper s opes. 

Soi 1 Profile: 

Ap 

A21 

A22cn 

Bl 

0-1011 

10-1811 

24-30 11 

Dark grayish brown ( lOYR 3.0/2 moist) silt 
loam, grayish brown (lOYR 5/2); weak fine 
granular; friable; permeable; numerous roots 
and worm casts; pH 5.6; grades to horizon 
below. 

Dark grayish brown ( lOYR 4/2 moist) silt loam, 
grayish brown (10YR 5/2); porous massive, very 
friable and hard; permeable; numerous roots 
and many worm casts; few faint stains of dark 
ye.1 lowish brown ( lOYR 4/4); pH 5.0; clear 
boundary. 

Brown ( lOYR 5/3 moist) silt loam, light brown
ish gray ( lOYR 6/2); very porous massive; very 
friable and very hard; clear distinct stains 
or mottles of dark yellowish brown ( lOYR 4/4), 
much of the color due to fine and medium fer
ruginous concretions; small pockets of soil 
material from the AP; many worm casts; pH 5.0; 
clear boundary. 

Brown (10YR 5/3 moist) heavy silt loam, pale 
brown (lOYR 6/3); very weak, medium blocky to 
somewhat porous massive; friable and hard; 
common fine and medium mottles of dark yellow
ish brown (lOYR 4/4) and yellowish brown ( lOYR 
5/4), much of the color due to staining by 
concretions; many black and brown iron-manganese 
concretions up to 1/211 in diameter; pH 5.5; 
abrupt wavy boundary. 



B21t 

B22t 

B2Jt 

B31 64-80 11 

c 
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Mottled light gray ( lOYR 7/2 moist), gray 
(lOYR 5/1 moist), light yellowish brown (lOYR 
5/6 moist) silty clay loam, weak course blocky 
to massive; firm and hard; cleavage planes 
break easily but are very weak; this continuous 
clay skins on both horizontal and vertical 
faces; some concretions; many pipestems and 
channels of pale brown very fine sand and silt 
are found throughout the horizon; pH 6.6; 
grades to horizon below. 

Mottled colors as above, but mottles are 
coarser; silty clay; weak coarse blocky to 
massive, very firm and very hard; very few 
cleavage planes, but thick distinct clay skins 
are continuous on all peds; few concretions; 
pipestems of pale brown very fine sand and silt 
very pronounced but end in lower portion of 
horizon; pH 7.3; diffuse wavy boundary. 

Mottled colors as above, but not as coarse, 
silty clay loam, massive; slightly firm and 
hard; common weak patchy clay skins; few con
cretions, pH 7.2; diffuse boundary. 

Strongly mottled brownish yellow ( lOYR 6/8), 
yellowish brown ( lOYR 5/8) and very pale brown 
(lOYR 7/3) clay loam; massive; firm and hard; 
much of the horizon is made up of black and 
brown ferromanganese material that is soft 
when moist; it appears as large pc;1tches in the 
soil mass and also coats parts of other soil 
material; pH 7.4; gradual boundary. 

Strongly mottled yellow (lOYR 7/8), brownish 
yellow ( lOYR 6/8), dark brown ( lOYR 4/3), 
black ( lOYR 2/1) and very pale brown (JOYR 
7/3) more and brighter yellows than horizon 
above, clay loam; massive; firm and slightly 
hard, much ferro-manganese material, like 
above; pH 7.4 Probably weathered soft silty 
shales or siltstones. 
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