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CHAPTER I 

INTRODUCTION 

This study was undertaken to develop and characterize a line of 

cells which can be used as a model to study tolerance, addiction, and 

withdrawal in cultured cells. To establish a common foundation the 

following will be reviewed: history of narcotics, narcotic classi­

fication and structure, pharmacology, theories for tolerance and 

dependence, suitability of cultured cells, opiate receptors, enkepha­

lins, cAMP and adenylcyclase, neurotransmitters, and specific assay 

techniques (plating and time lapse cinematography). 

History of Narcotic Drugs 

Narcotic drugs have been used by society perhaps as long as there 

has been a society, with recorded description of cultivation and pre­

paration of opium occurring around 7000 B.C. (1). Narcotics are used 

medicinally for their antinociceptive (analgesic) and sedative proper­

ties but these agents have serious side effects including tolerance 

and dependence. Tolerance is defined as a decreased response to the 

same concentration of drug with repeated administration, or conversely, 

as a requirement for increased drug dosage to provide the same response. 

Dependence refers to the altered physiological state brought about by 

continued administration of the drug over.a long period of time. Con­

tinuation of the drug is required to preve~t a set of responses ref erred 
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to as the abstinence syndrome (withdrawal). In addition to the 

physical dependence which develops, a psychological dependence 

(habituation) is also seen. The abstinence syndrome produces a variety 

of symptoms, differing in time of onset and degree of severity with 

the individual and the extent of the dependence. These symptoms 

include: nervousness, frequent yawning, profuse sweating, runny eyes 

and nose, dilated pupils, severe muscle twitching, painful cramps 

(back, leg, and abdominal), vomiting, diarrhea, loss of appetite, 

insomnia, increase in respiration, increase in blood pressure (systolic 

and diastolic), increase in body temperature, increase in blood sugar, 

and an increase in the basal metabolic rate (2). The severity of these 

symptoms is used to measure the degree of dependence (3-5). 

Classification and Structure 

Foldes, Swerdlow, and Siker (6) classify narcotic analgesics into 

three groups. These are: 

a) natural alkaloids present in opium; includes: morphine, 

codeine, papaverine, laudanosine, laudanine, papaveraldine, 

narcotine, narceine, cotarnine, and narcotoline, 

b) semi-synthetic compounds obtained by modification of morphine 

or codeine; includes: ethyl morphine•HCl~ heterocodeine, 

heroin, dihydromorphine•HCl, dihydrocodeine bitartarate, 

hydromorphone•HCl, desomorphine•HBr, oxymorphone•HCl and 

others, 

c) synthetic; structural resemblance to whole or part of morphine 

molecules; includes: 

1) Morphinan derivatives: levorphanol, dextrorphan, R04-0288 



(1,3 hydroxy-N-phenacylmorphinan•HCl), phenazocine•HBr, 

2) Methadone derivatives: methadone•HCl, dipipanone, phena­

doxone, isomethadone•HCl, dextromoramid, 

3 

3) Meperidine derivatives: meperidine, alphaprodine, ketobemi­

done, anileridine, 

4) Miscellaneous: 4-anilinopiperidine (Fentanyl, R4263), 6-

methylene dihydro desoxymorphine, diphenoxylate, etorphine. 

These compounds vary in potency from 1/10 to 10,000X (codeine, etor­

phine, respectively) the potency of morphine. The structures of the 

narcotic agonists used in this study are shown in Table I. 

The narcotic antagonists, which also resemble morphine structur­

ally, oppose the action of morphine and can precipitate the abstinence 

syndrome. The most common antagonists are shown in Table II. 

Pharmacological Properties 

Narcotic agonists have a number of pharmacological effects. 

Analgesia is the most outstanding effect in man (6). Other effects 

include sedation (decreased sensitivity to disagreeable situations) 

(7), psychological euphoria (7), excitation (8), nausea (9), vomiting 

(9), myosis (8, 10), bradycardia (11, 12), increase in cerebrospinal 

fluid pressure (13), alteration of electroencephalographic patterns 

(14), histamine release (15), depression of respiration rate (16), 

depression of tidal volume (16), elevation of pC0 2 (17), alteration 

of breathing pattern (18), depression of the cough reflex (19), 

increase in biliary pressure (8), constipation (8), and a decrease 

in the basal metabolic rate (12). Tolerance to the depressant effects 

in the central nervous system (CNS) occurs, but not to the excititory 
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TABLE II 

NARCOTIC ANTAGONISTS 

Relative Potenc:y 
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effects (20). Althdugh varied, none of the pharamcological effects are 

believed responsible for tolerance and/or dependence. 

Theories for Tolerance and/or Dependence 

Several theories for tolerance and dependence have been proposed. 

Sharma et al. (21) find two types of adenyl cyclase in brain, one 

sensitive to morphine and the other not. They propose a compensatory 

shift in enzyme synthesis, degradation, or activity which restores the 

cyclic AMP levels depressed by morphine. Collier et al. (22) also 

propose cAMP homeostasis is involved in tolerance and dependence. 

Kosterlitz and Hughes (23) propose that opiate-enkephalin inter­

actions are responsible for tolerance and dependence. They propose 

that enkephalin, an endogenous peptide with morphine-like action acts 

as an inhibitory neurotransmitter in regulating brain pathways. 

Exogenous opiates remove control of these pathways from the enkephalin 

and gives it to the exogenous opiates. Negative feedback from the 

inhibited pathways reduces the endogenous enkephalin so that endogenous 

enkephalin levels become ihsuf f icient in the absence of exogenous opi­

ates (dependence). Tachyphylaxis (accelerated synthesis of neuro­

transmitters) on depressed pathways is postulated as responsible for 

tolerance. 

Vander Wende and Spoerlein (24) propose that an increase in the 

synthesis of dopamine which is a natural opiate antagonist is respon­

sible for tolerance. As dopamine levels increase, additional morphine 

is required for an effect (tolerance). Presence of morphine is 

required to prevent overactivity caused by the high dopamine levels 

(dependence). Severs and Deneau (25) and Jaffe and Sharpless (26) 
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attribute tolerance and dependence to a latent hyperactivity of CNS 

synapses (dopamine receptor hypersensitivity). 

Kaufman et al. (27), Goldstein and Goldstein (28, 29) and Shuster 

(30) propose that feedback control mechanisms responsible for main-

taining a dynamic, neurotransmitter balance are responsible for 

tolerance and addiction. They propose homeostatic mechanisms respon-

sible for restoring the balance after morphine perturbation are 

responsible for tolerance. They feel that this restoration is brought 

about by increased neurotransmitter synthesis, so that when opiates 

are removed, the homeostasis is again perturbed. 

Siegal (31) proposes 

. . . that the direct analgesic effect of morphine becomes 
attenuated over the course of successive administration 
of the narcotic by a conditioned, compensatory, hyper­
algesic response elicited by the administration procedure, 
the net result being analgesic tolerance (p. 498). 

I.e. tolerance is learned. He supports this with experiments in rats 

in which environmental cues are required for the development of 

tolerance and found that a placebo administered with the appropriate 

cues could replace morphine in dependent rats. 

Use of Cell Culture 

In a review on the biochemistry of addiction, Dole (32) states 

. . . the biochemical determinants of addiction are more 
likely to be found in events close to the primary cellular 
actions of narcotic drugs than in the relatively non­
specific discharges of remote neurons The common 
denominator of these phenomenon (tolerance and physical 
dependence) is the narcotic drug-cell interaction (pp. 
832-833). 
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He also concludes that "tolerance is cellular (p. 829)". In view of 

this and the complexities involved in ~tudying whole animal systems, 

cell culture becomes an ideal model system for assessing the changes 

involved in tolerance and dependence. 

Cell culture has been used extensively to ascertain the effects 
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of various agents on cell parameters. In comparison with more complex 

test systems, cell culture offers several advantages including: free 

access of the drug to the cells, lack of changes in drug concentration 

due to excretion methods, homogeneity of the cell population and a 

strictly controlled and easily variable environment for the cells (33). 

In addition to these advantages, Pomerat and leake (34) add simplicity 

of equipment and methodology and the possibility of recording results 

in a dynamic time frame. Disadvantages in cell culture systems include: 

functional changes not appearing as structural changes may be missed, 

loss of ·interaction between cell types and cell systems, and drugs that 

might be metabolized to effective forms in vivo might be missed in 

vitro (35). 

Effects of Non-Narcotic Drugs on Cells in 

Culture 

The effects of non-narcotic drugs on various cells in culture have 

been studied extensively. Using U.V. irradiated mouse L cells, Damon 

and Rauth (36) found caffeine decreased colony forming ability. Thayer 

et al. (37) found chronic exposure to low caffeine doses did not cause 

chromosome breaks in HeLa in contrast to the breaks found with acute 

exposure to high doses. Dybing (38) showed that chloropromazine 

[(10-(dimethylaminopropyl)-2-chlorophenylthiazine•HCl), CPZ] and 
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SKF-525A (diethylaminoethyldiphenylvalerate) inhibit uptake and incor-

poration of alanine and q-aminoisobutyric acid (AIB, a non-metabolizable 

amino acid) by hepatoma cells in culture. Using human skin epithelial 

cells (HE), Dybing (39) finds CPZ inhibits alanine and AIB uptake and 

incorporation but does not inhibit phenylalanine or cycloleucine. He 

also shows actinomycin D stimulates thymidine uptake, inhibits hypoxan-

thine uptake, and has no effect on phenylalanine or cycloleucine uptake. 

Roubein et al. (40) studied the effects of CPZ and mescaline (both 

cytotoxic agents) on cerebellum and fibroblasts, finding CPZ more toxic 

than mescaline with cerebellum more sensitive than fibroblasts. Using 

enzyme leakage (lactate dehydrogenase, malate dehydrogenase, and aspar-

tate aminotransferase) as a measure of toxicity, Dujovne and Zimmerman 

(41) found CPZ to be more toxic than promazine (10-(dimethylaminopro-

pyl)-(phenothiazine•HCl), PZ) to Chang liver cells (human). Pomerat, 

Finerty, and Perry (42) compared CPZ to thorazine (commercial prepara-

tion of CPZ, ascorbic acid, sodium bisulfite, sodium chloride, and 

sodium sulfite; used as a tranquilizer, antiemetic, sedative, and. 

potentiator) on chick embryo explants (spinal cord, heart, and spleen) 

finding thorazine to be more toxic than CPZ. Spinal explants were most 

sensitive with spleen explants least sensitive. 

Schaefer (43) found that 5,5 diphenylhydantoin (sodium dilantin) 

stimulated the growth of fibroblast but not epithelial cells. 

Scaife (44) used synchronized human T cells (kidney) to study the 

effects of barbiturates, cyclohexamide, and pederin on different points 

in the cell cycle. Pentabarbital blocks cell at mitosis similar to 

colchemid, but amylobarbital, cyclobarbital, and diethylbarbital do not. 

Cyclohexamid and pederin block the cells in prophase. Pomerat et al. 
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(45) studied barbiturate inhibition of outgrowth of chick embryo spinal 

cord and heart explants. Total inhibition of spinal cord was achieved 

at 1:6400 for sodium seconal, and 1:3200 for pentabarbital sodium and 

sodium amytal. Heart cells were less sensitive. Pomerat states "the 

convulsive, lethal, and anaesthetic doses of fourteen other barbiturate 

compounds was generally well correlated with in vitro estimates of 

toxicity" (p. 325). 

Higgins et al. (46) studied the effects of phenethylalcohol (PEA) 

on mouse L cells. PEA, which does not affect isolated chromosomes, 

altered the staining and distribution of chromosomes in the cells with 

a loss of DNA observed. PEA decreased [ 3 H]-uridine incorporation, and 

activated and increased release of lysosomal enzymes. 

Harrison, Kleiger, and Merigan (47) used isolated, beating chick 

embryo heart cells in culture to study the effects of isoproterenol, a 

specific beta-adrenergic stimulating agent. Isoproterenol stimulated 

beating in the cells. Propanolo1, a beta adrenergic blocking agent 

could prevent the isoproterenol stimulation. Mercer and Dower (48) 

studied the effect of digoxin, procaine amide, and quinine sulfate on 

isolated beating chick heart cells. Digoxin increased the total number 

of beating cells and increased the percentage of arrythmic cells where 

procaine amide and quinine sulfate decreased the total number of beating 

cells but had no effect on the percentage of arrythmic cells. Quinine/ 

digoxin combinations increased the number and proportion of arrythmic 

cells (greater than digoxin alone). 

These studies show several important points. These include the 

use of cells in culture to study the toxicity of vatious drugs, and 

that drugs believed to act on neural tissue (CPZ, PZ, barbiturates) 



also show effects on non-neural tissue. 

Effect of Narcotics on Non-Neuronal Tissue 

Toxicity of various narcotics to HeLa cells in culture has been 

looked at by several authors (49-51). Simon (49) compared toxicity 
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of several narcotics in mice and HeLa cells, finding a good correlation 

between toxicity in mice and in HeLa cells. Simon finds an LD 5 o for 

HeLa cells (plating assay) of 5 x 10- 4 M for morphine with dextrorphan 

6X and levorphanol lOX the relative toxicity of morphine. Dextrorphan 

had 3-4X and levorphanol had 5-6X the relative toxicity of morphine in 

mice. Notebloom and Mueller (50) report 13% inhibition of growth of 

HeLa monolayers at 10- 3 M morphine and no inhibition by 10- 4 M morphine. 

RNA and protein synthesis in HeLa cells was inhibited equally by 

levallorphan and levorphanol at 1-2 mM (51). 

Early evidence that cells in culture could show phenomena resem­

bling toleranc.e and physical dependence came from the laboratory of 

Ozaki at the University of Kyoto, Japan in the early 1930's (52-56). 

Semura (52) showed that fibroblasts from chick embryos could become 

addicted to morphine and that their tolerance of morphine was gradually 

increased in a medium containing morphine. Sanjo (53) obtained the 

same results using iris epithelium. Okuda (57) found an increased 

tolerance to morphine by leukocytes from chickens addicted to morphine. 

Saito (58) observed a cross tolerance of heroin and other opium alka­

loids to cultures of iris epithelium addicted to morphine. Sasaki (55) 

reported morphine addiction and withdrawal of primary chicken heart 

fibroblasts. Ten µmolal morphine had no effect on growth, 33 µmolal 

morphine inhibited growth, and 3.3 m molal morphine totally suppressed 
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growth of cells (measured as an outgrowth from the explant compared to 

the control). After three passages in 33 µmolal morphine, 33 µmolal 

morphine no longer inhibited growth. Sasaki then increased the morphine 

concentration to 100 µmolal morphine. This concentration initially 

inhibited growth, but after three passages, 100 µmolal morphine no 

longer decreased growth. Sasaki again increased the morphine concen­

tration to 166 µmolal morphine, finding initial inhibition which was no 

longer present after three passages at 166 µmolal. Removal of morphine 

from these cultures after growth for nine passages in the presence of 

morphine (3 at 33 µmolal, 3 at 100 µmolal, and 3 at 166 µmolal) caused 

an abrupt decrease in growth and cellular degeneration which could be 

reversed for up to three passages by the addition of morphine. This can 

be seen in Figure 1 (from Sasaki (55), Figure 4). Heroin could substi­

tute for morphine for reversal of withdrawal. 

Heubner ~ al. (59) did similar st~dies using chick embryo leg 

muscle explants. Tolerance was observed as a disappearance of patho­

logical symptoms such as fat globules and rounded cells. After 10 

passages, 19/20 cultures had decreased growth rates. The growth rate 

of the 20th culture at 3.4 x 10- 4 M morphine was greater than the 

control, but no decrease in growth upon withdrawal of morphine was 

observed. Unfortunately, all the cultures were lost at the 19th 

passage. 

McCormick and Knikes (60) addicted rats to morphine and levorphanol 

(dromoran) by increasing injections of morphine or levorphanol to levels 

of 630 mg/kg and 210 mg/kg, respectively. They then explanted various 

tissues (corpus callosum, lung, skin, and omentium) and tested for 

tolerance and addiction. They found that tissue explants from addicter 



Figure 1. Tolerance and Addiction in Chicken Heart Fibroblasts. 

1 Morphine concentration used: Passages 1-3 
' 30,000 

1 1 
(33 µM); 4-6, lO~OOO (100 µM); 7-17, 6 ,000 (166 µ M). 

Growth index is measured as explant area (experimental). 
explant area (control) 

Morphine is removed from cells at passage nine (decrease 
in growth). Dotted lines show growth when morphine was 
added back.to cultures from which morphine had been 
removed. 
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animals thrived (as measured by outgrowth of new cells from explant) at 

levels of morphine that killed tissue explanted from control animals. 

No evidence of addiction was observed. 

Corssen and Skora (61) used a human, epithelial like cervical 

carcinoma cell to study addiction and withdrawal. Concentrations of 

less than 500 µmolal morphine did not inhibit growth, but concentrations 

greater than 1.3 mM arrested growth with subsequent death of the cells. 

Withdrawal of morphine from cells grown 10-20 passages at 500 µmolal 

morphine results in rapid cell degeneration and cell death. Addition 

of morphine not later than two days after withdrawal prevented cell 

death. 

In contrast to thes.e observations of tolerance and addiction shown 

by non-neuronal cell lines in culture, Ruffin, Reed, and Finnin (62) 

did not observe any tolerance or physical dependence of H. Ep. 2 human 

epithelial (skin carcinoma) cells to morphine during a 154 day experi­

ment using up to 500 µmolal morphine, but did observe morphine induced 

cytotoxicity. 

Effects of Narcotics on Neuronal Tissue 

Ghadirian (63) used nervous tissue explants from newborn rabbits 

and puppies to study the effects of morphine. Using an arbitrary 

scoring (+, -) system as a measure of growth, he found low concentra­

tions of morphine (0.05-0.5 mg %) stimulated growth, intermediate 

concentrations (10-20 mg %) inhibited growth, and high concentrations 

(50 mg %) killed the cells. Cells conditioned to morphine by growth in 

increasing concentrations of morphine could grow at 50 mg % morphine 

sulfate. Withdrawal of morphine from these conditioned cells caused 
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cellular changes and a decrease in growth that could be reversed by the 

addition of morphine. 

Several authors have looked at tolerance, addiction, and withdrawal 

in neuroblastoma and neuroblastoma hybrid lines. The neuroblastoma 

cultures exhibit many characteristics of differentiated neurons includ­

ing marker enzymes for neurons (64-70) described by Wilson et al. (71). 

Neuroblastoma clones can be maintained in a dynamic state which gives 

them an advantage over the relatively static primary nervous tissue 

culture. Since primary nervous tissue has shown tolerance and 

addiction (60-63) and is more sensitive to morphine than non-nervous 

tissue (24, 34), several workers (72-76) have used these lines. 

Manner ~ al. (72) studied short and long term effects of morphine 

on human neuroblastoma IMR-32. Acute exposure to morphine increased 

doubling time from 31 to 53 hours. Chronic exposure (30 generations) 

to 3 x 10- 4 M morphine produced cells which could grow at 5 x 10- 4 M 

morphine, although at a reduced rate. Removal of morphine from chron­

ically exposed cells increased the doubling time. Chronic exposure to 

morphine produced a seven fold increase in cholinesterase activity and 

a ten fold decrease in choline-0-acetyltransferase activity. Acute 

exposure to morphine had no effect on these enzyme activities. 

North and Martin (73) studied the effects of morphine, levorphanol, 

and dextrorphan on neuroblastoma and hepatoma cells. They found a 

decreased inhibition of growth (measured as number of cells/ml in 

spinner cultures) on the second administration of morphine which they 

interpret as tolerance development. Neuroblastoma cells were inhibited 

by morphine and levorphanol but not by dextrorphan whereas the hepatoma 

cells were inhibited by all three, with dextrorphan as potent as 



levorphanol. 

Traber ~ al. (74, 75) studied effects of morphine sulfate, 

levorphanol and dextrorphan on PGE 1 stimulated cAMP levels in neuro­

blastoma-glioma hybrids and neuroblastoma clones. They found morphine 

and levorphanol could antagonize the PGE 1 stimulation of cAMP where 

dextrorphan could not and that morphine and levorphanol antagonism of 

PGEi stimulation could be blocked by naloxone. 

Klee and Streaty (76) have shown that a neuroblastoma/glioma 

hybrid could bind narcotic analgesics in a stereospecific manner with 

high affinity. 

Effects of Narcotics on Other Organisms 

Narcotics are inhibitory at high concentrations in other 
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systems including~· coli (77), ~· subtilis, ~· megaterium, Micrococcus 

lysodeikticus, Diplococcus pneumoniae (49), Staphylococcus aureus (78), 

and Amoeba proteus (79). In Zimmerman's study on!':._. proteus (79), he 

found nalorphine antagonism of morphine inhibition, the only such 

demonstration in microorganisms. Cardosi and Schuel (80) used sea 

urchin eggs as a model to study the inhibitory effects of narcotics on 

secretion, showing a dose relation from 10- 7 to 10- 3 M morphine. 

Opiate Receptors 

Opiates interact stereospecifically with a "morphine receptor", 

both in animals and in cell systems. 

Cuatrecassas (81) describes the requirement for specific binding. 

He states the binding is surmised to reflect 'specific' receptor 

interactions if it demonstrates: 



a) strict structural and steric specificity; 

b) saturability, which indicates a finite and limited number 

of binding sites; 

c) tissue specificity in accord with biological target cell 

sensitivity; 

d) high affinity, in harmony with the physiological concen­

tration of the hormone; and 

e) reversibility, which is kinetically consistent with the 

reversal of the physiological effects observed upon 

removal of the hormone from the medium. 
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Although the above description is for hormone/receptor interactions, 

these requirements should also hold true for opiate/receptor inter­

actions. Cuatrecassas also discusses several problems, including 

binding to non-specific adsorptive sites (can show apparent high 

affinity and saturability, indicating a second site), binding to 

enzymes and/or non-biological materials present. Stereospecific 

binding, for example, has been observed for D,L isomers of tryptophan 

to albumin (81) and for levorphanol and dextrorphan to glass fiber 

filters (82). Gillette (83) and Klotz (!34) also review drug protein 

interactions. Bush and Alvin (85) review the classical methods of 

determining drug-protein interactions, i.e., dialysis, ultrafiltration, 

and gel filtration. 

Goldstein ~ al. (86) first described stereospecific binding of 

[ 3 H]-levorphanol to mouse brain homogenates. They distinguish between 

non-saturable and saturable binding. Non-saturable binding includes 

drug surrounded by osmotic particles and membrane bound drug involved 

in lipid/H20 partitioning. Saturable binding can be non-specific, 
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i.e. interactions due to ionic bonds, hydrogen bonds, and hydrophobic 

forces, or can be specific, Le. binding to a receptor which triggers 

the chain of events leading to the pharmacological effect. Goldstein 

et al. (86) use binding of [ 3 H]-levorphanol to distinguish these effects. 

They found that only 2% of the binding was due to stereospecif ic 

binding. Pert and Snyder (87), Simon~ al. (88), and Terenius (89) 

all used modifications of Goldstein's procedures to demonstrate 

stereospecific binding to brain homogenates. 

Pasterak and Snyder (90) identified a second, high affinity binding 

site for opiates in rat brain. They feel that these binding sites may 

explain the difference in agonist/antagonist interactions and the Na+ 

effect. In the Na+ effect (91) binding of antagonists is enhanced by 

Na+whereas binding of agonists is decreased by Na+. Only Li+ can 

substitute for Na+. Pert and Snyder (91) propose a conformational 

change between the two types of binding sites to explain the effect. 

Heller and Simon (92) also propose a conformational change induced by 

Na+. They find that Na+ or prior opiate administration protects against 

a decrease in binding caused by addition of n-ethyl maleimide (a sulf­

hydryl group is believed to be essential for binding). Their model 

involves a change between a monomer/dimer with conformational changes 

in the dimeric state to allow the Na+ effect. The monomer is not 

proposed to be sensitive for Na+. 

Opiate receptors are sensitive to a variety of treatments. 

Pasternak and Snyder (93) found the receptor is sensitive to trypsin 

(E.C. 3.4.4.4), chyrnotrypsin (E.C. 3.4.4.5), phospholipase A (E.C. 

3.1.1.4), and high concentrations of phospholipase C (E.C. 3.1.4.3) 

and is insensitive to phospholipase D (E.C. 3.1.4.4), neuraminidase 
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(E.C. 3.2.1.18), RNase (E.C. 2.7.7.16) and DNase (E.C. 3.1.4.5). 

Agonist binding is more sensitive to trypsin and chymotrypsin than 

antagonist binding, with the receptor more sensitive to enzymes in the 

presence of Na+. Wilson et al. (94) also find that iodacetamide in-

creases binding of [ 3 H]-antagonists but decreases binding of [ 3 H]-

agonists. 

Pasternak et al. (95) found that Mn 2 +, Mg 2 +, and Ni 2 + enhance the 

binding of agonists but have no effect on antagonists. 

lower the binding of agonists more than antagonists. Na+ potentiated 

these effects. In addition to affecting binding, Ca 2 + alters develop-

ment of addiction and abstinence (96). 

Creese and Snyder (97) find a strong correlation (R = 0.97, 

p< 0.001) between the pharmacological potency of the opiates and their 

binding to receptors in guinea pig illium. 

Loh and Cho (98) propose cerebroside sulfate is an integral part 

of the opiate receptor. Cerebroside sulfate shows high affinity, 

stereospecific binding, and a high correlation between binding and 

pharmacologic potency. Cerebroside sulfate has the proper physical 

dimensions for interaction with the opiates. 

Pert and Snyder (99) found in vivo administration of opiates 

increased in vitro binding of [ 3 H]-opiates, but stated the effect was 

highly dependent on conditions and preparation. They also stated 

"utilizing binding studies in vitro, we were unable to detect altera-

tions in opiate receptors which are related to the development of 

tolerance and physical dependence" (99, p. 853). Klee and Streaty 

(100) find that 



... neither the number, nor the binding affinity, nor the 
specificity of narcotic receptor sites is changed in the 
morphine dependent (and therefore also tolerant) rat brain 
when compared with that of the normal animal (p. 61). 

Klee and Nirenberg (76) determined the receptor concentration in a 

neuroblastoma glioma hybrid, finding a r'eceptor concentration of 0. 6 p 

mole/mg of protein which calculates to 3 x 105 receptors/cell (1 mg of 

protein - 1.2 x 10 6 cells). Baran et al. (101) determined opiate 

receptor levels in different mice strains finding genetic differences 
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in the number of receptors (from 2.5 x 10 4 up to 4.5 x 10 5 /cell depend-

ing on strain) but found no correlation to the genetic differences in 

analgesic response. This is in agreement with the observation of Pert, 

Aposhian, and Snyder (102) who· found no correlation between levels of 

opiate receptors in different species and their response to analgesic 

drugs. Pert and Snyder (103) found a receptor concentration or 0.3 

mM/g in rat brain, which using Klee and Nirenberg's (76) estimation of 

1.2 x 106 cells/mg, calculates to 1.5 x 10 10 receptors/cell. Pert and 

Snyder (99) find receptor concentration in mouse brain to be 25.1 p 

moles/mg (which calculates to 1. 26 x 10 7 receptors/cell). Thus we can 

see a very large difference in receptor estimates (2.5 x 10 4 /cell to 

1.5 x 1010 /cell) with very little difference in the levels of opiates 

required for pharmacological action. 

cAMP/Adenyl Cyclase 

Since Klee and Streaty (100) find no receptor changes in morphine 

tolerant rats compared to control rats, they propose that tolerance and 

addiction are modulated by changes subsequent to the receptor. Cyclic 

AMP serves as a messenger subsequent to hormone-receptor interactions 
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(104). In order to determine if cAMP or adenyl cyclase are involved in 

tolerance or dependence, several authors looked at the interactions 

betwe.en cAMP and/or adenyl cyclase and opiates. 

Chou et al. (105) found cerebral adenyl cyclase was activated by 

morphine. Ho, Loh, and Way (106, 107) found that administration of 

cAMP, dibutyryl cAMP, or phosphodiesterase inhibition antagonized 

morphine induced analgesia in non-tolerant and tolerant mice. They 

also found cAMP administration accelerated the development of tolerance 

and physical dependence on morphine. Cyclohexamide was able to prevent 

this cAMP effect. Collier and Roy (108) found that morphine inhibits 

PGE 1 stimulation of cAMP in rat brain homogenates, but had no effect on 

basal cAMP levels. Clouet and Iwatsubo (109) found that morphine has 

no effect on basal adeny1ate cyclase activity and that acute adminis­

tration of morphine decreased cAMP level. Sharma, Nirenberg and Klee 

(121) found both basal and PGE 1 stimulated adenyl cyclase levels in 

neuroblastoma x glioma hybrids are inhibited by morphine. 

Collier and Frances (110) find cAMP but not cGMP intensifies the 

abstinence syndrome. Mehta and Johnson fo.und that the abstinence 

syndrome is directly related to brain cAMP levels. 

Collier et al. (22) review effects of morphine, prostaglandin, 

and cAMP in the brain, proposing, as do Sharma~ al. (21), that adenyl 

cyclase/cAMP homeostatic and compensatory mechanisms are involved in 

tolerance, dependence, and withdrawal. 

Enkephalins 

Terenius and Wahlstrom (111, 112) and Hughes (113) describe an 

endogenous substance in the brain which acts as an agonist at opiate 
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receptor sites. Hughes et al. (114) have sequenced these peptide 

factors and identified the two pentapeptide factors as methionine 

enkephalin (Tyr-Gly-Gly-Phe-Met) and leucine enkephalin (Tyr-Gly-Gly-

Phe-Leu). Methionine enkephalin is present as residues 61-65 in 

S-lipotropin in man (115). Kosterlitz and Hughes (23) propose that 

endogenous enkephalin acts as a neurotransmitter or as a modulator 

of neurotransmission. · Goldstein (116) found endorphin (residues 61-91 

of B-lipotropin) also has agonist activity. Urea et al. (117) find 

that both morphine and enkephalins stimulate firing in the periaque-

ductal grey matter, a brain area which they feel is involved in anal-

gesia. Simantov and Snyder (118) show that the enkephalins compete for 

the opiate receptors with affinities similar to morphine. Na+ and 

Mg 2 + affect the binding of enkephalins. This study also shows a time 

dependent degradation of enkephalins. Waterfield et al. (119) showed 

a cross tolerance between morphine and enkephalin in morphine dependent 

guinea pigs. 

Neurotransmitters 

Dole (32), Way and Shen (120), and Weinstock (121) review narcotic 

effects on neurotransmitters prior to 1970. Way and Shen (120) conclude 

epinephrine and nonepinephrine changes after MS administration are more 

likely due to stress and these neurotransmitters do not play a role in 

tolerance and development. They also conclude that dopamine and 5-

hydroxytryp~amine (serotonin) may be involved, but there is no conclu-

sive evidence. Weinstock (121) in reviewing cholinesterase and acetyl 

choline finds a definite involvement in analgesia, but does not show 

any relation with tolerance or dependence. Dole (32) in reviewing 



neurotransmitters states 

. . • these results do not reveal any basic relation between 
narcotic action and catecholamine function. Such an associ­
ation may exist, but in studies of the whole animal or whole 
brain any hormonal effects specific to analgesia or tolerance 
are obscured by the nonspecific neuronal discharges related 
to stress and to the non-narcotic excitory action of narcotic 
drugs (p. 833). 
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A large amount of work has been done on effects of narcotics on 

neurotransmitters. Lal et al. (122) have shown the behavioral changes 

induced by morphine resemble those of neuroleptics (dopamine receptor 

blocking agents) but is not brought about by the same mechanism since 

the dopamine receptor is still sensitive to the neuroleptics in the 

presence of morphine (122, 123). Clouet and Iwatsubo (124) suggest 

that opiates do not act directly on DA receptors but may produce 

DA•adenyl cyclase receptor sensitivity. Kuschinsky (125) was unable 

to find evidence of DA•adenyl cyclase receptor sensitivity in rats 

tolerant to morphine. 

Perez-Cruet, Thoa, and Ng (126) found an increase in 5-HT with 

acute morphine and heroin administration. Buxbaum et al. (127) also 

find an increase in 5-HT synthesis and 5-HT turnover in rats, but con-

elude 5-HT does not play a part in morphine analgesia. Cheney et al. 

(128) also find that 5-HT turnover in mice does not play a role in 

tolerance and dependence. 

Wei (129) found that intraventricular administration of norepine-

phrine produced analgesia and behavioral effects similar to morphine. 

Henwood et al. (130) and Lee and Fennessy (131) found .that mar-

phine ad~inistration altered levels of brain histamine, but the time 

course of alteration did not correlate with morphine analgesia and 
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using other agents to alter histamine function had no effect on rnor-

phine analgesia. 

Satoh et al. (132) found acute administration of morphine blocked 

excitation by acetylcholine (ACh) or L-glutarnine, an effect which was 

naloxone antagonizable. After chronic morphine administration, morphine 

no longer blocked ACh or L-glutarnine stimulation. Satoh et al. (133) 

show that cortical neurons are supersensitive to ACh or L-glutarnine 

after morphine administration. Mullin and Phillis (134) found no 

difference in ACh turnover in dependent rats, but found increased 

turnover of ACh during withdrawal. Costa~ al. (135, p. 6) in their 

study concluded "morphine action on brain cholinergic mechanism does 

not stern from a direct modification by this drug. of the dynamic 

equilibrium of ACh in cholinergic neurons." 

Statement of the Problem 

These studies show that cells in culture can be used to evaluate 

toxicity of drugs, and that both neuronal and non-neuronal cells in 

culture have shown phenomena which resemble tolerance, addiction, and 

withdrawal to opiates. The studies involving tolerance, addiction, and 

withdrawal on opiates have generally been short term and consisted of 

qualitative.observations of growth and toxicity. None of the cell 

strains which were made tolerant or dependent to the opiates still 

exist for quantitative determinations or biochemical evaluation as to 

cellular changes or rnechanisrn(s) involved in tolerance and addiction at 

the cellular level. In our study we chose non-neuronal cells to study 

tolerance and addiction since both neuronal and non-neuronal lines have 

shown tolerance and addiction phenomena and because non-neuronal cells 



are easier to grow and maintain than neuronal lines. We hoped to de­

velop tolerant and addicted lines as a model and to qualitatively and 

quantitatively characterize these cells. 
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The methods we will use for characterization will include time 

lapse cinemicrophotography to qualitatively and quantitatively measure 

membrane movement, plating assays to quantitate toxicity, and uptake 

and incorporation studies to study the effects of opiates on uptake and 

incorporation of precursors for nucleic acid and protein. 

Time Lapse Cinemicrophotography 

The membrane serves as a primary regulator in cell function (diffu­

sion barrier, specific transport, and binding). Morphine binding sites 

are also believed to occur on the plasma membrane (89, 90). Hoss and 

Smiley (136) show membrane lipids can immobilize opiates. Ouabain and 

theophilline effects on membranes of drug sensitive and drug resistant 

cell lines were studied by Lelievre et al. (137). Puck, Waldren, and 

Hsie (138) used time lapse cinematography to study the effects of 3'-5' 

cAMP and testosterone on CHO-K., S3 -HeLa, and V79-CHL cells. Nicolson, 

Smith, and Poste (139) showed that local anaesthetics affect membrane 

associated cytoskeletal organization in BALB/3T3 cells. 

Pomerat (140) used time lapse cinematography to study membrane 

and cellular movements. Rose (141) also used ~ime lapse cinematography 

to study membrane, cytoplasmic, and nuclear movements of KB and HeLa 

cells in different environments. Yang, Strasser, and Pomerat (142) 

studied vacuolization induced by various drugs (atropine, procaine, 

procaine amide, cocaine, pilocarpine, and ephedrine). Vacuolization 

did not affect cell motility or cell division and was reversed by 



27 

removal of the drug. Puromycin (143), colchicine (144, 145) and col-

chemid (146, 147) inhibition of cell motility have been studied using 

time lapse cinematography. Booker et al. (148) used time lapse cinema-

tography to study differentiation in neuroblastoma clones. 

These observations of the effects of drugs on membranes, cellular 

motion, and vacuolization both directly and using time lapse cinemato-

graphy have been qualitative studies. Since morphine is believed to 

interact at the membrane, the utilization of time lapse cinemicrophoto-

graphy on the membrane can be used to measure morphine effects on 

membrane movement in a qualitative and quantitative manner. 

Plating Assay 

Another method of quantitatively determining the toxicity of drugs 

to cells is by determining the effect the drug has on the ability of 

the cells to grow. Malcolm, Pringle, and Fisher (149) use a modifica-

tion of Ham and Puck's (150) single cell plating technique to study the 

f 2+ 2+ 2+ s 2+ c 4+ effects o Cd , Zn , Ca , e , r , rotenone, and nitrilotriacetate 

on the plating efficiency of T4 cells. They measure toxicity by a 

relative plating efficiency (RPE) which is defined as [(number of 

colonies in experimental)/(number of colonies in control)] x 100. This 

type of assay can be used to measure toxicity of drugs to any cells 

which form colonies when plated. 

Uptake/Glass Fiber Filters 

Experiments measuring transport and/or incorporation of radioactive 

precursors into cultured cells require replicate cultures or samples 

for the analysis of the time course, effect of various inhibitor con-



centration, or other parameters. Cells grown in suspension can easily 

be labeled, collected by filtration, and selectively treated (151). 

Replicate monolayer cultures can also be grown on coverslips (152), 

plastic discs (153), and on the bottom surface of glass scintillation 

vials (154, 155). 
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The synthesis of specific macromolecules can be measured by deter­

mining the incorporation of specific radioactive precursors into acid 

insoluble material (156). [ 3 H]-Thymidine is incorporated into DNA, 

[ 3 H]-uridine into RNA, .and [ 3 H]-tyrosine into protein. The difference 

between uptake and incorporation is the amount transported into the 

cellular pool (157). 

Various perturbations can be studied by the effects that they have 

on incorporation of these precursors. Painter (158) used stimulation 

of thymidine uptake as a measure of drug induced DNA damage. Hydroxy­

urea has been shown to inhibit the uptake and incorporation of [3 H]­

thymidine ipto DNA (159-161). Dybing (39) found alanine, AIB, hypoxy­

xanthine, and thym·idine uptake was inhibited by chlorpromazine. Howard 

et al. (162) found t;hymidine uptake was· stimulated by the addition of . 

conditioned media. · Qoka and Daillie (163) found incorporation of [ 3 H]­

thymidine into KB and HeLa. cells was temperatµre dependent. 

To determine the uptake and incorporation: the cells or labeled 

precipitate must be separated and collected. Many authors (164-168) 

have used cellulose filters, glass fiber filters, or membrane filters 

to collect the cells or precipitates. Ball, Van den Berg, and Poynter 

(169) are critical of using filters to' co1lect precipitate due to lack 

of quantitative transfer. 



CHAPTER II 

MATERIALS AND METHODS 

Materials 

HeLa cells (a human epidermal carcinoma (cervical) established by 

Gey et al. (170) in 19S2) were purchased from American Type Culture 

Collection Cell Repository (ATCCR) as CCL-17 KB cells (CCL-17 KB has 

been identified by ATCCR as a HeLa contaminant). LM cells, CCL 1. 2 

(fetal mouse lung fibroblast) were also purchased from ATCCR. Calf 

serum (10 days to 6 months) was purchased from Microbiological Asso­

ciates. Culture media (199 and McCoy's SA) were purchased as powders 

from Grand Island Biological Co. Potassium penicillin G was purchased 

from Squibb and dihydrostreptomycin purchased from Pfizer. NaHC03 was 

purchased from Fisher Scientific. Stock medium 199 was prepared at a 

SX concentration and stock McCoy's SA was prepared at a 2.SX concen­

tration; stock media were sterilized by vacuum filtration, divided into 

aliquots, and stored frozen. Stock penicillin and streptomycin solu­

tions are prepared at 10000 U/ml and SOOO µg/ml respectively, sterilized 

by filtration and stored frozen. Working solutions of medium 199 are 

prepared by mixing 100 ml of frozen stock 199, SO ml of calf serum, 

S ml of penicillin and streptomycin (final concentration of 100 U/ml 

and SO µg/ml respectively), and 1.8 ml of sterile NaHC0 3 (0.11 mg/ml). 

Volume is brought up to SOO ml with sterile glass distilled water. 
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Working solutions of McCoys SA are made by mixing 200 ml of stock 

McCoy's SA, SO or 30 ml of calf serum (10% or 6% serum), S ml of 

penicillin and streptomycin stock solution, and 8. 0 ml of_ sterile 

NaHC0 3 and made up to SOO ml using sterile glass distilled water. 

Drugs were obtained from the following sources: Eli Lilly and 
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Co. - acetylsalicylic acid, codeine sulfate, propoxy~hene, and mor­

phine sulfate; Sigma - amphetamine sulfate; Parke-Davis and Co. -

diphenhydramine-HCl; Calbiochem. - caffeine; U. S. Industrial - ethanol; 

National Institute of Health - heroin; American Quinine Co. - mepro­

bamate; Merck, Sharp, and Dohne - nalorphine; Matheson, Coleman, Bell -

phenacetin; Eastman Organic Chemicals ~ isoamyl alcohol, phenethyl 

·alcohol; Wyeth - phenobarbital; Roche - diazepam, levorphanol, and 

dextrorphan, and Abbot - procaine. All drugs were made up as needed 

in sterile glass distilled water or glass distilled water with 1% di­

methylsulfoxide (a concentration that was independently determined to 

be non-toxic) and then sterilized by membrane filtration. 

Radioisotopes used in these studies were obtained from the 

following sources: Schwartz-Mann - [methyl 3 H]-thymidine, specific 

activity 1.9 Ci/m mole and [S- 3 H]-uridine, specific activity 2.0 Ci/m 

mole; Amersham - D,L-[U-, 3 H]-tyrosine, specific activity 0.43 Ci/m mole 

and [l(n)- 3 H]-morphine, specific activity 28 Ci/m mole. The [ 3 H]­

morphine was further purified by thin layer chromatography on silica 

gel G-2SO using methanol:benzene:water (7S:l0:1S, v/v/v) and compared 

to morphine standard (171). The [ 3 H]-morphine peak was scraped off the 

thin layer chromatogram and extracted 4X with O.S ml of ethanol (9S%). 

Other materials used in these studies were obtained from the 

following sources: Matheson, Coleman, and Bell - 2-amino-2-(hydroxy-
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ethyl)-1,3-propanediol (Tris); Fisher Scientific Co. - NaCl, KCl, 

Na 2HP0 4 , KH 2P0 4 , phenol red, methanol, ethyleneglycol, and p-dioxane; 

J. T. Baker Chemical Co. - CaCl2, MgS0 4 •5H20; Sigma Chemical Co. -

dextrose, sucrose; Eastman Organic Chemical - napthalene; Packard 

Instrument Co. - 2,5-diphenyloxazole (PPO) and l,4-bis-2(5-phenyl­

oxazolyl)-benzene (POPOP). Petri dishes for cell culture use (plastic, 

60 x 15 mm with 2 mm grid #3030) were obtained from Falcon Plastics. 

Coverslips were obtained from Corning (Corning #1, 2.4 cm). Filters 

were obtained from the following sources: Whatman - GF/A, #1321-014, 

24 mm and GF/B, #1321-077, 24 mm; Reeves Angel - glass fiber filters, 

#934 AH, 24 mm; and Millipore - membrane filter, HAWG 0 24~00, 0.45 µ, 

25 mm. 

Methods 

Stock Cell Lines 

HeLa cells were grown as monolayer cultures at 37° in either milk 

dilution bottles (MDB) or Falcon plastic tissue culture dishes using 

medium 199 supplemented with 10% calf serum, penicillin, and strepto­

mycin. The LM cells were cultured as monolayers in MDB using McCoy's 

SA medium supplemented with 10% calf serum, penicillin, and strepto­

mycin or as suspensions in 125 ml Erlenmyer flasks containing 20-30 ml 

of McCoy's SA supplemented with 6% calf serum, penicillin, and strepto­

mycin. Suspension cultures were maintained using a New-Brunswick G-10 

gyrotory shaker at 50 oscillations per minute in a 37° room. 

Plating Assay 

Stock HeLa cells grown in a MDB are scraped, suspended (using a 
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pipette), and centrifuged in a clinical centrifuge at 3000-5000 RPM. 

Cell pellet is suspended in phosphate buffered saline (172) pH 7.2 for 

counting on a Coulter counter (Coulter Electronics, model B, 100 µm 

orifice) or in medium 199 for haemocytomer counting. Cells are centri­

fuged as before. The cell pellet is suspended in medium 199 and diluted 

with medium 199 fo give 1 x 10 3 cells/n{L One ml of the cell suspension 

(1 x 10 3 cells) is then plated into a petri dish containing 4.0 ml of 

199 + 12.5% calf .(control) or 4.0 ml of 100 + 12.5% calf+ drug (1.25 

x final concentration) to give a final volume of 5.0 ml of 199 with 

final serum concentration 10%. Drug solutions are made up as in 

materials and mixed on a 1:1 (v/v) basis with 2X (medium 199 + 12.5% 

calf) .to keep medium concentration uniform. Plates are incubated for 

one week at 37° in a humidified C0 2 /air (5%/95%) incubator (National, 

model 3321). The medium is removed by aspiration, plates washed with 

Hanks' BSS (173), stained with 0.5% aqueous crystal violet, rinsed, 

and air dried. Colonies consisting of three or more cells are counted 

using a microscope (Baush and Lomb, RD9742) at 45X magnification. 

Cultures incubated without drugs are used to establish the control 

plating efficiency (taken as 100%). Absolute plating efficiency under 

these conditions is 60%. The number of colonies on the plates with 

drug is compared to the control using a relative plating efficiency 

(RP = (number of colonies in experimental)/(number of colonies in 

control) x 100). Using a plot of_log RP Vs drug concentration, the 

dose of each drug that inhibits plating by 50% (RP 50 ) is obtained. 

Development of Cells with Increased Tolerance 

The mechanism(s) by which cells in culture with increased tolerance 



arise are unknown. The procedure used in this study to obtain these 

cells is described below. 
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The first approach used was the inoculation of 1.5 x 10 3 cells 

into a MDB containing RP 50 of the respective drug. After 3-4 passages 

(7-10 days each), there were insufficient multiplying cells to allow 

continuation of the cultures. 

The next approach used the protocol shown in Table III. In this 

protocol cells were started at 1.5 x 10 3 cells/MDB using 0.1 RP 50 of 

the drug. Cells were grown to confluency (7-10 days) and subcultured 

the indicated number of times. The cell number was then reduced to 

1.5 x 103 cells/MDB and the cells exposed to the next concentration of 

the drug and the procedure repeated. After reaching LO RP 50 , cells 

were maintained by subculturing using a 1:2 or 1:3 split in 1.0 RP 50 

·of the drug (0.5 RPso was reserve to use if the cells at 1.0 RP 50 were 

unsatisfactory). 

Measurement of Cell Attachment 

To determine if the drugs affected the attachment of HeLa cells, 

a modification of the plating assay was used. In this modification, 

HeLa cells (10 3 ) were plated as described above with plates containing 

1.5 RPso of the drug. At various times the medium (containing any 

unattac.hed cells) is removed and the plate washed 2X with 5.0 ml of 

Hanks BSS (173). Five ml of 199 + 10% calf is then added and the 

plates incubated, washed, stained, and counted as above. The number 

of colonies attached in 24 hours on a control plate (in the absence of 

drug) is taken as the maximum and other time points are represented as 
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TABLE III 

PROTOCOL FOR DEVELOPMENT OF TOLERANT CELLS 

Drug Initial Times Step Inoculation Concentration (cells/MDB) Subcultured 

1 0.1 RP so 1. 5 x 10 3 2 

2 0.5 RPso 1.5 x 10 3 2 

3 1.0 RP so 1.5 x 103 10 

4 1.0 RP so maintenance 



the percent of maximum attached. Drug toxicity is checked by a plate 

with 1.5 RP 50 of the drug grown for a week as above. 

Growth of Cells in Suspension 
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Stock LM cells are harvested, suspended, centrifuged, and counted 

using a Coulter counter. Cells are then suspended at 0.5 x 105 cells 

per ml in McCoy's + 6% calf or McCoy's+ 6% calf+ drug (20 ml total 

volume). At various time points following inoculation (t = 0) aliquots 

(0.2 ml) are removed, suspended in 19.8 ml of counting fluid (0.9% 

saline) and counted on a Coulter Counter to determine cell concentra­

tion. Duplicate flasks are run for each drug concentration with 

triplicate determinations at each time point. 

cinematography 

HeLa cells in medium 199 + 10% calf were inoculated into a Dvorak­

Stotler perfusion chamber and incubated inverted in a 5% C0 2 /95% air 

incubator at 37° for 4 h to allow attachment. The chamber was then 

placed on the stage of a Leitz laboratory model SM-M phase microscope 

and the temperature maintained at 37° using a Sage Model 279 air 

curtain incubator. Cells were perfused with 199 + 10% calf or 199 + 

10% calf+ drug at 0.99 ml/h using a Sage Model 341 syringe pump. 

Tirrie lapse cinematography was done using a Sage series 500 cinemicro­

graphy system using Kodak 16 mm Tri-X reversal film (#7278) at various 

rates. 

Binding of [ 3 H]-Morphine 

Binding of [ 3 H]-morphine was measured using the method of Klee and 
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Nirenberg (76). Cells were prepared as before and suspended in 0.01 

M Tris, 0.32 M sucrose at pH 8.0 (on ice). The cell suspension was then 

incubated at 37° with [ 3 H]-morphine in the presence of morphine, dex­

trorphan, or levorphanol. Cells were collected on a Whatman GF/B glass 

fiber filter under vacuum aspiration (25 mm Hg) and rinsed 2X with 7.0 

ml of Hanks BSS (173). The cells were then air dried and binding 

measured by liquid scintillation counting on a Packard Tri Carb, model 

3320, using Bray's cocktail (174). 

Displacement of bound morphine was measured by incubating cells in 

Tris-sucrose buffer at 37° for 10 min in 10-e M morphine+ [ 3 H]-mor­

phine. Cells are pelleted by centrifugation and media removed by 

aspiration. Cells are then suspended in Tris-sucrose buffer containing 

10-8 M drug at 37° for desired time, collected, washed, and counted as 

above. 

Growth on Glass Fiber Filters 

Support systems (glass fiber filters, milk dilution bottles, 

membrane filters, and coverslips) were sterilized by autoclaving in 

glass petri dishes. Scintillation vials and caps were wrapped in 

foil (caps wrapped separately) and autoclaved. 

HeLa cells were scraped, counted, and suspended in 199 + 10% calf 

(4 x 10 3 to 4 x 10 6 cells/ml). Cells (usually 1 x 10 5 ) are plated on 

support (generally GF/A filter) in 0.25 ml total volume (1.0 ml for 

scintillation vials, 2.0 ml for MDB) and incubated 4 h at 37° in a 

humidified C0 2 /air (5%/95%) water jacketed incubator (National, model 

3321). Medium 199 + 10% calf serum was added to a final volume of 

10 ml (5.0 ml for scintillation vials) and further incubated for the 
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indicated time (usually 20 h, but this is not required). The appro­

priate radioactive precursor is added ([ 3 H]-thymidine, [ 3 H]-uridine, 

or [ 3 H]-tyrosine) and mixed by gentle swirling. After the requisite 

time of incubation (depends on experiment) the filter is removed to a 

Sargent S-35620 polypropylene Buchner funnel on a suction flask and 

washed twice with 15.0 ml of Hanks BSS (173) (uptake measurement) or 

twice with 15.0 ml of 10% trichloroacetic acid (incorporation measure­

ment). Aspirator vacuum filtration (25 mm Hg) was used. The filters 

were removed to glass scintillation vials, air dried, and counted on a 

Packard Tri Carb using Bray's scintillation cocktail as before. 

In experiments to determine proportionality to cell number, 1 x 

10 3 - 1 x 10 6 cells are plated/support, in~ubated 24 h, and pulsed with 

[ 3 H]-precursor (0.5 µCi/ml), terminated, and counted as above. For pro­

portionality to precursor concentration, 1 x 105 cells are plated/ 

filter, incubated (24 h), and pulsed with [ 3 H]-precursor (0.05 - 5 

µCi/ml) for 4.0 h, terminated and counted as above. For experiments 

designed to measure duration of pulse, 1 x l0 5 cells are plated/filter, 

incubated (24 h), and pulsed at 0.5 µCi precursor/ml for varying 

lengths of time, terminated, and counted as above. 

Hydroxyurea Inhibition 

Whatman GF/A filters are prepared as above. HeLa cells prepared 

as above are plated at 1 x 105 cells/filter (0.25 ml), attached and 

grown as above. After growth period, 2.0 ml of media is removed and 

replaced with either 2.0 ml of 199 + 10% calf or 2.0 ml of 100 + 10% 

calf containing hydroxyurea at the appropriate concentration. Cultures 

were then pulsed with 5 µCi of [ 3 H]-thymidine (0.5 µCi/ml) for 4.0 h. 
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Pulse is terminated and cells counted as above. 

Plasma Membrane Isolation 

HeLa cells are scraped, suspended, and washed 4X with Hanks BSS. 

Membranes are prepared using Shin and Carraway's (175) and Carraway 

~ al.' s (176) modifications of a Zn 2 + stabilization method (177). In 

this method cells are swollen (2X, 10 min each) in 50 mM Tris, pH 7.4 

(ice cold) and centrifuged at 3000 RPM to pellet swollen cells. Cells 

are then centrifuged, suspended in 5.0 ml of 40 mM Tris, pH 7.4 (on 

ice) and homogenized using a Dounce homogenizer with tight pestile. 

Cells are monitored visually to assure disruptiop. A small volume of 

homogenate is saved for enzyme assays, and the remainder washed 2X in 

ice cold 40 mM Tris, pH 7.4 (centrifuged 10 min at 5000 RPM). Cells are 

suspended in ice cold 40 rnM Tris, pH 7.4 and centrifuged at 750 RPM to 

remove nuclei (2X). The supernatant solution is centrifuged 10 min 

at 5000 RPM to pellet the plasma membrane and other membranes. The 

pellet ·is suspended in 2-5 ml of 40 rnM Tris, pH 7.4 and layered on top 

of a discontinuous sucrose gradient (55-50-45-40% sucrose, w/v) and 

centrifuged at 15000 RPM in a L-5-65 Beckman centrifuge using a SW-27 

head for 60 min at 4°. The plasma membrane (interfaces 2,3 (40/45 and 

45/50 interfaces)) is collected, washed 2X with 40 mM Tris, pH 7.4, 

centrifuged, and suspended in 50 mM Tris, 0.32 M sucrose (pH 7.0) and 

stored frozen until analysis. 

Membrane protein was determined by the method of Lowry et al. (178). 

Membrane purity was checked by the use of enzyme marker assays. Glu­

cose-6-phosphatase was used as an endoplasmic reticulum marker (179). 

Succinic INT reductase as a mitochondrial marker (180), and 5' nucleo-
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tidase as a plasma marker (180). The inorganic phosphate was measured 

using a modification of the method of Lazarus (181) using 1 ml of 

isoamyl alcohol to extract the phosphomolybdate. The absorbance of the 

alcohol phase was measured at 740 nm. 

SDS Acrylamide Gel Electrophoresis 

Membrane samples were dissolved by boiling for 5 min in 4% SDS~l% 

mercaptoethanol-5 mM EDTA-50 mM phosphate (pH 7.4) at a protein concen­

tration of 3-10 mg/ml, and then incubated overnight at 37°. One tenth 

volume of glycerol-0.01 mg bromophenol blue was added and a sample 

50-300 µg of protein/gel applied to one cm 5% gels. Gels are run 45 

min to remove persulfate, sampies loaded, and gels run at 8 m AMP/gel 

until tracking dye reached the end of the gel ( .. 5 h). Gels are 

stained for protein and carbohydrate by the method of Fairbanks et al. 

(182). 



CHAPTER III 

ASSESSMENT OF TOXICITIES OF DRUGS 

Plating Assay - HeLa Cells 

Before one can utilize cultured cells for developing cell lines 

which show phenomena resembling tolerance and addiction, the toxicity 

of the drug to the cell lines used must be measured. For HeLa cells, 

which will attach, grow, and form individual colonies when plated as . 

single cells into plastic petri dishes, the toxicity of a drug can be 

measured by the effect that it has on colony formation. Toxicity can 

be measured as a decrease in the number of colonies formed when com­

pared to the control or as morphological changes, specifically as 

changes in the size or shape of cells and colonies. Figure 2 shows 

the dose response of HeLa cells to codeine, morphine, and heroin. 

Stock HeLa cells were plated according to the procedure given in 

materials and methods in the presence of the indicated drug concen­

trations. Relative plating efficiency (RP) is plotted vs. drug con­

centration used. Absolute plating efficiency under these conditions 

is 60%. With codeine, there was inhibition of plating at all drug 

concentrations used, while there was a threshold concentration with 

morphine and heroin below which little inhibition (< 10%) was observed. 

From similar curves obtained from all the drugs, three concentrations 

are recorded in Table IV: first, the highest concentration which has 

40 



Figure 2. Dose Response of Stock HeLa Cells to Codeine, Morphine, 
and Heroin 

Stock HeLa cells were plated according to the procedure 
given in the Materials and Methods section in the 
presence of the indicated drug concentrations. The 
relative cell plating efficiency (number of colonies 
formed in presence of drug x 100/number of colonies 
formed in absence of drug) is plotted on semiloga­
rithmic graph paper against ~ drug concentration. 
Part A, codeine; part B, morphine; and part C, heroin. 
Platings were done in triplicate. The error bars show 
the standard deviation. · 
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TABLE IV 

EFFECT OF DRUGS ON HELA PLATING 

mM Drug Concentration for 

Drug 
< 10% 50% > 90% 

Inhibition Inhibition Inhibition 

Acetylsalicylic 
Acid 0.5 1.1 2.5 

Amphetamine 2.0 3.5 5.0 

Caffeine 0.5 2.5 5.0 

Codeine 1 4 

Dextrorphan 0.08 0.51 1.0 

Diazepam (Valium) 0.025 0.065 0.1 

Diphenhydramine HCl 0.2 0.24 0.30 (Benadryl) 

Ethanol 1.5 2.7 NR* 

Heroin 0.65 1.3 1.95 

Levorphanol 0.05 0.37 0.9 

Leucine Enkephalin 0.03 0.13 0.22 

Meprobamate 1 2.5 NR 

Morphin~ 2 2.5 4 

Nalline 0.005 0.0275 0.06 

Phenacetin 1.4 2.1 NR 

Phenethyl_alcohol 0.2 1. 2 2.5 

Phenobarbital 1 1.3 2.2 

Propoxyphene (Darvon) L 2.5 NR 

*NR means 90% inhibition not reached with concentrations used. 
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little or no effect on the relative plating (< 10% inhibition); second, 

the concentration which decreases the relative plating 50%, that is, an 

RP 50 ; finally, the concentration which produces 90% or greater inhibi­

tion. With several drugs (propoxyphene, ethanol, meprobromate, and 

phenacetin) 90% inhibition was not reached with drug concentrations 

tested. 

Growth Assays - LM Cells 

LM cells do not form individual colonies when plated as single 

cells, so to measure the toxicity one must look at total cell number. 

LM cells adapt well to suspension cultures which allows for easy 

measurement of the effects of the drugs on the growth rate of the 

cells. In this assay, LM cells were inoculated as described in 

Materials and Methods. At various times after inoculation, the culture 

was sampled and cell concentration determined with the Coulter Counter 

(triplicate determinations on duplicate samples). The dose responses 

of LM cells to morphine (Part A) and heroin (Part B) are shown in 

Figure 3. Since these cultures are maintained and sampled over time, 

a dynamic representation of the effect of each concentration of drug 

is obtained (for the plating assay, the colonies formed are measured 

at one time point, i.e., 7 days, and dynamic effects are lost). Part 

C of Figure 3 shows the cell number vs. heroin concentration at 80 h 

in a fashion similar to the static plot for HeLa plating. Using this 

type of plot, the concentrations of drugs which has little or no effect 

on cell number (< 10%), the concentration which reduces cell number 

50%, and the concentration which reduces cell number by 90% are obtained 

for various drugs. These concentrations are listed in Table V. The LM 



Figure 3. Dose Response of LM Cells to Morphine and Heroin 

Part A. The concentrations of morphine used were: 
0, O; I, 0.625 ~; Q, 125 ~; and e, 2.5 ~-
Part B. The concentrations-of heroin used-were: 
0, O; I, 0.5 mM; g, 1 mM; and e, 2 mM. 
Part C. A plot of cell=number at 80=hours against 
heroin concentration. 
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TABLE V 

EFFECTS OF DRUGS ON LM SUSPENSION CULTURES 

rnM Drug Concentration for 

Drug 
< 10% 50% > 90% 

Inhibition Inhibition Inhibition 

Amphetamine 0.6 1 1. 25 

Caffeine 0.625 2 2.5 

Codeine 0.2 1 NR* 

Diphenhydramine HCl 0.06 0.125 0.25 

Ethanol 1 2 8 

Heroin 0.1 0.5 1.6 

Morphine 0.5 1 1. 25 

*NR means 90% inhibition not reached with highest concentrations used. 
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cultures were more sensitive to the drugs in suspension than in the HeLa 

plating assay. This can be due to one of two effects; increased sen-

sitivity of cells in suspension to the drugs as opposed to cells growing 

on a solid surface; or due to an inherent increased sensitivity of LM 

cells over HeLa cells. 

Development and Assessment of 

Tolerant Cell Lines 

Growth Procedure 

The first procedure used was to inoculate 1. 5 x 103 cells into a 

MDB containing RP 50 of the respective drugs (the concentrations listed 

for 50% inhibition in Table IV). After 3-4 passages (7-10 d each), 

there were insufficient multiplying cells to allow cqntinuation of the 

cultures. 

The next protocol used was that given in Table III in .the methods 

section .. This involved inoculating 1.5 x 103 HeLa cells/MDB containing 

0.1 RP 50 of the drug, growing cells to confluency, and subculturing 

(2X, 1:2 split) in medium containing 0.1 RP 5 o of the drug. These cells 

were then inoculated at 1.5 x 10 3 cells/MDB containing 0.5 RPso, grown 

to cortfluency, and subcultured (2X) in medium containing 0.5 RP 50 of 

the drug. These cells were then inoculated at 1.5 x 10 3 cells/MDB 

containing 1.0 RP 50 of the drug, grown to confluency, and subcultured 
. . 

(!OX) in medium containing 1.0 RP 50 of the drug. After this point, 

cells were put on a maintenance schedule which involves subculturing 

(1:2 or 1:3 split) at 1.0 RP 50 and 0.5 RP 50 of the drug. The 0.5 RP 50 

cultures served as backup cultures if cultures grown at 1.0 RPso were 

unsatisfactory. 
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Assessment of Tolerance 

Cultures grown in the above manner were periodically tested for 

tolerance using the plating assay described in the materials and methods 

section. Tolerance was determined after 130, 240, 320, 415, and 645 

days of culture. The relative plating efficiency was obtained by com­

paring the number of colonies produced in the presence of a particular 

drug to the number of colonies formed by the same number of cells plated 

in the absence of any drug. Figure 4 shows the variation in tolerance 

to morphine with length of cultivation in the presence of drug. At 130 

days there is a slight but not significant increase 1n tolerance is seen 

at 240 days. A further increase is observed at 415 days, but the level 

of tolerance after 645 days is unchanged from that at 415 days, so it 

appears that a maximal tolerance is achieved. 

Figure 5 shows. the response of HeLa cells to varying concentrations 

6f diphenhydramine hydrochloride (benadryl). Cells grown in the pre­

sence of diphenhydramine hydrochloride for 645 days show less sensitiv­

ity to the drug than do control cells. 

Table VI shows the development of tolerance at various times 

during drug exposure. Cultures grown in the presence of the corres­

ponding drug are more tolerant to amphetamine, diphenhydramine hydro­

chloride (benadryl), codeine, meprobromate, and morphine as is seen by 

increased plating efficiencies. Cultures grown in the presence of 

caffeine show no increase at 1.0 RP 50 concentrations, only a slight 

increase in tolerance at 1.5 RP 50 concentrations whereas cultures 

grown in the presence of propoxyphene (Darvon) show no increase in 

tolerance. With the meprobromate and ampheta~ine cultures, a decrease 



Figure 4. Variation in Tolerance to. Morphine with Length of Culti­
vation in the Presence of Drug 

Days of growth in presence of morphine 0, O; 130, I; 
240, e; 415, Q; and 645, ~-
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Figure 5. Effect of Prior Growth in Drug-Containing Medium on Growth 
in the Presence of Varying Concentrations of Diphenhydra­
mine Hydrochloride 

Control HeLa cells (0) and cells grown in the presence 
of RP 50 of diphenhydrclmine hydrochloride for 645 days 
(I) were exposed to the indicated concentrations of 
diphenhydramine hydrochloride as·multip::\.es of the RP 50 

concentration. The relative plating (from triplicate 
plates) is plotted on the ordinate. The error bar shows 
the standard deviation. 
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Drug 

Amphetamine 

Caffeine 

Codeine 

Diphenhydramine 
(Benadryl) 

Meprobamate 

Morphine 

Propoxyphene 

TABLE VI 

DEVELOPMENT OF TOLERANCE AT VARIOUS TIMES 
DURING DRUG EXPOSURE 

Drug Relative Plating* 
~~ b,.,, 

Concentration Length of Exposure, Days 

RP so 0 130 240 415 

1. 0 31 78 102 105 
1.5 12 27 43 102 

1. 0 55 51 64 72 
1. 5 31 30 48 57 

1. 0 88 83 55 99 
2.0 44 79 15 79 
3.0 4 59 2 52 

HCl 1. 0 41 79 104 118 
1. 5 7 41 63 107 

0.5 101 102 102 
1.0 73 89 102 98 
1. 5 10 64 57 26 

0.5 91 109 85 
1.0 55 65 100 89 
1. 5 14 19 40 70 

1.0 68 45 70 
1. 5 49 0 50 

)~Relative Plating number of colonies in Eresence of drug 100 = number of colonies in ·absence of drug x 
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645 

78 
45 

51 
51 

92 
85 
74 

108 
79 

96 
95 
67 

Relative plating at various times during training. HeLa cells trained 
for indicated time (control HeLa = 0) are plated in presence of indi-
cated drug concentration. 
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of tolerance is seen at 645 days when compared to the levels seen at 415 

days. The meprobromate culture was lost at the 645 day testing. 

Cross Tolerance to Heroin 

Because of the biotransformation of heroin into morphine (by 

de-acylation, heroin-+ monoacetylmorphine-+ morphine), their chemical 

structure relations, and competition for the same receptor sites, cell 

lines tolerant to morphine would also be expected to show tolerance to 

heroin. This cross tolerance is seen in Figure 6. Control HeLa cells 

show the same relative sensitivities to morphine as they do to heroin. 

In terms of absolute sensitivities, the HeLa cells are more sensitive 

to heroin than they are to morphine, an effect which is also seen in 

intact animals. This is probably due to the higher lipid solubility 

of heroin compared to morphine, which allows the heroin into the 

membrane at a higher rate. When cells which have been grown in the 

presence of morphine for 415 days are tested against various concen­

trations of morphine or heroin, equivalent tolerances are observed, 

indicating that morphine tolerant cells are also cross tolerant to 

heroin. 

Membrane Motion 

Qualitative observations showed that morphine reduced the movement 

of the cell's membrane when it was added to the medium. This was aug­

mented by quantitating the membrane movement by the following procedure. 

Cells were inoculated, grown, and filmed in a Dvorak-Stotler perfusion 

chamber as described in the methods section. Either medium 199 + 10% 

calf serum or medium 199 + 10% calf serum + drug is perfused through the 



Figure 6. Effect of Heroin on HeLa Cells Grown in Presence of Morphine 
for 415 Days 

Control HeLa cells plated with heroin 0 and with morphine 
I. Morphine-tolerant HeLa cells were plated in the 
presence of e morphine and ~ heroin. 
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chamber during filming. For analysis, the film is projected onto 

tracing paper one frame at a time using a Lafayette Model AHP-300 16 mm 

analyzing projector. The outline of a cell area picked at random for 

being in sharp focus was drawn on the tracing paper and a flattened 

portion of the cell membrane chosen for analysis. The membrane position 

on three consecutive frames was traced for each of thre.e cells. The 

filming rate used for this analysis was 15 frames/min; thus the measure­

ments correspond to an 8 second time interval. 

After the three outlines have been traced onto the paper, the 

total area between the outer lines on the drawings was measured using 

a planimeter. This is shown diagrammatically in Figure 7. Line A 

corresponds to the membrane position in frame 1, line B corresponds 

to the membrane position in frame 2, and line C corresponds to the 

membrane position in frame 3. The shaded portion represents the area 

through which the membrane has moved. This is done along a designated 

segment of membrane (about 100 mm contour length as projected which 

is equivalent to 40 µm of cell membrane). Both the area reading.from 

the planimeter and the length of the segment measured were recorded 

and converted into square microns per micron. The system was cali­

brated using a ruled slide, known projection distances, and magnifica­

tion. 

The area through which the membrane moved on control cells was 

approximately 0.1 µm 2 /µm of membrane length. With morphine trained 

cells (415 days) the corresponding value in the absence of morphine 

was 0.08 µm 2 /µm. This represents a statistically significant reduc­

tion at the 5% confidence level (student's t). Each experiment was 

repeated at least twice and three or four individual cells analyzed 



Figure 7. Membrane Position as a Function of Time 

Line A represents membrane position at frame 1, line B 
represents membrane position at frame 2, line C repre­
sents membrane position at frame 3. The shaded portion 
represents the area through which the membrane has moved 
during an 8 second interval. 
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at each concentration. The variation of movement among triplicate 

cells in a typical experiment was 7%. In comparative experiments the 

results are represented as relative membrane movement 

movement experimental (+ drug) 
movement control (- drug) 

x 100. The dose response of HeLa cells 

(naive) and tolerant HeLa cells (415 days) is shown in Figure 8. Note 

that the concentration of morphine which decreases membrane movement by 

50% is the same concentration which inhibits plating by 50%. The 

trained HeLa cells also show a tolerance to the inhibition of membrane 

movement, although not as great a tolerance as is seen in the plating 

assay. When morphine is removed from the medium, the membrane movement 

returns to its original value within 18 min. 

Effect of Drugs on Attachment 

For HeLa cells to form a colony when plated, two steps are re-

quired. These are: 1) attachment to the surface of the petri dish and 

2) growth and division. The overall plating would show inhibition if 

either of these steps was inhibited by a given drug. To differentiate 

between these two possibilities, the following procedure was developed. 

HeLa cells (1 x 10 3 ) were plated into petri dishes containing medium 199 

+ 10% calf serum + 1.5 RPso of drug. At various times, medium was 

removed, the plate washed with Hanks BSS, and 5.0 ml of 199 + 10% calf 

serum added. Cells are incubated, washed, stained, and counted as 

described in the materials and methods section. Virtually all the 

cells can be removed at 2 minutes, and attachment is essentially corn-

plete at 3 hours (97.8% of cells attached). The time course for HeLa 

attachment is shown in Figure 9. The effect of drugs on attachment is 



Figure 8. Dose Response of Membrane Movement to Morphine Concentration 

The membrane movement was determined as described in text. 
The movement in the absence of morphine is taken as the 
100% value and the movements determined in the presence 
of the various drug concentrations expressed relative to 
its value. The experiment was initiated without morphine 
and after 45 minutes of filming, medium containing mor­
phine at the appropriate concentration was added and 
filming resumed. Morphine concentration was increased 
at 45 minute intervals, flushing chamber between inter­
vals. Control HeLa (0) and trained HeLa (t) cells are 
shown. 
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Figure 9. Time Course of HeLa Attachment 

1 x 10 3 HeLa cells are plated/petri dish. Each point is 
the average of 4 experiments with triplicate determina­
tions in each experiment. 
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shown in Table VII. Part A shows the drugs which inhibit attachment, 

part B shows the drugs that have no effect on attachment, and part C 

shows the control (for parts A and B). 

Withdrawal of Drug from Tolerant Cells 

66 

Addiction requires that cells develop a requirement for the drug 

for growth along with increased tolerance. A measure of addiction in 

cell culture is that the growth rate of addicted cells should be slower 

and/or these cells should have a reduced plating efficiency when the 

drug is removed from the medium. These effects should be reversible on 

restoration of the drug. 

To determine the effects of withdrawal on tolerant cells, the cell 

number and plating efficiency were determined after growing trained 

HeLa cells in the presence and absence of drug. The growth of untrained 

HeLa's in the absence of drug is also measured. The protocol for these 

experiments is shown in Table VIII. Table IX shows the results from 

experiment A (two separate experimental conditions). Under the first 

condition, the tolerant HeLa cells are grown with no drug or with 0.5 

RP 5 o drug concentration (A-1, 12 d withdrawal) and under the second 

condition with no drug and 1.0 RP 50 drug concentration (A-2, 13 d with­

drawal). Amphetamine, diphenhydramine hydrochloride (benadryl) and 

morphine (with the exception of experiment A-2 for diphenhydramine 

hydrochloride) show a higher cell number for tolerant cells grown in 

the presence of drug than in its absence. 

After the 12 day withdrawal period the cells from experiment A-1 

were inoculated into MDB (Experiment B) or were plated on petri dishes 

(Experiment C). 
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TABLE VII 

EFFECT OF DRUGS ON ATTACHMENT 

Number of Cells Attached at 
Drug 

1 Hour 3 Hours 

A. Inhibitory 

Amphetamine 111 213 

Caffeine 59 135 

Diazepam 145 227 

Dimethylsulfoxide 53 118 

Phenobarbital 103 175 

Propoxyphene 78 190 

B. No Effect 

Acetylsalicylic acid 215 289 

Codeine 197 276 

Diphenhydramine HCl 158 271 

Ethanol 190 266 

Meprobamate 140 277 

Morphine 157 261 

Phenethylalcohol 172 239 

Thorazine 205 293 

C. Control 

No addition 191 258 

HeLa cells (1 x 10 3 ) are plated and grown as described in Materials and 
Methods. After 7 days, plates are washed and stained. Number of 
colonies on plate = number of cells attached. 
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TABLE VIII 

WITHDRAWAL PROTOCOL 

HeLa-Untreated Cells HeLa-Tolerant Cells at 1 RP 50 

i Inoculate 1 x 10 5 /MOB 

I r-1 

1 x 105 /MDB 

r Cl) 
bO Drug Level 0 0 0.5 or 1 RP50 
cu I (/) 
(/) 

Incubation 6 cu 
I I 
6 6 

P-. Time · (days) 

j _ l_ 
- - - - - - - - - - - - ------- j j -

i Inoculate 1 x 105/MDB 1 x 105 /MDB 1 x 10 5 /MDB 
N 

I Cl) 
bO 
cu Incubation 6 7 (/) or 

I I 
6 or 7 6 or 7 

(/) 
Time (days) cu 

P-. 

l Experiment A 

The cells in the MDB's were removed by trypsinization and appropriate 
aliquots counted using the Coulter Counter to determine the number of 
cells per bottle. For Experiment A-1 the count was made after 6 days 
of incubation, and in Experiment A-2 after 7 days of incubation. 

Cells from Experiment A-1 treated as follows: 

I I 
Inoculate 1 x 105 /MDB 1 x 10 3 /Petri Dish 

I I 
I 

I I I I I I r 
Drug Level 0 0.25 0.5 1.0 0 0.25 0.5 1.0 1. 5 

(RP50) 

Incubation 
Time (days) 

6 

I 
Experiment B 

(count) 

7 

I 
Experiment C 

(stain and count) 



The relative growth in experiment B is obtained by comparing the 

cell yield obtained in the presence of drug with that of aliquots 

from the same -inoculum grown in the absence-of drugs. The total 

withdrawal time was 18 days (12 + 6). With both diphenhydramine 

hydrochloride and morphine tolerant cells, the relative growth of the 

cells was increased by low concentrations of the drug. This is shown 

in Table X. 

Table XI shows the results from experiment C. The relative 

plating efficiency is obtained by comparing the number of colonies 

obtained in the presence of the drug with the colonies in the absence 

of the drug. Total withdrawal time for cells in this experiment is 

19 days (12 +. 7). Amphetamine and diphenhydramine hydrochloride 

trained cells showed better plating in the presence of low concentra­

tion of the drug than in its absence. The morphine tolerant cells, 

which showed better growth in MDB in presence of morphine did not 

show the same result in the plating assay. The disparity between the 

amphetamine and morphine results in the MDB growth experiment and the 

plating assay suggests different parameters contribute to the end 

measurement of growth and that the influence of cultivation in the 

presence of drug addiction in these parameters may be diverse enough 

to yield different responses. 

Morphologic Observations 

When drugs are added to control HeLa cells there is an increase 

in the numbe·r of vacuoles and cells "round up". These effects are 

not seen in the trained cell lines. However, the morphology of in­

dividual cells and colonies is altered during th~ training process. 
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TABLE IX 

EFFECT OF CULTIVATION IN ABSENCE OF DRUG ON GROWTH OF CELLS 
PREVIOUSLY GROWN IN RP 50 DRUG CONCENTRATIONS 

Experiment A 

Drug During Growth Cell Number x 10-5 

· (RPso) Tolerant Cells Control Cells 

Amphetamine 

1 0 (withdrawn 12 days) 5.5 7.9 

0.5 6.8 

2 0 (withdrawn 13 days) 9.8 10.6 

1.0 10.0 

Diphenhydramine hydrochloride 

1 0 (withdrawn 12 days) 3.6 7.8 

0.5 5.8 

2 0 (withdrawn 13 days) 11.8 12.6 

. 1.0 10.3 

Morphine 

1 0 (withdrawn 12 days) 4.4 7.8 

0.5 5.2 

2 0 (withdrawn 13 days) 4.5 4.7 

1.0 5.2 

Trained or untrained (control) HeLa cells treated according to proto­
col in Table. VIII. Cell number is determined by trypsinization to 
remove cells from MDB and counting on a Coulter Counter. 
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TABLE X 

EFFECT OF DRUG CONCENTRATION ON RELATIVE GROWTH OF WITHDRAWN, 
MAINTAINED (0.5 RP 50 ), AND UNTREATED HELA CELLS 

Experiment B 
Relative Growth 

Cell History Drug Concentration x RP 50 

Growth Condition 0.25 

Amphetamine 

Tolerant HeLa 

0 (withdrawn 12 days) 91 

0.5 110 

Untreated HeLa 73 

Diphenhydramine hydrochloride 

Tolerant HeLa 

0 (withdrawn 12 days) 140 

0.5 125 

Untreated HeLa 90 

Morphine 

Tolerant HeLa 

0 (withdrawn 12 days) 106 

0.5 111 

Untreated HeLa 104 

Relative Growth Growth in presence of drug 
Growth in absence of drug 

0.5 1.0 

91 42 

86 37 

48 17 

124 53 

84 55 

43 27 

113 71 

. ll5 88 

66 45 

x 100 

Tolerant or control HeLa cells treated according to protocol in Table 
VIII. Total withdrawal time for HeLa was 18 days. 
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TABLE XI 

EFFECT OF DRUG CONCENTRATION ON RELATIVE PLATING EFFICIENCY OF 
WITHDRAWN, MAINTAINED (0.5 RP 50 ), AND. UNTREATED HELA CELLS 

Experiment C 

72 

Cell History 

Relative Plating Efficiency 

Drug Concentration x RP 50 

Growth Conditions 0.25 0.5 

Amphetamine 

Tolerant HeLa 

0 (withdrawn 12 days) 117 115 

0.5 102 106 

Untreated HeLa 89 80 

Diphenhydramine hydrochloride 

Tolerant HeLa 

O (withdrawn 12 days) 112 119 

0.5 102 102 

Untreated HeLa 86 55 

Morphine 

Tolerant HeLa 

0 (withdrawn 12 days) 97 90 

0.5 99 85 

Untreated HeLa 97 93 

Relative Plating Efficiency 
Colonies in presence of drug 
Colonies in absence of drug 

1. 0 1. 5 

120 98 

105 102 

31 16 

121 89 

116 107 

35 4 

87 74 

89 70 

35 1. 3 

x 100 

Tolerant or control HeLa cells treated according to protocol in Table 
VIII. Total withdrawal time for trained HeLa is 19 days . 

. ' 
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There were numerous elongated cells in loose, irregular colonies when 

the cells were grown in the presence of acetylsalicylic acid, ampheta­

mine, meprobromate, morphine, propoxyphene, and phenobarbital. There 

was reversion to typical cell and colony types upon removal of morphine 

and phenobarbital, but not with the other drugs. With diphenhydramine 

hydrochloride there were single cells and small colonies with parallelly 

oriented cells that did not revert upon removal of the drug. Parallel 

oriented elongated cells with the cells projecting out from the colony 

were produced by growth in the presence of codeine and these cells did 

not revert upon removal of codeine. Diazepam produced elongated single 

cells which did not revert. 

Binding of [ 3 HJ-Morphine 

The observations of the effect of morphine on the membrane motion, 

the decreased effect of morphine on the membrane motion of tolerant 

cells, and the knowledge of the existence of specific opiate receptors 

on the plasma membrane led to studies on the binding of [ 3 HJ-morphine 

to HeLa cells. 

The time course for binding of [ 3 HJ-morphine is shown in Figure 

10. In this experiment, 2 x 10 6 HeLa cells are incubated in buffer 

(0.01 M Tris, 0.32 M sucrose, pH 8.0) containing 1.35 x 10 5 CPM of 

[ 3 H]-morphine (morphine concentration 1 x 10- 9 M). Cells are collected, 

rinsed, dried, and radioactivity determined as in materials and methods. 

Binding is maximal at 30 min. 

The binding of [ 3 H]-morphine to HeLa cells as a function of 

morphine concentration is shown in Figure 11. The morphine tolerant 

HeLa cells used in the binding experiments were trained HeLa cells 



Figure 10. Time Course of Binding of [ 3 H]-Morphine by HeLa Cells. 

HeLa celis are incubated (at 37°) with [ 3 H]-morphine 
(135i000 CPM, 10- 9 M morphine) in 0.01 M Tris, 0.32 M 
sucrose (76). Cells are collected in GF/B filter after 
indicated time (vacuum aspiration), rinsed, air dried, 
and binding of [ 3 H]-morphine determined on a Packard 
Tri Carb in Bray's (174) cocktail. Each point is an 
average of triplicate determinations. 
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Figure 11. nMoles Morphine Bound Versus Morphine Concentration. 

1.5 x 10 6 tolerant HeLa (0) or control HeLa (I) cells 
are incubated (at 3 7 °) with 1. 58 x. 105 CPM of ( 1Hl­
morphine in Tris-sucrose buffer containing indicated 
morphine concentra.tion. CPM bound after 30 min is 
used to determine nM bound. 
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frozen at 645 days, stored for 1 year, re-initiated, and maintained 

at LO RP 50 morphine for 450 days. When plated, these cells do not 

show increased tolerance to morphine. However, they can grow well in 

1.0 RP 50 morphine whereas the control HeLa cells die within 3 passages. 

In this experiment, 1. 5 x 10 6 cells were incubated with [ 3 H]""' 

morphine (1.58 x 105 CPM) in 0.01 M Tris, 0.32 M sucrose buffer (pH 

8.0) containing indicated morphine concentration for 30 minutes, 

collected, rinsed, dried and counted as in methods. The amount bound 

was calculated by comparing CPM bound with CPM/nmole. There is more 

morphine bound by trained cells than by non-trained cells, but in 

neither case does the binding show saturability which would be expected 

from an opiate receptor. 

The binding of [ 3 H]-opiate to the receptor should be stereo-

specific as shown by Goldstein et al. (86). Using Pert and Snyder's 

(87) rapid filtration method, binding of [ 3 H]-morphine to HeLa cells 

(trained and control) and purified plasma membranes of HeLa (trained 

and control) was determined in the presence of morphine (10- 9 M) or 

morphine (10- 9 M) + dextrorphan or levorphanol (10- 8 M). Plasma mem-

branes were purified as described in Materials and Methods. The 

membranes show a 13 fold increase in plasma membrane markers; a small 

contamination with endoplasmic reticulum and mitochondria; with no 

nuclear contamination observed (visual monitoring during preparation). 

-a Table XII shows the effects of 10 M levorphanol or dextrorphan on 

the binding of [ 3 H]-morphine (1.5 x 105 CPM) on HeLa cells (tolerant 

or control) or their purified plasma membranes in 0.01 M Tris, 0.32 ~ 

sucrose buffer (pH 8.0). Dextrorphan and levorphanol decrease binding 

by about the same amount in trained and untrained HeLa cells, with no 
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TABLE XII 

EFFECT OF DEXTRORPHAN AND LEVORPHANOL ON 
[ 3 H)-MORPHINE BINDING 

CPM Bound 
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Control Dextrorphan Levorphanol 

A. Cells 

HeLa 2348 944 861 

Trained HeLa 11441 5211 5465 

B. Plasma Membrane 

HeLa 337 303 457 

Trained HeLa 353 247 177 

A. 4 x 10 6 HeLa (tolerant or control) cells incubated (30 min) with 
1.5 x 10 6 CPM of [ 3 H]-morphine in buffer (0.01 M Tris, 0.32 M 
sucrose, pH 8) at 37° containing either 10- 9 M morphine or 10- 9 M 
morphine + 10- 8 M dextrorphan or levorphanol. Binding measured as 
in materials and methods. 

B. 0.5 mg of purified plasma membrane from tolerant or control HeLa 
cells incubated in Tris-sucrose buffer at 37° containing 1.5 x 105 
. 3 . -9 -9 
CPM [ HJ-morphine and morphine (10 M) or morphine (10 M) + 
dextrorphan or levorphanol (10- 8 M). Binding measured as in 
materials and methods. 
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TABLE XIII 

DISPLACEMENT OF BOUND [ 3HJ~MORPHINE BY VARIOUS DRUGS 

% of Control· Binding. Remaining 
Drug 

1 minute 10 minutes 

Acetylsalicylic acid 52.9 ± 11.1. 36.0 ± 4.1 

Amphetamine 85.1 ± 3.6 52.6 ± 12.1 

Codeine 64.1 ± 6.8 46.6 ± 11.1 

Dextrorphan 65.5 ± 13.2 51.2 ± 11.5 

Levorphanol 76.2 ± 9.6 38.8 ± 3.3 

Morphine 62.0 ± 8.6 30.6 ± 8.7 

Phenobarbital 66.4 ± 21.5 46.5 ± 9.8 

Procaine 77 .8 ± 5.9 52.1 ± 3.4 

Propoxyphene 88.9 ± 13.8 66.6 ± 4.4 

HeLa cells we.re incubated with [ 3 H]-morphine for 30 min in 0.01 M Tris, 
0.32 M sucrose, pH. 8 containing 10- 9 M morphine for 30 min at 37°. 
Cells are centrifuged (5,000 RPM), buffer decanted, and cells resus­
pended in Tris-sucrose buffer containing 10- 8 M drug for indicated time. 
Cells are collected, washed, air dried, and counted as described in 
methods. Binding is compared to control treated in the same manner but 
collected immediately after re-suspension in buffer with drug. 
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discernable discrimination between the two. Binding to purified plasma 

membranes was too low to observe significant effects. Dextrorphan and 

levorphanol decreases the binding on membranes from tolerant cells, but 

had little effects on the membranes from control cells. This shows the 

binding is not specific, since the inactive D-isomer (dextrorphan) 

inhibits binding about the same as the active, L-.isomer (levorphanol). 

Table XIII shows the displacement by various drugs of [ 3 H]-morphine 

bound to HeLa cells. All of the drugs tested displaced bound [ 3 H]-mor­

phine:with 10-50% displacement occuring in the first minute. This 

indicates that binding is non-specific and loose. 
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CHAPTER IV 

GROWTH OF ANIMAL CELLS ON GLASS FIBER FILTERS 

AND THEIR UTILIZATION FOR BIOSYNTHETIC 

ANALYSIS 

To assess the effect of drugs on transport and incorporation of 

radioactive precursors, several replicate cultures are required. This 

can readily be obtained in suspension culture by labelling the culture 

and using aliquots to determine the time course, effects of inhibitors, 

and other parameters. HeLa cells, however, do not rapidly adjust to 

suspension, and since toxicities and other work were done with cultures 

grown as monolayers, we desired to develop a simple system to assess 

the effect of drugs on the uptake and incorporation of labeled pre-

cursors. 

Effect of Filter Type and Growth Support 

on Uptake 

Several types of filters and growth supports were compared by 

measuring [ 3 H]-thymidine uptake by HeLa cells. Support systems .(Milli-

pore filter, Whatman GF/A filter, Reeves Angel Glass Fiber filter, 

Corning coverslip, and glass scintillation vials) were sterilized as 

in Materials and Methods and inoculated with 1 x 10 3 or 1 x 10 6 HeLa 

cells/support in 0.25 ml of medium 199 + 10% calf serum (1.0 ml final 

volume for scintillation vials). Cells are allowed to attach for 4 h, 
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medium volume brought up to 10.0 ml (5.0 ml for scintillation vial), 

and grown an additional 20 h (not required). Cells were then pulsed 

with [ 3 H]-TdR (0.5 µCi/ml) for 12.0 h. The pulse was terminated by 

removal of labeled medium and rinsing 2X with 10.0 ml of Hanks Balanced 

Salt Solution (173) and air dried. Uptake was determined as described 

in Materials and Methods. Table XIV shows the CPM of [ 3 H]-thymidine 

taken up by the cells grown on various supports. From this table, the 

superiority of the two glass fiber filters over the other supports can 

be seen. Whatman GF/A filters were chosen for further experiments. 

To compare the uptake by cells grown on glass fiber filters to 

that by cells grown in MDB, HeLa cells (1 x 10 3 - 1 x 106 ) were plated 

on filters (0.25 ml) or MDB (2.0 ml), and grown as described in Mater­

ials and Methods. Cultures were pulsed for 4.0 h with [ 3HJ~thymidine 

(0.5 µCi/ml). Pulse was terminated and uptake determined as described 

in Materials and Methods. The CPM taken up by cells on the two differ~ 

ent supports vs •. cells plated/support is shown in Figure 12. A CPS 

program for linear regression gave the slopes of the lines of log CPM 

versus log cells plated/support as 0.842 ± 0.004 for the experiment 

done on MDB and 0.838 ± 0.002 for the experiment done on glass fiber 

filters. Cleland's application of the Student t test on the slopes 

(183) shows that there is no significant difference (t 0.2, 46). With 

10 6 cells the glass fiber filter (calculated surface area, 4.52 cm 2 ) 

was saturated while the uptake by cells in the MDB (calculated surface 

area, 40 cm 2 ) was still linear with cell number. 

Measurement of DNA, RNA, and Protein Synthesis 

The synthesis of specific macromolecules can be measured by 
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TABLE XIV 

THE EFFECT OF FILTER TYPE OR SUPPORT ON [ 3 H]-THYMIDINE UPTAKE 

Cells Plated 

Type of Filter or Support 
10 3 10 6 

CPM ± SD 

Millipore Filter 551 ± 94 39738 ± 5180 

Whatman GF/A 4810 ± 586 212418 ± 8287 

Reeves Angel Glass Fiber Filter 2714 ± 38L~ 163457 ± 47590 

Corning Coverslip 491 ± 59 46082 ± 8917 

Scintillation Vials 1575 ± 531 97944 ± 15585 

Triplicate samples of cells, either 10 3 or 10 6 , were plated onto the 
indicated filter or support and incubated 4 h for attachment. Then 
9.25 ml of medium 199 + 10% calf serum (4 ml for scintillation vials) 
was added to each petri dish and the contents incubated for 20 h. A 
12 h pulse with 5 µCi of [ 3 H]-thymidine was made and the filters or 
supports were washed two times with 15 ml of Hank's Balanced Salts 
solution. Radioactivity was determined as described in the Materials 
and Methods section. 



Figure 12. Comparison of Uptake by HeLa Cells Grown in MDB or on GF/A 
Filters 

HeLa cells were plated on MDB (I) or GF/A filters (0) to 
give indicated number of cells/support. Cells were 
attached, grown, pulsed (4.0 h, 0.5 µCi [ 3 H]-TdR/ml), 
and counted as described in Materials and Methods. 
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determining the incorporation of specific radioactive precursors into 

acid insoluble material (156). [ 3 H]-Thymidine can be used to measure 

synthesis of DNA, [ 3 H]-uridine to measure synthesis of RNA, and [ 3 H]­

tyrosine to measure the synthesis of protein. The difference between 

uptake and incorporation represents the amount transported into the 

intracellular pool (152). 
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The uptake and/or incorporation of radioactive precursor should 

show proportionality to cell number, concentration of precursor, and 

duration of pulse. Figure 13 shows these proportionalities for uptake 

of [ 3 H]-thymidine by HeLa cells. Uptake and incorporation of [ 3 H]­

thymidine was linear with respect to cell number and concentration of 

[ 3 H]-thymidine. Uptake of [ 3 H]-thymidine was linear with respect to 

duration of pulse (incorporation was not measured). Figure 14 shows 

the proportionalities for uptake and incorporation of [ 3 H]-uridine by 

HeLa cells. Uptake and incorporation of [ 3 H]-UdR is linear with respect 

to number of cells, concentration of [ 3 1-l]-UdR, and duration of pulse. 

Figure 15 shows these proportionalities for uptake and incorporation of 

[ 3 H]-tyrosine by HeLa cells. Uptake and incorporation of [ 3 H]-tyr by 

HeLa cells is linear with respect to cells plated/filter and concen­

tration of label. The uptake and incorporation of [ 3 H]-tyr is linear 

with respect to duration for the longer time points, but shows more 

error at shorter times. One of the reasons for the low incorporation 

and higher errors when [ 3 H]-tyr is used is that medium 199 has a high 

tyrosine,content and the [ 3 H]-tyr used had a low specific activity 

(0.43 Ci/m mole). When LM cells are used in place of HeLa cells, 

uptake and incorporation of [ 3 H]-TdR is linear with respect to cells 

plated/filter. This can be seen in Figure 16. 



Figure 13. Uptake and Incorporation of [ 3 H]-Thymidine by HeLa Cells 

A. Uptake (I) and incorporation (0) of [ 3 H]-TdR versus 
cells/filter. Indicated number of cells are plated/ 
filter, attached, grown, and pulsed (4.0 h, 0.5 µCi/ 
ml) as described in Methods. 

B. Uptake (I) and incorporation (0) of [ 3 H]-TdR versus 
concentration of [ 3 H]-TdR. HeLa cells (1 x 105 ) are 
plated, attached, grown, and pulsed for 4.0 h with 
indicated concentration of [ 3 H]-TdR. 

C. Uptake of [ 3 H]-TdR versus duration of pulse. HeLa 
cells (1 x 105 filters) are plated, attached, and 
grown as described in Methods. Cells are pulsed with 
0.5 µCi/ml for indicated duration. 

Each point is average of triplicate samples. The error 
bars show the standard deviations of the measurement. 
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Figure 14. Uptake and Incorporation of [ 3 H]-Uridine by HeLa Cells 

A. Uptake (I) and incorporation (0) of [ 3 H]-UdR versus 
cells/filter. Indicated number of cells are plated/ 
filter, attached, grown, and pulsed (4 h, 0.5 µCi/ml) 
as described in Materials and Methods. 

B. Uptake (I) and incorporation (0) of [ 3 H]-UdR versus 
concentration of [ 3 H]-UdR. HeLa cells (1 x 105 ) are 
plated, attached, grown, and pulsed for 4.0 h with 
indicated concentration of [ 3 H]-UdR. 

C. Uptake (I) and incorporation (0) of [ 3 H]-UdR versus 
duration of pulse. HeLa cells (1 x 105 filter) are 
plated, attached, and grown as described in Methods. 
Cells are pulsed with 0.5 µCi [ 3 H]-UdR/ml for indi­
cated duration. 

Each point is average of triplicate samples. The error 
bars show the standard deviation of the measurement. 
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Figure 15. Uptake and Incorporation of [ 3 H]-Tyrosine by HeLa Cells 

A. Uptake (I) and incorporation (0) of [ 3 H]-Tyr versus 
cells/filter. Indicated number of HeLa cells are 
plated/filter, attached, grown and pulsed (4 h, 0.5 
µCi/ml) as described in Materials and Methods. 

B. Uptake (I) and incorporation (0) of [ 3 H]-Tyr versus 
concentration of [ 3 H]-Tyr. HeLa cells (1 x 105 ) are 
plated, attached, grown, and pulsed for 4.0 h with 
indicated concentration of [ 3 H]-Tyr. 

C. Uptake (I) and incorporation (0) of [ 3 H]-tyrosine 
versus duration of pulse. HeLa cells (1 x 105 / 

filter) are plated, attached, and grown as described 
in Materials and Methods. Cells are pulsed with · 
0.5 µCi of [ 3 H]-Tyr/ml for indicated duration. 

Each point is average of triplicate samples. The error 
bars show the standard deviation of the measurement. 
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Figure 16. Uptake and Incorporation of [ 3 H]-Thymidine by LM Cells 

Uptake (e) and incorporation (0) of [ 3 H]-TdR versus 
LM cells plated/filter. Indicated number of LM cells 
are plated/filter, attached, grown, and pulsed (4.0 h, 
0.5 µci/ml) as indicated in materials and methods. 
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Inhibition of [ 3 HJ-Thymidine Uptake 

and Incorporation 
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Hydroxyurea inhibits the uptake and incorporation of thymidine and 

is a conunonly used inhibitor. of DNA synthesis (161). Figure 17 shows 

the effect of various concentrations of hydroxyurea on the uptake of 

[~HJ-thymidine. Thymidine incorporation shows the same dose response 

as does thymidine uptake as can be seen in Figure 18. 

Morphine (0-2.0 RP 50 ) did not inhibit the uptake or incorporation 

of [ 3 H]-TdR by HeLa cells grown on glass fiber· filters as can be seen 

in Table XV. These experiments were done with cells which failed to 

show the normal tolerance to morphine on plating, so inhibition of TdR 

uptake or incorporation cannot be ruled out as being involved in devel­

opment of tolerance. 



Figure 17. Hydroxyurea Inhibition of Thymidine Uptake 

HeLa cells (10 5 ) were plated on GF/A filters, allowed to 
attach 4 h, and incubated 20 h. At 20 h, 2 ml of medium 
was removed and replaced by either fresh medium 199 + 10% 
calf serum or fresh medium 199 + 10% calf serum contain­
ing hydroxyurea to give the various final concentrations 
shown. [ 3 H]-Thymidine (0.5 µCi/ml) was added and the 
culture incubated for 4 h and the radioactivity deter­
mined as described in the Materials and Methods section. 
The plot shows the % of control value (7495 cpm taken up) 
versus hydroxyurea concentration. The error bars show 
the standard deviation of the triplicate measurements. 
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Figure 18. Hydroxyurea Inhibition of Thymidine Incorporation 

HeLa cells (10 5 ) were plated on GF/A filters, allowed to 
attach 4 h, and incubated 20 h. At 20 h, 2 ml of medium 
was removed and replaced by either fresh medium 199 + 
10% calf serum or fresh medium 199 + 10% calf serum 
containing hydroxyurea to give the various final concen­
trations shown. [ 3 H]-Thymidine (O. 5 µCi/ml) was added 
and the culture incubated for 4 h and radioactivity 
determined as in the Materials and Methods section. The 
plot shows the % of control value (3462 CPM incorporated) 
versus hydroxyurea concentration. The error bars show 
the standard deviation of triplicate measurements. 
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Morphine 

mM 

0 

0.63 

1.25 

2.50 

3.75 

5.00 

TABLE XV 

EFFECT OF MORPHINE ON UPTAKE OF [3 H]-THYMIDINE 
BY HeLa CELLS 
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Added Uptake Incorporation 

CPM ± SD 

4325 ± 742 2028 ± 187 

4763 ± 857 2067 ± 271 

4631 ± 761 2249 ± 182 

4414 ± 772 2415 ± 384 

4358 ± 886 1801 ± 238 

4924 ± 1250 2304 ± 584 

Duplicate samples of 10 5 cells were plated onto each of three GF/A 
filters, incubated 4 h for attachment, and then incubated 20 h in 
medium containing the appropriate concentration of morphine. At 20 h, 
4 ml of medium was removed and replaced with fresh medium containing 
the appropriate concentration of morphine. [3 H] -Thyrnidine (O. 5 µCi/ml) 
was added and the radioactivity determined as indicated in the Materials 
and Methods section after 4 h incubation. 



CHAPTER V 

. DISCUSSION 

Assessment of Toxicities of Drugs 

Many of the prior investigators (described in the introduction) 

made qualitative observations to show that cells in culture show phe­

nomena resembling tolerance and addiction. Sasaki (55) measured the 

diameter of explanted tissue fragments with a microscope projecting 

apparatus. Corssen and Skora (61) used time laps·e cinematography and 

analyzed the results by slow projection, classifying growth as: 

growing well, growth retarded or arrested, and dead. Ghadirian (63). 

used microscopic observation of new born rabbit and puppy nervous 

tissue, classifying growth as: no growth, a few living cells, moderate 

growth and proliferation of cells; good growth with considerable 

migration, a stage intermediate between ~ood growth and very good 

growth, and. very good growth· and migration. Heubner et al. (59) used 

the disappearance of pathological symptoms (fat globules and rounded 

cells) as a measure of tolerance. 

One of the goals ·in this study was to quantitize tolerance, 

addiction, and withdrawal. A plating assay assessed ~he effect of 

various drugs on the colony forming ability of HeLa cells in culture. 

Dose responses of HeLa cells to morphine, codeine, and heroin are 

shown iri F~gure 2. The number of colonies formed in the presence of 
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drug is compared to the number formed in the absence of drug (relative 

plating efficiency). Table IV shows the effects of various drugs on 

HeLa plating. HeLa cells were more sensitive to heroin than to 

morphine (RPso of 1.3 and 2.5 rnM, respectively). HeLa cells are more 

sensitive to leucine enkephalin (RP 50 0.13 rnM), which is the same 

relative sensitivity seen in whole animals. Codeine, which has only 

1/10 the activity of morphine in vivo is more toxic to HeLa cells 

(RP 50 of 1.0 rnM versus 2.5 rnM for morphine). 

The concentration of morphine producing toxicity on HeLa cells 

corresponds with toxic levels for non-nervous tissue found by other 

investigators. Corssen and Skora (61) found 0.5 rnM morphine had no 

effect and 1. 3 rnM morphine inhibited growth of "epithelial like" 

cervical carcinoma cells (not identified as a particular cell line). 

Notebloom and Mueller (50) found 0.1 rnM morphine had no effect on the 

growth of HeLa monolayers and 1.0 rnM morphine inhibited growth by 13%. 

Simon (49) found an LDso of 0.5 rnM for morphine on HeLa cells using 

a plating assay, with dextrorphan 6X and levorphanol lOX as potent. 

We find an RP 50 (equivalent to LD 50 ) of 2.5 rnM for morphine with dex­

trorphan 5X and levorphanol 7X as potent. 

Suspension cultures were more sensitive to drugs than monolayer 

cultures (Table V). LM cells were inhibited 50% by 1.0 rnM morphine. 

This could be due to an increased sensitivity of cells in suspension 

or due to the difference between LM and HeLa cells. 
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Tolerance Development 

Plating Assay 

An increase in tolerance was seen by cells grown by the protocol 

in Table III. An increase in tolerance as a function of days in 

cultivation in the presence of morphine is seen in Figure 4. A slight 

increase of tolerance is seen at 130 days. Tolerance is significant at 

240 days, maximal at 415 days, with little change between 415 and 645 

days, indicating a possible maximum in tolerance. Amphetamine, di­

phenhydramine•HCl, meprobamate, and morphine show significant increases 

in tolerance while caffeine, codeine, and propoxyphene show small 

increases in tolerance (Table VI). Although tolerance increases, the 

time course for development of tolerance is longer than that seen 

by other investigators. North and Martin (73) observed tolerance on 

the second addition of morphine to neuroblastoma cultures. Sasaki (55) 

showed tolerance to 166 µmolal morphine in 9 passages (18 days). 

Corssen and Skora (61) reported development of tolerance to 666 µmolal 

morphine in 9-15 passages. Ruffin et al. (62) did not observe an 

increase in tolerance during a 156 day experiment. The reason(s) for 

the differences in time required for tolerance development is unknown. 

Morphological Tolerance 

Morphological changes seen on addition of morphine include 

increase in vacuoles and formation of lipid droplets (55, 59, 61). 

Heubner et al. (59) used the decrease in these pathological symptoms 

as a measure of tolerance. We observe these changes on addition of 

morphine to control HeLa cells, but not on addition to tolerant cells. 
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Changes in colonial morphology are also seen during the training period. 

Colonies grown in the presence of morphine and phenobarbital revert to 

original colonial morphology upon removal of the drug, where those in 

the presence of acetylsalicylic acid, amphetamine, propoxyphene, mepro­

bamate, diphenhydramine•HCl, or diazepam retain their modified mor­

phologies. 

Membrane Movement 

Pomerat (140) observed continuous changes in the outline of plasma 

membranes and postulated a special importance for the mobility of the 

plasma membrane in interdigitation of cell boundaries. The plasma 

membranes of cells contain specific chemical receptors that regulate 

growth and metabolism of cells (81, 140, 184, 185) and the proposed 

opiate receptor (86-89). Corssen and Skora (61) described qualitative 

effects of morphine on cell movements. We also found morphine decreased 

cell movements using the assay described in Materials and Methods. The 

membrane movement of control cells is decreased by 50% using the RP 50 

morphine concentration from the plating assay. Tolerant cell membrane 

movement (0.08 µ 2 /µ of length in the absence of drug) showed less inhi­

bition in the presence of morphine than did control membrane (0.10 µ 2 /µ 

of length in absence of morphine). 

Cross Tolerance 

Cross tolerance between various opiates is seen in vivo (2, 32) so 

that animals tolerant to morphine show tolerance to heroin. Heroin and 

morphine compete for the same receptor (87-89) and heroin is de-acylated 

to morphine, so the underlying tolerance mechanism(s) should be the 
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same. Saito (58) observed cross tolerance toward heroin and other 

opium alkaloids in cultures of iris epithelium addicted to morphine. 

We also find that HeLa cells tolerant to morphine (415 days) show the· 

same relative tolerance to heroin as they do to morphine, indicating a 

possible common underlying mechanism(s) for tolerance, but the mechan­

ism (s) is unknown. 

Withdrawal 

Sasaki (55) and Corssen and Skora (61) found that removal of 

morphine from tolerant cells caused a decrease in cell growth with 

subsequent cell death which could be reversed by addition of morphine. 

The requirement for morphine for growth is the equivalent of addiction 

and the decrease in the absence of drug is the equivalent of with­

drawal. We find that cells trained with morphine, diphenhydramine•HCl, · 

or amphetamine grow better in the presence of the appropriate drug 

than in its absence (Table IX) during a 12 or 13 day withdrawal experi­

ment. Using cells withdrawn for 12 days (Table X) we find a better 

relative growth in the presence of low concentrations of drug for cells 

trained with diphenhydramine•HCl or morphine, with amphetamine showing 

a slightly lower relative growth. Using the relative plating assay we 

find a higher relative plating efficiency for cells in the presence of 

low concentrations of drug (up to 1.0 RP 50 ) for cells tolerant to 

amphetamine or diphenhydramine•HCl, but a decreased plating efficiency 

for morphine trained cells (Table XI). The differences in experimental 

conditions and disparity of responses observed with morphin~ suggest 

that different parameters contribute to the end measurement of growth 

rate in MDB and plating efficiency in petri dishes and that the 
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influence of cultivation in presence of drug or addiction on these 

parameters may be diverse enough to yield differentiation of responses. 

Although the cells cultivated in the presence of morphine show 

tolerance using the plating assay, membrane movement, and withdrawal, 

it is not known whether these responses are due to a selection of cells 

with increased tolerance during cultivation or due to changes within 

the cell line. 

Binding of [ 3 H]-Morphine 

Morphine interacts with a specific morphine receptor (86-89) which 

is believed to exist on the plasma membrane. Our observations on the 

effect of morphine on plasma membranes may be interpreted as inter­

action with a receptor on the membrane. Binding of [ 3 H]-morphine was 

determined to ascertain if these cells have a specific morphine 

receptor. [ 3 H]-morphine rapidly binds to the cells, with maximal 

binding reached in 30 minutes, using the buffer system of Klee and 

Nirenberg (76). Klee and Nirenberg, however, found maximal binding in 

neuroblastoma cells was achieved in 10 minutes and remained constant 

for 60 minutes, and then decreased slightly. Figure 11 shows the 

effect of morphine concentration on binding. Binding of [ 3 H]-morphine 

is linear for both control and morphine tolerant HeLa cells. The 

amount of [ 3 H]-morphine bound to tolerant HeLa cells was higher than 

that bound to control cells, but saturation~ which would be expected 

from a specific receptor (81) is not observed. Goldstein~ al. (86) 

show that the morphine receptor not only shows saturation, but stereo­

specificity of binding, i.e., specific binding of [ 3 H]-levorphanol is 

decreased by exogenous levorphanol but not by the inactive D isomer, 
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dextrorphan. We used Pert and Snyder's (87) modification of Goldstein 

et al. 's assay (termination of incubation by filtration, collecting 

cells on GF/B filters) to ascertain the effects of levorphanol and 

dextrorphan on [ 3 H]-morphine binding (Table XII). Both dextrorphan and 

levorphanol inhibited binding of [ 3 H]-morphine by about the same amount 

in tolerant and control HeLa cells. In Table XIII shows the displace­

ment of [ 3 H]-morphine binding by various drugs. All of the drugs 

displaced [ 3 H]-morphine with 10-50% displacement in the first minute. 

There is no specific pattern to the displacement by the various drugs. 

The displacement of [ 3 H]-morphine by non-opiates as well as opiates 

indicate non-specific b1nding, and since the displacement is rapid, it 

indicates a "loose" binding. While there is no evidence that binding 

is stereospecific, there is a significant difference in the amount of 

[ 3 H]-morphine bound to tolerant and control cells (Figure 11, Table 

XII). This change might be responsible for the cells' ability to grow 

in medium containing morphine. 

Relationships between specific receptors and biological effects is 

unclear. The opiate receptors have only been shown in nervous tissue 

(186), neuroblastoma cultures (76), mouse vas deferens (187), and 

guinea pig illium myenteric plexus (97), but tolerance and addiction 

occurs in non-nervous tissue (52-61). Furthermore, no changes in 

number, binding affinity, or stereospecificity (100) of receptors 

occurs during development of tolerance or addiction, and receptor 

concentration varies from 2.5 x 10 4 (101) to 1.5 x 10 10 (103) recep­

tors/cell with little difference in analgesi~ response. 

The morphine trained HeLa cells used in these binding experiments 

are cells which were frozen after 645 days of cultivation in the 
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presence of morphine, stored frozen for 1 year, re-initiated, and main-

tained for 450 days at 1.0 RP 50 morphine. This was necessitated after 

a combination of a severe storm (water in tissue culture lab) and loss 

of air conditioning led to mold contamination of the laboratory. All 

ongoing stocks (all contaminated) had to be terminated, with the lab 

totally stripped, cleaned, and re-sterilized (-8 months work). Unfor-

tunately, the re-initiated cells no longer shbw the increased tolerance 

with the plating assay when compared to stock HeLa that was seen 

previously. However, these cells were able to grow well in 1.0 RP 50 

morphine whereas the control HeLa cells die within three passages. 

Since the re-initiated line shows different properties, it is unknown 

as to whether the cells which were used for tolerance measurements 

possessed a receptor. 

Glass Fiber Filters 

In addition to the measurement of toxicity, we wished to determine 

the effect of morphine on biochemical processes, specifically nucleic 

acid synthesis and protein synthesis. The incorporation of [ 3 H]-

thyrnidine can be used to measure DNA synthesis, the incorporation of 

[ 3 H]-uridine can be used to measure RNA synthesis, and incorporation 

of [ 3 H]-tyrosine tomeasure protein synthesis (156). The difference 

between the uptake and incorporation is the amount transported into 

the intracellular pool (157). 

Several methods exist for growth of cells to measure the effect 

of parameters on uptake and incorporation of various precursors. 

Suspension cultures are the method of choice since they can be readily 

labelled and easily sampled at various time points. HeLa cells, 
I 
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however, do not adapt readily, so methods for labelling monolayer 

cultures must be used. To avoid loss on transfer, it would be pre­

ferable to grow the cells on the supporting material. This has been 

previously reported for plastic discs (153), glass coverslips (152), 

membrane filters (188), and glass scintillation vials (154). These 

supports are not easy to wash, so we developed an assay using glass 

fiber filters as growth supports. Table XIV shows a comparison of 

uptake of [ 3 H]-thymidine by HeLa cells grown on various supports. 
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The two glass fiber filters used as supports showed the highest uptake. 

Whatman GF/A filters were chosen for further determinations. Cells 

grown on GF/A filters show essentially identical uptake to those 

grown in MDB (slope of log CPM vs log cells/support for GF/A is 0.838 

± 0.002 and for MDB is 0.842 ± 0.004). Cleland's (183) application of 

the student's t test on the slopes showed no significant difference 

(t 0.2, 46). There is a slight deviation from linearity by cells 

grown on GF/A filters at 106 cells/support due to saturation of the. 

filter with cells. 'Both supports gave the same results, but with the 

GF/A cultures the triplicates are in the same petri dish and require 

less medium (10 ml versus 30 for MDB), less labelled precursor (5.0 

µCi versus 15.0 µCi for MDB), and less manipulation (filters only have 

to be removed and rinsed under aspiration, MDB have to be scraped, 

cells collected on a filter, and filter then rinsed) than do the MDB 

cultures. In addition, background was lower (70 CPM versus 850 CPM 

for MDB). 

The applicability of the method for measuring synthesis of macro­

molecules is shown for DNA in Figure 13, for RNA in Figure 14, and for 

protein in Figure 15. In all cases, uptakes and incorporations are 
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linear with respect to number of cells/filter, concentration of 

labelled precursor, and duration of pulse. Higher error is seen with 

[ 3 H]-tyrosine as a precursor due to its low specific activity (0.43 

Ci/mM) and the high tyrosine content of medium 199. The validity of 

the method for other cell lines is shown by the uptake and incorpora­

tion of [ 3 H]-TdR by LM cells (Figure 16). 

The effect of hydroxyurea (an inhibitor of DNA synthesis) on 

uptake and incorporation of [ 3 H]-TdR is shown in Figures 17 and 18. 

Morphine did not affect the relative uptake or incorporation of [ 3 H]­

TdR as can be seen in Table XV. The lack of effect of morphine com­

bined with the lack of response of trained cells precluded further 

testing. 

The use of glass fiber filters as supports offers several 

advantages. The glass fiber filters are less expensive than millipore 

filters (1/3 the price) and show superior [ 3 H]-TdR incorporation 

(Table XIV). Other advantages include: 1) replicates are incubated 

in the same petri dish under identical conditions (up to 6 filters 

can be handled per petri dish using a modified petri dish); 2) less 

medium, less radioactive precursors, and fewer cells are required; 

rapid termination of the reaction, easy washing, and selective treat­

ment of the precipitate can be done by filtration; 4) high counting 

efficiency is obtained by [ 3 H]-labelled compounds on glass filters 

(189) (we also observed no quenching of [ 3 H]-TdR in the presence of 

GF/A filters, but found 10% quenching by millipore filters); and 5) the 

filters are made of borosilicate glass which is preferable for the 

growth of delicate cells (190). 



CHAPTER VI 

SUMMARY 

The toxicities of various drugs to cells in culture were measured 

using a plating assay for HeLa cells and a growth assay for LM cells 

(suspension). The compounds were more toxic to LM cells than to HeLa 

cells, but whether this is due to the difference in cell iines or 

difference in susceptibility of cells grown in suspension versus cells 

grown on a surface was not determined. The RP 50 of the opiates tested 

(codeine, 1.0 mM, dextrorphan, 0.51 mM, heroin, 1.3 mM, levorphanol, 

0.37 mM, leucine enkephalin, 0.13 mM, morphine, 2.5 mM and nalline 

(antagonist), 0.0275 mM) are in general agreement with toxicity 

measurements on non-neuronal cells made by other investigators. Due 

to the nature of the plating assay, toxicity could be due to one or 

two factors, i.e. decrease in growth rate or decrease in attachm.ent of 

cells to substratum. The opiates tested (codeine and morphine) did 

not affect attachment, but several other drugs tested did. 

Lines of HeLa cells which show increased tolerance (measured by 

the plating assay) to various drugs (amphetamine, caffeine, codeine, 

diphenhydramine•HCl, meprobamate, morphine, and propoxyphene) were 

developed. All cell lines were frozen at the 645 day level. Only the 

morphine tolerant line was maintained after this point for further 

testing. The time required for development of tolerance in HeLa 

cultures was longer .than observed in vivo or with other cell lines by 
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other investigators. However, there is marked variation in the times 

others found necessary. Maximum tolerance (as measured by the plating 

assay) was achieved for most dr~gs at 415 days with little change 

between 415-64~ days; 

Membrane movement of tolerant and control HeLa cells was measured 

by filming the cells using time lapse cinematography and tracing mem­

brane projection as a function of time. HeLa cells show inhibition of 

membrane movement by morphine, with 1.0 RP 50 morphine decreasing move­

ment by 50%. Tolerant HeLa cells show less inhibition of membrane 

movement in the presence of morphine than do control HeLa cells. 

Cells tolerant to amphetamine, diphenhydramine•HCl, and morphine 

show slightly decreased growth in the absence of drug compared to 

growth in its presence (addiction), but do not show complete loss of 

viability seen by early workers. 

Cells cultivated in the presence of morphine are cross tolerant 

to heroin. Cellular basis for tolerance was not determined. 

Laboratory contamination caused termination of the continually 

maintained tolerant morphine line. The frozen morphine tolerant HeLa 

line (645 days) was re-initiated after decontamination of the labora­

tory (-8 months work). This line no longer showed increased tolerance 

as measured by the plating assay, but did grow well when maintained at 

1.0 RPso morphine, while control HeLa's could not. This line was 

terminated at the end of the morphine binding studies. 

Since the properties of the cells used for the binding assays are 

different than those used for the plating assays which demonstrate 

tolerance development, one can not categorically conclude that the 

original cells lack specific morphine receptors. 
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Binding of [ 3 H]-morphine to HeLa cells was studied to determine 

if HeLa cells (tolerant or control) possess an opiate receptor. Binding 

of [ 3 H]-morphine was linear with morphine concentration, with no evi­

dence of saturation or stereospecificity. There was ready displacement 

by a variety of drugs. No evidence for an opiate receptor was seen in 

control cells or cells cultivated in the presence of morphine. Binding 

of [ 3 H]-morphine to tolerant HeLa cells was consistently higher than to 

control HeLa cells. 

The utilization of glass fiber filters as a substrate for cell 

growth and for subsequent utilization for biosynthetic analysis was 

determined. Uptake and incorporation of [ 3 H]-thymidine, [ 3 H]-uridine, 

and [ 3 H]-tyrosine was linear with respect to cells plated/filter, 

concentration of label, and duration of pulse, showing applicability 

to measurement of DNA, RNA, and protein biosynthesis. The uptake of 

[ 3 H]-TdR by HeLa cells on GF/A filters was superior to that of other 

supports tested. Uptake of [ 3 H]-TdR by LM cells grown on GF/A filters 

is also linear with respect to cell number, showing the method is 

applicable to other cell types. The utilization of cells grown on 

GF/A filters to measure inhibition of uptake and incorporation was 

studied. Hydroxyurea, a known inhibitor of thymidine uptake and incor­

poration inhibited uptake and incorporation of [ 3 H]-TdR by HeLa cells 

grown on GF/A filters. Morphine had no effect on uptake or incorpor­

ation of [ 3 H]-TdR by HeLa cells grown on GF/A filters. 

The utilization of GF/A filters as a growth substrate in these 

studies has several advantages,· including: higher uptake, lower cost 

than membrane filters, less medium and less precursor required, ease of 

handling, no loss of cells in transfer, selective treatment of 
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precipitate and ease of termination of pulse (rinsing filters under 

vacuum aspiration), growth of cells on borosilicate glass (preferred), 

and replicate cultures (3-6 filters) can be handled on the same petri 

dish under the same conditions. Using a 2 hr attachment period and 4 

hr pulse, the experiments can be completed in a single day. 
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