
CHARACTERIZATIONS INVOLVING 

RANDOM SUMS 

By 

VELMA MARIE SCANNELL SMITH 
H 

Bachelor of Science in Education 
Central State University 

Edmond, Oklahoma 
1971 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1972 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
DOCTOR OF PHILOSOPHY 

July, 1977 



lhe.~i~ 
1q11.D 
s {oL\.- ~ c 
cop.a 



CHARACTERIZATIONS INVOLVING 

RANDOM SUMS 

Thesis approved: 

---~ 
2?&ixna--n /J A.kzAa<=> 

Dean of the Graduate College 

997112 
ii 



ACKNOWLEDGMENTS 

I would like to thank my thesis adviser, Professor Ignacy Kotlarski, 

for many hours of cooperation and much guidance in preparing this paper. 

I would also like to thank Dr. James Choike for his suggestions and 

help. Thanks also to the rest of my committee: Dr. Marvin Keener, 

Dr. Jerry Johnson, and Dr. Bennett Basore. 

I would like to extend a special thank you to my husband, Dave, 

for his humor. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION 

II. REAL VAWED RANDOM VARIABLES . 

III. PROPERTIES OF BOREL SPACES 

IV. VECTOR SPACE VALUED RANDOM VARIABLES 

V. GROUP VALUED RANDOM VARIABLES 

VI. SUMMARY AND CONCLUSIONS 

A SELECTED BIBLIOGRAPHY 

iv 

Page 

1 

4 

16 

20 

30 

34 

36 



CHAPTER I 

INTRODUCTION 

A general problem in probability is what conclusions can be made 

about the distributions of the independent random variables x1 , x2 , 

from the knowledge of the distribution of Y = g(X1 , x2 , . . . ' x ) 
N 

where g is measurable in the corresponding spaces and N is finite or in-

finite, or is an integer valued random variable. 

It is easy to see that if x1 and x2 are independent normally distri-

buted or Poisson distributed, then x1 + x2 is also normally distributed 

or Poisson distributed, respectively. This statement is also true if x1 

and x2 are independent and each has a Linnik distribution. (A random 

variable has the Linnik distribution if it is the sum of two independent 

random variables, one having a normal distribution and the other having 

a Poisson distribution). In 1925 L~vy [8] conjectured that the theorem 

can be inverted for normally distributed random variables; that is, if 

x1 and x2 are independent random variables and Y = x1 + x2 is normally 

distributed, then x1 and x2 are normally distributed. In 1936 Cramer 

[3] proved that this is true using his theory of analytic characteristic 

functions. In 1938 Raikov [17] show~d that if x1 and x2 are independent 

random variables and Y = x1 and x2 is Poisson distributed, then x1 and 

x2 are Poisson distributed with a possible shift. Linnik [9] proved a 

a similar result for the Linnik distribution in 1957. 

These results sparked an interest in finding properties of the dis-

tributions of the random variables x1 and x2 from the knowledge of the 
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distribution of their sum. Similar questions were raised as to what can 

be concluded about the distributions of the independent random variables 

x1 , ... , Xn from the knowledge of the distribution of a vector func-

tion Y = g(X1 , .•• , Xn) with dimension less than n. In 1966 Kotlarski 

[6] proved the following theorem. Let x1 , x2 , x3 be independent real 

valued random variables and let z1 = x1 + x3 and z2 = x2 + x3 . Then the 

joint distribution of (Z1 , z2 ) determines the distribution of x1 , x2 , and 

x3 up to a change of location provided that the characteristic function 

of (z1 , z2 ) does not vanish. 

These theorems have had many generalizations. Most of these gener-

alizations have been to let the random variables take values in a Hilbert 

space or in a locally compact Abelian group. Grenander [5) has general-

ized Cram~r's theorem, Kotlarski [7) and Prakasa Rao [16) have general-

ized Kotlarski's theorem, and Flusser [4) proved a result similar to 

Kotlarski's theorem. 

The purpose of this thesis is to investigate problems of a similar 

nature where a random number of random variables are used instead of a 

deterministic number of random variables. In particular, let x1 , x2 , 

• • • I • • • I and N be real valued independent random vari-

ables. For n a positive integer let all X be distributed like X and 
n 

all Y be distributed like Y, and let N be a nonnegative integer valued 
n 

random variable. Denote U = 0 and V = 0 for N = 0, and denote U 

... + XN and V = Y1 + •.• + YN for N > 0. The problem then is to 

determine the conditions under which the distributions of X, Y, and N 

can be determined from the joint distribution of (U, V). 

This problem is also examined in the case where x1 , x2 , •.. , 

Y1 , Y2 , ..• are sequences of random variables taking values in a 



Frechet space or are sequences of random variables taking values in a 

locally compact Abelian group. 
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CHAPTER II 

REAL VALUED RANDOM VARIABLES 

The purpose of this study is to prove a result characterizing dis-

tributions using random sums of random variables taking values on the 

real line and in abstract settings. Throughout the study it is under-

stood that there is an underlying probability space (Q,:,f, P) and all 

random variables have Q as their domain. In this thesis R will denote 

the real numbers and C the complex numbers. The following definitions 

and theorem are preliminary to the main result. 

Definition 2.1: Let N be a nonnegative integer valued random vari-

able with P(N = n) = pn, n = O, 1, 2, . Then the probability 

generating function of N is defined by 

00 

Q(s) p + 
0 I n 

p s , 
n Isl < 1, S E C. 

n=l 

00 

Since I pn = 1, the radius of convergence of Q is at least one. 
n=O 

Thus Q is analytic on D = {s: Isl < 1, s E C} and all derivatives of Q 

exist in this region. 

00 

Also, since I 
n=O 

p = 1, Q has continuous exten­
n 

sion to the boundary. Since Q is analytic at zero, Q uniquely determines 

the distribution of N. 

Definition 2.2: Let X be a real valued random variable. Define a 

function ¢: R + C by 
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where F(x) 

x. 

P(X 2_ x). Then¢ is called the characteristic function of 

Some of the properties of ¢ are given by the following theorem. 

The proofs of these properties can be found in Lukacs [11). 

Theorem 2.1: The function ¢ possesses the following properties: 

(a) I¢ (t) I < 1 for all t E: R. 

{b) ¢ (0) 1. 

{c) ¢ is uniformly continuous. 

(d) ¢ uniquely defines the distribution of X. 

(e) If X has a nondegenerate distribution, then I¢ (t) I < 1 almost 

everywhere. 

Since ¢ uniquely defines the distribution of X, X is said to be 

distributed according to ¢ and ¢ can be investigated instead of the dis­

tribution function of X. If X has the same distribution as -X, then X 

is said to be symmetric. Burrill [2] shows that X is a symmetric random 

variable if and only if ¢ is a real valued function. 

In the proof of the main theorem the concept of analytic character­

istic function will be used; thus the following definition is given. 

Definition 2.3: The characteristic function ¢ is said to be an 

analytic characteristic function if there exists a function g of the com­

plex variable z which is analytic in the disk I z 1 · < r (r > 0) and a c9n­

stant o > 0 such that g(t) = ¢(t) for Jtl < 8. 
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Lukacs [11) shows that analytic characteristic functions possess a 

useful property. 

Theorem 2.2: If a characteristic function ~ is analytic in a neigh-

borhood of zero, then it is also analytic in a horizontal strip contain-

ing the real line. 

The following three lemmas are used to simplify the proof of 

Theorem 2.3. Lemma 2.1 says that if a function q is continuous and mul­

tiplicative on an interval [c, l], then q(s) = sk. Lemma 2.2 concerns 

the equality of probability generating functions, and Lemma 2.3 says 

that if an analytic function has a nonzero derivative at a point on the 

boundary of a convex domain, then the function is one-to-one in a rela-

tive neighborhood of the point. 

Lemma 2.1: Let q(s) be a continuous function on the interval 

[c, 1) 0 < c < 1, and assume that q(ab) = q(a) •q(b) for all ab, a, b s 

[ c , 1] and q ( 1 ) = 1. 
k 

Then there is a real number k such that q (s) = s for 

S E: [CI 1) • 

Proof: If a E: [c, 1) I then ra E: [c, l]. Thus, since q(a) 

= q (/;;.) 2 I q (a) > 0 on [CI l] . If q (a) 0 for some -

a s [c, 1), 
2n n-1 2n 2n 

then lim q( ia) 0 since q( 2~) q( ia) q( ia) for 
n-+= 2n 

But lim q( ia) = q (1) since q is a continuous func-n = 1, 2, . 

tion. Since q(l) 

Set q (a) 
0 

a S a + 
e , e , and e 

9,n 

s 
E: 

n-+= 
1, q(a) > 0 for a 

a. 
for [9,n q(e ) Cl E: 

[c, 1) I then Cl I s, 

case that a, B, and a + S s [9,n c, OJ 

E: [CI l] . 

c, O]. Then qo is continuous and 

and a. + B E: [9,n CI 0) • In the 



,. 

q (a. + B> 
0 

a. + B a. B 
= £n q ( e ) = £n [ q ( e ) • q ( e ) ] 

+ £n q(eB) = q (a.) + q (B). 
0 0 

a. 
£n q(e ) 

7 

From Aczel [l] the only continuous solution to this equation is q (a) 
0 

a a 
ka for k some real number. Then q (a) = ka = .2,n q (e ) . Then q (e ) = 

0 

ka k 
e so that q(s) = s for s £ [c, l]. 

00 00 

\ n A \ n 
Lemma 2.2: Let Q(s) = l p s and Q(s) = l p s be probability 

n=O n n=O n 
generating functions defined o~ Isl < 1 and let p1 > 0 (or p 1 > 0). If 

A k 
there is an interval [c, l], 0 < c < 1 such that Q(s ) Q(s) for 

A 

s £ [c, l] and k some real number, then k = 1 and Q(s) Q(s) for 

Is I < i. 

Proof: For 0 < Isl 
A k 

< 1, Q, Q, and s are analytic functions, thus 

Q(sk) = Q(s) for 0 < Isl < 1. Since Q is analytic for Isl 
A k 

< 1, Q(s ) 

A k 
is bounded in every neighborhood of zero; therefore, k > 0 and Q(s ) is 

continuous at zero. Thus Q(sk) is analytic for Isl < 1 which implies 

that k is an integer. From the fact that p 1 > 0 (or p 1 > 0) and the 

uniqueness of coefficients of series, k = 1, and Q(s) = Q(s) for Isl< 1. 

The author would like to thank James Choike for suggesting the 

proof of the following lemma. 

Lemma 2.3: Let f(z) = u(z) + iv(z), z EC, be analytic on a con-

vex domain D. Let f(z) also have tpe following properties: 

(i) f(z) is continuous on D. 

(ii) f' (z) exists in D and has continuous extension to D. 

(iii) There is a point a on the boundary of D such that 

f'(a) 'I 0. 



Then f is one-to-one in a relative neighborhood of a. 

Proof: 

where x 1 + iy1 , x 2 + iy2 are in D. The function f is analytic in D if 

and only if u and v are differentiable in D and satisfy the Cauchy-

Reimann equations. 

~ __ (u(x,y)) 
Let f(x,y) 

v(x,y) 

~ 

Thus f(x,y) is differentiable in D, 

~ 

f' (x,y) 

~ 

= (ux (x,y) 

v (x,y) 
x 

uy(x,y)) 

v (x,y) 
y . 

and f' (x,y) has continuous extension to D. 

x + iy E: c. 

x + iy E: C, 

8 

R4 4 
The mapping det G(x1 ,y1 ,x2 ,y2 ): + R is continuous on D x DC R. 

But det G(x1 ,y1 ,x2 ,y2 ) = ux(x1 ,y1 )•vy(x2 ,y2 ) - uy(x1 ,y1 )·vx(x2 ,y2 ). 

+ + I ·1 2 Since det G(a,a) = f' (a) t 0, there exists a convex neighborhood of a 

such that det G(x1 ,y1 ,x2 ,y2 ) t 0 in this convex (closed ) neighborhood. 

Without loss of generality, we assume det G(x1 ,y1 ,x2 ,y2 ) t 0 for all 

x 1 + iy1 , x 2 + iy2 E: D. 

+ + 
Let c, d E: D. By the Mean Value Theorem [19] for vector valued 

functions 

~ + ~ + 
f(c) f (d) 

+ + + 
where c. = (1 - t.)c + t.d, j 

J J J 
+ 
c . E: D, j = 1, 2. 

J 

1, 2, for some t. E: (O, 1). Note that 
J 
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-+ -+ 'V -+ 'V -+ 
a one-to-one linear map. Thus, if c ~ d, then f(c) ~ f(d). Thus, f is 

one-to-one in a relative neighborhood of a. 

With these results the main theorem can be proved. 

Theorem 2. 3: Let xl' x2' . • . ' y 1' y 2 I • • • I N be independent 

random variables with X distributed like X and Y distributed like Y, 
n n 

n = 1, 2, ... where X and Y are real valued nondegenerate random vari-

ables having characteristic functions ¢X and ¢y' respectively, and N is 

a nonnegative integer valued random variable with probability generating 
00 

function Q(s) p + l p sn Isl 2-_ 1, p 1 > 0 where pn = P(N = n). 
o n=l n 

Denote u = 0 for N 0, U = x1 + x 2 + ... + XN for N > 0, and 

v 0 for N 0, V = Yl + Y2 + ... + YN for N > 0. 

Then 

(a) the distribution of (U, V) uniquely determines the distribu-

ti on of N. 

(b) The distribution of (U, V) also uniquely determines the dis-

tributions of X and Y if one of the following conditions holds: 

(i) X and Y are symmetric random variables with character-

istic functions ¢X(t) ~ 0 and ¢y(t) ~ 0, t E R, 

respectively. 

(ii) The characteristic functions ¢x and ¢y are analytic at 

(iii) 

zero, and lim Q' (s) < + oo. 

s-+l 
-1 

Q has an inverse such that Q (Q(s)) s for Is I < 1. 

Proof: The characteristic function of (U, V) satisfies the follow-

ing because xl, x2, ..• I Yl, Y2, ... I N are independent. 



cp(U, V) (r, t) 

E(eirU + itVjN = O)•P(N = 0) 

00 

+ l E(eirU + itVjN = n) •P(N n) 

n=l 

E (1) •p 
0 

00 ir(X1+ ... + XJ+it(Y1+ •.. + YJ 
E(e )•p + l 

n=l 

00 

\ irX itY n 
P + l [E(e ).E(e )] •p 

o n=l n 

10 

n 

r, t s R. 

Suppose there are other random variables x 1 , x2 , ... , Y1 , Y2 , 

A 

• I N satisfying the assumptions. By repeating the above procedure 

A A 

denoting U and V similarly we get 

r, t E: R. 

Since (U, V) has the same distribution as (U, V), their characteristic 

functions are identical so that 

r, t s R. 

(1) 

Relation (1) is a functional equation where Q, ¢ , ¢ are known and x y 

Q, ¢x' ¢Y are unknown. We shall first prove (a), that the joint distri-

bution of (U, V) uniquely determines the distribution of N, that is 

Q Q. 

In addition to x1 , x2 , 

quenceS xi I x; I • • • I 

· ' Y l' Y 2 , . . . pick two other se-

.. so that X' is distributed like X 
n 



and Y' is distributed like Y, n = 1, 2, 
n 

11 

X_2, . , Y 1 , Y 2 , • • • , Yi, Y 2, . . . , N are independent. Then for 

each n = 1, 2 , . . . x 
n 

X' and Y - Y' are syrrunetric random vari-
n n n 

ables. If ¢ and 1jJ are characteristic functions for x 1 - X' and 
0 0 1 

Y1 - Y1', respectively, then ¢ , 1jJ are real valued and ¢ (t) > 0 and 
0 0 0 -

1jJ (t) > 0 for t E R. 
0 -

Let W = 0 for N 0, W = (Xl - Xi) + ... + (XN - X~) for N > 0, 

and Z = 0 for N = 0, Z = (Yl - Yi) + •.. + (YN - Y~) for N > 0. The 

distribution of (U, V) uniquely determines the distribution of (W, Z) 

since ¢(W, Z) {r, t) = l¢{U, V) {r, t) 1
2 , r, t ER. 

The characteristic function of {W, Z) satisfies the following: 

00 

\' { irw + itzl + l E e N 
n=l 

E{l)•p 
0 

+ 

n). P 
n 

= Q{¢0 {r) • ijJO {t)) r, t ER. 

A 

Thus relation (1) is satisfied with ¢x' ¢y' ¢x' ¢y replaced by ¢ 0 , ~o' 

¢ , 1jJ • Hence 
0 0 

A 

Q (¢ (r) • 1jJ (t)) Q (¢ (r) • 1jJ (t)) r, t ER. 
0 0 0 0 

(2) 

A 

Since p 1 > 0 (or p 1 > 0) , Q (or Q) considered as a function on the 

interval [O, l] has a positive derivative and thus is strictly increas-

ing. 
A 

Then the inverse of Q (or Q) exists as a function from [p , l] 
0 

(or [p , l]) onto [O, l] (or [O, l]). Without loss of generality 
0 



p0 < p . By letting 
- 0 

12 

A-1 
q(s) = Q (Q(s)) for s E [O, l] 

(3) 

and using relation (2) 

A 

q(c/J (r) • 1/! (t)) cp (r) • 1/! (t) r, t E R. 
0 0 0 0 

Note that q is continuous since Q and Q are continuous. Taking alter-

A A 

nately r = 0, and t = 0 gives q(i/! (t)) = 1/! (t) and q(cjJ (r)) = cp (r). 
0 0 0 0 

By substituting into the former equation, 

q(c/J (r) • 1/! (t)) = q(cjJ (r)) • q(i/! (t)) 
0 0 0 0 

r, t E R. 

Denoting A {a: a= cjJ 0 (r), r ER} and B {b: b 1/! (t) I t E R} 
0 

gives 

q (a• b) = q (a) • q (b) for a E A and b E B. 

Since X and Y are nondegenerate, cp (r) and ijJ (t) are not identically 
0 0 

equal to 1. Since cp (r) and ijJ (t) are real valued, continuous, and 
0 0 

¢0 (0) = 1/!0 (0) = 1, there is an interval [c, l], 0 < c < 1, such that 

[c I l] c A n B. Thus 

q (a• b) = q (a) • q (b) for a, b, ab E [c, l]. 

k 
By Lemma 2.1, q(s) s for s E [c, l] and k some real number. Substi-

tuting for q, in (3) Q(sk) = Q(s) for s E [c, l], and by Lemma 2.2 k = 1 

and Q(s) = Q(s). Thus the distribution of N is uniquely determined. 

From relation ( 1) Q (cjJ A (r) • cp A (t)) x y Q ( cp X ( r) • cp Y ( t) ) , r, t E R, and 

from the proof of (a) Q = Q. Therefore, Q(cjJX(r)•c/Jy.Ct)) =Q(cjJX(r)•cjJY(t)), 

r, t E R and by letting alternately r = 0 and t = 0 
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and 

r, t E R. 

(4) 

Now the proof of part (b). 

Proof using condition (i): ¢X(r) (or ¢x(r)) is real valued and 

nonnegative. For 0 < s < 1, the derivative of Q is positive since 

p 1 > 0 so that the inverse of Q exists with Q-1 (Q(s)) = s. From rela-

tion (4) ¢j{(r) 

Proof using condition (ii): By Lemma 2.3, Q is one-to-one in a 

relative neighborhood of 1, thus ¢x(r) = ¢X(r) for r in a neighborhood 

of zero. But by Theorem 2.2 ¢X(r) = ¢X(r) for r E R since ¢X is analy-

tic in a neighborhood of zero. Similarly, ¢Y(t) 

Proof using condition (iii) : Since Q has an inverse such that 

Q-1 (Q(s)) = s for Isl < 1 and 1¢ (r) I < 1 almost everywhere, ¢XA(r) = . x 

¢X(r) almost everywhere. Since ¢X(r) is continuous, ¢x(r) = ¢X(r), 

r E R. Similarly, ¢y(t) = ¢y(t), t E R. 

A similar result can be proved for products if the Mellin transform 

is used instead of the characteristic function. 

Definition 2.4: Let X be a positive real valued random variable 

having distribution function F(x) = P(X < x). Then the Mellin trans-

form of X is 

00 

h (s) E[Xs] =lo XS dF(x) S E C. 

The function h(s) is defined for Re s = 0. The function h(s) 

defines the distribution of X uniquely since for s = it 
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h (it) t E R. 

Thus h(it) is the characteristic function of £n X. 

Corollary 2 .1: Let x1 , x2 , . . . , Y l, Y 2 , . . . , N be independent 

random variables with X distributed like X and Y distributed like Y, 
n n 

n = 1, 2, ... , where X and Y are positive real valued random variables 

having Mellin transforms hX and hy, respectively, and N is a nonnegative 

integer valued random variable with probability generating function 

Q (s) p + 
0 

Isl < 1, p > 0 
1 

where p = P(N = n). 
n 

Denote U 1 for N = o and u = x 1 • x 2 . 

for N = 0 and V Y l • Y 2 • • • YN for N > 0. 

Then 

X for N > 0 and V 
N 

(a) the distribution of (U, V) uniquely determines the distribu-

tion of N. 

1 

(b) The distribution of (U, V) also uniquely determines the distri-

butions of X and Y if one of the following conditions holds: 

(i) X has the same distribution as l/X and Y has the same 

distribution as l/Y. 

(ii) The Mellin transforms hx and hy are analytic in a strip 

containing the imaginary axis and lim Q' (r) < + oo 

r-+l 
(iii) Q has an inverse such that Q-1 (Q(s)) = s, Isl < 1. 

Proof: Consider that £n U = 0 for N = 0 and in U = £n x 1 + . . + 

in XN for N > 0 and £n V = 0 for N = 0 and £n V = in Y1 + 

for N > 0. Then by Theorem 2.3 the joint distribution of (in U, in V) 

uniquely determines the distribution of N. Since 
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F £n V) (u, v) = P(£n u .::_ u, £n v < v) 
(£n U, 

P(U < 
u v < ev) = e , 

F 
(U' 

u 
V) (e , 

v 
e ) , u, v E: R, 

the distribution of (U, V) uniquely determines the distribution of N. 

The proofs using conditions (i) and (iii) follow as before using 

the logarithm of the random variables. 

Proof using condition (ii): The Mellin transform hX(s) of the ran-

dom variable X is for s = it the characteristic function of £n X. Thus 

if hx and hy are analytic in a strip containing the imaginary axis, 

then hX(iz) and hy(iz) are analytic in a strip containing the real axis. 

By the theorem ~£n X(t) and ~£n Y(t) are uniquely determined so that hx 

and hy are determined. 



CHAPTER III 

PROPERTIES OF BOREL SPACES 

In order to extend Theorem 2.3 into more abstract spaces, some 

definitions and results for topological spaces are needed. The follow-

ing are mostly due to Parthasarathy [15). 

Definition 3.1: Let~ be a topological space. The Borel a-algebra 

11> is defined to be the smallest a-algebra of subsets of $ containing all 

the open subsets of i. (;J;, l>) is called a Borel space. 

Theorem 3.1: Let X1 , X2 , ••• be separable metric spaces, and 
00 

J; = IT J; . • Then the Borel space (.t, -e.:f.) is the cartesian product of the 
i=l l 

Borel spaces (;I; , O?i ) , n = 1, 2, 
n J;n 

Proof: See Parthasarathy [15]. 

Definition 3.2: Anet-valued random variable is a function X: ~ ~~ 

such that 

-1 ""' X (B) E J for all B E CB. 

Definition 3.3: Let X be anl-valued random variable. Then the 

distribution of Xis the measure µX on ($,~) defined by 

µx(B) = P{w: X(w) E: B} = P{X-l (B)} for all B E: tf,. 

From Theorem 3.1 and Definition 3.2 the following can be proved. 

16 
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'I'heorem 3. 2: Let ~ be a separable topological Abelian group. Then 

addition "+" is a measurable function on J, x :£, and thus the sum of two 

group valued random variables is a group valued random variable. 

Proof: By the definition of topological group "+" is a continuous 

function on L x JO to ~- By the previous theorem (Y)-r x ~ =$ -r' thus 
.,. Io ;txa.o 

"+" is a measurable function. The sum of two group valued random vari-

ables is a group valued random variable since this is a composition of 

measurable functions. 

Note that the above theorem is not true for groups which are not 

separable. See Nedoma (12]. 

In the proof of the theorem for real valued random variables two 

sequences of independent random variables were chosen which were also 

independent of the two original sequences. That this can be done is a 

result of Kolmogorov's Consistency Theorem for real valued random vari-

ables. Thus to extend the result to abstract settings a theorem paral-

leling Kolmogorov's Consistency Theorem is needed. 

Let I be any index set and for each a. t: I, let (I, , 'f) ) be a Borel 
a a 

space. For r 2c r 1c I denote the projection map by 

Definition 3.4: A family of measures {µF: F arbitrary but finite, 

Fer} is said to be consistent if 

(a) µF is defined on ~F = IT{~a: a t: F}, 
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Kolmogorov's Consistency Theorem: Let (:t , 1{:> ) , a E I, be complete 
a a 

separable metric Borel spaces. If {µF: Fe I, F finite} is a consistent 

family of measures, then there exists a unique measure µ on IT{~ : a E I} 
a 

-1 
such that µF (A) = µ(TI IF (A)) for all A E '&.IF and all finite F c I. 

Proof: See Parthasarthy [11]. 

To see how Kolmogorov's Consistency Theorem is applied let X1 , x2 , 

. , Y1 , Y2 , ... be independent~-valued random variables where 

(t,~) is a complete separable metric Borel space. The thing to notice 

is that it is the distributions which are important and not the random 

variables themselves. Thus to choose Xl, x;, . . let 

(~a, ~a) = (£., 1P) for a s I\.{N}, where I = {x1 , x2 , 

Y1 , Y2 , ••• , Yl, Y2, •.. , N}, and let (Ji,N, 1.)N) be the Borel space 

where &.N is the set of nonnegative integers and ~N is the collection of 

all subsets of iN. 

For n = 1, 2, , each X and X' is to be distributed like X 
n n 

and each Yn and Y~ is to be distributed like Y; thus let µX be the prob-

ability measure on 4'X and ~X' .and let µY be the probability measure on 
n n 

'&>y and ~Y', where µX is the distribution of X and µY is the distribution 
n n 

of Y. Let µN be the probability measure on &>N. 

In order to define a consistent family of measures, for F c I, 

F finite, let µF = IT{µa: as F}, the product measure on ~F IT{~ : a E F}. 
a 

Then it is clear that {µF: FCI, F finite} is a consistent family of 

probability measures since each is a product measure. From the theorem 

-1 
there is a unique measureµ on rr{ia: a E I} such that µF(A) = µ(n 1F(A)) 

for all A E l>F and finite Fe I. To 1deftl.ne the random variables x1 , x 2 , 

. . . , xl, x;, . . . , Y 1 , Y 2 , • • • , Yi, Y 2, . . . , N let each 
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random variable be the projection map; for example, x1 = TII{Xl} : 

-1 
F finite, µFis a product measure and since µF(A) = µ(TIIF(A)) for all 

TI{f. : a £ I} -+ J; and similarly for the rest. 
a xl 

Since for each Fe I, 

A £'BF, the random variables are independent and they have the desired 

distributions. 



CHAPTER IV 

VECTOR SPACE VALUED RANDOM VARIABLES 

It is desirable to extend the result of Chapter II to real topolo-

gical vector spaces. To do this a function which is comparable to the 

characteristic function and which will have the same properties is 

needed. 

Definition 4.1: A Frechet space is a locally convex topological 

vector space whose topology is induced by a complete invariant metric. 

Definition 4.2: The dualX* of a topological vector space'!:. is the 

collection of all continuous linear functionals of J:,. Thus f E £* if 

and only if f(ax +by) = af(x) + bf(y) for a, b E Rand x, y E land f 

is continuous. 

Unless otherwise stated the topology on ~* is the weak*-topology. 

Definition 4.3: Let~ be a separable Frechet space and J.* its dual. 

Define cp: l.* -+ C by 

c/>(f) = J eif(x)dµ(x) 
I. 

where µ is a probability measure on .t~ Then cp is called the character-

istic functional of µ. If µ is the distribution induced on £by the 

random variable X, then 

20 



¢(f) = J eif(x)dµ(x) =fa eif(X(w))dP(w) 
r. 

and is called the characteristic functional of X. 

Some properties of the characteristic functional are given in the 

following theorem. 

Theorem 4.1: The function ¢ possesses the following properties: 

(a) ¢ (0) = 1. 

(b) j¢(f) I < 1 for all f E L*. 

(c) ¢ is positive semi-definite as a function on L*. 

21 

(d) For fixed f Eh*, ¢(tf), t ER, is the characteristic function 

of an ordinary random variable. 

(e) For fixed f E 1.*, ¢ (tf) is a continuous function of t. 

(f) ¢ determines µ uniquely on sets of the form 

(g) 

I¢ (tf ) I 
0 

{x El.: f(x) .::_r}, f E J.*, r ER. 

If µ is nondegenerate, then there exists an f E ~* such that 
0 

< 1 almost everywhere when considered as a function of t. 

Proof: The proofs of (a) and (b) are clear. To prove (c) let 

ck E C and fk E la*, k = 1, 2, . • . , n. Then 

n n i(fk- f.)(x) 
l l ck-C:- J e J dµ(x) 

j=l k=l J l". 

n n ifk(x) -if .(x) 
l /. ck-C:- J e e J dµ (x) 

j=l k=l J :{, 

n n ifk (x) if. (x) 

l l f eke c.e J dµ (x) 
j=l k=l $ J 
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= f 
n if. (x) n ifk (x) 
l c . e J ][ l ck e ]dµ (x) 

'!. j=l J k=l 

n if. (x) 2 
= J I I c. e J I dµ (x) 

'L j=l J 

> 0. 

Thus ¢ is positive semi-definite. 

Fix f € J:,*. Since f is a continuous function on ~, f is measurable 

and can be considered as an ordinary real valued random variable. From 

Definition 2.2 the characteristic function of f is given by ¢f(t) 

~ eitf(x)dµ(x). Thus ¢f(t) = ¢(tf) for fixed f and (d) is proved. The 

proofs of (e) and (f) are immediate from the fact that ¢f(t) = ¢(tf) and 

Theorem 2.1 (c) and (d). 

Suppose for every f € l.*, µ({x: f(x) 1 O}) = 0. Since~ is a sepa-

rable Frechet space, the weak*-topology of~* is separable (Rudin [18]). 

00 

Let {fn}n=l be a countable dense subset of l,*. Since 

;t'U{O}= u 
f £'L* 

n 

{x: f (x) 1 O}, µ(~ 'V {O}) = 0 
n 

which implies that µ({O}) = 1. Sinceµ is nondegenerate, there exists 

an f 
0 

€ 3.* such that µ({x: f (x) 1 O}) > 0. 
0 

Since rpf (t) 

since µ is 

2.l(e). 

0 

nondegenerate, j¢(tf) I < 1 almost everywhere by 
0 

cji(tf ) and 
0 

Theorem 

The function cp is sequentially continuous in the weak*-topology. 

To see this let {f }c L* be a sequence such that f + f in the weak*-
n n 

topology. Thus for every x €I,, f (x) + f(x). Then 
n 

lim I cp <f ) - cp (f) I 
n 

< lim J 
n+oo ~ 

if (x) 
je n 
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by the Lebesgue Dominated Convergence Theorem. It is not known whether 

~ is continuous in the weak*-topology. 

Let L be the smallest a-algebra of 3:. containing all sets of the 

form {x: f (x) .::_ r}, f E: l.*, r E: R. It is clear that LC "&i since all f E: l,* 

are continuous. By Theorem 4.1 ~ uniquely determines the measure µ on L, 

thus if L =1'>, ~ will uniquely define µ on~. Thus the following theorem. 

Theorem 4.2: For lo a separable Frechet space with dual~~~= L. 

Proof: By definition :tis locally convex and its topology is in-

duced by a complete invariant metric d. From Rudin [18] there is a 

metric d on :t such that 

(a) d is compatible with the topology of ~. 

(b) The open balls centered at 0 are balanced. 

(c) d is invariant. 

(d) All open balls are convex. 

Also from Rudin [18] d is complete. Thus without loss of generality 

d = d. 

Let s = B(O, r) {x E: l.: d(x, 0) < r, r > O}. Then s = B(O, r) 

{x € 1: d(x, O) > r, r < O} is balanced and convex. Let x € l,'V s. 
0 

By the Hahn-Banach Theorem there exists an f € !.* such that 
x 

0 

if <x) I < 1 for all x E: S but f (x ) > 1. Let F = {f : x € ~'\, s}. 
x x 0 x 

0 0 

Consider~ Af where Af: {x: Jf(x) I .::_ l}. 
fi;;F 

If x E: s, then 
0 

lf(x ) J < 1 for all f E: F, thus 
0 

Jf(x ) J < 1 for all f E: F. If x 
0 0 

If x 
0 

€ n Af, then 
frF 

S, then there is an f E: F such 
x 

0 

that Jfx (x) J .::_ 1 for all x E: S and f (x ) > 1. This is a contradic­
x 0 

0 

tion: thus 
0 

= 
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From Rudin [18) the weak*-topology of the dual of a separable 

00 

Frechet space is also separable, thus let {fn}n=l be a countable dense 
00 

subset of F. Define E = ('\Af. 
n=l n 

If x E S, then x E E since S = 
0 0 

n Afc(\ Af = E. If x E E but 
0 

x ¢ S, then if (x ) i < 1 but there 
o n o 

ft:F n n 
is an f E F such that if ex > i 

0 
> 1. 

But because f is dense there is a subsequence f such that 
n n. 

J 
f (x) + f(x ). This implies that if(x) i < 1. Thus 
n. o o o 

J 

(\ {x: if (x) I < l}. 
n 

n 
00 

If S = B(O, r), then S = \.._) B(O, r(l - l/n)). Every open ball 
n=l 

centered at zero is a countable union of a countable intersection of ele-

ments of L. Thus all open balls centered at zero are in L. 

Since B(a, r) = B(O, r) + a, all closed balls are in Land thus 

'r.i CL. 

Since LC (I', , L 10. 

Corollary 4.1: The characteristic functional ~ uniquely defines 

the measure µ on 0) • 

Proof: This follows from Theorem 4.1 and Theorem 4.2. 

The previous results make it possible to extend Theorem 2.3 to 

Frechet spaces. 

Theorem 4.3: Let be a separable Frechet space with dual&*. Let 

x1 , x2 , ... , Y1 , Y2 , •.. , N be independent random variables with 

X distributed like X and Y distributed like Y, n = 1, 2, 
n n • • • I where 

X and Y arei-valued nondegenerate random variables having characteristic 

functionals ~X and ~y' respectively, and N is a nonnegative integer 



valued random variable with probability generating function 

Q(s) = p + 
0 

Isl 

where p = P(N = n). 
n 

Denote U = 0 for N = 0, U = x1 + •.. + XN for N > O, and V = 0 

for N = O, V = Yl + . + YN for N > 0. 

Then: 

(a) the distribution of (U, V) uniquely determines the distribu-

tion of N. 

(b) The distribution of (U, V) also uniquely determines the dis-

tributions of X and Y if one of the following conditions holds: 

(i) X and Y are syrmnetric random variables with character-

istic functionals <f>x (f) ~ O and <f>y (f) ~ O, f e: l.*, 

respectively. 

(ii) Q has an inverse such that Q-1 (Q(s)) = s for Isl < 1. 
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Proof: The characteristic function of (U, V) satisfies the follow-

ing since x1 , x2 , • . . , Y1 , Y2 , • • • , N are independent. 

<l>(u, V)(f, g) = E(eif(U) + ig(V» 

if(U) + ig(V) I = E(e N = O)•P(N = O) 

co 

+ \ E(eif (U) + ig(V) I l N = n)•P(N 
n=l 

n) 

E(l) •p + 
0 

co 

l 
if(X1+ ... +X )+ig(Y + ... +Y) 

n 1 n, 
E(e J°P 

n=l 

co if (XI) + ... + if (X ) 
E(e n + l 

n=l 

n 



p + 
0 
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co 

l 
n=l 

f, g s'.L*. 

More compactly 

<f> (U , V) ( f ' g) f, g £ '&*. 

(1) 

suppose there are other random variables x1 , x2 , ... , Y1 , Y2 , 

A . , N satisfying the assumptions. By repeating the above arguments 

A 

and denoting U and V similarly we get 

A 

<f>· A A ( f g) = Q (<PA ( f) O <PA ( g) ) 
(U, V) ' X Y 

f, g £ !.*. 

(2) 

A 

Since (U, V) has the same distribution as (U, V) their characteristic 

functionals are identical so that 

Q(<f>A {f) 0 <PA (g)) x y f, g £ l.*. 

(3) 

Relation (3) is a functional equation where Q and <P , <P are known and x y 
Q, <PA, and <PA are unknown. First a proof of (a): the joint distribu-

X y 

ti on of (U' V) uniquely determines the distribution of N, that is Q = 

In addition to xl, X2, . . . , Yl, Y2, 

quences X' 
l' 

X' 
2' . . . , Yi, Y' 

2 
. . . so that 

and Y' is distributed like Y, N = 1, 2, . 
n 

. . . pick two other se-

X' is distributed like 
n 

x;, ... , Y1 , Y2 , ... , Yi, Y_2, ... , N are independent. That 

x 

Q. 

this can be done follows from the Kolmogorov Consistency Theorem. Then 

for each n= 1, 2, . . . , X - X' and Y - Y' are synunetric random vari-
n n n n 

ables. If <f> 0 and ~o are characteristic functionals for x1 - Xi and 

Y - Y11 , respectively, then <P and ~ are real valued and nonnegative. 
1 0 0 



Let W = 0 for N = 0, and W = (X - x I) + 
1 1 
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+ (XN - X~) for 

N > O, and let z = 0 for N = O, Z = CY1 - Yi) + . + (YN - Y~) for 

N > O. The distribution of (U, V) uniquely determines the distribution 

of (W, Z) since <fl (W, Z) (f, g) = l<P (U, V) (f, g) 12 for f, gt:'&..*. 

As before, the characteristic functionals can be seen to satisfy a 

condition analogous to relation (1). Thus 

f, g t:3'..*. 

( 4) 

Thus relation (3) is satisfied with <fix, <fly, <fix' <fly replaced by <fi 0 , ¢ 0 , 

A A 

<fl , ¢ • Hence 
0 0 

Q(<fio (f) • Wo (g)) = Q(<fi (f) • ¢ (g)) 
0 0 

f, g € l',*. 

(5) 

A 

Since p 1 > 0 (or p1 > 0) , Q (or Q) considered as a function on the 

interval [O, l] has a positive derivative and is thus strictly increas-

ing. Then the inverse of Q (or Q) exists as a function from [p , l] 
0 

A 

(or [p , l]) onto [O, l]. Without loss of generality p < p. By let-
o 0 - 0 

A-1 
ting q(s) = Q (Q(s)) for st: [O, l] and using relation (5), 

A A 

q (<fl (f) • ¢ (g)) = <fl (f) • ¢ (g) 
0 0 0 0 

for f, g t: l.*. 

A 

Note that q is continuous since Q and Q are continuous. Taking alter-

A A 

nately f = 0 and g = 0 gives q(¢0 (g)) ¢ (g) and q(<fi (f)) = <fl (f). By 
0 0 0 

substituting into the former equation, 

Denoting A 

gives 

q(<fi (f) • ¢ (g)) = q(<fi (f)) • q(¢ (g)) 
0 0 0 0 

{a: a <fl (f), ft: l*} and B 
'O 

{b: b 

f, g € :l,*. 

¢ (g) I g € I.*} 
0 

(6) 
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q(ab) q(a) • q(b) for a £ A and b £ B. 

(7) 

The characteristic functionals ¢ (f) and ~ (g) are real valued, ¢ (O) = 
0 0 0 

~ (O) = 1, and 0 < ¢ (f) < 1, 0 < $ (f) < 1. By Theorem 4.1 (g) and the 
0 -o - -o -

fact that X and Y are nondegenerate, there exist f , g £ ~* such that 
0 0 

¢ (tf ) < 1 and ~ (tg ) < 1 almost everywhere. Since the subspaces 
0 0 0 0 

{tf : t £ R} and {tg : t £ R} are connected in the weak*-topology, and 
0 0 

since ¢ (tf ) and $ (tg ) are continuous in t, there exists an interval 
0 0 0 0 

[c, l], 0 < c < 1, such that [c, l] CA nB. Thus 

q(ab) = q(a) • q(b) for a, b, ab E [c, l]. 

(8) 

k 
By Lemma 2.1, q(s) = s for s £ [c, l] and k some real number. 

Substituting for q, Q(sk) = Q(s) for s E [c, l], and by Lemma 2.2 

A 

k = 1 and Q(s) = Q(s). Thus the distribution of N is uniquely deter-

mined. 

A 

From relation (5) Q (¢:X (f) • ¢y. (g)) = Q (¢x (f) • ¢y (g)), f, g E :L*, 
A 

and from the proof of (a) Q = Q. Therefore, Q(¢x(f) • ¢y.(g)) 

Q(¢X(f) • ¢y(g)), g, f E ~*and by letting alternately f = 0 and g 0 

we get 

Q (¢~ (f) ) Q(¢y (g))' f, g £Jo*. 

(9) 

Now to prove part (b). 

Proof using condition (i): ¢:X (f) (or ¢X 1(f)) is real valued and non-

negative. For 0 < s < 1, the derivative of Q is positive since p 1 > 0 



so that the inverse of Q exists with Q-l (Q(s)) 

~X(f) = ~X(f) and ¢y(g) = ¢y(g), f, g c ~*. 

s. From above 

Proof using condition (ii): Since Q has an inverse such that 

Q-1 (Q(s)) = s for Isl .:._ 1, then ¢x(f) = ~x(f) and ¢y(g) = ¢y(g) for 

f, g, EI*. 
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CHAPTER V 

GROUP VALUED RANDOM VARIABLES 

Let G be a locally compact second countable Hausdorff Abelian group 

and let G* be its character group. G* consists of all continuous homo-

morphisms from G onto the circle group in the complex plane. For g* E G* 

and g E G, g*(g) will be denoted by <g, g*>. The topology of G* is that 

of uniform convergence on compact sets of G. That is, if K is a compact 

subset of G, E > O and g* E G*, then the set of characters U(K, E, g*) 
0 0 

{g*: J<g, g*> - <g, g*>I < E for all g EK} is open, and the family of 
0 

all such open sets is a basis for the topology of G* (Loomis, [10]). 

With this topology G* is a locally compact second countable Hausdorff 

Abelian group. 

Definition 5.1: The characteristic functional of X, ¢X, is a func-

tion defined on the character group G* by 

The basic properties of the characteristic functional are given 

below. 

Theorem 5.1: The function ¢X has the following properties. 

(a) J¢x(g*) I < 1. 

(b) ¢X(O) = 1. 

(c) ¢x(g*) is a uniformly continuous function on G*. 

30 
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(d) If <l>x (g*) <l>y(g*) for all g* E G*, then X and Y have the same 

distribution. 

Proof: See Parthasarathy [15). 

That the theorem of Chapter II is not true in general for locally 

compact, second countable, Hausdorff, Abelian groups can be seen from 

the following example. 

Example 5.1: Let N be a nonnegative integer valued random variable 

satisfying the hypotheses of Theorem 2.3. Let X be a G-valued random 

variable where G is a compact, second countable, Hausdorff, Abelian 

group and let X be uniformly distributed on G. Then <l>x (g*) = 1 if g* = 0 

and <l>x(g*) = O if g* 1 O, g* E G* (Stapleton [20)). Let x 1 , x 2 , ••• , 

Y1 , Y2 , ... be independent G-valued random variables all distributed 

like X. Denote U 0 for N O, U xl + + XN for N 1 0, and V = O 

for N = 0, V + YN for N 1 0. Then 

<l>(u, V)(g*, h*) = fQ< (U, V), (g*, h*) > dP(w) 

= f Q < U, g*> • <V, h*> dP (w) 

= f }<O, g*>•<O, h*> dP(w) 
{w: N=O 

00 

+ l f {w: 
n=l 

}<X + ... + X , g*> 
N=n 1 n 

• <Y + ... + Y , h*> dP (w) 
1 n 

p + 
0 

00 

l Jn I{ } <Xl' g*> • • • <X ' g*> " w: N=n n n=l 

•<Y , h*> ... <Y , h*> dP (w) 
1 n 
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00 

po + l [j Q <X, g*> dP (w)] n • 
n=l 

rf r2 h*> 
n 

< Y, dP(w)] •p 
n 

00 

l n 
= po + [ cp ( g* ) • cp (h *) ] • p g*, h* E: G*. 

n=l 
X Y n 

Then since Xis uniformly distributed cp(U, V) (g*, h*) = p0 if g* t 0 or 

if ht 0 and cp(U, V) (g*, h*) = 1 if g* = 0 and h* = 0. 

determined but not p for n = 1, 2, •.•. 
n 

Therefore, p is 
0 

As can be seen from the previous theorems a necessary condition is 

that cp be continuous and not identically constant on a connected subset 

containing more than one point. With a similar assumption the theorem 

can be proved almost as before. 

Theorem 5.2: Let G be a locally compact, second countable, Haus-

dorff, Abelian group with dual G*. Assume that G* is connected. Let 

x1 , x2 , .•• , Y1 , Y2 , ••• , N be independent random variables with 

X distributed like X and Y distributed like Y for n = 1, 2, •• 
n n 

. , 

where X and Y are G-valued nondegenerate random variables having charac-

teristic functionals cpX and cpy' respectively, and N is a nonnegative 

integer valued random variable with probability generating function 

00 

Q(s) = p + L p sn, Isl < 1, p1 > 0 
o n=l n 

where p = P (N = n) . 
n 

Denote U = 0 for N 

for N = 0, V = Y1 + . 

= 0, U = x1 + ••. + XN for N > O, and v = O 

+ Y for N > o. 
N 
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Then, 

(a) the joint distribution of (U, V) uniquely determines the dis-

tribution of N. 

(b) The joint distribution of (U, V) also uniquely determines the 

distributions of X and Y if one of the following conditions holds: 

(i) X and Y are symmetric random variables. 

(ii) 
-1 -1 

There exists an inverse Q such that Q (Q(s)) s for 

Isl .::_ i. 

Proof: The proof of this theorem follows as before except that the 

definition of the characteristic functional is slightly altered. Thus, 

cp (U, V) (g*, h*) E(<(U, V),(g*, h*)>) 

= E(<U, g*>•<V, h*>) 

= E(<U, g*>•<V, h*>IN O)•P(N O) 

00 

+ l E(<U, g*>•<V, h*>IN 
n=l 

n)•P(N 

p + 
0 

00 

l E [ <x1 + •.. + xn, g*> 
n=l 

• <Y + ... + y I h*>] • p 
1 n n 

p + 
0 

00 

l 
n=l 

n 
[E(<X, g*>)•E(<Y, h*>)] •p 

n 

n) 

Q ( <P ( g* ) • <P (h *) ) x y g*, h* E: G*, 

and the proof follows as before. 



CHAPTER VI 

SUMMARY AND CONCLUSION 

Let x 1 , x 2 , ... , Y 1 , Y 2 , •.. , N be independent random variables. 

For n a positive integer let all X be distributed like X and all Y be 
n n 

distributed like Y, and let N be a nonnegative integer valued random 

variable. Denote U 0 and v = 0 for N = 0, and denote u = xl + x2 

+ . . . + XN and V = Y1 + y2 + . .. + YN for N 'I 0. This thesis is devoted 

to establishing conditions under which the distribution of x, Y, and N 

can be determined from the joint distribution of (U I V) . 

In Chapter II, the random variables x 1 , x 2 , 

are assumed to be real valued. It is shown that if P(N = 1) > 0, then 

the joint distribution of (U, V) determines the distribution of N regard-

less of the distributions of X and Y. It is also shown that if X and Y 

are symmetric random variables with nonnegative characteristic functions, 

if the characteristic functions of X and Y are analytic at zero and the 

probability generating function of N is one-to-one in a relative neigh-

borhood of one, or if the probability generating function of N has an 

inverse in the disk with radius one, then the distributions of X and Y 

are also determined from the joint distribution of (U, V). A corollary 

follows immediately from this result if U = 1 and V = 1 for N = O, and 

u = x • x 
1 2 XN and V = Y1 • Y2 ... YN for N ¥ 0. Under conditions 

similar to those above the joint distribution of (U, V) determines the 

distributions of X, Y and N. 

34 
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Chapter III concerns the development of random variables taking 

values in a complete separable metric space. Here the definitions of 

Borel space, random variable, and distribution of a random variable are 

given for abstract settings. Chapter III also contains Kolmogorov's 

Consistency Theorem which allows the selection of sequences of independ­

ent random variables in abstract settings. 

Chapters IV and V deal with proving the result of Chapter II for 

x1 , x2 , ..• , and Y1 , Y2 , .•. sequences of random variables taking 

values in a separable Frechet space and in a locally compact, second 

countable, Hausdorff, Abelian group. The result is shown to be true for 

a separable Frechet space, and the result is shown to be false for a com­

pact second countable, Hausdorff, Abelian group. If the condition that 

the dual must be connected is added in the group case, then the result 

is shown to be true. 

Are there generalizations of the results of this paper? A possible 

beginning is to let X(t) and Y(t), t ~ 0, be independent continuous 

stochastic processes which are time homogeneous and have independent 

increments. Let T be a nonnegative real valued random variable independ­

ent of X(t) and Y(t). Define U = X(T) and V = Y(T). Then the problem 

is to find conditions such that the joint distribution of (U, V) deter­

mines the distributions of X(t), Y(t), and T. 
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