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ABSTRACT

This work is a continuation of a project at
the University of Oklahoma to measure compressibility
factors of gases very accurately at high pressure and
low temperature. A Burnett apparatus was used to obtain
the experimental data for the helium-argon system. The
results are rasported for the two pure components and four
mixtures for three isotherms ranging from 143°K to 183°K.

The method of treating the data to obtain the
optimum virial coefficients and compressibility factors
uses an orthonormal polynomial, nonlinear curve fitting
technique to obtain initial estimates of the apparatus
constants and virial coefficients. Then a Newton-
Raphson procedure is used to converge to the optimum
set of parameters based on a defined best fit criterion.
The compressibility factors are calculated at each
experimental pressure from the optimum virial coefficients
using the Leiden form of the virial expansion. Estimates
of the standard errors in the parameters and in the data
are also determined.

A perturbation equation of state for methane is
proposed that is based on theoretical results until the
functional form of the cutoff parameter is determined.
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The analysis then becomes empirical in that experimental
methane data along with an orthonormal polynomial

curve fitting scheme are used to determine the coeffi-
cients in an expansion for the cutoff parameter. The
curve fit uses a set of weighting factors that are cal-
culated from the square of the changes in density with
respect to cutoff parameter. The proposed equation of
state covers the temperature range 114° to 623°K with
most of the low temperature data in the liquid region.
The equation of state predicts calculated densities that
are within one percent or better of the experimental
densities over the entire temperature range. The
accuracy of prediction suffers somewhat for the present
because of discrepancies in the low temperature data

that were not determined until the work was completed.
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VOLUMETRIC BEHAVIOR OF THE HELIUM-ARGON SYSTEM AT HIGH
PRESSURE AND LOW TEMPERATURE WITH A PERTURBATION
EQUATION OF STATE FOR METHANE

CHAPTER 1
INTRODUCTION

This thesis is a report of the experimental deter-
mination of the volumetric behavior of gaseous mixtures
at moderately low temperatures and high pressure. An
apparatus based on the experimental method of Burnett (7)
was used to determine the compressibility factors of the
helium-argon system. The results of the investigation
are reported for helium, argon, and four mixtures having
compositions of 21.99, 41.05, 59.35, and 80.00 mole percent
helium in argon.

The experimental temperatures were chosen so that
the resulting compressibility factors would be evenly
spaced rather than the temperatures. The compressibility
factors do not vary as rapidly at higher temperatures as
they do at lower temperatures. Therefore the temperatures
are more closely spaced at the lower values. The isotherms
chosen were those at -90°C, -115°C, and -130°C. The
selectiqn of these temperatures also allowed comparison
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of the pure helium data as reported by Canfield (8). At
the first two temperatures all runs were made with an
initial pressure of 19,000 psi. Since -130°C is below the
critical temperature of argon, the initial pressure for
all runs containing argon was determined from the helium-
argon phase diagram presented by Streett (35).

The Burnett apparatus consists essentially of two
thermostated cells of undetermined volume connected by
a valve with the necessary pressure and temperature
measuring instruments. When the cryostat is at the desired
temperature and with the valves between the two cells
closed, the upper cell is pressured up to the predetermined
initial pressure. After the temperature has equilibrated,
the pressure in the upper cell is measured. Then the gas
is expanded into the lower cell by opening the valve.
After the temperature has come to equilibrium again, the
pressure is again determined. Then the valve is closed,
and the lower cell is vented and evacuated. The gas is
then expanded into thé lower cell and the pressure measured
after temperature equilibration is attained. This pro-
cedure of expanding, measuring pressure, venting, and
evacuating is coﬁtinued until the minimum pressure is
reached. The series of pressures obtained constitutes
2 run. Other runs can be made with different starting
pressures to better define the isotherm for a given gas

composition.



3

As can be seen by the above description, neithér the
mass of the experimental gas nor the volumes of the cells
is needed. This is one of the advantageous features of
using the Burnett experimental method.

The following analysis conforms with the above
procedure for using the Burnett apparatus. Initially

the equation describing the gas in the cell is given by
Po (Va)o = nOZORT. (1)

where P is the pressure, V_ is the volume of the upper

a
cell, n is the number of moles of gas, Z= PV/nRT is the
compressibility factor, R is the gas constant, and T is
the temperature.

After the first expaﬁ%ion the equation becomes
Pl (Va + Vb?}l = noleT. (2)

where Vb is the volume of the lower cell. When the valve
is closed and the gas in the lower cell is vented, the
equation is

Pl(vh)l = n,Z,RT (3)

If this is continued until the jth expansion, then before

the jth expansion
1>j_1(v‘_-_l)j__1 = nj_lzj_lk‘l‘ (4)
and after the jth expansion

Dividing eguation (5) by equation (4)
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P .V, + V) _ n,_3Z;RT )
pj_l(va) -1 ny_ 124 RT

If the cell constant Nj is defined to be

(v. + v,)..
a b’ 3
N. = ’ (7)
s B U2 Y
then equation (6) can be written
zi, _ Pij (8)
Z. P.
-1 J-1

After the first expansion equation (8) with some rearrange-

ment is
2 Z
1 (o
Pl 1 Po

For the second expansion it becomes

Z 2 VA
2 1 o
— =N, =—— = N,N, — (10)
P2 2 P1 172 Pb
- .th .
Similarly, for the j expansion
2. 2
-1 = 2

The cell constant, Nj' for each expansion can be related

to the cell constant at zero pressure. N_, by

N, = N —+——2 . (12)

3 ® m, + m.P + m,P +
1 2" 3-1 3°5-1 R

2
k, +k gj + k3pj + . ..
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where ki and m; are constants related to the distortion
of the cells due to pressure (see Appendix A for the values
of the constants). Blancett (5) discusses the determina-
tion of these constants. Therefore the compressibility

factor for each expansion can be written

. 2
z . 3 [k,+k,P.+k.P:+ . . .
2, =P 3 M .H( TR ) (13)

o i=1 \m,+m,P, ,+m P, .+ . .

Thus the compressibility factor at each experimental
pressure can be calculated if the cell constant at zero

pressure, N

s and the run constant, Z /P , can be deter-

mined.

These constants are classically determined by
graphical extrapolation using the experimental data. 1In
the limit as the pressure goes to zero and the compress-
ibility factor to unity, equation (8) becomes

N_ = lim fiﬂ- (14)

> po By

The best value of this constant is determined using a

gas for which the compressibility factor varies linearly
with the pressure, such as helium. However, if the number
of runs requires that the data be taken over a period of
several months, it is best to determine N for each run

as small changes could occur over an extended period of
time. In a similar manner the run constant, zo/Pb' can

be determined from equation (11) in the limit as pressure



goes to zero.

Z

o *
== = lim P.N,N.. . . N. (15)
Po p~0 3 172 ]

Thus plots of Pj_l/Pj v.S. Pj and Pj(NIN2 cee Nj) v.Ss.

Pj extrapolated to zero pressure give the cell constant
and run constant, respectively.

The compressibility factors reported for this inves-
tigation were calculated by making these extrapolations
using an orthonormal polynomial curve fitting technique
developed by Hall and Canfield (19) as an initial estimate.
Then a Newton-Raphson procedure as presented by Hall and
Canfield (20) was used to determine the virial coefficients
that, with the optimum cell constants and run constants,
gave the best values of the compressibility factors.
Graham (17) has presented a similar procedure where the
exponential virial eguation was used. However, since
this approach has convergence problems for data near the
critical point, the procedure of Hall and Canfield was
used to treat the data in this thesis. A summary of the
complete data reduction analysis is given in Appendix B.
The compressibility factors at each experimental pressure
are presented in Chapter VI along with the virial coef-
ficients for the pure components and mixtures.

The theoretical portion of this thesis is the de-
velopment of an equation of state for pure methane.

Methane was chosen as the material to be studied for two
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reasons. First, methane PVT data were available that
covered a wide range of temperature and density. Secondly,
methane is representative of molecules that are of inter-
mediate complexity and would provide a more severe test
than argon. An equation of state for methane is the next
step beyond an equation of state for the noble gases and
provides a link between simple molecules, such as argon,
and the more complex molecules of the heavier hydrocarbons.
The details of the equation of state development are pre-

sented in Chapters IV and V.



CHAPTER II
REVIEW OF PAST WORK

This review covers previous work of interest of
two types--those concerning the P-V-T behavior of helium
and argon and those concerning the P-V-T behavior of
helium-argon mixtures. Blancett (5) has presented a
sufficiently complete review on helium, argon, and
helium-argon mixtures through 1965. To avoid needless
repetition, this review will cover the work from 1965
to the present. All of the investigations cited indi-
vidually below were performed on Burnett-type apparétus.
Also, in each case, a reference having a rather exten-
sive compilation of experimental compressibility data

will be given.

P-V~-T Behavior of Arqon
The volumetric behavior of argon has been re-
ported by numerous investigators. A book edited by
Cook (12) gives a comprehensive review of the volumet-
ric properties of argon through 1960.

Kalfoglou and Miller (22) made compressibility

8



9
factor measurements at 30°C and at 100°C intervals
from 100°C to 500°C for argon at pressures between 3
and 80 atmospheres.

Blancett (5) has reported volumetric data for
argon at -50°C, 0°C, and 50°C for pressures between 2
and 685 atmospheres.

Crain and Sonntag (13) give compressibility data
for pure argon at four temperatures in the range -130°C
to 0°C and at pressures to 690 atmospheres.

Rowlinson et _al. (32) have recently reported
second virial coefficients for pure argon at 17 temper-
atures between 80° and 190°K and at very low pressures
since part of this work is below the critical temper-

ature of argon.

P-V-T Behavior of Helium

Helium is one of the most widely studied gases
in the literature. Cook (12) also gives a comprehen-
sive review of the volumetric and thermodynamic proper-
ties of helium up to 1961.

Kalfoglou and Miller (22) have reported compress-
ibility data for helium at 30°C and at 100° intervals
from 100° to 500°C and at pressures up to 80 atmospheres.

Blancett (5) has given volumetric data for helium
at -50°, 0°, and 50°C and at pressures up to 685 atmos-
pheres.

Canfield (8) has reported compressibility data
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and virial coefficients at six temperatures between
-140° and 0°C and at pressures to 500 atmospheres.

Hall (18) presents volumetric data for pure
helium at three temperatures between -190° and -160°C
and at pressures to 685 atmospheres.

Sullivan and Sonntag (36) have covered the
temperature range from 70° to 120°K for pressures up

to 520 atmospheres.

P-V-T Behavior of Helium-Argon Mixtures

Despite theoretical interest in mixtures of
simple molecules, such as helium and argon, this system
has not been covered extensively. Kalfoglou and Miller
(22) report compressibility data for seven mixtures of
helium and argon at 30°C and at 100° intervals between
100° and 500°C and at pressures to 80 atmospheres.

Blancett (5) presents volumetric data for four
helium~argon mixtures at 50°, 0°, and -50°C and at
pressures up to 685 atmospheres, but below -50°C it
appears that no data have been taken for this mixture.

Canfield (9) has recently compiled a summary of
the mixture data currently available for the study of
the volumetric behavior of simple gas mixtures. Also
an NBS Report (30) is available that presents a biblio-
graphy giving references on the thermophysical properties

of fifteen gases including helium and argon.



CHAPTER III
EXPERIMENTAL

In this chapter the experimental part of the work
is described. The Burnett apparatus used in this study has
been operated at various temperatures between +50°C and
-190°C (5,18) with good success. This reéor;-covers the
temperature range -90°C to -130°C for the helium-argon
system. The first part of the chapter briefly describes
the major pieces of egquipment that comprise the Burnett
apparatus. Because Blancett (5) has already described
much of this apparatus in detail, the reader is referred
to the above reference for more information. The last

part of the chapter describes the operating procedure

which is consistent with the analysis for Burnett data.

Cryostat

One of the unique features of this experimental
apparatus is the gas-bath cryostat. A sketch of the
cryostat showing the essential features is given by Hall
(18). In the past cryostats usually used a liquid for the
bath fluid with the inherent problems of toxicity and flamm-

11



1z -
ibility of the liquid and the probable use of two or more
bath fluids to cover a wide range of temperature. 1In this
cryostat gaseous nitrogen is the bath fluid for all temp-
eratures from slightly below room temperature to -200°C.
Above room temperature compressed air can be satisfac-
torily used as the bath fluid. The only disadvantage of
using a gas as the bath fluid is the reduced heat transfer
to objects in the bath. However once the bath was operat-
ing at steady state, this effect was only noticeable in
the slightly longer equilibration time required after

each expansion.

Liquid nitrogen was used as the coolant in the
cryostat. It was received in a Linde 1LS-110 at a pressure
of approximately 24 psi. Since the IS-110 did not have
sufficient insulation to allow continuous transfer of
nitrogen to the cryostat without excessive vaporization
of the liquid, an intermediate 50 liter transfer dewar
was used. The transfer dewar had a teflon head that
allowed it to be refilled without interrupting the contin-
uous flow to the cryostat. A positive pressure of 3-4
psi was required in the transfer dewar to transfer the
liguid nitrogen in surging two-phase flow upward through
a vacuum-jacketed transfer line and over to a permanently
evacuated phase separator that was on top of the cryostat.
Both the transfer line and the phase separator were made

of 300 series stainless steel with the walls as thin as
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possible to reduce heat leakage.

In the phase separator the liguid nitrogen was
kept at a constant level by a float valve assembly that
allowed liquid nitrogen to enter at the same rate as it
was leaving the bottom of the phase separator through a
metering valve. The metering valve fed the liguid nitrogen
at a constant rate through a 1/2® thin-wall, stainless
steel tube into the vaporizer bundle where the nitrogen
gave up its sensible and latent heat to cool the bath.

The metering valve was adjusted to allow a slight excess

of liquid nitrogen which was offset by the control heater.
The vaporizer bundle was a finned surface that contained

10 square feet of surface area in a bundle 5 1/2 inches

in diameter by 2 inches thick. Hall (18) gives the details
on the construction of the vaporizer bundle.

After leaving the vaporizer bundle the nitrogen
vapor passed through the control heater and a squirrel-
cage blower. The blower circulated the vapor downward
past the equipment contained in the cryostat and then
upward outside the radiation shield and vapor baffle where
the nitrogen lost more sensible heat to further cool the
contents of the cryostat. The vapor was then vented to
atmosphere. The blower was used in place of a vaneaxial
fan blade used by Hall to get increased circulation of
the bath gas so that better heat transfer would result.

The squirrel-cage blower did reduce the equilibration time
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after an expansion somewhat,but the poor heat transfer
rate is still a nuisance. It is now thought that the
limiting factor in the heat transfer problem is the dead
gas space in the pressure-jacketed Burnett cell. This
will be discussed later in the chapter.

The blower is operated by a 1750 rpm motor mounted
above the cryostat. The shaft enters the cryostat through
a Materials Research Corp. V4-100 rotating vacuum seal
and is supported at low temperature by a Barden Bar-Temp
bearing.

The control heater was made of 25 gage coiled
Nichrome wire strung within a 5 inch diameter phenolic
frame. It is wired in series with a variable external
resistor to give a control heater output of 10 to 100
watts. The heater is activated by a Hallikainen Model
1053A Thermotrol with proportional plus reset control.
The sensing element is a Rosemont Model 104N48AAC.

Around the vaporizer bundle, blower, and heater is
a styrofoam plug. 1Its purpose is twofold. It supports
the radiation shield-vapor baffle and controls the amount
of backmixing through tbe“gquirrel-cage blower. It is
essential for good temperature control and small gradients
in the cryostat. The construction of the plug is a trial
and error procedure in which the plug is shaped and tried
until it gives the minimum gradient.

With the Burnett apparatus in the cryostat at steady
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state, the liquid nitrogen 'usage was approximately 3
liters/hour at temperatures between -90°C and -130°C.

The temperature could be changed within these limits by
changing the Thermotrol setting to correspond to the
desired temperature without changing the ligquid nitrogen
metering valve. Thus the nitrogen consumption was essen-
tially constant throughout the experimental runs. This
consumption is the total amount used including transfer
and phase separator boil-off losses. The average indicated
steady-state gradient across the length of the Burnett
cell was about 0.007°C for all runs. For some runs the
gradient reached a minimum of 0.001°C and for other runs

it sometimes was as high as 0.015°C.

Burnett Cells and Magnetic Pump

The Burnett cell used in this experiment was a
double-walled pressure vessel. Its design and construc-
tion is given in detail by Blancett (5). The cell and
jacket are shown in Figure 1. The cell was divided into
two volumes connected by two expansion valves and the
necessary tubing. A hole was drilled in each end of the
cell for the insertion of two platinum resistance thermo-
meters. The annular space between the two walls served
as a pressure jacket so that the annulus would be at the
same pressure as that inside the cell. This reduced the
distortion of the cell due to the internal pressure.

While the pressure jacket solved one problem, it
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also created another as mentioned previously. Once the
annulus is pressured, it becomes essentially a dead gas
volume with the resultant low heat transfer. This causes
an excessive equilibration time after each expansion.
Although it has no affect on the experiment or the an-
alysis, it is time consuming. Before other data are taken,
some thought should be given to alleviating this problem.

In the line between the two volumes of the Burnett
cell is a magnetic pump. A paper by Canfield, Watson,
and Blancett (10) gives the details of construction and
operation. It is used to speed temperature equilibration
after an expansion by forced mixing of the gas in the
two volumes. At low temperatures it also insured that
the denser gases would be homogeneous after an expansion
by providing circulation between the two chambers. How-
ever for some ;hns, the pump was not left on long enough
for complete mixing to occur. This caused the first run
to be at a different composition than the second run.
This difficulty is explained more fully in the discussion
of the results in Chapter VI.

The time that the pump should be left on varied
with the pressure and the mixture. This was determined
by experience. The pump was left on about 20 to 25 min-
utes on the first expansion. The ON time was gradually
decrésééd for the subsequent expansions. The pump was

not used for the last two or three expansions. If the
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pump was left on too long, it hindered equilibration
instead of helping. The energy dissipation of the pump
caused the temperature to stabilize at a higher value than

desired.

Temperature and Pressure Measurement

The temperature was determined by two Leeds and
Northrup Model 8164 capsule-type platinum resistance ther-
mometers, one in each end of the Burnett cell, in conjunc-
tion with a Leeds and Northrup G-2 Mueller Bridge. The
temperature for the run was the average of the temperature
indicated by the two thermometers. The calibration of the
Mueller Bridge was re-checked before this series of runs
was started and was used instead of the calibration made
in 1963.

The thermometers were calibrated by the National
Bureau of Standards, one in 1963 and the other in 1966,
at the oxygen boiling point, the water boiling point,
and the sulfur boiling point. The thermometers were made
consistent with the Mueller Bridge in this laboratory
by calibration with the water triple point. When cali-
brated properly, the thermometers were guaranteed to be
in agreement with the International Temperature Scale
within # 0.01°C. However with the Mueller Bridge and a
galvanometer, a change in temperature of 0.001°C could
be detected. A computer printout of resistance vs. temp-

erature calculated using the Callendar-Van Dusen equation,
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was used to obtain the temperature from the bridge reading.

The system pressure is measured by one of two Ruska
Instrument Corporation Model 2400 dead weight gages. One
of the gages is used to measure pressures up to 165 atm.,
and the other is used for the remaining pressures up to
700 atm. The stainless steel weights were calibrated by
the manufacturer against class S standards, and are there-
fore class P standard weights as certified by the National
Bureau of Standards. The accuracy of the two gages is
certified by the manufacturer to be 0.01 percent of the
reading or better.

The pressure is transmitted from the Burnett cell
to the external pressure gages by two Ruska differential
pressure cells connected in series. 1In the Burnett anal-
ysis, as presented in Chapter 1, all of the experimental
gas has to be at the experimental temperature. Since the
lower chamber of one of the differential pressure cells
is considered part of the Burnett cell upper volume, this
resulted in having one of the differential pressure cells
in the cryostat at the experimental temperature. This
cell because of the extreme environment was especially
designed and constructed by the Ruska Instrument Corpor-
ation. Because of the low temperatures inside the cryostat,
the o0il used in the piston gages could not be used as the
pressure transmitting fluid between the two diaphragm

pressure cells. The sample gas itself was used as the
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intermediate pressure transmitting fluid. Thus the dia-
phragm of the cryogenic pressure cell separated the ex-
perimental gas, which was at constant temperature, from
the intermediate gas, and the diaphragm of the room tem-
perature pressure cell separated the intermediate gas
from the oil used in the piston gages.

One of the problems inherent in using the diaphragm
pressure cell is the zero shift effect. A differential
transformer, located in the upper chamber of the pressure
cell sends an electrical impulse to a differential pres-
sure indicator whenever the diaphragm is deflected. This
electrical output was indicated on the scale of the dif-
ferential pressure indicator. When the pressure in both
chambers was equal, the pressure cell was in the balanced
condition, that is, the diaphragm was flat. However, the
indicator was not in the null position. When the indi-
cator is nulled, the diaphragm is deformed indicating
a small difference in pressure between the two chambers
of the pressure cell. This difference in pressure be-
tween the nulled position on the indicator and the bal-
anced condition in the cell is called the zero shift.
Before the correct pressure is known, a correction for this
zero shift has to be made. Blancett (5) gives the tech-
nique used to determine this effect and a method to cor-
rect the measured values. The equation for the corrections

are given later in this chapter.
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The total pressure of the gas in the Burnett cell
can be expressed as the corrected gage pressure plus the

sum of four pressure correction terms:

P= Pg + PB + APH + Apzsn + Apzsc R (16)

where P is the total pressure exerted by the gas, Pb is
the pressure exerted on the piston gage, PB is the baro-
metric pressure acting on the piston gage, APB is the
head correction, Agzsn is the zero shift correction for
the room temperature differential pressure indicator,
and Agzsc is the zero shift correction for the cryogenic
differential pressure indicator,.__All pressures and cor-
rections are given in atmégpheres. The computation for
these pressure corrections Qas done on the computer to
speed up the calculations and to reduce human error.

The gage pressure had to be corrected for tempera-

ture and pressure. For the low-pressure gage the correc-

tion was

0.521989 T (M)
P = 5 s, 17)

and for the high-pressure gage

2.610037 ¥ (Ma)

G (1.0 + 1.7 x 10°°AT) (1.0 - 3.6 x 10~ Sp)

where T (Ma) is the sum of the weights used in pounds
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mass, AT is the difference between the gage temperature
and 25°C, and P is the system pressure in psia.

A Welch Model 122A marine barometer was used to
determine the atmospheric pressure acting on the piston

gage. The corrected barometric pressure is given by

PB = 0.0333902(R-r), ' (19)
where R is the barometric reading in inches of mercury
and r is a temperature-dependent correction.

The head correction was calculated by one of the

two following equations. For the high-pressure gage

By = -0.00021 + (Mw)[(-0.116) (pg) ot (h) (o,) ;1 (20

and for the low-pressure gage

Py = -0.00057 + (MW)[(-0.116) (o) +(h) (o) ;1. (21)
where MW is the molecular weight of the experimental gas,
(pg)o is the density of the experimental gas outside the
cryostat, (pg)i is the density of the experimental gas
inside the cryostat, and h is a multiplier that equals
0.0714 for the first pressure in each run and 0.0747 for
all other pressures in the run.

The manufacturer of the differential pressure cells
and indicators gave information on the zexro shift effect.

However, their values were used only for the room-temper-

ature differential pressure indicator. Their equation was

AP, =1.3 x 10" 'p, (22)

ZSR
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where P is the system pressure.

Since the cryogenic differential pressure indicator
is a function of both pressure and temperature, the meas-
ured zero shift had to be determined in the laboratory
at the experimental temperatures. The equation used to

obtain the zero shift from the measured zero shift is

- — MZS .
BPysc = T.0 = 0.0277 (35/51n Vo (23)

where M2S is the measured zero shift in atmospheres, P

is the system pressure, and v is the molar volume in
cc/mole. The factot (3P/31n v)T was determined in the
following manner. The molar volume was calculated using
v = 2RT/P, where the values of the compressibility factors
for helium were interpolated from data presented by Can-
field (8). A plot of P vs. 1ln v was made, and the

slopes, (dP/d1n v)T. were calculated at the pressures for
which the zero shiftswere being determined. Figure 2 is

a plot of Agzsc vs. P for the experimental temperatures.

Compressor and Valves

A Corblin # B2C1l000 single-stage diaphragm com-
pressor was used to compress the gas from cylinder pressure
to the initially desired system pressure. The compressor
was somewhat oversized so that some care had to be taken
when pressuring the system so as to not overpressure the
cryogenic differential pressure indicator. The diaphragm

kept the sample gas pure while it was being compressed.
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All the valves were High Pressure Inc. 30,000 psi
midget line with two-piece nonrotating stems. Four of
the valves were in the cryostat to insure that all of the
experimental sample gas was at constant temperature. The
valves came with o-ring seals. These worked fine at room
temperature, but the valves in the cryostat leaked badly
at the low temperatures. The solution to the problem
involved using a material with a very low coefficient of
contraction as thrust washers for teflon packing and the
proper dimensions to assure that the packing would not
shrink away from the stem or body of the valve. Hall (18)
gives the equations to determine the proper dimensions.

Another problem with the valves was the tendency
for the valve stem threads to gall after extended use at
the extreme environment. Whenever this occurred, it
necessitated a lengthy delay while the cryostat was warmed,
the valve replaced, and the cryostat again cooled to the
experimental temperature. This was solved by treating the
valve stem threads in the following manner. First, the
lubricant, that came in the valve stems, was removed from
a very inaccessible constriction by gently heating the
valve stem with a flame. Then the valve stem threads were
coated with Molykote X-106, a trademark of The Alpha-Moly-
kote Corporation, in solution form and baked in an oven
for about three hours. When this was done, galling of the

valve stem threads was no longer a problem in any of the



26

experimental runs.

Procedure

The experimental procedure is designed to be consis-
tent with the Burnett analysis as given in Chapter I.
There are three assumptions that are involved in the
development of the Burnett equations. The equilibrium
temperature before and after the expansion should be
equal. The amount of gas in the upper volume of the
Burnett cell before an expansion is equal to the amount
of gas in the upper and lower volumes after an expansion.
The amount of gas in the upper volume should be the same
before and after closing the expansion valve during a

measurement.

Cool Down

The first step in the procedure was to get the cryo-
stat from room temperature to the experimental temperature.
Liquid nitrogen was allowed to flow from the transfer
dewar through the transfer line to the phase spearator.
The fan and control heater were turned on and the ther-
motrol was set at the predetermined position to control
the bath at the experimental temperature. When the liquid
level in the phase separator had built up, the metering
valve was opened several turns and cool-down was started.
It usually took about four hours for the cryostat to cool

down to the desired temperature. As the temperature
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was reached, the metering valve was gradually closed until
it was open about 1 1/4 turns. The control heater wattage
was adjusted to about 40-50 watts with 1/4 ON time. Small
adjustments usually had to be made on the thermotrol set-
ting to get the temperature in the cryostat controlling
at the experimental temperature within +0.002°C. An add-
itional eight to twelve hours were required to get tem-
perature control after the cryostat had attained temper-
ature.

To change from one experimental temperature to
another, the only significant change that had to be made
was the thermotrol setting. If the temperature change
was as much as 20° or 30°C, small changes sometimes had
to be made in the heater wattage and the metering valve

controlling the liquid nitrogen flow into the cryostat.

Differential Pressure Indicator Adjustments

When the cryostat was at the control temperature,
the cryogenic electronic differential pressure indicator
had to be adjusted. This adjustment had to be made
whenever the temperature was changed because the oper-
ation of the electronic indicator was a definite function
of temperature. The adjustment was made on a trim pot in
the back of the indicator with a corresponding change
of the zero adjustment control. These two adjustments
were made until the minimum variation about the null

position was attained. This deflection was specified
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by the manufacturer to be £ 1 division while the sensi-
tivity knob was turned full range. When the trim pot was
changed a very small amount, the electronic circuitry was
upset and a wait of about an hour was required for it to
settle down again. Bventually the setting was found that
seemed to give the minimum deflection about the null point.
At this time the indicator was allowed to sit for about
six hours. If it still possessed the required character-
istics after the wait, it was ready for use. If not, the
above procedure was followed until it did operate properly.

A similar procedure was followed to adjust the
room-temperature differential pressure indicator. This
was done with atmospheric pressure on both sides of the
diaphragm. However, since it remained at one temperature
throughout all of the experimental runs, this adjustment

had to be made only once.

Sequence of Runs

In determining the sequence of runs there was an
option of two procedures to follow: the completion of
all runs for a given composition while changing temp-
erature or the completion of all runs at a given constant
temperature while changing compositions. The latter
procedure requires the use of more gas because the system
has to be purged each time the composition is changed.
However, due to the uncertainty in adjusting the cryo-

genic differential pressure indicator as explained above.
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the latter procedure was followed so that the indicator
would have to be adjusted as few times as possible. Thus
the sequence consisted of making two runs for each compo-
sition at the same temperature with a purging of the

system each time the composition was changed.

Final Leak Check

Before the experimental runs were started, the
entire system was checked for leaks by pressuring to 12,000
psi, which was a greater pressure than any of the experi-
mental pressures. This was necessary because in tighten-
ing the flared fittings, some other fitting might unknowing-
ly be loosened. The pressure was monitored for several
hours with the piston gage to determine if the system
pressure was changing. This was the most sensitive test

- [

for leaks.

Purging and Charging the Burnett Cell

When the equipment was ready to make the initial
experimental run, the system was purged three times with
the first gas composition in the following manner. First
the coLd trap filled with ethyl alcohol in the line be-
tween the sample gas cylinder{and the compressor was
frozen by passing liquid nitrogen through the cooling
coils of the trap. Next, the system was evacuated to

10 microns and the sample gas was carefully bled into the

system until a pressure of 10 atmospheres was attained.
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In all manipulations when gas was either being added to the
system or bled from the system, the valves were to be
opened very slowly to prevent a sudden overpressure on the
diaphragm of the differential pressure cell. Because of
the design of the pressure cells, a large overpressure
from the bottom was to be avoided. Such an overpressure
would crimp the diaphragm causing a change in the null
position of the differential pressure indicator. The gas
was then vented at several points, and the system was
again evacuated to 10 microns. This was repeated until
the system had been purged a minimum of three times.
This purging procedure had to be followed each time the
composition of the gas was changed.

The next step was to charge the Burnett cell to
the predetermined initial pressure. This was accomplished
in the following manner. The cold trap was refrozen if
necessary. The cryogenic differential pressure indicator -
was rechecked to insure that it was still operating
properly. The two expansion valves between the upper and
lower chambers of the Burnett cell were closed. The
piston gage was loaded with weights equivalent to the
initial pressure. A slight overpressure from the top
was applied to the room temperature differential pressure
indicator. Sample gas was carefully bled into the systen,
while watching the cryogenic differential pressure indi-

cator scale to prevent sudden overpressure, until cylinder
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pressure was attained. The compressor was then turned on
and the charging was continued until the desired system
pressure was reached. As the pressure in the system
increased, the o0il pressure in the room-temperature diff-
erential pressure cell was increased by turning the hand
pump so that the diaphragm was always overpressured from
the top.

The charging of the Burnett cell caused the cryo-
stat temperature to increase. The sample gas was allowed
to soak until the cryostat temperature was again stabl-
ized. The time required for this depended on the initial
pressure and the composition of the gas. The time varied
from about three hours at the lower initial pressures to
approximately eight hours when the Burnett cell was pres-

sured to 10,000 psi.

Pressure Measurement and Subsequent Expansion

When the temperature had equilibrated, the charging
valves were closed to isolate the experimental gas from
the intermediate gas. The pressure was then measured by
nulling both differential pressure indicators simultan-
eously. While the indicators were both nulled, the weights
on the piston gage were recorded and double checked, and
the temperatures of the two platinum resistance thermome-
ters were recorded. Other data that were recorded at this
time were the barometer reading, room temperature, and the

temperature at the piston gage.
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After the data had been recorded, the vent valve
was closed and the gas was expanded into the previously
evacuated lower volume by very carefully opening one of
the expansion valves. The expansion was made as slowly
as practical to minimize the temperature upset caused by
the expansion. During the expansion the lower cell was
heated and the upper cell was cooled. After the exﬁan-
sion was completed, both expansion valves were opened
several turns and the magnetic pump was turned on. The
time that it was left on depended on the magnitude of
the temperature upset. This was determined by experience.
The ON times ranged from approximately 20 to 25 minutes
for the first expansion to not being used for the last
two or three expansions. If it were left on too lorng, the
cryostat would equilibrate at a higher temperature than
desired because of the energy dissipation of the pump.

The intermediate gas was bled to the atmosphere until the
differential pressure indicator showed that the over-
pressure from the top had been relieved.

The sample gas was again allowed to soak until the
temperature equilibrated. The time for equilibration
depended on the experimental pressure. On the first
expansion from 10,000 psi, the temperature upset was
quite large and it required about six hours for the cryo-
stat to re-equilibrate. On the subsequent expansions, the

upset was somewhat smaller each time until on the last few
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expansions only about an hour was required for temperature
equilibration.

When the cryostat temperature had equilibrated, one
of the expansion valves was closed and the other was left
1/8th turn open. This was done so that the sample gas
would be apportioned correctly between the two volumes of
the Burnett cell. The system pressure was then measured
with the piston gage and the necessary data recorded as
explained above. With the differential pressure indica-
tors nulled, the expansion valve was closed. The gas in
the lower volume was vented to the atmosphere and the
lower chamber was evacuated to less than 5 microns. This
required approximately 25-30 minutes and was a good check
on the expansion valves to see if they were leaking.

When the lower volume was evacuated, the vent valve
was closed and the second expansion was started by slowly
opening one of the expansion valves. From this point on,
the procedure is the same as for the first expansion out-
lined above. This procedure of expanding the gas into the
lower volume, measuring the system pressure after temper-
ature equilibration, venting to the atmosphere, and evacu-
ating the lower volume was continued until the system
pressure was less than 2 atmospheres. At the end of each
run both differential pressure indicators were checked to
see if there had been a permanent zero shift during the

run. If the null position hadn't changed, then the run
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was good. If there had been a change and it was known
when it had occurred, then a correction could be calcu-
lated and applied to all of the experimental pressures
taken after the shift had occurred. If it was not known
when the shift had happened, then the indicator had to be
rezeroed and the run repeated. If the first run was good,
then a second run at the same temperature and composition
was made starting at an initial pressure midway between
the first two pressures of the first run. After the second
run, the system was purged three times with the sample gas
of the next composition, and two runs with the new mixture

were made.



CHAPTER 1V
EQUATION OF STATE: THEORETICAL DEVELOPMENT

Renewed interest in an equation of state based on
a perturbational approach began when Zwanzig (45) pro-
posed an equation of increasing powers of reciprocal
temperature with the coefficients derived from pertur-
bation theory. The perturbational theory treats the
attractive forces in a fluid as perturbations on a hard-
core potential. Since Zwanzig introduced his perturbation
theory, a number of investigators have tried various
approaches in formulating their equations of state, but
the basic theoretical ideas are the same. Several of
these approaches are mentioned in the following discussion

of previous work in this area.

Previous Perturbation Procedures

Zwanzig (45) first proposed the perturbation theory
in which the potential energy, V, was divided into two
parts, the potential energy of the unperturbed system,

vo, and the perturbation, Vl'
V=V +V; (24)
He chose the following as the general form of the equation:

35
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a,(v) a,(v)
1%=°o“’)+l]i—'r'*i?+"" (25)

where db(v) was the rigid sphere eguation of state with
an appropriate hard-sphere diameter, which was kept as

an adjustable parameter. Equation (25) was truncated
after the second term so that the compressibility was
linear in reciprocal temperature. The repulsive potential
was taken to be the hard-sphere potential and the attrac-
tive potential was the Lennard-Jones 12:6 potential.

The Lennard-Jones parameters were adjusted according to
the value of ¢, which was set as zero for the literature
values of ¢ and ¢.

Equation (25) could be compared to experimental
data by plotting Pv/RT as a function of 1/T for various
densities and taking the intercepts as Qb and the slopes
as al(v). He determined that the best fit at low densities
was obtained by setting ¢ = 1/1.08, and that at high
densities, ¢ = 1/1.1 gave a better fit. This indicated
that the resulting equation is quite sensitive to the
value of c chosen. The overall accuracy of the predicted
values of Pv/RT when compared to experimental data was
given as five to ten percent, with the poorer accuracy
at the higher densities. He concluded that the results
were in fair agreement with experiment for the néble gases
at high temperature.

Smith and Alder (34) also proposed using Zwanzig's
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approach to develop an equation of state. They used the
hard-sphere potential as a basis for their equation of
state and Lennard-Jones potential as the perturbation.
They used three parameters with two being characteristic
of the normal Lennard-Jones potential and the third, a
cutoff parameter. The Lennard-Jones parameters were
adjusted in the same way that Zwanzig adjusted his param-
eters. They also used the same truncated form of the
equation of state that Zwanzig used but determined the
coefficients in a different way. The virial expansion was
used to determine the coefficients in a power series of
inverse temperature at different values of c, the cutoff
parameter. Results were presented at c = 1/1.1 but they
stated that ¢ = 1/1.095 gave better results. This indi-
cated that the results were sensitive to the value of c
used. They concluded that the first two terms of the
perturbation equation of state approximated the equation
of state, Pv/RT, for a reduced temperature greater than
two to within 0.03 unit up to almost solid densities.
Their cutoff parameter was not made a function of temper-
ature because of the small temperature range used in
their study.

Munarrie and Katz (27) also used an approach similar
to Zwanzig in that they used a perturbation on the hard-
sphere equation. They used a system with a pairwise-

additive intermolecular potential u(r) = (¢ ° - r-s).
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However, instead of treating the entire 12:6 potential
as the perturbation, they chose to treat the attractive
r =~ term as the perturbation. In doing this they obtained
an equation of state of the form:

m=a+3/'r+c1og'r. (26)

Thus they were one of the first to extend Zwanzig's
approach beyond the linear equation of state by approxi-
mating the higher order reciprocal temperature terms by
C log T.

When their predicted results were compared to exper-
imental results for helium, argon, and neon, they found that
n = 15 gave better results than other values for n. They
concluded that they have an equation of state with no
adjustable parameters that reliably reproduced PVT data
up to densities of 40 mole/liter and reduced temperatures
greater than three.

Frisch, et al. (16) used the same form of the
equation truncated after the second term and the same

repulsive and attractive potentials as 2wanzig, i.e.,
P/pkT = a(p) + b(P)/KT + c(P)/ (kP2 + . . .  (27)

where a(p) was the hard-sphere equation of state using

the radial distribution function of the approximate Percus-
Yevick theory. The b(p) was expressed directly as a quad-
rature of the Laplace transform of the approximate radial

distribution function which is explicitly known. The



39

solution required no inversion of the transform. They
compared their results term by term with experimental
argon data in the temperature range 0° to 150°C. They
found that the comparison of the calculated b(p) with the
experimental b(p) was poor even though they modified the
Lennafd-abnes parameters as 2Zwanzig did by the use of
cutoff parameter c¢. By varying the values of c, €, and
0 by about five percent, they correctly reproduced the
behavior of the slope but the agreement was only fair with
a mean deviation of about nine percent. They used two
values of the cutoff parameter ¢, 0.889 and 0.903, and
concluded from their results that there was a deviation of
the compressibility of argon from a linear relation in
reciprocal temperature for densities larger than 400
amagats. They also stated that they have shown their
theory to be consistent with the high temperature data
for argon, but that the great sensitivity of the results
on the location of the hard-sphere cutoff parameter, c,
limited the usefulness of the theory.

Kozak and Rice (24) used the same repulsive and
attractive potential as Zwanzig and a similar form of the
equation of state except that they called the third and

succeeding terms, fluctuation terms:

a
P * +p-]1 ,
KT = (p/pkT) , + a/T + ?zfm p . (28)

They expanded both sides of this equation to determine
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the f; in terms of the Lennard-Jones virial coefficients,
Bm. by equating equal powers of pn and obtained expressions
for each of the terms in their equation of state truncating
after f;. They eliminated ¢ from the equation of state
by requiring at equilibrium 3A/d¢ = O where § = 3. They
found that the particular £ which minimized A was dependent
only on density and not on temperature for the range of
temparature considered in their study. They used reduced
temperatures ranging from '1"'!E = 1.28 to T* = 2.74 in com-
paring with argon data and Monte Carlo results. They also
found that two £'s satisfy the condition 9A/3¢ = 0, result-
ing in two branches when £ was plotted versus reduced
density. The lower branch led to the greatest lowering
of the free energy at elevated temperatures, whereas in
the neighborhood of the critical point, the upper branch
was selected. 1In their plot of compressibility versus
reduced density, their agreement with argon data was good
at low densities and began to deviate from experiment at
reduced densities greater than 0.2. They concluded that
their theory gave good results at temperatures as low as
the critical temperature of argon, Tg = 1.26, but that
below this, the predicted equation of state deteriorated
in quality.

Barker and Henderson (1,2,3) defined a modified
potential involving three parameters; a hard-sphere diam-

eter, an inverse-steepness parameter for the repulsive
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region, and a depth parameter for the attractive region.

Their modified potential has the form:

r\-x (d+(r-a)/a], d+(R-d)/a < ¢
v(d,o,a,y:R) =< 0, 0<d+(r-d) /a<d+(0-d) /a (29)

W(R) ’ g <R

.

They derived their equation of state by expanding the
configuration integral in a double Taylor series in «
and y about the point y=a=0, which corresponds to the

hard-sphere potential:

oA dA
A=A +a(—-—) + y(-——) + . . . (30)
o ox =0 oY y=0

They set ¢ = ¥ = 1 so that the original potential u(r)
was regained. 1In one paper (2) they gave results for

- the square-well potential, and in another (3), they
gave results for the Lennard-Jones 12:6 potential. They

eliminated the term of order a by setting
(14
d = j‘o {1 - exp [-Bu(z)]laz (31)

This made 4 a function of temperature only and not
density. Por the hard-sphere radial distribution func-

tion they used the solution of the Percus-Yevick equation
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given in analytic form by Wertheim (43) for the range
d < R < 2d and interpolated from the tables of Throop
and Bearman (39) for 2d < R < 3.954. For R > 3.95d the
hard-sphere radial distribution function was approximated
by one. Thus their equation was not completely analytic.

In deriving the equation of state in the way
that they did, the first order term in ¥ was evaluated
exactly and the second order term yz was evaluated
approximately. The other second-order terms and all
higher order terms were neglected. The improvement of
their results as compared to others was due to the fact
that they have a good approximation for the second order
term. This extended downward the range of temperatures
for which their equation gave good results. They con-
cluded that their form of perturbation theory gave
excellent results at temperatures that are not too low
and good results even at the lowest temperatures that
are physically relevant for compressed gases and liquids.
But they also stated that quantitatively there were
small discrepancies with experiment and simulation

studies at low temperatures.

-

Present Perturbation Procedure

In the present perturbation procedure the equation
of state was developed as far as possible with theoretical
significance. At this point experimental data were used

to empirically determine constants that could not be
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determined explicitly with theory. The rest of this
chapter develops the final form of the theoretical
equation of state that was used to obtain the empirical
constants and final results. All detailed derivations
needed in this development are presented in Appendix C.
The results are then presented in Chapter V.

The following development is a combination of the
better features of the previous perturbation procedures.
In the present method the perturbation equation of state

takes the general form
A/NKT = Ab/NkT + cla + CZB2 + c3B3 + o e o 0 (32)

where 8 = 1/kT. Egquation (32) is the free energy equation
of state. The perturbation equation of state can also

be expressed in general form in terms of the pressure:

P/pkT = a(p) + b(p)B + c(@)B% +adaw)B> +. .., (33)

where a(p) is the hard-sphere equation of state, Pb/ka'
Equation (33) can be derived from equation (32) by 4if-
ferentiating each term in equation (32) with respect to

density and multiplying by density, i.e.,

P_ _,9A
2-pdd, (34)
and
acl
b(p) = p(-é;—)‘l‘ . (35)

The ci in equation (32) are the coefficients for the
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macroscopic compressibility case. The expressions for
these coefficients were obtained from Mansoori (26) and

are given by the following:

c1 = 2% f p u(r)go(r)rzdr (36)
co
C2 = -gkT ( f pu (r)g (r)r dr (37)
cy = 3 11’”) (6" +7"'1)f Du (r)g (r)r dr, .(38)
(1+2n)

where p is the density, o is the molecular diameter, c
is a cutoff parameter, co is the hard-sphere diameter,
n = 119%139. u(r) is any potential function, 6%%)0 i

the hard-sphere compressibility, and go(r) is the hard-
sphere radial distribution function. By making the ap-
propriate change of variables, taking the Laplace trans-
form of rgo(r), as suggested by Frisch, et al. (16) and
differentiating with respect to density, the coefficients,

as a function of density, appearing in equation (33) can

be obtained (see Appendix C for the detailed development).

b(p) = 129 [ £(s,mU, (s)ds (39)
o

c(p) = R(M[ £(s.mU,(s)ds+v(m)[ G(s)U,(s)ds  (40)
o o

d(e) =wn)[ £(s,nUy(s)ds+y(m)] G(s)us(s)ds  (41)
o o

where G(s) is the explicit Laplace transform of the
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hard-sphere radial distribution function obtained by
Wertheim (43) and by Thiele (38), £(s.n) is the -g;[pG(s)]
and is given by equation (C-3) in Appendix C, Ul(s) is
the inverse Laplace transform of the potential function,
Uz(s) is the inverse Laplace transform of the square of
the potential function, U3(s) is the inverse Laplace
transform of the cube of the potential function, and R,
V, W, and Y are coefficients that are a function of 1
only and are given by eqguations (C-32), (c-33), (c-37),
and (C-38), respectively, in Appendix C.

One of several different methods could be used
to calculate the hard-sphere equation of state, Pb/ka‘
The analytic solution of the Percus-Yevick equation ob-
tained by Wertheim (43) or Thiele (38) for the compressi-
bility equation yielded the result:

2

PO /ka = l_i_!l_.";_g_ (42)
(1-1n)

The Pade' approximate of Ree and Hoover (31) given by

2.2
p_/okT = bp (1 + 0.063507bp + 0.0173292 g ) (43)
(1 - 0.561493bp + 0.081313b%p°)

where b = 2ﬂ(co)3/3, could be used to obtain a value for
the hard-sphere equation of state. Also Mansoori (26) has
found that an average of the compressibility and pressure

equation of state given by

2 2
Po/pk'l' _1+n+ 113 - 1.57 (44)
(1-n)

yields good results. Carnahan and Starling (11) have
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derived an expression for the hard-sphere equation of
state based on an analysis of the reduced virial series.
Their equation is given by
2 3
1+"+n - (45)
(1-1)

Whichever of the four is chosen, the hard-sphere compres-

/ =
Pb’ka

sibility, (%%)o » should be determined so that it is con-
sistent with the hard-sphere equation of state that is
used.

The potential function, u(r), chosen for use in
the calculations in this thesis was one which describes

the molecules interacting according to the 12:6 potential:
u(r) = 4€l(0/r)*2 - (o/1)®) (46)

The inverse Laplace transform of this potential with the
same change of variable as used in going from equation

(36) to eguation (39) becomes

10 4
o - e 2232
c 10! c 4!

The expressions foxr Uz(s) and U3(s) are obtained after
squaring and cubing, respectively, the potential function
and taking the inverse Laplace transform. These expres-
sions and the details of the development are presented
in Appendix C.

To make the integrals appearing in equations (39),

(40), and (41) more tractable for use on a computer,
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another change of variable was made so that the range
of integration was from zero to one. The resulting
expressions for b(p), c(p)., and d(p) after the change of
variable, s = (1-Xx)/x, are given in Appendix C. 1In all
of this work, the integrations were performed numerically.
To insure that the integrals were being evaluated cor-
rectly, the interval size was continually halved and
the integrals evaluated until two successive values of
the integrals were identically the same to seven or
eight significant digits.

Equation (33) was solved for the pressure, which
was a function of temperature, density, cutoff parameter
c, €, and ¢. The parameters € and ¢ could be made adjust-
able along with ¢, but in this work, the values of € and
o were the literature values given by Hirschfelder,
Curtiss, and Bird (21). Thus for a given temperature
and density, the value of ¢ could be determined that
made the calculated pressure as close to the experimental
pressure as desired. This was done using a combination
of a half-interval search to get close to the solution,
and then a Newton-Raphson search to converge to the
solution. The test for convergence was that the cal-
culated pressure less the experimental pressure divided
by the experimental pressure was arbitrarily small, i.e.,
< 1075,

(Pearc = Pexp)/Pexp

Equation (33) was programmed so that the pressure
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could be calculated using the B term only, the B and

Bz terms, or the B, Bz, and 83 terms to see how many
terms were necessary to get the best results. The
results from using only the B term indicated that the
data were nonlinear in B and other terms were required.
The results from using the B8 and 32 terms were a distinct
improvement over the use of only one term. When the cut-
off parameter ¢ was plotted versus density at constant
temperature and versus temperature at constant density,
the resulting curves had a slight curvature and indi-
cated that c was definitely a function of both temperature
and density. This plot for ¢ versus density at various
temperatures is presented in Figure 3. The results

from using all three terms were not quite as good as
with two. The graph showed slightly more curvature

than in the previous plot. This plot is given in Figure
4. Since the addition of the third term about doubled
the computér run time and the results were not as good,
the equation of state truncated after the BZ term was
used for the remainder of the calculations. The final
form of the equation of state, using equation (42) for

the hard-sphere, was

P 2 ' 2
CALC _ linpim_ . 129 4¢ (1) + 1 16¢ )x
pkT (1-) 3 " kT ( cs) (kT) 2 ol2

x [R(n) (3) - v(n) (K)] (48)
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where I, J, and K are integrals given by equations (C-41),
(c-42), and (C-43), respectively, in Appendix C.

With the integrals in the pressure form of the
perturbation equation of state defined as they are in
eguations (C-17), (C-2%), and (C-35), the potential
function goes abruptly to infinity at the cutoff par-
ameter c. To avoid this abruptness with which the po-
tential function went to infinity, an attempt was made
to use an approach similar to that of Barker and Hender-
son (3). This required that the integrals be evaluated
between ¢ and infinity instead of between c¢, the hard-
sphere diameter, and infinity, as in equation (48). To
accomplish this, the contribution of the integrals be-
tween co and 0 could be subtracted from the result in
equation (48). Barker and Henderson (3) chose their
hard-sphere diameter so that it was a function of temper-
ature only by use of equation (31), thus making the a
term in equation (30) zero. However, the results dis-
cussed above indicated that the hard-sphere diameter, co,
was definitely a function of both temperature and density.
Therefore, instead of eliminating the a term, it was
evaluated as the contribution between zero and o.

In outline form the above changes resulted in the

following equation of state:

Pearc

PkT

= Gp - 2%po - 2%pfBy + lszyz , (49)
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where Gp is the right-hand side of equation (48) and
a, ¥, and 72 are given in Appendix C by equations (C-51),
(C-53) and (C-55), respectively. When the results using
equation (49) were compared to Barker and Henderson's
results, the agreement was quite good except at high
temperature and high density. The two approaches are
similar except that equation (49) used the macroscopic
compressibility coefficient, whereas Barker and Henderson
used the local compressibility coefficient. Wertheim's
analytic solution (43) for d<r<2d, where 4@ is the hard-
sphere diameter, was used for the hard-sphere radial
distribution function, go(r). This was possible because
Wertheim's solution in this range was valid for the
integration from co to ¢ as long as c is greater than
0.5. The advantage of equation (49) is that it is com-
pletely analytic whereas Barker and Henderson's approach
required interpolation of tabular values for go(r) for
2d < r < 3.95d and an approximation of one for go(r) for
r > 3.95d.

When equation (49) was used to determine the value
of the cutoff parameter, c, that makes the calculated
pressure equal the experimental pressure, the results
indicated that multiple values of c satisfy equation
(49). These results are presented in Figure S as a
plot of P - P

CALC EXP
cover the temperature and density range used. If there

versus c. These are examples which
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were only one solution, there would be only one place

where PbALc - kap was zero. However, from the plot

it can be seen that there are several values of c where

Pearc ~ Pexp

the double branches that appeared in Kozak and Rice's

is zero. This is somewhat analogous to

results (24). However, further study of this unexpected
result showed no consistent method of choosing values
of the cutoff parameter that were meaningful. Values of
c between 0.9 and 1.0 at various temperatures and
densities were calculated using equation (49). This
range was chosen because Barker and Henderson's results
indicated that for any of the temperatures used here, c
would be greater than 0.9 but less than 1.0. The results
of these calculations are presented in Table 1. In some
cases the iterative procedure would not converge for a
value of ¢ in this range.

To see what effect the choice of the hard-sphere
equation of state had on the results, values of the cut-
off parameter c were calculated using equation (48) with
the hard-sphere equation of state given by the Ppercus-
Yevick solution, equation (43), and by the Carnahan-
Starling expression, equation (45), for several data
points that covered the temperature and density ranges
of all of the data. These results are presented in
Table 2. A comparison of the two values of ¢ indicated

that ¢ was not greatly changed by using a different hard-

.
_—
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sphere equation of state, i.e., the range of the values
of ¢ was not decreased although the values did change
slightly. Also the sensitivity of c indicated by
ApP/Ac did not change appreciably. Therefore, equation
(48), with the Percus-Yevick hard-sphere equation of
state, was used as the basis for equation of state
calculations. The results of using this as a pertur-
bation equation of state are presented and discussed in

the next chapter.
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TABLE 1

CUTOFF PARAMETER RESULTS FOR EQUATION (49)

USING AVERAGE HARD-SPHERE EQUATION

Temperature Pressure Density Cutoff
°K atm. gm/cc Parameter

623.294 51.7135 0.01604 DC*
623.294 377.366 0.10428 0.964852
473.213 38.7272 0.01604 DC
473.213 392.389 0.14438 0.966591
323.151 25.6660 0.01604 1.074710
323.151 162.061 0.11230 DC
323.151 322.698 0.20053 0.971119
233.522 40.4539 0.04095 0.957960
234.417 80.3681 0.10357 DC
236.577 184 .358 0.23967 0.975902
234,397 676.072 0.35838 1.001588 ‘
114.530 8.8265 0.41933 1.013021
114.530 308.888 0.44293 1.016288

* Didn't converge



TABLE 2

COMPARISON OF CUTOFF PARAMETER c OBTAINED
FROM TWO HARD-SPHERE EQUATIONS

CS

%‘ P [ c c A PY A CS

K Atm. an/cc EP z%
623.294 51,7135  0.01604  0.885059  0.885124  7.22 6.76
623.294 377.366 0.10428  0.816059  0.816331  2.11(103)  2.08(10%)
473.213  38.7272  0.01604  0.901740  0.901687  4.52 4.51
473.213  392.389 0.14438  0.804645  0.805155  6.91(10°)  6.79(10%)
323.151  25.6660  0.01604  0.918250  0.918276  3.37 3.37
323.151 162.061 0.11230  0.838988  0.839378  1.99(10%)  1.96(10°)
323.151 322.698 0.20053  0.790861  0.791892  2.48(10%)  2.40(10%
233.522  40.4539  0.04095  0.902815  0.902909 43.8 43.6
234.417 80.3681 - 0.10357  0.857768  0.858154  1.20(10°)  1.18(10°)
236.577 184.358 0.23967  0.783103  0.784677  5.19(10%)  4.96(10%)
234.397 676.072 0.35838  0.731836  0.736259  4.18(10°)  3.81(10°)
114.530 8.8265  0.41933  0.722529  0.727388  1.19(10%)  1.02(10%)
114.530  308.888 0.44293  0.712844  0.718016  1.76(10%)  1.47(10%)
PY Percus~Yevick Equation (42)

cs Carnahan-Starling Equation (45)

LS



CHAPTER V
EQUATION OF STATE: RESULTS

Until the work of Barker and Henderson (3), the
proposed perturbation equations of state were designated
as high temperature equations of state for the noble
gases. However, Barker and Henderson's good approxi-
mation for the second order term in reciprocal temper-
ature made the perturbation theory feasible at temper-
atures lower than the critical point and for the liquid
state. In this work methane data were chosen to use
in conjunction with equation (48) because the methane
molecule is more complicated than the noble gases.
Methane would therefore be a more severe test of an
equation of state than the noble gases. The resulting
equation to predict the properties for methane, with
appropriate changes in the constants, would also be an
acceptable equation of state for predicting the proper-

ties of the noble gases.

Selection of Data

Methane was selected because of the availability
of data over a wide range of temperature with an approxi-

mately even distribution of the data, i.e., there were

58
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no large gaps for which data were not available. Douslin

et al. (15) present pure component data in the temper-

ature range 273° to 623°K, for pressures between 16 and
400 atmospheres, and at densities between 0.012 and 0.201
grams/cc. Vennix (41) gives pure methane data in the
region 150° to 275°K, 15 to 676 atmospheres, and 0.041

to 0.360 grams/cc. Van Itterbeek et al. (40) have

liquid methane data in the region 114° to 190°K, 8 to

312 atmospheres, and 0.262 to 0.443 grams/cc. These
three data sources had approximately seven hundred data
points. But because of computer size limitations and

the excessive run times that would be required for using
all of the data, only about two hundred of the data
points were used in determining the equation of state
constants. However, the two hundred points used were
selected so that they were representative of the complete

temperature and density ranges of the seven hundred data

points.

Data Treatment Procedure

Equation (48) was solved for the pressure explic-
itly, and then the experimental pressure was subtracted

from both sides to give an equation of the form
£(T.P,p ; c) =0 (50)

This equation was solved at each experimental data point

for the value of c that made equation (50) an identity.
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The method of solution was to use a half-interval search
to get close to the answer, and then switch to a Newton-
Raphson search to converge more quickly to the solution.
The values of c were plotted versus temperature and den-
sity and found to have a slight curvature. However,
when c¢ was plotted versus various functions of temper-
ature and density, no simple functionality was found
that gave good results in the liquid and dense gas
region at low temperature. From the plots it was appar-
ent that c was definitely a function of both temperature
and density. The cutoff parameter was then curve fitted
with a general least squares procedure using orthonormal
functions. This procedure, developed by Hall and Canfield
(19), is called ORNOR for convenience in making refer-
ence Lo it. The form of the equation selected for which
the best constants were to be chosen in a least squares

sense is given by

3 3
n
¢ = mgb ngb amnme : (51)

The ORNOR procedure is very flexible in that it
allows one to select whatever functionality is to be
tested and picks the best fit based on the best fit
criteria as discussed by Hall and Canfield (19). It
also has a weighting factor in it so that the data can
be weighted if necessary. When ORNOR was first used in
trying to fit c versus temperature and density, the

weighting factors were taken to be one. A comparison
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was then made between the calculated pressure, based
on the value of c calculated using equation (51) with
the coefficients selected by ORNOR, with the experimental
pressure. This gave excellent results at high tempera-
ture and low density but poor results at low temperature
and high density. Thus, it was necessary to select a
series of weighting factors that would not appreciably
affect the results at high temperature and low density,
but that would improve the results at low temperature and
high density by giving more emphasis or weight to these
data points in the curve-fitting procedure.

After studying the results obtained using a
weighting factor of one, it was determined that a com-
parison of the difference between equation (50) at
convergence and equation (50) one trial before convergence
with the difference between the value of ¢ at convergence
and the value of c one trial before convergence gave a
good indication of when good results in the comparison
of the calculated pressure with the experimental pressure
would be obtained. This ratio, AP/Ac, was small in the
region where good results were obtained and gradually
increased until it became quite large in the region of
poorest agreement between the calculated and the ex-
perimental pressures. This ratio was normalized by
dividing it for each point by the highest value of AP/Ac. ..
The weighting factors were then taken as the square of the

normalized ratios.
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The results obtained using this set of weighting
factors gave errors as large as six percent for two of
the data points. Both of these points were in the cate-
gory of high density and low pressure from Van Itterbeek
et al.'s data at temperatures well below the critical
temperature of methane. It was determined that the
percent errors could be reduced significantly just by
changing the densities within experimental error.

This indicated that the calculated pressures in this
region were guite sensitive to how accurately the
experimental densities are determined. For points in
the critical region, it was determined that the calcu-
lated pressures agreed reasonably well with the ex-
perimental pressures, but that the calculated densities
exhibited significant error. The results based on the
pressure-dependent weighting factors are summarized in
Tables 3 and 4.

This set of weighting factors based on pressure
improved the results, but the range of the weighting
factors was quite large. Since there was greater ex-
perimental error in the determination of density than in
pressure, another set of weighting factors based on
density, (Ap/bc)z, was tried. These weighting factors
were obtained by incrementing the density by 0.0001p to
get &p and using the combination of half-interval and

Newton-Raphson searches to calculate a new cutoff parame-
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ter c at the new density to get a Ac. The square of the
ratio, &p/Ac, at each data point was used as the set of
weighting factors. The range of these weighting factors
was several orders of magnitude less than the (A:P/Ac)2
weighting factors.

With (Ap/Ac)2 as weighting factors, the coef-
ficients in equation (51) were determined using ORNOR.
These coefficients are presented in Table 5. The cal-
culated density was determined based on the bhest set of
coefficients. Since equation (48) cannot be solved
explicitly for density, a Newton-Raphson procedure was
used to get a calculated density with the experimental
density as the first guess. This allowed a comparison
of the calculated and experimental densities for each
data point. The results of this comparison are pre-
sented in Table 6 as percent error deviation from the
experimental density. The number of data points in
various density percent error ranges is given by the

distribution presented in Table 7.

Equation of State Comparison
Vennix and Kobayashi (42) have presented an

equation of state for methane over the temperature range
130°K to 625°K of the form

P =2+ BT + cefT + pef’/T (52)

where the parameters A through F were functions of

density. When these density dependencies are determined,



TABLE 3

COEFFICIENTS IN EXPANSION FOR ¢ FOR PRESSURE~

DEPENDENT WEIGHTING "FUNCTION

a Coefficient

mn

2,0 0.9545166049

ag, -1.183946501 (10~ %)
al, -0.4202296521

a, -2.2201321019 (10" 2)
a5, -0.3568076293

a,, 5.587394360 (10™°)
ag, 5.230952723 (10~ %)
a, 2.838548311 (10" %)
a,, 1.382944748 (10" %)
250 0.3789722080

ay, -2.555974520 (10~ )
a,, -1.101158536 (10~ °)
353 -2.563357752 (10~ 11)
a,4 -9.606893106 (10~ 19)
a,, ~7.337450048 (10~ )
a 1.001863633 (10" %)
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TABLE 4

DISTRIBUTION OF PERCENT ERROR IN CALCULATED
PRESSURE BASED ON PRESSURE -DEPENDENT
WEIGHTING FUNCTION

Brror Range

Number of Points

% in Error Range
0.00 - 0.05 25
0.05 - 0.10 18
0.10 - 0.15 28
0.15 - 0.20 31
0.20 - 0.30 17
0.30 - 0.40 17
0.40 - 0.50 13
0.50 - 0.75 17
0.75 - 1.00 10
1.00 - 1.50 7
1.50 - 2.00 9
2.00 - 3.00 3
3.00 - 5.00 4
5.00 - 7.00 2
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TABLE 5

COBFFICIENTS IN EXPANSION FOR ¢ FOR DENSITY-

DEPENDENT WEIGHTING FUNCTION

amn Coefficient
250 0.9431335622

agy 6.787113475(10-6)
ayo -0.2546629657

a;; -3.489001609 (10" )
a0 ~0.7267769659

a,, 6.528846879 (10™ °)
a,, ~1.771537368 (10" ')
a,, 3.778138717 (10~ °)
a,, 1.122410498 (10 )
a0 0.6044837121

a,, -1.905725456 (10~ °)
a,, -1.801666731 (10" °)
2,5 1.139291111 (10~ 19)
a,, ~1.186370782 (10" 2)
a,, ~1.083679821 (10~ 8)
a ~2.393723741 (10" %)
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DENSITY ERRORS FOR EXPERIMENTAL METHANE DATA

Temperature Pressure Density Density

°K atm gm/cc Brror*
623.294 51.7135 0.01604 0.02758
623.294 104.859 0.03209 0.02894
623.294 132.137 0.04011 0.01018
623.294 188.443 0.05615 -0.00646
623.294 217.607 0.06417 0.00189
623.294 247.584 0.07219 0.00660
623.294 310.315 0.08823 0.01285
623.294 377.366 0.10428 -0.04519
598.285 49.5510 0.01604 0.01020
598.285 100.309 0.03209 0.02838
598.285 152.779 0.04813 0.00592
598.285 207.506 0.06417 0.01097
598.285 265.158 0.08021 0.01970
598.285 326.437 0.09626 0.02908
598.285 391.861 0.11230 -0.00391
573.274 47.3886 0.01604 0.00858
573.274 95.7579 0.03209 0.02428
573.274 145.577 0.04813 0.01398
573.274 197.433 0.06417 0.00362
573.274 251.930 0.08021 0.00070
573.274 309.736 0.09626 0.01212
573.274 371.469 0.11230 -0.00063
548.260 45,2272 0.01604 0.00109
548.260 114.629 0.04011 -0.00446
548.260 162.627 0.05615 -0.00870
548.260 212.701 0.07219 -0.02194
548.260 265.369 0.08823 -0.00220
548.260 321.402 0.10428 0.01534
548.260 381.550 0.12032 -0.03052

*Calculated by:

% Brror =

100 (Ppyp = Pearc)/Pexp
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TABLE 6 (CONTINUED)

Temperature Pressure Density Density
°K atm gm/cc Error
523.245 45.0621 0.01604 -0.00231
523.245 86.6533 0.03209 -0.00161
523.245 131.203 0.04813 -0.01225
523.245 177.253 0.06417 -0.01822
523.245 225.361 0.08021 -0.02117
523.245 276.096 0.09626 0.00714
523.245 330.194 0.11230 0.02064
523.245 388.486 0.12834 -0.02947
498.229 40.8956 0.01604 0.01178
489.229 82.0866 0.03209 -0.01099
498.229 123.999 0.04813 -0.03385
498.229 145.375 . 0.05615 -0.02732
498.229 212.021 0.08021 -0.02171
498,229 259.190 0.09626 0.01407
498.229 309.437 0.11230 0.02120
498.229 335.895 0.12032 0.03247
498.229 392.131 0.13636 -0.01044
473.213 38.7272 0.01604 -0.01186
473.213 77.5132 0.03209 -0.02215
473.213 116.775 0.04813 -0.04566
473.213 156.955 0.06417 -0.02327
473.213 198.575 0.08021 0.00532
473.213 242.212 0.09626 0.03457
473.213 288.562 0.11230 0.03516
473.213 338.389 0.12834 0.02534
473.213 392.389 0.14438 -0.00586
448,197 36.5563 0.01604 -0.01607
448.197 72.9238 0.03209 -0.02381
448.197 146.794 0.06417 -0.04515
448.197 205.003 0.08823 -0.00313
448.197 246,246 0.10428 -0.00795
448.197 313.265 0.12834 0.00250
448.197 389.120 0.15241 -0.04958
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TABLE 6 (CONTINUED)

Temperature Pressure Density Density

°K atm gm/cc Error
423.183 34.3851 0.01604 -0.02591
423.183 68.3413 0.03209 -0.04839
423.183 102.263 0.04813 -0.07591
423.183 136.573 0.06417 -0.05105
423.183 171.732 0.08021 -0.00827
423.183 208.271 0.09626 0.02113
423.183 246.763 0.11230 0.01722
423,183 287.947 0.12834 -0.00438
423.183 332.497 0.14438 0.01293
423.183 381.333 0.16043 0.03368
398.170 32.2098 0.01604 -0.01299
389.170 63.7372 0.03209 -0.05780
398.170 79.3594 0.04011 -0.07414
398.170 94.9708 0.04813 -0.09023
398.170 110.607 0.05615 -0.08679
398.170 158.249 0.08021 -0.02527
398.170 191.168 0.09626 0.03162
398.170 225.715 0.11230 0.02772
398.170 282.021 0.13636 -0.02506
398.170 345.911 0.16043 0.02009
398.170 394.299 0.17647 0.03704
373.160 30.0335 0.01604 -0.04336
373.160 59.1366 0.03209 -0.09305
373.160 87.6730 0.04813 -0.12927
373.160 116.039 0.06417 -0.09061
373.160 144.666 0.08021 -0.02018
373.160 174.002 0.09626 0.04849
373.160 204.636 0.11230 0.02294
373.160 236.939 0.12834 0.02271
373.160 271.832 0.14438 -0.01064
373.160 0 310.141 0.16043 -0.00972
373.160 352.625 0.17647 0.06335
373.160 400.624 0.19251 0.07090
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TABLE 6 (CONTINUED)

Temperature Pressure Density Density
°K atm gm/cc Error
348.153 27.8521 0.01604 -0.04859
348.153 67.4960 0.04011 -0.13367
348.153 118.352 0.07219 -0.08372
348.153 156.818 0.09626 0.01834
348.153 197.194 0.12032 0.03606
348.153 '257.611 0.15241 -0.11932
348.153 310.911 0.17647 -0.04285
348.153 375.024 0.20053 0.12281
323.151 25.6660 0.01604 -0.04831
323.151 49.8695 0.03209 -0.12423
323.151 72.9595 0.04813 -0.18930
323.151 95.3217 0.06417 -0.16998
323.151 117.357 0.08021 -0.08832
323.151 139.414 0.09626 0.05840
323.151 162.061 0.11230 0.08323
323.151 185.682 0.12834 0.04601
323.151 210.964 0.14438 -0.09330
323.151 238.376 0.16043 -0.16349
323.151 268.975 0.17647 -0.19090
323.151 303.533 0.19251 -0.06695
323.151 322.698 0.20053 0.02558
303.152 23.9153 0.01604 -0.05187
303.152 46.1416 0.03209 -0.12972
303.152 67.0516 0.04813 -0.24821
303.152 96.7208 0.07219 -0.21420
303.152 115.913 0.08823 -0.06881
303.152 135.131 0.10428 0.07443
303.152 154.733 0.12032 0.17698
303.152 175.412 0.13636 0.07751
303.152 197.499 0.15241 -0.03946
303.152 221.865 0.16845 -0.20059
303.152 249,205 0.18449 -0.23757
303.152 280.535 0.20053 -0.11705
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TABLE 6 (CONTINUED)

Temperature Pressure Density Density
°K atm gm/cc Errorxr
273.160 21.2760 0.01604 -0.01877
273.160 31.1261 0.02406 -0.06343
273.380 50.3899 0.04088 -0.21215
273.160 66.3433 0.05615 -0.28362
273.160 82.0686 0.07219 -0.26355
273.160 104.298 0.09626 0.03653
273.171 121.889 0.11561 0.22279
273.160 133.639 0.12834 0.28445
273.160 149.119 0.14438 0.21013
273.160 174.687 0.16845 -0.06247
272.698 198.417 0.18803 -0.37911
273.153 250.234 0.21977 -0.21161
275.155 297.529 0.23921 0.23871
272.981 360.223 0.26397 0.66043
272.927 485.083 0.29535 -0.26734
252.821 45.2967 0.04092 -0.15587
251.363 93.7745 0.10348 0.04883
252.875 138.551 0.16341 0.26231
253.272° 161.843 0.18821 -0.25896
252.960 180.949 0.20581 -0.48874
253.099 200.350 0.21999 -0.45871
253.056 232.881 0.23947 -0.15818
254.520 294.129 0.26422 0.48140
253.114 395.112 0.29564 0.72610
253.816 517.995 0.31954 -0.97303
233.522 40.4539 0.04095 -0.03032
234.417 80.3681 0.10357 -0.00397
236.376 110.305 0.15752 0.69385
233.137 117.563 0.17865 0.44593
233.379 124.326 0.18839 0.16409
233.248 150.885 0.22020 ~0.52946
236.577 184,358 0.23967 -0.43262
232.788 ~ 215.494 0.26450 0.03303
233.055 © 256.563 0.28109 0.38677
233.371 303.659 0.29594 0.69305
235.756 534.466 0.33293 -0.82565
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TABLE 6 (CONTINUED)

Temperature Pressure Density Density
°K atm gm/cc Brror

208.541 59.4822 0.10369 -0.16463
208.191 62.0863 0.11597 -0.32630
209.262 84.9837 0.20625 0.81580
207.164 86.2956 0.22048 0.39180
207.59%4 99,2583 0.24001 -0.25010
207.737 124.523 0.26483 ~0.34911
208.789 155.366 0.28144 -0.22174
208.181 185.059 0.29632 0.07791
188.190 52.5620 0.26187 0.71910
188.190 71.7925 0.28353 -0.18303
188.190 87.2775 0.29456 -0.30152
188.190 117.948 0.30987 -0.31172
188.190 159.341 0.32489 -0.01824
188.190 214.493 0.33930 0.22512
188.190 287.925 0.35382 0.56381
172.790 26.5665 0.30327 0.21117
172.790 42.5451 0.31353 -0.22178
172.790 64.6694 0.32387 -0.43221
172.790 92.7263 0.33390 -0.45077
172.790 127.268 0.34355 -0.37557
172.790 167.238 0.35305 -0.10199
172.790 216.219 0.36257 0.19480
172.790 275.498 0.37225 0.54670
150.750 30.6120 0.36282 -0.11539
150.750 74.1346 0.37166 -0.24066
150.750 126.397 0.38021 -0.22126
150.750 187.514 0.38864 -0.05963
150.750 262.917 0.39744 0.20526
131.000 14.8269 0.39454 0.12085
131.000 78.3059 0.40317 -0.02126
131.000 155.673 0.41042 -0.31203
131.000 246.038 0.41853 -0.20602
114.530 8.8265 0.41933 1.17066
114.530 74 .4346 0.42531 0.38330
114.530 131.507 0.43003 0.01344
114.530 229.401 0.43740 -0.25004
114.530 308.888 0.44293 -0.25278
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TABLE 7

DISTRIBUTION OF PERCENT ERROR IN CALCULATED DENSITY
BASED ON DENSITY-DEPENDENT WEIGHTING FUNCTION

Error Range Number of Points
% in Error Range

0.00 - 0.05 101

0.05 - 0.10 24

0.10 - 0.15 10

0.15 - 0.20 11

0.20 - 0.30 26

0.30 - 0.40 10

0.40 - 0.50 7

0.50 - 0.75 8

0.75 - 1.00 3

1.00 - 1.25 1l
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the final equation has tweptybfive constants, which are
determined empirically from experimental data. They
used the data of Vennix (41l) and Douslin et al. (15),
but do not use the data of van Itterbeek et al. (40).
They state that there are serious discrepancies in the
low temperature data of Van Itterbeek et al., and that
this data set has been remeasured but has not yet appeared
in the literature. fTheir equation of state predicted
pressures that varied from the experimental pressure by
an average absolute error of 0.04% with no deviation
greater than 0.6%.

The present equation of state has sixteen constants
in the expression for c. This equation predicts den-
sities that vary from the experimental density by an
average absolute error of 0.2% with a maximum error of
1.17%. These errors are not as small as those using
the Vennix-Kobayashi equation with twenty-five constants.
However, the present equation éonstants were derived
using the Van Itterbeek et al. data as it now appears in
the literature. When the revised data are presented, the
cutoff parameter constants can be redetermined with an
expected increase in the accuracy of predicting results.
Also, a different form of the exptession for ¢ might

improve the results appreciably.

Conclusions

The equation of state presented in this thesis
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is a preliminary look at the feasibility of using a
perturbation approach with empirically determined constants
to represent VT data over a wide temperature range that
includes both the gas and liquid states. A survey of

the results in Table 4 indicates that this approach

shows promise. As the equation stands now, it is adequate
for prediction in cases where extreme accuracy is not
required. This reduced accuracy is to a great extent

due to the discrepancies of the Van Itterbeek ot al.

low temperature data. When these data as presented in
the literature were plotted, discrepancies much greater
than can be attributed to reasonably expected experimen-
tal error were observed.

There are several possibilities for improving
the results. The expression for the cutoff parameter
could be reformulated using an approach that system-
atically handles the treatment of an expression that is
a function of two variables. An approach such as this
might reduce the number of constants required to ad-
equately express c over the entire temperature range.
Also, the two parameters € and ¢ could be allowed to
vary in the curve-fitting procedure, instead of fixing
their values as was done here. A combination of these
changes might in the final analysis give the greatest
accuracy using this perturbation approach in predicting

PVT behavior.



CHAPTER VI
DATA AND APPLICATIONS

The results of the treatment of the data are
presented in this chapter. A discussion of the three gas
analysis methods used to determine the composition of the
gases is given so that a comparison can be made and the
one that gives the most accurate results can be chosen.
The reliability of the data is given in terms of the dis-
crepancies between the experimental points from the fitted
curves. The optimum values of the parameters that resulted
in the best fit of the data are given in terms of the
apparatus constants and the virial coefficients. Also,

a comparison of results with other investigators is given

for data where other values are available in the literature.

Gases Used
The helium“usqg in thié work was Grade-A helium
supplied by the U. S. Bureau of Mines and was selected for
its high purity. The lower portion of Table 8 gives the
Bureau of Mines composition analysis for helium with the
total impurities present amounting to 1.7 parts per
million. The argon was Matheson's prepurified grade

having a quoted purity of 99.998 mole percent. The helium-

76
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argon mixtures were prepared by the Matheson Company in
size 1-A cylinders. Both the pure argon and the mixtures
were the same ones used by Blancett (5) in his earlier
work in this laboratory.

In addition to the composition analysis supplied
by Matheson, an analysis of samples of both pure components
and all mixtures was made by the U. S. Bureau of Mines -
Helium Research Center in Amarillo, Texas. These two
sets of values were checked by a molecular weight deter-
mination in this laboratory. The method was similar to
that described by Canfield (8). The molecular weights of
the mixtures were determined by using a constant temper-
ature bath that was set up adjacent to the Burnett appa-
ratus described in Chapter III. The bath fluid was air
and the temperature was controlled at 50°C by using a small
heating element that was activated by a Hallikainen Ther-
motrol with proportional plus reset control. The tempera-
ture was determined using a Leeds and Northrup platinum
resistance thermometer in conjunction with the G-2 Mueller
Bridge described in Chapter III. A short run of 1/8 inch
copper tubing connected the sample bomb inside the temper-
ature bath with the Burnett apparatus so that the dead
weight gages could be used to accurately measure the
pressure.

After the temperature in the bath had been constant

for several hours, the sample bomb was purged with the
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mixture that was being studied by pressuring the bomb,

venting, and evacuating it three or more times. The

sample bomb was then pressured with the sample gas to
approximately 250 psi and a valve in the neck of the bomb
was closed from outside the temperature bath using a
specially designed rod that extended into the bath. When
the temperature had restabilized, the pressure was measured
using the piston gages. The bomb was then carefully
weighed several times over a period of several hours

using a 300 gram capacity Right-A-Weigh analytical balance
made by William Ainsworth and Sons, Inc. At each weighing
the temperature and barometric pressure were recorded in
addition to the weight, so that buoyancy corrections

could be made. The mass of the gas in the bomb was then
determined by subtracting the weight of the bomb empty from
the weight of the bomb full.

The volume of the bomb was determined by assuming
that the argon was pure. Equation (53) was then solved
for the volume, and this volume was used in determining
the molecular weights of the mixtures. Shana'a (33),
who had the bomb constructed, gives the change in volume
due to an increase in the internal pressure. The com-
pressibility factor was determined at 50°C using data
presented by Blancett (5) for these same mixtures. A
Newton-Raphson procedure was used to determine the com-

pressibility factor for the measured pressure by comparing
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guesses of compressibility factors with those compressibil-
ity factors calcﬁlated using the virial coefficients
presented by Blancett (5) until the values differed by
less than 0.00001. This usually required only one or two
iterations to converge depending on the initial guess.
Thus, the temperature, pressure, volume, mass, and com-
pressibility factor were known. The molecular weight of

the mixtures could be calculated by

_ ZmRT
Mivix = "v ° (33)

The mole fraction argon was then determined by

*ar T :Mix-': e (54)
Arx He

The gas compositions determined by these three
procedures are summarized in Table 8. The data in this

thesis are based on the U. S. Bureau of Mines analysis.

TABLE 8
*
HELIUM-ARGON MIXTURE COMPOSITIONS

Mixture Molecular Weight U.S. Bureau Matheson
of Mines

A 79.86 80.00 79.70

B 59.31 59.35 59.40

C 40.96 41.05 40.20

D 21.85 21.99 22.00

*All entries are mole percent helium.
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Analysis of Impurities in Helium:

Component Amount, parts per million
HZO 1.0
Ne 0.4
N, 0.2
02 0.1

Total 1.7 ppm

Experimental Data

The compressibility factors determined in this
work are presented in Tables 9 through 31, where they are
listed with the corresponding experimental and calculated
pressures and the pressure deviations. Each table gives
the optimal results for one isocomp-isotherm. The com-
pressibility factor is presented as calculated from the
Burnett analysis, equation (13), and from the virial
expansion, equation (55), along with the deviation between
the two. The deviations printed are sometimes not the
exact difference between pressures or between compressibil-
ity factors because of truncation error in the computer
calculations. The estimated standard errors for each
pressure and for each compressibility factor are also
tabulated. These estimates were calculated using equations
(D-7) and (D-8) of the procedure described in Appendix D.

The cell constants and run constants for the two

runs are presented in the second part of the tables. The

o3
<



TABLE 9

EXPERIMENTAL AND CALCULATED RESULTS FOR

100.00% HELIUM AT -90°C

PLEXP) P(CALC) DEV. STANDARD Z(BURNETT) Z{(VIRIAL) DEvV. STANDARD
ATM. ATM. IN P ERROR 'IN P IN 2 ERROR 1IN 2
675.3889 675.3842 0. 0047 0.0278 1.51136 1.51135 0.00001 0.00024
368.3178 368.3276 -0.0097 0.0128 1.28798 1.28801 -0.00003 0.00020
214.1958 214.1846 0.0113 0.0052 1.17039 1.17033 0.00006 0.00014
129.2930 129.2894 0.0036 0.0028 1.10385 l.10382 0.00003 0.00012
79.7981 19.7974 0.0007 0.0015 1.06448 1.06447 0.00001 0.00010
49.9187 49,9220 -0.0033 0.0009 1.04041 1.04048 -0.00007 0.00009
31 .4930 31.4948 -0.0018 0.0006 1.02554 1.02560 -0.00006 0.00008
19.971 19.9743 -0.0001 0.0004 1.01626 1.01626 -0.00001 0.00007
12.7103 12.7100 0.0003 0.0003 1.01038 1.01036 0.00002 0.00005
8.1045 8.1047 -0.0002 0.0002 1.00658 1.00661 -0.00003 0.00005
5.1751 S.1751 0. 0000 0.0002 1.00423 1.00422 0.00001 0.00006
3.3076 3.3072 0. 0004 0.0001 1.00283 1.00270 0.00013 0.00008
517 .5289 517.5330 -0.0041 0.0176 1.39830 1.39831 -0.00001 0.00022
291 .2623 291.2567 0.0055 0.0073 1.22968 1.22966 0.00002 0.00016
1724757 172.4837 -0.0080 0.0042 1.13776 l1.13782 -0.00005 0.00012
105.2434 105.2465 -0.0030 0.0023 1.08473 1.08476 -0.00003 0.00011
653857 65.3845 0.0013 0.0012 1.05294 1.05292 0.00002 0.00010
41.0726 4l1.0711 0.0015 0.0008 1.03338 1.03335 0.00004 0.00009
25 9776 25,9769 0. 0007 0.0005 1.02116 1.02113 0.00003 0.00008
16.501 8 16,5013 0. 0005 0.0004 1.01347 1.01344 0.00003 0.00006
10.5111 10.5109 0.0002 0.0002 1.00859 1.00857 0.00002 0.00005
6.7072 6.7069 0.0003 0.0002 1.00552 1.00547 0.00005 0.00005
4.2840 4.2843 -0.0003 0.0001 1.00342 1.00350 -0.00008 0.00007
2.738 4 2.7388 -0.0004 0.0001 1.00209 1.00224 -0.00015 0.00009

18




TABLE 9 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
Atl) 446.8739676 0.0712413
Atl2) 370.1130478 0.0545304
N(1) 1.5623974 0.0000265
N 2) 1l.5623632 0.0000251
82} 0.12271634D 02 0.279345780-01
B(3) 0.12369844D 03 0.16045562D0 01
8(4) 0.14105876D 04 0.36202677D 02

BFC :=0.579070-02

z(

Pp

- Pc)=0.377050-04

¢8



TABLE 10

EXPERIMENTAL AND CALCULATED RESULTS FOR

80.00% HELIUM AT -90°C

PLEXP) PLCALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEVe. STANDARD

ATM. ATNM. INP ERROR IN P IN 2 ERROR IN Z
© 6762770  676.2771 -0.0001 0.0202 1.57663 1.57663 -0.00000 0.00026
353.6133 353.6197 -0.0064 0.0091 1.28825 1.28827 -0.00002 0.00019
203 .3839 203.3851 -0.0012 0.0037 1.15774 1.15775 =0.00001 0.00015
122.7151 122.7113 - 0.0038 0.0020 1.09144 1.09140 0.00003 0.00012
759150 75.9133 0.0017 0.0012 1.05493 1.05491 0.00002 0.00010
47.6138 41.6132 0. 0007 0.0007 1.03376 1.03375 0.00001 0.00009
30.0997 30.1003 -0.0006 0.0004 1.02103 1.02105 -0.00002 0.00008
19.118 4 19.1186 -0.0002 0.0003 1.01324 1.01325 <-=0.00001 0.00007
12.1779 12.1782 -0.0003 0.0002 1.00837 1.00839 -0.00002 0.00005
T.7709 - TeT?ll  =0.0002 0.0001 1.00531 1.00533 -0.00002 0.00005
4.9643 4.9643 -0.0001 0.0001 1.00338 1.00340 -0.00002 0.00005
3.1738 3.1736 0. 0003 0.0001 1.00225 1.00217 0.00008 0.00006
511.0311 $11.0300 0.0011 0.0142 1.42890 1.42890 0.00000 0.00022
280.0519 280. 0424 0.0095 0.0062 1.22360 1.22356 C.00004 0.00019
164 .8747 164.8821 -0.0074 0.0031 1.12557 l1.12562 -0.00005 0.00014
100.6917 100.6902 0.0015 c.0016 1.07403 1.07401 0.00002 0.00011
62 «697 4 62.7004 -0.0030 0.0009 1.04488 1.04493 -0.00005 0.00010
39.4733 39.4730 0.0003 0.0006 1.02781 1.02780 0.00001 0.00009
25.0091 25.0091 -0.0000 0.0004 1.01741 1.01742 -0.00000 0.00008
15.90617 15.9060 0.0007 0.0003 1.01104 1.01099 0.00004 0.00006
10.1402 10.1402 0.0000 0.0002 1.00698 1.00697 0.00000 0.00005
64762 64739 0.0003 0.0001 1.00449 1.00444 0.00005 0.00004
4.1369 4«1370 -0.0000 0.0001 1.00283 1.00283 -0.00000 0.00005
26449 26452 -0.0002 0.0001 1.00172 1.00181 -0.00009 0.00007

£8



TABLE 10 (CONTINUED)

PARAMETER VALUE STANDAROD
ERROR
All) 428.9372836 0.0685960
AL 2) 357.6387542 0.0562270
N(1) 1< 5623644 0.0000247
N(2) 1.5623731 0.0000254
Bl2) 0.10246538D- 02 0.398679530-01
8(3) 0.24083183D 03 0.43904148D0 01
8(4) 0.274406130 04 0.232177970 03
B(S) 0.364628610 05 0.395081330 04

8FC =0.,33260D-02

z (PE - Pc)=—.426200—05
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TABLE 11

EXPERIMENTAL AND CALCULATED RESULTS FOR

59.35% HELIUM AT -90°C

Pt EXP) PICALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM. ATM. INP ERROR IN P IN 2 ERROR 1IN 2
671.2619 671.2617 0.0002 0.0406 1.57971 1.57971 0.00000 0.00074
330.8265 330.8239 0.0026 0.0178 l.21616 1.21615 0.00001 0.00051
189.903 17 189.9044 -0.0007 0.0079 1.09040 1.09040 -0.00000 0.00043
116.1201 116.1140 0.0061 0.0044 1.04136 1.04131 0.00005 0.00035
- T2 8561 12.8578 -0.0017 0.0024 1.02046 1.02048 -0.00002 0.00028
46 .2121 46.2118 0.0004 0.0014 1.01091 1.01091 0.00001 0.00024
294489 29.4494 -0.0005 0.0009 1.00613 1.00615 =-0.00002 0.00021
18.8063 18.8086 -0.0023 0.0006 1.00349 1.00361 -0.00012 0.00018
12.0250 12.0258 -0.0008 0.0004 1.00212 1.00218 -=0.00007 0.00015
T 697 T7.6936 0.0011 0.0003 - 1.00L49 1.00135 0.00014 0.00011
49240 4.9237 0.0004 0.0002 1.00091 1.00084 0.00007 0.00010
341516 3.1516 0.0000 0.0002 1.00053 1.00053 0.00000 0.00013
495.5121 495.5130 -0.0009 0.0296 l1.38761 1.38761 -0.00000 0.00062
26303652 263.3676 -0.0024 0.0140 l.15211 l.15212 -0.00001 0.00045
155.9881 155.9887 -0.0006 0.0062 1.06591 1.06592 -0.00000 0.00039
96.6011 96.6043 -0.0032 0.0031 1.03108 1.031t2 -0.00003 0.00031
60.9325 60.9340 -0.0015 0.0021 1.01586 1.01589 -0.00003 0. 00026
38.7362 38.7339 0.0023 0.0012 1.00873 1.00866 0.00006 0.00023
24 .7092 24,7076 0.0016 0.0008 1.00503 1.00497 0.00006 0.00020
15.7876 15.7868 0.0008 0.0006 1.00301 1.00296 0.00005 0.00017
10.0958 10.0955 0.0002 0.0004 1.00183 1.00180 0.00002 0.00014
6 .4580 6.4591 -0.0011 0.0003 1.00095 1.00112 -0.00017 0.00011
41337 4.1336 0.0002 0.0002 1.00075 1.00070 0.00004 0.00010
26456 2.6457 -0.0002 0.0002 1.00038 1.00044 -0.00006 0.00014

8



TABLE 11 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
All) 424.9274677 0.1969315
At2) 357.0970392 0.1559100
NG1) 1.5617856 0.0000690
N(2) 1.5619351 0.0000664
8(2) 0.24650806D 01 0.140813270 00
8€(3) 0.32878934D 03 0.24469097D 02
Bl(4) 0.13795749D 05 0.215101680 04
8(5) -0.28605727D 06 0.83002474D 05
8té6) 0.653748800 07 0.117925270 07

BFC =0.148890-01

z (PE -

o) =—+10394D-05

98




TABLE 12

EXPERIMENTAL AND CALCULATED RESULTS FOR

41.05% HELIUM AT -90°C

PLEXP) P(CALC) DEV. STANDARD Z{(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM. ATM. IN P ERROR IN P IN Z ERROR IN 2Z
674.3078 6743079 -0.0001 0.0418 1.55937 155937 -0.00000 0.00071
301.9050 301.9078 -0.0027 0.0170 1.09101 1.09102 -0.00001 0.00044
173 .6286 173.6237 0. 0049 0.0074 0.98038 0.98035 0.00003 0.00038
108 .8380 108.8415 -0.0035 0.0042 0.96018 0.96021 -0.00003 0.00031
69.9629 69.9662 -0.0033 0.0024 0.96434 0.96439 -0.00005 0.00026
45.1953 45.1963 -0.0010 0.0014 0.97329 0.97331 -0.00002 0.00023
29.1701 29.1683 0.0018 0.0009 0.98146 0.98140 0.00006 0.00020
18.7867 18.7852 0.0014 0.0006 0.98757 0.98749 0.00008 0.00018
12.0761 12.0755 0.0006 0.0004 0.99180 0.99175 0.00005 0.00014
1.7513 7.7514 -0.0001 0.0003 0.99461 0.99462 -0.00002 0.00011
4.9702 4.9708 -0.0006 0.0002 0.99639 0.99652 -0.00013 0.00010
3.1855 3.1856 -0.0001 0.0002 0.99773 0.99776 -0.00003 0.00013
488 .4096 488.4091 0.0005 0.0300 1.31733 1.31733 0.00000 0.00058
2453280 245.3250 0.0030 0.0135 1.03403 1.03402 0.00001 0.00039
146 .9995 147.0081 -0.0086 0.0060 0.96815 0.96821 -0.00006 0.00034
93 .3320 93.3220 0.0100 0.0031 0.96048 0.96038 0.00010 0.00028
60.1627 60.1604 0.0023 0.0021 . 0.96741 0.96737 0.00004 0.00024
38.8538 38.8583 -0.0046 0.0012 0.97619 0.97631 -0.00011 0.00022
25 .0590 25.0586 0.0004 0.0008 0.98375 0.98373 0.00002 0.00020
16.1255 16.1259 -0.0004 0.0006 0.98912 0.98915 -0.00003 0.00017
103593 10.3596 -0.0003 0.0004 0.99285 0.99268 -0.00003 0.00014
6.6468 6.6469 -0.0000 0.0003 0.99537 0.99537 -0.00001 0.00011
4:2609 4.2611 -0.0001 0.0002 099699 0.99701 -0.00002 0.00010
2.7305 27300 0.0005 0.0002 0.99826 0.99807 0.00019 0.00014

L8



TABLE 12 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
Al1) 432.4233538 0.1951460
AL2) 370. 7567042 0.1577948
NCLD 1.5623533 0.0000678
NE2) 1.5624772 0.0000650
B(2) -0.10695041D 02 0.12855899D 00
B(3) 0.62492613D 03 0.22989253D 02
B(4) 0.14281530D 05 0.19866612D 04
B(S) -0.34073028D 06 0.750778410 05
B(6) 0.12323874D 08 0.106181700 07

BFC =0.15791D-01

T (P - By)=0.312260-04

88



TABLE 13

EXPERIMENTAL AND CALCULATED RESULTS FOR

21.99% HELIUM AT -90°C

PLEXP) P(CALC) DEV. STANDARD Z(BURNETT) Z{VIRIAL) DEV. STANDARD
ATM. ATM. IN P ERROR IN P IN 2 ERROR IN Z
673.7275 673.7290 -0.0015 0.0497 1.53885 1.53885 -0.00000 0.00115
251 .603 6 251.6162 -0.0126 0.0177 0.89801 0.89806 -0.00005 0.00062
146 .741 17 146. 7481 -0.0063 0.0094 0.81829 0.81832 -0.00004 0.00049
96 6950 96.6843 0.0107 0.0047 0.84242 0.84233 0.00009 0.00047
64 .9073 64.8988 0.0085 0.0026 0.88346 0.88335 0.00012 0.00041
43 2329 43,2328 0.0001 0.0019 0.91934 0.91933 0.00000 0.00036
28.4761 28.4774 -0.0013 0.0011 0.94603 094607 -0.00004 0.00032
18.5848 18.5849 -0.0001 0.0008 096459 096459 -0.00000 0.00029
12.0481 12.0488 -0.0007 0.0006 0.97693 0.97699 -0.00006 0.00024
T.77617 1.7766 0.0001 0.0004 0.98514 0.98513 0.00001 0.00018
5.0041 5.0045 -0.0004 0.0003 0.99036 099043 -~0.00007 0.00014
32146 3.2144 0.0002 0.0003 0.99391 0.99385 0.00006 0.00016
480.2563 480.2531 0.0032 0.0354 1.23657 1.23657 0.00001 0.00091
212.5397 212.5240 0.0157 0.0143 0.85494 0.85488 0.00006 0.00057
130 .5473 1305498 -0.0025 0.0063 0.82030 0.82031 -0.00002 0.00050
86 .9052 86.9136 -0.0084 0.0044 0.85299 0.85308 -0.00008 0.00047
58 .2890 58,2960 -0.0071 0.0024 0.89367 0.89378 -0.00011 0.00040
38.7233 38.7228 0.0006 0.0016 0.92738 0.92736 0.00001 0.00035
25 4411 25.4412 -0.0001 0.0010 0.95171 0.95172 -0.00000 0.00032
16.5746 16.5729 0.0018 0.0007 0.96850 0.96840 0.00010 0.00028
10.7318 10.7315 0.0003 0.0005 0.97953 097950 0.00003 0.00022
6.9212 6.9213 -0.0001 . 0.0003 0.98675 0.98677 -0.00002 0.00016
44521 4.4522 -0.0001 0.0003 0.99146 0.99148 -0.00002 0.00013
2.8591 2.8591 0.0001 0.0003 0.99456 0.99453 0.00002 0.00017

68



TABLE 13 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
All) . 437.8128960 0.3244913
Al2) 388.3765324 0.2857555
N(1) 1.5622774 0.0001058
Nt 2) 1.5620088 0.0001081
8l2) -0.287523860 02 0.258811070 00
8(3) 0.83131611D0 03 0.67980755D 02
8l 4) 0452530270 05 0.85132376D 04
8(5) -0.256786670 07 0.525979500 06
B(6) 0.812122450 08 ' 0.157749970 08
BL7T) ~0.49470306D 09 0.17943458D0 09

BFC =0.24716D-01

Z (P = Pg)=-+101040-04

06



TABLE 14

EXPERIMENTAL AND CALCULATED RESULTS FOR

100.00% ARGON AT -90°C

PCEXP) P{CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD

ATM. ATNM. INP ERROR IN P IN 2 ERROR IN Z
657.3672 657.3670 0.0002 0.0399 1.50767 1.50767 0.00000 0.00085
159.8933 159.8915 0.0018 0.0095 0.57298 0.57297 0.00001 0.00030
101.8641 101.8615 0.0026 0.0054 0.57023 0.57021 0.00001 0.00026
76.1874 16.1932 -0.0058 0.0030 0.66623 0.66628 -0.00005 0.00028
55.8203 55.8180 0.0023 0.0018 0.76251 0.76248 0.00003 0.00026
39.2912 39.2966 -0.0055 0.0014 0.83841 0.83853 -0.00012 0.00024
26 .7921 26,7903 0.0018 0.0009 0.89306 0.89300 0.00006 0.00023
17 .8632 17.8628 0.0005 0.0006 0.93012 0.93010 0.00002 0.00021
11.7382 11.7377 0.0005 0.0005 0.95474 0.95470 0.00004 0.00018
7.64l2 T.6407 0.0005 0.0003 0.97085 0.97079 0.00006 0.00014
4 .9436 409439 -0.0002 0.0002 0.98116 0.98121 -0.00005 0.00011
3.1864 3.1866 -0.0003 0.0002 0.98786 0.98794 -0.00008 0.00013
394.3160 394.3164 -0.0004 0.0240 1.01460 1.01460 -0.00000 0.00057
- 1361060 136.1087 -0.0027 0.0079 0.54721 0.54722 -0.00001 0.00028
9% .2986 94.2983 0.0003 0.0037 0.59232 0.59232 0.00000 0.00028
70,5673 70.5656 0.0016 0.0030 0.69252 0.69250 0.00002 0. 00029
51 .1609 51.1567 0.0041 0.0017 0.78440 0.78434 0.00006 0.00027
35.6771 35.6769 00002 0.0012 0.85460 0.85459 0.00000 0.00025
261577 24.1585 -0.0008 0.0008 0.90406 0.90409 -0.00003 0.00023
16 0343 16,0350 -0.0006 0.0006 0.93747 0.93751 -0.00004 0.00020
10.5051 10.5052 -0.0000 0.0004 0.95957 095957 =0.00000 0.00017
6 .8249 6.8249 -0.0000 0.0003 0.97395 0.97395 -0.00000 0.00012
4 .4098 4+.4102 -0.0004 0.0002 0.98318 0.98326 -0.00008 0.00010
2.8406 2.8401 0.0004 0.0002 0.98941 0.98926 0.00015 0.00014

16



TABLE 14 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
All) 436.0165276 0.2443301
Al2) 388.6417357 0.2189178
N(1) 1.5620835 0.0000808
N(2) 1.5623030 0.0000838
8(2) -0.56479549D 02 0.184329670 00
8(3) 0.12869467D 04 0.533105800 02
Bl4) 0.903916370 05 0.672636490 04
B(S) -0.705025030 07 0.42028103D 06
8le) 0.21739112D0 09 0.127801010 08
B(T) -0.103602390 10 -0.145293820 09

8FC =0.159590-01

% (Pg - P,)=0.179280-04

<6



TABLE 15

EXPERIMENTAL AND CALCULATED RESULTS FOR
100.00% HELIUM AT -115°C

P EXP) P(CALC) DEvV. STANDARD Z(BURNETT)} Z(VIRIAL) DEV. STANDARD
ATM. ATM. IN P ERROR IN P IN 2 ERROR EN 2
701.7420 701.7736 -0.0316 0.0823 1.61937 1.61944 -0.00007 0.00076
371.6829 371.7175 -0.0346 0.0370 1.34050 1.34063 -0.00012 0.00062
212.,7295 212.7532 -0.0237 0.0148 1.19896 l1.19910 -=0.00013 0.00043
127.2691 127.2482 0.0209 0.0079 1.12089 1.12071 0.00018 0.00034
78,1040 78.0947 0.0094 0.0042 1.07490 1.07478 0.00013 0.00030
48.6876 48.6815 0.0060 0.0026 1.04704 1.04691 0.00013 0.00027
30.6433 30.6408 0.0025 0.0018 1.02974 1.02965 0.00009 0. 00023
19.4043 19.4029 0.0014 0.0012 1.01891 1.01883 0.00007 0.00019
12.3324 12.3338 -0.0014 0.0008 1.01188 1.01199 =0.,00012 0.00016
7.8587 T.8594 -0,0007 0.0006 1.00756 1.00765 -0.00009 0.00015
5.0154 5.0160 -0.0006 0.0005 1.00477 1.00489 -0.00012 0.00018
3.2039 3.2044 -0.0005 0.0004 1.00295 1.00312 -0.00017 0.00024
532.7730 532.7091 0.0639 0.0521 1.47920 1.47902 0.00018 0.00069
292 .9683 292.9637 0.0046 0.0209 1.27117 1.27115 0.00002 0.00049
171.2861 171.2746 0.0115 0.0117 1.16137 l.16129 0.00008 0.00036
103.6959 103.7098 -0.0140 0.0066 1.09865 1.09880 -0.00015 0.00031
64.1145 64.1220 -0.0074 0.0035 1.06145 1.06158 -0.00012 0.00028
40.1491 401545 -0.0054 0.0C22 1.03863 1.03877 -0.00014 0.00026
25 3409 25.3463 -0.0054 0.0015 1.02434 1.02456 =-0.00022 0.00022
16 ..0812 16.0794 0.0018 0.0010 1.01573 1.01562 0.00011 0.00018
10.2350 10.2331 0.0019 0.0007 1.01014 1.00996 C.00019 0.00016
6.5260 6.5256 0.0005 0.0005 1.00643 1.00636 0.00007 0.00016
4.1672 4.1667 0.0005 0.0004 1.00417 1.00406 0.00011 0.00019
26630 2.6627 0.0003 0.0004 1.00269 1.00260 0.00010 0. 00026

€6



TABLE 15 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
A(l) 433.3433792 0.2017476
Al2) 360.1758989 0.1553819
Ntl) 1.5625762 0.0000773
N(2) 1.5625505 0.0000733
8l2} . 0.12662644D0 02 0.73815687D-01
8(3) . 0.112983100 03 0.37237808D0 01
Bl 4) 0.189641620 04 0.771355090 02

BFC =0.50937D-01 z (PE - Pb)=-.242350-03




TABLE 16

EXPERIMENTAL ANC CALCULATED RESULTS FOR

80.00% HELIUM AT -115°C

P{ EXP) P(CALC) DEvVe. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM. ATM. IN P ERROR IN P IN 2 ERROR IN 2
667.9564 667.9530 0.0034 0.0537 l1.65813 1.65812 0.00001 0.00107
338.4657 338.4426 0.0232 0.0241 1.31274 1.31265 0.00009 0.00075
192.2765 192.2943 -0.0178 0.0106 1.16504 " 1.16515 -=0.00011 0.00063
115 .5430 115.5502 -0.0072 0.0058 1.09369 1.09375 =0.00007 0.00051
71.4028 Tl.4059 -0.0030 0.0032 1.05582 1.05586 -=0.00004 0.00041 .
44.7778 44.7765 0.0013 0.0019 1.03432 1.03429 0.00003 0.00034%
28 .3081 28.3070 0.0011 0.0011 1.02146 1.02142 0.00004 0.00030
17.9819 17.9806 0.0013 0.0008 1.01359 1.01351 0.00007 0.00026
114560 11.4543 0.0017 0.0006 1.00873 1.00858 0.00015 0. 00020
7.3098 73099 -0.0000 0.0004 1.00545 1.00546 -0.00001 0.00015
4.6695 4.6703 -0.0008 0.0003 1.00332 1.00348 -0,00016 0.00013
2.9856 2.9860 -0.0004 0.0003 1.00210 1.00223 -0.00013 0.00017
503.6550 503.6665 -0.0115 0.0399 1.48563 1.48566 -0.00003 0.00092
269 4156 269.4287 -0.0130 0.0189 1.24172 1.24178 -0.00006 0.00067
157.1779 157.1586 0.0193 0.0083 l.13184 1.13171 0.00014 0.00057
95.6791 95.6717 0.0075 0.0041 1.07645 1.07637 0.00008 0.00045
59.5138 59.5149 -0.0010 0.0027 1.04609 1.04611 -0.00002 0.00037
37.4523 37.4535 -0.0011 0.0015 1.02850 1.02853 -0.00003 0.00032
23.72217 23.7253 -0.0026 0.0010 1.01779 1.01790 -0.00011 0.00029
15.0873 15.0879 -0.0006 0.0007 1.01128 1.01132 -0.00004 0.00024
9.6175 9.6180 -0.0005 0.0005 1.00714% 1.00719 -0.00006 0.00019
6.1405 61403 0.0001 0.0003 1.00460 1.00458 0.00002 0.00015
3.9242 3.9238 0.0004 0.0003 1.00303 1.00293 0.00010 0.00014
25093 2.5089 0.0003 0.0003 1.00201 1.00187 0.00014 0.00019

66



TABLE 16 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
All) 402.8379741 0.2576837
AlL2) 339.0187437 0.2048124
N(1) 1.5621135 0.0000950
Nt 2} 1.5623027 0.0000917
B(2) 0.96572578D 01 0.18112552D0 00
8(3) 0.152228500 03 0.277402350 02
8l4) 0.110291730 05 0222453960 04
B(S) -0.23362159D 06 0.78454798D 05
8(6) 0.342305650 07 0.101278770 07

BFC =0.25973D-01

- =0e29 -0
T (By - Py)=0.290840-04

96




TABLE 17

EXPERIMENTAL AND CALCULATED RESULTS FOR 59.35% HELIUM
AT -115°C (FLUID-FLUID PHASE SEPARATION SUSPECTED)

L6

P(EXP) P(CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM, ATM. IN P ERROR IN P IN 2 ERROR IN 2

674.5533 674.5191 0.0342 0.3398 1.55047 1.55039 0.00008 0.00367
309.3210 309.4213 -0.1003 0.1472 1.11179 l.11215 -0.00036 0.00255
174.7575 174.6073 0.1502 0.0607 0.98212 0.98127 0.00084 0.00169
108.3656 108.4611 -0.0955 0.0371 0.95217 0.95301 -=0.00084 0.00141
69.5962 69.6000 -0.0038 0.0194 0.95609 0.95615 -0.00005 0.00134
45.0127 %4.9960 0.0167 0.0125 096680 0.96644 0.00036 0.00126
29.0801 29.0741 0.0060 0.0086 0.97652 0.97632 0.00020 0.00111
18.7409 18.7417 -0.0007 0.0054 0.98392 0.98395 =0.00004 0.00090
12.0518 12.0535 -0.0016 0.0034 0.98924 0.98937 -0.00013 0.00071
T.7368 T.7383 -0.0014 0.0025 0.99287 0.99305 -0.00018 0.00066
4.9612 4.9617 =-0.0005 0.0022 0.99540 0.99550 -0.00009 0.00086
3.17196 3.1787 0.0009 0.0020 0.99738 0.99709 0.00029 0.00121

PARAMETER VALUE STANDARD

ERROR

A(l) 435,0643913 1.0223176

N(l) 1.5634322 0. 0003960

8(2) =0.12006470D 02 0.30756313D 00

B{3) 0726346490 03 0.17427403D 02

8l4) 0362336470 04 0.42845016D 03

BFC =0.57957D 00 T (Pg - P,)=0.414110-02




TABLE 18

EXPERIMENTAL AND CALCULATED RESULTS FOR
59.35% HELIUM AT -115°C

86

PLEXP) P(CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM. ATM. IN P ERROR IN P IN Z ERROR IN 2
!
495.1707 495.1704 0.0002 0.0213 1.40319 1.40318 ' 0.00000 0.00053
251.0876 251.0888 -0.0012 0.0108 1.11217 1.11217 -0.00001 0.00037
147.5220 147.5195 0.0025 0.0059 1.02130 1.02128 0.00002 0.00032
92.0363 92.0374 -0.0011 0.0027 0.99586 099587 -0.00001 0.00025
58.5947 58.5970  -0.0023 c.0018 0.99090 0.99094 -0.00004 0.00021
37.5268 37.5255 0.0013 0.0010 0.99185 0.99181 0.00003 0.00019
24.0608 24.0596 0.0012 0.0006 0.99390 0.99385 0.00005 0.00017
15.4230 15.4231 -0.0001 0.0004 0.99570 099571 -0.00001 0.00014
9.8820 9.8823 -0.0003 0.0003 0.99708 0.99711 -0.00003 0.00011
6.3289 6.3294 -0.0005 0.0002 0.99802 0.99809 -0.00008 0.00008
4.0525 4.0525 -0.0000 0.0002 0.99875 0.99876 -0.00000 0.00008
2.5944 2.5941 0.0003 0.0002 0.99931 099920 0.00011 0.00012
PARAMETER VALUE STANDARD
ERROR
All) 352.8903834 0.1311920
N(l) 1.5628770 0.0000577
8(2) -0.410042490 01 0.938773310-01
B8(3) 0.405850400 03 0.12266814D 02
8(4) 0.13037747T 05 0.70322403D 03
8(5) -0.87042034D 05 0.12430659D 05

BFC =0.271370-02 z (PE - c)=0.357870-04




TABLE 19

EXPERIMENTAL AND CALCULATED RESULTS FOR 41.05% HELIUM
AT -115°C (FLUID-FLUID PHASE SEPARATION SUSPECTED)

66

P{EXP) P(CALC) DEv. STANDARD Z(BURNETT) Z(VIRIAL) OEv. STANDARD
ATM. ATM. IN P ERROR IN P IN 2 ERROR IN Z
671.0606 671.0962 -0.0355 0.6431 1.42826 1.42833 -0.00008 0.00523
26T .4633 267.4174 0.0458 0.2445 0.89139 0.89124 0.00015 0.00322
147.6388 147.6250 0.0137 0.1028 0.77037 0. 77030 0.00007 0.00196
96.1876 96,3116 -0.1240 0.0629 0.78577 0.78679 =-0.00101 0.00177
65.4764 65.3967 0.0797 00347 0.83741 0.83639 0.00102 g.00185
44.2038 44.1612 0.06426 0.0238 0.88508 0.88423 0.00085 0.00183
29.3934 29.3949, -0.0015 0.0l63 0.92139 0.92144 -0.00005 0.00166
19.2996 19.3159 -0.0162 0.0101 0.94713 0.94793 =-0.00080 0.00138
12.5594 12.5729 -0.0135 0.0065 096493 0.96597 =0.00104 0.00116
8.1243 8.1306 -0.0062 0.0050 0.97720 0.97795 -0.00075 0.00121
5.2419 5.2351 0.0068 0.0044 0.98706 0.98578 0.00128 0.00161
343649 3.3612 0.0038 0.0038 0.99198 0.99087 0.00111 0.00220
PARAMETER VALUE STANDARD
' ERROR
All) 469.8456262 1.6959197
N(1) 1.5655429 0. 0006314
8(2) -0.352951120 02 0.33714611D 00
8(3) 0.13609393D 04 0.20302861D 02
Bl4) -0.163857420 04 0.53393451D 03

BFC =0.20771D0 Ol z (PE - c)=—.458660-02




TABLE 20

EXPERIMENTAL AND CALCULATED RESULTS FOR
41.05% HELIUM AT -~115°C

co1

PLEXP) P(CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) OEv. STANDARD
ATM, ATM. IN P ERROR IN P IN 2 ERROR IN Z

471.1520 471.1470 0.0050 0.2608 1.18162 1.18161 0.00001 0.00488
2179367 217.9601 -0.0235 0.1211 0.85484 0.85493 -0.00009 0.00314
129.0395 128.9767 0.0629 0.0679 0.79155 0.79116 0.00039 0.00276
85.4114 85.4948 -0.0834 0.0336 0.81933 0.82013 -0.00080 0.00222
57.8188 57.7903 0.0284 0.0225 0.86736 0.86693 0.00043 0.00200
38.7185 38.6995 0.0190 0.0125 0.90831 0.90786 0.00044 0.00192
25.5770 25.5769 0.0002 0.0087 0.93831 0.93830 0.00001 0.00178
16 .7195 16.7241 —0.0045 0.0061 0.95918 0.95944 -0.00026 0.00151
10.8486 10.8526 -0.0040 0.0038 0.97326 0.97362 -0.00036 0.00117
7.0049 7.0065 -0.0016 0.0026 0.98273 0.98295 -0.00022 0.00089
4.5087 4.5081 0.0006 0.0024 0.98916 0.98903 0.00014 0.00097
2.891 208943 0.0018 0.0023 0.99358 0.99295 0.00062 0.00146

PARAMETER VALUE STANDARD

e ' ERROR

All) 398.7343331 16299486

N(1) 1.5637869 0.0006460

8(2) -0.31609867D 02 0.805773310 00

8(3) 0.10297669D 04 0.10812021D 03

Bl 4) 0.17661667D 05 0.57970561D 04

8{5) -037211159D 06 0.92207799D0 05

8FC =0.408190 00 T (PE - Pc)=0.865490—03




TABLE 21

EXPERIMENTAL AND CALCULATED RESULTS FOR
21.99% HELIUM AT -115°C (RUN 1)

PL{EXP) P(CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEvV. STANDARD
ATM. ATM, IN P ERROR IN P IN 2Z ERROR IN Z
677.1749 677.1747 0.0001 0.0800 L.44262 l.44262 0. 00000 0.00198
202.5354 202.5357 -0.0004 0.0242 0.67412 0.67412 -0.00000 0.00084
113.4282 113.4267 0.0014 0.0136 0.58974 0.58973 0.00001 0.00065
79.6751 79.6788 -0.0036 0.0091 0. 64707 0.64710 -0.00003 0.00067
58.2855 58.2827 0.0028 0.0050 0.73940 0.73936 0.00004 0.00061
41.4389 4l.4348 0.0041 0.0036 0.82113 0.82105 0.00008 0.00057
28.41710 2844759 -0.0049 0.0021 0.88124 0.88139 -0.00015 0.00055
19.0833 19.0850 -0.0017 0.0015 0.92263 0.92271 -0.00008 0.00049
12.5821 12.5803 0.0018 0.0011 0.95019 0.95006 0.00013 0.00040
8.2059 82049 0.0010 0.0007 0.96798 0.96787 ¢.00011 0.00029
53152 53152 -0.0000 0.0006 0.97936 097937 -0.00001 0.00022
3.4280 3.4285 -0.0005 0.0006 0.98663 0.98677 -0.00014 0.00030
PARAMETER VALUE STANDARD
ERROR

All) 469.4072867 0.6435764

N(l) 1.5620016 0.0002022

Bt2) -0.49550057D 02 0.315283140 00

8(3) 0.462813210 03 0.66100476D 02

B(4) 0135893060 06 0556448990 04

8{5) -0.57760478D 07 0.194908120 06

B(6) 0.821348090 08 0.247034920 07

8FC =0.447750-01

Z (

P, - Pg)=0.172700-04

10T



TABLE 22

EXPERIMENTAL AND CALCULATED RESULTS FOR
21.99% HELIUM AT -115°C (RUN 2)

(40) 4

PLEXP) P{CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEvV. STANDARD
ATM, ATM. IN P ERROR IN P IN 2 ERROR IN 2
450.6008 450.6006 0.0002 0.1203 1.07901 1.07901 0.00000 0.00353
169.8654 169.8664 -0.0010 0.0458 0.63520 0.63521 -0.00000 0.00189
.103.5528 103.5478 0.0050 0.0282 0.60464 060461 0.00003 0.00160
14.0452 74.0609 -0.0158 0.0191 0.67508 0.67522 =0.00014 0.00165
53.8250 53.8028 0.0222 0.0105 0.76623 0.76591 0.00032 0.00150
37.8586 37.8654 -0.0067 0.0074 0.84150 0.84165 -0.00015 0.00140
25.8111 25.8178 -0.0066 0.0043 0.89580 0.89603 -0.00023 0.00132
17.2107 17.2110 -0.0003 0.0032 0.93265 0.93266 -0.00002 0.00118
11.3092 11.3064 0.0029 0.0022 0.95690 0.95665 0.00024 0.00096
T7.3598 7.3587 0.0011 0.0014 0.97232 0.97217 0.00015 0.00068
4.7613 4.7613 0.0000 0.0012 0.98216 0.98216 0.00000 0.00051
3.0¢684 3.0693 =-0.0009 0.0012 0.98827 0.98857 -0.00029 0.00070
PARAMETER VALUE STANDARD
ERROR
Al(l) 417.6050116 1.3627479
N(1) 1.5613886 0.0004805
B(2) -0.478153800 02 0.85760815D0 00
8(3) 0.85797935D 02 0.19580923D0 03
B(4) 0.17890236D 06 0.18053140D 05
B{5) -0.77728266D 07 0.698321570 06
Bt6) 0.11308533D 09 0.96684552D 07

8FC =0.101320 00 z (PE - pb)=0.344630-04




TABLE 23

100.00% ARGON AT -115°C

EXPERIMENTAL AND CALCULATED RESULTS FOR

PLEXP) P(CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM. ATM, INP ERROR IN P IN Z ERROR IN 2
647.7303 647.7284 0.0019 0.0703 1.59251 1.59250 0.00000 0.00247
83.5805 83.5771 0.0035 0.0098 0.32117 0.32115 0.00001 0.00045
61.6081 61.5981 0.0101 0.0065 0.36991 0.36985 0.00006 0.00047
54.5344 54.5400 -0.0056 0.0043 0.51163 0.51169 -0.00005 0.00059
4 448 4 44.4483 0.0001 0.0038 0.65159 0.65159 0.00000 0.00066
33.2928 33,2989 -0.0062 0.0024 0.76260 0.76275 -0.00014 0.00064
23 5342 23.5381 -0.0038 0.0015 0.84232 0.84246 =-0.00014 0.00059
16.0381 16.0368 0.0012 0.0011 0.89693 0.89686 0.00007 0.00054
10.6772 10,6774 -0.0002 0.0008 0.93302 0.93304 -0.00002 0.00045
7.0072 7.0071 0.0001 0.0006 095677 0.95676 0.00001 0.00034
45572 4.5567 0.0005 0.0005 0.97228 0.97216 0.00011 0.00023
294606 209461 0.0005 0.0005 0.98228 0.98212 0.00016 0.00026
343.9010 343.9031 -0.0021 0.0373 0.93718 0.93719 -0.00001 0.00132
172.3768 72.3818 -0.0050 0.0086 0.30818 0.30820 -0.00002 0.00040
60.1068 60.1145 -0.0077 0.0057 0.39984 0.39989 -0.00005 0.00045
52.4855 52.4829 0.0025 0.0043 0.54547 0.54544 0.00003 0.00057
41 .8848 41.8768 0.0080 0.0027 0.68006 0.67993 0.00013 0.00060
30.8931 30. 8907 0.0023 0.0024 0.78363 0.78357 0.00006 0.00058
21.6219 21.6215 0.0004 0.0016 0.85685 0.85684% 0.00002 0.00055
14.6420 l4.6414 0.0005 0.0010 0.90651 0.90647 0.00003 0.00051
9.7123 9.7118 0.0005 0.0008 0.93941 0.93936 0.00005 0.00044
6.3586 6.3588 -0.0001 0.0006 0.96084 0.96086 -0.00002 0.00035
41286 4.1293 -0.0006 0.0004 0.97466 0.97482 -0.00015 0. 00027
2.6671 2.6676 -0.0005 0.0004 0.98365 0.98383 -0.00018 0.00029

1 X1)§



TABLE 23 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
All) 406.7364660 0.6286140
At 2) 3669511196 0.5158406
NL1) 1.5625218 0.0002204
N(2) 1.5622752 0.0001990
B(2} =0.77870274D 02 0.52444806D 00
8(3) 0222990700 04 0.194201200 03
Bl(4) -0.440841860 05 0.31719833D 05
B{5) 0.123101590 08 0.27734736D 07
Bl6) =0.111070920 10 0.132514140 09
BL7) 0.385529470 11 0.32308967D 10
B(8) =0.425167990 12 0.316390000 11

BFC =0.635490-01

z (PE - Pb)80.259840-03

vot



TABLE 24

EXPERIMENTAL AND CALCULATED RESULTS FOR

100.00% HELIUM AT -130°C

PL EXP) P(CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM. ATNM. IN P ERROR IN P IN 2 ERROR ‘IN 2
690.7059 690.7081 -0.0022 0.0150 1.67237 1.67237 -=0.00001 0.00021
360.1319 360.1282 0.0036 0.0067 l1.36267 1.36266 0.00001 0.00015
2044542 204.4557 -0.0016 0.0027 1.20886 1.20887 -0.00001 0.00012
121.7921 121.7887 0.0034 0.0014 le12521 l.12518 0.00003 0.00009
714.5963 14.5979 -0.0016 0.0009 1.07685 1.07687 -0.00002 0.00007
46 .458 4 46.4597 -0.0013 0.0005 1.04790 1.04793 -0.00003 0.00007
29.2318 29.2306 0.0011 0.0003 1.03021 1.03017 0.000G4 0.00006
18.5064 18.5070 -0.0006 0.0002 1.01907 1.01910 -0.00003 0.00005
11.7636 11.7638 -0.0002 0.0001 1.01213 1.01214 -0.00002 0.00004
T 4963 T.4962 0.0001 0.0001 1.00775 1.00774 0.00001 0.00003
4.7844 4.7844 0.0001 0.0001 1.00496 1.00494 0.00002 0.00003
3.0567 3.0566 0.0001 0.0001 1.00317 1.00316 0.00002 0.00004
529 .4021 529.3983 0.0038 0.0106 1.52400 1.52399 0.00001 0.00018
286 .9808 286.9889 -0.0081 0.0046 1.29102 1.29105 -0.00004 0.00015
166 5329 166.5297 0.0032 0.0023 1. 17066 1.17063 0.00002 0.00011
100 .4522 100.4517 0.0005 0.0012 1.10338 1.10338 0.00001 0.00009
61 .9877 61.9883 -0.0006 0.0007 1.06390 1.06391 -0.00001 0.00007
38.7807 38.7810 -0.0003 0.0004 1.04001 1.04001 -0.00001 0.00007
26 4677 24.4675 0.0002 0.0003 1.02526 1.02525 0.00001 0.00006
15.5183 15.5181 0.0001 0.0002 1.01603 1.01602 0.00001 0.00005
9.8748 9.8747 0.0002 0.0001 1.01021 1.01019 0.00002 0.00004
6 .2969 6.2961 0.0002 0.0001 1.00653 1.00650 0.00003 0.00003
4.0203 4. 0205 -0.0002 0.0001 1.00410 1.00415 -0.00005 0.00004
25692 2.5693  -0.0001 0.0001 1.00262 1.00265 -0.00004 0.00005

SO01



TABLE 24 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
A(l) . 413.0112077 0.0495342
AL2) 367.3765046 0.0410054
Nl}) 1.5624628 0.0000185
N(2) 1.5624923 0.0000190
B(2) 0.12127116D 02 0.247103490~-01
8(3) 0.14678233D 03 0.21545631D 01
Bl 4) 0.11431125D 04 0.931270020 02
B(S) 0969321530 04 0.12985991D 04

BFC =0.182800-02

- ==,217480-04
T (PE Pc)

90T



TABLE 25

EXPERIMENTAL AND CALCULATED RESULTS FOR
80.00% HELIUM AT -130°C (Run 1)

DEV.

LoT

PLEXP) P{CALC) DEV. STANDARD Z{BURNETT) Z(VIRIAL) STANDARD
ATM, ATM. INP ERROR IN P IN Z ERROR IN Z

518.4114 518.4112 0.0002 0.0336 1.53103 1.53103 0.00000 0.00092
269.9484 269.9495 -0.0011 0.0175 1.24576 1.24577 -0.00000 0.00066
156.0200 156.0172 0.0028 0.0094 1.12499 1.12497 0.00002 0.00056
94.8497 94.8533 -0.0037 0.0042 1.06857 1.06861 -0.00004 0.00043
59.0749 59.0724 0.0025 0.0027 1.03983 1.03979 0.00004 0.00036
37.2211 37.2321 -0.0010 0.0015 1.02389 1.02392 -0.00003 0.00031
23.6159 23.6162 ~0.0003 0.0009 1.01470 1.01472 -0.00001 0.00028
15.0340 15.0332 0. 0007 0.0007 1.00924 1.00919 0.00005 0.00023
9.5899 9.5897 0.0003 0.0004 1.00582 1.00579 0.00003 0.00017
61247 6.1250 ~-0.0003 0.0003 1.00362 1.00367 -0.00005 0.00012
3.9144 3.9151 =0.0007 0.0003 1.00216 1.00233 -0.00017 0.00012
25043 2.5038 0.0005 0.0003 1.00169 1.00149 0.00020 0.00018

PARAMETER VALUE STANDARD

ERROR

All) 338.6025878 0.2010742

N(l) 1.5623641 0.0000915

8(2) 0693450470 01 0.14747176D 00

B(3) 0.235972290 03 0.17146919D 02

8(4) 0.65832654D 04 0.924062620 03

8(5) -0.32785289D0 05 0.156243320 05

BFC =0.67669D-02 z (PE - c)80.285530—04




TABLE 26

EXPERIMENTAL AND CALCULATED RESULTS FOR
80.00% HELIUM AT -130°C (Run 2)

P{EXP) P(CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEv. STANDARD
ATM. ATM,. IN P ERROR IN P IN Z ERROR IN 2

398.3139 398.3138 0.0001 0.0048 1.39624 1.39624 0.00000 0.00010
217.8214 217.8219 -0.0005 0.0025 1.19306 1.19306 -0.00000 0.00008
128.8386 128.8377 0.0009 0.0011 1.10259 1.10258 0.00001 0.00006
79.1306 79.1311 -0.0005 0.0007 1.05805 1.05806 -0.00001 0.00005
49.5103 49.5107 -0.0005 0.0003 1.03430 1.03431 -0.00001 0.00004
31.2777 31.2774 0.0004 0.0002 1.02087 1.02086 0.00001 0.00004
19.8639 19.8635 0. 0004 0.0001 1.01294 1.01292 0.00002 0.00003
12.6531 12,6532 -0.0002 0.0001 1.00808 1.00810 -0.00001 0.00003
8.0746 8.0748 -0.0002 0.0001 1.00509 1.00511 -0.00002 0.00002
S.1588 5.1587 0.0000 0.0000 1.00325 1.00324 0.00000 0.00002
3.2981 3.2980 0.0000 0.0000 1.00208 1.00206 0.00002 0.00002
2.1093 2.1093 0.0000 0.0000 1.00132 1.00132 0.00000 0.00003

PARAMETER VALUE STANDARD

ERROR

All) 285.2756024 0.0199053

N(l) 1.5623561 0.0000117

B8(2) 0.72977738D 01 0.140692160-01

B(3) 0.25554634D 03 0.98693525D 00

B(4) 0.47663382D 04 0.26668638D 02

BFC =0.11759D-03

T (

Pg

- P,)=0.598790-05

801



TABLE 27

EXPERIMENTAL AND CALCULATED RESULTS FOR 59.35% HELIUM
AT -130°C (GAS-LIQUID PHASE SEPARATION SUSPECTED)

P(EXP) P(CALC) DEV. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM. ATM. IN P ERROR IN P IN Z ERROR IN 2

168.8216 168.8217 -0.,0000 0.0071 1.02048 1.02048 -0.00000 0.00073
103.6586 103.6583 0.0002 0.0044 0.97889 0.97889 0.00000 0.00062
66.0263 66.0272 -0.0009 0.0027 0.97408 0.97409 -0.00001 0.00056
42,4505 42.4888 0.0017 0.0014 0.97929 0.97926 0.00004 0.00046
27.3655 27.3668 -0.0012 0.0009 0.98529 0.98534 -0.00004 0.00039
17.6034 17.6035 -0.0001 0.0005 0.99014 0.99015 -0.00000 0.00034
11.3074 11.3068 0.0006 0.0004 0.99358 0.99353 0.00005 0.00028
T.2542 T.2543 -0.0001 0.0002 0.99579 0.99580 -0.00001 0.00020
4.6503 4«.6506 -0.0003 0.0002 0.99723 0.99729 -0.00006 ¢.00013
2.9800 2.9798 0.0001 0.0002 0.99830 0.99826 0.00004 0.00011

PARAMETER VALUE STANDARD

ERROR

A(l) 165.4337816 0.1177623

N(1) 1.5621983 0.0001203

B(2) -0.69187805D Ol 0.292147870 00

8(3) 0.20654860D0 03 0.656577500 02

B8(4) 0.43842125D 05 0.65351513D 04

8(S) -0.115710230 07 0.217187110 06

BFC =0.30023D-03

z (PE - Pb)

=0.24691D0-05

601



TABLE 28

EXPERIMENTAL AND CALCULATED RESULTS FOR
59.35% HELIUM AT -130°C

01T

PCEXP)  P(CALC) DEV. STANDARD Z(BURNETT) ZIVIRIAL)  DEV. STANDARD
ATM. ATM. INP  ERROR IN P IN Z ERROR IN Z
138.1775 138.1776 -0.0001 0.0043  1.00583  1,00583 -0.00000  0.00028
86.4019  86.4013  0.0006 0.0026  0.98260  0.98259 0.00001  0.00025
55.2362  55.2368 -0.0006 0.0013  0.98138  0.98139 =-0.00001  0.00020
35.4989  35.4991 =-0.0002 0.0008  0.98534  0.98534 ~0.00001  0.00017
22,8205  22.8204  0.0001 0.0004  0,98958  0.98957 0.00001  0.00015
14,6573  14.6567  0.0006 0.0003  0.99296  0.99292 0.00004  0.00013
9.4041 9.4043 =-0.0001 0.0002  0.99529  0.99531 -0.00001  0.00010
6.0291 6.0295 ~0.0004 0.0001  0.99686  0.99693 =0.00007  0.00007
3.8637 3.8637  0.0000 0.0001  0.99802  0.99801 0.00001  0.00006
2.4750 2.4749  0.0002 0.0001  0,99878  0.99872 0.00006  0.00009
PARAMETER VALUE STANDARD
ERROR
Al1) 137.3771210 0.0385339
N(1) 1.5622529 0.0000521
B(2) ~0.61746247D 01 0.954133510-01
B(3) 0.41383618D 03 0.137363710 02
B(4) 0.134003760 05 0.67434503D 03
BFC =0.913720-04 Z (Pg - By) =0.123520-04




TABLE 29

EXPERIMENTAL AND CALCULATED RESULTS FOR
41.05% HELIUM AT -130°C

PLEXP) P{CALC) DEv. STANDARD Z(BURNETT) Z(VIRIAL) DEV. STANDARD
ATM. ATM. IN P ERROR IN P IN 2 ERROR IN 2
73.6126 73.6175 -0.0049 0.0214 0. 86253 0.86259 =-0.00006 0.00036
49.1401 49.1741 -0.0341 0.0091 0.89967 0.90029 -0.00062 0.00024
32.5543 32.5578 -0.0035 0.0059 0.93126 0.93137 -0.00010 0.00027
21.3507 21.3458 0.0050 0.0033 0.95432 0.95410 0.00022 0.00031
13.8902 13.8864 0.0037 0.0021 0.97008 0.96981 0.00026 0.00035
8.9870 8.9840 0.0030 0.0015 0.98068 0.98035 0.00033 0.00038
5.7918 5.7905 0.0013 0.0011 0. 98752 0.98729 0.00023 0.00041
3.7228 3.7229 -0.0001 0.0007 0.99178 0.99181 -0.00003 0.00042
203907 203897 0.0010 0.0005 0.99514 0.99473 0.00041 0.00044
61.5804% 61.5526 0.0278 0.0123 0.88021 0.87981 0.00040 0.00029
40.9799 40.9769 0.0030 0.0075 0.91524 0.91517 0.00007 0.00026
27.0113 27.0076 0.0038 0.0042 0.94260 0.94247 0.00013 0.00029
17.6427 17.6405 0.0022 0.0025 0.96197 0.96185 0.00012 0.00033
11.4436 11.4448 -0,0012 0.0018 0.974%4 0.97504 =-0.00011 0.00037
7.3886 7.3906 -0.0020 0.0013 0.98354 0.98380 -0.00027 0.00040
4.7556 4.7576 -0.0020 0.0009 0.98913 0.98954 -0.00041 0.00043
3.0540 3.0564 -0.0024 0.0006 0099249 099327 -0.00078 0.00045
1.9600 1.9609 -0.0008 0.0004 0.99525 0.99568 -0.00043 0.00046

Tt



TABLE 29 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR
A(l) 85.3445671 0.0196270
Al 2) 69.9611200 0.0167028
NEl) 1.5624775 kKK
N{2) 1.5624775 k¥kkggk
B(2) -0.25942313D 02 0.143821750 00
8(3) 0.967590190 03 0.20009196D 02
BFC =0.34065D-02 Z (PE - Pc)=-.314610-o3

cit




TABLE 30

EXPERIMENTAL AND CALCULATED RESULTS FOR

21.99% HELIUM AT -130°C

PLEXP) P(CALC) DEv. STANDARD Z(BURNETT) Z(VIRIAL) DEv. STANDARD
ATM. ATNM. IN P ERROR IN P INZ ERROR IN 2
42.6382 42.6342 0.0039 0.0051 0.78541 0.78534 0.00007 0.00014
29,7113 29.7132 -=0.0019 0.0024 0.85514 0.85519 -0.00005 0.00010
20.1111 20.1082 0.0029 0.0015 0.90442 0.90428 0.00013 0.00012
13,3442 13.3420 0.0022 0.0009 0.93765 0.93750 0.00016 0.00014
8.7381 8.7393 -0.0012 0.0006 0.95935 0.95949 -0.00013 0.00016
5.6760 5.6770 =0.0010 0.0005 0.97370 0.97386 =-0.00017 0.00018
3.6671 3.6681 -0.0010 0.0003 0.98292 0.98319 -0.00026 0.00019
23620 203620 0.0000 0.0002 0.98922 0.98920 0.00001 0.00020
36.2558 36,2613 -0.0055 0.0030 0.82022 0.82034 -0.00013 0.00012
24.8977 24.8979 -0.0001 0.0019 0.88010 0.88010 -0.00000 0.00011
16.6802 16.6798 0.0005 0.0011 0.92127 0.92125 0.00003 0.00013
10.9944 10.9941 0.0003 0.0007 0.94880 0.94877 0.00003 0.00016
T.1708 T.1706 0.0002 0.0005 0.96691 0.96688 0.00003 0.00018
4.6446 4.6452 -0.0005 0.0004 0.97855 0.97866 -0.00011 0.00019
209965 2.9961 0.0004 0.0003 0.98642 0.98629 0.00013 0.00021
1.9280 l.9271 0.0009 0.0002 0.99165 0.99120 0.00045 0.00021

€1l



TABLE 30 (CONTINUED)
PARAMETER VALUE STANDARD
ERROR
All) 54.2878401 0.0059880
AL2) 44.2025458 0.0050572
N(1) 1.5624775 bbbl L
N(2) 1.5624775 kEEEERk
8(2) -0.53415305D 02 0.96897306D-01
8(3) 0.15077540D 04 0.21018117D 02

BFC =0.18955D0-03

T (Pg

- B,)=0.158020-03
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TABLE 31

EXPERIMENTAL AND CALCULATED RESULTS FOR
100.00% ARGON AT -130°C

PLEXP) P{CALC) DEV. STANDARD Z{BURNETT) Z(VIRIAL) @ DEV. STANDARD
ATM. ATM. IN P ERROR IN P INZ ERROR IN 2
30.3901 30.4090 -0.0189 0.0187 0.67295 067337 -0.00042 0.00066
22.6192 22.6278 -0.,0086 0.0093 0.78261 0.78291 -0.00030 0.00052
15.8673 15.8666 0.0007 0.0061 0.85780 0.85776 0.00004 0.00065
10.7467 10. 7449 0.0018 0.0039 0.90777 0.90762 0.00015 0.00079
T.1265 Tel246 0.0018 0.0028 0.94056 0.94032 0.00024 0.00092
4.6645 4.6629 0.0016 0.0021 0.96191 0.96158 0.00033 0.00102
3.0288 3.0269 0.0019 0.0015 0.97592 0.97532 0.00061 0.00109
26.6933 26.6530 0.0402 0.0108 0.73188 0.73078 0.00110 0.00054
19.1872 19.1979 -0.0107 0.0076 0.82199 0.82245 -0.00046 0.00058
13.2030 13.2095 -0.0065 0.0045 0.88378 0.88421 -0.00044 0.00072
8.8420 8.8443 -0.0023 0.0032 0.92477 0.92502 -0.00024 0.00086
5.8225 5.8234 -0.0009 0.0024 0.95150 0.95165 -0.00015 0.00098
3.7946 3.7946 -0.,0000 0.0018 0.96890 0.96891 -0.00001 0.00108
24567 244565 0.0002 0.0013 0.98011 0.98004 0.00007 0.00114

S11



TABLE 31 (CONTINUED)

PARAMETER VALUE STANDARD
ERROR

A(l) 45.1593994 0.0279321
AL2) 36.4721930 0.0231011
N(1) 1.5624775 L L bl L 2
Ni2) 1.5624775 Rk kR
B(2) =0.94044109D0 02 0.565055880 00
B(3) 0.23631502D 04 0.14938246D 03

BFC =0.,24291D-02

T (Pg - Pg)=0.201790-03

911
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run constant, Pb/zo. is given by A(I) and the cell constant,

N._, is given by N(I). The subscript indicates whether the

apparatus constant is for the first or second run. These
are the optimal values and are consistent with the com-
pressibility factors in the first part of the table and
the virial coefficients, which are presented following
the apparatus constants. The procedure used in obtaining
the optimum number and values of the virial coefficients
was the method developed by Hall and Canfield (20).

Their procedure gives the optimum coefficients for the

expansion
Z=MN/RT =1+ B,p + B3p2 + . . . (55)

The estimated standard errors for the apparatus constants
and the optimum virial coefficients were determined using
equation (D-2).

Although the data analysis discussed above was
used for treating the data, certain variations were made
because each of the isotherms presented a somewhat dif-
ferent situation. The -90°C isotherm was approximately
30° above the critical temperature of the least volatile
component, argon. There were no problems in treating the
four mixtures or the two pure components by the procedure
described in Appendix B.

However, the -115°C isotherm was only about 6°
above the critical temperature of argon. When the maximum

starting pressures were chosen before the start of the
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experimental runs, it was thought that there would be
no problems using an initial pressure of 10,000 psi.
But a preliminary analysis of the data indicated otherwise.
To check the consistency of the two runs, a plot of
Pﬁ-llpj versus Py is made at the end of each run. Iif
the two runs are consistent, the points will be on one
continuous smooth curve. For two mixtures (59.4% He and
40.2% He) at -115°C, this plot resulted in two distinct
curves indicating a change in composition had occurred
sometime during one of the runs. The separation of the
‘curves is shown in Figure 6. This change in composition
is thought to be due to the phenomenon of fluid-fluid
phase separation coupled with incomplete mixing after the
first expansion;

The phenomenon of fluid-fluid phase equilibrium
is an equilibrium that exists between two separate,
distinct gas phases that occur at high pressures in a
region that for most systems would be a region of homo-
geneous fluid mixtures. These phase separations can occur
at temperatures between the critical temperatures of the
two pure components or above the critical temperature of
the least volatile component. Streett (35) has presented
the experimental observance of fluid-fluid phase separation
between the critical temperatures of the two components.
At the present time the occurence of fluid-fluid phase

separation above the critical temperature of argon has
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FIGURE 6. RESULTS OF COMPOSITION CHANGE
IN BURNETT RUNS AT -115°C
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not been experimentally observed. Streett proposes to
study the helium-argon system further at pressures to
60,000 psi and temperatures around the critical temper-
ature of argon to better define the critical curve. How-
ever, Kaplan (23) has a gualitative method of predicting
whether a phase separation will occur in a given system
above the critical temperatures of the pure components
based on the D2 factor (D2 = 3RTc/2Vc). He presents an
extensive list of systems known or predicted to exhibit
this behavior. The helium-argon system is predicted to
show this phenomenon.

Therefore in the present work, it is thought that
the first run which was started at approximately 10,000 psi
somehow underwent a fluid-fluid phase separation which
perménently changed the composition of the mixture after
the first expansion. If complete mixing with the magnetic
pump were attained, the equilibrium composition would
be regained after the first expansion. Apparently the
magnetic pump was not left on long enough to achieve
complete mixing. This then resulted in a permanent
change in composition. The first run is therefore made
for an unknown compositidn, and the second run, starting
at a lower pressure, is made using a gas sample of the
known composition. This explains the separation in the
curves appearing in FPigure 6. The two runs for each of

the two mixtures that exhibit this behavior were treated
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individually instead of combining the two runs as sug-
gested in Appendix B. The two runs for the mixture
containing 21.99% helium were also treated individually
because of inconsistencies in the two runs when treated
together. Tables 17 through 22 have a different format
than the other tables for these reasons. The other
mixture and pure component data for the -115°C isotherm
were treated in the same way as the -90°C isotherm was,
that is, by using the procedure in Appendix B.

The -130°C isotherm was below the critical temper-
ature of argon. Therefore, the helium-argon phase diagram
presented by Streett (35) was used to determine the
maximum starting pressures so that the sample would always
be in the gas phase. However, the mixture containing 59.4%
helium was apparently started at a pressure that crossed
the phase boundary, so that the two runs again were for
mixtures of slightly different composition. These two
runs had to be treated separately, so Tables 27 and 28
also follow a different format. The mixture containing
80.00% helium was treated for the two runs together and
individually. When treated individually, the parameters
and compressibility factors agreed quite well. However
when treated together, the results were not as good as
the individual runs indicated. Since there was no basis
for choosing between the two data treatment procedures,

the results for this mixture are presented in Tables 25 and
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26 for the two runs treated individually.

Since only the 100% helium data could be started
at 10,000 psi, the other mixtures and 100% argon results
have fewer data points per run due to the lower initial
pressures. Preliminary attempts at fitting these runs
indicated that there were too many adjustable parameters
for the number of data points. Therefore, for these
runs the values of the cell constants, N_, obtained from
the 100% helium runs were used and held constant in the
Newton-Raphson determination of the optimum virial
coefficients. Aside from this change, the data treatment
for the multiple runs was the same as discussed above.

At the end of each table, two gquantities are
presented which give some insight into the confidence of
the data. They are the optimal estimated value of the
best fit criterion, BFC, defined by equation (B-6),
and the sum of the deviations between the experimental
pressures and the calculated pressures. The latter number
is an indicator to see whether or not a least squares
fit was obtained. This number should be less than or
the same order of magnitude as the smallest deviation.
The details of the determination of all the values pre-
sented in Tables 9 through 31 are given in the dis-
cussions of the data reduction analysis in Appendix B
and the estimation of standard errors of the parameters

and data in Appendix D.
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Factors Influencing Best Virial Coefficients

Sengers (32a) has used the principles of statisti-
cal analysis to study the effect of various factors on the
determination of the optimum values of the lower virial
coefficients. She found that the standard error in the
coefficients increases as the number of coefficients
used is increased and that the standard error decreases
as the number of data points used is increased. She
concluded that in deriving the second virial coefficient
from PVT data over a wide density range, that it was better
to use a second or third degree polynomial while holaing
a predetermined value of the first coefficient fixed.

This resulted in the minimum standard error in the
second virial coefficient.

This type of analysis was tried for the -90°C
isotherm for the pure helium run and also for the pure
argon run to see if the second virial coefficient having
the minimum standard error could be obtained. This was
done by first making the data analysis for all of the
data. Then succeeding runs were made with one data point
removed from the analysis each time. The results of this
analysis are shown in Table 32. Although the results
indicate that the standard error improves with increasing
number of data points for the same degree of fit and with
decreasing degree of fit, the analysis is inconclusive at

this time. It is difficult to determine which value of



TABLE 32

RESULTS OF THE ANALYSIS FOR THE DETERMINATION
OF THE OPTIMUM VALUES OF VIRIAL COEFFICIENTS

Number B2 Standard B3 Standard Best
of Points Exrror Error Fit
100% Helium
24 12,2716 0.02793 123.6984 1.6046 3
23 12.2589 0.03509 124.7825 2.3885 3
22 12.2214 0.04947 128.6345 4.3181 3
21 12.2286 0.06461 127.7427 6.6495 3
20 12.2557 0.09789 123.6370 12.8323 3
19 12.1247 0.04190 147.5579 7.6220 2
100% Argon
24 -56.4795 0.1843 1286.947 53.310 6
23 -56.4431 0.2484 1273.465 80.592 6
22 -56.6103 0.1797 1346.623 50.642 5
21 -56.8128 0.2835 1422.345 96.246 5
20 -57.9232 0.0955 1840.407 16.952 3
19 -57.8038 0.0284 1816.008 2.365 2

1448
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the virial coefficients are best just by looking at the
results in Table 32. This is due in part to the fact
that this analysis includes random error only and does

not consider systematic error.

Interaction Virial Coefficients

The second interaction virial coefficient, 312'
was determined from the mixture values. It is defined
by the Lennard-Jones and Cook equation:

- 2
Bh = xlnll + 2x1x2312 + X2322 (56)

where B11 and 322 are the two pure component second

virial coefficients and X, + x2 = 1. For the experimental
data in this work there are six values of gu. two pure
components and four mixtures. The three coefficients,
By, 312' and 822. in equation (56) were determined

using ORNOR in a least-squares fit of B, versus xl in

M
the following manner:

2
By = X1By,

2
+ 2x1(1 xl)B12 + (1 xl) Bzz.(57)
This fit was made using a weighting function that was
proportional to the square of the reciprocal of the stan-
dard error in the second virial coefficients. The inter-

action coefficients for the three experimental tempera-

tures are presented in Table 33.
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TABLE 33

SECOND INTERACTION VIRIAL COEFFICIENT
FOR HELIUM-ARGON MIXTURES

Temperature (cc/mole) Standard
PHe-nr Error
-90°C 14.62 0.24
-115°C 11.60 0.48
-130°C 10.38 0.095

The third interaction virial coefficient was also

~ determined using the mixture values. It is defined by

L3 3,
Cu = x1‘3111*':"‘i"zcnz“3"1"2"122 +X5Cr00 (58)

where clll and C,,, are the pure component third virial
coefficients. The interaction coefficients, Cyy0 and
c122’ were determined by a least-squares fit using ORNOR
in a manner similar to that for the 1312 above. The third
interaction coefficients for two experimental temperatures

are presented in Table 34.

TABLE 34

THIRD INTERACTION VIRIAL COEFFICIENTS,
Che-ge-ar 279 Cge-Ar-ar

Temperature CHe-He-ar CHe-ar-ar
-90°C 299 528
-130°C 275 : 551

All values in (cc/mole)'
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Comparison with Other Investigators

The compressibility factors used in the comparison

were calculated from the virial coefficients given in
Tables 9 through 31. The literature values were calcu-
lated in a similar manner. The comparison for helium
could be made at all three experimental temperatures.
However, comparisons for argon were available at only one
of the temperatures. The results of the comparison are
presented in Table 35. A comparison of the optimum second
virial coefficients obtained from the data analysis with
other available literature values is given in Table 36.
Since an adequate comparison for the pure argon
data and mixtures was not possible due to lack of data
at the experimental temperatures, a graphical presentation
is used to show that the data are consistent with other
data taken at other temperatures. Figure 7 shows the
values of the argon second virial coefficient at the three
experimental temperatures along with values obtained by
other investigators at different temperatures. Figure 8
gives the second interaction virial coefficients at the
experimental temperatures and at other temperatures found

in the literature.
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TABLE 35

COMPARISON OF COMPRESSIBILITY FACTORS

WITH OTHER INVESTIGATORS

Helium
P(atm.) Reference -90°C -115¢°C -=130°C
25 This Work 1.02034 1.02423 1.02580
Canfield(8) 1.02043 1.02365 1.02601
S0 This Work 1.04055 1.04817 1.05157
Canfield (8) 1.04074 1.04721 1.05192
100 This Work 1.08059 1.09534 1.10291
Canfield(8) 1.0809S 1.09401 1.10342
200 This Work 1.15930 1.18751 1.20439
canfield(8) 1.16009 1.18621 1.20491
500 This Work 1.38553 1.45129 1.49640
Canfield (8) 1.38721 1.45098 1.49750
Argon
P(atm.) Reference -130°C
20 This Work 0.8135
Crain(13) 0.8115
Levelt (25) 0.8131
Michels (28) 0.8126
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TABLE 36

COMPARISON OF SECOND VIRIAL COEFFICIENTS
WITH OTHER INVESTIGATORS

Helium
Reference -90°C -115°C -130°C
This Work 12.27 12.66 12.13
Canfield(8) 12.30 12.25 12.20
Axrgon
Reference -130°C
This Work -94.04
Crain (13) -94.69

Michels (28) -94.43
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CHAPTER VII
CONCLUSIONS

A Burnett apparatus that had been used success-
fully at temperatures ranging from ~190°C to +50°C was
available for the experimental work. The equipment was
modified slightly in attempts to reduce nitrogen usage
due to boiloff, to increase the heat transfer rate to the
cell in the cryostat, and to eliminate the galling of
the valve stems inside the cryostat. A definite improve-
ment was made in each of these changes, but the heat
transfer rate is still a problem that should be studied
further.

Also, in the future it would be advisable to
consider a slight change in the operational procedure
concerning the zero shift correction. The zero shift
should be determined in the same way as discussed by
Blancett (5). Then after the differential pressure indi-
cator is nulled for a pressure measurement during a run,
the amount of weight corresponding to the predetermined
zero shift correction should be added to or subtracted
from the dead weight gage (depending on direction of
correction). Then the expansion valve, that was left 1/8

132
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turn open, should be closed. This would make the pressure
on both sides of the diaphragm equal. Following such a
procedure would delete the pressure correction due to
cryogenic differential pressure indicator zero shift in
the calculation of the corrected pressure. Also, the
volume distortion correction would be simplified by not
having to consider the volume change due to diaphragm
movement caused by a zero shift.

In this experimental work helium, argon, and four
mixtures of the twc were studied at three temperatures
between -90°C and -130°C using the Burnett apparatus.

Two runs were made for each sample gas at the three ex-
perimental temperatures. From the Burnett data, the com-
pressibility factors and optimum virial coefficients were
determined. Also the standard errors for the parameters
and data were determined for each set of two runs.

The compressibility factors and virial coefficients
were determined using a procedure in which the Burnett
apparatus constants and the virial coefficients were
determined by ORNOR for initial estimates. Then a Newton-
Raphson procedure was used to converge to the best set
of parameters that satisfied a minimum best fit criterion.
The compressibility factors for each experimental pres-
sure could then be calculated with the virialvexpansion.

A preliminary attempt to see if a perturbational
equation of state for methane were feasible has been pre-

sented. The proposed equation of state covered the
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temperature range 114° to 623°K with most of the low
temperature data in the liquid region. The accuracies
of the proposed equation of state are not as good as
they could be due to discrepancies in the data used at
the lower temperatures. Wwhen the remeasured data become
available, the constants can be redetermined. This is
expected to improve the calculated pressures and densi-
ties predicted by the perturbation equation of state.
Nevertheless, the present results indicate that the
approach shows promise and that it would be worthwhile
to pursue the idea further. Improvement might be made
in the formulation of the cutoff parameter dependence
on temperature and density and in the choice of weight-

ing factors used.
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APPENDIX A
SPECIFIC INFORMATION ABOUT EQUIPMENT

This appendix gives more specific information con-
cerning calibrations and certifications of the components
of the apparatus that were described in Chapter III. 1It
should prove useful to others using this apparatus or
similar apparatus. It is divided into two parts - temp-

erature measurement and pressure measurement.

Temperature Measurement
For the temperatures at which the data in this

thesis were taken, the Callendar-Van Dusen Equation is

used to define the temperature:

Ry, =R +op [{1£0) o 042 B .3 B T4] (a-1)
10 10 10 10
Where RT is the resistance at ToC, R.o is the resistance

at 0°c, and a,8, and 8 are calibration constants. The

values of these constants are

Thermometer # 1617523
Date of Calibration: May 17, 1963
Range: 444.6°C to -182.97°C

a= 0.003926619

139
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B = 0.11035 (below 0°C)

6 = 1.49136
Ro (May 30, 1966) = 25.5512Q(ice point)
Thermometer # 1665930
Date of Calibration: March 9, 1966
Range: 444.6°C to -261.15°C

a = 0.003926145

B = 0.11054 (below 0°C)

6 = 1.49154
R_ (May 30, 1966) = 25.5331Q(ice point)

The G - 2 Mueller Bridge used in this work was
tested in February, 1963, by the Leeds and Northrup
Company. A calibration certificate was issued which gave
the correction to be applied to the bridge reading. The
bridge was recalibrated in this laboratory just prior
to the start of this experimental work. The corrections
determined then were slightly different than those given
by the manufacturer and were used as suggested by the

manufacture to attain higher accuracy.

Pressure Measurement
The equipment used in the pressure measurement
were the dead-weight gages, the weights, and the differ-
ential pressure indicators. This section gives some

specific details about each of these items.
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The Ruska Instrument Corporation supplied the
following instrument constants for the piston gages used

in this laboratory.

High Pressure Low Pressure
Gage Gage
Bffective Area at 25°C
and Atmospheric Pressure,
square inches 0.0260430 0.130220
Coefficient of Superficial -5 -5
Thermal Bxpansion, (°C)~1 1.7 x 10 1.7 x 10
Fraction Change of Area
per Unit Change of Pres- -8 -8
sure, (psi)-l -3.6 x 10 -4.8 x 10
Resolution <5 PPM <5 PPM
Plane of Reference 0.04 inch below 0.10 inch
line on sleeve below line of
weight sleeve weight

The precision machined stainless steel weights
provided by the manufacturer were calibrated against
Class S standards. Results of the calibration are pre-
sented in Table A-1l. A set of Class C standard weights
up to 500 mg was used for fine balancing.

The specifications for accuracy and sensitivity
of the differential pressures indicators were

Accuracy: # 1 1/2 scale divisions at null

Sensitivity: 0.0001 psi/scale division.‘paximum
Blancett (5) measured the sensitivity of the indicators
in the laboratory and found that the room temperature

indicator exhibited 0.00005 psi/division and the cryogenic
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TABLE A-1l
CALIBRATION DATA FOR PISTON GAGE WEIGHTS

Weight Letter Apparent Mass vs Brass
Designation Pounds

26.03576
26.03564
26.03567
26.03569
26.03575
26.03500
26.03511

- 26,03504
26.03513
26.03543
26.03552
13.01812
5.20716
5.20718
2.60351
1.30167
0.52073
0.52075
0.26034
0.13018
0.05207
0.05206
0.02603
0.01302
0.00521
0.00260

c 0.00130
Tare High 0.78104
Tare Low 0.78107

NI TE<al %o w0 ZE2 Ry EOOQOE D
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indicator exhibited 0.0004 psi/division at -183.C. These
results were taken as indicative of the behavior under
the conditions experienced in this work.

The cell constant, Nj' can be related to N_,, the
cell constant at zero pressure, by multiplying by a
correction factor due to the pressure distortion of the
experimental volume. The pressure distortion correction

is given by

. .A(vs + vb)_
1+ d
(va + vb)
N.=N_ - P=0 A-2
j = Ve A(v,) (Aa-2)
1 + —r-l-——
P=0
where A(v ) is the change in the volume before an

a’ j-1
expansion and A(Val + vb) is the change in the volume after

an expansion. The ki and m, given in Equations 12 and

13 are constants for the pressure distortion correction
given in Equation A-2. These constants were determined
taking into account the pressure deformation of the
Burnett cells, the magnetic pump, the cryogenic valves,
the connecting tubing, and the cryogenic differential
pressure cell. Also, there is a change in volume due to
the zero shift of the éryogenic differential pressure
cell. This was included in deriving the constants ki and
m; ., which are given in Table A-2. This change in pressure
is defined by

Ap,

2sC = P, - P (a-3)

L U



TABLE A-2

PRESSURE DISTORTION CORRECTION CONSTANTS

roc K, K, X, K,

- 90.00 1.0 -3.22(10"7) 2.22(10"11) 8.01 (1019

-115.00 1.0 -2.92(10"7) 8.18(10"12) -3.08(10"1%)

-130.00 1.0 -3.13(10"7) 2.40 (1011 -1.03(10"1%)
Tog M, M, M, M,

- 90.00 1.0 -4.66(10") 3.49(10" 1Y) 1.26(10°1%)

-115.00 1.0 -4.22(1077) 1.28 (10" 11y -4.85 (10”14

-130.00 1.0 -4.51(10"7) 3.77(10" 1Y) -1.62(10" %)

144
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where PL

differential pressure cell and Py is the pressure in the

is the pressure in the lower chamber of the

upper chamber of the differential pressure cell. This
definition is consistent with the one used by Blancett (5)
and applies to both the cryogenic and room temperature
differential pressure cells. See Blancett for a detailed

analysis of this development.



APPENDIX B
DATA REDUCTION ANALYSIS

This appendix is a summary of the procedure used
to get compressibility factors and virial coefficients
from the experimental data, which consisted of a series
of pressures at constant temperature. The procedure
given here is one that has been developed by Hall and
Ccanfield (20).

Selection of Objective Function

The objective function must be chosen so that it
is consistent with the Burnett analysis given in Chapter
I. It should describe the difference between an observed
and calculated variable and contain all the parameters
which are to be determined. It is also desirable to use
data from more than one run at the same experimental
conditions to obtain values for the apparatus constants
and virial coefficients simultaneously. The function
selected that met these conditions was the sum of the
weighted squares of the difference between the experimental

and calculated pressures.

NR Jr 2 )
Ss= %X I w_ _.A = minimum (B~1)

r=1 j=1 *J *J
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where Aij = Prj = Popre’ Ppy is the experimental pressure,

r)
NR is the total number of runs, Ji is the number of data
points in the rth run, and ij is an appropriate weighting

function, The calculated pressure is given by the following:

m
_ k
Poarc = RF E B o) (-2)
where Bk are the virial coefficients and m is the number
of coefficients required. The density, prj' appearing
in equation (B-2) is given by
_ (P /2.) ,

[ J :
Tl Rr g N

(B-3)

where gj is the product of the summations given in equation

(13).

Bvaluation of Initial Estimates

The same general least squares procedure, ORNOR,
that was used in Chapter VvV, was used to obtain the initial
estimates of the apparatus constants and the virial coef-
ficients. The initial approximations of the cell constant
and the run constant were determined using the classical
limiting procedure given by equations (14) and (15), res-
pectively. ORNOR was used to fit the low pressure data
points where these expressions are more nearly linear,
and then the results were extrapolated to zero pressure.
With these estimated values, the densities could be

calculated using equation (B-3) and the compressibility
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factors by use of equation (13). ORNOR was again used
to fit the virial equation to obtain initial estimates

of the virial coefficients and the optimum number of
coefficients. The initial estimate of best fit was
checked after the final values of the parameters were

determined.

Calculation of Parameters

BEquation (B-1) can be solved by a Newton-Raphson
iteration procedure because of the accuracy with which
the initial approximations of the cell constants and run
constants can be determined. First, the normal equations

are formed as

J,
NR r A .
39S b o
— = D ) T W . A . = 0 (8-4)
axi =1 j=1 rj rj Sxi

where X; represent the apparatus constants for either
run and the virial coefficients. Rach of these normal
equations is then approximated by a first-order Taylor's

series around the initial estimates of the parameters:

s __ ) ( ) ax, (B-5)
axi ( i o

where the subscript o indicates that the quantity is
evaluated at the initial values of the parameters. The

partial derivatives in equation (B-5) were determined
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analytically. 1Initial estimates of the cell constants,
run constants, and virial coefficients were then used to
evaluate the partials, and the resulting equations were
solved for AK‘. The parameters were then adjusted by
adding these corrections to get new estimates of the
parameters. The iterations were continued until the
changes in the parameters were arbitrarily small and the
first partials of S were near zero.

Because the converged values of the parameters
might change the optimum number of virial coefficients,
the Newton-Raphson iteration was used for different values
of m. The iterations were started for an m of two less
than the estimate of best fit and continued until the
best fit criterion was a minimum. Hall and Canfield (19)
have established a best fit criterion to determine the
truncated polynomial series which best approximates the

infinite series. This criterion is given by
(2m - N)o® + <( A, 4> = minimum, (B-6)

where m is the number of parameters and N is the number
of data points. Since the expected values of variables

and 02 are not known, approximations for these values

muxt be introduced. The variance in the data, 02, was
approximated by the minimum objective function for the
polynomial, which is found to be the best fit, divided

by the degrees of freedom, N~-m.
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Calculation of Compressibility Factors

When the optimal values of the cell constants and
run constants had been determined, equation (13) was
used to calculate the Burnett compressibility factors
and equation (B-3) was used to calculate the densities.
The virial compressibility factors were calculated using-
the virial equation with the optimum virial coefficients
and these densities. The two sets of compressibility
factors could then be compared. These comparisons are

given in the tabulated results in Chapter VI.

Selection of Weighting Factors

The weighting functions, Wij. in eguation (B-1)
could be taken as one if all pressures were of equal
reliability. However in the Burnett procedure the higher
pressures can be determined more accurately than the
lower pressures can. Therefore, weighting factors are
needed to weight the pressures in each run. The error
that was independent of the pressure being measured was
;pproximated as 3(10’4). The pressure dependent error
was determined to be 10~ %p. Thus the weighting factors

used in the final treatment of the experimental data were

given by
2

4
Py] (8-7)

- -4 -
Wy = 1/ [(3(10°°) + 10

Various values for the constants in equation (B-7) were
tried to see if the results were affected by the choice

of the weighting factor. As long as the values were
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within a reasonable range for the equipment used, the

results were the same for different choices of the weight-

ing factor. The weighting factors in equation (B-7) were

normalized by dividing each one by‘wll.



APPENDIX C
PERTURBATION EQUATION OF STATE DERIVATIONS

This appendix presents the derivations needed
in the perturbation equation of state theory that were

too lengthy to present in Chapter I1V.

.I.aplace Transform of rg (r).

Wertheim (43) and Thiele (38) give the explicit
Laplace transform, G(s), of the approximate hard-sphere
radial distribution, :go(r). satisfying the Percus-Yevick
integral equation as

-8

sLfele (e

G(s) = 3pT(s)e-% + 5(3)

where S(s) = (1-n)2s3 + en(1-m)s® + 189%s - 12n(1+29)
and (s) = (1+%m)s + (1+29). A new function f£(s,”) can
be defined as follows:

£(s,m) = 55 [0G(s) 1. (c-2)

When the lengthy differentiation with respect to density

in equation (C-2) is performed, the result is

4 -s 2 : 2
£(s,n) = .__.L_L__!l__!l_).zs e [s(l+ +-S::s)} + (20 + 1T (o3

{129 L(s)e
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Inverse Laplace Transform of Potential Function
The perturbing potential function used in this

thesis is given by

0 r < co
u(r) = (c-4)

4 €f0/r)12 - (0/x)%]. r > co

With the change of variable z = r/co, eguation (C-4)

becomes
(z) = 4€l -1 c-5)
n(z) (cz) 12 7 (cz)® (
or z u(z) = 4€[—= i3 il - —lg '-l'gJ. (c-6)
c z

The inverse laplace transform of z I

n-1
& g 7
2 n-1).

Applying this to equation (C-6), the inverse Laplace

is given by

transform of the potential function, Ul(s), is obtained.

810

1
Uy (s) = 4€l—5 1z 107 - 647

(c-8)

»ln
2%

The inverse Laplace transforms of the square and cube of
the potential function are also required. Equations (C-9)
and (C-10) present the sgquare and cube of the potential
function, respectively, after the change of variable has

been made.



APPENDIX C
PERTURBATION EBQUATION OF STATE DERIVATIONS

This appendix presents the derivations needed
in the perturbation equation of state theory that were

too lengthy to present in Chapter IV.

‘Laplac. Transform of rqo(r).

Wertheim (43) and Thiele (38) give the explicit
Laplace transform, G(s), of the approximate hard-sphere
radial distribution, tgo(r). satisfying the Percus-Yevick

integral eqgquation as

-8
o) = TITlsle T T EE (e-1)

where S§(s) = (1—0)233 + Gn(l—n)s2 + 18n25 - 1219(1+27)

and L(s) = (l+n)s + (1429). A new function £f(s,n) can
be defined as follows:
f(s,n) = 1:-; (oG (s)]. (c-2)

ﬁhen the lengthy differentiation with respect to density

in equation (C-2) is performed, the result is

f(s.n) = !—‘-2:;[&+J - ;ﬂi”:"_‘?ﬂ__’!’_lﬁl . (c-3)

{129 L(s)e ® + S(3))

152
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Inverse laplace Transform of Potential Function

The perturbing potential function used in this

thesis is given by

u(r) =

r <co
(c-4)

4 €l (0/r)1% - (0/r)%]). r > co

With the change of variable z = r/co, equation (C-4)

becomes
u(z) = ae[—L - L], (c-5)
(cz)! (c2z)
or z u(z) = 4€l—= 1z h -+ -—J (c-6)
The inverse Laplace transform of z " is given by
(c-7)

() (n-n"

Applying this to equation (C-6), the inverse Laplace

transform of the potential function,

10 4
5 l s
Uy (s) = 4€l—35 17 107 ~ 6 47)

Ul(s), is obtained.

(c-8)

The inverse Laplace transforms of the square and cube of

the potential function are also required.

and (C-10) present the sguare and cube of the potential

function, respectively, after the change of variable has

been made.

Equations (C-9)
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2 2 1 2 1
u?(z) = 16€ [— -2 __ ., ﬁ-] (c-9
e e ® el )

3 3 1 3 3 1
u” (z) = 64¢€ [ - + - -1 (C-10
€)% )P o (c-10)

When the result of equation (C-7) is applied to equations

(c-9) and (Cc-10), Uz(s) and U3(s) are obtained.

22 16 10
U,(s) = 16€ [24 327 " IB1eT Y13 101]‘c 11)
Cc [ o (o]
34 28 22
3 1l s 3 8 3 s -~
U(s)=64€[—— - - - + .
3 =36 347 ~ 30 287 * 24 227
16
- 15 Te ] (c-12)
C

Derxrivation of Pressure Coefficients

Equation (32), which gives the perturbation equa-
tion of state in terms of the free energy, must be differ-
entiated with respect to volume to get the pressure form

of the equation. From the differential equation for the
free energy in thermodynamics,
dAT = -5 dT - P 4v (c-13)

orx

P = -(—g%)T . (c-14)

In terms of density instead of volume, equation (C-14)

can be written

P _ A -
s =P (‘55)T (c-15)
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Therefore, to get the first coefficient in the pressure
form of the equation, the first coefficient in the free
energy form must be differentiated with respect to density

and multiplied by density

b(p) =»p > (C-16)
T
or
b(p) = 290 &= [ pu(r)g, (r)=ar . (c-17)
pJ o

With the change of variable z = r/co, equation (C-17)
becomes

blo) = 21p(co)’ 3= j: pu(z)g,(z)z%dz . (c-18)

Wertheim (43) and Thiele (38) have obtained the explicit
Laplace transform, G(s), of the approximate hard-sphere

radial distribution function,rgo(ryz
G(s) = f' e-srgo(r)rdr . (c-19)
co

If it is assumed that ru(r) possesses a continuous inverse

transform, then

ru(r) = f’e_srul(s)ds (c-20)
o

or making the same change of variable as before, equations

(C-19) and (C~20), respectively, become

G(s) = (c0)? [T 50%g_(z)zdz (c-21)
1

cozu(z) = f:é'scozvl(s)ds . (c-22)
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After substituting the right-hand side of equation (C-22)

for its equivalent in equation (C-18), the result is
39 ® (o -8C02Z
b(p) = 2up(co) '33 Il Io p e Ul(s)dsgo(z)zdz.(c-ZB)

When the order of integration in equation (C-23) is
changed and the left-hand side of equation (C-21) is

substituted for its equivalent, equation (C-23) becomes
blp) = 2m(co)3 & [ pa(s)u, (s)as (c-24)
¥ 9, 1

Remembeéring equation (C-2), equation (C-24) becomes

b(p) = 21p(c0)® [* £(s,n)U, (s)as (c-25)
o

I1f the dimensionless parameter 7 is defined as

n = .ﬂﬁ%’-—g . (C-ZG)
then equation (C-25) beccmes
bp) = 129 [  £(s,m)U, (s)ds (c-27)
o

where £(s,7n) and Ul(s) are defined by equations (C-3) and
(C-8), respectively.
In a similar manner the coefficient of the B2 term

can be derived.

_ BCZ
c{p) =p 33-)T (c-28)

clp) = -mp %E[k'r %%)OJ' ; pu? {r)g, (r)rzdr] . (c-29)
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where

4
d (1-n)
k'r(sﬂ) = (c-30

FIo 1 + an + an? )

This is the hard-sphere compressibility based on the
Percus-Yevick hard-sphere equation of state given by
equation (42). The same change of variables and substi-
tutions are made as before in the case of b(p). The only
difference is that this time, the differentiation with
respect to density requires the differentiation of a quo-
tient because 7 is a function of density. When these

operations are performed, the final result is

cle) = R(n) [ £(n.s)u,(s)as
o

- v(n) [7 G(s)u,(s)as, (c-31)
o
where
4
R(n) =22 {=n) (c-32)
1+ 4n + 4n
and

3 4
Vin) = -6n[4n (1-7) 5 + 4n (1 + 21) % > 1) :’ (c-33)
1+ 49 + 4n (1L + 49 + 4n°)

Likewise, the coefficient of the 33 term can be

derived following the same procedure as for the other two.

q _ 303
) =p Ty . (C-34)
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1-m) 7 (692-7n-1

2 3
(1 + 2n)5

X

g
X f pu3(r)go(r)r2dr] . (c-35)
co

The differentiation with respect to density is similar
to the case of c(p) except that it is more lengthy to

perform. The final result for the 83 term coefficient is

d() = wn) [£(n,s)u (s)ds + v(n) [ G(s)Uy(s)as, (c-36)
o o

where

7
w(n) = 2n(1-n) (129-7) (c-37)

(1 + 211)5

and

7
v - an [200 Gy
(1 + 27n)

7 (1-1) © (6n3-71-1

(r + 2n)5

7 (2
_ lon(1-n) ' (én -73:1?] (c-138)

(1+ 2n)6

Hard-Sphere Compressibility

The hard-sphere compressibility, (ap/aP)o, can
be determined by differentiating equation (42) with respect

to density and taking the reciprocal. This section shows
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how equation (C-30) is derived from equation (42) by this

procedure.

W,
L]

2
OkT [1 +n+n ] (42)
(1 -1n) ,

3P 1 2 3 (1 2
(Tp)o=kT[ +g+g+p_rp{+m+n}-]

(L-m3 r-mn3

2 2 2

xp {1-7m) (149 + (1-n) (942
(1 - 1)

_ kT[l + 4n + 4n2]
- an_ |
(1 -1n)

+3n(1+

=

or

4
KT (—g% -—(1-mn 5 (c-30)
o 1+ 4n + 41

Change of Variable for Numerical Integration

In order to make the numerical integration more
easily manageable, it is necessary to make a change of

variable in the following manner:

l-x
g = —= (c-39)
with

ds = -ax/x° . (c-40)

Thus the integral in equation (C-27) becomes

1
1= j'o ii- £ (X, n) v, X ax (c-41)



160

in which s is replaced by (l-x)/x in £(s,n) and Ul (s).

The integrals in equation (C-31) become

1
J=] ‘L"z’ £ (-—--lxx. " U, (—lxx) dx (c-42)
o X
and
1, 1-x 1-x
k=[ S6 0 v, 5 a (c-43)
O X

in which s is replaced by (1-x)/x in G(s), U2 (s), and

£(s, n).

Derivation of Other Terms

The expressions derived in this section are the
additional terms in equation (49). Sinc.e these terms are
evaluated in the range from zero to ¢, the molecular
diameter, the Laplace transform, G(s), of the hard-sphere
radial distribution function, go(r), as suggested by
Frisch, et al. (16) cannot be used. However, Wertheim (43)
and Thiele (38) have also presented an analytic expression
for xg, (x), where x is a dimensionless distance, r/co,
for a shell defined by the range 1<x<2.

This expression in the first shell is given by

2
xg(x) = (L -n)"2% A, exp t, (x-1), (c-44)
L=0

y

where t‘ = 2n (1--':7)"l -1+ x+j + x_j-‘c], j = exp (—% i),
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x, = (£ + (82 + DY201/3, = (e - (2 + H1/29173,

and £ = (3 + 3 - 112)/4112. The A‘ in equation (c-44)

are given by

A, = 3 mico nmj““, (c-45)
where
H = 1+ 1{27).
H, = - @m 1 (£2+1/8) "2 [x_2(1-3n-an?) + x_(1-3n%) 1,
H, = (am) 1 (£2+1/8)71/2 [x+2(1-3n-4n2) + x_(l-%nz)] .

When these equations are substituted into equation (C-44),
and it is expanded, the imaginary terms drop out, and a

completely analytic expression for xg(x) is obtained:

1

(x) =
I 3x(1-n)2

[ oHi;+H,) exp (AA)

+ (2C cos B-2D sin B) exp(a)] ., (c-46)

where

AA:(—iE-;'-’— (x-1) [-1 + X, +X__] .

A= - "(_i?ﬁ (x-1) [1 +0.5(x, +x)],

w
|

2
= ﬁ!_l-n—) (x-1) (.86603) (x, - x_) .
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and

D

0.86603 (Hl- Hz) .

The a term in equation (49) is given by
o
@ = 35 ((em oy, (o) [co - [ (1-exp(-Bu)} dz1},  (c-47)

where the differentiation with respect to density is
required to convert from free energy to pressure. In
equation (C-47) only p and go(ca) are a function of

density. Therefore equation (C-47) can be rewritten as
_ 2 o d
@ = (co0)“[co - [ {1-exp(-Bu)} az] 3 PIy(c®)]  (c-48)
o

Throop and Bearman (39) give an expression for the hard-
sphere radial distribution function evaluated at the

hard-sphere diameter, go(co).
go (CU) = .‘1_"'_!5421 ¢ (c_49)
(1 - n)
When equation (C-49) is substituted into equation (C-48)
and the differentiation is performed, equation (C-48)
becomes

o
a = (c0)’[co - [ {1 - exp(-Bu)] dz][%z—’?-)—gl . (c-50)
o -Nn
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The integration in equation (C-50) is done numerically
after the change of variable, x = z/0, is made.
= (c0)%[co - @ f {1 - exp(-Bu)} dx][7i33¥-] (c-51)
-n

The ¥ term in equation (49) is given by
TJ‘" (r)u(r)r? (c-52)
Y= pg_(r)u(r)rdr, c-52
R

where the differentiation with respect to density is
again required to change from free energy to pressure.
When the differentiation is performed, two integrals are
obtained. After the change of variable, x = r/co, is i
made and the 12:6 potential is substithted, equation

(C-52) becomes

3 1
= 4€(co) [ 9'(x)[ - ] x2ax
I (cx)12 (cx)6
/e dg,, (x) 1 1 2
+p = - ] x%ax . (c-53)
Il ap (cx)lz (cx)6

3g,, (x)
The derivative, ——3——— is evaluated numerically by

evaluating go(x) at the required density, incrementing
the density by 0.00001p, an d evaluating g5 (x) again. This

3g,(x)  Ag, (x) _
resulted in approximating —50 by .Y Several in-

crementing factors, varying by two orders of magnitude,
were tried, but the results were not affected by the choice

of an incrementing factor within this range.
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2

The y“ term in equation (49) is given by

3 (kT (32) pg (r)u(r)rlar] . (c-54)
After the differentiation of the quantity in the brackets
with respect to density is performed, the change of
variable, x = r/co, is made, and the 12:6 potential is
substituted, equation (C-54) becomes

2 2, .3 an
y" = 16€7(ca) 'L_L— [{ (1—n) (1+2n)}

(1+2n)

/e 1 2 1 2 ]
I 1 [(cx) 24 ()18 (ex )12]

1/c ] og_ (x)
2 1 0 2
+ _..—....... —e e —— dx .
P .f [ ( )24 (cx) 18 (cx) 18 op x

3g,, (x)
where the derivative, —3———- is evaluated numerically

as for the ¥ term.



APPENDIX D

ESTIMATION OF STANDARD ERRORS

OF PARAMETERS AND DATA

This appendix presents the development of expressions
that estimate the standard error in the parameters that
appear in equation (B-2) in a nonlinear manner. Using
the standard error in the parameters, the standard errors
in each data point were estimated with a procedure given
by Deming (14). A set of statistical weighting factors
was determined from the standard error of the dependent
variable and the standard errors of the individual Qata

points.

Standard Error of Parameters

The variances of the parameters were calculated
using the elements of the inverse of the coefficient matrix,
A. The elements in the coefficient matrix were determined

by

34, A,
s = E ¥y (T’ 55_) ©-1)

i=

where the,Ai are the deviations between the observed and
calculated values of the dependent variable, 6. are
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the m parameters,'wi are the weighting factors, and N
is the number of data points. The matrix, whose elements
are defined by equation (D-1), was inverted using the
Guass-Jordan-Rutishauser double-pivoting method to obtain
the inverse matrix B. The variances of the parameters
were then calculated by multiplying the diagonal elements

of the inverse matrix by the variance of the dependent

variable: _—
2 2
=D D-
Sep pp° (p-2)
where s2 is given by
N 2
Y WA
2 _j=) *1 p-3)
5 =¥ (

The standard error was calculated by taking the square
root of the variance. The covariances of the parameters
could be determined by multiplying the off-diagonal
elements by Sz,

2 _ 2
sequ = bpqs . (D-4)

Barieau and Dalton (4) have derived an expression
for the estimation of the variance of nonlinear parameters
by using a truncated Taylor series approximation for the
law of propagation of errors. Box (6) was one of the
first to suggest an approach similar to this. They found
that the elements in the coefficient matrix A, discussed

above, were given by
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N [( aAi) (aAi R ( a%a, 5]
a = W. + A. . (D~5
ts j=3 + 35t s i aosaat )

Their expression for the variance of the parameters was

given by
2 '2 M m N
= - ¥ T b b T w.A.
SOp ‘bpps S oml to1 ps pt i=iw1 ;X
2
A i (D-6)
aes Et

This expression is the same as equation (D-2) with an
additional term added to it. The additional term in
equation (D-6) becomes significant if the parameters

are highly nonlinear. In the data treatment in this
thesis, the estimates of the standard errors of the
parameters were determined using the square root of equa-
tion (D-2) because it is a good approximation for equation

(D-6) for the parameters appearing in equation (B-2).

Estimated Variance in Data
The estimated variance in the individual data
points was determined following the method given by

Deming (14). His procedure was to estimate the variance

by

~

2. % 2 % ‘ (D-7)
S . = P.. Sao.)“+ Pl.Pl S, .Sa.Ta. D-7
P; j=1 85 T03 j=1 k=1 05°0k"05°6k 036k
j#k 3P,

. . s i
where P, are the pressure data points, ij is the-sag.
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— .

and rOjOk is a correlation parameter that is zero if
the parameters are independent and nonzero if the param-
eters are interdependent. The parameters in this work
are interdependent and the product SOjsekrOjOk is the
covariance given by equation (D-4). 1In applying equation
(D-7), all of the quantities in the second term need not
be determined because the inverted matrix is symmetrical
about the diagonal. Therefore, only the off-diagonal
elements above the diagonal were used, and the results
were multiplied by two. The standard errors for the data
were calculated by taking the square root of the variance
determined in equation (D-7).

The variances in the compressibility factor were

calculated using an expression similar to eqguation (D-7):

2 _ 2
SZi = JE ‘ZOJSOJ) + 381 kB ZOJZORSOJSORI:GJOK (D-8)
itk
where Zé. is the 30 and was determined using a combi-

j ap
nation of equations (13) and (55) with the ~§—- The

standard errors were determined by taking the square root

of equation (D-8).

Statistical Weighting Factors

Deming (14) defines a set of statistical weighting

factors by

__S
W, = 3 (D-9)
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2 is the variance of the dependent variable

2

P;

the data that are calculated by equation (D-7). These

where S
defined by equation (D-3) and S are the variances in
statistical weighting factors were normalized by dividing
each one by the weighting factor for the first data point,
so that they would be consistent for comparison with the

a priori weighting factors calculated using equation (B-7).
This comparison showed that the normalized weighting factors
used in the data analysis were consistent with the normal-

ized statistical weighting factors.



APPENDIX E
COMPUTER PROGRAMS

This appendix presents the computer programs
used in this thesis. The first program was used to
determine the virial coefficients and compressibility
factors along with the standard errors in the data
treatment. A list of the nomenclature used in the
data treatment precedes the computer program listing.
The next three programs were used to determine the value
of the cutoff parameter c foi each methane data point,
the coefficients in the expression for c, and the differ-
ence between experimental and calculated densities in
the equation of state calculations. Before these three
program listings, there is a list of nomenclature used

in the equation of state calculations.
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Al
A2
AlK

A2K

NOMENCLATURE FOR DATA TREATMENT
COMPUTER PROGRAMS

Matrix of second partials of objective function
with respect to parameters (calculated in IMPK
as Fz and used in SOLVE as A)

General matrix inverted in place in GJR
General matrix used in MATMPY

Run constant for first run

Run constant for second run

Parameter used to save run constant for first
run

Parameter used to save run constant for second
run

Dummy matrix used to save matrix A
Column matrix in GJR used to save, one at a time,
the columns in the matrix to be inverted on the
Jordan step

General matrix used in MATMPY

Virial coefficients

Best fit criterion

Sum of product of diagonal elements of variance-
covariance matrix with first derivative of A
(see thesis nomenclature) 13
Matrix of first partials of objective function
with respect to parameters (calculated in

IMPK as F and used in SOLVE as C)

Product of matrices A and B in MATMPY

Column matrix in GJR used to save, one at a

171



R

8

DEL

DELK
DIAG

FS

F2

GJR

JCR

K1-K6
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time, the rows in the matrix to be inverted
on the Jordan step

Relative change in parameter

Pressure distortion correction factors for cell
constants

Subroutine that calculates pressure distortion
correction factors for cell constants

Dummy column matrix used to save matrix C

Difference between experimental pressure and
calculated pressure

Absolute change in parameters

Diagonal element of coefficient matrix used in
SOLVE

Difference between Burnett compressibility
factor and virial compressibility factor

First partials of objective function with re-
spect to parameters

Product of coefficient matrix with its inverse

Second partials of objective function with respect

to parameters in IMPK (also coefficient matrix
in MAIN)

Gauss—Jordan—~Rutishauser matrix inversion sub-
routine

Subroutine that calculates first and second
partials of objective function with respect to
parameters

Number of points to be deleted from ORNOR fit
in determining initial values of parameters

Pressure distortion correction constants for
numerator of correction factor

Matrix multiplication subroutine
Optimum number of virial coefficients

Pressure distortion correction constants for
denominator of correction factor



NT1
NT2
N1
N2

N1K

N2K

OFFSUM

ORNOR

Q2

RGC

SAVE

SF
SOLVE
SSs
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Convergence check in SOLVE

Number of data points in first run
Number of data points in second run
Cell constant for first run

Cell constant for second run

Parameter used to save cell constant for first
run

Parameter used to save cell constant for second
run

Sum of product of off-diagonal elements of
variance - covariance with first derivative of

Aij

Generalized orthonormal polynomial least-
squares subroutine (see next nomenclature
listing for variables used in ORNOR)
EBxperimental pressure in atmospheres
Calculated pressure in atmospheres

Pivot element in matrix inversion subroutine

First partials of A.. (see thesis nomenclature)
with respect to paréﬂeters

First partials of compressibility factors with
respect to parameters

Second partials of objective function with
respect to parameters

Gas constant
Objective function representation in IMPK

Matrix used to save coefficient matrix before it
is inverted in place

Objective function representation in MAIN
Subroutine to solve linear set of eguations

Variance in dependent variable



Ssp
SS2
ST

TEMP
TEMP

ZETA

ZX
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Variance in pressure data
Variance in compressibility factors

Variable used to temporarily save parameters
or changes in parameters

Numerator of pressure distortion correction
factor

Temperature in °K

Variable in SOLVE used to temporarily save
another variable

A priori weighting factors
Calculated statistical weighting factors
Density in MAIN

Absolute change in parameters (used in SOLVE
and equivalent to DELK in MAIN)

Difference between experimental pressure and
calculated pressure

Virial compressibility factors

Variable in GJR used to temporarily save another
variable

Parameter that sets minimum size of elements
as check in inversion subroutine

Burnett compressibility factors
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THES PROGRAN USED IN TREATMENT OF EXPERINENTAL

HEL [IUN-ARSON DATA

OIMENSION X(30), PR{1D)

INTEGER NTAoNT2,NINoMeNToNINKyJIL oL} o JCReJJ

DOUBLE PRECISION P(2,15)9C012,15)DELKIL5),DELI2,15),
L1BATS5) o FL15+30) oV (39)9ALl9A29NLoN2sRGC,TENP4CKIL5)0 S,
2SSeALKoAZK oNIKoN2KoFLEL 50 o SFLLS5) +BFCE15),F2€15,415)4PC,

32¢2XeDLsM(2015)9Q€15:3009BSUNI30)eSSPE30)4Q2E15430),
SNNCAL(30) oOFFSUMI30)9SSZ(30) o SAVELL15+15) oFSAVE(15,15),

SFSFUL5¢15)¢F2NENI15,15) DIFF,FSI(15015),TRIALLLS,15),

SCHECK(I15,15)

CONMON PoCO¢F2¢F] sDELKo TEMP oRGC ¢DEL ¢BAgN o AL ¢A24 N1l o N2,

- 1FoYoAl15¢15)4WNI30)

NUMN=2

00 67 1JK=1,NUM

READ (5089) (PR{I),1I=],18)
READ (S5,101) NUL,NT2,JCR,TEAP
READ (5,102) CONYV

READ (59102) (PlLleJ)ed=1,NT1)
READ (501020 (P(245J0)0=]1,ART1}
WRETE (6:89) (PRIT)eI=1,18)
RGC=82.056

M=s

EPS=1.E-06

BFCT=1.E12

CALL CORN (NT1,NT2)

DO 1 J=1,NT1

HEL 4 J)=(1.0/7(3.E-0621.E-040PL1,J))) 882
H‘Z'J,s‘lCOl‘ 3. E"M"loE"O“P‘Z'J. ))ee2
Z=4{1l,1)

DO 2 J=],NT1

Wlloed)=¥lleJ0/2
W(2:J)=N(244)/Z

NT=NT1-1

JisJCRe]

00 3 J=JJINT
YEJI=JCR)=PLL,J}/P (L J¢]1)
Fll,J~JCRI=1.0
UN(JSJ-JCRI=NT Lo J) /N LpJ*+L)

00 & K=2,M

DO & J=JINT
FIKoJ-JCRI=P(LoJe1)e8(K-1)
NT=NT-JCR

CALL ORNOR (NT M ,MIN,EPS)
NL=AC(HIN,1?

NT=NTL

00 § JoJJsNT
YiJ=JCRI=P(LleJ)EN1O2{)-1)00COL2oJ)
UNtJ-JR)=1.0

(] ‘."Ju"lao

D0 ¢ Ka2,N
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DO 6 J=JJyNT
FIKeJd=JCR)=P(1oJ)*&(K-1)
NT=NT-JCR

CALL ORNOR (NTosM,MIN,EPS)
Al=A(MIN,1)

NT=NT2~1

DO 7 J=JJoNT
Y(J=JCR)=P(2:,J)/P(2,J¢1)
FlleJ-JCR)=1.0
WN(J=-JCR)=H(2,J)/H(2,0+]1)
DO 8 K=2M

DO 8 J=JJNT
F(KeJd=JCR)=P(2,J¢]1)%2%(K~1)
NT=NT—=JCR

CALL ORNOR (NT,M,NIN,EPS)
N2=A(MIN,1)

NT=NT2

DO 9 J=JJoNT
Y(J-JCRI=P(2,J )EN2%%( J-1)%C0(2,J)
MNL{J-JCRI=1.0
Fl(leJ-JCRI=1.0

DO 10 K=2,M

DO 10 J=JJdNT
FI(KeJ-JCR)=P(25J)8&(K~-1)
NT=NT—-JCR

CALL ORNOR (NT,M,MIN,EPS)
A2=A(MIN,1)

NT=NT1#NT2

READ (5,92) M

J=2%NT1~-1

DO 11 K=1 '\"2

J1=(K#+l1)/2
YEK)=P(1yJ1)-Al/ INL**(J1-1)%CO{(1,J1))
Y{K#Ll)=P(29J1)-A27(N2*%(J1-1)%CO(2,J1))
NNEK)=H(1,J1)
WN(K+1)=H(2,J1)

DO 12 K=19Jdy2

Ji1=(1-K)/72
X(K)=(A1*N1*%3]1 )/ (RGCXTEMP*CO(1,J1+K))
XEK+1)=(A2¢N2%% )1 )/ (RGC*TEMP*CO{2,J1+K))
DO 13 K=1,M

DO 13 N=l1,NT
FIKoNI=RGC*TEMP*X(N) &% (K¢+1)
CALL ORNOR (NT My,MIN,EPS)
MIN=M

HRITE (6,76) MIN

AlK=Al

N1K=N1

A2K=A2

N2K=N2

MINK=MIN-4
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IF (MINK-M) 15,1558
WRITE (6475) MINK
Al=AlK

A2=A2K

N1=N1K

N2=N2K

DO 16 K=]1yMINK
BAIK+1)=A(MINK,K)
K=MINK¢]1

NRITE (6,77)

WNRITE (6,69) Al
WRITE (6,70) A2
WRITE (6471) N1
WRITE (6,72) N2
WRITE (6973) [J,BA(J)3=2,K)
LLi=0

Li=L1l+1

IF (L1-20) 18963463
L2=0

CALL IMPK (NT1sNT2,MINK,L1oL2,CONV,S)
IF (Al) 19+64419

. NRITE (6468) L1,S

CK(1)=DELK{1)/Al
CK(2)=DELKI{2)/N1
CK{3)=DELK{3)/A2
CK{4)=DELK{4) /N2

Al=Al+DELK{(])

NL1=N1¢DELK(2)

A2=A2+DELKI(3)

N2=N2+DELK(4)

DO 20 K=14MINK

L=K+4

CKELI=DELK(L)/BA(K?®*1)
BA(K#+1)=BA(K+1)+DELKI(L)
MINK4=MINK+4

WRITE {6,85)

WRITE (6¢84) (CK{J) ¢J=1,MINK%)
MIM=MINK+1

HRITE (6,69) Al

WRITE (6,70) A2

WREITE (6,71) N1

WRITE (6,72) N2

WRITE (6,73) (J.BA(J)4J=2,MINM)
IF (L2) 17,21,17

CONTINUE

DO 22 K=1,MINK%

IF (DABS(CK{IK))-1.D-06) 22922,17
CONTINUE

WRITE (6,79)

HRITE (6,82)

Y{27)=0.0
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Y(28)=0.0

Y(10)=0.0

Y{11)=0.0

Y{12)=0.0

D0 24 J=1,NT1

1=1.0

MINKC=MINK®1

D0 23 K=2,MINKC
L=2+BA(K)*(AL1EN1*%(1-J) /(RGCE*TEMPSCO(1,J)) ) *8&(K-]1)
PC=A1*N1*&(1-J)*7/C0(1,J)
IX=P( 1o JISNLS*{J-1)¢CO(1,J)/AlL
0DZ=1Ix-2

Y{3)=P(1,J4)-PC
Y{25)=P{1eJ) /{2 X*RGCETEMP)
Y{26)={IX-1.00/7Y(25)
Y{27)=Y{2T7)+Y(3)
Y(28)=Y{28)+DABS(Y(3))
Y(30)=W{leJ)*Y(3)*52
Y{10)=Y{10)¢DZ*%2
Y{11)=Y{(11)+¢DABS(DZ)
Y{l12)=Y{12)+DZ

WRITE (6487) P(1l,yJ)sPC,Y(3),Y(30)¢2ZX92+D2:Y125),Y(26)
DO 26 J=1,NT2

Z=1.0

DO 25 K=2,MINKC
L=14BAIK)*(A2*N2%%(]1-J) /(RGC*TEMP*CO(2,3) ) ) S&(K-1)
PC=A2*¥N2*%(]1-J)*2/C012,J)
IX=P(2,J)EN2%2(J-1)%CO(2,J) /A2
DZ=2X-1

Y{3)=P{2,4)-PC-
Y(25)=P{2:J)/(ZX*RGCETENP)
Y{(26)={IX-1L.0)/Y125)
Y(27)=Y{27)+Y{3)
Y{(28)=Y(23)+DABS(Y(3))
Y(30)=H{2,J)%Y(3)*%2
Y{10)=Y(10)+DZ*%2
Y{l1l)=Y{11)+¢DABS(DZ)
Y{12)=Y112)+DZ

WRITE (6¢87) Pl2:J)PCoY(3)Y(30)oZXeZsDZeY125)4Y1(26)
¥{29)=Y{28)/(NT1&NT2)
Y(13)=Y{12)/(NT1#NT2)

WRITE (6,90) Y(27)

WRITE (6+91) Y(29)

WRITE (6,93)

WRITE (6494) Y(10)

WRITE (6+95) Y{1l1)

WRITE (6496) Y(13)
SF(MINK)=0.0

D0 27 I=1,NT1
SFUMINK)=SFIMINK)¢W (1, 1)*DEL{]1,1)*%2
00 28 I=1,NT2
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SFIMINK)=SFIMINK)+W1 2,1 )SDEL(2,1)%*%2
WRITE (6,78) SFIMINK)

WRITE (6569) Al

WRITE (6470) A2

WRITE (6,71) N1

WRITE (6,72) N2

WRITE (6473) (JeBA(J)eJI=2,MIM)
SS=S/INTLeNT2-MINK~-4)
BFC(NINK)=SFIMINK)+(2¢NINK+B8-NT1-NT2)#SS
WRITE (6974) BFCI(MINK)

MINKC=MINK¢]1

00 29 J=1,NT1

WN(J)=M(1,J)

DO 30 J=1eNT2

JNT1=J&¢NT1L

WN(JINTLI=W(2,J)

B0 -31__J=1,NT1

Q(leJ)=~N1%%(1-J)/C0(1,J)
Q(2:J)==(1-3)%(AL/(COC(LoJ) EN1%%)))
Q(344)=0.0

Q(4,J)=0.0

DO 31 K=24MINKC

IX=K*(1-J)-1
Qll,J)=Q(193)-KEBA(K)*RGCH*TEMPEALX*(K-1)S(NL1Ss&(]1-J)/(
IRGCE*TEMP*COI(1,4)) )%2K
Ql24J)=Q(29J) +KEBAIKI *RGCETEMPE({ J-1 ) *(AL/(RGCETEMP*
1C001,J) ) )*EKEN] &x X

L=K+3

QUL ¢J)=-RGC*TEMP*(A1*N12&(1-J)/(RGCSTEMPSCO(LoJ)) ) s
DD 32 J=]1,4NT72

JNT1=J&NT1

Q(1,JNT1)=0.0

Q(25,JNT1)=0.0

Q(39JINT1)=-N2%%(1-J)/C0(24J)
QU&sINTL)==11-J)*(A2/7(COL 2,J)EN2%%J))

DO 32 K=2,MINKC

IX=K#{1-J}—-1

QE3,JUNTL)=Q(3,INTL)-K*BALK) *RGCE*TEMPEA2%&(K-1) *[N2%%
1{1-J)/{RGCE*TEMP£C0O(2,J) 1)) &%K

QU49INT1)=QU4,JINT]1) tK*BA(K)*RGCETEMP*(J-1)%(A2/ (RGCE
LTEMP*C0O(24J)) ) *2KEN2&%] X

L=Ke3

QEL9INT1)==RGC*TEMP*{A2%5N2¢*(1-J) /(RGCETENP*L0O(2,4))) .
1%8K

MINK&=MINK*+&

NT=NT1¢NT2

DO 33 1Y=1,MINK4

DO 33 JT=1,MINK4

F2{IT4,JT)=0.0

00 33 J=1,NT
F2UITdT)=F2ULT 4TV +QUIT o J)*Q(IT 5 J) *HNL J)
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WRITE (64106)

DO 34 [T=]1,MINK%

WRITE (65103) (F2CIT4JT)oJT=1,MINK%)
DO 35 I=1,MINKA

D0 35 J=l,MINK%

SAVE(LeJ)=F2(1+4J)

ZETA=1.D-30

CALL GJR (MINK4,ZETA)

WRITE (6,97)

DO 36 I=1,MINK4

HRITE (69103) [F2(1,4J09J=1¢MINK%)
CALL MATMPY (F2,MINK%oMINK&L9SAVE.MINK&,FS) .
WRITE (6,100)

00 37 I=1,MINK&

WRITE (6,103) (FSUIJ)eJ=1,MINK&)
DELK(1)=F2(1,1)%SS
DELK(2)=F2(2,2)%SS
DELK(3)=F2{3,3)%SS
DELK(4)=F2(4¢4)%SS

DO 38 I=5,MINK&
DELK(I)=F2(1,1)%SS

00 39 [=1,MINK4
DELK(1)=DSQRT{DELK(I))

WRITE (64105)

WRITE (6+69) DELK(1)

WRITE (6+70) DELKI(3)

WRITE (6,71) DELK(2)

WRITE (6+72) DELK(4)

MRITE (6+¢73) (JoDELK{J+3),J=2,MINKC)
MINK3=MINK¢3

DO 40 I=1,MINK4

DD 40 J=1,NINK4
F2(14J)=S5%F211,J)

DO 43 J=1,NT1

BSUML J)=0.0

DO 41 L=5,MINK&
BSUM(J)=BSUM{J)+F2{L L) *Q(L,J)5*
OFFSUML 4)=0.0 '
00 42 I=1,MINK3

Ki=I+1

DO 42 K=Kl,MINKS
OFFSUM(J)=0FFSUM(J) ¢+F2( [+ K)#Q(I 4J)*Q(Ko J)
SSPUJ)=F24(141)%Q(1,J)%%24F2(2,2)%Q(2¢J) #%*2¢BSUM(J) ¢
12. 0¢DFFSUM(J)

NT11=NT1+]

NT22=NT24NT1

DO 46 J=NT11,NT22

BSUN{ J)=0.0

DO 44 L=5,i3INK4

BSUM( J) =BSUMLJ) +F2(L,L)*Q(L,J)*$2
OFFSUM(J)=0.0



45
46

47

48

49

50

51
52

53

54

181

DO 45 I=1,MINK3

Kl=]+1

DO 45 K=K]1,MINK%
OFFSUMIJ)I=0FFSUM{JI+F2(1:,K)*Q(1,J)%QtK,yJ)
SSPUJI=F21{3e30%Q(3,J)*%2:F2(4,4)0%Q(4,3)%5248SUN(J) ¢
12.0%*0OFFSUM(J)

NY=NT1¢NT2

Z=SSP(1)

DO 47 J=1NT

WNCAL (4)=2/SS5P(J)

D0 48 J=1,NT1
QZELyJ)=-N1%%(J=-1)%CO(1eJ)*P(1,J)/AL1%E2eN1EE(J-1)%*
1COL1.J)%QMl,00/A1

QZ{2,J)=(J-1)EN12&{ J-2)%COL1,J)*P{1oJ)/ALENL1S*{J-])
1#C0(1,J)%Q(2,J4) /A1

QZ(3,4)=0.0

QZi4.:4)1=0.0

DO 48 L=5,MINK4

QZEL s J)=N1*%{J-1)%CO(L,J)%QL(L,J) /AL

DO 49 J=1,NT2

JNT 1=J+NT1

QZ{1sJNT1)=0.0

QZ{2,JNT13=0.0

QZE3, UNTL)==N2x#(J-1)*C0(2,J)%P(2,J)/7A2%82¢N2%%(J-1)*
1C0(2,J)*%Q(3,JNT1) /A2
QZ“,JNTI)#’J‘I)*NZ**(J'Z’*CD(ZQJ)‘P(ZQJ)/AZ*NZ"‘J‘I,
1#C0(2,J)%Q( 49 INT1)/7A2

DO 49 L=5,MINK4

QZAL s UNT1)=N2%%(J-1)%C0(2,J)*Q(L,JINTL)/A2

DO 52 J=1NT1

BSUM{J)=0.0

DO 50 L=5.MINK4&

BSUMIJ)=BSUMIJI+F2(L,L)*QZ(LoJ) %52

OFFSUM{J)=0.D

DO 51 I=1,MINK3

Ki={+1

DO 51 K=Kl ,MINK4

OFFSUM(J)=0FFSUM{J)+F2( 1,K}*QZ{1,J)*QZ(K,J)
SSZ{J)=F2(1+1)1%QZ(1:J)*%2¢F2(2,2)%Q2(2,J)%%24BSUM(J) ¢
12.0*0FFSUM{J)

NT11=NT1l+¢l

NT22=NT1+NT2

DO 55 J=NT11l,NT22

B8SUM(J)=0.0

DD 53 L=5,MINK4

BSUMN( J)=BSUM{J) +F2(L,L)*QZ(L,J)*%2

OFFSUM{J)=0.0

DO 54 I=1,MINK3

Kl=]¢1

DO 54 K=K1l,MINK4

OFFSUM{ J)=0FFSUMIJ) +F2(1oK)*QZ(1,J) *QZ(K,J)
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55 SSZUJI=F213¢3)%QZ(34J)**24F214,4)*Q2L4eJ)**24BSUMLJY) ¢
12.0%0FFSUM(J)
NT=NT 1¢NT2
DO 56 I=1,NT
SSPL{I)=DSQRT(SSP(I))
56 SSZ{1)=DSQRTISSZ(I))
WRITE (6,98)
WRITE (6499)
DO S7 I=1,4NT
57 WRITE (6¢104) SSPUE)¢SSZUI)¢WNII)WNCALII)
IF (BFCUMINK)-BFCT) 62+58,58
58 WRITE (6+86)
SS=SF(MINK=1) 7/ {NT14NT2-MINK-3)
J=MIN-S
BFClJY=1.E12
59 J=J+i
IF (J-M) 60960461
60 BFClJ)=SFLJ)+(2%J+8-NT]1-NT2)%SS
WRITE (6+83) J¢BFC(J)
MOPT=J-1
IF (BFCLJ)-BFCI(MOPT)) 59461,61
61 WRITE (6,+88) MOPT
6D TO 66
62 BFCT=BFCIMINK)
GO YO 65
63 WRITE (6,80)
64 WRITE (6,81)
65 MINK=MINK+1
GO TO 14
66 CONTINUE
67 CONTINUE
stop
68 FORMAT(//¢* OBJECTIVE FUNCT S BEFORE ITERATION®,.I12,
1* =%9D20.1047/7)
69 FORMAT (//7,10Xe*Al=*4D20.10)
70 FORMAT (10X,°A2=*,D20.10)
71 FORMAT (10Xy*N1=*,D20.10)
72 FORMAT (10X¢*N2=°,020.10)
73 FORMAT (10X ,°B(®¢124%)="¢D20.10)
74 FORMAT(///+15X¢*BEST FIT CRITERION =°,020.10,77/)
75 FORMAT(///7 +S5X¢*ITERATION FOR *,129* COEFFICIENTS®*,//7/)
76 FORMAT(//¢* ESTIMATION OF BEST FIT =%,12,//7)
7 FORMAT(/,®* INITIAL ESTIMATES OF PARAMETERS',/)
78 FORMAT(//¢®* S =*4D20.10)
79 FORMAT(//+* FINAL RESULTS OF ITERATION®y//)
80 FORMAT(//,* DID NOT CONVERGE IN 20 ITERATIONS®*,//)
31 FORMATU//4* ITERATION TERMINATED FOR REASONS GIVEN
1ABOVE*»//)
82 FORMAT(//¢TTo*P*oT204°P CAL®*¢T33,°DEV*,T4Lle*WS(DEV)E%20
LoT56+°Z EXP®¢T659°2 CAL®*oT77,°DEV*,T88,°DENS{TY?,
2T1014°(Z-1) /JRHD*//)
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I=4-1

T=K1tK2%P (24 J)¢K3I2P(2,J 1 %$2¢K4%P(2,J) ®%]
B=M1+M2¥P {241 )¢+ MISP (2,1 )S%26N4*P(2,]) 853
C0€(2,J)=C0(2,1)*T/8

RETURN

END

SUBROUT INE MATMPY(ANyNyB,L+C)

DOUBLE PRECISION A(15,15)4B{15,15),C(15,15)
00 1 I=14N

DO 1 J=1,lL

CileJd)=0.0

DO 1 K=1,M

CliJ)=ClloJ)eA(l,K)%BI{K,J)

RETURN

END

SUBROUTINE ORNOR (NT Mo MIN,EPS)

INTEGER NTsMoMIN NORgNgKeRyI o JoMINA,Py KMl o RPKM]L oRMKPL

DIMENSION SSQU15) ¢SSDILS),REL15),T(15015)¢6G3115,15),
1G4(15¢15)9G5(15915) oBFF{(15)

DOUBLE PRECISION PR(2¢15)¢C0O(2915)¢DELK(1L15)TEMP,RGC,
1DUM(2,915) yBAL15) oN21(2:15)9A19A2,N1LoN2,F(15,30),Y(30),
2YP9S519529S39D(15) ¢BIL5) ¢54¢55¢569SIGSQePSI(15300,
3FSUB{15+30),C115915)+6(15¢15)¢G1(15915) PHE(15,30),
4G2(15,15) sRTP(15) F3(15,15),F1(15)

COMMON PRyCO9F3oF1oDELK,TEMP +RGC ¢DUMeBA, W2 AL 4A2,N1,
IN2oFeYoAl(15,15),HW(30)

NOR=1

NOR IS NUMBER REORTHONORMAL IZATION

YP=0.

D0 1 N=1,NT

YP=YP+{YIN)2Y(N)*WI(N))

CONTINUE

CONTINUE

DO 3 N=1¢NT

PSI{1N)=F(1leN)

CONTINUE

IF (M-1) 449,4

DO 8 K=2,M

DO 7 N=14NT

$1=0.0

KM1=K-1

DO 6 R=14,KM]

§$2=0.0

$3=0.0

DO S5 I=1¢NT

S$2=S2+PSIIR, IV *PSI(R, 1) *ul1])

S3=S3¢PSIIRLIISFIK, 1) =W( )
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CONTINUE
C{KoR)=~S3/S52
S1=S1¢C(KoyR)*PSI(RyN)
CONTINUE
PSI(KoNI=S1+F(K,N)
CONTINUE

CONTINUE

CONTINUE

DO 14 K=]1¢M

IF (K-1) 10,13,10
KML=K-1

DO 12 R=]1,KM]1

S1=0.0

D0 11 J=R.KM1
S1=S1¢l(Gl(JoRI*CIK,J)}
CONTINUE

G(K.R)=S1

CONTINUE

GlK.KD-‘-‘l.O

CONTINUE

ICT=NOR

D0 21 K=]l M

DD 21 R=14K

$2=6G(Ky R)

GO TO (15¢16917,18,19) ICT
G1l{KsR)=S2

G0 10 20

G2(K,R)=S2

GO 70 20

G3(KyR)=S2

60 10 20

G4(KyR)=S2

G0 T0 20

65(KsR)=S2

CONTINUE

CONTINUE

DO 24 K=1¢M

DO 23 N=1¢NT

S1=0.0

DO 22 I=1,NT
S1=S14PSU(KID*PSI{Ky L) *H(I)
RTPLKI=DSQARTIS1)
PHI(K NI=PSI(KoN) JRTP(K)
CONTINUVE

CONTINUE

DO 26 K=1,M

$1=0.0

DO 25 N=]1,NV
S1=S1+YIN)®PHI (K, N) *H(N)
8{K)=S1
D(K)=SL/RTP{K)
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CONTINUE
SSD{1)=YP-B841)%B(1])
$SQ{1)=SSD{1)/INT~-1)

IF (M-1) 27,29,27

DO 28 K=2,M
SSDE(K)I=SSD(K-L)-B{K)*BL{K)
SSQ(K)=SSDIK) 7(NT-K)
CONTINUE

CONTINUE

MMMM=M-1

DO 32 K=]1,MMMM

IF (ABS(SSQIK#1))-ABS{SSQIK))) 30,31,31
MINA=K

CONTINUE

CONTINUE

DO 33 K=1¢M
BFF(K)=(2%K-NT ) *SSQIMINA) +SSDI(K)
CONTINUE

DO 36 K=1 ,MMMM

IF (ABS(BFF(K+1))-ABS(BFF(K))) 34,35,35
MIN=K+1

CONTINUE

CONTINUE

00 39 K=1l.M

$1=0.0

DO 38 J=1,M

$2=0.0

DO 37 N=14NT
$2=S2+PHItJNI*PHI{K,N) *WIN)
CONTINUE

S1=S1+B{J)*S2

CONTINUE
RE{K)=1.0-S1/8B(K)
CONTINUE

DO 48 K=1¢M

IF (EPS—ABS{(RE(K))) 40,47,47
IF (NOR-~5) 43,41,43

DO 42 I=1,M

CONTINUE

GO YO 49

CONTINUE

DO 46 Izl'"

DO 46 N=1,NT

IF (NOR-1) 45,44,45
FSUB(I,N)=F{1,N)
FUI«N)=PSI(1I,N)

CONTINUE

NOR=NOR+1

WRITE (6070)

GO 10 2

CONTINUE
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CONTINUE

DD 50 K=1,M
TL1l.K)=D(K)
CONTINUE

DO 6T R=2,M
MMRPl=M-R¢]1

DO 67 K=]1,MMRP]
ICT1=NOR

60 TO (51+¢52454+59461), [ICT1

RPKM]1=R+K~1
S1=Gl(RPKM1,K)
G0 TO 66
RPKM1=R+K~1
$1=0.0

00 53 J=K,RPKM]

S1=SI+G2{RPKM]1,J)E&G1(J,K)

CONTINUVE

60 TO 66

S1=0.0

RPKM1=R#+K-1

DD 58 J=K,RPKM]
$2=0.0

DO 57 I=K.,J
$2=524¢G2(J 1) %G1l (,K)
$2=0.0

DD 56 I=K,J

$3=0.0

DO 55 P=K,1l
$3=53¢G2(1,P)*Gl (P,K)
CONTINUE
$2=52¢G3{J.1)*S3
CONTINUE

CONTINUE
S1=S1+G3(RPKM]1,J)%S2
CONTYINUE

GO TOD 66

$1=0.0

RPKMI=R#+K~-1

D3 60 J=KyRPKM1
S1=S14+G4(RPKML,J)%S2
CONTINUE

GO TO 66

$1=0.0

RPKM1 =R+K~-1

DO 65 J=K.RPKM1
$2=0.0

DO 64 [=K,J

$3=0.0

DO 63 P=K,1l

$4=0.0

DD 62 N=K,P
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$S4=54¢G2{PyN)*GLl (NsK)
62 CONTINUE
$3=S3+G3{I,P) %S4
63 CONTINUE
$2=82¢+G4{J,1)*S3
64 CONTINUE
S1=S1¢GS5(RPKM1,J)*52
65 CONT INUE
66 RPKML=Re¢K~-1
TR sKI=TE(R-1yK)+T{1,RPKML1)%S]
67 CONTINUE
DO 69 R=1,M
DO 68 K=1,4R
RMKPl=R-K+1
ALR 4K)=TIRMKP1 4K)
68 CONTINUE
69 CONTINUE
RETURN
70 FORMAT{ //7/° RECRTHONORMALIZATIONS ~ THE ROUNDOF¥
LERROR IS TOO LARGE FOR ONE OF THE REQUIRED POLYNOMIALS
2°7)
END

-

SUBROUTINE SOLVE (N.E¢KL1,EPS,E1,E2) S
INTEGER NoKlol oJoeKoJloK2oLoEL9E2,F(15),11I,M
DAUBLE PRECISION P(2,15),C012515)¢X(15),QeDE15) ¢NORM,
IDIAG.TEMP,A(15¢15)+8B(15¢15),C(15),EN,E
COMMON P4CO9A4CyX
E1=0
E2=0
DO 1 I=1,N
DO 1 J=1,N
) | Bl J)=A(1,)
DO 15 I=1,N
L=I-1
DO & J=I,N
Q=0.0
IF (L) 2¢442
DO 3 K=1,L
Q=B{J.K)*B{K,I}+Q
BlJ,1)=8B(J,1)-Q
BIG=0.0
K2=1
DO 6 K=1,N
IF {DABSIBIK,I))-BIG) 6¢6,5
5 BIG=DABS{B(K,I))
K2=K
6 CONTINUE
IF (BIG-EPS) 34,34,7
7 FII)=K2

SwiN
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IF (K2-1) 8+410,8
D0 9 K=14N
TEMP=AIK2,K)
AlK2,K)=A(1+K)
AlL+K)=TENP
TENP=B(K2,K)
BIK2,K)=B{1IK)
BULK)=TEMP
DIAG=B(1l,I)
II=10+1

IF (LI-N) 11l411,15
DO 14 J=1IsN

Q=0.0
IF (L) 12,14412
DO 13 K=]1,L

Q=8(1,K)*B{K,J)+Q
BlIoeJd)=(BlIoJ)-Q)/DIAG
CONTINUE

DO 16 I=1,N

J=F(I1)

TEMP=C(J)

CtL=C(1I)

C(I)=TEMP

DLI)=TEMP

DO 19 I=1,N

L=I-1

Q=0.0

IF (L) 17,19417

DO 18 K=1,L
Q=B{1,K)*D(K) +Q
DEIN=(DUI)~Q)/B(]1,1I)
DO 22 J=1¢N

I=N+1-J

Q=0.0

M=]+1

IF (M-N} 20,420,222 -
DO 21 X=MyN
Q=B(1,K)*X(K)+Q
Xt1)=D{(1)-Q

IF (E) 23,36+23
J1=0

IF (J1-K1) 25¢35,35
NORM=0.0

DO 29 I=1eN

Q=0.0

L=1-1

DD 26 K=1¢N

Q=Q#All ,K)*X(K)
DILI)=CLI)-Q
NORM=NORM+DABS{D(I1))
Q=0.0
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IF (L) 27,29,27

DO 28 K=],L

Q=Q0#B8(LoK)*D(K)

DUI)=(D(I)—-Q)/B(1,1)

DO 32 J=1,N

I=Ne1-J

Q=0.0

M=]¢]

IF (M-N) 30,430,032

DO 31 K=MyN

Q=0¢B (I ,K)*D(K})

X(1)=x(1)+D(1)-Q

Ji=Jl¢l

EN=E*N

IF (NORM-EN) 33,33,24%

CONTINUE

WRITE (6439) J1

GO T0 36

El=1

WRITE (6,37)

GO T0 36

E2=1

WRI1TE (6,38)

CONT INUE

RETURN

FORMAT(//7¢% ELEMENT IN MATRIX IS LESS THAN EPS*,77)
FORMAT(/+* SOLVE DID NOT CONVERGE IN K1 ITERATIONS®,7/)
FORMAT(//7,°* ITERATIONS REQUIRED IN SOLVE=®,124,7/)
END

SUBROUTINE IMPK [NTL1,NT2,MINKoL1¢L29CONV,S}

INTEGER MINKoMINK2,MINK&4oNT1 NT2,E10E2o0L14L2

DOUBLE PRECISION P(2415)¢C0(2915),0ELK{15) oTEMP 4RGC,
IDEL(2¢15) +BA(15) 4 W(2,15)4A1,A2,N1,N2,Q(15,18),F2(15,
215)9Q2(154154518)yPCoF{15)9F3(15930),Y1{30),ST9S,2
COMMON P4COoF2+F yDELKyTEMPoRGC¢yDEL ¢ BAgW AL oA2,NL1gN2,
IF34Y9A(15,15) ,WN{(30)

MINKC=MINK+]1

$=0.0

DO 2 J=1,NT1

Z=1.0

DO 1 K=2,MINKC

I=L+BALK)*{ALEN1*%(]1-J) /(RGC*TEMP&CO(1l,J)) ) *%(K~]1)
PC=A1#N1¢%{1-3)%2/C0(1,J)

DEL{1,4)=P(1,J)-PC

S=S+W(1leJ)*DEL(1,J)*%2

DO 4 J=1,NT2

1=1.0

DO 3 K=2,MINKC

I=1+BAIK)*{A2%N2*&(]1-J) /(RGCS*TEMP*CO(2,J)) ) 2&(K~-1)



191

PC=A2¢N2*%(1-J)*2/C0(2,J)

DEL(24J)=P(24J)-PC

S=S+WN(2:J)%DELL(2yJ) *¢2

DO S5 J=1,NT1

Q{leJd=—N1*%{1-J)/CO(L1,J)
Q(2:J)==(1=-J)¢IAL/(CO(LeJ)EN1%%Y))

Ql(34J)=0,0

Ql4,J0=0.0

DO S5 K=2,MINKC

IX=K*{l=-J) -1
Q(1,J0)=Q{19J)-KEBAIK)S*RGC*TEMPEAL**{K-1)®(NI1S&(]1-J)/
LIRGCE*TENP*COM{l,yJ) ) ) %2

Q(29J4)=Q(2+J) ¢K*BA(K)SRGC*TEMPE{J-1)%( A1/ (RGC*TEMP*
1CO0(1,J) ) )**KENL %] X

L=Ke3

QIL 9 J)==RGC*TEMPE(ALENL*%(1~J)/ (RGC*TEMP*CO(1,J1))%2K
MINK&=MINK+4

DO 6 I=1.,MINK%

F(1)=0.0

DO 6 J=1,NT1

FUI)=FLI1)#2.8W{1,J)%DEL(L,J)*QLI,J)

DO 8 J=1,NT1

Q2(ls1l9J4)=0.0

Q202:29J)=d%{1-J)%(AL/7 (CO(Ll,J)ENL1%*%(Je¢]1)))
Q2(192,J)=0J-1)%(1.07(COt1ysJ)ENLE%J))

Q2(1¢344)=0.0

Q2€(1,4,J)=0.0

Q2(2:1¢J)=Q2(1,2,J)

Q2(2,3,J)=0.0

Q24 2+%93)=0.0

DO 7 K=2,MINKC
Q2{19199)=Q2(1+19J)~K*¥{K-1)*¥BAIKI*RGCETEMP*A *&(K~-2)%
1(N1%%(]1-J) J(RGC*TEMP%.CO(1,J)) ) **xK

DO 8 K=2,NINKC

IX=K&{1~-J)~-1

L=K+3

Q2(1¢25,J4)=Q2(192:J) +KE*K*{J-1)*BA{K) SRGC*TEMP*AL1*% (K-1)
1%(1./(RGC*TEMP*CO(1¢J) ) )ESKENL&x] X

Q21 oL o J)==K*RGCH+*TEMP*AL1%%(K-1) E(NL**{1-J) /{RGCHTEMP*
1C0{1,J)))2eK ‘

Q24(2¢1+J)=Q2(142,J)

Q2€(2924J)=Q2(2429J) +K*(J-1)*IXEBA(K)SRGC*TEMPS*(AL/
L(RGC*TEMP*CO{1,J) ) ) *SKENL*¢( ]I X~-1)

Q2€29L 9J)=K&*(J-]1 ) *RGCSTEMP*{ AL/ {RGCETEMP*CO(1,J)) )%
1eNL1*%[ X

Q2{Ls19J1=Q241,L,J)

Q2L +2:J)=Q2€2¢L ¢ J)

DO 9 I=1,2

DO 9 L=1,MINK4

F2(1+1L)=0.0

DO 9 J=1,NT1
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F2ULoL)=F20 1oL )¢2.%W{ 1o JI®IDELLLoJ)*Q2 (Lol sJD)eQ(I,J)%

1Q(L,J))

DO 10 I=5,MINK%

DO 10 L=1,e2

F2(1,4L)=0.0

DO 10 J=1,NT1

F2ULoL)=F20H oL )2 %Wl Lo J)S(DELL1J)*Q2(I 4L o J)*Q(1,J)

1#Q¢L,J})

D0 11 [=5,NINK4

00 11 L=5,MINKS

F2(1,L)=0.0

DO 11 J=1,NT1
F2CLoL)=F2UI,L)42.%0(1,J)%QUI+3)*Q(L,J)
D0 12 J=1yNT2

Q(14J4)=0.0

Q(2,4)=0.0

Q(3¢J0=-N2%%(1-J)/C0(2,J)
Qléed)==11-J)*(A2/(C0(2,J)*N2%2))

D0 12 K=2,MINKC '

IX=K#(1~-J) -1

Q(34J)=Q( 34 J)-K*BAIK)SRGCHTEMP*A2%& (K-1)&(N2*&(]1~J)/

L{RGCE*TENP2CO(2,J))) 55K

Q(49J)=Ql%9J) +K*BAIK) *RGC*TEMP*{ J-1)*{A2/ (RGCE*TEMP*

1C01 24 J) ) )*SKEN2%S [ X

=K+3

QUL 9 J)=-RGCE*TEMPE(A2*N2*%(1~-J)/ (RGCH*TEMP2C0O(2,J)) )=&K
DO 13 [=1,MINK4

DO 13 J=1,NT2

FOIN=F(I)e2.%H(2,J)%DELI2,J)%Q(1,J)

F(2)=0.0

DO 15 J=14NT2

Q2(3,3,J)=0.0

Q2{4949J)=0%(1-J) *{A2/7(CO{24J)EN2%%{J+1)))
Q2(341,40=0.0

Q2(3¢2+J4)=0.0

Q2(394¢J)=0(J-1)%11.07(C002,J)EN2%%J)})

Q24(491,J)=0.0

Q2{492,J)=0.0

Q2€44345J)=Q2(3949J)

DO 14 K=2,MINKC
Q2(3934J)=Q2(3439J)-Kx{(K-1)*BA[K)E*RGCH*TEMPEA2%X(K~-2)*

LIN2%%(]1-J)/(RGC*TEMP*C0(2,J)) ) %K

DO 15 K=24MINKC
IX=K#{1~-J)-1
L=K¢3
Q2(3¢49J)=Q2(3949J) +KEKE{J-1)*BA(K) *RGC*TEMPSA2%S (K-1)

151/ (RGCOSTEMP*CO(2,J) ) IS EN2&%] X

Q2(3¢L s J)=-KERGCHTEMP*A25 % (K-1) *(N2¢#(1-J)/(RGCSTEMP* -

1C0(2,J)))%%K

Q2(%+3+J)=Q2€3¢4%4J)
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Q2{4049J)=Q204 34 4J) *KE(J-1)EIXEBALK ) SRGCSTENP S| A2/
LIRGC*TEMPECO(24J) ) ) SsKEN2S&(X~]1)
Q2(4,L o J)=K®(J~-1 )SRGCETEMP*(AZ2/(RGC*TEMP*COI2,J) ) ) 52K
LEN2#*& X

Q2(L¢3:J)=Q2(34L,J)

Q2L 44J)=Q2M{ 4oL J)

00 16 I=3,4&

DO 16 L=1,MINKS

F2U1,L)=0.0

00 16 J=L¢NT2

F2UL oL )=F2U Lol ) #2.¢H( 24 )¢ (DEL(2,4)8Q2( (oL oJ03¢QlI,J)%*
1QiL,J))

DO 17 I=5,MINK4

DO 17 L=3,4%

F2(1,L)=0.0

DO 17 J=1,NT2

FUL oL )=F2( M oL ) #2.%WH(2,J)%(DEL(2,J)2Q2C1 oL oJ)¢Q(],J)®
1Q(L,J))

DO 18 I=5S4NINK&

DO 18 L=5,MINKéG

DO 18 J=1,NT72
F2UT1oL)=F2{ 1oL )1+2,.%4(2,3)%Q(L,J)%Q(L,J)
EPS=1.E~-50

E=1.D-10

K1=10

HWRITE (6438)

HRITE (6939) (F(J)J=1,MINKS)
WRITE (6,40)

DO 19 I=1.MINKS&

WRITE (6939) (F2(19J)eJ=1osMINKE)
DO 20 [=1,MINKS&

ST=F2(1,1)

F2(1,1)=F2(4,1)

F2{46,1)=57%

DO 21 I=1,MINK4

ST=F2(1,.,1}

F2(1+1)=F2( 1, 4)

F2{1,4)=ST

ST=F(1)

Fll)=Fl4) .

Fl4)=ST

MINKZ2=MINK&~2

IF (L1-3) 22,22,28

DO 23 I=1,MINK2

Flll=-FlI¥®2)

DO 23 J=]1,MINK2
F2(19J)=F2(1¢2,J¢2)

CONTINUE

MINK3=K INK&~1

FIMINK3)=1.0

FI{MNINK4)=1.0
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DO 24 [=],NINK4

IF (DABS(F(I))-1.D-06) 24,2425
CONTINUE

GO T0 26

L2=1

CONTINUE

CALL SOLVE (MINK2,E¢K1lEPS,ELoE2)
D0 27 I=1,MINK2

L=MINKG—-[¢]

DELK(L)=DELK(L-2)

DELK({1)=0.0

DELK(2)=0.0

GO T0 33

DO 29 I=1,MINK%

FLI)==Fl1)

DO 30 I[=1,NINK%

IF (DABS(F(I})-1.D-06) 30,30,31
CONTINUE

GO 70 32

L2=1

CONTINUE

CALL SOLVE (MINK4.EoK1.,EPSeEL1,E2)
IF (El-1) 34,36,34

IF (E2-1) 35,36,35

ST=DELK(1)

DELK{1)=DELK(4)

DELK{4)=ST o
GO 70 37

Al=0.0

CONTINUE

RETURN

FORMAT(//7¢* FIRST PARTIAL OF S*,/7)
FORMAT (4E18.6)

FORMAT(//7+°* SECOND PARTIAL OF S*,7/7) .
END

SUBROUTINE GJR {(K,ZETA)

" GAUSS-JORDAN-RUT ISHAUSER MATRIX INVERSION WITH DOUBLE

PIVOTING
DOUBLE PRECISION Al15¢15)98(15)+C(15),PIVOTL,ZETA,

1P1(2415)+C0(2¢15) 42

INTEGER P{1{15),Q(15)

COMMON P1,CO0,A

DO 14 N=1,K

DETERMINATION OF PIVOTY ELEMENT
PIVOT=0.0

DO 2 I=NeK

DO 2 J=NoK

IF (DABSC(A{I+J))-DABS(PIVOT)) 2,2.1
PIVOT=AL1,J3)
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PI(N)=]

Qi{NI=J

CONTINUE

IF (DABS(PIVOT)-2ETA) 22422,3
EXCHANGE THE PIVOTAL ROW WITH KTH ROMW
IF (PIN)~N) 4+¢6,4
DO 5 J=1,K

L=P(N)

2=AlLJ)
AlLJ)=ALIN,J)
AiN,J)=2

EXCHANGE OF PIVOTAL COLUMN WITH THE NTH COLUMN
IF (QI(N)=N) 7,9,7

DO 8 I=],K

L=Q{(N)

Z=AL1,4L)
AULoL)=ALLIN)
AlI«N)=2

CONTINUE

JORDAN STEP

00 13 J=]1,K

IF (J-N) 11,10,11
BlJl=1./PIVOT
CtJ)=1.0

GO T0 12
BlJ)==A(NeJ)/PLIVOTY
ClI)=AlJN)
AtNyJ)=0.0
AtJeN)=0.0

DO 14 [=1,K

DO 14 J=1.K
All«Jd)=Al1:J)¢C(1)%B(J)
RECORDING OF MATRIX
DO 20 M=]l,K

N=K~-M+1

IF {P(N)-N) 15,17,15
D0 16 I=1,K

L=P{(N)

Z=A{1l4L)
AtlsL)=Al1I,N)
A(lI4NI=2

IF {(Q(N)-N) 18,20,18
DO 19 J=1,K

L=QIN)

Z=A{L,J)
AlLypJd)=AL(NyJ)
A{NyJ)=2

CONTINUE

CONTINUE

RETURN

DO 23 N=1,K
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WRITE (6924) P(K)QIK),PIVOT

GO Y0 21

FORMAT{16HOSINGULAR MATRIX3H I=13,3H J=13,7TH PIVOT=
1€E16.8/)

END



AETA
AVNUM

BETA

CBK

CDIFF
CETA
CHECK

COEFI
COEFJK

NOMENCLATURE FOR EQUATION OF
STATE COMPUTER PROGRAMS

Matrix of coefficients for the M desired
polynomials used to print out results and in
common with MAIN

(L +n)/2

Avogadro's number

Coefficients for orthonormal functions in ORNOR
1l + 29

Best fit criterion in ORNOR

Boltzmann's constant

Molecular weight of methane

Coefficients obtained from the Gram-Schmidt
algorithm used to orthogonalize the original
functions in ORNOR

Cutoff parameter

Corrected Boltzmann's constant (to get units
consistent)

Difference in c on two successive iterations
l-10

Convergence check in NRS and also in density
error program

(481/<®) (e /kT)
(96n/c1?) (e/kT)>

Correction factor to get Boltzmann's constant
in correct units

197



CSI1G

Cl

c2

-C3
cé6
Cl2

DEL

DELIT
DETA
DIFF

DPC

DRHOGM

EP

EPOVK
EPS

ERROR
ETA

ETAJ
ETAK1l
ETAK2
- EXDIV
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Product of c & ©
Intermediate values of ¢ in iterative procedure
First initial guess for c

Second initial guess for c (need two to start
HINT)

Reciprocal of c3

Reciprocal of c6

Reciprocal of c12

Coefficients for orthogonal functions in ORNCR

Ratio of difference in (Poaye - P P) on two
successive iterations to di%%erensg in ¢ on
two successive iterations

Difference in DEL on two successive iterations

l+1n- 2n2

Difference between experimental density and
calculated density

Difference in (PCAIC - P_..) for two successive
iterations EXp

Difference in density for two successive
iterations

value of convergence criterion to determine
when to switch from HINT to NRS

€/k

Value of convergence criterion in NRS

Percent error in density defined by 100(pc-pg)/pC
t(ca)%p/G.O

(L -m*@+ an + an?)
an(1-1) %/ (1+4n+4n?)

an (1+2n) (1-n)%/ (1+4n+4n
1/exp (XDIV)

2)2



FA

FB

FDENOM
FDIFF

FNUMER
FSUB

FXETA

GDENOM
GETA
GNUMER
GXETA

Gl to G5

HINT
Hl
H2
H3

H4
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Defines functional form for T & p in ORNOR

value of (P ) for first initial guess

- P
of ¢ CALC EXP

value of (P ) for second initial guess

- P
of ¢ CALC EXP

Denominator of £(s,1n)

Difference in (P - P ) on two successive
iterations CALC EXP

Numerator of £(s,?n)
Matrix used to save original matrix F

Intermediate values of (P - P_..) in iterative
procedure CALC EXp

FNUMER/FDENOM

Coefficients, calculated from the C coefficients,
that are in a more convenient form for use

Denominator of G(s)

l+ 4n + 4n2

Numerator of G(s)

GNUMER/GDENOM

Coefficient matrices that are needed if it is
necessary to reorthonormalize the functions to
minimize round-off error (if G5 is included,
five reorthonormalizations are possible)
Interval size in Simpson's rule

Half interval search subroutine

Interval size for first region of integration
Interval size for second region of integration
Interval size for third region of integration

Interval size for fourth region of integration

Number of parameters used in ORNOR



MIN

Nl
N2
N3
N4

ORNOR

RHOGM
RHOGMX

RHOKT
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Optimum number of parameters in ORNOR

Number of methane data points

Number of reorthonormalizations

Newton-Raphson search subroutine

Number of data points used in ORNOR fit

Number of steps in first region of integration

Number of steps in second region of integration
Number of steps in third region of integration

Number of steps in fourth region of integration

Generalized orthonormal polynomial least-squares
subroutine

Experimental pressure in atmospheres
Value of (RCALC -
Subroutine to calculate pressure

Phxp’ in density error program

Calculated pressure in atmospheres
Orthonormal functions in ORNOR
Hard-sphere pressure

Calculated pressure contribution for term
involving integral J

Calculated pressure contribution for term
involving integral K

Orthogonal functions in ORNOR

Relative round-off error in ORNOR

Number density

Density in grams/cc

Experimental density used as first guess in
finding calculated density in density error

program

pkT
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RTP Square root of the weighted inner product of PSI
SDB Standard deviation of the coefficients

SIGMA Molecular diameter

SIGSQ Estimated variance in data

SLON Parameter that controls the amount of output in
ORNOR

SSD Sum of the square of the discrepancies between
Y observed and Y calculated

SSQ = Gauss parameter squared

SUM Value of one region of integral

S1 to S6 Parameters used to calculate various weighted
inner products in ORNOR

T Temperature in °K

T Matrix in ORNOR that gives optimum coefficients
for all fits through M

v Calculated factorial
VALUE Value of total integral
W Weighting factor in ORNOR

WTFAC Weighting factor

X Integral increment
XDI1IV (L - X)/X
XPI xav (c®+xevov (1)-1)
XFIK X10V (1+x6vov (2) * (c12#x6vov (3) ) -2c®)
XINV2 Reciprocal of x2
X2 XDIV?
X3 XDIVS
X4 XDIV4
6

X6 XD1IV



X10
X4v
X1lov
Xevov

YODD
YP

YO
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xprvi®

X4 divided by 4 factorial

X10 divided by 10 factorial

X6 multiplied by ratio of factorials
Integrand in Simpson's rule

Column matrix in ORNOR for dependent wvariable
Even-numbered integrands

Last value of integrand

0odd-numbered integrands

Weighted square of dependent variable

Initial value of integrand
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c THIS PROGRAM USED TO DETERMINF VALUE OF CUTOFF
c PARAMETER C FOR EACH MFTHANE DATA POINT
DOUBLE PRECISION V4P,RHOGMyAVNUMsBMW,RHD4EPS,C1,C2,
LFA,FBsCXI50),FX(50)
N=200
D0 1 JJ=1oN
c READ IN TEMPERATURE, PRESSJRE, AND DENSITY

READ (5,2) TePoRHOGM

WRITE (6.3)

WRITE (642) To,P,RHOGM
AVNUM=0,602295D+24
BMW=16.043
RHO=(RHOGM*AVNUM) /B MW
C1=0.60

CALL PCALC (FA,Cl,T4Po,RHI)
WRITE (6,7)

WRITE (6+8) Cl,FA

C2=1.0

CALL PCALC (FByC24ToP,RHD)
WRITE (649)

WRITE (6+8) C2,FB

CALL HINTY (CleC2,FAFB,P, ToRHOL,ITL,CXoFX)
WRITE (6,4) IT

WRITE (6,5) CX{IT)

WRITE (6463 FX(IT)

1 CONTINUE
sTop
2 FORMAT (3D20.10)
3 FORMAT(//+T114*TEMP® 47299 *PIESSURE® yT48¢ *RHDIGM/CC) ¢

1e¢77)

FORMAT(//,T3,'CONVERGED IN ITERATION *,124,77)
FORMAT(//4739*BEST VALUE DOF PARAMETER C=',Fl16.10,/7/7)
FORMAT(//9T3,°CONVERGENCE VALUE OF FX=%9N20.,104/7)
FORMAT (//7e794'C1%*4,T29,%FA*,//)

FORMAY (2D20.10)

FORMAT (/7/+79,°C2*,T29,'FB?,/7)

END

CR gV

SUBROUTINE PCALC (PC29CoToPyRHD)

DOUBLE PRECISION Y{(1000),VI6),YODD(4),YEVEN(&),SUM{&),
1VALUE(S) s X6VDV{5) o T 9yPyRHO+sBKoCORRyCBKoRHIKTLETAL,Z,PC 2,
2C1,C29C34FA,FB,FNUMER s GNUMER . FDENDM, GDENOM, FXETA, GXETA
39CNEF I COEFJKoETAYoETAKLETAK2sPHS ¢ PI 3P J¢yPK Y0y YN,y
4LAEYABETAL,CETA,DETA,GETA,HETA,HyH1,H2,H3,H4,SIGMA, %R,
SEPOVKsCH9CL2,CSIG e Xy X2 X4 9X69e X109 X16eXDIVeX&VeX1IVeX3,
OXFI ¢ XFJKy XINV2,FX(50),CXIS50),EXDIV

CALCULATION OF FACTORIALS

Vil)=24

K=4

DO 1 I=2,6

(2]
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vil)=vii-1)

DO 1 J=1,6

K=K+l
VII)=KeV(])
SIGMA=0.3817D-07
EPOVK=148.2
8K=0.1380474D-15
CORR=0,00000224809/(0.15499969%14,696)
CBK=8K*CORR
RHOKT=RHD*CBK*T
CSIG=C*SIGMA
CR=1,0/C
C3=CR*%x]
C6=C3¢%x2
Cl2=C6%%2
ETA=(3,14159265%(CSIG*%*3)*RH0)/6.0
AETA=1.0+#€ETA/2.0
BETA=]1,042.0%ETA
CETA=1.0-ETA
DETA=1.0¢ETA~-2,0%ETA®%?
GETA=1.C+4.0%ETA+4 . 0%ETA*%?
INTEGRAL EVALUATIONS AND PRINTOUTS
DO 60 K=1,3

IF (K-1) 2,5,2
IF (K~2) 3,20,3
IF (K-3) 4,20,4
CONTINUE

M1=20

M2=300

43=600

M4=1000

INC1=10

INC2=2

INC3=5

INC&=25

J=1 ..
N=INC1 b
M=M]

INC=INC1

1=0

DO 13 L=N,M,INC
AlL=L

X=AL71000.90
I=]+1
XDIV=(1.0-X)/X
X2=XDIV*%2
X3=X2%XD1V
Xq=X2%X2
X6=X4%X2
X10=X6%X4
XeV=X4/VI1)
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X10v=X10/Vt(2)

DO T Mv=1,3
X6VOV(MV)=X6&VIMV)/V(MV+]1)
XFi=X4V*{C62X6VOVI(1)-1.0)
XFJK=X10V&(1.0+X6VOV(2)*(C12&X6VOV(3)-2,.0%C6))
XINV2=1.0/X*%2
EXDIV=1.0/DEXPIXDIV)
GNUMER=XDIV2EXDIV*{XDIV*AETA+BETA)
GDENOM= 12, 0%ETA*EXDIVES{ XDIVEAFTA®BETA)¢X3ISCETAE*2¢
16.0%ETASCETA®X2¢+¢18.0XDIVSETA®%2-12 . 0¢ETAXBETA
FNUMER=X4*EXDIV*(XDIVSDETA+BETA%%2)
FDENOM=GDENOM®* 22
FXETA=FNUMER/FDENOM
GXETA=GNUMER/GDENOM

IF (K-1) 9,8,9
Y(I)=XINV2*FXETA*XFI

GO YO 13

IF (K-2) 11,10,11
Y(I)=XINV2*FXETA®XFJK

GO 10 13

IF (K-3) 13,12,13

YOI )=XINV2%GXETA*XF JK

CONTINUE

IF (J-1) 14,14,15

J=J+l

N=M1+INC2

M=M2

INC=INC2

GO TO 6

IF (J-2) 16,416,17

J=J+1 : -
N=M2+INC3

M=M3

INC=INC3

GO TO 6

IF (JU-3) 18,18,19

J=Jd+1

N=M3+INC4&

M=M4-INC4&

INC=INC4

GO T0O 6

CONTINUE

GO TO 34

M1=10

M2=200

M3=500

M4=1000

INC1=10

INC2=1
-INC3=5

INC4=25
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J=1

N=INCt

M=M1

INC=INC1

I=0

DO 28 L=N,M,INC

AlL=L

X=AL/1000.0

I=1¢1

XDIV={1.0-X)/X

X2=XDIV%%2

X3=X2%XDIV

X4=X2%*X2

X6=X4%X2

X10=X6%X4

X4V=X4/Vi1l)

X10V=X10/Vi2)

DO 22 MX=1,3
X6VOVIMX)I=X6EVIMX)/VIMX+]l)
XFI=X4VE{C62X6VOVI(1)-1.0)
XFIK=X10VS$(1.0+X6VOVI2)%{(T12%X6VOVI3)=-2.0%(C6))
XINV2=1.0/X%%2
EXDIV=1.0/DEXP(XDIV)
GNUMER=XDIV*EXDIV£({XDIV*AETA+BETA)
GDENOM=12 . 0¢ETA*EXDIV*{XDIVS*AETA+BETAV+XISCETA®%2s
16. 0%ETA®CE | A¥X 2418, 0XDIV*ETA%*%2-12 ,0¢EVASBETA
FNUMER=X4G*EXDIVE*( XDIVXDETA+BFETA%®%2)
FDENOM=GDENQM*%2
FXETA=FNUMER/FDENOM
GXETA=GNUMER/GDENOM

IF (K-1) 24,23,24%
YI{I)=XINV2*FXETA&XFI

GO 10 28

IF (K=2) 269254206
YUI)=XINV2&FXETA%XF JK

GO YO 28

IF (K-3) 28,27,28

YUI)=XINV2*GXE TAXXF JK .
CONTINUE

IF (J-1) 29,29,30

J=J+1

N=M1+INC2

M=M2

INC=INC2

GO 70 21

IF €£J-2) 31.,31,32

J=J+1

N=M2+INC3

M=M3

INC=INC3

GO 70 21
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IF (J-3) 33,33,34
J=J+l

N=M3+INC4
M=M4-INC4
INC=INC4

GO 70 21

CONTINUE

STEP SIZE AND NUMBER OF STEPS
IF (K-1) 35,37,35
IF (K-2) 36438436
IF (K-3) 40,438,40
N1=2

N2=140

N3=60

N&=16

H2=0.002

H3=0.005

H4=0.025

GO 710 39

N1=1

N2=190

N3=60

N4=20

H3=0c005

H&=0.,025%

N5=N1#N2

N6=N5¢N3

NT=N6&N%

H1=0.01

CONTINUE

DO 59 J=1,4

IF (J-1) 41445441
IF (J-2) 42,46,42
IF (J-3) 43,4743
IF (J-4) 44.,48,44
CONTINUE

Y0=0.0

YN=Y{(N1)

H=H1

M=1

N=N1

GO TO 49

YO=Y(N1)

YN=Y{NS)

H=H2

M=N1+1

N=NS

GO TO 54

YO=Y(NS)

YN=Y(N§)
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H=H3

M=N5+¢1

N=N6

GO Y0 54

YO=Y(N6)

YN=0.0

H=H4

Mm=N6+¢]

N=N7

GO TD 54

SIMPSONS RULE FOR CALCULAYINS VALUE OF INTEGRALS
IF (J-1) 54+¢50,5%

IF (K-1) 51,57,51

IF (K-2) 52458452

IF (K-3) 53,58,53

CONTINUE

YyobpntJi)=0.0

DO 55 I=M¢N,2

YODD({J)=YODN(JI)¢YLI)

YEVEN(J)=0.0

MM=M+1

NN=N-1

DO 56 I=MM,NN,2

YEVENC(J)=YEVENLJ)+Y(])
SUMLJ)=(H/3.0)*(YO+4.,0%YDDD(J)¢2,0¢«YEVEN(J)+YN)
GO YO 59
SUM{1)={H/2.0)%{Y0+2,0%Y{1)2Y(2))

GO0 YO 59

SUMI1)=(H/2.0)%(YO+Y(1))

CONTINUE
VALUE(K)=SUM{1)+SUM(2)+SUM(3)+SUM(4)
CONTINUE

DETERMINATION OF CALCULATED PRESSURES
PHS=((1.0+ETA+ETA*%2)/(1,0-ETA) *%3) #RHDOKT .
COEFI={48.0%ETAXCH6*EPDVK) /T
COEFJUK=(96, O%XETA%XC | 2%¢EPDVK*%2)/(T%%2)
ETAJ=(CETA*%*4) /GETA

ETAKL={4. 0%ETA*(CETA%%3)) /GETA
ETAKZ2=(4. 0¢ETA*BETA*{CETA*%4) ) /(GETA%X%2)
PI=COEF I *RHOKT*VALUE(1)

PI=COEF JK*RHOKT*ETAJ*VALUE(2)
PK=COEFJK*RHOKT*(ETAK1+ETAK2 ) *VALUE{ 3)
PC2=—P+PHS¢+PI-PJ+PK

RETURN

END

SUBROUTINE HINT (Cl+C29sFAsFByPeT4RHO9IToCXyFX)
DOUBLE PRECISION CL4sC24FAoFB+P,T,RHOLEPLEPS,CX(500,
1FX{50),DEL(50) yDELIT,FX1,CX1

EP=0.1
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EPS=0.00001

IT=0

MRITE (6,15)

WRITE (6,14)

[T=17+]

IF (IT-20) 2.,2,12
CX(IT)I=(C1+C2)/72.0

CX1=CX(IT)

CALL PCALC (FX1,CX1T4PoRHO)
FX(ITI=FX1

WRITE (6413) IT,CXUITILFX(IT)

IF {IT=-2) 5,3,3
DELUIT)=(FXC(IT)I-FX{IT-1)D/7COXCITI-CXC(ET-1))
IF (IT=3) Se4¢%
DELIT=DABS{(DEL(IV)-DEL(IT~-1}))

IF (DABS(DELIY/DEL(IT))-EP) 11,11,5
IF {(FX(IT)) 6,12,7

IF C((FX(IT)/P)SEPS) B,12,12

IF ((FX(IT)/P)-EPS) 12,12,8

IF (FXUITI*FA) 9,12,10

C2=CX(IT)

FB=FX(IT)

GO Y0 1

Cl=CX(IT)

FA=FX(IT)

GO TO 1

CONTINUE

CALL NRS (CX,FXoPysToRHD,IT)
CONTINUE

RETURN

FORMAT (16,2D020.10)

FORMAT (/779759 1T, T184°CX® oT374°FX*,/7)
FORMAT( /773, *START OF HALF INTERVAL SEARCH®,//)
END

SUBROUTINE NRS (CXyFXePoeToRHO,IT)
DOUBLE PRECISION CX(50)FX(50),P,T,RHOLEPS,CDIFF,
1FDIFF CHECK WTFAC

WRITE (6,46)

EPS=0.00001

COIFF=CX(IT)-CX(IT-1)
FOIFF=FX(IT)-FX(IT-1) -
CHECK=DABS(FX(IT)/P)

IF (CHECK-EPS) 44¢4,2

IT=17T+1
CXEIT)I=CXCIT=-1)—-(FX(IT-1)*CDIFF)/FDIFF
CALL PCALC (FXC(IT)CXI(IT) +T4PoRHD)
WRITE (695) ITLCXUITIFXIIT)

IF (IT-20) 3,464

GO 10 1
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CONTINUE

WYFAC=FDIFF/CDIFF

WRITE (6,7) WYFAC

RETURN

FORMATY (16,2D20.10)

FORMAT( /79734 UNNORMALIZED {(DP/NC)=?9D20.104//)
FORMATU//79T3,°STARY OF NEWTON-RAPHSON®,//)

END
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THIS PROGRAM USED TO DETERMINE COEFFICIENTS IN
EXPANSION FOR CUVYOFF PARAMETER
DOUBLE PRECISION T,PoF(16,205),CDL205),RHOGM,A{16,16),
LW 2053 SLONL 3)

COMMON FoCDoAeN,SLON
EPS=0.000001

SLON(1)=0.0

SLON(2)=0.0

SLON(3)=1.0

NT=205

R=16

WRITE (6,3)

DO 1 N=L1eNT

READ (5+2) (ToP,RHOGM,CDI(N))
WRITE (642) (T,P,RHOGM,CDIN))
F(l,N)=1.0

Fl24N)=T

F(3,N)=RHOGM

Fl&sNI=RHOGM*T

FI{S¢N)=RHOGM*%2
FE6,N)=TERHOGM*%x2

F(ToN)=TE£2

F(8yN)=RHOGM®*T &*2
FUOeN)={T$%2) *x{ RHOGM®%2)
F{10oN)=RHOGM*%*3
F(11loN)=T*RHOGM*%*3
FU12oN)=(T*#%2) % (RHOGME%3)
FU13,N)=T#%3
F{14¢N)=RHOGM*T %3
FUL15,N)=(RHOGM**2)*(T%%3)
F(169N)={RHOGM**3 ) &(T*%x3)
CONTINUE

WRITE (644)

READ (5¢5) (H(1),I=14NT)

WRITE (6+¢5) (W{I)eI=1,NT)

CALL ORNOR (NT oM MIN,EPS)

sTOP

FORMAT (4D20.10)
FORMAT(//7¢TB8e*TEMP® 3 T26 4 PRESSURE"® ¢ T48*RHOGM®* ,T70
1°CD*y//7)
FORMATI//7,T3,*WEIGHTING FACTORS?,//7)
FORMAT (D20.10)

END

SUBROUTINE ORNOR (NToM,MIN,EPS)

INTEGER NToMyMINoNORyNsKyRoI9JoMINA9PoKMLo RPKML
DOUBLE PRECISION F(169205)¢Y{205)9eVP¢S51¢52¢53¢5%455,
1S69D(16)¢Bl16)+sSIGSQePSI(169205) 4C(16,16)9G{16,16),
2G1016416)yPHI{1169205)yRTP(16)9G2(16916)¢G31(16416),
3SSQU16) ¢SSDE16) +RE(L16) +BFF(16)4T(16¢16)¢6G4(16,16),
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4G5016,16) ¢DEL(205),SDB(16)sFSUB(16:205)9A(16416),
SH(205) ¢ SLON( 3)

COMMON FoeYA9WosSLON

BEGINNING OF PROGRAM

WRITE (6493)

NOR=1

NOR IS NUMBER REORTHONORMAL IZATION
YP=0,

DO 1 N=1oNT
YP=YP+{Y{(N)EY(N)*H(N))

CONTINVE

BEGIN ORVTHOGONALIZATION OF FUNCTION F TO PSI
CONTINUE

DO 3 N=1oNT

PSI(1yN)=F{1lyN)

CONTINUE

IF (SLON(3).EQ.0.) WRITE (6,9%)
IF (M.EQ.1) GO TO 8

DO 7 K=24M

DO 6 N=1oN7

S1=0.0

KM]l=K-1

DO & R=1,KM1

$2=0.0

$3=0.0

DO & I=14NTY
$2=S2+PSI(RI)*PSI{R I *NI1)
S3=SI+PSIIRGII*F(Ko 1D ®N{I1)
CONTINUE

CI{KsR)=-83/S82
S1=S1+C(KoRIEPSI(R¢N)

CONTINUE

PSI(K¢NI=S14F(K.N)

CONTINUE

IF (SLON(3).EQ.0.) WRITE (6495) (PSI{KeI)elI=1yNT)
CONTINUE

CONVERSION OF C(KyR) TO GIK,R)
IF (SLON(3).EQ.0.) WRITE (6,96)
CONTINUE

DO 12 K=1,M

IF (K.EQ.1) GO TO 11

KMi=K-1

DO 10 R=1l,KM1

S1=0.0

DO 9 J=R,KM1
S1=S1+(G(JeR)*C(K,J))

CONTINUE

G(K,R)=S51

CONTINUE

GI{K¢K)=1.0 -

IF (SLON(3).EQ.0.) HRITE (6995) (G(KeI)oI=1,K)

~ e e
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CONTINUE

ICT=NOR

DO 19 K=l¢M

DO 19 R=]1,K

$2=G{KysR)

GO TO (13,14415516417)4 ICT
GliKyR)=52

GO T0 18

G2{K,R) =S2

G0 70 18

G3{KeR})=S2

GO 10 18

G4{Ko,R)=S2

GO 710 18

G5{KR) =52

CONTINUE

NORMALIZATION OF FUNCTION PSI TO PHI
CONTINUE

IF (SLON(3).EQ.0.) WRITE (6,9T)

DO 22 K=1,M

00 21 N=1,NT

$1=0.0

DO 20 I=1,NT
S1=S1ePSI(K 1) *PSI(K,I)*W(])

RTPIK )=DSQRT(S1)
PHI(KN)=PSI(KoN)/RTP(K)

CONTINUE

IF (SLON(3).EQeO<) WRITE (6495) (PHI(KsI)oI=1,NT)
CONTINUE

IF (SLON(3).EQ.0.) WRITE (6,98)

IF (SLON(3).EQ.0.) WRITE (6995) (RTP(I)oI=1,M}
CALCULATION OF ORTHONORMAL AND ORTHOGONAL COEFFICIENTS
DO 24 K=1M

$1=0.0

DO 23 N=]1,NT
S1I=S1+Y(N)*PHI(KyN)*W(N)

B(K)}=S1

D(K)=S1/RTP(K)

CONTINUE

IF {SLON{3).NE.O.) GO TO 25

WRITE (6999)

WRITE (6995) (B(1)y1I=1¢M)

WRITE (6,100)

WRITE (6+95) (D(I),sI=1,M)

CONTINUE

CALCULATION OF THE SUM OF THE SQUARES OF THE ERRORS AND
GAUSS PARAMETERS '
SSD(1)=YP-B(1l)*B(1)
SSQ{1)=SSD{1)/7{(NT~-1)

IF (M.EQ.1) GO TO 27

DO 26 K=2,M
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SSDI(K)=SSDI(K~1)-BIK)&$B(K)
SSQIK)I=SSD(K)/Z{NT—-K)

CONTINUE

CONTINUE

IF (SLON(3).NE.O.) WRITE (6,101}

IF (SLON{(3).NE.O.) WRITE (6+95) (SSD(1),I=1,M)}
IF (SLON{2).NE.O.) WRITE (6,102)

IF (SLON(2) .NE.O.) WRITE (6495) (SSQ(I)eI=1,M)
ESTABLISHMENTY OF THE BEST FIT

DO 30 K=1,M

IF (K.NE.M) GO YO 28

MINA=M

GO 70 30

CONTINUE

IF (DABSI(SSQ(K)).GE.DABSISSQ(K+1))) GO YO 29
MINA=K

K=M

CONTINUE

CONTINUE

IF (SLON(2).EQ.0.) WRITE (6,103) MINA

DO 31 K=1,M

BFF(K)=(2%K-NT ) *SSQ(MINA)+SSDIK)

CONTINUE

DO 34 Kzl'"

IF (K.NE.M) GO 7O 32

MIN=M

G0 TO 34

CONTINUE

IF (DABS(BFF{K)).GE.DABS(BFF{(K+1)}) GO YD 33
MIN=K

K=M

CONTINUE

CONTINUE

IF (SLON{2).NE.O.) GD TO 35

WRITE (6,104)

WRITE (6495) (BFFlI),I=1,M)

WRITE (64105) MIN

CONTINUE

CALCULATION OF THE RELATIVE ROUND OFF ERRORS
DO 38 K=1,M

S1=0.0

DO 37 J=1.M

$2=0.0

DD 36 N=1,NT

' §2=S24PHI(JoNI*PHI(K,N) *W(N)

CONTINUE

$1=8148(J)*S2

CONTINUE

RE(K)=1.0-S1/B(K)

CONTINUE

IF (SLON(2).EQ.0.) WRITE (6,4106)
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IF (SLON(2) «EQeOe) WRITE 16995) (RE(]I)oI=]1,M)
00 43 K=1,M !

IF (EPS.GE.DABSIRE(K))) GO TO 42
IF (NORJNE.S) GO 71O 40

WRITE (69107)

WRITE (6,94)

DO 39 I=1,M

WRITE (6995) (PSI(I4J)eJ=1,NT)
CONTINUE

GO TO 44

CONTINUE

DO 41 I=1M

DO 41 N=1,NT

IF (NORLEQ.1) FSUB(I,N)=FlI,N)
FUIeN)=PSI(1I,N)

CONTINUE

NOR=NOR+1

WRITE (69108)

GO T0 2

CONTINUE

CONTINUE

RECOVERY OF ODESIRED COEFFICIENTS
DO 45 K=]1,M

T(1l.K¥=DIK)

CONTINUE

DO 62 R=2.M

MMRPL=M-R+¢+1

DO 62 K=1,MMRP1

ICT1=NOR

GO TO (46947+49+52,560, ICT1
RPKM1 =R+K-1

S1=Gl(RPKML1,K)

GO TO 61

RPKM1=R+K-1

S1=0.0

DO 48 J=K,RPKM1
S1=S1+G2{RPKML ,J)*Gl(J,K)
CONTINUE

GO YO 61

S1=0.0

RPKM1=R#+K~-1

DO 51 J=K.RPKM1

$2=0.0

DD SO0 1I=K,J
$2=52+G2{(Jo1)%G1(I,K)
CONTINUE
S1=S1¢+G3(RPKM1,J)%*S52
CONTINUE

GO T0 61

$1=0.0

RPKM1=R+K~-1
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00 55 J=K.RPKM1
$2=0.0

DO 54 [=K,J

$3=0.0

DO 53 P=K,l
$3=S34G2(1P)*G1(P.K)
CONTINUE
$2=824G31J,1)*S3
CONTINUE
S1=S14G4(RPKM1,J)%S2
CONTINUE

GO TO 61

$1=0.0

RPKM1=R+K~-]1

D0 60 J=K.RPKM1
$2=0.0

DO 59 [=K,J

$3=0.0

DO 58 P=K,1

$4=0.0

DO 57 N=K,P
S&=S564¢G2{PyN)*GL (N,K)
CONTINUE
$3=S3+G3(1,P)*54
CONTINUE
$2=524+G4(J,1)%S53
CONTINUE
S1=S1+G5(RPKML,J)*S52
CONTINUE

- RPKM1=R+K-1

TIRsKI=TI{R-19K)¢T{1,RPKM1)*S1
CONTINUE

IF (SLON(1).EQ.0) WRITE (64109)
DO 64 R=1,M

IF (SLON(1).EQ.0) WRITE {6,110) R
DO 63 K=]1,R

RMKPL=R-K+#+1

AR SKI=T(RMKP1,K)

CONTINUE
IF (SLON(1).EQ.0) WRITE (6,495} (A{R,1I),1I=1,R) .
CONTINUE

CALCULATICN OF Y{0BS)-Y{CAL)=DELTA
IF (SLON(1).EQ.0) WRITE (6,111)

D0 70 R=14M

S$1=0.0

$2=0.0

$3=0.0

$5=0.0

$6=0.0

IF (SLON{(1).EQ.0) WRITE (64110) R
DD 69 N=1,NT
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$4=0.0

IF (NOR.NE.l) GO TO 66

D0 65 I=]1,R
S4=54¢AlRLI)*F(IyN)

CONTINUE

GO TO 68

CONT INUE

00 67 [=1,R
S4=S4¢A(RLYI)*FSUB(I +N)
CONTINUE

DEL(N)=Y(N)-S4%

IF (SLON(1).EQ.0) MRIYE (69112) YIN)S4,DELIN)
S1=S1+DELIN)
$2=S2+DABS(DEL(N))
$3=S3+DELIN)*DEL(N)
S$5=SSeHIN)*DEL (N} 3DELIN)
$S6=S6+DSQRT(NWIN) ) =DEL(N)
CONTINUE

S4=S1/NT

IF (SLON(1).EQ.O) WRITE (69113) S19S52¢54953¢S5
CALCULATION OF SIGMA SQUARED
IF (R.EQ.MIN) SIGSQ=(S5-56%56)/(NT-MIN)
CONTINUE

IF (SLON{(2).NE.O.) GO TO 92
WRITE (6,114) SIGSQ

DO 71 K=1.,M
BFFIKI={2#%K~-NT)*SIGSQ+SSD(K)
CONTINUE

NRITE (6,115)

WRITE (6995) (BFF{I)eI=1,M)
CALCULATION OF THE STANDARD OEVIATION OF THE
COEFFICIENTS

WRITE (60116)

DO 91 R=1,M

DO 90 K=]1eR

S1=0.0

§2=0.0

DO 89 J=K¢R

ICT2=NOR

GO TO (72473,75478) 4 ICT2
$3=G11J.K)

60 TO 82

$3=0.0

DD 74 [=KeJd
$3=534G2(J+1)%G1{1,K)

GO 10 82

$3=0.0

00 77 P=KoJ

$4=0.0

DO 76 I=K,P
$4=544G2(P,1)*G1(1,K)
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CONTINUE
$3=S3¢G31J,P) %S
CONTINUE

GO 70 82

$3=0.0

00 81 NSK'J

$4=0.0

DO 80 P=KyN

$5=0.0

DD 79 I=K,P
$5=55¢G2(P,1)%G1{1,K)
CONTINUE
$4=S4¢G3(N,P)*S5
CONTINUE
$3=83¢G4(JoN)*S4
CONTINUE

60 10 82
$2=52+S3*S3/(RTP(J)*RTP(J))
$5=0.0

DD 88 l=l’R

$6=0.0

IF (NOR.NE.1) GO TO 84
DO 83 N=1,4NT

S6=S6+F{ IoN)*PHI (JN) *H(N)
CONTINUE

60 T0 86

CONT INUE

DO 85 N=1,NT
S6=S6+FSUBLIN)*PHI{J,N)EWI(N)
CONTINUE

IF (RJLEJMIN) GO TO 87
$5=S5+A(R,1)*56

GO TO 88
$5=S5+AIMIN,I)*S6
CONTINUE
S1=S14S3*(8lJ)-SS5)/RTP{ )
CONTINUE
$4=SSQI(MINAYI*S2+S1*S1
SDB{K)=DSQRT(S4)
CONTINUE

WRITE (64110) R

WRITE (6995) (SDB(I).I=14R)
CONTINUE

CONT INUE

RETURN

FORMAT( ///°* BEGIN ORNDR QUTPUT'//)
FORMAT( /°* PSI{KeN) - THE ORTHOGONALIZED Fi(K¢N)*/)

FORMAT (S(ELB.10.4X))

FORMAT( /* G(KsR)-CONSTANT USED TO ORTHOGONALIZE THE

LF{KeN)*/)

FORMAT( /* PHI{KyN)-THE ORTHOGONALIZED F(KyN)})*/)



98
99
100
101
102

103
104
105
106

107

108

109

110
111

112
113

l14
115

116

219

FORMAT( /* SQUARE ROOT OF THE INNER PRODUC™ OF PSII(K,N)
LAND PSI(JeN)*/)

FORMAT( /* Bi{K)- COEFFICIENT TO BE USED WITH THE ORTHO
LNORMAL FUNCTIONSe PHI(K,N)*/)

FORMAT( /' D(K)- COEFFICIENT TO BE USED WITH ORTHO
LNORMAL FUNCTIONS+PSI{KeN)*/)

FORMAT(/* THE SUM OF THE SQUARE OF DISCREPANCIES
1BETWEEN Y OBSERVED AND Y CALCULATED®/)

FORMAT( /* GAUSS PARAMETER S SQUARED - THE SUM OF THE
1SQUARES OF THE DISCREPANCIES DIVIDED BY THE NUMBER OF
2DEGREES OF FREEDOM®//)

FORMAT( /* THE MINIMUM S SQUARED POLYNOMIAL IS THE
1ONE WITH ®9134° PARAMETERS®/)

FORMAT( //° CRITERION FOR CHOOSING THE BEST POLYNOMIAL
1TO FIT AN INFINITE SERIES*/)

FORMAT( //7° THE BEST POLYNOMIAL HAS®,13,* PARA
1METERS® /)

FORMAT( //7°* THE RELATIVE ROUNDOFF ERROR FOR EACH
1POLYNOMIAL'/)

FORMAT( //* THE RONND OFF ERROR IS STILL GREATER THAN
1EPSILON AFTER FOUR ORTHONORMALIZATIONS®¢//¢°* READ THE
2FOLLOKING VALUES OF PSItKyN) IN AS F(KyN) AND RERUN
3THE PROGRAM'/) '

FORMATy ///° REORTHONORMALIZATIONS - THE ROUNDOFF
LERROR IS TOO LARGE FOR ONE OF THE REQUIRED POLYNOMIALS

2%7)
FORMATL //°* COEFFICIENT FOR THE M DESIRED
LPOLYNOMIALSY/)

FORMAT (/°'R=%,14,/)

FORMAT( /716Xe®Y(OBS)? 9gTXo?~ 3 TX ' Y(CALC)*yTXy®=0,TXy"
1DELTAY/)

FORMAT {(10X9EL17e1095X9EL1T1095X9EL17.10)

FORMAT( /° SUM OF DELTAS ='3,E17.10,5Xe*SUM OF ABSIDEL
LTA) = *3EL1T.10977° AVERAGE DELTA = '"3E17.10,5X,* SUM
20F DELTA SQUARED = *,E17.10,//7% SUM OF WEIGHTED DELTA
3SQUARED = 9 4E17.10,7/7)

FORMAT( //7° SIGMA SQUARED -~ ESTIMATED VARIANCE IN
1DATA = ',E17.10)

FORMAT{ /7% BESY FIT CRITERION BASED UPON SIGMA
1SQUARED*/)

FORMAT( //°* STANDARD DEVIATION OF THE COEFFICIENTS*/)

END
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THIS PROGRAM USED WIFH SUBROUTINE PCALC ABOVE TO
CALCULATE PERCENT ERROR IN DENSITY

DOUBLE PRECISION AVNUMBMN,C sEPSosRHOsToPoRHOGNX(400),
LPC(400) ,0PC 4DRHOGMy CHECK yCRHO+DIFF ¢ ERRORyRHOGM o FX
N=600

D0 6 JJ=1,.N

READ (5,7) T,P,RHOGMX(1)

WRITE (6,10)

WRITE (647) ToPyRHOGMX(1)

AVNUM=0 .602295D+24

BMU=16.043

EPS=0.000001

WRITE (6,8)

DO 4 I=1,10

RHO=(RHOGMX ( I ) *AVNUM) /BMN

RHOGM=RHOGMX{I)

EXPRESSION FOR CUTOFF PARAMETER C DETERMINED FROM
ORNOR FIT REPLACES THIS CARD

CALL PCALC (FX,C,TyP,RHO)

PCLI)=FX

WRITE (6990 [,RHOGM,PC(I)

IF (1-2) 142,42

RHOGMX(1¢1)=1.0001%RHOGMX(I)

GO 710 &

DPC=PCL1)-PCLI-]1)

DRHOGM=RHOGMX{ I )-RHOGMX(I~1)

RHOGMX({ I+1 )=RHOGMX( I)~-(PC( 1) *DRHOGM)/DPC

IF (1-3) 4,443

CHECK=DABS( DRHOGM/RHOGMX( 1))

IF (CHECK—-EPS) 5,5,4

CONTINUE -

CRHO=RHOGMX(I)

WRITE (6,110 1|

WRITE (6412) CRHO

DIFF=RHOGMX {1)-CRHD

ERROR=(100.0*DIFF)I/RHOGMX (1)

WRITE (6413) DIFF

WRITE (64914) ERROR

WRITE (6415)

CONTINUE

FORMAT (3020.10)

FORMAT (779T44%°1° JTLTo'RHOGM® oT379°FX®*o/7)

FORMAT (14,2020.10)
FORMAT(//sTLL,*TEMP® ,T29, *PRESSURE®*yT48,*RHOIGM/CCY
1°9/77)

FORMAT(//9T39°CONVERGED WHEN I=*,[2)
FORMAT{T3,°FOR RHO(GM/CC)=*9D20.10,7/)

FORMAT (T34°*RHOCEXP)-RHO(CALC)=*,D020.10,7/)
FORMAT(T3,*PERCENT ERROR=%4D20.10,7/)

FORMAT (/7913 S35 4E XA EEEELEEREEEREEERESESEEEEES /)

END



