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PREFACE 

This study is concerned with the analysis of a repeated measures 

or split-plot-in-~ime design where there is correlation among subunit 

observations. The objective is to compare several methods of analysis 

that are used to measure subunit effects. To achieve this objective, 

the study compares Monte Carlo estimates of power with algebraic esti

mates of power over a wide range of cases. 

The author wishes to thank the members of his committee: 

Drs. Ronald McNew, Leroy Folks, Larry Claypool, Lyle Broemeling, and 

Barbara Weiner. 
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CHAPTER I 

THE RESEARCH PROBLEM 

Introduction 

Experiments in which repeated measurements are made on the same 

unit occur extensively in agricultural, industrial and psychological 

research. The measurements obtained on a unit are often taken unde~ 

different treatment conditions or at different points in time. Experi-

ments in psychology usually involve human subjects as the units, and 

the subject is exposed to a sequence of different treatment conditions. 

In psychology, such experiments are referred to as repeated measures 

experiments. In agricultural research, split plot experiments may be 

conducted. Where the subunit factor is time, i.e. observations are 

taken on the same main unit at different points in time, then it is 

referred to as a split-plot-in-time experiment. 

In a two factor experiment with t levels of treatment factor 

A occurring on each of s sampling elements nested under each of r 

levels of a second factor B, as in a split plot experiment, the 

hypothesis of no treatment A effect is traditionally tested with the 

ratio MSRA = MSA I MSError(w)" The hypothesis of no treatment A by 

treatment B interaction is tested by the ratio MSRAB = MSAB I MSE ( )' .. rror w 

The mean square for error in these tests is obtained by pooling the 

subunit error from the several B treatments. Where the covariance 

matrices of the populations at various levels of the whole unit 

1 
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treatments satisfy the assumptions of the randomized block design and 

are identical, MSRA and MSRAB have exact F-distributions, central if 

the corresponding null hypothesis is true. But where correlation 

occurs, as sometimes happens in repeated measures designs and in split

plot-in-time designs, MSRA and MSRAB may not have exact F-distributions. 

The correlation may be caused by bias in the nature of the experi

ment. For example, consider the layout frequently used in psychological 

research with subjects as experimental units. If the subjects are 

classified into r independent groups with s subjects in each group, then 

given t trials (measures) on the repeated factor, the layout is a two 

factor repeated measures design with one repeated factor. Trouble 

begins where the design departs from assigning the treatment condition 

at random with regard to the t trials for a given subject, or where the 

treatment condition is assigned at random with regard to the t trials 

for a given subject, but an order effect is present. 

Where the assignment of the treatment condition is not random, 

typical of "growth" studies on the same subject, an order effect may 

bias the comparison. In a second situation with assignment of the 

treatment condition random, an order effect may be present, i.e. the 

exposure to the treatment condition assigned first may change the sub

ject in some way that will affect his performance on the treatment con

dition assigned second. Practice, fatigue, and change in attitude are 

examples of influences that may cause an order effect. For the repeated 

measures design, assignment of the subunit treatment condition is where 

bias is introduced; order effect is why bias occurs. 

For a second example, consider a layout used frequently in agricul

ture experiments. This is a split plot experiment in which the main 
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units are in a Randomized Complete Block design. The subunit factor 

A is time. For example, with a forage crop, such as alfalfa, data on 

forage yield are usually obtained two or more times during a year. In 

such a case, the subunit errors may be correlated. 

Alternative Approaches to Analysis 

Where correlated errors occur in either type of experiment 

described previously, one of four methods of analysis is possible for· 

testing the null hypotheses: 

There is no Treatment A effect, and 

There is no Treatment A by Treatment B interaction. 

Again, there are t levels of subunit factor A, r levels of whole unit 

factor B, and s units (blocks or subjects) for each of the r levelsof B. 

One method of testing the two null hypotheses is multivariate 

analysis: HA is tested by Hotelling's T 2 , and HAB is tested by the 
0 0 

one-way multivariate analysis of variance (Morrison, 1967). Multivar-

iate analysis is not familiar to many researchers and is often more 

complex than univariate analysis. 

A second method ignoring correlation rejects HA at significance 
0 

level a when 

MSRA ~ F 1-a, t-1, r(s-l)(t-1)' 

and rejects HAB at significance level a when 
0 

MSRAB ~ F 1-a, (r-l)(t-1), r(s-l)(t-1); 

(1-1) 

(1-2) 

is the F value with y1 numerator degrees of freedom 
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and Yz denominator degrees of freedom, and a is such that 

a = Pr F > Fl-a, y ,Y . Where correlation occurs, true null hypotheses 
1 . 2 

are rejected too often by this method, a serious error in testing 

hypotheses. __ 

A conservative test derived by Greenhouse and Geisser (1958) is · 

the third method of analysis. In simple terms, the analysis is the same 

as the zero correlation analysis with 1 replacing t-1 in 1-1 and 1-2. 

This test would be appropriate if the correlation between any two sub-

unit observations is equal to one. With less than a perfect correla-

tion, the probability of rejecting a null hypothesis is (much) smaller 

than the stated significance level. 

The last method of analysis depends upon the correction factor s 

that was derived by Box (1954) and was applied by Greenhouse and Geisser 

(1958) to the repeated measures design. In the analysis, s = 1 I t-1 

forms a lower bound, occuring where subunit observations are perfectly 

correlated (where subunit observations are not correlated, s = l.forms an 

upper bound). In practice, an estimate E of sis-used ·:rn the analysis, 

with HA 
0 

when 

and HAB being rejected, respectively, at sifnificance level a 
0 

MRSA ~ Fl-a, (t-1)£, r(s-l)(t-1)£, and (1-3) 

MRSAB ~ Fl-a, (r-l)(t-l)E, r(s-l)(t-l)E. (1-4) 

The method's advantage is that each of the degrees of freedom is 

approximated by a number that is between or equal to limits set by the 

respective degrees of freedom of the zero correlation, or usual analysis, 

and by the respective degrees of freedom of the conservative test. 

Thus, the "amount" of correlation enters the analysis of testing 
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the null hypotheses implying that the s-adjusted analysis is a reason-

able 1neth_od of a1:_1:aly~is, a more reasonable analysis than ignoring 

correlation or than using Greenhouse and Geisser's conservative test. 

With this in mind, the next question to be asked is: How do the three 

methods of analysis (usual, conservative test, and s-adjusted) compare 

under the non-null model? 

Objectives of Research 

The algebraic approximation of the power of the E-adjusted test 

of hypothesis (the test of hypothesis using the s-adjusted analysis) 

is one of two major derivations in this thesis. The other is a Monte 

Carlo approximation of the power derived by the analysis of a "large" 

number of artificially generated observations. The first objective 

of this thesis is to compare the power of these approximations under 

the same assumptions for many cases. Thus, a "close" agreement of the 

powers will give strong evidence supporting the assumption that the 

s-adjusted approximation of power "closely" approximates the true power 

(Monte Carlo approximation of the power). 

With this first objective assumed true, the second objective 

of this thesis is to compare, under the same assumptions for many 

cases, the power of the E-adjusted test with the nower of the usual 

test (the test of hypothesis using the usual analysis) and with the 

power derived using the conservative test (the powers being found by 

calculating the three critical values and counting the number of Monte 

Carlo samples greater than the critical values for the respective tests). 

More specifically, the objective is to measure how much better the 

s-adjusted test approximates the true power than does either the 

usual test or the conservative test. 



CHAPTER II 

BACKGROUND ON THE PROBLEM 
OF CORRELATED ERRORS 

A Review of the Literature 

Consider r t-variate normal random variables 

. . . ' x. ), i=l, 2, ... , r 
1t 

with t by t covariance matrices t. 's that need not be equal. Each of 
1 

the t components corresponds to a level of treatment condition A, and 

each of the r populations corresponds to a level of treatment condition 

B. Thus, the observations under the t levels of A are correlated, and 

the observations under the r levels of B are independent. From the i th 

population, a random sample of size s. is drawn. Its elements are 
1 

denoted by 

x.. (xi'l' x .. 2 , ..• , x .. ) , j=l, 2, •.. , si. 
~1J J 1J 1Jt 

With these assumptions, Huynh, Huynh, and Feldt (1970) have shown 

that the ratios MSRA and MSRAB have exact F-distributions if and only if 

the variance of xik- xik' is constant for all i and for all kfk'. 

For the case that r=l and t is any nonsingular matrix, Box (1954) 

has shown the approximate distribution of MSRA to be F with (t-1)£ 

and (s-l)(t-1)£. 

With each t. 
1 

~ and with each xijk having an expected value of 

6 
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zero, Greenhouse and Geisser (1958) extended the work of Box by deriving 

an approximate distribution of MSRA, and of MSRAB' given respectively by 

r 
where n = L:si. 

i 

F and (t-l)E, (n-r)(t-l)E, 
(2-1) 

F 
(r-l)(t-l)E, (n-r)(t-l)E 

(2-2) 

Collier, Baker, and Hayes (1967) investigated the probability of a 

Type I error for Greenhouse and Geisser's conservative test as well as 

for the usual test (zero correlation in the analysis), for theE-adjusted 

test (E in the analysis), and for theE-adjusted test (E in the 

analysis), where E is an estimator of E. The considerations are the same 

as those of Greenhouse and Geisser (1958), except that all random 

samples are assumed to be of equal size s. Several covariance matrices, 

t's, with unequal variances and covariances were used in the study with 

the following results: 

(1) The true probability of a Type I error is larger 
than that set by the researcher for the usual tests. 

(2) The true probability of a Type I error is markedly 
less than that set by the researcher for the conser
vative tests. 

(3) The true probability of a Type I error is very close 
to that set by the researcher for the E-adjusted tests. 

(4) The estimated probability of a Type I error for the 
E-adjusted tests agrees well with the level a set by 
the researcher except for the situation with E near 
unity. In such a situation, .E is less than E, 
resulting in a slightly conservative test. 



Approxim~ting Distributions of Quadratic 
Forms and Their Ratios 

8 

The properties of the E-analysis proposed by Greenhouse and Geisser 

(1958) are derived from results obtained by Box (1954). The main result 

used herein is the development and evaluation of an approximation for 

the distribution of any real quadratic form. The critical ideas from 

these two papers will be reviewed in this section. In the following, 

x 2 (v) will denote a random variable having a chi-square distribution 

with v degrees of freedom, and F(v1 ,v2) will denote a random variable 

having an F distribution with v1 and v2 degrees of freedom. 

Let x ~ N (O,V). Box (1954) has shown that the real quadratic form
~ p ~ 

Q = x'Mx of rank c~p is distributed like the quantity 

y 
c 
E 

i=l 

where the chi-square variables are mutually independent, and the A's 

are the c real nonzero characteristic roots of the matrix VM. 

In general, the distribution function of a linear combination of 

mutually independent chi-square variables, Q = EAi x 2 (vi) is represent

able in the form of an infinite series (Box, 1954). When the degrees-

of-freedom parameters are even-valued integers, the distribution function 

is a finite sum. This provides a means of obtaining exact numerical 

values for evaluating an approximation to the distribution of Q. 

Satterthwaite (1941) had suggested using the distribution of 

Z = gx 2 (h) to approximate the distribution of the quadratic form Q, 

where g and h are chosen so that the two distributions have the same 

first two moments. Box (1954) used the above results on the exact 



distribution of Q to evaluate this approximation. He concluded that 

the approximation was good unless one was interested in rather small 

differences in probabilities. 

A similar procedure was followed in considering the ratio of two 

quadratic forms Q1 and Q2. Box (1954) has shown that the ratio Q11Q2 

is distributed like the quantity 

If v1i and v2i are even, the exact distribution of Q11Q2 is given 

by a finite weighted sum of incomplete Beta function integrals. 

9 

With this background, Box (1954) has approximated the distribution 

of the ratio of .two (non-negative) independent quadratic forms, Q1 and 

Q2 , by fitting X2 distributions in both numerator and denominator. The 

result is stated in the following theorem. 

Theorem 2-1. If Q1 is distributed appoximately like g1x2 (h1) 

. 2 
and Q2 .like g2x (h2), then a quantity whose distribution approximates 

cl c2 
b L: Ali I I: A2i ' and 

i i 

[~j A.iv .• J c. 
h I L:J A .. v~. , j = 1, 2. j J J J. i Jl. Jl. 

In evaluating this approximation, Box (1954) concluded that it does 

not have great accuracy. However, in the cases he considered, the 

errors were smaller than one percent. 

This approximation has been applied to the repeated measures 



design, where the random vector x is expressed by the following; 

x .. (xij 1' xij2' -l.J ' X 
ij t)' 

I I I 

x. (x.l, ~i2' . .. ' X. ) ' and 
-l. -l. -l.S 

I I 

X (~1' ~2' ... ' X 
-r 

) . 

Each x .. is distributed with covariance matrix t, which implies that 
-l.J 

the rst by rst matrix V is given by 

v 

10 

(2-3) 

(2-4) 

(2-5) 

(2-6) 

Greenhouse and Geisser (1958) have derived matrices <M!• M2 , and M3) 

necessary to express each sum of squares (SSA' SSAB' and SSerror(w)) 

in quadratic form, i.e. SSA = ~ 1 M1~, SSAB = ~ 1 M2~, and 

SS = x 1 M x. 
error(w) - 3-

With expectation of ~ zero, Greenhouse and Geisser (1958) used 

Theorem 1 to derive the approximated distributions of the ratios MSRA 

and MSRAB (given by 2-1 and 2-2) by expressing the correction factor £, 

defined by Box (1954), as follows: 

(t-1) -l ~r<t (2-7) 

where tr(t - H~) is the sum of the diagonal elements of the matrix 



U = t - Ht, and where H is the t by t matrix defined by 

H 
1 
t 

1 1 

1 1 

1 1 

1 

1 

1 

11 

(2-8) 

Greenhouse and Geisser (1958) have given two alternative expres-

sions of E • In the first, 

(2-9) 

where Ak is one of the t non-negative characteristic roots of U (easily 
t 

derived since tr(~- Ht)n = EA n , for n=l, 2, ... ). 
k k 

In the second, 

where a , 
kk 

is the covariance 

peated factor A (derived by 

is in the kth row and k' th 

of the k th and k' 

finding tr(t- Ht)n, 

column of the matrix 

t t 

E Ea kk' 2 
k k' 

th levels of 

for n=l, 2, 

t>. 

(2-10) 

the re-

where akk' 



The Estimator of 'E: and Properties 
of This Estimator 

The estimate € of the correction factor E: is calculated using 

(2-10) with okk' replacing okk' where 

A 

12 

0 kk' 
I r(s-1) (2-11) 

with xijk denoting the observation on subunit treatment k from sample 

j of population i, (Collier, Baker, and Hayes, 1967). 

Collier, Baker, and Hayes studied, by Monte Carlo procedures, the 

properties of the biased estimator €. The size a (the probability of a 

type 1 error) of the €-adjusted test was compared to the size of the 

~::-adjusted test for both ratios MRSA and MRSAB over various cases 

(15 cases, each with four a values) with 1000 estimated values of € and 

E: in each case. 

The distribution of € was found to be negatively skewed for large 

values of € and positively skewed for small values of E:. Collier, 

Baker, and Hayes concluded that the E-adjusted test agrees well with 

the ~::-adjusted test except for layouts characterized by highly homo-

geneous variance matrices and except for three other layouts in which 

divergent results were observed; furthermore, in those cases with 

E: :s; 0.74 the agreement between the two tests appears to be, in general, 

much closer. 



CHAPTER III 

THE APPROXIMATE DISTRIBUTIONS OF MSRA AND MSRAB 
UNDER THE NON-NULL MODEL 

Introduction 

By assuming no subunit treatment A effect and no main unit treat-

meant B by subunit treatment A interaction, the approximate distribution 

of the ratio MSRA, which measures the A effect, as well as the approxi

mate distribution of the ratio MS~B' which measures the A by B inter

action, have been derived. The ratio to measure the main unit treatment 

B effect has not been given because it has an exact F distribution 

(which can be found using the analysis of variance for the randomized 

block design) even where subunit errors are correlated. Thus, only 

the subunit effects (A, AB, and Error(w) are given in the model. 

For convenience, the sum of squares that measures each effect is 

expressed in quadratic form (Q1 , Q2 , and Q3 are equal to the respective 

sum of squares for A, AB, and Error(w)). If the distribution of each 

Qi can be approximated accurately, then the approximate distributions 

of MSRA and MSRAB will follow. In other words, it is necessary to 

show that the distributions of Q1 and Q2 are approximated by noncentral 

x2 •s; and that of Q3 , by a central x2. 
\ 

13 



Model and Assumptions 

The repeated measures design has the layout where t levels of 

subunit treatment condition A are applied, not necessarily at random, 

to each of s subjects, the application being repeated for r groups of 

subjects. In the split-plot-in-time design, subunit errors may be 

correlated. Thus, a model having only subunit effects that describes 

both designs is one given by 

i=l, 2, ... , r; j~l, 2, .•• , s; k=l, 2, ... , t: 

ak is the k th fixed effect of subunit treatment A, 

(Sa)ik is the interaction fixed effect of the i th 
level of main unit treatment B and k th level of 
subunit treatment A, and 

e .. k is the subunit error. 
1] 

The constraints imposed on the effects are 

t r 

0, L:(Sa) "k 
k 1 

0, and ~(Sa)ik = 0. 
1 

The Analysis of Variance for the model is given by Table I; and 

the sum of squares are defined by Table II. 

14 

Similar to expressing the x .. k observations as vectors (2-3, 2-4, 
1] ' 

and 2-5), the fixed effects are expressed, using the dummy variable 

j, by 



Source D. F. 

Total Subunit rs(t-1) 

A t-1 

AB (r-l)(t-1) 

Error(w-) r(s-l)(t-1) 

TABLE I 

ANALYSIS OF VARIANCE 

Sum of Squares Mean Squares 

SSA MSA 

SSAB MSAB 

ss Error(w) MS Error(w) 

Mean Squares Ratio 

MSRA = MSA/MSError(w) 

MSRAB = MSAB/MSError(w) 

1-' 
VI 



Sum of Squares 

SSA 

SSAB 

ss Error(w) 

TABLE II 

SUM OF SQUARES 

Summation Form 

t 
- - 2 

rsE(x k - x ) 
k •. 

t -
- - X rsE(x. k i .. 

1. k 

- -
- X • • k 

r s t 
I L: L:(x _ 
i j k ijk 

-
X -X 
i.k ij 

- 2 
x ••• ) 

2 
- x. ) 

1 •• 

1-' 
0'\ 
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u .. = (al + (Ba) il' a2 + (Ba)i2' . .. 
' 

a + (Ba)·. ) , 
~l.J t l.t 

(3-1) 

I 

u. = (u.l, u·z' ... ' u. ) ' and 
~l. ~l. ~l. ~l.S 

(3-2) 

I 

u (~1' ~2' ... ' u ). 
~r 

(3-3) 

Further, the subunit errors are expressed by 

ei. = (eijl' eij2' ' eij t)' ~ J 
(3-4) 

• I I 

e. (e.l, e.2' ... ' ei ), and 
~l. ~l. ~l. ~ s 

(3-5) 

I I 

e = <:1' :z ' ... ' e ). 
~r 

(3-6) 

Each e .. is distributed as a multi-normal distribution with mean 
~l.J 

vector :<:ero and t by t variance matrix ~-

is zero where i#l 1 or j#j 1 • 

The expectation of e .. e! 1 • 1 
~~J~l. J 

Because the first three central moments are used in the following 

derivation, it is convenient to express each sum of squares as a quadra-

tic form, Q. = x 1 M.x (Table III). Each matrix M. is partitioned into 
l. l.~ l. 

r 2 (r main unit treatments) submatrices using one and only one of the 

following rules: 

A 1 0 1 0 A I A I • 
I 

._I A - 1- L -I_ .1. ·-

01 AI . • I 0 AI AI . . I A 
- ·- r - - - - - - I - T -

A:R I 
. and R A = (3-7) r = ' r . I . I I . 

I I I 

.:. 1-· L ._I .:I_'J. '_I . - -
01 01 . . I A AI AI . I A 
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where A is st by st, and 0 is st by st with each element being zero. 

Each A is partitioned into s 2 (s samples) submatrices using one of 

similar rules forE x sands x E (replace A byE, and r by s, in 3-7), 

where the t by t matrix E is the following: 

E = (1/t) 

t-1 -1 

-1 t-1 

-1 -1 

-1 

-1 

t-1 

With these rules, the quadratic form (Q1 , Q2 , and Q3 ) for each 

sum of squares (SSA, SSAB' and SSError(w), respectively) is given by 

Table III as well as the matrix (M1 , M2, and M3 respectively) of the 

quadratic form. 

Deriving the Moments 

(3-8) 

The distribution of each quadratic form Qi will be approximated by 

that of a variable w distributed as a noncentral gamma distribution 

having density function, f(w), given by 

f(w) 
, oo ,i a+i-1 -w/bd 0 = -A ~ A W e W, ~ W < 00 , 

e {., +" 
i=O i!ba 1 T(a+i) 

(3-9) 

where a and b are positive real numbers, A. is any non-negative real 

number, and 

00 

r (a) f a-1 -y y e dy. 

0 



Sum of Squares 

SSA 

SSAB 

ss Error(w) 

TABLE III 

QUADRATIC FORMS FOR SUM OF SQUARES 

Quadratic Form x'M.x M. Matrix 
~ 1~ 1 

-

Q1 x'M x 
~ 1~ 

(1/rs)(r 8 (s R E)) 

Q2 'M . : 2?5 (1/s)((s R E) R r) - (1/rs)(r R (s R E)) 

Q3 x'M x 
~ 3~ 

(Ex s) R r) - (1/s)((s R E) R r) 

1-' 

"" 
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The moment generating function of w with respect to the variable 

t, mw(t), is given by 

m (t) 
w 

00 

f 
0 

00 

ewt .~0Ai -A a+i-1 -w/b 
1- e w e dw. 

• I ba+ir f +. ) 1. \a 1 

' By letting y = w(l - bt)/b, the values of w = by/(1 - bt) and 

dw = b/(1- bt)dy are substituted into mw(t), which simplifies as 

follows: 

m (t) = 
w 

oo -AAi L: -"e __ 
i=O i! f 

0 b a+i f(a+i) 

00 a+i-1 yb (1-bt) b . 
e (l-bt)b 1-bt dy 

;>.. 

= (1- bt)-ae-Ael-bt 

(3-10) 

(3-11) 

By evaluating the first, second, and third derivative of mw(t) at 

t equal zero, the following moments are derived: 

~~ (t=O) 

m I I (t=O) 
w 

m 111 (t=O) w 

= b(a +A), 

2 2 2 b (a +a+ 2aA + 2A +A), and 

b3(a3 + 3a2 + 2a + 3a2A + 9aA 

+ 6A + 3aA + 6A2 + A3). 

(3-12) 

(3-13) 

(3-14) 

The three moments will be equated to three moments of Qi' which are 

obtained using cumulants. More specifically, where x having expectation 

u is distributed as a multi-normal distribution with p by p variance 

matrix V, then th cumulant, k (x 1 M1x), of the quadratic form Q. = x 1 M.x 
n ~ ~ 1 ~ l~ 

is given by (Searle, 1971). 

n-1 [ n k (x 1 M.x) = 2 (n-1)! tr(M.V) 
n ~ 1~ 1 



By using the definition with n=l, 2, and 3, the first three 

cumulants are the following: 

kl(~'Mi~) tr(MiV) - ~'Mi~' 

k2(~'Mi~) = 2tr(M.V) 2 + 4~'Mi(VMi)~, and 
l. 

k (x'M.x) 3 2 = Btr(M.V) + 24u 'M. (VM.) u . 3 ~ l.~ l. ~ l. l. ~ 

Thus, the first three central moments, pil' pi2 ' and pi3 are 

found to be the following: 

pil kl(~'Mi~), 

Pi2 = k2 (~'Mi~9 + [k1 (~'M~9] 2 , and 

pi3 = k3 (~'Mi~) + 3[k1 (~'Mi~)J [k2 (?5'Mi~)J 

+ [kl (~'Mi~)J 3 • 

The Approximate Distribution of Q. 
l. 
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(3-15) 

(3-16) 

(3-17) 

Having derived the first three central moments of Q., and of the 
l. 

noncentral gamma distribution, the following three equations are formed 

(by equating moments, first to first, second to second, and third to 

third). 

pil = b(a +A), (3-18) 

pi2 = b2(a2 +a+ 2aA + 2A + A. 2), and (3-19) 

pi3 = b3 (a3 + 3a2 + 2a + 3a2A + 9aA 

+ 6A + 3aA.2 + 6A.2 + A. 3) . (3-20) 
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If values of a, b, and A are found by using a particular 

quadratic form Qi so that respective moments are equal (first to first, 

second to second, and third to third ) , then the approximate dis-

tribution of Q. is said to be noncentral gamma with parameters 
1 

a, b, and A. 

If the distribution of Q. is a central A2 , a solution is easily 
1 

found by letting A = 0, and solving for a then b using 3-18 and 3-19; 

the solution is the same as one derived by the method of Greenhouse 

and Geisser (1958). This suggests the following method of solution, in 

which, a is expressed as a function of A, and b as a function of a 

and A. 

To express b as a function of a and A, equation 3-18 is solved 

for b giving 

b pil I (a + A). (3-21) 

To express a as a function of A, b is first substituted in 

3-19, giving 

2 2 2 2 2 
a +a+ 2aA + 2A +A = pi2 I pil (a + 2aA +A ). 

Since the equation is quadratic in terms of a, the quadratic formula 

gives the following: 

a = ___ -_1 __ ---,;-- _A ± V:y_:::::_l_-__;4_A~(lr:---p..=;i:.=l_/ p-'i::.::2=-::2..!...)_ 
2 2 

2 (1 - pi2lpil ) 2 (1 - pl2lpil ) 
(3-22) 

If the positive sign is used for "small" A, a will be negative, but a 

can not be negative in the noncentra1 gamma distribution. Therefore, 



a is found by using the negative sign in 3-22. 

For any A, a value of a can be found (3-22), a value of b can be 

found (3-21), and a value of q = m '''(t=O) can be found (3-14). If w 

pi3 - q = 0, the values a, b, and A satisfy the three equated moment 

equations (3-18, 3-19, and 3-20). Thus, the approximate distribution 

of Q. is noncentral gamma with parameters a, b, and A (assuming a, b, 
1 

and A are positive). 

In all cases in which the approximate distribution of a Qi was 

derived (Appendix B), and A increased from 0 to a "large" number, the 

parameters a, b, and A decreased. 1 1 In other words, if values a , b , 

and q1 were calculated for Al ~ 0, and if values a2 , b2 , and q2 were 
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Thus, the 

solutions (a., b., and A. for Q.) of all cases can be described as one 
1 1 1 1 

of two types. 

If pi3 ~ qi for Ai = 0, the solution was found by letting Ai 0, 

then solving for a. and b. using 3-21 and 3-22. The approximate 
1 1 

distribution of Qi was said to be noncentral gamma with parameters 

a. and b., even though the third moments are not equal. 
1 1 

If pi3 < qi for Ai = O, a solution with ai, bi, and Ai positive 

was always found such that pi3 = qi (by iteration using 3-22, 3-21, and 

3-14). The approximate distribution of Qi was said to be noncentral 

gamma with parameters a., b. and A .. 
1 1 1 

The name noncentral gamma distribution (noncentral gamma density 

function and noncentral gamma moment generating function) is used for 

ease, and is not accurate, but the following transformation leads to an 

approximate distribution of Qi/(bi/2) that does have a true density func-

tion. Let 



f = 2a, g = b/2, and u = w/g. 

By substituting these in 3-9, the density function of the variable 

u, f(u), is given by 

f(u) 
-A. .00 

= e ~ 
i=O 

f u -+i-1--
i 2 2 A. u e du, 

~+ irr.kr.J 
i! 2L [2 

0 s; u < 00 • 

Therefore, w being distributed noncentral gamma has implied that 

w/g is distributed noncentral X2 with f degrees of freedom and non-

centrality parameter A.. A summary is ~iven by the following theorem. 

Theorem 3-1: If a quadratic form Q. has values a.=f./2, bi=2gi, 
1 1 1 
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and A.. as solutions of the three equated moment equations (3-18, 3-19, 
1 

and 3-20), then the approximate distribution of Qi/gi is like a quantity 

distributed x2 with f. degrees of freedom and noncentrality parameter 
1 

A.., expressed by the following: 
1 

The Approximate Distribution of Q3 

The derivation of the approximate distribution of the ratio MRSA, 

and of the ratio MRSAB' will be simplified by showing first that 

u'M 
~ 3 = ~ (Q3 = x'M x). 

-- ~ 3~ 

u'M becomea 
~ 3 

Recalling the definition of M3 (Table III), 

~'M3 = ~'[((E a s) a r) - (1/s) ((s a E) a r)]. 

Note that u'M = 0, if for any value of i (i=l, 2, ..• , r) 
~ 3 



that is, u'M = 
~ 3 

(u~l 
~1 

.... , 

u' (E & s)- u 1 (1/s)(s & E)= 0; 
~i ~i 

0, if for any i 

s s 
E,u~ 2 E, ... ,u~ E)-(1/s)(l::u~.E, 2:u!.E, 

~1 ~1S j=l~1] j=l~1J 

s 
2: u .'. E) = 0 

j=l~1J 

Recalling the model (3-1), since 

does not depend on j, 

Therefore, ~'M3 0. 

u!. E 
~1] 

s 
(1/ s) . 2:1u! . E. 

]= ~1] 

The implication is that: Since each moment (p31 , p32 , and p33 
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given respectively by 3-18, 3-19, and 3-20) does not depend on u, neither 

does the approximate distribution of Q3 . Thus, the approximated dis

tribution can be derived by ·letting A. = 0, then solving, simulataneously, 

for a 3 and b3 in 3-21 and 3-22. The error that occurs by using the 

approximation, which is measured by p33 - q3 , is the same as that made 

by approximating the distribution under the null model (using the method 

derived by Greenhouse and Geisser, 1958). This is stated in more precise 

form by the following theorem, where f 3 = 2a3 and g3 = b3/2. 

Theorem 3-2: If the vector x having expectation u is distributed 

in a multi-variate normal distribution with p by p variance matrix V, 

then the approximate distribution of Q3/g3 is like a X2 (f3) where 



UJ f 3 = -and g3 p 2 
2: :\. 

i=l 1 

p 2 

i~lAi 
p 
2: A.i 

i=l 

and where Ai is one of the p characteristic roots of VM3 . The error 

made in the approximation is measured by 

p 3 
8 2: A.. 
i=l 1 p 

2: A.. 
i=l 1 

Note: With some notation changes, the theorem is true for the 

approximated distribution of Q1 , and of Q2 , under the null hypothesis 

of u 0. 

The Approximate Distributions of MSRA and MSRAB 

Letting Q,/g. ~ x2 (f. ,A..), for i=l, 2, 3 (A. 3=0), a more general 
1 1 1 1 

definition of the ratio MSRA' and of the ratio MSRAB, is given by 

glQl/fl ' 

g3Q/f3 
and MSRAB 

With the rst by rst variance matrix V = ((~ ~ s) ~ r), the 

following is derived (Greenhouse and Geisser, 1958): 

0 and M2VM3 0 . 
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Thus, Q1 is independent of Q3 , and Q2 is independent of Q3 . 

Therefore, the approximate distribution of MSRA is said to be F 

with f 1 and f 3 degrees of freedom and noncentrality parameter A1 , 

and the approximate distribution of MSRAB is said to be F with f 2 and 

f 3 degrees of freedom and noncentrality parameter A2 . This will be 

A A denoted by MSRA ~ F(f1 , f 3 , A1), and MSRAB- F(f2 , f 3 , A2) . 

Because the distributions of the ratios are approximated, an 

alternative method of approximating the distributions is derived in 

Chapter IV, and the two methods compared in Appendix B. 
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CHAPTER IV 

MONTE CARLO STUDY 

Generating the Observations 

If under given assumptions, m = rst x .. k's are obtained by a 
l.J 

28 

random number generator, the statistics given by Table II (in particular, 

MSRA and MSRAB) are calculated, and if this process is repeated a 

"large" number of times, then the empirical distribution of each statis-

tic can be obtained. This procedure is used by the Monte Carlo study. 

The generation of them empiri~al x .. k's and the derivation of the 
l.J 

statistics (given by Table II) is called a cycle; a "large" number of 

cycles, a case; and several cases that have a common characteristic 

(for example, all cases might have the same variance matrix t>, a study. 

For any cycle, the m-variate vector, x (a vector corresponding 

to actual split-plot-in-time or repeated measures data), is formed 

from n = rs vectors, x .. 's, where each is generated using the follow
-l.J 

ing (the vectors are defined by 2-3, 3-1, and 3-4): 

x .. = u .. + e .. 
-l.J -l.J -l.J 

(4-1) 

Each fixed effects vector, u .. , is constructed by combining values 
-l.J 

of ak and (6a)ik using 3-~: that is 



where 

t 
= 0, and I(Ba) 'k = 0. 

k l. 
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Thus, for each cycle--and for each case of a study--fixed effects added 

to the model are described by the sum of fixed effects squared: that 

is, by 

t 2 
= rs l:a k , and 0BA 

k=l 

r t 

sl: I (Ba)ik2 
i k 

Each error vector, e .. , is generated using the computer program 
~l.J 

(4-2) 

written by Gates (1973) that generated random numbers, E .. k's, having 
l.J 

mean zero and distributed as a normal distribution with variance one 

(the program is given in Appendix C). Any t of these (the next t ran-

dam numbers given by the program) are used to form the random number 

vector, E .. , given by 
~l.J 

E! . l.] (E. '1' Ei'2' • • •' E. 't) l.J J l.J 
(4-3) 

The e .. vector having mean zero and distributed as a multinormal dis
~l.J 

tribution with t by t variance matrix ~ results from the transformation 

e .. = C'E .. 
~l.J ~l.J 

(4-4) 

where C is the t by t matrix such that C'C = ~' C' being the transpose 

of the matrix C. Thus, by adding each of then e .. 's to the respective 
~l.J 

u .. (for i=l, 2, , r, and j=l, 2, ... , s) giving each of then 
~l.J 

x .. 's, them-variate vector xis generated (using 2-2 and 2-3). 
~l.J 

For each x generated (for each cycle) the sum of squares 



(SSA' SSAB' and SSError(w)) and the ratios, RA and RAB' given by 

are output. 

ss 
A 

ss Error(w) 

ss 
AB 

ss Error(w) 

Let MSx = SSx I fxgx denote MSA' MSAB' or MSError(w). Assuming 

MS is distributed like a x2 (f ,A ) such that X X X 

the estimate p of p is derived by finding the relative frequency of 

Ss ' h d f x2 f ' x s t at excee xgx l-p, x' Ax · Let MSR = (f3g3 I f g )R X X X X 

30 

(4-5) 

(4-6) 

denote MSRA or MSRAB" Assuming MS~ is distributed like a F(fx, f 3 , Ax) 

such that 

PrlMSR > F1 f >.xl= p, x . -p, x' f3' 
(4-7) 

the estimate p of p is derived by finding the realtive frequency of 

R 's that exceed (f g I f 3g3)F1 ' · 
X X X -p, fX, f3' AX 

Validation of the Honte Carlo Procedure 

Several examples are given representing initial studies of the 

Monte Carlo procedure used to approximate distributions (to approximate 

the power using MSRA or MSRAB). 

Example 1: One thousand random 3-variate s .. vectors (4-3) are 
-lJ 

generated using the random normal program (the program written by Gates 

given in Appendix C). Thus, the values of u .. (3-3).and t1 are given by 
-l_l 



31 

The estimated means are given by 
A the estimated variances u .. ; 
~1] 

A 

and covariances, by *l' where 

[ 0.0027] [1.0123 0.0695 o. 0210 l 
A 0.0311 , and i1 = 0.0695 1. 2095 0.0168 0 u .. 
~1] 

0.0532 0.0210 0.0168 1.0532 

Thus, the random number generator estimates the means and variances 

"reasonably well"· and the s 's are "reasonably independent". 
' ijk 

Example 2: This example is typical of the power study discussed in 

Chapter v.· In the model for this example, r=7, s=4, t=3, u (3-i) is 

equal to zero, and E2 = There are 400 cycles. 

Table IV gives estimates of p (4-6) using mean squares for 

p = 0.01, 0.05, 0.50, 0.95, and 0.99; Table V gives estimates of p (4-7) 

using mean square ratios for p = 0.01, 0.05, 0.95, and 0.99. Each 

Table shows that the estimate p of p is "reasonably accurate". The 

"close agreement" between p and p implies that the random number genera-

tor is generating random numbers that satisfy the assumptions of the 

model. 

Example 3: With variance matrix t 3 = 10i 1 , the model assumes the 

following fixed effects: 

a1 = 0.95, a 2 = 0.00, and a 3 = -0.95 

-1.77, and 

(Sa)ij = 0.00 for any other i and j. 
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TABLE IV 
A 

THE P ESTIMATE OF P USING MEAN SQUARES WHERE 

Pr{Ms > X2 }= p 
X 1-p f , X 

p A 

For MSA A 

For MSAB 
A 

For MSE ( ) p p p rror w 

0.01 0.003 0.013 0.015 

0.05 0.045 0.063 0.005 

0.50 0.490 0.558 0.495 

0.95 0.965 0.965 0.948 

0.99 0.998 0.985 0.990 



TABLE V 

THE P ESTIMATE OF P USING MEAN SQUARE RATIOS WHERE 

Pr{Ms~ > F1_ f f } =- p 
P' x' 3 

p For MSRA A 

For MSRAB p p 

Example 2 

0.01 0.013 0.015 

0.05 0.070 0.070 

0.95 0.960 0.963 

0.99 0.995 0.990 

Example 3 

0.01 0.007 0.006 

0.05 0.051 0.041 
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Thus, MSRA is distributed like a F(2, 42, A= 2.53); and MSRAB' 

like a F(l2, 42, A= 2.51). Table V gives estimates of p using 1000 

cycles (1000 MSRA and MSRAB are calculated) for p = 0.01 and 0.05. The 

outcome and conclusion are similar to that of example 2. 

In summary, all examples show that the Monte Carlo procedure gives 

"reasonably close" estimates; in particular, example 3 implies that 

estimating p using 1000 mean square ratios gives a "good estimate". 

This is the number of cycles used for the empirical power study in 

Chapter V. 
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CHAPTER V 

RESULTS FROM COMPARING POWERS 

Comparing Theoretical and Empirical Powers 

Under given conditions (given vector u and matrix t), the 

approximate distributions of the ratio MSRA and of the ratio MSRAB 

have been derived by algebra (Chapter III) as well as by using artifi-

cially generated ratios (Chapter IV). If the two approximated dis-

tributions are similar for the same MSRx (MSRA or MSRAB) under the 

same given conditions, then either may be assumed to represent (approxi-

mately) the true distribution. Thus, the theoretical power, derived 

by algebra, is compared to the empirical power, derived from artificial 

observations. 

The theoretical power of MSR is derived in the following way 
X 

(using the model and assumptions given by Chapter III). 

With u = 0 and variance t, suppose the approximate distribution 

MSR o = 
X 

R o 
X 

If the value Fl . r f is such that -a,...xo, 3o 

Pr{MSR o > F1_ f f } =0. , x a, xo, 3o 

(5-1) 

(5-2) 
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then 

l f og o 
X X F 

Pr Rxo > f 1-~, f 3og3o "" xo' 
a. (5-3) 

With u = 0 but with the same variance *· suppose the approximated 

distribution of MSRx, is like a F(fx'' f 3 ,, Ax 1 ) where MS~, is given 

by 

MSR , 
X R ' ' X 

(5-4) 

then, using 5-3 and 5-4, 

(5-5) 

Thus, p' is the theoretical power of MSR at significance level a 
X 

for the given u and *· 
The empirical power of MSR r at significance level a for the given 

X 

u and * is derived by finding the number of MSRx' ratios greater than 

f3,g3,fxogxo 

fx,gx,f3og3o 

divided by the total number of ratios (1000). 

(5-6) 

For each case of four Monte Carlo studies, the theoritical power 

and the empirical power of each ratio (MSRA and MSRAB) at significance 

levels a = 0.01 and 0.05 are given in Appendix B. (The fixed and 

random conditions of each case are given in Appendix A.) Table VI 

gives means and variances of differences of corresponding theoretical 

and empirical pqwers--values in the same row of any table of Appendix B 
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representing the two powers under the same fixed and random conditions-

averaged over cases of each study for each ratio at each significance 

level; Table VI also gives the maximum difference of corresponding 

power for each study; the overall mean and variance using all differ

ences; and the maximum difference of corresponding powers using all 

differences. 

The overall mean is 0.0094; the overall variance, 0.000135; and 

the overall maximum difference, 0.039. Thus, there is considerable 

evidence to support the assumption: The theoretical approximation and 

the empirical approximation to the power using MSRA' or MSRAB' are 

"reasonably" accurate approximations. 

Conclusions From Power Curves 

Testing a null hypothesis using the ratio MSRA or the ratio MSRAB 

is equivalent to the respective €-adjusted test given by 1-3 and 1-4. 

That is, in terms of power curves, the power curve of MSRA is the power 

curve of the £-adjusted test for the subunit A effect; and the power 

of MSRAB is the power curve of the €-adjusted test for the A by B 

interaction. Hence, comparisons can be made using power curves. 

In particular, if the €-adjusted test more closely approximates 

the true power than does either the usual test (1-1 and 1-2) or the 

conservative test (page 5), then the power curve of this test more 

closely approximates the true power curve than does either power curve 

of the other tests. 

Therefore, for each ratio (MSRA and MSRAB), for each Monte Carlo 

study (I, II, III, and IV), and for each significance level (0.01 and 

0.05), power curves are plotted against the values of f/JA and f/JAB' or the 



Study p=.Ol 

Mean 

1 .U0450 

2 .01625 

3 .00050 

4 .01683 

All four studies 

.00891 

Overall Average 

TABLE VI 

MEANS AND VARIANCES FOR THE DIFFERENCES OF THEORETICAL 
AND EMPIRICAL POWER VALUES 

l-1SRA MSRA MSRAB 

p=.Ol p=.05 p=.05 p=.Ol p=.Ol p=.05 

Variance Mean Variance Mean Variance Mean 

.0001543 -.00018 .0000414 .01100 .0001576 .00770 

.0000029 .01025 .0000029 .00925 .0000063 .01300 

.0002555 .00567 .0000267 .00317 .0000714 .00533 

.0001714 . 01367 .0001151 .01700 .0061548 .02050 

.0001928 .00709 .0000740 .01018 .0001200 .01150 

Mean Variance 

.009422 .000135 

MSRAB 

p=.05 

Variance 

.0001615 

.0000553 

.0001263 

.0001987 

.0001624 

Maximum 
Difference 

.025 

.023 

.031 

.039 

.039 

.039 

Vol 
00 



value of the determinant of ~ (in Study 2, fixed effects are held 

constant as increasing values of ltl are used for the cases). 
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Four power curves are plotted on each x,y axis. The first is the 

power curves are plotted on each x,y axis. The first is the power 

curved derived using the theoretical power of MSRA of MSRAB (power 

of the £-adjusted test); the second, the power curve derived using the 

conservative test of Greenhouse and Geiseser (1958); and the third, 

the power curve derived using the usual degrees of freedom. With 

conditions similar to those of the other three derivations, except that 

subunit errors are not correlated, the power curve derived using the 

usual degrees of freedom is the fourth. The power curves of the four 

tests are given on the following pages. 

Three trends are shown by the sixteen graphs. The first shows that 

the power derived using the conservative test is (much) less than the 

corresponding power derived using the £-adjusted test. Thus, testing 

the null hypothesis of no subunit treatment effect using the conserva

tive test causes (considerable) negative bias in the analysis. 

The second trend shows that the power derived using the usual 

degrees of freedom is greater than the corresponding power derived 

using the £-adjusted test. Thus, testing the null hypothesis using 

the usual degrees of freedom causes a positive bias in the analysis. 

The third trend compares the power derived using the £-adjusted 

test to the power derived using the usual degrees of freedom for the no 

correlation condition. The two powers are "close" together for the 

same x value in all sixteen graphs implying that the power of the 

£-adjusted test, where there is correlation, is of the same magnitude 

as the power of the usual test, where there is no correlation. 
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In summary, if there is correlation among subunit error terms~ then 

ignoring this correlation or using the conservative test of Greenhouse 

and Geisser results in a significant error in stating the significance 

level of the test of the null hypothesis of no subunit treatment effect. 

Moreover, the F test is positively biased when correlation is ignored; 

negatively biased when the conservative test is used; but "closely" 

unbiased when the E-adjusted test of Greenhouse and Geisser is used. 

The estimate ~ of E introduces an additional error in the analysis 

suggesting a further research topic of investigating the properties 

of ~; but it is obvious that the power derived using the E-adjusted 

test is between the power derived using the usual degrees of freedom 

and the power derived using the conservative test, for the same 

conditions. 

Thus, when "strong" correlation is present, a good analysis is 

the E-adjusted analysis. At the least, it will be better than one of 

the other two analyses. 
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Key To Appendix A 

Table VII gives ak values and ¢A; Table VIII, (aS)ik values and 

¢AB; and Figure 9, variance matrices ti's. Each row of either table, 

identified by the "Set Column", represents fixed effects, ak or (aS)ik' 

that were added to the model to form one case of a Monte Carlo study. 

Combining the three, Table IX gives the fixed effects (A Set and 

B Set) and the random effects <t.) for each of twenty-two cases of four 
1 

Monte Carlo studies. 
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TABLE VII 

SUBUNIT A FIXED EFFECTS 

Set A Effect ¢A 

r=7, s=4, and t=3 

a.l 0.2 0.3 

Al 0.00 0.00 0.00 0.00 

A2 0.95 o.ou -0.95 50.54 

A3 1. 34 0.00 -1.34 100.55 

A4 1.64 0.00 -1.64 150.60 

AS 1.89 0.00 -1.89 200.04 

A6 2.11 0.00 -2.11 249.30 

r=5, s=4, and t=4 

a.l 0.2 0.3 0.4 

A7 0.00 0.00 0.00 0.00 0.00 

A8 1.12 0.00 0.00 -1.12 50.18 

A9 1.58 0.00 0.00 -1.58 99.85 

AlO 1. 94 0.00 0.00 -1.94 150.54 

All 2.24 0.00 0.00 -2.24 200.70 

Al2 2.50 0.00 0.00 -2.50 250.00 

t 2 
¢ = rsL:a.k A 

k 
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TABLE VIII 

A BY B INTERACTION FIXED EFFECTS 

Set A by B Effect </JAB 

r=7, s=4, and t=3 All 
Other 

(aS\1 (aS) 71 (aS)13 (aS)73 (aS)ik 

ABl 0.00 0.00 0.00 0.00 0.00 0.00 

AB2 1.77 -1.77 -1.77 1.77 0.00 50.00 

AB3 2.50 -2.50 -2.50 2.50 0.00 100.00 

AB4 3.06 -3.06 -3.06 3.06 0.00 149.82 

AB5 3.54 -3.54 -3.54 3.54 0.00 200.51 

AB6 3.95 -3.95 -3.95 3.95 0.00 249.64 

r=5, s=4, and t=4 All 
Other 

(aS) 11 (aS) 51 (aB\4 (aS) 54 (aB)ik 

AB7 0.00 0.00 0.00 o.oo 0.00 0.00 

ABB 1.77 -1.77 -1.77 1.77 0.00 50.13 

AB9 2.50 -2.50 -2.50 2.50 0.00 100.00 

ABlO 3.06 -3.06 -3.06 3.06 0.00 149.82 

ABll 3.54 -3.54 -3.54 3.54 0.00 200.51 

AB12 3.95 -3.95 -3.95 3.95 0.00 249.64 

r t 2 
<P = sl: l: (aS)ik AB 

i k 
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Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE IX 

FIXED AND RANDOM EFFECTS FOR 
THE MONTE CARLO STUDIES 

A AxB 
Set Set 

Study 1 

A1 AB1 

A2 AB2 

A3 AB3 

A4 AB4 

AS ABS 

A6 AB6 

Study 2 

A2 AB2 

A2 AB2 

A2 AB2 

A2 ~2 

55 

Variance 
Matrix 

*1 

~1 

*1 

*1 

*1 

h 

t2 

*3 

~4 

*s 
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TABLE IX (CONTINUED) 

A AxB Variance 
Case Set Set Matrix 

Study 3 

11 Al AB1 *6 

12 A2 AB2 *6 

13 A3 AB3 *6 

14 A4 AB4 *6 

15 A5 AB5 *6 

16 A6 AB6 *6 

Study 4 

17 A7 AB7 ~7 
18 AS AB8 ~7 
19 A9 AB9 ~7 
20 A10 ABlO *7 

21 All AB11 t7 

22 A12 AB12 ~7 



APPENDIX B 

THEORETICAL AND EMPIRICAL 
POWERS 
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Key To Appendix B 

For each ratio MSRx (MSRA or MSRAB) at each significance level 

(0.01 and 0.05), the following tables (X, XI, XII, XIII) give the 

theoretical power as well as the empricial power for each case of 

four Monte Carlo studies. 

58 

Each row, representing one case, of any table gives the definition, 

the approximate distribution, the theoretical power, and the empirical 

power, for the given ratio and significance level. 

The ratios RA and RAB (which are used in defining MSRA or MSRAB) 

are given respectively by 

SSA I SSError(w) and RAB ss I ss AB Error(w). 



Case Ratio 

1 (9o56)(26o37) R 
(9o56) (1.26) A 

2 (9o56)(26o37) R 
(11.56)(5o42) A 

3 (9o56)(26o37) R 
(11. 74) (9 o 59) A 

4 (9o56) (26.37) 
(llo82)(l3o76)RA 

5 (9o56)(26o37) 
(llo86)(17o88)RA 

6 (9o56) (26o37} 
(11. 89) (21. 98) RA 

1 (9o56)(26o37) R 
(9o56)(1.26) A 

TABLE X 

POWER COMPARISON 
STUDY 1 

Approximate 
Distribution 

MSRA, p=OoOl 

F(l. 26, 26 o 37) 

F(5o42, 26o37) 

F(9o59, 26.37) 

F(l3o 76, 26o37) 

F(l7o88, 26o37) 

F(21.98, 26o37) 

MSRA, p = Oo05 

F(l.26, 26o37) 

Theoretical Empirical 
Power Power 

OoOlO Oo009 

Oo262 Oo241 

Oo665 Oo646 

Oo891 Oo896 

. Oo 974 Oo982 

Oo995 Oo996 

Oo050 Oo041 
\J1 
1.0 



TABLE X (CONTINUED) 

Approximate Theoretical Empirical 
Case Ratio Distribution Power Power 

2 (9.56)(26.37) 
(11.53) (5.42) RA F(5.42, 26.37) 0.588 0.586 

3 
(9. 56) (26. 37) 
(11.74)(9.59) RA F(9.59, 26.37) 0.915 0.926 

4 (9. 56) (26. 37) 
(11. 82)(13. 76) RA F(13. 76, 26.37) 0.989 0.989 

5 (9.56) (26.37) 
(11.86)(17.88)RA F(l7.88, 26.37) 0.999 1.000 

6 (9.56)(26.37) 
(11.89)(21.98)RA F(21.98, 26.37) 1.000 1.000 

MSRAB' p = 0.01 

1 (9. 56) (26. 37) 
(9.56)(7.53) RAB F(7.53, 26.37) 0.010 0.005 

2 (9.56)(26.37) R 
(10.56)(11.57) AB F(l1.57, 26.37) 0.072 0.074 

3 
(9.56) (26.37) 
(10.98)(15.67)RAB F(l5.67, 26.37) 0.215 0.214 

4 (9.56) (26.37) F(l9.79, 26.37) 
0\ 

(11.21)(19.79)RAB 0.414 0.404 0 



TABLE X {CONTINUED) 

Approximate Theoretical Empirical 
Case Ratio Distribution Power Power 

5 
(9.56)(26.37) 
(11.35)(24.00)RAB F(24.00, 26.37) 0.617 0.595 

6 
(9.56)(26.37) 
(11.45)(28.08)RAB F(28.09, 26.37) 0. 773 0. 743 

MSRAB, p=0.05 

1 (9.56)(26.37) RAB 
(9.56)(7.53) F(7 .53, 26.37) 0.050 0.043 

2 
(9.56) (26.37) 
(10.56)(11.57)RAB F(ll.57, 26.37) 0.230 0.220 

3 (9 . .56) (26. 37) 
(10. 98) (15. 67) RAB F(l5.67, 26.37) 0.492 0.475 

4 (9.56) (26.37) 
(11.21)(19.79) RAB F(l9.79, 26.37) 0. 723 0.698 

5 (9.56)(26.37) 
(11.35)(24.00) RAB F(24.00, 26.37) 0.873 0.877 

6 (9.56)(26.37) 
(11.45) (28.08) RAB F(28.08, 26.37) 0.949 0.958 

0' 
f-1 



Case Ratio 

7 
(10.00)(42.00) R 
(10.00)(2.00) A 

8 
(8.67) (38. 77) 

RA (9.38)(3.34) 

9 
(8.66)(34.79) 
(10.31)(4.60) RA 

10 
(9.98)(30.56) 
(12.23)(5.20) RA 

2 (9.56)(26.37) R 
(11.53)(5.42) A 

7 (10.00)(42.00) R 
(10.00)(2.00) A 

8 (8.67)(38.77) R 
(9.28)(3.34) A 

TABLE XI 

POWER COMPARISON 
STUDY 2 

Approximate 
Distribution 

MSRA, p = 0.01 

F(2.00, 42.00, A=2.53) 

F(3.34, 38.77, A=l.92) 

F(4.60, 34.79, A=0.85) 

F(5.20, 30.56) 

F(5.42, 26.37) 

MSRA, p = 0.05 

F(2.00, 42.00, A=2.53) 

F(3.34, 38.77, A=l.92) 

Theoretical Empirical 
Power Power 

0.230 0.213 

0.285 0.271 

0.296 0.280 

0.295 0.277 

0.262 0.241 

0.467 0.457 

(J'\ 0.549 0.538 r-..:> 



TABLE XI (CONTINUED) 

Approximate Theoretical Empirical 
Case Ratio Distribution Power Power 

9 (8.66)(34.79) R F(4.60, 34.79, A=0.85) 0.567 0.564 
(10.31)(4.60) A 

10 (8.98)(30.56) R 
(12.23)(5.20) A F(5.20, 30.56) 0.592 0.584 

2 (9.56) (26.37) R 
(11.53) (5.42) A F(5.42, 26.37) 0.588 0.586 

MSRAB, p = 0.01 

7 (10.00)(42.00) R 
(10.00)(12.00) AB 

F(l2.00, 42.00, A=2.51) 0.063 0.051 

8 (8.67) (38. 77) 
(10.12)(12.92)RAB F(l2.92, 38.77, A=0.76) 0.078 0.068 

9 (8.66) (34. 79) 
(10.75)(12.67)RAB F(l2.67, 34.79) 0.080 0.071 

10 (9.98)(20.56) 
(10.58)(12.15)RAB F(l2.15), 20.56) 0.078 0.072 

(9.56) (26.37) 
CJ\ 

2 F(ll.57, 26.37) 0.072 0.074 
w 

(10.56)(11.57)RAB 



Case Ratio 

7 (10.00)(42.00) 
(10.00)(12.00) RAB 

8 (8.67) (38. 77) 
(10.12)(12.92)RAB 

9 (8.66)(34.89) 
(10. 75) (12.67)RAB 

10 (8.98)(30.56) 
(10.58)(12.15)RAB 

2 (9.56) (26.37) 
(10.56)(11.57)RAB 

TABLE XI (CONTINUED) 

Approximate Theoretical 
Distribution Power 

MSRAB' p = 0.05 

F(l2.00, 42.00, A =2.51) 0.196 

F(l2.92, 38.77, A =0. 76) 0.231 

F(l2.67, 34.89) 0.242 

F(l2.15, 30.56) 0.241 

F(ll.57, 26.37) 0.230 

Empirical 
Power 

0.173 

0.217 

0.236 

0.232 

0.220 

0\ 
-1:-



Case Ratio 

11 (10.31)(37.47) R 
(10.31)(1.78) A 

12 (10.31)(37.47) R 
(12.61)(1.86) A 

13 (10. 31)(37. 4 7) R 
(12.50)(1.86) A 

14 (10.31)(37.47) R 
(12.47)(1.86) A 

15 (10.31)(37.47) R 
(12.45)(1.86) A 

16 (10.31)(37.47) R 
(12.44)(1.86) A 

TABLE XII 

POWER COMPARISON 
STUDY 3 

Approximate 
Distribution 

MSRA, p = 0.01 

F(1.78, 37.47) 

F(1.86, 37.47,A=l.80) 

F(1.86, 37.47, A =3.83) 

F(1.86, 37.47,A=5.85) 

F(1.86, 37.47,A=7.84) 

F(1.86, 37.47, A=9.83) 

MSRA, p = 0.05 

Theoretical Empirical 
Power Power 

0.010 0.007 

0.236 0.226 

0.527 0.558 

0.758 0.752 

0.893 0.880 

0.958 0.956 

0\ 
V1 



TABLE XII (CONTINUED) 

Approximate Theoretical Empirical 
Case Ratio Distribution Power Power 

11 
(10.31)(37.47) R 
(10.31)(1.78) A F(l. 78, 37 .47) 0.050 0.042 

. 12 (10.31)(37.47) R 
(12.61)(1.86) A F(l.86, 37.47, A=l.80) 0.458 0.460 

13 (10.31)(37.47) R 
(12.50)(1.86) A F(l.86, 37.47, A=3.83) 0.768 0.757 

14 {10.31}{37.47) R 
(12.47)(1.86) A F(l.86, 37.47, A=5.85) 0.921 0.911 

15 (10.31)(37.47) R 
(12.45)(1.86) A F(l.86, 37.47, A=7.84) 0.977 0.976 

16 (10.31)(37.47) R 
(12.44)(1.86) A F(l.86, 37.47, A=9.83) 0.994 0.988 

MSRAB' p = 0.01 

11 (10.31)(37.47) R 
(10.31)(10.71) AB F(l0.71, 37.47) 0.010 0.010 

0\ 
0\ 



TABLE XII (CONTINUED) 

·Approximate Theoretical Empirical 
Case Ratio Distribution Power Power 

12 
(10.31) (37 .47) 
(14.83)(10.82) RAB F(l0.82, 37.47} 0.069 0.074 

13 
(10.31) (37 .47) 
(13.19)(11.11) RAB F(ll.ll, 37.47, A=2.42) 0.181 0.187 

14 (10.31) p7.472 
(12.87)(11.13) RAB F(ll.l3i 37.47, A=4.55) 0.325 0.318 

15 (10. 30) (37. 4 7) 
(12.73)(11.15) RAB · F(ll.l5, 37.47, A=6.64) 0.487 0.479 

16 (10.31) ~37.47) 
(12.66)(11.15) RAB F(ll.l5, 37.47, A=8.64) 0.628 0.612 

MSRAB' p = 0.05 

11 (10.31)(37.47_) R 
(10.31)(10.71) AB F(l0.71, 37.47) 0.050 0.056 

12 (10.31)(37.47) 
(14.83)(10.82) RAB F(l0.82, 37.47) 0.205 0.199 

0\ 
-...,J 



TABLE XII (CONTINUED) 

Approximate 
Case Ratio Distribution 

13 
(10.31)(37.47) 
(13.19)(11.11) RAB F(ll.ll, 37.47, A=2.42) 

14 (10.31) (37 .47) 
(12.87)(11.13) RAB F(ll.l3, 37.47, A=4.55) 

15 (10.31)(37.47) 
(12.73)(11.15) RAB F(ll.l5, 37.47, A=6.64) 

16 (10. 31) (37 .47) 
(12.66)(11.15) RAB F(ll.l5, 37.47, A=8.64) 

Theoretical 
Power 

0.400 

0.588 

0.742 

0.847 

Empirical 
Power 

0.397 

0.562 

0.736 

0.850 

0'\ 
00 



Case Ratio 

17 (12. 27) (36. 68) 
(12. 27) (2. 45) 

18 (12.27) (36.68) R 
(17.11){4.69) A 

19 (12.27) (36.68) 
(18.21)(7.13) RA 

20 (12. 27) (36. 68) 
(18.71)(9.65) RA 

21 (12.27) (36.68) R 
(18.99)(12.15) A 

22 (12. 27) (36. 68) 
(19.17)(14.61) RA 

TABLE XIII 

POWER COMPARISON 
STUDY 4 

Approximate 
Distribution 

MSRA, p = 0.01 

F(2.45, 36.68) 

F(4.69, 36.68) 

F(7.13, 36.68) 

F(9.65, 36.68) 

F(l2.15, 36.68) 

F(l4.61, 36.68) 

Theoretical Empirical 
Power Power 

0.010 0.009 

0.144 0.129 

0.382 0.351 

0.631 0.598 

0.812 0.796 

0.915 0.910 

0\ 
\.0 



Table XIII (CONTINUED) 

Approximate Theoretical Empirical 
Case Ratio Distribution Power Power 

MSRA' p = 0.05 

17 (12.27) (36.68) R 
(12.27)(2.45) A F(2.45, 36.68) 0.050 0.039 

18 {12.272{36.682 R 
(12.27)(4.69) A F(4.69, 36.68) 0.355 0.322 

19 (12.27) (36.68) R 
(18.21)(7.13) A F (7 • 13, 36. 68) 0.669 0.651 

20 (12.27) (36.68) R 
(18.71)(9.65) A F(9.65, 36.68) 0.869 0.858 

21 (12.27) (36.68) R 
(18.99)(12.15) A F(l2.15, 36.68) 0.957 0.952 

22 (12.27) (36.68) 
(19.17)(14.61) RA F(14.61, 36.68) 0.987 0.983 

MSRAB' p = 0.01 

-...! 
0 



TABLE XIII (CONTINUED) 



Case Ratio 

18 (12. 27) (36. 68) 
(14.55)(11.70) RAB 

19 (12.27)(36.68) R 
(15.78)(13.94) AB 

20 (12.27) (36.68) 
(16.56)(16.29) RAB 

21 (12.27) (36.68) 
(17.10)(18.74) RAB 

22 (12.27) (36.68) 
(17.49)(21.14) RAB 

I. 

TABLE XIII (CONTINUED) 

Approximate Theoretical 
Distribution Power 

F(ll. 70, 36.68) 0.174 

F(13.94, 36.68) 0.351 

F(.6.29, 36.68) 0.537 

F(l8.74, 36.68) 0. 702 

F(21.14, 36.68) 0.821 

Empirical 
Power 

0.161 

0.312 

0.505 

0.687 

0.797 

-....J 
N 



APPENDIX C 

RANDOM NUMBER PROGRAM 

73 



74 

Subroutine Butler 

In the Monte Carlo studies, random numbers distributed normal with 

mean zero and variance one were generated by the following computer 

program, written by C. E. Gates (1973). The program, called Subroutine 

Butler, is described, somewhat, by comment cards (cards that have· a C 

in the first column); but not given by the program are the initial 

values of IX and JX that were used for each case of each study, 

which are 

IX Z7FFFFDC3 and JX Z7DBD1115. 



CARD 
0001 
0002 c 
0003 c 
0004 c 
0005 c 
0006 c 
0007 c 
0008 c 
0009 c 
0010 c 
0011 
0012 
0013 
0014 
001~ 
0016 
001"1 
OOlH 
0019 
0021) 
0021 
0022 
0023 
002/o c 
0025 c 
0026 c 
0027 
0028 
0029 
0030 
0031 (. 
0032 c 
0033 c 
0034 
0035 
0036 
0037 
0038 c 
003<) c 
0040 c 
0041 
0042 
0043 
0044 
OJ45 
0046 c 
0047 c 
004/J c 
0049 
0050 c 
0051 (. 
0052 c 
0053 
0054 
0055 
0056 
0057 c 
0058 l. 
OO'i9 C 
0060 
()J(> 1 
cor,~ 

JO<>J 
0':}i)4 

Oll65 C 
0066 L 
UiJ0 7 
006El c 
0069 
\)0{0 

ant 
c 

SllfW<J•JT IIIIE i"Jii ',( II, RANDt IX, JX, IIIENill 

L I~ lHE INDEX FO~ THE l TH RANDOM VARIABLE GENERATED 
UND IS TH~ •<ANDON VARIABLic vENERATED, IDISlRIRUTED NORMAL(;),!) 

CUMPUTOk P~OGMAM WRITTEN BY C. E. GATES, ESU. 2/6/73 
FOI( GOJEKATINl, RANDOM VARIABLES FROM THE NORMAL DISTRIBUTION 

IMPLICIT KEAL*B IA-H,O-Zl 
REAL*4 C 
DIMENSION Cl6l,XI2571,U(3J,RI256l 
OATA C/2. 51551 r,.tl02ti53, .010328.1.~3Z79,.1u9269,.001308/ 
IF (L.GT.NENUI GO TO 70 
CtlNST = OSQRT (L.OD0/12.000 * 3.14159DOII 
XI ll = -3.6 
X 1257) = 3.b 
FlllD = 0.0 
RAT " 1./2~b. 
RAND= Ll.O 
DO 10 I: 1,;>5<; 
RAND = RAND + RAT 

C.O.F. VALUE IS 1/25o 

IFII.GT.1281 GO TO 12 
T • DSQRTI-2 .000 "'llLOGIRAiiDII 
:;o ro 14 

12 T " DSQRTI-2. 000 * 0 LOGI ,.000 - RANOll 

Z VALUE IS TH!: VALUE AlONG THE X-AXIS , I.E. X 

14 Z = T- ICill + Cl2t*T + q3l*T**2l/11. + Cl4l*T + C(51H**2 • 

20 
10 

$ CC.t>l*T**3l 
IF II.LT.12'll Z = -l 
XCI +11 = l 

FNi;W IS THE CUHRENT VALJE OF FIX); Rill IS f:IUTURoS RCll 

FNEW CONSf *DE XP I -l**2 /2.000) 
Rill IFNEW-FOLOl/(fNEW +,.FOLOl 
FOlO ~NFW 

FNEW O.D 
R(256l = IFNEW-FJLDI/lFNEW .+ FOL U l 

HERE WE STA~T TU 00 THE SAMPLING PHASE 

70 CONTINUE 

SELECT THE I fll INTERIIAL WITH PROili\8ILIT1 1/256 

IX = IX *65519 
JX = JX * 262147 
R ANO = .'o65t>6 130-9 * DFL OAT I lABS( IX + JX II 
t :c 236.--:RAr-Jn + 1.0 

WE GENERATE Till TrlREt RANDOM UNIFORMS J';EEOEO 

DO 32 K = 1, J 
JX ," JX ''262147 
IX":"! IX *65~J4 

32 Ull<.l = .46'>66l.>ll-9•> ,JflOATI I.~BSll X + JXJI 
Z = 1((1 + l I -XIII 

Ul31 IS USED- TU DETf:RMINE WHETHER liE SAHPLI: WITH PRUBABILITY 
A tiS L', lll I 0 R 1 - A t!S I R CI II 

I 1- ( U I 3 l • LT • ilA 13 S I K ( ll l l GO TO 3 4 
R MJ fJ = X I I l + Z *U ( ll 
GO Ttl Jb 

•l.J 12 
OtH.l 
i!07 1t 

(\07 l) 

ll076 
0~77 
I)<J7H 
tlJ79 
(J<Jdll 
•hld 1 
J0!12 
POdJ 
C)\.J84 

0085 

C WE L'LIH~~I'IE THE MAX. I'K M~N· OF !H II UPENDING OF WHETHER 
C Rill .LT. Lli<.GT. 0 
c 

31t IF Utili. LT .o.OI Gll ro ?0 
RAND = DI·IAXl I Ulll ,lJ( ?I l 
GO TO 52 

50 RAND= DMINliUI!J,UUil 
52 RAND =XIII • Z*RANO 
3& CONTINUE 

RETURN 
END 

$EIIIOLIST 
II 
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