By
PANTHEP LAOHACHAI
Bachelor of Engineering Chulalongkorn University Bangkok, Thailand 1971
Master of Engineering in Electrical Engineering Chulalongkorn University Bangkok, Thailand 1973

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of
the requirements for the Degree of
DOCTOR OF PHILOSOPHY
December, 1977

Thesis
1977D
$L 29855$
Cop. 2

SUBOPTIMAL CONTROL OF INTERCONNECTED POWER SYSTEMS

Thesis Approved:

ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude to his major adviser, Dr. Daniel D. Lingelbach, for his guidance and assistance throughout the study. Deep appreciation is also expressed to Dr. Charles M. Bacon, Dr. Ramachandra G. Ramakumar, Dr. John P. Chandler, Dr. Craig S. Sims, and Dr. Ronald P. Rhoten for their constructive criticism and their willingness to be helpful.

The financial support from Kasetsart University under the supervision of the Royal Thai Embassy has made this research possible and is sincerely appreciated.

Thanks are given to Ms. Charlene Fries for her help in preparing and typing the manuscript.

Finally, special gratitude is expressed to his parents, brothers, sisters, and fiancee for their understanding, encouragement, and sacrifices.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
1.1 Statement of the Problem 1
1.2 Literature Review 3
1.3 Research Objective 8
II. OPTIMAL LIMITED STATE VARIABLE FEEDBACK CONTROL OF LINEAR STOCHASTIC SYSTEMS 10
2.1 Introduction 10
2.2 Optimization Problem Formulation 11
2.3 Statement of the Problem 13
2.4 Necessary Conditions for Optimality 14
2.5 Properties of Matrices at the Extremum Condition 15
III. SUBOPTIMAL CONTROL OF INTERCONNECTED SYSTEMS 18
3.1 Introduction 18
3.2 Interconnected System 20
3.3 Necessary Conditions for Optimality in Subsystem Forms 25
3.4 Derivation of the Results 26
3.5 Computational Algorithm 34
3.6 Conclusion 41
IV. LOAD FREQUENCY CONTROL OF MULTIAREA POWER SYSTEMS 43
4.1 Introduction 43
4.2 System Modeling 44
4.3 Control of Two-Area System 53
4.4 Two-Area Control System Example 55
4.5 Conclusion 63
V. CONTROL OF INTERCONNECTED SYNCHRONOUS MACHINES 83
5.1 Introduction 83
5.2 Interconnected Synchronous Machine Mode1 84
5.3 Interconnected System Example 98
5.4 Conc1usion 103
Chapter Page
VI. SUMMARY AND CONCLUSIONS 118
6.1 Summary 118
6.2 Conclusions 120
BI BL IOGRAPHY 122
APPENDIX A - PROGRAM TO EVALUATE THE MATRICES IN THE SERIES OF THE SUBOPTIMAL FEEDBACK GAIN MATRIX USING THE ITERATIVE ALGORITHM 128
APPENDIX B - PROGRAM TO EVALUATE THE MATRICES IN THE
SERIES OF THE SUBOPTIMAL FEEDBACK GAIN MATRIX USING THE MINIMIZATION ALGORITHM 133
APPENDIX C - PROGRAM TO EVALUATE THE PLANT MATRIX "A" OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM 139
APPENDIX D - SUBROUTINES USED IN COMMON BY OTHER PROGRAMS 143

LIST OF TABLES

Table
Page
I. Matrices A, B, and E of the Two-Area Load
Frequency Control System 56
II. Data of the Two-Area Load Frequency Control
System • 59
III. Stochastic Noise Intensity Matrix 60
IV. Nomenclature of Case Studies 65
V. Nomenclature of Feedback Gain Matrices 65
VI. Feedback Gain Matrices of the Load Frequency
Control System, Case Study D4 66
VII. Computer Burden of Feedback Gain Matrix Calculation of the Load Frequency Control System, Case Study D467

VIII. Performance Indices of the Load Frequency
Control System, Case Study D4 68
IX. Eigenvalues of the Closed-Loop System, ($\mathrm{A}+\mathrm{BKC}$), of the Load Frequency Control System, Case Study D468

X. Feedback Gain Matrices of the Load Frequency
Control System, Case Study D6 69
XI. Computer Burden of Feedback Gain Calculation of the Load Frequency Control System, Case Study D670

XII. Performance Indices of the Load Frequency
Control System, Case Study D6 71

XIII. Eigenvalues of the Closed-Loop System,
($\mathrm{A}+\mathrm{BKC}$), of the Load Frequency Control
System, Case Study D6 71
XIV. Feedback Gain Matrices of the Load Frequency Control System, Case Study D8 72
XV. Computer Burden of Feedback Gain Calculation of the Load Frequency Control System, Case Study D8

XVI. Performance Indices of the Load Frequency
Control System, Case Study D8 74
XVII. Eigenvalues of the Closed-Loop System, ($A+B K C$), of the Load Frequency Control System, Case Study D8 74
XVIII. Feedback Gain Matrices of the Load Frequency Control System, Case Study S4 75
XIX. Computer Burden of Feedback Gain Calculation of the Load Frequency Control System, Case Study S4. 76
XX. Performance Indices of the Load Frequency Control System, Case Study S4 77
XXI. Eigenvalues of the Closed-Loop System, ($\mathrm{A}+\mathrm{BKC}$), of the Load Frequency Control System, Case Study S4 77
XXII. Feedback Gain Matrices of the Load Frequency Control System, Case Study S6 78
XXIII. Computer Burden of Feedback Gain Calculation of the Load Frequency Control System, Case Study S6 79
XXIV. Performance Indices of the Load Frequency Control System, Case Study S6 80
XXV. Eigenvalues of the Closed-Loop System, ($\mathrm{A}+\mathrm{BKC}$), of the Load Frequency Control System, Case Study S6 80
XXVI. Performance Indices of the Load Frequency Control System, Case Study S8 81
XXVII. Comparisons of Performance Indices of the Load Frequency Control System 82
XXVIII. Constant Matrices in the Synchronous Machine Control System 94
Tab1e Page
XXIX. Synchronous Machines' Constants 99
XXX. Network Data 100
XXXI. Plant Matrix A of the Example System 101
XXXII. Feedback Gain Matrices of the Synchronous Machine Control System, Case Study D8 105
XXXIII. Computer Burden of Feedback Gain Calculation of the Synchronous Machine Control System, Case Study D8 106
XXXIV. Performance Indices of the Synchronous Machine Control System, Case Study D8 107
XXXV. Eigenvalues of the Closed-Loop System, (A+BKC), of the Synchronous Machine Control System, Case Study D8 107
XXXVI. Feedback Gain Matrices of the Synchronous Machine Control System, Case Study D6 108
XXXVII. Computer Burden of Feedback Gain Calculation of the Synchronous Machine Control System, Case Study D6 109
XXXVIII. Performance Indices of the Synchronous Machine Control System, Case Study D6 110
XXXIX. Eigenvalues of the Closed-Loop System, (A+BKC), of the Synchronous Machine Control System, Case Study D6 110
XL. Feedback Gain Matrices of the Synchronous Machine Control System, Case Study S8 111
XLI. Computer Burden of Feedback Gain Calculation of the Synchronous Machine Control System, Case Study S8 112
XLII. Performance Indices of the Synchronous Machine Control System, Case Study S8 113
XLIII. Eigenvalues of the Closed-Loop System, (A+BKC), of the Synchronous Machine Control System, Case Study S8 113
XLIV. Feedback Gain Matrices of the Synchronous Machine Control System, Case Study S6 114

XLV. Computer Burden of Feedback Gain Calculation of the Synchronous Machine Control System, Case Study S6 115

XLVI. Performance Indices of the Synchronous Machine
Control System, Case Study S6 116
XLVII. Eigenvalues of the Closed-Loop System, $(A+B K C)$, of the Synchronous Machine Control System, Case Study S6 116
XLVIII. Comparisons of Performance Indices of the Synchronous Machine Control System 117

LIST OF FIGURES

Figure Page

1. Block Diagram of Single Area Load Frequency Control System 46
2. Genera1 Model for Speed-Governing System of Steam Turbine Systems 47
3. Linear Models for Steam Turbine Systems 48
4. General Mode1 for Speed-Governing Systems of Hydroturbine Systems 49
5. Approximate Linear Model for Hydroturbines 49
6. Linear Mode1 for Sing1e-Area Load Frequency Control System 54
7. Excitation System 87
8. Transmission Network 91

CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

Nowadays most electric power generating units are tied together to form a large interconnected power system. The primary motivation for interconnection is to obtain the economic benefits of new large-scale generation and transmission facilities. Advantage is taken to transfer power generation over interconnecting tie-lines from an area of low demand to one of high demand. It also enables utilities to share spinning reserves during emergencies so that spinning reserve requirement in each area is reduced. Thus, overall operating economies and high reliability are achieved.

Interconnections, however, increase the degree of complexity of power system operating problems. These problems arise as a consequence of the complexity of the network topology and of dynamic behavior of the system when subject to disturbances occurring not only internally but also elsewhere in other systems in the interconnections. In order to cope with this problem, control of power system dynamics has become the focus of considerable interest.

Power system control can be divided into two separate problems, namely synchronous machine control and load frequency control. Both of them can be viewed as dynamic control systems in which control is required to damp out system oscillations or swings. Feedback signals of some or all variables are usually used as input to the system controller. The difference between them is that synchronous machine control deals with interactions between one or a few generating units with the rest of the system considered as an infinite bus while load frequency control deals with all of the generating units within the system with equal attention. Since there is a large number of generating units within a system, and the main variables of interest are load demand and energy supply, it is general practice to eliminate electrical dynamics from load frequency control system.

The applications of modern control theory to stabilize power system dynamics for both synchronous machine control and load frequency control problems were proposed in 1970. The technique yielded good damping results. However, if all state variables are not available to be fed back and if the dimension of the system is increased, the computer time and memory for optimal gain calculation will be increased significantly. It is corresponding1y important to investigate a new approach to the solution of optimal control of the systems such that it can be applied to large interconnected power systems.

1.2 Literature Review

In this section a review of works in both synchronous machine control and load frequency control are presented. The development of load frequency control is described in the first part. The development of synchronous machine control is described in the second part. Since the conventional control techniques for the load frequency problem is well established and has been used widely for many years, only a general discussion of the technique is presented. More reviews are given to those studies dealing with modern control theory.

1.2.1 Load Frequency Control of

Power Systems

The conventional approach to load frequency control of power systems is called tie-line bias control. The comprehensive presentation of the control design can be found in Reference [12]. In this approach the problem is considered as a static one. The design of system control involves steady state quantities. There are three steps to deal with load frequency control. First, total system generation must be matched to total system load. This can be done by speed governor control of the system. The criterion for determining when total demand has been satisfied is an unchanging system frequency. Second, total system generation among the areas is allocated so that each follows its own load chnages and does its share of frequency regulation. This objective is accomplished by net interchange tie-1ine bias control such that
area net interchange is on schedule, i.e., area control error is reduced to zero. Third, each unit should operate at the same incremental cost in order to minimize combined system cost. This is the function of economic dispatch control. Studies of tie-line bias control during dynamic period were carried out by Concordia and Kirchmayer [13] [14].

The control design using optimal control theory was proposed by Elgerd and Fosha [23] [27]. They made use of linear models of the turbine, speed regulator, and power system. Then they derived the optimal feedback gain that minimized the standard integral quadratic objective function via Riccati's equation. The simulation results of system behavior following a disturbance were given. Cavin et al. [11] applied stochastic control theory to the load-frequency control problem. The Kalman filter was used for estimation and the separation theory was used to derive the control law. Miniesy and Bohn [45] considered the demand to be an unknown. Two methods were suggested for demand identification. The first method made use of differential approximation. The second method made use of Luenberger observer. Bohn and Miniesy [7] app1ied sampleddata control to the problem considered earlier [45]. In that paper an adaptive observer was introduced and its effectiveness was illustrated. Glover and Schweppe [30] proposed a discrete time, linear-plus-deadband, feedback control law. A simulation of system response to a step load change was presented. Calovic [9] considered the control based on a combination of conventional and optimal control design. Results of
a digital simulation of the optimal system showed significant improvement of system transients while maintaining the desired steady-state characteristics. His proportional-plus-integral control law extended to multi-area interconnections was presented in Reference [10]. Recent1y, Kwatny et a1. [41] formulated the load frequency control as a tracking problem instead of a regulation one. In their paper the prime mover energy source was recognized as a part of the system dynamic model. The control system included estimation and prediction of loads which were used to regulate power flow and frequencies.

1.2.2 Synchronous Machine Control System

In the early studies of stabilization of synchronous machine dynamics most researchers focused their attention on the so-called excitation control. Ellis et al. [24] made a stability study of the Peace River transmission system and proposed that the stability could be improved by using speed error as an input to the excitation system. Shier and B1ythe [55] confirmed that idea by computer simulation and field tests. They demonstrated that a practical stabilizer can be devised using simple electrical devices. Hanson et a1. [33] studied the oscillation control by reducing gains on automatic voltage regulators. They carried out a series of tests and found that the system obtained was properly damped. deMe11o and Concordia [19] reported analytical results concerning excitation control of power system dynamic stability. The gain parameters of the voltage regulator that stabilized the
system was derived. The transfer function for speed-derived signals was also studied. Byerly et al. [8] studied the use of electrical power as an auxiliary signal input to the excitation system. The paper included the effects of rotor-iron saturation on generator damping. Schleif et al. [54] showed that damping was improved by supplementing excitation control with a derived function of frequency deviation. Results of the studies were verified in actual field tests.

The application of the modern control theory to power systems was proposed by $Y u$ et a1. [58]. They applied the optimal control to minimize an integral quadratic performance index of a power system. All the state variables were assumed to be measurable. The constant feedback gain was obtained by solving the Riccati's equation. Anderson [1] reported a similar approach to a slightly different model. In his paper simplified Park's synchronous machine variables [49] were used. The comparison of the optimal control technique to that of the excitation control was carried out by $Y u$ and Siggers [59]. They found that a well-designed system obtained from an excitation control technique yielded the results which were as good as those obtained from optimal control technique. However, the design procedure of the excitation control technique had to be done in trial-and-error fashion. Davison and Rao [18] considered the problem where not all state variables were available for measurement. They solved this problem by using a gradient method of parameter optimization. Elangovan and Kuppurajulu [21] considered another approach to the
limited state variable feedback problem. They reduced the dimension of the original state vector to the one that had only measurable variables. The technique which retained dominant eigenvalues was applied to the problem. $Y u$ and Moussa [60] made a study of multimachine control system. A reducedorder model was used. They found that a controller obtained from the multimachine system design was better than the one that was obtained from a one-machine infinite-bus system design. Moussa and $Y u$ [46] developed a method to determine the weighting matrix Q such that the dominant eigenvalues were shifted to the left in the complex plane as far as the practical controllers permitted. They applied the eignevalue sensitivity analysis technique to the problem. By this method the weighting matrix Q can be determined analytically. Habibullah and $Y u$ [31] presented a method to determine both weighting matrices Q and R. Their controls were found to be able to stabilize the system under a wide range of operations. Elmetwally et al. [25] presented a method of optimal control in which the system controllable parameters were selected so as to correspond to the region of near zero sensitivity. Elmetwally et al. [26] and Newton and Hogg [47] reported the implementation of the optimal controller to real micromachines. Experimental results showed that the controller worked we11 under small disturbances. Daniels et al. [17] developed a technique to determine a control which is a linear combination of some selected state variables. They used an unconstrained optimization routine to minimize the performance
index with respect to the nonlinear system of differential equations. The synthesized controller was implemented on a micro-machine and the experimental results demonstrated the advantages of the technique. Raina et al. [52] presented a method of optimal control of power systems. Modification to the usual proportional controller was suggested and a good damping response was found under a wide range of operating conditions. Quintana et a1. [51] studied an optimal output feedback control design with a compensator. A number of combinations of measurable output variables were used as input to the controller.

1.3 Research Objective

The objective of this research is to develop a suboptimal control technique for interconnected power systems. In the first part, a fixed configuration control whose controllers are a linear transformation of some certain state variables will be formulated. Attempts will be made to subdivide the interconnected system into subsystems. Necessary conditions for optimality as functions of these subsystems will then be derived. Since the dimensions of the subsystem matrices are less than those of the original interconnected system, it is expected that calculations of optimal gain in subsystem equations will require less computer time and memory than using the original equations. In the second part, applications of the results obtained from the first part to interconnected power systems will be studied. Linear system
models for both multi-area load frequency control systems and interconnected synchronous machine control systems will be formulated. The optimal control and the suboptimal control gains will be calculated and compared.

CHAPTER II

OPTIMAL LIMITED STATE VARIABLE FEEDBACK
CONTROL OF LINEAR STOCHASTIC SYSTEMS

2.1 Introduction

Over the past years considerable contributions were made in the area of optimal limited state variable feedback control systems. Different models were used by different researchers. Levine and Athans [42] reported necessary conditions for a deterministic linear time-invariant control system. The initial condition for the state vector was assumed to be a set of random variables which were uniform1y distributed on the surface of the n-dimensional unit sphere. Sims and Me1sa [56] worked on a linear stochastic system. A filter which was a linear combination of state variables and control variables was used. The dimension of the filter was prespecified. The control was assumed to be a linear transformation of the filter. They found that performance does not depend on the filter dynamics. McLane [43] considered a system in which the plant noise was dependent on both state and control variables. In his study the measurement noise was not presented. Recently, Mendel [44] provided necessary conditions for a linear time-invariant stochastic system. In that paper an infinite final time for the performance index was considered.

Assumptions were made so that the compensation plant matrix could be optimized.

In this study the interconnected power system will be represented by a linear time-invariant model with or without plant noise. Since the results for the deterministic case was given in Reference [42], in this chapter necessary conditions for limited state variable feedback control of a linear time-invariant stochastic system with perfect measurement will be derived. It will be seen that even though the assumptions and the approach used in this derivation are different from those of Reference [42] the results are very similar. Thus, with a minor change the approach given in this chapter is applicable to both the deterministic case and the stochastic case with perfect measurement.

2.2 Optimization Problem Formulation

Consider a first-order system of linear equations.

$$
\begin{align*}
\frac{d x(t)}{d t} & =A x(t)+B u(t)+D w(t) \tag{2.1}\\
y(t) & =C x(t) \tag{2.2}
\end{align*}
$$

where $x(t)$ is a state vector of dimension $n ; u(t)$ is a control vector of dimension $s ; y(t)$ is an output vector of dimension m; and $w(t)$ is a noise vector of dimension ℓ. A, B, C, and D are constant matrices of compatible dimensions. The noise vector is assumed to be white with zero mean and its covariance is:

$$
\begin{equation*}
E\left\{w(t) w^{T}(\tau)\right\}=V \delta(t-\tau) \tag{2.3}
\end{equation*}
$$

where V is a positive definite noise intensity matrix. Mean and covariance of the initial states are:

$$
\begin{array}{r}
E\left\{x\left(t_{0}\right)\right\}=x_{0} \\
E\left\{x\left(t_{0}\right) x^{T}\left(t_{0}\right)\right\}=Q_{0} \tag{2.4b}
\end{array}
$$

The performance index to be minimized is:

$$
\begin{equation*}
J_{o}=E \int_{t_{0}}^{t_{f}}\left\{x^{T}(t) Q x(t)+u^{T}(t) R u(t)\right\} d t \tag{2.5}
\end{equation*}
$$

where Q is a positive semi-definite matrix and R is a positive definite matrix. Let the control, $u(t)$, be constrained to be a linear transformation of the output vector, i.e.,

$$
\begin{equation*}
u(t)=K y(t) \tag{2.6}
\end{equation*}
$$

where K is the constant matrix to be determined. From Equations (2.1), (2.2), (2.5), and (2.6) we have

$$
\begin{align*}
\frac{d x(t)}{d t} & =(A+B K C) x(t)+D w(t) \tag{2.7}\\
J_{0} & =E \int_{t_{0}}^{t_{f}} x^{T}(t)\left[Q+C^{T} K^{T} R K C\right] x(t) d t \tag{2.8}
\end{align*}
$$

From Theorem 1.54 of Reference [39], the Equations (2.7) and (2.8) may be rewritten as:

$$
\begin{equation*}
J_{o}=\operatorname{tr}\left\{P\left(t_{o}\right) Q_{o}+\int_{t_{o}}^{t_{f}} D V D^{T} P(t) d t\right\} \tag{2.9}
\end{equation*}
$$

where $P(t)$ satisfies

$$
\begin{align*}
-\frac{d P(t)}{d t}= & (A+B K C)^{T} P(t)+P(t)(A+B K C) \\
& +Q+C^{T} K^{T} R K C \tag{2.10}
\end{align*}
$$

$$
P\left(t_{f}\right)=0
$$

If (A + BKC) is asymptotically stable, $\mathrm{P}(\mathrm{t})$ has a steady state value as t approaches infinity. Let P be the steady state value of $P(t)$. Equation (2.10) becomes

$$
\begin{equation*}
0=(A+B K C)^{T} P+P(A+B K C)+Q+C^{T} K^{T} R K C \tag{2.11}
\end{equation*}
$$

If t_{f} approaches infinity, Equation (2.9) becomes

$$
\begin{equation*}
J_{1}=\lim _{t_{f} \rightarrow \infty} J_{o}=\lim _{t_{f} \rightarrow \infty}\left\{\operatorname{tr}\left[P\left(t_{o}\right) Q_{o}+\left(t_{f}-t_{o}\right) D V D^{T} P\right]\right\} \tag{2.12}
\end{equation*}
$$

In order to avoid an infinite number in Equation (2.12), let us define a new performance index:

$$
\begin{align*}
& J=\lim _{t_{f} \rightarrow \infty} \frac{J_{1}}{t_{f}^{-t_{o}}} \\
& J=\operatorname{tr}\left(D V D^{T} P\right) \tag{2.13}
\end{align*}
$$

2.3 Statement of the Problem

Given the plant matrices A, B, C, D, white noise intensity V, weighting matrices Q, R, and the performance index,

$$
\begin{equation*}
J=\operatorname{tr}\left(D V D^{T} P\right) \tag{2.14}
\end{equation*}
$$

where P is the solution of the equation,

$$
\begin{equation*}
(A+B K C)^{T} P+P(A+B K C)+Q+C^{T} K^{T} R C K=0 \tag{2.15}
\end{equation*}
$$

Find the real constant matrix K which minimizes J assuming that K makes ($A+B K C$) a stable matrix, i.e., all of its eigenvalues have negative real parts.

2.4 Necessary Conditions for Optimality

The main result is summarized in the following theorem.

Theorem 2.1: Let K be a real matrix. Assuming that ($A+B K C$) is stable, then, in order for K to be optimal for the problem defined in section 2.3 , it is necessary that

$$
\begin{equation*}
K=-R^{-1} B^{T} P Z C^{T}\left(C Z C^{T}\right)^{-1} \tag{2.16a}
\end{equation*}
$$

where Z satisfies the equation

$$
\begin{equation*}
D V D^{T}+(A+B K C) Z+Z(A+B K C)^{T}=0 \tag{2.16b}
\end{equation*}
$$

and P satisfies the equation

$$
\begin{equation*}
(A+B K C)^{T} P+P(A+B K C)+Q+C^{T} K^{T} R K C=0 \tag{2.16c}
\end{equation*}
$$

Proof:
The necessary conditions for optimality are derived by applying the gradient matrix concept [2] [3] to an augmented function L.

Define:

$$
\begin{align*}
\mathrm{L}= & \operatorname{tr}\left[D V D^{\mathrm{T}} \mathrm{P}\right]+\operatorname{tr}\left\{\left[(\mathrm{A}+\mathrm{BKC})^{\mathrm{T}} \mathrm{P}+\mathrm{P}(\mathrm{~A}+\mathrm{BKC})\right.\right. \\
& \left.\left.+\mathrm{Q}+\mathrm{C}^{\mathrm{T}} K^{\mathrm{T}} \mathrm{RKC}\right] \mathrm{Z}^{\mathrm{T}}\right\} \tag{2.17}
\end{align*}
$$

where Z is an $n \times n$ multiplier matrix.
The conditions for extremum are

$$
\begin{align*}
& \frac{\partial L}{\partial K}=0 \tag{2.18a}\\
& \frac{\partial L}{\partial P}=0 \tag{2.18b}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial L}{\partial Z}=0 \tag{2.18c}
\end{equation*}
$$

By some matrix manipulation of Equation (2.18) and using the results of Reference [2], Equation (2.16) is obtained.

2.5 Properties of Matrices at the Extremum Condition

It should be noted that Equation (2.16b) and (2.16c) have the same form as the Lyapunov matrix equation. Properties of this equation are given in the following theorems. The proof of these theorems can be found in References [5] and [28].

Theorem 2.2: Given the Lyapunov matrix equation

$$
\begin{equation*}
A X+X B+C=0 \tag{2.19}
\end{equation*}
$$

where A, B, and C are $m x m, n x n$, and $m x n$ matrices, respectively. Let $\lambda_{i}, i=1,2, \ldots, m$, and $\mu_{j}, j=1,2, \ldots, n$ denote the eigenvalues of A and B, respectively. Then Equation (2.19) has a unique $m \times n$ matrix solution X if and on1y if for all i, j

$$
\lambda_{i}+\mu_{j} \neq 0
$$

Theorem 2.3: Given the Lyapunov matrix Equation (2.19). If all the eigenvalues of A and B have negative real parts, then Equation (2.19) has a unique solution given by:

$$
\begin{equation*}
x=\int_{0}^{\infty} e^{A t} C e^{B t} d t \tag{2.20}
\end{equation*}
$$

Theorem 2.4. Given the Lyapunov matrix Equation (2.19). If C is nonnegative definite, all eigenvalues of A and B have negative real parts, and

$$
A=B^{T}
$$

then X is a constant symmetric nonnegative definite matrix.

From the above theorems, properties of matrices satisfying Equation (2.16) are as follow:
(1) It can be proven by means of Theorem 2.3 that Equation (2.16) has a unique solution, K, P, and Z, that yields a stable system. Furthermore, it follows from Theorem 2.4 that P and Z are nonnegative definite.
(2) The reverse of (1), however, is not true. It has been found that there exists a K which satisfies Equation (2.16) but does not stabilize the system. The corresponding P and Z are not nonnegative definite. This has been a cause of trouble in determining optimum feedback gain of the system.
(3) If C is an identity matrix, the necessary conditions, Equation (2.16), are the same as those of the state feedback control problem.
(4) For the deterministic case the necessary conditions, to solve for K, are obtained by substituting for $D V D^{T}$ in Equation (2.16b), an identity matrix. The result is the same as the one given in Reference [42]. It should be noted that this does not imply that either D or V is an identity matrix.
(5) If D or V is a null matrix, we get a singular problem. It can be verified by writing the closed-form solution of Equation (2.16b) as

$$
Z=\int_{0}^{\infty}\left\{\exp (A+B K C)^{T} t\right\}\left\{D V D^{T}\right\}\{\exp (A+B K C) t\} d t
$$

if $D V D^{T}=0$, then $Z=0$.
(6) The solution of Equation (2.16) is, clearly, dependent on the noise intensity V. However, even though V has a significant effect on Z, it has been found that V has a smaller effect on K.

CHAPTER III

SUBOPTIMAL CONTROL OF INTERCONNECTED SYSTEMS

3.1 Introduction

One problem that is encountered very often in practical controller design of interconnected systems is long computer time and large memory requirements. It arises as a consequence of the large dimensions of the systems. Because an unlimited computer capability is not usually available, the design is generally carried out by using a simplified model. Two methods of model simplification which are usually found are decoupling and deleting of state variables. The decoupled system model is utilized if certain portions of the system are weakly coupled such that it may be possible to break the system into several mutually exclusive low-order subsystems. This model is usually used in systems consisting of many subsystems or components and the effects of interaction between them are negligible. Deletion of state variables can be applied to those variables which have small contribution to system dynamics. But in some cases where computer burden indicates that it is necessary to simplify the model, state variables which are not considered negligible are also eliminated. Here the designer must depend on the physical
understanding of the system in selecting which state variable to delete. It must be done very carefully and always with some risk. These two methods of model simplification can reduce the computation to a large extent. However, the quality of system performance is sometimes unsatisfactory and instability may result if the model is simplified improperly.

In this chapter another technique for limited state variable feedback controller design is presented. It is achieved by dividing the interconnected system into several subsystems. The feedback gain matrix is derived by Taylor series expansion of matrices K, P, and Z (see Chapter II) with respect to a coupling parameter. This technique does not require model simplification so that generally a better performance should be obtained. It also makes use of the low-order subsystem to offer less computation. Thus it is expected that the technique is suitable for large scale system controller design without requiring large computer capability.

The method of Taylor series expansion in linear systems was applied earlier by Kokotovic et al. [37] [38] [53] to find an approximate solution to Riccati's equation. In this chapter the method is applied to necessary conditions derived in Chapter II. The results are applicable to both complete and limited state variable feedback control systems with and without plant stochastic noise.

3.2 Interconnected System

Suppose that the system considered in Chapter II consists of subsystems. Each subsystem is described by

$$
\left.\begin{array}{rl}
\frac{d x_{i}(t)}{d t}= & A_{i} x_{i}(t)+\varepsilon \sum_{j=1}^{q} A_{i j} x_{j}(t)+B_{i} u_{i}(t) \\
& +D_{i} w_{i}(t) ; \quad \\
i=1,2, \ldots, q \tag{3.2}\\
y_{i}(t)= & C_{i} x_{i}(t) ; \quad
\end{array} \quad i=1,2, \ldots, q\right)
$$

where $x_{i}(t), y_{i}(t), u_{i}(t), w_{i}(t)$ are the state, output, control, and noise vectors of the $i^{\text {th }}$ subsystem, respectively.
$w_{i}(t)$ is a white noise process with zero mean and

$$
\begin{equation*}
E\left\{w_{i}(t) w_{i}^{T}(\tau)\right\}=V_{i} \delta(t-\tau) ; i=1,2, \ldots, q \tag{3.3}
\end{equation*}
$$

where V_{i} is a positive definite noise intensity matrix. Interactions between subsystems are represented by a parameter ε which has a value between 0 and 1 . If $\varepsilon=0$, the interactions are neglected and the interconnected subsystems are decoupled. If $\varepsilon=1$, Equations (3.1) through (3.3) represent the original interconnected system.

In Chapter II the control is assumed to be a linear combination of the output:

$$
u(t)=K y(t)
$$

The problem is to determine the matrix K that minimizes the performance index given in Equation (2.5). With some manipulation and approximations, necessary conditions for optimum K are given in Equation (2.16).

In this chapter K, P, and Z are approximated by a finite term Taylor series expansion about $\varepsilon=0$, i.e.,

$$
\begin{align*}
& K(\varepsilon) \cong \sum_{j=0}^{r-1} \frac{\varepsilon^{j}}{j!} K^{j}(0) \tag{3.4a}\\
& P(\varepsilon) \cong \sum_{j=0}^{r-1} \frac{\varepsilon^{j}}{j!} P^{j}(0) \tag{3.4b}\\
& Z(\varepsilon) \cong \sum_{j=0}^{r-1} \frac{\varepsilon^{j}}{j!} Z^{j}(0) \tag{3.4c}
\end{align*}
$$

where the superscript j on K, P, and Z represent $j^{\text {th }}$ partial derivatives of K, P, and Z with respect to ε, respectively, and r is the number of terms in the series. We shall derive necessary conditions for the terms in the series of Equation (3.4).

In order to simplify the problem, we shall work with a system consisting of two coup1ed subsystem so that

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
A_{1} & A_{3} \\
A_{4} & A_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{1} & \varepsilon A_{12} \\
\varepsilon A_{21} & A_{2}
\end{array}\right]
\end{aligned}
$$

where

$$
A_{12}=\frac{A_{3}}{\varepsilon}, \quad A_{21}=\frac{A_{4}}{\varepsilon}
$$

$$
\begin{aligned}
& B=\left[\begin{array}{ll}
\mathrm{B}_{1} & 0 \\
0 & \mathrm{~B}_{2}
\end{array}\right] \\
& C=\left[\begin{array}{ll}
\mathrm{C}_{1} & 0 \\
0 & \mathrm{C}_{2}
\end{array}\right] \\
& \mathrm{D}=\left[\begin{array}{cc}
\mathrm{D}_{1} & 0 \\
0 & \mathrm{D}_{2}
\end{array}\right] \\
& \mathrm{R}=\left[\begin{array}{cc}
\mathrm{R}_{1} & 0 \\
0 & \mathrm{R}_{2}
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{V}=\left[\begin{array}{cc}
\mathrm{V}_{1} & 0 \\
0 & \mathrm{~V}_{2}
\end{array}\right]
$$

$$
Q=\left[\begin{array}{ll}
Q_{1} & Q_{3} \\
Q_{4} & Q_{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
Q_{1} & \varepsilon Q_{12} \\
\varepsilon Q_{21} & Q_{2}
\end{array}\right]
$$

where
$Q_{12}=\frac{Q_{3}}{\varepsilon}, Q_{21}=\frac{Q_{4}}{\varepsilon}$
It should be noted that the approach used in this study can be extended to a system consisting of an arbitrary number of coupled subsystems. However, one may be faced with a very long expression.

3.2.1 Special-Type Matrices

Since we are going to deal with matrices consisting of four submatrices, some of which have two null submatrices on either the diagonal or the off-diagonal, it is useful to define symbols for some types of those matrices and submatrices.

Let M be any matrix consisting of four submatrices, we shall write

$$
M=\left[\begin{array}{ll}
M_{1} & M_{12} \tag{3.5a}\\
M_{21} & M_{2}
\end{array}\right]
$$

Let us define two types of matrices:

1. A matrix whose off-diagonal submatrices are null matrices is called an α-type matrix and is written as

$$
M_{\alpha} \triangleq\left[\begin{array}{cc}
M_{1} & 0 \tag{3.5b}\\
0 & M_{2}
\end{array}\right]
$$

2. A matrix whose diagonal submatrices are null matrices is called a β-type matrix and is written as

$$
M_{\beta} \triangleq\left[\begin{array}{cc}
0 & M_{12} \\
M_{21} & 0
\end{array}\right]
$$

From the above definitions it can be verified that:

$$
\begin{gather*}
\text { (i) } M=M_{\alpha}+M_{\beta} \tag{3.6a}\\
\text { (ii) If } L=M_{\alpha} N_{\alpha} \tag{3.6b}\\
\text { then } L \text { is of } \alpha \text {-type, where } \\
L_{1}=M_{1} N_{1} \tag{3.6c}\\
L_{2}=M_{2} N_{2} \tag{3.6d}\\
\text { (iii) If } L=M_{\alpha} N_{\beta} \tag{3.6e}\\
\text { then } L \text { is of } \beta \text {-type, where } \\
L_{12}=M_{1} N_{12} \tag{3.6f}\\
L_{21}=M_{2} N_{21} \tag{3.6~g}\\
\text { If } L=M_{\beta} N_{\alpha} \tag{3.6h}\\
\text { (iven } L \text { is of } \beta \text {-type, where } \\
L_{12}=M_{12} N_{2} \tag{3.6i}\\
L_{21}=M_{21} N_{1} \tag{3.6j}\\
\text { (v) If } L=M_{\beta} N_{\beta} \tag{3.6k}\\
\text { then } L \text { is of } \alpha \text {-type, where } \\
L_{1}=M_{12} N_{21} \tag{3.61}\\
L_{2}=M_{21} N_{12} \tag{3.6~m}
\end{gather*}
$$

We can apply these equations to find submatrix equations from a given matrix equation. For example, let

$$
L=M_{\alpha} N_{\beta} S_{\beta} T_{\alpha}
$$

By means of Equation (3.6) we get
L is of α-type

$$
\begin{aligned}
& \mathrm{L}_{1}=\mathrm{M}_{1} \mathrm{~N}_{12} \mathrm{~S}_{21} \mathrm{~T}_{1} \\
& \mathrm{~L}_{2}=\mathrm{M}_{2} \mathrm{~N}_{21} \mathrm{~S}_{12} \mathrm{~T}_{2}
\end{aligned}
$$

With the definitions in Equation (3.5), A and Q can be written as

$$
\begin{align*}
& A=A_{\alpha}+\varepsilon A_{\beta} \tag{3.7a}\\
& Q=Q_{\alpha}+\varepsilon Q_{\beta} \tag{3.7b}
\end{align*}
$$

It also can be seen that the matrices B, C, D, and R are of α-type.

$$
\begin{gathered}
\text { 3.3 Necessary Conditions for Optimality } \\
\text { in Subsystem Forms }
\end{gathered}
$$

When a system is described by Equations (3.1) through (3.3), the matrices K, P, and Z can be written as Equation (3.4). Necessary conditions for matrices in the series of K, P, and Z are presented in the following theorem. They are written in a general form.

Theorem 3.1: If the matrices K, P , and Z of Equation (2.16) can be presented by the Taylor series, the following equations are necessary conditions for the $i^{\text {th }}$ derivative of $j^{\text {th }}$ submatrices of the matrices in the series:

$$
\begin{equation*}
K_{j}^{i}=F\left(P_{j}^{i}, z_{j}^{i}\right) \tag{3.8a}
\end{equation*}
$$

$$
\begin{align*}
& \left(A_{m}+B_{m} K_{m}^{o} C_{m}\right) P_{j}^{i}+P_{j}^{i}\left(A_{n}+B_{n} K_{n}^{O} C_{n}\right)+G_{1}=0 \tag{3.8b}\\
& \left(A_{m}+B_{m} K_{m}^{o} C_{m}\right) Z_{j}^{i}+Z_{j}^{i}\left(A_{n}+B_{n} K_{n}^{o} C_{n}\right)^{T}+G_{2}=0 \tag{3.8c}
\end{align*}
$$

where $\mathrm{i}=0,1,2,3, \ldots$
If i is even,

$$
\begin{aligned}
& \mathrm{j}=1,2 \\
& \mathrm{~m}=\mathrm{n}=\mathrm{j} .
\end{aligned}
$$

If i is odd,

$$
\begin{aligned}
\mathrm{j} & =12,21 \\
m & =1 \\
\mathrm{n} & =2 .
\end{aligned}
$$

F, G_{1}, and G_{2} are matrix functions of other submatrices. Since submatrices of K, P, and Z of lower derivative than i have already been determined in an earlier step, these submatrices can be considered as constants. By this assumption G_{1} and G_{2} become constant matrices and F becomes a matrix function of P_{j}^{i} and Z_{j}^{i}.

The proof of this theorem is presented in the next section. Necessary conditions for the first few terms of the series of K, P, and Z are derived. It can be seen that Equation (3.8) is the generalized form of those equations.

3.4 Derivation of the Results

In the derivation of Theorem 3.1 a certain set of matrix equations is involved. The solution of this set of equations is given in the following lemma.

Lemma 3.1: Given

$$
\begin{align*}
& W=C_{1} X C_{2}+C_{3} Y C_{4} \tag{3.9a}\\
& D_{1} W D_{2}+D_{2}^{T} W^{T} D_{1}^{T}+D_{3} X+X D_{3}^{T}=0 \tag{3.9b}\\
& E_{1} W E_{2}+E_{2}^{T} W^{T} E_{1}^{T}+E_{3} Y+Y E_{3}^{T}=0 \tag{3.9c}
\end{align*}
$$

where W, X, and Y are sxm, nxn, and nxn unknown matrices, respectively; and $C_{i}, i=1, \ldots, 4 ; D_{j}$ and $E_{j}, j=1, \ldots$, 3 are constant known matrices of compatible dimension. 0 is an nxn null matrix.

If unique solutions of Equation (3.9) exist, they are

$$
\begin{align*}
& W=0 \tag{3.10a}\\
& X=0 \tag{3.10b}\\
& Y=0 \tag{3.10c}
\end{align*}
$$

This result is obtained when one recognizes that Equation (3.9) can be transformed to a set of homogeneous system of equations.

The set of necessary conditions, Equation (2.16), can be rewritten by using Equation (3.7) as

$$
\begin{align*}
& K=-R^{-1} B^{T} P Z C^{T}\left(C Z C^{T}\right)^{-1} \tag{3.11a}\\
& D V D^{T}+\left(A_{\alpha}+\varepsilon A_{\beta}+B K C\right) Z+Z\left(A_{\alpha}+\varepsilon A_{\beta}+B K C\right)^{T}=0 \tag{3.11b}\\
& \left(A_{\alpha}+\varepsilon A_{\beta}+B K C\right)^{T} P+P\left(A_{\alpha}+\varepsilon A_{\beta}+B K C\right) \\
& \quad+Q_{\alpha}+\varepsilon Q_{\beta}+C^{T} K^{T} R K C=0 \tag{3.11c}
\end{align*}
$$

Derivations of matrices in the series are presented as follow:
(i) If $\varepsilon=0$, the two subsystems are completely decoupled. In this case Equation (3.11) may be expressed in submatrix form as follows:

$$
\begin{align*}
& K_{i}^{o}=-R_{i}^{-1} B_{i}^{T} P_{i}^{o} Z_{i}^{o} C_{i}^{T}\left(C_{i} Z_{i}^{o} C_{i}^{T}\right)^{-1} ; i=1,2 \tag{3.12a}\\
& D_{i} V_{i} D_{i}^{T}+\left(A_{i}+B_{i} K_{i}^{o} C_{i}\right) Z_{i}^{o}+Z_{i}^{o}\left(A_{i}+B_{i} K_{i}^{o} C_{i}\right)^{T} \\
& \quad=0 ; i=1,2 \tag{3.12b}\\
& \left(A_{i}+B_{i} K_{i}^{o} C_{i}\right)^{T} P_{i}^{o}+P_{i}^{o}\left(A_{i}+B_{i} K_{i}^{o} C_{i}\right) \\
& \quad+Q_{i}+C_{i}^{T} K_{i}^{o T} R_{i} K_{i}^{o} C_{i}=0 ; i=1,2 \tag{3.12c}
\end{align*}
$$

Since K^{O}, P^{0}, Z^{O} are α-type matrices consisting of K_{i}^{O}, P_{i}^{O}, $Z_{i}^{O} ; i=1,2$, as their diagonal submatrices, the first terms of these unknowns are obtained.
(ii) Taking the derivative of Equation (3.11) with respect to ε and letting $\varepsilon=0$, the following set of equations is obtained.

$$
B^{T} P^{1} Z^{o} C^{T}+B^{T} P^{o} Z^{1} C^{T}+R K^{1} C Z^{o} C^{T}+R K^{o} C Z^{1} C^{T}=0
$$

$$
\begin{align*}
\left(A_{\alpha}\right. & \left.+B K^{o} C\right) Z^{1}+Z^{1}\left(A_{\alpha}+B K^{o} C\right)^{T}+\left(A_{\beta}+B K^{1} C\right) Z^{o} \tag{3.13a}\\
& +Z^{o}\left(A_{\beta}+B K^{1} C\right)^{T}=0 \\
\left(A_{\alpha}\right. & \left.+B K^{o} C\right)^{T} P^{1}+P^{1}\left(A_{\alpha}+B K^{o} C\right)+\left(A_{\beta}+B K^{1} C\right)^{T} P^{o} \\
& +P^{o}\left(A_{\beta}+B K^{1} C\right)+Q_{\beta}+C^{T} K^{1 T} R K^{o} C \\
& +C^{T} K^{O T} R K^{1} C=0 \tag{3.13c}
\end{align*}
$$

Let,

$$
\begin{align*}
& \mathrm{P}^{1}=\mathrm{P}_{\alpha}^{1}+\mathrm{P}_{\beta}^{1} \tag{3.14a}\\
& \mathrm{Z}^{1}=\mathrm{Z}_{\alpha}^{1}+\mathrm{Z}_{\beta}^{1} \tag{3.14b}\\
& \mathrm{~K}^{1}=\mathrm{K}_{\alpha}^{1}+\mathrm{K}_{\beta}^{1} \tag{3.14c}
\end{align*}
$$

Substitute Equation (3.14) into Eqatuion (3.13). Since α-type and β-type matrices are independent, two sets of equations are obtained. The first set is:

$$
\begin{align*}
& B^{T} P_{\alpha} Z^{\circ} C^{T}+B^{T} P^{O} Z_{\alpha}^{1} C^{T}+R K_{\alpha}^{1} C Z^{o} C^{T}+R K^{o} C Z_{\alpha}^{1} C^{T}=0 \tag{3.15a}\\
& \left(A_{\alpha}+B K^{o} C\right) Z_{\alpha}^{1}+Z_{\alpha}^{1}\left(A_{\alpha}+B K^{o} C\right)^{T}+\left(B K_{\alpha}^{1} C\right) Z^{o} \\
& \quad+Z^{o}\left(B K_{\alpha}^{1} C\right)^{T}=0 \tag{3.15b}\\
& \left(A_{\alpha}+B K^{o} C\right)^{T} P_{\alpha}^{1}+P_{\alpha}^{1}\left(A_{\alpha}+B K^{o} C\right)+\left(B K_{\alpha}^{1} C\right)^{T} P^{o} \\
& \quad+P^{o}\left(B K_{\alpha}^{1} C\right)+C^{T} K_{\alpha}^{1 T} R K^{o} C+C^{T} K^{o T} R K_{\alpha}^{1} C=0 \tag{3.15c}
\end{align*}
$$

The second set of equations is:

$$
\begin{align*}
& B^{T} P_{\beta}^{1} Z^{o} C^{T}+B^{T} P^{o} Z_{\beta}^{1} C^{T}+R K_{\beta}^{1} C Z^{o} C^{T}+R K^{o} C Z_{\beta}^{1} C^{T}=0 \tag{3.16a}\\
& \left(A_{\alpha}+B K^{o} C\right) Z_{\beta}^{1}+Z_{\beta}^{1}\left(A_{\alpha}+B K^{o} C\right)^{T}+\left(A_{\beta}+B K_{\beta}^{1} C\right) Z^{o} \\
& \quad+Z^{o}\left(A_{\beta}+B K_{\beta}^{1} C\right)^{T}=0 \tag{3.16b}
\end{align*}
$$

$$
\begin{align*}
\left(A_{\alpha}\right. & \left.+B K^{o} C\right)^{T} P_{\beta}^{1}+P_{\beta}^{1}\left(A_{\alpha}+B K^{o} C\right)+\left(A_{\beta}+B K_{\beta}^{1} C\right)^{T} P^{o} \\
& +P^{0}\left(A_{\beta}+B K_{\beta}^{1} C\right)+Q_{\beta}+C^{T} K_{\beta}^{1 T} T_{R} K^{o} C \\
& +C^{T} K^{O T} R K_{\beta}^{1} C=0 \tag{3.16c}
\end{align*}
$$

Equation (3.15) has the same form as Equation (3.9). Thus from Lemma 3.1:

$$
\begin{equation*}
\mathrm{K}_{\alpha}^{1}=0, \quad \mathrm{P}_{\alpha}^{1}=0, \quad \mathrm{Z}_{\alpha}^{1}=0 \tag{3.17}
\end{equation*}
$$

Equation (3.16) may be written in submatrix form as

$$
\begin{align*}
& \mathrm{K}_{12}^{1}=-\mathrm{R}_{1}^{-1}\left(\mathrm{R}_{1} \mathrm{~K}_{1}^{\mathrm{O}} \mathrm{C}_{1} \mathrm{Z}_{12}^{1} \mathrm{C}_{2}^{\mathrm{T}}+\mathrm{B}_{1}^{\mathrm{T}} \mathrm{P}_{1}^{\mathrm{O}} \mathrm{Z}_{12}^{1} \mathrm{C}_{2}^{\mathrm{T}}+\mathrm{B}_{1}^{\mathrm{T}} \mathrm{P}_{12}^{1} \mathrm{Z}_{2}^{\mathrm{O}} \mathrm{C}_{2}^{\mathrm{T}}\right) \\
& \left(\mathrm{C}_{2} \mathrm{Z}_{2}^{\mathrm{O}} \mathrm{C}_{2}^{\mathrm{T}}\right)^{-1} \tag{3.18a}\\
& \left(A_{1}+B_{1} K_{1}^{\mathrm{O}} \mathrm{C}_{1}\right) \mathrm{Z}_{12}^{1}+\mathrm{Z}_{12}^{1}\left(\mathrm{~A}_{2}+\mathrm{B}_{2} \mathrm{~K}_{2}^{\mathrm{O}} \mathrm{C}_{2}\right)^{\mathrm{T}} \\
& +\left(A_{12}+B_{1} K_{12}^{1} C_{2}\right) Z_{2}^{0}+Z_{1}^{0}\left(A_{21}+B_{2} K_{21}^{1} C_{1}\right)^{T}=0 \\
& \left(A_{1}+B_{1} K_{1}^{\mathrm{O}} \mathrm{C}_{1}\right) \mathrm{T}^{\mathrm{P}}{ }_{12}^{1}+\mathrm{P}_{12}^{1}\left(\mathrm{~A}_{2}+\mathrm{B}_{2} \mathrm{~K}_{2}^{\mathrm{O}} \mathrm{C}_{2}\right) \tag{3.18b}\\
& +\left(\mathrm{A}_{21}+\mathrm{B}_{2} \mathrm{~K}_{21} \mathrm{C}_{1}\right) \mathrm{P}_{2}^{0}+\mathrm{P}_{1}^{\mathrm{o}}\left(\mathrm{~A}_{12}+\mathrm{B}_{1} \mathrm{~K}_{12}^{1} \mathrm{C}_{2}\right) \\
& +\mathrm{Q}_{12}+\mathrm{C}_{1}^{\mathrm{T}} \mathrm{~K}_{21}^{1 \mathrm{~T}_{2}} \mathrm{~K}_{2}^{\mathrm{O}} \mathrm{C}_{2}+\mathrm{C}_{1}^{\mathrm{T}} \mathrm{~K}^{\mathrm{oT}} \mathrm{R}_{1} \mathrm{~K}_{12}^{1} \mathrm{C}_{2}=0 \tag{3.18c}
\end{align*}
$$

K_{12}^{1}, P_{12}^{1}, and Z_{12}^{1} can be obtained by solving Equation. (3.18) simultaneously. The set of equations that is used to solve for K_{21}^{1}, P_{21}^{1}, and Z_{21}^{1} is the same as Equation (3.18)
except all of the subscripts must be changed from 1 to 2 , from 2 to 1 , from 12 to 21 , and from 21 to 12.
(iii) Taking the derivative of Equation (3.11) with respect to ε and letting $\varepsilon=0$, the following set of equations is obtained:

$$
\begin{align*}
& B^{T} P^{2} Z^{\circ} C^{T}+2 B^{T} P^{1} Z^{1} C^{T}+B^{T} P^{O} Z^{2} C^{T}+R K^{2} C Z^{\circ} C^{T} \\
& +2 R K^{1} \mathrm{CZ}^{1} \mathrm{C}^{\mathrm{T}}+\mathrm{RK}^{\mathrm{o}} \mathrm{CZ}^{2} \mathrm{C}^{\mathrm{T}}=0 \tag{3.19a}\\
& \left(\mathrm{~A}_{\alpha}+\mathrm{BK}{ }^{\mathrm{O}} \mathrm{C}\right) Z^{2}+Z^{2}\left(\mathrm{~A}_{\alpha}+\mathrm{BK}{ }^{\mathrm{O}}\right)^{\mathrm{T}}+\left(\mathrm{BK}^{2} \mathrm{C}\right) Z^{\mathrm{O}} \\
& +Z^{\mathrm{O}}\left(\mathrm{BK}^{2} \mathrm{C}\right)^{\mathrm{T}}+2\left(\mathrm{~A}_{\beta}+\mathrm{BK}^{1} \mathrm{C}\right) Z^{1} \\
& +2 Z^{1}\left(A_{\beta}+B K^{1} C\right)^{T}=0 \tag{3.19b}\\
& \left(A_{\alpha}+B K^{\circ} C\right)^{T} P^{2}+P^{2}\left(A_{\alpha}+B K^{0} C\right)+\left(B K^{2} C\right)^{T} P^{O} \\
& +\mathrm{P}^{\mathrm{O}}\left(\mathrm{BK}^{2} \mathrm{C}\right)+2\left(\mathrm{~A}_{\beta}+\mathrm{BK}{ }^{1} \mathrm{C}\right)^{\mathrm{T}} \mathrm{P}^{1}+2 \mathrm{P}^{1}\left(\mathrm{~A}_{\beta}+\mathrm{BK}^{1} \mathrm{C}\right) \\
& +C^{T} K^{2 T} R^{\circ}{ }^{\mathrm{O}}+\mathrm{C}^{\mathrm{T}} \mathrm{~K}^{\mathrm{OT}} \mathrm{RK}^{2} \mathrm{C}+2 \mathrm{C}^{\mathrm{T}} \mathrm{~K}^{1 \mathrm{~T}_{\mathrm{RK}}{ }^{1} \mathrm{C}=0} \tag{3.19c}
\end{align*}
$$

Equation (3.19) may be rewritten in submatrix form by using the same procedure as before. Separating P^{2}, Z^{2}, and K^{2} into α-type and β-type matrices, we get two sets of equations. The first set is used to solve for $P_{\alpha}^{2}, Z_{\alpha}^{2}$, and K_{α}^{2}. The second set is used to solve for $P_{\beta}^{2}, Z_{\beta}^{2}$, and K_{β}^{2}. Applying Lemma 3.1 to the second set of equations we have

$$
\begin{equation*}
P_{\beta}^{2}=0, \quad Z_{\beta}^{2}=0, \quad K_{\beta}^{2}=0 . \tag{3.20}
\end{equation*}
$$

The submatrix form of the first set of equations is

$$
\begin{aligned}
\mathrm{K}_{1}^{2}= & -\mathrm{R}_{1}^{-1}\left(\mathrm{~B}_{1}^{\mathrm{T}} \mathrm{P}_{1}^{2} \mathrm{Z}_{1}^{\mathrm{O}} \mathrm{C}_{1}^{\mathrm{T}}+2 \mathrm{~B}_{1}^{\mathrm{T}} \mathrm{P}_{12}^{1} \mathrm{Z}_{21}^{1} \mathrm{C}^{\mathrm{T}}+\mathrm{B}_{1}^{\mathrm{T}} \mathrm{P}_{1}^{\mathrm{O}} \mathrm{Z}_{1}^{2} \mathrm{C}_{1}^{\mathrm{T}}\right. \\
& \left.+2 \mathrm{R}_{1} \mathrm{~K}_{12}^{1} \mathrm{C}_{2} \mathrm{Z}_{21}^{1} \mathrm{C}_{1}^{\mathrm{T}}+\mathrm{R}_{1} \mathrm{~K}_{1}^{\mathrm{O}} \mathrm{C}_{1} \mathrm{Z}_{1}^{2} \mathrm{C}_{1}^{\mathrm{T}}\right)\left(\mathrm{C}_{1} \mathrm{Z}_{1}^{\mathrm{O}} \mathrm{C}_{1}^{\mathrm{T}}\right)^{-1}
\end{aligned}
$$

$$
\begin{align*}
\left(A_{1}+\right. & \left.B_{1} K_{1}^{o} C_{1}\right) Z_{1}^{2}+Z_{1}^{2}\left(A_{1}+B_{1} K_{1}^{o} C_{1}\right)^{T}+\left(B_{1} K_{1}^{2} C_{1}\right) Z_{1}^{o} \tag{3.21a}\\
& +Z_{1}^{o}\left(B_{1} K_{1}^{2} C_{1}\right)^{T}+2\left(A_{12}+B_{1} K_{12}^{1} C_{2}\right) Z_{21}^{1} \\
& +2 Z_{12}^{1}\left(A_{12}+B_{1} K_{12}^{1} C_{2}\right)^{T}=0 \tag{3.21b}
\end{align*}
$$

$$
\left(A_{1}+B_{1} K_{1}^{0} C_{1}\right) T_{1}^{2}+P_{1}^{2}\left(A_{1}+B_{1} K_{1}^{o} C_{1}\right)+\left(B_{1} K_{1}^{2} C_{1}\right) T_{1}^{o}
$$

$$
+P_{1}^{o}\left(B_{1} K_{1}^{2} C_{1}\right)+2\left(A_{21}+B_{2} K_{21}^{1} C_{1}\right) T_{P 1}^{1}
$$

$$
+\mathrm{P}_{21}^{1}\left(\mathrm{~A}_{21}+\mathrm{B}_{2} \mathrm{~K}_{21}^{1} \mathrm{C}_{1}\right)+\mathrm{C}_{1}^{\mathrm{T}} \mathrm{~K}_{1}^{2 \mathrm{~T}_{\mathrm{R}_{1}} \mathrm{~K}_{1}^{\mathrm{O}} \mathrm{C}_{1}}
$$

$$
\begin{equation*}
+\mathrm{C}_{1}^{\mathrm{T}} \mathrm{~K}_{1}^{\mathrm{OT}} \mathrm{R}_{1} \mathrm{~K}_{1}^{2} \mathrm{C}_{1}+2 \mathrm{C}_{1}^{\mathrm{T}} \mathrm{~K}_{21}^{1 \mathrm{~T}} \mathrm{R}_{2} \mathrm{~K}_{21}^{1} \mathrm{C}_{1}=0 \tag{3.21c}
\end{equation*}
$$

K_{1}^{2}, P_{1}^{2}, and Z_{1}^{2} can be obtained by solving Equation (3.21) simultaneously. The set of equations that is used to solve for K_{2}^{2}, P_{2}^{2}, and Z_{2}^{2} is the same as Equation (3.21) except all of the subscripts must be changed from 1 to 2 , from 2 to 1 , from 12 to 21 , and from 21 to 12.

3.4.1 Summary of the Procedure

The procedure to derive necessary conditions for the terms in the series of K, P, and Z can be summarized as follows:
(a) For K^{0}, P^{0}, and Z^{0} necessary conditions are obtained by decoupling of the system. Then Equation (2.16) is applied directly to each decoupled subsystems.
(b) For K^{i}, P^{i}, and Z^{i}, where $i=1,2$, ..., the derivation proceeds as follows:
(i) Take the $i^{\text {th }}$ derivative of Equation (3.11) with respect to ε and let $\varepsilon=0$.
(ii) Separate the equations obtained into two sets of equations. The first set is an α-type matrix equation. The second set is a β-type matrix equation.
(iii) Apply Lemma 3.1 to the equations. If is odd, the α-type matrix equation yields

$$
K_{\alpha}^{i}=0, \quad P_{\alpha}^{i}=0, \quad Z_{\alpha}^{i}=0
$$

If i is even, the β-type matrix equation yields

$$
K_{\beta}^{i}=0, \quad P_{\beta}^{i}=0, \quad Z_{\beta}^{i}=0 .
$$

(iv) Write necessary conditions for nonzero elements of K, P, and Z in submatrix form by using Equation (3.6).

Theorem 3.2: Let K_{a}^{i}, P_{a}^{i}, and $Z_{a}^{i}, i=1,2, \ldots$, be the $i^{\text {th }}$ terms in the series of the optimal matrices satisfying Equation (3.8) when $\varepsilon=\varepsilon_{a}$. Let K_{b}^{i}, P_{b}^{i}, and Z_{b}^{i}, $i=$ $1,2, .$. , be the $i^{\text {th }}$ terms in the series of the optimal matrices satisfying Equation (3.8) when $\varepsilon=\varepsilon_{b}$. Then,

$$
\begin{aligned}
& \varepsilon_{a}^{i} K_{a}^{i}=\varepsilon_{b}^{i} K_{b}^{i} \\
& \varepsilon_{a}^{i} P_{a}^{i}=\varepsilon_{b}^{i} P_{b}^{i} \\
& \varepsilon_{a}^{i} Z_{a}^{i}=\varepsilon_{b}^{i} Z_{b}^{i}
\end{aligned}
$$

for all $i=1,2, \ldots$, provided Q_{β} of Equation (3.7b) is a nuil matrix.

Proof: This theorem can be proved by using the following procedure for each of the $i^{\text {th }}$ derivative sets of K, P, and Z.
(i) Multiply the necessary conditions for K_{a}^{i}, P_{a}^{i}, and Z_{a}^{i} where $\varepsilon=\varepsilon_{a}$ by $\left(\varepsilon_{a} / \varepsilon_{b}\right)^{i}$.
(ii) A_{β} for $\varepsilon=\varepsilon_{b}$ is equal to A_{β} for $\varepsilon=\varepsilon_{a}$ multip1ied by $\varepsilon_{a} / \varepsilon_{b}$.
(iii) Compare these equations to necessary conditions for K_{b}^{i}, P_{b}^{i}, and Z_{b}^{i}. Using the fact that the solutions are unique (Theorem 2.3), the above results are obtained.

Corollary: The matrices K, P, and Z, whose series terms are solutions of Equation (3.8), are the same for every finite and nonzero value of ε, provided Q_{β} of Equation (3.7b) is a null matrix.

Proof: This corollary can be proved by substituting the results of Theorem 3.2 into Equation (3.8). It can be seen that both sets yield the same solution.

3.5 Computational Algorithm

The difficulties with solving a set of equations of the same form as Equation (2.16) or (3.8) have been reported elsewhere [42] [44]. In this section three methods of solving Equation (2.16) or (3.8) are presented. The first
method is an iterative method. It is found that conventional fixed-point iteration [16] suggested in Reference [42] yields divergence in nearly all of the numerical problems examined in this study. So another iterative algorithm is considered. In this algorithm an increment of K_{j}^{i} for the next iteration is a fraction of the difference between its old value and its new value. The second method makes use of an existing optimization algorithm to find K_{j}^{i} such that when substituting into Equation (3.8) its residue is a minimum. The third method uses the optimization algorithm to minimize $\operatorname{tr}\left(D V D^{T} P\right)$. Some modification is made so that K stabilizes the system. An additional algorithm to solve the Lyapunov equation is also presented.

3.5.1 Iterative Algorithm

The iterative algorithm to solve Equation (3.8) is as follows:
(1) Make an initial guess for K_{j}^{i}.
(2) Substitute K_{j}^{i} into Equation (3.8b). Solve for P_{j}^{i}.
(3) Substitute K_{j}^{i} into Equation (3.8c). Solve for Z_{j}^{i}.
(4) Substitute P_{j}^{i} and Z_{j}^{i} into Equation (3.8a). Solve for $K_{j, n e w}^{i}$.
(5) Update the value of K_{j}^{i} by using this equation:

$$
\begin{equation*}
K_{j}^{i}=K_{j}^{i}-\alpha\left(K_{j}^{i}-K_{j, n e w}^{i}\right) \tag{3.22a}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{\delta}{\left|K_{j}^{i}-K_{j, \text { new }}^{i}\right|_{\max }} \tag{3.22b}
\end{equation*}
$$

$\left|K_{j}^{i}-K_{j, n e w}^{i}\right|_{\max }$ is the maximum element of the absolute value of the residue of K_{j}^{i}.
(6) If the maximum residue of K_{j}^{i} is not as small as required, go to step (2). Otherwise stop.

Convergence and speed of convergence of this a1gorithm depends on α. If $\alpha=1$, it is the same as the fixed-point iteration. It has been found that convergence is achieved only if α is small. But a small value of α results in slow convergence. Thus a should be adaptable to convergence conditions. The choice of α given in Equation (3.22b) has been found to give satisfactory results. However, the value of δ should be adaptable also. The following is a typical example of δ and α.
$\delta=1 \quad$ if the maximum residue of K_{j}^{i} is greater than 5.
$\delta=0.5$ if the maximum residue of K_{j}^{i} is less than 5 .
$\alpha=\delta \quad$ if the maximum residue of K_{j}^{i} is less than 1 .

3.5.2 Residue Minimization Algorithm

This algorithm uses a standard unconstrained multivariable optimization subroutine to minimize weighted sum of square of residues of K_{j}^{i}. The algorithm is as follows:
(1) Make an initial guess for K_{j}^{i}.
(2) The main program calls the optimization subroutine. K_{j}^{i} is transferred to the subroutine.
(3) The optimization subroutine calls a secondary subroutine to evaluate the residue of K_{j}^{i}.
(4) The secondary subroutine substitutes K_{j}^{i} into Equation (3.8b) and (3.8c). It solves for P_{j}^{i} and z_{j}^{i}. Then it substitutes P_{j}^{i} and z_{j}^{i} into Equation (3.8a) and solves for $K_{j, n e w}^{i}$. The last duty of this subroutine is evaluating weighted sum of square of ($K_{j}^{i}-K_{j, n e w}^{i}$). After finishing this it returns to the calling subroutine.
(5) The optimization subroutine compares the residues for several values of K_{j}^{i} and proceeds to the one that has a minimum residue.

The Powell's optimization algorithm [50] [40] is employed in this study.
3.5.3 DVDP Minimization Algorithm

The solution of Equation (2.16) can be obtained by minimizing Equation (2.13) with respect to Equation (2.11) using a multivariable optimization algorithm [18] [51]. It was pointed out earlier in section 2.5 that K, which does not stabilize the system but satisfies Equation (2.16), can be found. The corresponding P may not be nonnegative definite. This means that the value of K may yield a negative performance index, $\operatorname{tr}\left(D_{D D}{ }^{T} P\right)$, which is less than that of the real optimum K. In order to avoid this difficulty, a stability indicator should be included in the performance index.

In this study Powell's optimization algorithm [50] [40] is used. The performance index is modifed as follows:

Let ρ be the maximum real part of eigenvalues of $(A+B K C)$, then

$$
\begin{align*}
& J=\operatorname{tr}\left(D V D^{T} P\right) ; \text { if } \rho \leq 0 \tag{3.23a}\\
& J=\operatorname{tr}\left(D V D^{T} P\right)+(\rho \cdot \xi) ; \text { if } \rho>0 \tag{3.23b}
\end{align*}
$$

where ξ is an arbitrarily large positive number.

3.5.4 Kronecker Product Algorithm

The general form of Equation (3.8b) and (3.8c) is

$$
\begin{equation*}
\mathrm{AX}+\mathrm{XB}+\mathrm{C}=0 \tag{3.24}
\end{equation*}
$$

The solution of this equation is obtained by applying the Kronecker Product method [5] [6] to Equation (3.24).

Define:

$$
\begin{equation*}
\mathrm{F}=\mathrm{A} * \mathrm{I}_{1}+\mathrm{I}_{2} * \mathrm{~B}^{\mathrm{T}} \tag{3.25}
\end{equation*}
$$

where * is the Kronecker product operator.
I_{1} and I_{2} are identity matrices of compatible dimension. It can be proven that [5] [6]

$$
\begin{equation*}
F y=-z \tag{3.26}
\end{equation*}
$$

where y is the vector consisting of all elements of X and z is the vector consisting of all elements of C .

Then Equation (3.26) is solved for y by the Gauss elimination method [16]. The result is obtained by transforming the vector y to the matrix X.

3.5.5 Comparison of the Algorithms

The solution of Equation (2.16) can be found by means of the three algorithm. The iterative algorithm yields the solution within the shortest time. A FORTRAN program for the algorithm is less complicated than that of the other two. However, it inherits certain disadvantages. It has been found that in some numerical problems the algorithm results in a solution, K, which does not stabilize the system. The only way to get the right K when this difficulty happens is by making an initial guess of K which is very close to the right solution. It is impossible to make such a guess in a practical problem. Another disadvantage of the iterative algorithm is that optimal values for α and δ have to be chosen by trial and error. In the DVDP minimization algorithm the problem of getting the wrong K has been solved by using a modified performance index described in section 3.5.3. Since eigenvalues have to be calculated every time the performance index is evaluated, the algorithm requires large amounts of computer processing time. Writing a FORTRAN program for this algorithm is somewhat more complicated than the iterative algorithm, even though standard subprograms for optimization and eigenvalue evaluation are used. In some numerical problems this algorithm cannot find a very accurate solution because the value of the performance does not change for a small change of K . In that case the residue minimization algorithm or the combination of the DVDP
minimization algorithm and the iterative algorithm can be used.

The solution for the suboptimal control problem presented in this chapter can be obtained by means of the iterative algorithm or a combination of residue minimization algorithm and DVDP minimization algorithm. The use of the iterative algorithm to solve Equation (3.8) is practically the same as described above. In the second algorithm the DVDP minimization algorithm is used to solve the zero ${ }^{\text {th }}$ order of Equation (3.8) or (3.12). The algorithm minimizes $D_{i} V_{i} D_{i}^{T} P_{i}$ with respect to K_{i} with Equation (3.12c) as an equality constraint, where $i=1,2$. For the values of the first order and higher of K, P, and Z in Equation (3.8) the residue minimization algorithm is used. It should be noted that after K_{1}^{o} and K_{2}^{0}, which are solutions to Equation (3.12) and which stabilize the subsystems, are obtained the solution for Equation (3.8) is unique. This can be proven by Theorem 2.3. So there is no need to calculate eigenvalues in the residue minimization algorithm and the computer time required for this algorithm is not too large. In general, the iterative algorithm should be used if it is expected to converge to the right solution, since it is faster and sometimes gives more accurate results. Residue + DVDP minimization algorithm should be used if the iterative algorithm does not work.

3.5.6 Some Symmetrical Properties

By app1ying Theorem 2.4 to the equations obtained earlier it can be proved that:
(1) Even derivatives of submatrices of Z and P are symmetric. The submatrices are $Z_{1}^{0}, Z_{2}^{0}, P_{1}^{0}, P_{2}^{0}, Z_{1}^{2}, Z_{2}^{2}, P_{1}^{2}$, P_{2}^{2},
(2) "12" submatrices of odd derivatives of Z and P are equal to transpose of " 21 " submatrices of their own matrices, e.g.,

$$
\begin{aligned}
& \mathrm{Z}_{12}^{1}=\mathrm{Z}_{21}^{1 \mathrm{~T}} \\
& \mathrm{P}_{12}^{1}=\mathrm{P}_{21}^{1 \mathrm{~T}}
\end{aligned}
$$

These symmetrical properties are very useful. They may be used to simplify the computer program and reduce the computer burden to a large extent.

3.6 Conclusion

It has been discussed that solving necessary condition Equation (2.15) for optimal feedback gain of a large system is not a trivial job. In order to cope with this problem an approach to suboptimal gain calculation is developed in this chapter. The method involves Taylor series expansion of the matrices K, P, and Z with respect to the system coupling parameter, ε. Necessary conditions to be solved for the matrices in the series are derived. With some matrix manipulation, these equations can be presented as functions
of submatrices. The general form of the equations is given in Theorem 3.1. The proof of the theorem is carried out by an induction method. In this study the first few terms of matrices in the series of K, P, and Z are derived. A general procedure of derivation is given so that higher derivative terms can be derived if necessary. Computational methods for solving Equation (2.16) or (3.8) are presented in section 3.5. The iterative algorithm offers the fastest speed. Unfortunately, in some problems it converges to wrong solutions or does not converge at all. When this problem arises, the DVDP minimization algorithm, or the residue minimization algorithm, or a combination of both is recommended. These algorithms make use of an existing optimization routine to solve the problem. The listing of programs used in this study is shown in the appendices.

CHAPTER IV

LOAD FREQUENCY CONTROL OF MULTIAREA POWER SYSTEMS

4.1 Introduction

Load frequency control of electric power systems represents the first realization of large scale complex system control. It has made the operation of interconnected systems possible. The objective of load frequency control is to maintain a balance between system's generation and consumption. Today the tie-1ine bias control is widely applied. A linear combination of net interchange error and frequency deviation, called area control error, is used to control the system generating units. Each area tends to reduce the area control error to zero. When this aim is achieved the system frequency equals the desired value and the interchange schedule is met. The conventional approach to this problem is mainly concerned with steady-state power balance. Little attention has been paid to the optimization of system transients. Recently, some attempts have been made to apply 1inear optimal control theory to the load frequency problem. The main purpose of those studies is to stabilize power swings which occur when the system is subjected to disturbances.

The approach results in a minimum of weighted sum of power swings (state variable deviations) and control efforts. Normally, it is assumed that all variables are measurable and the feedback gain is calculated by solving the Riccati equation.

In this chapter the load frequency control is modeled as a limited state variable feedback control system. Then the approach given in Chapter III is applied to calculate the suboptimal feedback gain. As an example, the control of a two-area system will be considered. The results of the suboptimal approach will be compared to those of the optimal approach.

4.2 System Mode1ing

The development of the system model is considered in this section. Turbines and their speed-governing systems are very important components in the load frequency control system, so considerable details are presented in the first part. The relationship between the system power balance and its frequency is given in the second part. Then the models of each component are grouped to form a model of load frequency control system. It is presented in a standard state variable form in the third section.

4.2.1 Speed-Governing System and

Turbine Models

Standard modeling of steam turbines and hydroturbines and their speed-governing systems was provided by the IEEE

Task Force [35]. The model descriptions were typical of those in use by utilities and service centers. The basic diagram showing location of speed-governing system and turbine relative to the system is shown in Figure 1. A general model for speed-governing systems is shown in Figure 2. In the model many nonlinearities are neglected except rate limits which may occur for large, rapid speed deviations and position limits which may correspond to wide-open valves or the setting of a load limiter. Rate limiting of servomotor is shown at the input to the integrator representing the servomotor. This model shows the load reference as an initial power P_{o}. This initial value is combined with the increments due to speed deviation to obtain the valve position, h, subject to the time $1 a g, T_{3}$, introduced by the servomechanism.

Models for different types of steam turbine systems are shown in Figure 3. In these models flows into and out of any steam vessel are related by a simple time constant. The time constants $\mathrm{T}_{\mathrm{CH}}, \mathrm{T}_{\mathrm{RH}}$, and T_{CO} represent delays due to the steam chest and inlet piping, reheaters, and crossover piping, respectively.

A general model for speed-governing system for hydroturbines is shown in Figure 4. Linear characteristics of the distributor valve and gate servomotor, and the dashpot feedback are utilized. Position limits are presented at the output of the system. Nonlinearities in rate limits, permanent droop compensation, etc. are neglected.

Figure 1. Block Diagram of Single Area Load Frequency Control System

Figure 2. General Mode1 for Speed-Governing System of Steam Turbine Systems

a) NONREHEAT

b) TANDEM COMPOUND, SINGLE REHEAT

c) CROSS COMPOUND, DOUBLE REHEAT

Figure 3. Linear Models for Steam Turbine Systems

Figure 4. General Mode1 for Speed-Governing Systems of Hydroturbine Systems

Figure 5. Approximate Linear Model
for Hydroturbines

A linear model for hydroturbines which is most often used is shown in Figure 5. The transient characteristics of hydroturbines are determined by dynamics of water flow in the penstock. The time constant T_{W} is called the water starting time or water time constant. A method for estimating this time constant is given in Appendix II of Reference [35].

4.2.2 Power System Inertia Mode1

Whenever there is an imbalance in the applied torques of a power generating unit, acceleration takes place. The mechanical torque equilibrium equation can be written as

$$
\begin{equation*}
\frac{\mathrm{Jd} \omega}{\mathrm{dt}}+\mathrm{D} \omega=\Delta \mathrm{T} \tag{4.1}
\end{equation*}
$$

where

```
    J = moment of inertia of the moving parts;
    D = damping coefficient, including mechanical viscous
        friction plus electrical damping torque from field
        coil and damping coil;
\DeltaT = change of torque from equilibrium state; and
    \omega = angular velocity.
```

It is customary to normalize Equation (4.1) using the inertia constant H which is defined to be the kinetic energy at rated speed ω_{o} divided by the generator MVA base S_{b} :

$$
\begin{equation*}
H=\frac{\frac{1}{2} J \omega^{2}}{S_{b}} \tag{4.2}
\end{equation*}
$$

Linearizing Equation (4.1) around the operating point and making use of Equation (4.2), we get

$$
\begin{equation*}
\frac{2 H}{f_{o}} \frac{d \Delta f}{d t}+K_{d} \Delta f=P \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta & =\text { incremental operator } \\
f & =\text { system frequency; } \\
f_{o} & =\text { rated frequency; } \\
P & =\text { power output of the system in per unit; and } \\
K_{d} & =\frac{2 \pi \omega_{o} D}{S_{b}} .
\end{aligned}
$$

Change of power output from equilibrium state, $\Delta \mathrm{P}$, of Equation (4.3) takes the form

$$
\begin{equation*}
\Delta \mathrm{P}=\Delta \mathrm{P}_{\mathrm{g}}-\Delta \mathrm{P}_{\mathrm{d}}-\Delta \mathrm{P}_{\mathrm{t}} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{g}}=\text { power generation; } \\
& \mathrm{P}_{\mathrm{d}}=\text { increment in load demand; and } \\
& \mathrm{P}_{\mathrm{t}}=\text { increment in tie-1ine power imported from other } \\
& \text { areas. }
\end{aligned}
$$

The increment in tie-1ine power can be represented by

$$
\begin{equation*}
\Delta P_{t}=\sum_{i} S_{i}\left(\Delta \delta_{i}-\Delta \delta\right) \tag{4.5}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta= & \text { angular displacement of the area; } \\
\delta_{i}= & \text { angular displacement of the remote area } i ; \text { and } \\
S_{i}= & \text { synchronizing coefficient between the area and } \\
& \text { the remote area } i .
\end{aligned}
$$

Thus the load frequency control system is described by the following equation:

$$
\begin{align*}
\frac{d}{d t} \Delta f & =\frac{f_{0}}{2 H}\left(\Delta P_{g}-\Delta P_{d}-\Delta P_{t}-K_{d} \Delta f\right) \tag{4.6a}\\
\frac{d}{d t} \Delta P_{g} & =\frac{1}{T_{t}}\left(\Delta h-\Delta P_{g}\right) \tag{4.6b}\\
\frac{d}{d t} \Delta h & =\frac{1}{T_{g}}\left(\Delta u-\frac{\Delta f}{R}-\Delta h\right) \tag{4.6c}\\
\Delta P_{t} & =2 \pi \sum_{i} S_{i}\left(\int \Delta f_{i} d t-\int \Delta f d t\right) \tag{4.6d}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\text { time constant of the turbine; } \\
\mathrm{T}_{\mathrm{g}} & =\text { time constant of the speed-governing system; } \\
\mathrm{h} & =\text { valve position; } \\
\mathrm{u} & =\text { input to speed-governing system; and } \\
\mathrm{R} & =\text { speed regulation parameter } .
\end{aligned}
$$

4.2.3 Integrated Model for Load Frequency

Control Systems

Un1ike models designed for transient or dynamic stability studies, the objective is a model to represent the interplay between system load demand and mechanical energy supply. This model must describe the system dynamics with sufficient accuracy and at the same time must be of reasonably small dimension such that its solutions are attainable. In order to achieve this goal the following assumptions must be made because there are a large number of power generating units within an area of a power system. First, the effects of network electrical dynamics can be eliminated from the load frequency problem. Second, all power generating units belonging to an area are similar and they are tied via stiff
lines such that they have coherent phase and frequency. Third, variations of variables are small so linearization of system equations around a nominal operating condition is permitted. With these assumptions a power system area for load frequency control can be represented by a single power generating unit.

The block diagram model of a load frequency area is shown in Figure 6. It consists of a turbine, its speedgoverning system, and a power-frequency transfer function. The turbine is assumed to be a nonreheat steam type which has only one time constant representing time delay in its steam chest. The speed-governing system is assumed to be a mechan-ical-hydraulic type with negligible speed relay time constant. So it can be represented by a first order system. The powerfrequency transfer function can be derived from Equation (4.6a) where

$$
\begin{align*}
& K_{p}=\frac{1}{K_{d}} \tag{4.7a}\\
& T_{p}=\frac{2 H}{f_{o} K_{d}} \tag{4.7b}
\end{align*}
$$

Nonlinearities in every component are neglected since we shall consider system dynamics under small disturbances.

4.3 Contro1 of Two-Area System

In this section we shall consider an interconnected power system consisting of two areas. The state equation for the system can be written as

Figure 6. Linear Model for Single-Area Load Frequency Control System

$$
\begin{equation*}
\frac{d z}{d t}=A z+B u+E v \tag{4.8}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{z}^{\mathrm{T}}= & {\left[\int \Delta \mathrm{f}_{1} \mathrm{dt}, \Delta \mathrm{f}_{1}, \Delta \mathrm{P}_{\mathrm{g}}, \Delta \mathrm{~h}_{1}, \int \Delta \mathrm{f}_{2} \mathrm{dt}\right.} \\
& \left.\Delta \mathrm{f}_{2}, \Delta \mathrm{P}_{\mathrm{g} 2}, \Delta \mathrm{~h}_{2}\right] \\
\mathrm{u}^{\mathrm{T}}= & {\left[\Delta \mathrm{u}_{1}, \Delta \mathrm{u}_{2}\right] } \\
\mathrm{v}^{\mathrm{T}}= & {\left[\Delta \mathrm{P}_{\mathrm{d} 1}, \Delta \mathrm{P}_{\mathrm{d} 2}\right] }
\end{aligned}
$$

The matrices A, B, and E are shown in Table I. In order that modern optimal control technique can be applied to this problem, Equation (4.8) must be modified to the standard form:

$$
\begin{equation*}
\frac{d x}{d t}=A x+B u \tag{4.9}
\end{equation*}
$$

Several methods have been suggested such that the system equations can be written as Equation (4.9) [9][27][29]. Since we are interested only in dynamic aspects of the problem, in this study the method in Reference [27] is used. The new vector x is defined by

$$
\begin{equation*}
x=z-z s s \tag{4.10a}
\end{equation*}
$$

where $z_{s s}$ is the steady state value of z, and $x(0)=-z_{s s}$

With this modification the matrices A and B of Equations (4.8) and (4.9) are still the same.

4.4 Two Area Contro1 System Example

In the study of the two-area load frequency control system an iterative algorithm is used to calculate the optimal and suboptimal gain matrices. The program is designed

TABLE I
MATRICES A, B, AND E OF THE TWO-AREA LOAD FREQUENCY CONTROL SYSTEM

to calculate three terms in the series of the matrices, K, P, and Z. Eigenvalues of the closed-1oop system, $A+B K^{\circ} C$, are evaluated after K°, P°, and Z° are found to make sure that the feedback gain yields a stable system. The program is constructed in such a way that it can be used for subsystems of dimension up to 10 . Since the necessary conditions of the optimal gain are similar to those of the first term of the series of K, P, and Z, the first part of the program can be used to calculate the optimal gain. The program is implemented on a $370 / 158$ computer system. A G-1eve1 FORTRAN compiler is used.

Numerical data for the system under study are shown in Table II. The matrices D, Q, and R are assumed to be identity matrices. The performance index is an infinite integral of sum of square of all state and control variables. Both deterministic and stochastic cases are considered. In the deterministic case the matrix $\mathrm{DVD}^{\mathrm{T}}$ is replaced by an identity matrix. The numerical value of V for the stochastic case is given in Table III. The number of output variables in each subsystem varies from 2 to 4 . For the load frequency control system, the minimum number of the feedback variables which can stabilize the system is 2. They are the frequency and the phase angle of the area. If the generated power is assumed measurable, the dimension of the output vector of the area is 3. If all of the state variables are measurable, the dimension of the output vector of the area is 4 and this case is equivalent to the optimal linear regulator problem.

TABLE II DATA OF. THE TWO AREA LOAD FREQUENCY
CONTROL SYSTEM

Variable	Area No. 1	Area No. 2
T_{g}	0.08	0.1
$\mathrm{~T}_{\mathrm{t}}$	0.3	0.25
R_{H}	2.4	2.5
$\mathrm{~K}_{\mathrm{d}}$	5.0	8.0
$\mathrm{~S}_{12}$	0.008	0.01
a_{12}	0.545	0.545
f_{o}	-1	-1

TABLE III
STOCHASTIC NOISE INTENSITY MATRIX
$\left[\begin{array}{cccccccc}\hline .0001 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & .0005 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & .0003 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & .0007 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & .0002 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & .0009 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & .0005 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & .0008\end{array}\right]$

The results of the study are presented in Tables VI through XXVII. It is observed that:

1. The optimal feedback gain matrix, K, for the deterministic system and the stochastic system are very close.
2. The coupling coefficient, ε, having the values between 0 and 1 , results practically in the same suboptimal feedback gain matrix. The time spent in the calculation, however, is not the same for different ε 's. It is found that the value of $\varepsilon=0.5$ converges faster than other values. Thus this value is used throughout the study.
3. When the generated power of the area is used as an input to the controller in addition to the frequency and the phase angle, the performance of the system is significantly improved. Thus it is beneficial to transmit the generation power signal other than the frequency and phase angle signals of each area to other areas in the pool for the purpose of an automatic power generation control of the interconnected system. The valve position of the turbine, on the other hand, yields only small improvement in the system performance when all other variables are used. Thus this variable need not be used as a control signal because it will increase the cost of telemetering while it does a small contribution to the system stabilization.
4. The performance of the optimal system is better when more variables are used as the controller inputs. This is not surprising since in that case more information is obtained. But the performance of the suboptimal control
system may not follow the rule. For example, the performance index of the suboptimal control system using 8 variables as inputs to the controller is higher than that using 6 variables. This happens because the error when calculating the suboptimal gain for the system with 8 dimensional output vector is more than that with 6 dimensional output vector.
5. Only two terms in the series of the suboptimal gain matrix give results which are considerably close to those of the optimal control system. It is consequently believed that using two terms is enough for suboptimal feedback gain calculation of any two-area load frequency control system design.
6. The suboptimal gain calculation consumes much less computer burden than the optimal gain calculation. In this study the optimal gain calculation which starts from the results of the suboptimal gain calculation spent about four to seven times longer execution time than that of the suboptimal gain calculation which starts from an arbitrary value (0 is used). It is expected that if both methods start from the same initial value, the optimal method will use more than ten times the computer time used by the suboptimal method for the same 8 dimensional system. The memory required for the optimal gain calculation is three to four times more than that of the suboptimal gain calculation. This amount of memory saving is very attractive for those using a computer with limited memory size to calculate the feedback gain for a large system. However, the program architecture is more complex and compilation time is longer for the suboptimal
method. But these are trivial disadvantages compared to the benefits described above.
7. When all the state variables are available for measurement, i.e., $C=I$, the matrix Z has no effect on the optimal feedback gain. In this case the optimal matrix K is the same for both the deterministic system and the stochastic system.

4.5 Conclusion

In this chapter the suboptimal approach for the feedback gain calculation of linear limited state variable feedback developed in Chapter III is applied to multiarea load frequency control. In section 4.2 models of components within an area of load frequency control system is presented; it consists of a turbine, speed-governing system, and powerfrequency transfer function. The integrated model of these components for two-area interconnected system is described in section 4.3. It is presented in a standard form of state equations. The system with and without plant noise are studied. The iterative algorithm is used to calculate the suboptimal and optimal feedback gains. Convergence is obtained in all of the problems considered in this step. The results are presented in Tables VI through XXVII. They show that the suboptimal approach yields results which are close to those of the optimal approach but the suboptimal approach requires much less computer burden. From the study of the load
frequency control system it is suggested that frequency, phase angle, and power generation be used as feedback signals to the system controller.

TABLE IV
NOMENCLATURE OF CASE STUDIES

Case Study	Dynamic of System	Dimension of Output Vector
D4	Deterministic	4
D6	Deterministic	6
D8	Deterministic	8
S4	Deterministic	4
S6	Deterministic	6
S8	Deterministic	8

TABLE V
NOMENCLATURE OF FEEDBACK GAIN MATRICES

Feedback Gain Matrix	Number of Terms Used	Formula
K_{a}	1	$K_{a}=K^{0}$
K_{b}	2	$K_{b}=K^{0}+\varepsilon K^{1}$
K_{c}	3	$K_{c}=K^{0}+\varepsilon K^{1}+\frac{\varepsilon^{2} K^{2}}{2!}$
K^{*}	∞	$K^{*}=K^{0}+\varepsilon K^{1}+\frac{\varepsilon^{2} K^{2}}{2!}+\frac{\varepsilon^{3} K^{3}}{3!}+\ldots$

TABLE VI
FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D4

$\mathrm{K}_{\mathrm{a}}=$	[. 1566	-. 0388	0	0
	L 0	0	. 0812	-. 1141
$\mathrm{K}_{\mathrm{b}}=$	[.1560	-. 0388	-. 4316	-. 1761
	-. 3301	-. 0940	. 0812	-. 1141
$\mathrm{K}_{\mathrm{c}}=$. 1500	-. 0634	-. 4316	-. 1761
	-. 3301	-. 0940	. 0311	-. 1674
K* $=$	[. 1382	-. 0666	-. 4500	-. 1803
	-. 3576	-. 1073	. 0270	-. 1679

TABLE VII
 COMPUTER BURDEN OF FEEDBACK GAIN MATRIX CALCULATION OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D4

TABLE VIII
PERFORMANCE INDICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D4

Feedback Gain Matrix Used	Performance Index
K_{a}	\cdots
K_{b}	8.357
$\mathrm{~K}_{\mathrm{c}}$	8.306
$\mathrm{~K}^{*}$	8.288

TABLE IX
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, ($\mathrm{A}+\mathrm{BKC}$),
OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D4

$\left(A+B K_{a} C\right)$	$\left(A+B K_{b} C\right)$	$\left(A+B K_{c} C\right)$	$(A+B K * C)$
-13.36	-13.37	-13.41	-13.41
-11.00	-10.99	-11.06	-11.06
$-1.46 \pm j 2.44$	$-1.09 \pm j 2.47$	$-1.05 \pm j 2.62$	$-1.04 \pm j 2.62$
-1.43	-1.04	-1.02	-1.00
$-0.71 \pm j 3.33$	$-0.93 \pm j 3.16$	$-0.92 \pm j 3.23$	$-0.91 \pm j 3.23$
$0.22^{\#}$	-0.48	-0.49	-0.54
\# Unstab1e eigenvalue.			

TABLE X
FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D6

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\left[\begin{array}{cccccc}
.2432 & -.3184 & -1.0483 & 0 & 0 & 0 \\
0 & 0 & 0 & .0620 & -.4225 & -.7827
\end{array}\right] \\
& \mathrm{K}_{\mathrm{b}}=\left[\begin{array}{llllll}
.2432 & -.3184 & -1.0483 & -.6556 & -.1530 & -.1051 \\
-.4777 & -.1057 & -.1020 & .0620 & -.4225 & -.7827
\end{array}\right] \\
& \mathrm{K}_{\mathrm{c}}=\left[\begin{array}{llllll}
.1134 & -.3613 & -1.1035 & -.6556 & -.1530 & -.1051 \\
-.4777 & -.1057 & -.1020 & -.0813 & -.4879 & -.8350
\end{array}\right] \\
& \mathrm{K}^{*}=\left[\begin{array}{llllll}
.0916 & -.3670 & -1.1110 & -.7313 & -.1809 & -.1291 \\
-.5433 & -.1261 & -.1314 & -.1085 & -.4941 & -.8417
\end{array}\right]
\end{aligned}
$$

TABLE XI
COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D6

Feedback Gain Matrix Obtained	Memory (k-byte)	Number of Iterations	Execution Time (Seconds)	Compilation Time (Seconds)
K_{a}	120	10	4.19	11.59
$\mathrm{~K}_{\mathrm{b}}$	132	20	7.94	15.05
$\mathrm{~K}_{\mathrm{c}}$	148	30	12.60	20.93
$\mathrm{~K}^{*}$	440	9	50.84	9.66
\# The initial values used to calculate K_{a},	K_{b}, and K_{c} are zeros. Then K_{c}			

TABLE XII
PERFORMANCE INDICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D6

Feedback Gain Matrix Used	Performance Index
K_{a}	---
K_{b}	6.921
$\mathrm{~K}_{\mathrm{c}}$	6.762
$\mathrm{~K}^{*}$	6.737

TABLE XIII
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, ($\mathrm{A}+\mathrm{BKC}$), OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D6

$\left(A+B K_{a} C\right)$	$\left(A+B K_{b} C\right)$	$\left(A+B K_{c} C\right)$	$(A+B K * C)$
-8.11	-8.28	-7.77	-7.84
$-5.51 \pm j 2.32$	$-5.27 \pm j 2.71$	$-5.32 \pm j 3.05$	$-5.38 \pm j 3.22$
$-3.90 \pm j 2.63$	$-2.93 \pm j 1.90$	$-3.29 \pm j 1.59$	$-2.99 \pm j .144$
$-1.57 \pm \mathrm{j} 2.70$	$-2.32 \pm j 1.96$	$-2.05 \pm j 2.24$	$-2.15 \pm j 2.20$
$0.173^{\#}$	-0.596	-0.831	-1.04

TABLE XIV

FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D8

$$
\left.\begin{array}{l}
\mathrm{K}_{\mathrm{a}}=\left[\begin{array}{cccccccc}
.2951 & -.7653 & -.1407 & -.6581 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & .0490 & -.8613 & -.9536 & -.6622
\end{array}\right] \\
\mathrm{K}_{\mathrm{b}}=\left[\begin{array}{cccccccc}
.2951 & -.7653 & -.1407 & -.6581 & -.9504 & -.2353 & -.1210 & -.0287 \\
-.6778 & -.1551 & -.1412 & -.0229 & .0490 & -.8613 & -.9536 & -.6622
\end{array}\right] \\
\mathrm{K}_{\mathrm{c}}=\left[\begin{array}{lllllll}
.0902 & -.8389 & -.2089 & -.6689 & -.9504 & -.2353 & -.1210 \\
-.6778 & -.1551 & -.1412 & -.0229 & -.1766 & -.9649 & -1.0127 \\
\mathrm{~K}^{*} & =\left[\begin{array}{llllll}
-.0287 \\
.0573 & -.8486 & -1.4821 & -.6700 & -1.0652 & -.2809
\end{array}\right]-.1453 & -.0343 \\
-.7782 & -.1890 & -.1702 & -.0274 & -.2139 & -.9755 & -1.0172
\end{array}--.6771\right.
\end{array}\right]
$$

TABLE XV
COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D8

Feedback Gain Matrix Obtained	Memory (k-byte)	Number of Iterations	Execution Time (Seconds)	Compilation Time (Seconds)
K_{a}	120	18	7.82	11.50
$\mathrm{~K}_{\mathrm{b}}$	132	37	15.70	15.79
$\mathrm{~K}_{\mathrm{c}}$	148	57	23.93	21.49
$\mathrm{~K} *$	440	18	98.49	9.69

\# The initial values used to calculate K_{a}, K_{b}, and K_{c} are zeros. Then K_{c} is used as the initial value to calculate K^{*}.

TABLE XVI
PERFORMANCE INDICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D8

Feedback Gain Matrix Used	Performance Index
K_{a}	\cdots
K_{b}	7.802
$\mathrm{~K}_{\mathrm{c}}$	7.491
$\mathrm{~K}^{*}$	6.655

TABLE XVII
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY D8

$\left(\mathrm{A}+\mathrm{BK} \mathrm{a}^{\mathrm{C}}\right)$	$\left(\mathrm{A}+\mathrm{BK} \mathrm{K}^{C}\right)$	$\left(\mathrm{A}+\mathrm{BK} \mathrm{c}^{C}\right)$	$(\mathrm{A}+\mathrm{BK} * \mathrm{C})$
-21.18	-21.19	-21.20	-17.84
-14.18	-14.18	-14.18	-14.18
-2.91	$-2.37 \pm j 1.18$	-2.64	-3.05
$-2.20 \pm j 1.67$	-1.17	$-2.00 \pm \mathrm{j} 1.33$	$-2.50 \pm j 1.94$
$-1.12 \pm j 3.91$	$-1.21 \pm$ j3.88	$-1.18 \pm \mathrm{j} 3.93$	$-2.03 \pm \mathrm{j} 2.62$
$0.15{ }^{\text {\# }}$	-0.50	-0.64	-0.95

TABLE XVIII
FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S4

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\left[\begin{array}{cccc}
.1796 & -.0745 & 0 & 0 \\
0 & 0 & .1000 & -.1434
\end{array}\right] \\
& \mathrm{K}_{\mathrm{b}}=\left[\begin{array}{cccc}
.1796 & -.0745 & -.3496 & -.1328 \\
-.3570 & -.0686 & .1000 & -.1434
\end{array}\right] \\
& \mathrm{K}_{\mathrm{c}}=\left[\begin{array}{llll}
.1363 & -.0860 & -.3496 & -.1328 \\
-.3570 & -.0686 & .0583 & -.1963
\end{array}\right] \\
& \mathrm{K}^{*}=\left[\begin{array}{llll}
.1372 & -.0945 & -.3806 & -.1439 \\
-.3667 & -.0857 & .0494 & -.1943
\end{array}\right]
\end{aligned}
$$

TABLE XIX
COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S4

Feedback Gain Matrix Obtained	Memory (K-byte)	Number of Iterations	Execution Time (Seconds)	Compilation Time (Seconds)
K_{a}	120	20	9.27	10.51
$\mathrm{~K}_{\mathrm{b}}$	132	42	17.32	14.32
$\mathrm{~K}_{\mathrm{c}}$	144	67	27.31	19.45
$\mathrm{~K}^{*}$	440	19	103.86	9.61

\#The initial values used to calculate K_{a}, K_{b}, and K_{c} are zeros. Then K_{c} is used as the initial value to calculate K^{*}.

TABLE XX
PERFORMANCE INDICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S4

Feedback Gain Matrix Used	Performance Index
K_{a}	--
K_{b}	.002896
$\mathrm{~K}_{\mathrm{c}}$.002861
$\mathrm{~K}^{*}$.002855

TABLE XXI
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S4

$\left(\mathrm{A}+\mathrm{BK} \mathrm{a}^{C}\right)$	$\left(\mathrm{A}+\mathrm{BK} \mathrm{b}^{C}\right)$	$\left(\mathrm{A}+\mathrm{BK} \mathrm{C}^{C}\right)$	$(\mathrm{A}+\mathrm{BK} * \mathrm{C})$
-13.42	-13.42	-13.44	-13.45
-11.05	-11.04	-11.12	-11.11
$-1.45 \pm j 2.55$	$-1.15 \pm j 2.54$	$-1.11 \pm j 2.67$	$-1.08 \pm j 2.67$
-1.32	$-0.93 \pm j 3.31$	-0.93	-0.93
$-0.74 \pm j 3.43$	-0.92	$-0.89 \pm j 3.34$	$-0.90 \pm j 3.35$
0.24 "	-0.38	-0.44	-0.47

TABLE XXII
FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S6

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\left[\begin{array}{cccccc}
.2361 & -.3355 & -1.0922 & 0 & 0 & 0 \\
0 & 0 & 0 & .0544 & -.4427 & -.8238
\end{array}\right] \\
& \mathrm{K}_{\mathrm{b}}=\left[\begin{array}{cccccc}
.2361 & -.3355 & -1.0922 & -.6652 & -.1505 & -.1011 \\
-.4759 & -.1062 & -.1046 & .0544 & -.4427 & -.8238
\end{array}\right] \\
& \mathrm{K}_{\mathrm{c}}=\left[\begin{array}{llrlll}
.1010 & -.3787 & -1.1420 & -.6652 & -.1505 & -.1011 \\
-.4759 & -.1062 & -.1046 & -.0959 & -.5082 & -.8756
\end{array}\right] \\
& \mathrm{K}^{*}=\left[\begin{array}{lllll}
.0802 & -.3842 & -1.1492 & -.7395 & -.1779 \\
-.5446 & -.1260 & -.1308 & -.1222 & -.5142 \\
\hline
\end{array}\right.
\end{aligned}
$$

TABLE XXIII
COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S6

Feedback Gain Matrix Obtained	Memory (K-byte)	Number of Iterations	Execution Time (Seconds)	Compilation Time (Seconds)
K_{a}	120	9	3.72	10.63
$\mathrm{~K}_{\mathrm{b}}$	132	18	7.25	14.79
$\mathrm{~K}_{\mathrm{c}}$	144	29	11.82	19.62
$\mathrm{~K}^{*}$	440	8	44.33	9.59

\#The initial values used to calculate K_{a}, K_{b}, and K_{c} are zeros. Then K_{c} is used as the initial value to calculate K^{*}.

TABLE XXIV
PERFORMANCE INDICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S6

Feedback Gain Matrix Used	Performance Index
K_{a}	---
K_{b}	.002306
$\mathrm{~K}_{\mathrm{c}}$.002258
$\mathrm{~K}^{*}$.002251

TABLE XXV
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S6

$\left(A+B K_{a} C\right)$	$\left(A+B K_{b} C\right)$	$\left(A+B K_{c} C\right)$	$\left(A+B K^{*} C\right)$
-7.64	-7.83	-7.27	-7.33
$-5.49+j 2.70$	$-5.36 \pm j 3.09$	$-5.40 \pm j 3.36$	$-5.43 \pm j 3.46$
$-4.15 \pm j 2.60$	$-3.24 \pm j 1.89$	$-3.50 \pm j 1.54$	$-3.27 \pm j 1.42$
$-1.58 \pm j 2.66$	$-2.14 \pm j 1.89$	$-2.00 \pm j 2.18$	$-2.07 \pm j 2.11$
$0.16 \#$	-0.60	-0.85	-1.06
\# Unstab1e eigenvalue.			

TABLE XXVI
PERFORMANCE INDICES OF THE LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S8 ${ }^{\#}$

Feedback Gain Matrix Used	Performance Index
K_{a}	---
K_{b}	.002495
$\mathrm{~K}_{\mathrm{c}}$.002436
$\mathrm{~K}^{*}$.002201
\#Other results of Case Study S8 are the	

TABLE XXVII
COMPARISONS OF PERFORMANCE INDICES OF THE LOAD FREQUENCY CONTROL SYSTEM

Dimension of Output Vector	Feedback Gain Matrix Used	Performance Index	
		Deterministic System	Stochastic System
4	K_{a}	---	---
4	K_{b}	8.357	. 002896
4	K_{c}	8.306	. 002861
4	K*	8.288	. 002855
6	K_{a}	---	---
6	K_{b}	6.921	. 002306
6	K_{c}	6.762	. 002258
6	K*	6.737	. 002251
8	Ka	---	---
8	K_{b}	7.802	. 002495
8	K_{c}	7.491	. 002436
8	K*	6.655	. 002201

CHAPTER V

CONTROL OF INTERCONNECTED SYNCHRONOUS MACHINES

5.1. Introduction

Within the past few years studies have been made to apply optimal control theory to synchronous machine stabilization problems. With the increasing size and complexity of power systems improved techniques are required in order to achieve a better stability limit. The first part of the works reported in the literature is primarily concerned with state feedback strategies [1][31][46][58][59]. The results of the controller design in the real implementation on a micro-machine shows a good dynamic response for a small disturbance [26][47]. One of the main disadvantages of this technique is that all the state variables are not always available for measurement. To overcome this difficulty output feedback control has been considered [18][20][51][52].

The publications described above confine themselves to a model consisting of one machine connected to an infinite bus. However, there are some situations where a multimachine model is preferred. When using this model computational difficulty has been experienced because of the large dimension of the system. Usually optimal control design of the multi-
machine system is carried out by using a reduced-order model for each machine [60].

Instead of deleting some state variables which result in reduced-order system design or semi-decoupling the system which results in a one-machine-infinite-bus design, in this chapter the suboptimal technique developed in Chapter III is applied to the multimachine control problem. The technqiue requires less calculation than the optimal design given in Chapter II so it is suitable for multimachine design problem whose dimension is, in general, large. However, since it is desirable to compare the results of the suboptimal control to those of the optimal control, the reduced-order models for synchronous machine and its exciter are used. An interconnected network consisting of two machines and an infinite bus is considered in this study.

5.2 Interconnected Synchronous
 Machine Model

5.2.1 Synchronous Machine Equations

Comprehensive mathematical equations describing the behavior of a synchronous machine, both during steady state and transient state, were derived by Park [49]. Since then there have been numerous publications dealing with mathematical models of the machine. Different forms of the model can be found in different problems. References [15] [22] [32] [36] [48] are examples of papers and books that present the
machine's equations. The following are synchronous machine equations in per unit (except for time). The variables consist of magnetic flux, voltage, and current in direct and quadrature axes, and field circuit.

$$
\begin{align*}
& \psi_{f}=x_{f} i_{f}-x_{f d} i_{d}+x_{f k d}{ }^{i}{ }_{k d} \tag{5.1a}\\
& \psi_{d}=x_{f d^{i}}{ }_{f}-x_{d} i_{d}+x_{a k d}{ }^{i} k d \tag{5.1b}\\
& \psi_{k d}=x_{f k d} i_{f}-x_{a k d}{ }^{i}{ }_{d}+x_{k k d}{ }^{i} k d \tag{5.1c}\\
& \psi_{q}=-x_{q}{ }^{i} q+x_{a k q}{ }^{i} k q \tag{5.1d}\\
& \psi_{k q}=-x_{a k q}{ }^{i} q+x_{k k q}{ }^{i}{ }_{k q} \tag{5.1e}\\
& v_{f}=\frac{1}{\omega_{o}} \frac{d \psi_{f}}{d t}+r_{f}{ }_{f} \tag{5.1f}\\
& v_{d}=\frac{1}{\omega_{o}} \frac{d \psi_{d}}{d t}-r_{a} i_{d}-\frac{\omega}{\omega_{o}} \psi_{q} \tag{5.1~g}\\
& v_{q}=\frac{1}{\omega_{o}} \frac{d \psi q}{d t}-r_{a} i_{q}+\frac{\omega}{\omega_{o}} \psi_{d} \tag{5.1h}\\
& 0=\frac{1}{\omega_{o}} \frac{\mathrm{~d} \psi}{\mathrm{kd}} \mathrm{dt}+\mathrm{r}_{\mathrm{kd}} \mathrm{i}_{\mathrm{kd}} \tag{5.1i}\\
& 0=\frac{1}{\omega_{o}} \frac{d \psi}{d t}+r_{k q}{ }^{i} k q \tag{5.1j}\\
& v_{t}^{2}=v_{d}^{2}+v_{q}^{2} \tag{5.1k}\\
& \mathrm{~T}_{\mathrm{a}}=\psi_{\mathrm{d}} \mathrm{i}_{\mathrm{q}}-\psi_{\mathrm{q}} \mathrm{i}_{\mathrm{d}} \tag{5.11}\\
& \left.\frac{d \omega}{d t}={ }^{\omega}{ }^{\omega} \mathrm{O}, \mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{a}}-\mathrm{K}_{\mathrm{d}}{ }^{\omega}\right] \tag{5.1~m}\\
& \frac{d \delta}{d t}=\omega \tag{5.1n}
\end{align*}
$$

where subscripts $f, d, q, k d, k q$ stand for field, d-axis armature, q-axis armature, $d-a x i s ~ a m o r t i s s e u r, ~ a n d ~ q-a x i s$ amortisseur windings, respective1y; and

```
    rj}= resistance of circuit j
    xj}= reactance of circuit j
    i}\mp@subsup{j}{}{\prime}=\mathrm{ current in circuit j;
    vj}= voltage in circuit j
    \psij}=\mp@code{flux linkage of circuit j;
        \omega = angular velocity of rotor;
    \omega
    v
    T}=\mp@code{air map electromagnetic torque of synchronous
    T
    H = per unit inertia of the generating unit;
K
        \delta = phase angle of machine.
```

 In this study a linearized third-order model of a syn-
 chronous machine and a first order excitation system is used. The block diagram of the exciter is shown in Figure 7. The third-order model of a synchronous machine is obtained by neglecting effects of amortisseur windings, armature resistance, and time rate of change of magnetic fluxes. The results are four state equations and seven algebraic equations as follow:

Figure 7. Excitation System

State equations:

$$
\begin{align*}
& \frac{d}{d t} \Delta \psi_{f}=\omega_{o} \Delta v_{f}-\omega_{o} r_{f} \Delta i_{f} \tag{5.2a}\\
& \frac{d}{d t} \Delta \delta=\Delta \omega \tag{5.2b}\\
& \frac{d}{d t} \Delta \omega=-\frac{\omega_{o}}{2 H}\left[\Delta T_{a}+K_{d} \Delta \omega\right] \tag{5.2c}\\
& \frac{d}{d t} \Delta v_{f}=\frac{1}{T_{e}}\left[K_{e} \Delta u-K{ }_{e} \Delta v_{t}-\Delta v_{f}\right] \tag{5.2d}
\end{align*}
$$

Algebraic equations:

$$
\begin{align*}
& \Delta \psi_{f}=x_{f} \Delta i_{f}-x_{f d} \Delta i_{d} \tag{5.3a}\\
& \Delta \psi_{d}=x_{f d} \Delta i_{f}-x_{d} \Delta i_{d} \tag{5.3b}\\
& \Delta \psi_{q}=-x_{q} \Delta i_{q} \tag{5.3c}\\
& \Delta v_{t}=\frac{v_{d}}{v_{t}} \Delta v_{d}+\frac{v_{q}}{v_{t}} \Delta v_{q} \tag{5.3d}\\
& \Delta v_{d}=-\Delta \psi_{q}-\frac{\psi_{q}}{\omega_{o}} \Delta \omega \tag{5.3e}\\
& \Delta v_{q}=\Delta \psi_{d}+\frac{\psi_{d}}{\omega_{o}} \Delta \omega \tag{5.3f}\\
& \Delta T_{a}=\psi_{d} \Delta i_{q}+i_{q} \Delta \psi_{d}-\psi_{q} \Delta i_{d}-i_{d} \Delta \psi_{q} \tag{5.3~g}
\end{align*}
$$

The state Equation (5.2) may be written as:

$$
\begin{equation*}
\frac{d x}{d t}=A_{1} x+B u+C z \tag{5.4}
\end{equation*}
$$

where

$$
\begin{aligned}
x^{T} & =\left[\Delta \delta, \Delta \omega, \Delta v_{f}, \Delta \psi_{f}\right] ; \\
z^{T} & =\left[\Delta i_{f}, \Delta T_{a}, \Delta v_{f}\right] \\
u & =\Delta u ;
\end{aligned}
$$

and A_{1}, B, and C are shown in Table XXVIII.
By manipulation of Equation (5.3a) and (5.3d) through
(5.3g) the following equation is obtained:

$$
\begin{equation*}
z=E W+G I \tag{5.5}
\end{equation*}
$$

where

$$
\begin{aligned}
W^{T} & =\left[\Delta \psi_{f}, \Delta \omega\right] \\
I^{T} & =\left[\Delta i_{d}, \Delta i_{q}\right]
\end{aligned}
$$

and E and G are shown in Table XXVIII.
From Equation (5.3a), (5.3b), (5.3e), and (5.3f) we have

$$
\begin{equation*}
V=R W+S I \tag{5.6}
\end{equation*}
$$

where

$$
\mathrm{V}^{\mathrm{T}}=\left[\Delta \mathrm{v}_{\mathrm{d}}, \Delta \mathrm{v}_{\mathrm{q}}\right]
$$

and R and S are shown in Table XXVIII.
5.2.2 Mu1timachine Equations

In order to make use of equations and symbols presented in section 5.2 and extend it to a two-machine system, we shall modify equations as follow. Suppose an equation for a one-machine system is of the form

$$
\begin{equation*}
X=H Y \tag{5.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& X^{\mathrm{T}}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \\
& \mathrm{Y}^{\mathrm{T}}=\left[y_{1}, y_{2}\right]
\end{aligned}
$$

$$
H=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]
$$

We shall write Equation (5.7) for a two-machine system as

$$
\begin{equation*}
X_{m}=H_{m} Y_{m} \tag{5.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& X_{m}^{T}=\left[x_{1 a}, x_{2 a}, x_{1 b}, x_{2 b}\right] \\
& Y_{m}^{T}=\left[y_{1 a}, y_{2 a}, y_{1 b}, y_{2 b}\right] \\
& H_{m}=\left[\begin{array}{cccc}
h_{11 a} & h_{12 a} & 0 & 0 \\
h_{21 a} & h_{22 a} & 0 & 0 \\
0 & 0 & h_{11 b} & h_{12 b} \\
0 & 0 & h_{21 b} & h_{22 b}
\end{array}\right]
\end{aligned}
$$

Using this notation Equations (5.4), (5.5) and (5.6) may be written for a multimachine system as

$$
\begin{align*}
\frac{d}{d t} x_{m} & =A_{1 m} x_{m}+B_{m} u_{m}+C_{m} z_{m} \tag{5.9}\\
z_{m} & =E_{m} W_{m}+G_{m} I_{m} \tag{5.10}\\
V_{m} & =R_{m} W_{m}+S_{m} I_{m} . \tag{5.11}
\end{align*}
$$

5.2.3 Transmission Network Equations

The transmission network under study is shown in Figure 8. It consists of three buses. Two of them are connected to synchronous machines. The third is an infinite bus. The equation for the network current and voltage is

Figure 8. Transmission Network

$$
\begin{equation*}
I_{n}=Y_{n} V_{n} \tag{5.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{n}}^{\mathrm{T}}=\left[\mathrm{i}_{\mathrm{D} 1}, \mathrm{i}_{\mathrm{Q} 1}, \mathrm{i}_{\mathrm{D} 2}, \mathrm{i}_{\mathrm{Q} 2}, \mathrm{i}_{\mathrm{D} 3}, \mathrm{i}_{\mathrm{Q} 3}\right] \\
& \mathrm{V}_{\mathrm{n}}^{\mathrm{T}}=\left[\mathrm{v}_{\mathrm{D} 1}, \mathrm{v}_{\mathrm{Q} 1}, \mathrm{v}_{\mathrm{D} 2}, \mathrm{v}_{\mathrm{Q} 2}, \mathrm{v}_{\mathrm{D} 3}, \mathrm{v}_{\mathrm{Q} 3}\right]
\end{aligned}
$$

and Y_{n} is a bus admittance matrix as shown in Table XXVIII.
The relationship between the machine-reference quantities and the network-reference quantities is given by Taylor [57] as

$$
\begin{align*}
V_{m m} & =F V_{n} \tag{5.13}\\
I_{m m} & =F I_{n} \tag{5.14}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{mm}}^{\mathrm{T}}=\left[\mathrm{v}_{\mathrm{d} 1}, \mathrm{v}_{\mathrm{q} 1}, \mathrm{v}_{\mathrm{d} 2}, \mathrm{v}_{\mathrm{q} 2}, \mathrm{v}_{\mathrm{d} 3}, \mathrm{v}_{\mathrm{q} 3}\right] \\
& \mathrm{I}_{\mathrm{mm}}^{\mathrm{T}}=\left[\mathrm{i}_{\mathrm{d} 1}, \mathrm{i}_{\mathrm{q} 1}, i_{\mathrm{d} 2}, i_{\mathrm{q} 2}, i_{\mathrm{d} 3}, i_{\mathrm{q} 3}\right]
\end{aligned}
$$

and F is a function of δ_{1}, and δ_{2}, the displacement between the machine reference and the network reference. It is shown in Table XXVIII.

From Equations (5.14) and (5.12)

$$
I_{m m}=F Y_{n} V_{n}
$$

since

$$
\begin{align*}
& \mathrm{F}^{-1}=\mathrm{F}^{\mathrm{T}} \\
& \mathrm{I}_{\mathrm{mm}}=\mathrm{FY}_{\mathrm{n}} \mathrm{~F}^{\mathrm{T}} \mathrm{~V}_{\mathrm{mm}} \tag{5.15}
\end{align*}
$$

Equation (5.15) can be written in linearized form and using the fact that bus No. 3 is infinitely strong, i.e., $\Delta \delta_{3}=0$, we get

$$
\begin{align*}
\Delta I_{m m}= & F Y_{n} F^{T} \Delta V_{m m}+\left(\frac{\partial F}{\partial \delta_{1}} Y_{n} F^{T}+F Y_{n} \frac{\partial F}{\partial \delta_{1}}{ }^{T}\right) V_{m m} \Delta \delta_{1} \\
& +\left(\frac{\partial F}{\partial \delta_{2}} Y_{n} F^{T}+F Y_{n} \frac{\partial F^{T}}{\partial \delta_{2}}\right) V_{m m} \Delta \delta_{2} \\
= & F Y_{n} F^{T} \Delta V_{m m}+T \Delta \delta_{m m} \tag{5.16}
\end{align*}
$$

where

$$
\begin{aligned}
\Delta \delta_{m m}^{T} & =\left[\Delta \delta_{1}, \Delta \delta_{2}\right] \\
T & =\left[\left(\frac{\partial F}{\partial \delta_{1}} Y_{n} F^{T}+F Y_{n} \frac{\partial F^{T}}{\partial \delta_{1}}\right) V_{m m},\left(\frac{\partial F}{\partial \delta_{2}} Y_{n} F^{T}+F Y_{n} \frac{\partial F^{T}}{\partial \delta_{2}}\right) V_{m m}\right]
\end{aligned}
$$

From definitions, the following equations are obtained:

$$
\begin{align*}
\mathrm{W}_{\mathrm{m}} & =J_{1} x_{\mathrm{m}} \tag{5.17}\\
\Delta \delta_{\mathrm{mm}} & =J_{2} x_{\mathrm{m}} \tag{5.18}\\
\mathrm{I}_{\mathrm{m}} & =J_{3} \Delta I_{\mathrm{mm}} \tag{5.19}\\
\Delta \mathrm{~V}_{\mathrm{mm}} & =\mathrm{J}_{4} \mathrm{~V}_{\mathrm{m}} \tag{5.20}
\end{align*}
$$

where J_{1}, J_{2}, J_{3}, and J_{4} are shown in Tab1e XXVIII.
By manipulation of Equations (5.9), (5.10), (5.11), (5.17), (5.18), (5.19), and (5.20), the state equation in standard form is obtained:

$$
\begin{align*}
\frac{d x_{m}}{d t}= & \left\{A_{1 m}+C_{m} E_{m} J_{1}+C_{m} G_{m}\left(I_{m}-J_{3} F Y_{n} F^{T} J_{4} S_{m}\right)^{-1}\right. \\
& \left.\times\left[J_{3} F Y_{n} F^{T} J_{4} R_{m} J_{1}+J_{3} T J_{2}\right]\right\} x_{m}+B_{m} u_{m} \tag{5.21}
\end{align*}
$$

TABLE XXVIII
CONSTANT MATRICES IN THE SYNCHRONOUS MACHINE CONTROL SYSTEM

$$
A_{1}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -\frac{\omega_{0} K_{d}}{2 H} & 0 & 0 \\
0 & 0 & -\frac{1}{T_{e}} & 0 \\
0 & 0 & \omega_{\mathrm{o}} & 0
\end{array}\right]
$$

$$
B=\left[\begin{array}{c}
0 \\
0 \\
\frac{\mathrm{~K}_{\mathrm{e}}}{\mathrm{~T}_{\mathrm{e}}} \\
0
\end{array}\right]
$$

$$
C=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\frac{\omega_{o}}{2 H} & 0 \\
0 & 0 & -\frac{K_{e}}{T_{e}} \\
-\omega_{o} r_{f} & 0 & 0
\end{array}\right]
$$

TABLE XXVIII (Continued)

$R=\left[\begin{array}{cc}0 & -\frac{\psi_{q}}{\omega_{o}} \\ \frac{x_{f d}}{x_{f}} & \frac{\psi_{d}}{\omega_{o}}\end{array}\right]$
$S=\left[\begin{array}{ccc}0 & x_{q} \\ \frac{x_{f d}}{x_{f}}-x_{d} & 0\end{array}\right]$

TABLE XXVIII (Continued)

$$
Y_{n}=\left[\begin{array}{lll}
y_{11} & y_{12} & y_{13} \\
y_{21} & y_{22} & y_{23} \\
y_{31} & y_{32} & y_{33}
\end{array}\right]
$$

where

$$
\begin{aligned}
& y_{i j}=\left[\begin{array}{cc}
g_{i j} & -b_{i j} \\
b_{i j} & g_{i j}
\end{array}\right] \\
& g_{i j}=\text { real part of admittance } y_{i j} \text {; and } \\
& b_{i j}=\text { imaginary part of admittance } y_{i j} \text {. } \\
& \mathrm{F}=\left[\begin{array}{ccccccc}
\cos \delta_{1} & \sin \delta_{1} & 0 & 0 & 0 & 0 \\
-\sin \delta_{1} & \cos \delta_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & \cos \delta_{2} & \sin \delta_{2} & 0 & 0 \\
0 & 0 & -\sin \delta_{2} & \cos \delta_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& J_{1}=\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

TABLE XXVIII (Continued)
$J_{2}=\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
$J_{3}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$
$J_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

5.3 Interconnected System Example

In the study of the interconnected synchronous machine control system, minimization algorithms which are discussed in section 3.5 are used to calculate the optimal gain and the suboptimal feedback gain matrices. The iterative algorithm has been tried but very often it converged to the wrong solution (see section 2.5). The program is designed to calculate the first three terms of the series of the matrices K, P, and Z. The DVDP minimization algorithm is used to find the first terms: K^{0}, P^{0}, and Z^{0}. Eigenvalues of the closed loop system, $A+B K^{\circ} C$, are calculated in each function evaluation to insure that the solution yields closed-loop stability. After a solution is obtained the iterative algorithm is applied to refine the result to a more accurate one. For the terms of higher derivative the residue-minimization algorithm is used. The network under study in this chapter is depicted in Figure 8. The numerical data for the two synchronous machines, network impedances and voltages, are shown in Tables XXIX and XXX. The matrices D, Q, and R are assumed to be identity matrices. The numerical value of the matrix A is shown in Table XXXI. Both deterministic case and stochastic case are considered. In the deterministic case the matrix $D V D^{T}$ is replaced by an identity matrix. The numerical value of the matrix V for the stochastic case is given in Table III. The number of state variables for the interconnected system is eight. The numbers of feedback variables of six and eight are studied. The system of four

TABLE XXIX
SYNCHRONOUS MACHINES' CONSTANTS

Constants	Machine No. 1	Machine No. 2
r_{f}	0.0010	0.0016
x_{f}	1.5	1.47
x_{fd}	0.9	1.33
x_{d}	1.1	1.20
x_{q}	0.85	1.07
H	5.0	3.20
$\mathrm{~K}_{\mathrm{d}}$	0.003	0.001
$\mathrm{~K}_{\mathrm{e}}$	50.0	35.0
$\mathrm{~T}_{\mathrm{e}}$	0.1	0.08

TABLE XXX
NETWORK DATA

Variable	Numerical Value
v_{1}	1.05 p.u.
v_{2}	1.00 p.u.
v_{3}	1.00 p.u.
δ_{1}	5 degree
δ_{2}	3 degree
δ_{3}	0 degree
z_{a}	$0.020+j 0.40$ p.u.
z_{b}	$0.030+j 0.50$ p.u.
z_{c}	$0.015+j 0.25$ p.u.
${ }^{2}$	$2.120+j 0.076$ p.u.
z_{e}	$1.050+j 0.49$ p.u.

TABLE XXXI
PLANT MATRIX A OF THE EXAMPLE SYSTEM
$\left[\begin{array}{cccccccr}0 & 1.0000 & 0 & 0 & 0 & 0 & 0 & 0 \\ -45.8617 & -0.0698 & 0 & -20.1032 & 8.0283 & -0.0126 & 0 & -1.3920 \\ 50.2127 & -0.3048 & -10.0000 & -60.2574 & -100.4260 & -0.5633 & 0 & -216.7320 \\ -0.1796 & -0.0008 & 376.9910 & -0.4423 & 0.1086 & 0.0004 & 0 & 0.1782 \\ 0 & 0 & 0 & 0 & 0 & 1.0000 & 0 & 0 \\ 27.5730 & 0.0444 & 0 & 15.8685 & -146.9050 & -0.3531 & 0 & -181.8650 \\ 42.5993 & -0.0442 & 0 & -1.5547 & -171.7630 & -0.9996 & -12.5000 & -382.4629 \\ 0.2338 & 0.0010 & 0 & 0.2780 & -1.5496 & -0.0059 & 376.9910 & -2.7467\end{array}\right]$
feedback variables was tried but accurate results for the nonlinear matrix equations were very difficult to get, so it is disregarded.

The results of the study of interconnected synchronous machine control systems are presented in Tables XXXII through XLVIII. From these results the following statements can be made:

1. The optimal feedback gain matrix, K, is not sensitive to changes in values of the noise intensity V.
2. When more variables are used as the controller inputs the performance index is better for both optimal system and suboptimal system.
3. Using the first two terms of the series to calculate K yields results which are close to those of the optimal system. However, for a system of higher dimension it is wise to check whether or not more terms are necessary.
4. Like the case of load frequency control, it is found that using three feedback variables for each machine gives results close to those using four feedback variables. So it is suggested that output feedback variables be frequency, phase angle, and field voltage for each generating unit. The field flux linkage does not contribute a significant improvement in the system performance and it is practically unmeasurable. So the variables should not be used as an output feedback variable.
5. The optimal gain matrix calculation requires much more calculation time than the suboptimal one, even if the
former uses the results of the latter as a starting value which is very close to the optimal value. The memory requirement for the optimal gain calculation is about three times more than that for the suboptimal gain calculation.
6. When the minimization algorithm is used, the memory requirement for the optimal gain calculation is about three times more than that of the suboptimal gain. The computation time is also longer for the optimal method, even if the results of the suboptimal gain method are used as a starting value for the optimal value. It should be noted that the optimal gain matrix for this problem is obtained by the iterative method, since an initial value which is near the optimal gain matrix is available. The minimization algorithm is applied to calculate the optimal gain matrix for the sake of comparison only.

5.4 Conclusion

The applications of the suboptimal control technique to interconnected synchronous machine system are studied in this chapter. In section 5.2 a model for interconnected synchronous machines in the standard state variable form is developed. It represents dynamic aspects of the three-bus power system network. One of the buses is assumed to be infinitely strong. Control signals are derived from some of the state variables: frequencies, phase angles, field voltages, and flux linkages of field windings. Optimal and suboptimal feedback gain matrices are calculated and
compared. The minimization algorithm is used. The results of the study show that the suboptimal gain calculation is very effective. It requires much less calculation than that of the optimal gain while the former technique results in a small amount of performance degradation.

TABLE XXXII
FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY D8

$$
\begin{aligned}
& K_{a}=\left[\begin{array}{cccccccc}
-.0620 & 1.0078 & -1.5472 & -.9653 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & .2477 & 1.0026 & -1.5902 & -.9398
\end{array}\right] \\
& K_{b}=\left[\begin{array}{rrrrrrrr}
-.0620 & 1.0078 & -1.5472 & -.9653 & .3546 & -.0797 & .1289 & .4414 \\
-.0726 & .0883 & .1138 & .0634 & .2477 & 1.0026 & -1.5902 & -.9398
\end{array}\right] \\
& K_{c}=\left[\begin{array}{rrrrrrrr}
-.0689 & 1.0044 & -1.5473 & -.9730 & .3546 & -.0797 & .1289 & .4414 \\
-.0726 & .0883 & .1138 & .0634 & .2468 & 1.0011 & -1.6183 & -1.0016
\end{array}\right] \\
& K^{*}=\left[\begin{array}{rrrrrrrr}
-.0689 & 1.0029 & -1.5463 & 0.9721 & .3478 & -.0839 & .1291 & .4420 \\
-.0676 & .0908 & .1130 & .0636 & .2473 & .9993 & -1.6160 & -.9983
\end{array}\right]
\end{aligned}
$$

TABLE XXXIII

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY D8

Feedback Gain Matrix Obtained	Memory (K-byte)	Number of Function Evaluated	Execution Time (Seconds)	Compilation Time (Seconds)
K_{a}	136	328	60	16.62
$\mathrm{~K}_{\mathrm{b}}$	148	431	89	21.27
$\mathrm{~K}_{\mathrm{c}}$	164	512	114	26.65
$\mathrm{~K}^{*}$	440	>100	>300	10.04

[^0]TABLE XXXIV
PERFORMANCE INDICES OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY D8

Feedback Gain Matrix Used	Performance Index
K_{a}	4.01368
$\mathrm{~K}_{\mathrm{b}}$	3.96699
$\mathrm{~K}_{\mathrm{c}}$	3.96593
$\mathrm{~K}^{*}$	3.96592

TABLE XXXV
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY D8

$\left(A+B K_{a} C\right)$	$\left(A+B K_{b} C\right)$	$\left(A+B K_{c} C\right)$	$(A+B K * C)$
$-367 \pm j 200$	$-385 \pm j 194$	$-386 \pm j 199$	$-386 \pm j 199$
$-295 \pm j 374$	$-283 \pm j 378$	$-292 \pm j 386$	$-292 \pm j 386$
-149.184	-136.787	-129.496	-129.580
-16.519	-17.430	-17.150	-17.139
-2.877	-2.927	-2.961	-2.963
-1.313	-1.261	-1.310	-1.311

TABLE XXXVI
FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY D6

$$
\begin{aligned}
& K_{a}=\left[\begin{array}{cccccc}
-.1319 & .0988 & -.5279 & 0 & 0 & 0 \\
0 & 0 & 0 & .2840 & .4555 & -.9877
\end{array}\right] \\
& K_{b}=\left[\begin{array}{llllll}
-.1319 & .0988 & -.5279 & .1535 & .2067 & -.5031 \\
-.0643 & .0764 & .2831 & .2840 & .4555 & -.9877
\end{array}\right] \\
& K_{c}=\left[\begin{array}{llllll}
-.1218 & .1308 & -.4812 & .1535 & .2067 & -.5031 \\
-.0643 & .0764 & .2831 & .3113 & .4544 & -1.0365
\end{array}\right] \\
& K^{*}=\left[\begin{array}{lllll}
& & & &
\end{array}\right]
\end{aligned}
$$

TABLE XXXVII

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY D6

Feedback Gain Matrix Obtained	Memory (K-byte)	Number of Function Evaluated $\#$	Execution Time (Seconds)	Compilation Time (Seconds)
K_{a}	136	179	34	16.95
$\mathrm{~K}_{\mathrm{b}}$	148	436	104	20.87
$\mathrm{~K}_{\mathrm{c}}$	164	534	134	26.09
$\mathrm{~K}^{*}$	440	>100	>300	10.12

\#Approximate value.

TABLE XXXVIII
PERFORMANCE INDICES OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM, CASE STUDY D6

Feedback Gain Matrix Used	Performance Index
K_{a}	4.55949
$\mathrm{~K}_{\mathrm{b}}$	4.18517
$\mathrm{~K}_{\mathrm{c}}$	4.01546
$\mathrm{~K}^{*}$	4.00669

TABLE XXXIX
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY D6

$\left(A+B K_{a} C\right)$	$\left(A+B K_{b} C\right)$	$\left(A+B K_{C} C\right)$	$(A+B K * C)$
-235	$-171 \pm j 335$	$-176 \pm j 327$	$-175 \pm j 323$
$-165 \pm j 285$	$-145 \pm j 49$	$-131 \pm j 51$	$-129 \pm j 51$
$-71 \pm j 99$	-77.54	-81.73	-89.39
-9.74	$-65 \pm j 2.1$	-18.91	-18.73
-3.98	-1.25	-2.94	-2.91
-1.08		-1.31	-1.30

TABLE XL
FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY S8

$$
\left.\begin{array}{l}
K_{a}=\left[\begin{array}{crrrrrr}
-.0620 & 1.0078 & -1.5472 & -.9653 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & .2477 & 1.0026 & -1.5902
\end{array}\right)-.9398
\end{array}\right]
$$

TABLE XLI
COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY S8

Feedback Gain Matrix Obtained	Memory (K-byte)	Number of Function Evaluated ${ }^{\#}$	Execution Time (Seconds)	Compilation Time (Seconds)
K_{a}	136	279	54.39	17.52
$\mathrm{~K}_{\mathrm{b}}$	148	376	81.87	21.02
$\mathrm{~K}_{\mathrm{c}}$	164	452	103.41	25.29
$\mathrm{~K}^{*}$	440	>100	>300	11.35

\#Approximate value.

TABLE XLII
PERFORMANCE INDICES OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY S8

Feedback Gain Matrix Used	Performance Index
K_{a}	.0005780
$\mathrm{~K}_{\mathrm{b}}$.0005720
$\mathrm{~K}_{\mathrm{c}}$.0005718
$\mathrm{~K}^{*}$.0005718

TABLE XLIII
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY S8

$\left(A+B K_{a} C\right)$	$\left(A+B K_{b} C\right)$	$\left(A+B K_{c} C\right)$	$(A+B K * C)$
$-368 \pm j 200$	$-385 \pm j 194$	$-386 \pm j 199$	$-386 \pm j 199$
$-295 \pm j 374$	$-283 \pm j 377$	$-292 \pm j 386$	$-292 \pm j 386$
-149.18	-136.80	-129.41	-129.58
-16.52	-17.43	-17.15	-17.15
-2.88	-2.93	-2.96	-2.96
-1.31	-1.26	-1.31	-1.31

TABLE XLIV
FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM,

CASE STUDY S6
$K_{a}=\left[\begin{array}{cccccc}-.1156 & .1057 & -.4508 & 0 & 0 & 0 \\ 0 & 0 & 0 & .2918 & .4613 & -.9555\end{array}\right]$
$K_{b}=\left[\begin{array}{lllll}-.1156 & .1057 & -.4508 & .1672 & .2183\end{array}\right)-.4784$
-.0859
.0660

TABLE XLV

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY S6

Feedback Gain Matrix Obtained	Memory (K-byte)	Number of Function Evaluated	Execution Time (Seconds)	Compilation Time (Seconds)
K_{a}	136	182	35	16.50
$\mathrm{~K}_{\mathrm{b}}$	148	387	91	20.84
$\mathrm{~K}_{\mathrm{c}}$	164	491	122	26.46
$\mathrm{~K}^{*}$	440	>100	>300	10.95

[^1]TABLE XLVI
PERFORMANCE INDICES OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY S6

Feedback Gain Matrix Used	Performance Index
K_{a}	.0007028
$\mathrm{~K}_{\mathrm{b}}$.0006082
$\mathrm{~K}_{\mathrm{c}}$.0005931
$\mathrm{~K}^{*}$.0005913

TABLE XLVII
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM, CASE STUDY S6

$\left(A+B K_{a} C\right)$	$\left(A+B K_{b} C\right)$	$\left(A+B K_{c} C\right)$	$(A+B K * C)$
-209.92	$-155 \pm j 360$	$-167 \pm j 339$	$-167 \pm j 338$
$-158 \pm j 292$	$-134 \pm j 61$	$-107 \pm j 56$	$-109 \pm j 66$
$-63 \pm j 112$	-73.15	-113.57	-104.24
-10.64	-10.68	-20.95	-20.58
-3.79	-5.10	-2.83	-2.84
-1.09	-1.24	-1.31	-1.30

TABLE XLVIII

COMPARISONS OF PERFORMANCE INDICES OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM

Dimension of Output Vector	Feedback Gain Matrix Used	Performance Index	
6	$\mathrm{~K}_{\mathrm{a}}$	4.55959	.0007028
6	$\mathrm{~K}_{\mathrm{b}}$	4.18517	.0006082
6	$\mathrm{~K}_{\mathrm{c}}$	4.01546	.0005931
6	$\mathrm{~K}^{*}$	4.00669	.0005913
8	$\mathrm{~K}_{\mathrm{a}}$	4.01368	.0005780
8	$\mathrm{~K}_{\mathrm{b}}$	3.96699	.0005720
8	$\mathrm{~K}_{\mathrm{c}}$	3.96593	.0005718
8	$\mathrm{~K}^{*}$	3.96592	.0005718

CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary

The purpose of this research was to find a control design technique which does not require extensive off-line computation. Such a technique is useful for the development of interconnected power system control and other large interconnected control schemes. The control is required to be a linear transformation of only some state variables which are measurable. The performance index is an integral quadratic type with infinite final time. In order to satisfy these conditions the feedback gain matrix of the control must be the solution of a set of nonlinear matrix equations, called necessary conditions, and it must stabilize the closed-loop system. Usually a considerable effort is needed to solve the necessary conditions. If the system is a large one, the problem involved with calculation of the optimal feedback gain is not trivial. A solution to this problem is obtained by applying the technique developed in this research.

In this study the system is assumed to consist of two subsystems. The interactions between the subsystems are functions of a coupling coefficient. When the coefficient is zero the interactions are neglected and the two subsystems
are independent. This makes the calculations using the subsystem matrices possible. With the use of the coupling coefficient the optimal feedback gain matrix can be approximated by a finite term Taylor series expansion. The terms in the series of the suboptimal feedback gain matrix can be calculated from sets of equations which are functions of these subsystem matrices. If the number of terms is selected properly the suboptimal approach potentially offers large reductions in computational requirements while introducing only a small amount of performance degradation.

It is shown that the sets of equations used to solve for the terms in the series for the suboptimal feedback gain has a similar structure to necessary conditions of the optimal feedback gain. Furthermore, the even derivative terms of the series are of α-type and the odd derivative terms of the series are of β-type. It is also proved that the nonzero coupling coefficient has no effect on the feedback gain matrix if the weighting matrix Q is of α-type.

Three numerical methods to solve the sets of the matrix equations are developed. They are the iterative algorithm, the DVDP minimization algorithm, and the residue minimization algorithm. The iterative algorithm requires less computer processing time but convergence to the right solution is not guaranteed. The DVDP algorithm usually converges to the right solution but it requires a longer execution time and the result may not be very accurate. Furthermore, the performance index to be minimized must be well defined. If
it is not, for example in the case of necessary conditions for derivative terms of the series of the feedback gain matrix, the residue minimization algorithm can be applied. This algorithm requires more processing time but a more accurate result can be obtained.

The applications of the techniques to interconnected power systems are studied. Dynamic models for the load frequency control system and the synchronous machine control system are developed. The optimal and suboptimal feedback gain matrices are calculated and compared. The results show that the suboptimal technique results in a closed-1oop control system whose performance is almost the same as the performance of the optimal system but it requires much less computer burden.

6.2 Conclusions

The suboptimal control design technique presented herein makes use of decoupling of the interconnected system into smaller subsystems. By this method the difficulties in solving the nonlinear set of necessary conditions as well as the processing time and the rapid access memory requirements for large scale systems have been greatly reduced. Even though the technique is suitable for interconnected power systems, it may be applied to any large-scale dynamic systems using a relatively small capability computer. The choice of the coupling coefficient may be selected from a physical parameter but it can be introduced as a computational
tool. The dimensions of the two subsystems need not be equal even though equal dimensions are used in this research.

Since the coupling coefficient of the interconnected system can be chosen quite arbitrarily, it is felt that the technique presented can be applied to a single large system or a system consisting of more than two subsystems. This is accomplished by dividing the system into two parts. The validity of the suboptimal technique to such a system offers a topic for further investigation.

Three terms of the series of the suboptimal feedback gain were used in this study and satisfactory results were obtained for the eighth-order power system considered. However, a criterion to judge the number of terms of the series required for a satisfactory performance of the closed-1oop system when the optimal performance is unknown is still open for further research. One suggested method is by observing the performance improvement when one more term is added to the series. If the performance index is decreased only a very small amount, this should be the indication that enough terms have been used.

BIBLIOGRAPHY

[1] Anderson, J. H. "The Control of a Synchronous Machine Using Optimal Control Theory." Proceedings of the IEEE, Vol. 59 (1971), 25-35.
[2] Athans, M., and F. C. Schweppe. "Gradient Matrices and Matrix Calculations.' Lincoln Laboratory Technical Note. Lexington, Mass., November 17, 1965.
[3] Athans, M. "The Matrix Minimum Principle." Information and Control, Vo1. 11 (1968), 592-606.
[4] Athans, M., and P. L. Falb. Optimal Control: An Introduction to the Theory and Its Applications. New York: McGraw-Hill, 1965.
[5] Bellman, R. E. Introduction to Matrix Analysis. 2nd edition. New York: McGraw-Hill, 1970.
[6] Bellman, R. E. "Kronecker Products and Second Method of Lyapunov." Mathematische Nachrichten, Vol. 20 (1959), 17-20.
[7] Bohn, E. V., and S. M. Miniesy. "Optimum Load-Samp1edData Control with Randomly Varying System Disturbances." IEEE Transaction on Power Apparatus and Systems, Vo1. 9 (1972), 1916-1923.
[8] Byerly, R. T., F. W. Keay, and J. W. Skoolund. "Damping of Power Oscillations in Salient-Pole Machines with Static Exciters." IEEE Transactions on Power Apparatus and Systems, Vol. 89 (1970), 1009-1021.
[9] Calovic, M. "Power System Load and Frequency Control Using an Optimal Linear Regulator with Integral Feedback." Proceedings of the Fifth IFAC Congress (1972), Part 1, Paper 7.3.
[10] Calovic, M. "Linear Regulator Design for a Load and Frequency Control." IEEE Transactions on Power Apparatus and Systems, Vol. 91 (1972), 2271-2286.
[11] Cavin, R. K., M. C. Budge, and P. Rasmussen. "An Optimal Linear Systems Approach to Load-Frequency Control." IEEE Transactions on Power Apparatus and Systems, Vol. 90 (1971), 2471-2482.
[12] Cohn, N. "Contro1 of Interconnected Power Systems." Handbook of Automation, Computation, and Control. Edited by E. M. Grabbe, S. Ramo, and D. E. Wooldridge. New York: John Wiley and Sons, 1961.
[13] Concordia, C., and L. K. Kirchmayer. "Tie-Line Power and Frequency Control of Electric Power Systems." AIEE Transactions, Vo1. 72 (1953), Part 3, 562568.
[14] Concordia, C., and L. K. Kirchmayer. "Tie-Line Power and Frequency Control of Electric Power Systems-Part II." AIEE Transactions, Vol. 73 (1954), Part 4, 133-146.
[15] Concordia, C. Synchronous Machines: Theory and Performance. New York: John Wiley and Sons, 1951.
[16] Conte, S. D., and C. deBoor. Elementary Numerical Analysis: An Algorithm Approach. 2nd edition. New York: McGraw-Hi11, 1972.
[17] Daniels, A. R., D. H. Davis, and M. K. Pa1. "Linear and Non1inear Optimization of Power System Performance." IEEE Transactions on Power Apparatus and Systems, Vol. 94 (1975), 810-818.
[18] Davison, E. J., and N. S. Rao. "The Optimal Output Feedback Control of a Synchronous Machine." IEEE Transactions on Power Apparatus and Systems, $\overline{\text { Vol. }}$ 90(1971), 2123-2134.
[19] deMello, F. P., and C. Concordia. "Concepts of Synchronous Machine Stability as Affected by Excitation Control." IEEE Transactions on Power Apparatus and Systems, Vol. 88(1969), 316-329.
[20] DeSarkar, A. K., and N. D. Rao. "Stabilization of a Synchronous Machine Through Output Feedback Control." IEEE Transactions on Power Apparatus and Systems, Vol. 92 (1973), 159-166.
[21] Elangovan, S., and A. Kuppurajulu. "Suboptimal Control of Power Systems Using Simplified Models." IEEE Transactions on Power Apparatus and Systems, Vol. 91 (1972), 911-919.
[22] Elgerd, O. I. Electric Energy Systems Theory: An Introduction. New York: McGraw-Hil1, 1971.
[23] Elgerd, O. I., and C. E. Fosha. "Optimum MegawattFrequency Control of Multiarea Electric Energy Systems." IEEE Transactions on Power Apparatus and Systems, Vol. 89 (1970), 556-563.
[24] Eliis, H. M., J. E. Hardy, A. L. Blythe, and J. W. Skoolund. "Dynamic Stability of the Peace River Transmission System." IEEE Transactions on Power Apparatus and Systems, $\overline{\mathrm{Vo}} .85$ (1966), 586-600.
[25] Elmetwally, M. M., and N. D. Rao. "Sensitivity Analysis in the Optimal Design of Synchronous Machine Regulators." IEEE Transactions on Power Apparatus and Systems, Vo1. 93 (1974), 1310-1317.
[26] Elmetwa11y, M. M., N. D. Rao, and O. P. Malik. "Experimental Results on the Implementation of an Optimal Control for Synchronous Machines." IEEE Transactions on Power Apparatus and Systems, Vol. 94 (1975), 1192-1200.
[27] Fosha, C. E., and O. I. Elgerd. "The MegawattFrequency Control Problem: A New Approach Via Optimal Control Theory." IEEE Transactions on Power Apparatus and Systems, Vol. 89 (1970), 563577.
[28] Gantmacher, F. R. The Theory of Matrices. New York: Che1sea, 1959.
[29] Glavitsch, N., and F. D. Galiana. "Load Frequency Control with Particular Emphasis on Thermal Power Stations." Real Time Control of Electric Power Systems. Edited by E. Handschin. Amsterdam: Elsevier, 1972.
[30] Glover, J. D., and F. C. Schweppe. "Advanced Load Frequency Control." IEEE Transactions on Power Apparatus and Systems, Vo1. 91 (1972), 2095-2103.
[31] Habibullah, B., and Y. N. Yu. "Physically Realizable Wide Power Range Optimal Controllers for Power Systems." IEEE Transactions on Power Apparatus and Systems, Vo1. 94 (1974), 1498-1506.
[32] Hancock, N. N. Matrix Analysis of Electrical Machinery. 2nd edition. Oxford: Pergamon, 1974.
[33] Hanson, O. W., C. J. Goodwin, and P. L. Dandeno. "Influence of Excitation and Speed Control Parameters in Stabilizing Intersystem Oscillations." IEEE Transactions on Power Apparatus and Systems, Vo1. 87(1968), 1306-1313.
[34] IEEE Committee Report. "Computer Representation of Excitation Systems." IEEE Transactions on Power Apparatus and Systems, Vol. 87 (1968), 1460-1463.
[35] IEEE Committee Report. "Dynamic Mode1s for Steam and Hydro Turbines in Power System Studies." IEEE Transactions on Power Apparatus and Systems, Vol. 92(1973), 1904-1915.
[36] Kimbark, E. W. Power System Stability: Synchronous Machines. New York: John Wiley and Sons, 1956.
[37] Kokotovic, P. V., W. R. Perkins, J. B. Cruz, and G. D'Ans. " ε-Coupling Method for Near-Optimum Design of Large Scale Linear Systems." Proceedings of the IEE, Vol. 116 (1969), No. 5.
[38] Kokotovic, P. V., and R. A. Yackel. "Singular Perturbation of Linear Regulators: Basic Theorems." IEEE Transactions on Automatic Control, Vol. 17 (1972), 29-37.
[39] Kwakernaak, H., and R. Sivan. Linear Optimal Control Systems. New York: John Wiley and Sons, 1972.
[40] Kuester, J. L., and J. H. Mize. Optimization Techniques with FORTRAN. New York: McGraw-Hill, 1973.
[41] Kwatny, H. G., K. C. Ka1nitsky, and A. Bhatt. "An Optimal Tracking Approach to Load-Frequency Control." IEEE Transactions on Power Apparatus and Systems, Vol. 94 (1975), 1635-1643.
[42] Levine, W. S., and M. Athans. "On the Determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems.' IEEE Transactions on Automatic Control, Vol. 15 (1970), 44-48.
[43] McLane, P. J. "Optimal Stochastic Control of Linear Systems with State- and Control-Dependent Disturbances." IEEE Transactions on Automatic Control, Vol. 16 (1971), 793-798.
[44] Mendel, J. M. "Optimal Time-Invariant Compensators for Linear Stochastic Time-Invariant Systems." Proceedings of the 1974 Decision and Control Conference, Tucson, Arizona.
[45] Miniesy, S. M., and E. V. Bohn. "Optimum LoadFrequency Continuous Control with Unknown Deterministic Power Demand." IEEE Transactions on Power Apparatus and Systems, Vo1. 91 (1972), 19101915.
[46] Moussa, H. A. M., and Y. N. Yu. 'Optimal Power System Stabilization Through Excitation and/or Governor Contro1." IEEE Transactions on Power Apparatus and Systems, Vol. 91 (1972), 1162-1174.
[47] Newton, M. E., and B. W. Hogg. "Optimal Control of a Micro-Alternator System." IEEE Transactions on Power Apparatus and Systems, Vol. 95 (1976), 1822-1833.
[48] Olive, D. W. "Digital Simulation of Synchronous Machine Transients." IEEE Transactions on Power Apparatus and Systems, Vo1. 87 (1968), 1669-1675.
[49] Park, R. H. "Two-Reaction Theory of Synchronous Machines, Generalized Method of Analysis, Part II.' AIEE Transactions, Vol. 52 (1933), 352-355.
[50] Powe11, M. J. D. "An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives." Computer Journal, Vo1. 7 (1964), 155-162.
[51] Quintana, V. H., M. A. Zohdy, and J. H. Anderson. "On the Design of Output Feedback Excitation Controllers of Synchronous Machines." IEEE Transactions on Power Apparatus and Systems, Vol. 95 (1976), 954-961.
[52] Raina, V. M., J. H. Anderson, W. J. Wilson, and V. H. Quintana. "Optimal Output Feedback Control of Power Systems with High Speed Excitation Systems." IEEE Transactions on Power Apparatus and Systems, Vo1. 95 (1976), 677-686.
[53] Sannuti, P., and P. V. Kokotovic. "Near-Optimum Design of Linear Systems by a Singular Perturbation Method." IEEE Transactions on Automatic Control, Vol. 14 (1969), 15-21.
[54] Schleif, F. R., H. D. Hunkins, G. E. Martin, and E. E. Hattan. "Excitation Control to Improve Powerline Stability." IEEE Transactions on Power Apparatus and Systems, Vo1. 87(1968), 1426-1433.
[55]. Shier, R. M., and A. L. B1ythe. "Field Tests of Dynamic Stability Using a Stabilizing Signal and Computer Program Verficiation." IEEE Transactions on Power and Systems, Vol. 87 (1968), 315-321.
[56] Sims, C. S., and J. L. Melsa. "A Fixed Configuration Approach to the Stochastic Linear Regulator Problem." Proceedings of the 1970 Joint Automatic Conference, Atlanta, Georgia.
[57] Taylor, D. G. "Analysis of Synchronous Machine Connected to Power System Networks." Proceedings of the IEE, Vol. 109 (1962), Part C, $\overline{606-615 .}$
[58] Yu, Y. N., K. Vongsuriya, and L. N. Wedman. "App1ication of an Optimal Control Theory to a Power System." IEEE Transactions on Power Apparatus and Systems, Vo1. 89 (1970), 55-62.
[59] Yu, Y. N., and C. Siggers. "Stabilization and Optimal Control Signals for a Power System." IEEE Transactions on Power Apparatus and Systems, Vol. 90 (1971), 1469-1481.
[60] Yu, Y. N., and H. A. M. Moussa. "Optimal Stabilization of a Multi-Machine System." IEEE Transactions on Power Apparatus and Systems, Vol. 91 (1972), 11741182 .

APPENDIX A

PROGRAM TO EVALUATE THE MATRICES IN THE SERIES OF THE SUBOPTIMAL FEEDBACK GAIN MATRIX USING THE

ITERATIVE ALGORITHM


```
    this program finos the suboptimal feedback gain matrix
ITERATION Algorithm is uSED
```



```
    INTEGER SL.S2.11.T2
    REAL KO11(10.10).*012(10.10).K021(10.101,K022(10.10)
    REAL K112(10.10),K12110.10)
    REAL X211(10,101,K222110.101
    DIMEVSIJYAA110,101,A2(10,101,82(10,101,82(20,10),C1(10,10),
    * R2(10.10),v1(10,10),v2(10,10),A12110,10),A21110,10),012110,10).
    * R2(10,10),V1(10,10),V2(10,10),A12110,10),A21110,10),012(10,
    2011(10.101,2312(10.10),2021(10,101,2022110,10).
    P21210,101,P222(10,10),2211110,101,2222!10,10),
    * GTJ11(1),10),ORO22(10,10),GT121110,10),GT112(10,10),
    * RINVI110,101,RINV2110,101
    OIMENSIONGO1110,10),G022(10,101,G112(10,10),G121110,10),
                GE211110,101,GGT211(10,10),G622(10,101,GGr222(10,10).
                G6211110,101,GGT211(10,101,GG222110,10),GG1222110
                2112(10,10),212110,10),P12(10,10)P121(10,10
                *T1(10,101,4Y2(10,101,CT1(10,10),CT2110,
    * COMMON/AQ/RESN1110,1J),RESK2(10,10),C2C1110,10),CZC2(10.10)
    COMMON/AA/NL,M1,S1,T1,N2,M2,S2,T2
    COMMON/S3/A1,A2,A12,A21,B1,B2,C1,C2,01,02,01,02,012,021,
    commo!/IS/ISUs
    COMROW/DIFF1/K112,K12
    COMMJV/INV/ICHECK
c
    \MIT1=30
    EPSIL=.5
    1 CHECK=0
    EPS1=1.E-5
    EPS2=1.E-S
    EPS3=.001
C
    00:1=1,4
    00, J J=1.
    JF(J.LE.4) READ(5.2) Al(P.1)
    IF(J.GT.4) READ(5,2) Al2(t.JJ)
1
    CONTINUE
    OD 3 I=1,4
    JJ=J-4
    IF(J.LE.4) READ(5,2) A21(1.J)
cocntinue
C
```

1 SUB=!

* LEROLA1,B1,C1,D1,V1,01,R1,Y1,BT1,CT1,RINVI,N1,M1,S1,T1,

(2.2022.6022.6T022)

DO $2101 \times 1, N 1$
DO $210 J=1, N 2$
$A 12(1, J)=A 12(1, J) / E P S I L$

```
    00211 =1.N2
    211 A2I(1.J)=ARI(1.JIREPSIL
    FINO CZCL.CIC2
    CALL MULT(C1,2011,M1,N1.N1.N1)
    CALL MJTY(X1,CT1,M1,N1,M10X2,
    CALL mull(C2,2022,M2,N2,N2,\times1)
    GLL MULT(XI,CT2,M2,N2,M2,X2)
    CALL INVERT(X2,M2.CZC2)
C
250
    CALL 2211K112,K121,A12,A21,B1,82,C1,C2,G011,GT022,2011.20220
    * N1,M1,S1,N2,42,S2,2112,RES21,G112,G7121,ITERZ1)
    CALL 211(K121,K112,A21,A12,B2,B1.CC,G1,G022,GTO11,2022.2011。
    CALL PP1LGT121,G112,PO11,P022,GTO11,G022,012,K011,K022.K121,K112.
    * R1,R2,CT1,C2,N1,M1,S1,N2,N2,S2,P112,RESP1,ITERP11
    CALL PP1GGT112,G121,P022,P011,GT022,G011,021,K022,K011,K112,K121.
    * R2,R1,GT2,C1,Y2,M2,S2,N1,M1,S1,P121,RESP2,ITERP21
    CALLKK11R1,KO11,C1,CI2,C2,2112,2022,BT1,PO11,P112,N1,M1,S1
    * NAL1 N2,S2,Y1,C2C2,R1NVI1
    ,2121,2011,日T2,P022,P121,N2,M2,S2
l
    IGR=0
    00 220 !=1.5
    OO 220 J=1,M2
    RESK1(1,J)=K112(1,J)+Y1(1,J)
2 2 0
    GIGR= AMAXI(BIGR.RKK)
    OO 225 i=1,52
    DO 225 J=1,M1
    RESK2(1,j)=K121(1.J)+Y2(I.J)
    RKK=4GSMAXIMBIGR.QKK
225
    write output
    WRITE16,2301 MMY.BIGR.ITERZL,ITERZ2.ITERP1.ITERPZ
    FORMAT('IITERATION NUMGER',15./1.
```



```
    * 9x,'RES21',10x.'2121',9x,'RES22',10X,'P112'.9X,'RESP1',9x,1X
    *P121',9x, 'RESP2')
    OO 240 1=1,N
    OO 240 j=1,N
```


- P112(1.J).RESP1(1,J). P121(1,J).RESP21I.J)
WRITE 16,260$)$
FORMAT

$00 \quad 2651=1$,NN
$002651=1, N$
WRITE 6.101
WRITE 6,101
OU 265
$J=1, N N$
WRITE(0,245) 1,J,G011(1,J),GTO2211,J),G11211,J),G121(1,J).

CALL 2121K211,B1,C1,2011,2121,2112,G112,GT12.G011,GTOL1.

* N2,M2,S2,N1,M1,S1,GG222,GGT222,2222,RESZ2,ITER221
CALL PP21GGT211.GG211,PO11,P121,P112,R1,R2,G121,GT121,GTO11.
GO11,C1,CT1,KO11,K121,K211,N1,M1,S1,N2,R2,S2,P211,RESP1,ITERP18

* GO22, C2,CT2,K022,K112,K222,N2,M2,S2,N1,M1,S1,P222.
c
C

```
CALL KR2IRL,RINV1.GT1,CL,C2,CT1,P211,P112,P011,2011,2121,2211.
    CAM112,K011,C2C1,N1,M1,S1,N2,M2,S2,Y1)
*CNL KK2(R2,RINV2,BT2,C2,CI,CT,P222,P121,P022.2022,2112,2222.
FIND RESIOUS OF K211, K222
81G9=0.
    00 320 1=1,51
    DO 320 J=1,M
RESK1(1,J)=K211(I,J)+Y\II,J
RKK=ABS(RESN1(1,J)1)
BIGR=A4AKI(BIGR.RKK)
O0 325 !=1.52
RESK2(1,J)=к222(1,J)+Y2(1,J)
RKK=ABSIRESK211,J)!
WRITEIG:330) MMM.BIGR,ITERZI,ITERR2,ITERP1,ITERPZ
FORMAT'1ITERATICN NUMSERM:15.1/,
```



```
    M WHOER OF ITERATIOV USED',10X,'ITER2211=1.14,10X.
    - SEEL:OD DERIVAIIVE JF FEEDBACK GAIN, I/IO
    M,
    OO 340 I=1,NN
    NO 340 J=1,NN
O WR1TE(0,245) 1,J,221111,J),RES2111,J1,2222(1,J),RES22(1,J).
P211(1,J),RESP1(1,J),P222(1,J),RESP2(1,J)
```



```
:K211N1',0x,'-K211(N+1)',5x,0RESK1',9x,'K222(N)',0x.
0-K222(N+1)',5x,'RESK 2'
    DO 365 I=1,N
MO 365J=1,NN , GG211(1,J),GG222(1,J),K211(1,J),Y1(1,J),
RESK1(1,J),K222(I,J),Y2(I,JI,RESK2(I,J)
test for termination
IF(MMM.GE.LIMIT2) GO TO 400
UPDATE K2
IFIRIGR.LT.I.) ALFA=.S
8IGR=1.
CO 370 l=1.51
DO 375 1=1,S2 (,J)-ALFA*RESK1(1.J)/BIG
00375 J=1,M2
K222(1,J)=K222(1,J)-ALFA*RESK2(1,J)/81GR
STOP
```

c^{325}
c
330

END
 - SABKCT

S
INTEGEQ S.T
REAL K(10.10)
COMPLEX ZZZ.
DIMENS ION W(10),222(20,20),WK(120)
DIMENSION ABKCTilio.10

- DVU(10,10), x1(10, 10), x2110,101,x310.10), x4(10.10,101,2110.101.
- RESP(10,10), QESK10), x2(10.10), x310.10), X4(10.10),AEKC(10.10).

COMMON/JIFFOI LIMITO, EPSO,IPETO
CCMMON/SL/H.EPS
COMMON/IS/ISUB
C \quad MMM $=0$
105 MMM $=$ MMM +1
${ }_{c}$ C FIND Z
CALL MULT(K.C.S,M,N,X1)
CALL MULT(B, XI,NOSON.X2)
CALL AUD (A, X2, N, N, ABKC)
CALL TRANSP(ABKC,N,N,X3)
CALL SOLN(X3,ABKC,OVD.N,N.Z.RESZ.MZI
c
\mathbf{C}
FINO
CALL MULT(R,X1,S,S,N, X2)
CALL TRANSP(X1,S,N,X4)
CALL MULTIX4, X2,N,S,N, XI
CALL ADD(O, $\times 1, N, N, \times 2)$
c
$c$$\quad$ FiND
CALL MULTIZ,CT,N.N.M.XII
CALL MULT(C. $\times 1, N, N, M, \times 21$
CALL INVEPT $(\times 2, M, \times 3)$
CALL MULTIX1, x3,N. 4 .
CALL MULT(P, $\left.\times 4, N, N \cdot M, x_{1}\right)$
CALL MULI $\left(B T, X 1, S, N, M, x_{2}\right)$
CALL MULITHT, X1,S,N,M,X2)
NOTE $x 4=R 1 N V * B T * P * 2 * C T *(C(C * C T) * *-1)$
find restoue of k
BIGR=0.
$\begin{array}{lll}00 & 1 & 1=1.5 \\ 00 & 1 & J=1, M\end{array}$
RESK(1,J)=K(1, J)+X4(1, J)
$R R=A B S(R E S K(I \cdot J))$
$B I G R=A M A X I(B I G R, R R)$

10 KRITEIG.101 MMM,MP.MZ.SZGR, ISUS
FORMATITIOUTPUT OF SUBROUTINE ZERD .f//7.

- : MAXIMJM RESIOUE OF K1.E15.6.111.
- DECOUPLED FEEDBACX GAIN OF SUSSYSTEM NJMBER•,15, 111

 $0031=1, N$
MRITE
20 FORMAT(IHO)

K(It, J), RESK(1,J)
FORMATIH, $13,15,2 X, 7(2 X, E 13.6)) ~$
fino the performance index
call multidvo.ponon.n.XIl
PFX $=0$.
DO $300 \quad i=1, N$
$300 \quad P F X=P F X+X 1(1,1)$
500 FORYAT(//.1O(1H*).5X.PPERFORMANCE INDEX = - .E14.6)
$\begin{array}{ll}\mathbf{c} \\ \mathbf{c} \\ \mathbf{c} & \text { test for termination }\end{array}$
IF(MYM.GE.LIMITO) GO TO 400
IFIBIGR.LT.EPSO) GO TO 400
c
c
c UPDATEK
200 ALFA=1.

IFIBIGR.LT. 1.1 BIGR=1.
DO $4=1,5$
$4 \quad k(1, J)=K(1, J)-A L F A * R E S K(1, J) / 81 G R$
$400 \cos _{14=10} 100$
$12=10$

1000 FORMATCIMK(1)=', EI 5.6.11. IER=',IIO./I
81° W(',12.i)=',2E15.6.ilл)
RETURN
sendilst

APPENDIX B

PROGRAM TO EVALUATE THE MATRICES IN THE
SERIES OF THE SUBOPTIMAL FEEDBACK GAIN MATRIX USING THE MINIMI ZATION ALGORITHM

```
(1/1/1/1/1/1/1/1/1/1/7/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/.1/1/1/1/1/1/1/1
    this progran finos the sugoptimal feedoack gain matrix
```



```
    INTEGER SL.52.T1.T2
    OIMENSIOY A1(10,10),A2110,10),B1(10,10),B2(10,10),C1(10,10).
    & C2(10,10),0110,1C),D210,101,0110,10),02(10,10)R1(10,10)0
    * c21(1J,101,P011(10,10),P012(10,10),P021(10.10),P022(10.10).
    L011(10.10),2012(10,10),2021(10,101,2022(10,10),
    * P211110.121,P222110.101,221110.101.222210,101
    * STI1(10.10),心TO22110.10),GT121(10,101,GT112(10,10)
    * RINVI(10,10),21NV2110,10)\times(1001,E E100),W(1)30),
            C
            2112(10.10),2121(10,10),P112(10.10),P121(10.10),
            G011(10,10),G022(10,101,G12(10,10),G121(10,101%
            \times1(10,10),\times2110,10),Y1(10,101,Y2(10,10)
        REAL K011(10,10),K012(10,10),K021(10,10),K022(10,10)
        RERL K112(10,10),\times121(10.10)
    COM:CON/4A/ N1,H1,S1,T1,N2,42,S2,T2
    COM,O!N/BB/A1,A2,A12,A21,81,82,C1,C2,D1,02,01,02,012,021,
    - R1.R2.v1,v2
    COYMJNCC/ PT1,BT2,CT1,CT2,RINVI,RINV2,CIC1,CIC2
    CCMCN/JOJ/ 2011,2022,PO11,PU22.GO11,G022,GTO11,G1022
    CCuv2%/&F/ 2211,2222,P211,P222,GG211,GG222,GGT211,GGT222
    CCM.0V/D.11/ K011,K022
    COMMCY/EE1/ K112,K121
    соичау/:5/ISU४
    COUNON/5T// E,ESCALE,MAXIT,IPRINT,NI,NO
    COMMOY/TV/ICHECK
c
    EPSIL=.5
    ICHECK=0
    EPS2=.001
    EPS2=0
C
    OO 1 1=1,4
    JF(J-LE.4) REAO(5.2) Al({.J)
if(J.GT.4)
l()
2 CONTINUE (20x, E20.6)
    OO 3 i=1,4
```

c
c

(F(J.LE.4) READ(5,2) A21(1.J)
IF(J.GT.4) READ(5.2) AR(I.JJ)
CONTINUE

DO $1011=10, N 2$
WRITE 6,101
10
202

WR $1021=1$;
WRITEIG. 101
102

FOKMAT!/1/1/, COUPLING MATRICES :///.

WRITE 0,10)
DO $101 \mathrm{~J}=1$. N

40
c

CALL TKANSP(B1,N1,S1,BTH)
Call transplci,mi,N1,CTI
ALL INVERT(RI.SL,RINVI)
CALL MULT (VI, X1,T1,T1,NL, X2)

CALL TRANSP(H2,N2,S2, BT2)
CALL TRANSP(C2,M2,N2,C12)
CALL INVERT(R2,S2,RINV2)
CALL TRANSPID2,Ni2,T2, X11
CALL MULT(V2, X1, $12,12, N 2, \times 21$
CALL MULT $102, \times 2, \mathrm{~N} 2, \mathrm{r} 2, \mathrm{~N}, \mathrm{Y} 2$
c NOTE $\mathrm{Y} 2=\mathrm{D} 2 * V 2 * D 2$
C
C DCCOUPLED feEDBACK gain

* K011, P011.2011,6011,6T0111

 - KJ22.9022.2022.G022.GT0221
\mathbf{c}
\mathbf{c}
\mathbf{c} first derivative of feejback gain
IDER=1

210 $A 12(1, J)=A 12(1$ DJ $2111=1 . \mathrm{N} 2$
1 A21(1,J) $A 21(1, J) / E P S I L$
CALL MULT(C1, 2011,M1,N1,N1, X1)
CALL
YULT(X1,CT1,M1,N1,M1,
CALL YULTERIXR2,M1,CZCLI)
CALL NULT(C2,2022,M2,N2,N2, $\times 1$)
CALL MULT(X1,CT2,M2,N2,M2,
CALL MULY(XA,CT2,M2,N2,M2,x
CALL INVERTIX2,M2,CZC2)
c
C
$N: N=(M 2 * S 1)+(N 2 * S 2)$
$N W=N N N=(N N N+3)$

$00261 \quad 1=1,5$
$00261 J=1,4$
$11=(1-1)=\mathrm{M} 2+\mathrm{J}$
$\mathrm{x}(11)=\mathrm{K} 112(1, \mathrm{~J})$
$00262 \quad 1=1,52$
$00262 \quad j=1, M 1$
$11=(51 * 42)+(1-1) * M_{1}+J$
202 x 1 (1) $=\times 12111, \mathrm{~J}$
CALL BOTM(X,E,NNN, EF, ESCALE,IPRINT,MAXIT, WONI,NO.NW)
c. Second derivat ive of feedoback gain

IOER $=2$
$03361 \quad 1=1.51$
00361
$11=11$
$1=1, M 2$
$361 \quad x(11)=\times 211(1, J)$
$00362 \quad 1=1,52$
$00362 \quad J=1 ; 42$
$11=151 * 421+11-1$

CALL BOTYIX,E.NNN,EF,ESCALE,IPRINT,MAXIT, NOMI,NO,NH: STCP subroutive calcfx(nnnox,f)

C THIS SUSROUTINE CALLS OTHER SUBROUTINE
C TO EVALUATE THE PERF GRMANCE INOEX
 COMMON/CALC/ IOER
IF (IJER.EQ.O) CALL $2 E R O S S(N N N, X, F)$
IFIIOER.EQ. 1) CALL FIRST(NNN, $X, F)$

Tf (IOER
RE TURN
ENO
SUBROUTTINE ZEROLA,B,C,D,V, Q,R,OVD,BT,CT,RINV,N,M,S,T,K,P,Z

C THIS SUSRDUTINE CALCULATES DECOUPLED FEEDBACK GAIN BY BCTM RDUYINE
 INTEGER S.T.SS
DIMENSION A $10,101, B(10,10), C(10,10), O(10,10), V(10,10), 0(10,10) ;$
R(10,10), DVD(10,10),BT(10,10),CT110,10),RINVI10,10),P(10,10),

* R(10.10).DVD(10.101,BT110.10),CT10.10),RINVI10.10),P110,10).
* Z(10,10), ABKC(10.10), ABKCT(10,10), X(100), W1 1301,E E 11001
dimernilo.
COMMON/CAL/ AA, BR.CC.PP, QU, RR,ODVOD,AACC,AACCT,MM.SS.NN
COMMON/BOT/ E,ESCALE,MAXIT,IPRINT,NI,NO
C $\quad 0011=1,5$
$\begin{array}{llll}00 & 1 & 1=1,5 \\ 00 & 1 & J=1, M\end{array}$

11	$=(1)-1): M+J$
$x(1)$	

$c^{1} \quad \times(11)=k(1 . J)$
CALL EOUAL $(A, N, N, A A)$
CALL E $\mathcal{U} U A L(B, N, S, B B)$
CALL EDUAL $(B, N, S, B B)$
CALL EOUAL $(C, M, N, C C)$
CALL ENAL(O,NoN.OD)
c Gall e oual (ovoin.n.odvoos
$M M=M$
$S S=S$
SS $=S$
$N N=N$
$N P N=M+S$
N $\mathrm{F}=\mathrm{N}=\mathrm{MAS}$

CALL BOIMIX, E,NNN,EF,ESCALE.IPRINT,MAXIT,W,MI,NO,NWI
$\begin{array}{lll}\text { OO } 2 & 1=1,5 \\ \text { OO } 2 & j=1 . M\end{array}$
$2 \quad \begin{aligned} & \quad 11=(1-1)+M+J \\ & k(1, J)=x(11)\end{aligned}$
CALL FOUAL (AACC. N, N. ABKC)
CALL EUUAL IAACCT, N, N. ABKCT)
CALL EQUAL (AACCT,N,N,ABKCT)
REIUKN
END
SND SOUTINE ZEROSSINNN. X.F)

 INTEGER S.T
COMPLEX
RED
COMPLEX $Z, H, Z N$
REAL K
ROM
DIMENS 1 CN A 10,10$)$, B(10,10), C(10,10), P(10, 10), 01 10, 10), R(10,10).

* OVO(10,10), x1(10.10), $\times 2(10,10) \times 3(10,101, \times 4(10,10)$

DIMENSION RESP(10.10)
COMMON/CAL/ A,B,C,P, Q,R,OVD,ABKC,ABKCT,M,S,N
001:1=1,5
c

```
```

 CALL mult(X,C,S,M,N,Xl)
    ```
    CALL mult(X,C,S,M,N,Xl)
    CALL TRAYSP(1,S,N.x2)
    CALL TRAYSP(1,S,N.x2)
    CALL MULT(R,X1,S.S.N.x3)
    CALL MULT(R,X1,S.S.N.x3)
    CALL ADO(2.x4,N,N,x3)
    CALL ADO(2.x4,N,N,x3)
CALL MULT(B,X1,N,S,N,X2)
    CALL ADO(A, XZ,N,V,ABKC)
CALL SOLN(ABKC,ABKCT,X3,N,N,P,RESP,MP)
    ALL MULT(OVO,P,N,N,N,Xi)
    0 2 :=1
2 F=F*xi(1,i)
C F. Find elgenvalues
    li=10
    CALL EIGRF(ABKC.N,IA,IJOB,W.Z.IZ.WK.IER)
    IGMAX=0.
    DO SO I=1,N
so IF(RN(1).GT.EIGMAX) EIGMAX=RW(I)
100
FXF+IEIGMAX*EEO.E2OI
RETURN
SUEROUTINE ZERCOIA,B,C,D,V,Q,R,OVD,BT,CT,RINV,N,M,S,T,K,P,Z,ABKC.
    - A3KCT)
*) Ajk(T) (aram,
```



```
COMTIIS SUBRCUTINE FINDS DECOUPLED FEEDBACK GATN BY ITERATION METHOD
    INTEGER S.T
    REAL K110,10
    COYPLEX LIZ.,
    DIMENSION ET(10,10), CT(10,10), RINV(10,10), Al10,10),8110,10)
    C(10,10),0110,10),V(10,10),Q(10,10),R(10.10),P(10,10),2(10.10)
    OVSSP(10,10)\times1(10,10),\times2110,10),\times3(10,10),\times4(10,10),ABKC(10,10).
    LuEVS(IVY.10),RESK(10.10),RESZ(10.10)
    lucvSIJV ABNCTI 10,10)
    COMOV/O&FFO/ LIMITO,EPSO.IPRTO
    COMMON/SL/HOEPS
c
AYM=0
C
CALL MULT(K,C,S,M,N,XI)
```

CALL MULT(B, XL,N.S,N, X2)
CALL ADO A. X2, N, N, ABKC)
GALL TRANSP(ABKC.N.N, X3)
CALL TRANSP(ABKC.N,N,ABKCT)
CALL SOLN(X3,AUKG,OVO,N,N,Z,RESZ,MZ

CALL MULT(R.X1,S.S.N.X2)
CALL TRAYSP(xi, S.N, $\times 4)$
CALL MULT($\times 4, \times 2, N, S, N, x 1)$
CALL $A D D(O, \times 1, N, N+\times 2)$
.P.RESP.MP)

CALL MULTIZ,CT,N,N,H,X1)
CALL MULTIC:XI, M,N,M, M
CALL INVERT(x2,M, X3)

CALL MULT(P, $\left.x_{4}, N_{1} N_{0} M_{0} \times x_{1}\right)$
ALL MULT(BT, XI, S, No M, X2)
NOTE $X 4=R I N V * B T * P * Z * C T *(1 C * 2 * C T) * *-1)$
c
c
c
find resloue of K
$81 G R=0$.
$001=1,5$

$2 E S K(1 ; J)=K(1, J)+X 4(1, J)$
BIGR=AMAXISBIGR,RR)
WRITE DUIPUT IF IPRT=1
IFIPRTO.NE. 11 GO TO 200
WRITE16,10) MMM, MP,MZ,BIGR,ISUB

- iteration numberi.is.illo zero../1/.
- iteration numberi.is./l/,
- : number of iteration used to find po. $15.1 / 10$
- maximum kesioue of ko.el5.6
- DECOUPLED FEDEBACK GAEN OF SUBYSTEM NUMBER \cdot. $85,1 / 1$.

$0031=1, N$
20
format (litol

K K(1, J), RESK(1, J)
Formatilh, 13,15,2X,7(2X,E13.6)
ind the performance index CALL MULTDVD,P,N,N,N,XI) $P \mathrm{FX}=0$. $00300 \quad I=1 ; N$
PFX $=$ PFX $+X 11,1$

test for termination
IFIKYM．GE．LIMITO）GO TO 400
upoatek
ALFA＝1．
IFIBIGR．LT．1．）ALFA＝． 05
IF（GIGR．LT．1．）BIGR＝1．
DO $41=1,5$
DO $4 \quad J=1,4$
5010100
$1 A=10$
$12=10$
$12=10$
CALC EIGRFIABKC，N，IA，IJOB，W，22Z．IZ．WK．IER
1600
WRITE 16,1600$)$ HK（1），IER，（1，H（1），$!=1, N)$
FORYAT
RETUK
＊RA＇W（＇，12，$)=1,2 E 15.6,111)$
RE TUR
END
gnd suarjutive firstinnn．x．f）

共
REAL KO11110．101，KO2

$010101010101010,101,412(10,10)$ ；A21（10．10）．
－01（10．10），22（10．10），R1110，10），R2（10．10），01（10，10），02（10．10）．
－BIL10，10），日T2（10，10），CT1（20，10），CT2120，101．
－R1Nvil10，10），RINV2（10，10），C2C2（10，10），C2C2110，10），2011（10，10）
－2J22110．10），P011110，101．P022110，101．G011110，101．G022120．10）．

－weigrifio．101，y1（10，10），y2110，10）
OIMENSIJH RES21（10，10），RESL2（10，10），RESPI（10，10），RESP2（10，10）
DIMEASIJY $212110.101021(10,10)$
CCMMOM／AA／N1，41，S1，T1，N2，M2，S2，T2
COMMJV／BA／A1，A2，A12，A21，B1，B2，C1，C2，O1，O2，Q1，Q2，012，021
－R1．Q2．v1．v2
CCCYTN／CC／BT1，BT2，CT1，CT2，RINVI，RINV2．C2C1，C2C2

COCNMON／DO1／KO11，KO22
COMMON／EE1／K112，K121
COMMON／WA／WEIGHT
$0010 \quad 1=1.51$

10
$x 112(1, J 1=\times 11$
$0020 \quad i=1.52$
$0020 J=1 ; 41$
$1 I=(S L * M 2)+(1-1) * M 1+J$
k121（1．J）＝x（11）
CALL 2210K112．K121．A12，A21，B1．82．C1．C2．6011．G7022．2011．2022。
＊NL，M1，S1，N2．M2，S2，2112，RES21，G112，GT121，ITER21）2022．2011．
CALL $221(K 121, K 112, A 21, A 12, B 2, B 1, C 2, C 1, G J 22, G T O 11,2022,2011$.
＊N2，H2，S2，N1，M1，S1，2121，2ES22．G121．GT112，1TER221
CALLPP1／GT121，G112，PO11，PO22，G1011，G022，012，K011，K022，K121，K12．
CALL PPICCT112，G121，PO22，DO11，G TO22，GO11，221，K022．K011，K112．K121，
＊R2，R1．CT2，C1，N2，M2．S2，N1，M1，S1，P121，RESP2，ITEPP21
CALL KK1R1，K011，C1，CT2，C2，2112，2022，BT1，PO11，P112．N1，M1，S1．
CALL KK1iR2，KO22．CZ，CIL，C1，2121，2011，8T2，PO22，P121，N2，M2，S2．
＊${ }_{F 1}=01, M 1, S 1, Y 2, C 2 C 1, R I N V 21$
$F 1=0$.
$F 2=0$.
OO $220 \quad 1=1,51$
$\begin{array}{ll}00220 & 1=1, S 1 \\ 00220 \\ J=1, M 2\end{array}$
FFF $=\times 112(1, \mathrm{M})+\mathrm{Y} 1(1, \mathrm{~J})$
FI＝FI＋FFF＊FFF＊NEIGHT（1，J）
CONIINE
CONTINUE
$\begin{array}{lll}00 & 230 & 1=1.52 \\ 00 & 230 \\ J=1, M 1\end{array}$
$F F F=K 121(1, J)+Y 2(1, J)$
$F 2=F 2+F F F * F F F * W E I G H T(1, J)$
230
CONT 1 NUE
$F=F 1+F 2$
return
END

\section*{}

INTEGER S1．52．T1．T2
K02210．101．$\times 112(10.101 . \mathrm{K} 121110.101$
DIMENSIONX（100），A1（10，10），A2110，101，A12（10，10），A21（10，10）．

－ $\begin{aligned} & 1110,101,02(10,10), R 1(10,10), R 2(10,10), v 1(10,10), v 2(10,10) .\end{aligned}$

＊2022（10，10），P011110．101，P022（10．101，G011110，10），6022110，10）．
－GT011（10，101，Groz2110，101，2112110，10），2121110，101，P112110．10）．
＊P121110，10），G112110，101，G121110，10）．GT112（10，10），GT121（10．10）．
 OIMEVSIUN S1211C，101，021110，1010

COMMON／AA，N1，M1，S1，T1，N2，M2，S2，T2
COMMON／BBI A1，A2，A12，A21，$B 1, B 2, C 1, C 2,01,02,01,02,012,021$,

COMMON／OU／2011，2022，P011，PO22，G011，G022，G1011，GTO22
COMMON／EE／2112，2121，P112，P121．G112，G121，G112，GT121
COMMON／FF／2211．2222，P211，P222，GG211，GG222．GGT211，GGT222
COMMON／DD1／K011．K022
CUMMON／EE1／K112．K121
COMMON／FF1／K211，
common/wu/ wesght

10 र211(1, J) $=x(11)$
$\begin{array}{lll}03 & 20 & 1=1.52 \\ 00 & 20 & J=1201\end{array}$

CALL MUTT(K211,C1,SI,M1,N1, X1)
CALL MULTH1. $\times 1 . N 1.51, N 1, G G 211)$
CALL TRAHSP(GG211.N1.N1.GGT211)
CALL MULITK222.C2,S2,N2,N2, $\times 11$
CALL MULTAB2, X1, N2,S2,N2,GG222
CALL TRAVSPIGG222,N2,N2,GGT222)
${ }_{c}^{c}$
CALL 2221א211.81.C1,2011,2121,2112.G112.G7112.G011.6T011.

* N1, 41,S1,N2,M2,S2,GG211,GGT211,2211,RES21,1TER21)
- CALL PP2,S2,N1,M1,S1,GG222,GGT222,2222,RES22,1TER22)

* CALL KK2(R1,RINV1,BT1,C1.C2.CT1,P211,P112,PO11,2011,2121,2211,

CALL KK2(R1,RINV1,BI $1, C 1, C 2, C T 1, P 211, P 112, P 011,2011,2121,2211$,
$K 112, K O 1, C 2 C 1, N 1, M 1, S 1, N 2, M 2, S 2, Y 1)$

c
c
F $1=0$.
2
DJ 220 i=1.51
DO $220 \mathrm{~J}=1, \mathrm{~N} 2$
FFF=K211(I, J)+Y1(I.J)
ightid.J)
00230 1=1.52
$00230 J=1, M 1$
$F F F=\times 222(i, j)+Y 2(1, j)$
F2=F2+FFF*FFF*WEIGHT(1,J)

$\mathrm{F}=\mathrm{Fl}_{1+\mathrm{F}}$
RETURV
sendisis
APPENDIX C
PROGRAM TO EVALUATE THE PLANT MATRIX "A" OF THE SYNCHRONOUS MACHINE CONTROL SYSTEM

C111

phis program finos the matrix a of the synchronous machine systen

- f(10,101,fitiv,10),Y(10,10),VM(10),VN(10),FYF(10.101.
- XATA Y 41.823) $\times 5(10.101$

DATA Y/.823,-6.692,-.239,3.986,-125,2.49,4*0..
$\quad 6.492, .823,-3.930,-239,-2.49,-125,4 * 0$.
$-.239,3.986,1.142,-6.339,-12,1.99,4 * 0 .$,
$-3.900,-239.6 .339,1.142,-1.99,-12,4 * 0$. .

c
c

DATA HI,KDI,KE1.TE1,TM1/5...003,15.,.1,.551
DATA VII.VI 2 .VT3/1.05,1.01.1
DATA J1.j2.J3.J*, IMAI/40J*0.,16*0.1
DATA AL,A,B,C,EEG,R/TOO*O.1
DATA XFI,XFJI,XDI,XU1,KF1/1.5..9.1.1..85..001/ DATA XF 2, XF U2, XD2, X02,RF2/1,47,1.33,1.2.1.07,.0016/ DATA L1.12,13,14,15,L6,L10/1,2,3.4.5,6.8/ DATA WO/370.99
data f/100*0.,
c
c

$V N(1)=v$
$V N(2)=v$
v
$v(1)=v$
$V N(2)=V 1 * S I N(E T A 1)$
$V N(3)=V 2 * \operatorname{Cos}(T E T A Z)$
$V(1)=V 2=S(T)$
VN(4) $=V 2 * S$ SATTETA2
VN(5) $=1$.
V $W(6)=0$
CaLL MULT(Y,VN,H,M,K,IN)
GETAL=ATAN2(IN(2), IN(1))
BETAR $2 A T A N 2(I N(4): 1 N(3))$
$B=(14(1) * 2)+(I N(2) * * 2)$
$2=(1)(1) * * 2)+1$ (N) 2)**2)

2=50RT(2)
$21=(V 1 * \operatorname{COS}(T E T A 1))-(X 01 * 11 * S I N(B E T A 1)$
21=-21
22=(VI*SIN(TETAI)
OELI天ATANZ(21
SELI=RTAN2(21: 22)
$21=(V 2 * C O S(T E T A Z) 1-1 \times 02 * 12 *$ SIN(BETA2)
$21=-21$
$22=1 v 2 * \sin (T E T A 2))+(x 02 * 12 * \cos (B E T A Z)$ DEL2=ATAN2(21.22)
$F(1,1)=\cos (0 \in L 1)$

```
F(1,2)-SIN(DEL{)
    F(2,1)=-F(1,2)
    F
    F(3,4)=SIN(DEL2
    F(4,3)=-F(3,4)
    F(4,4)=F(3,3)
    F(4,5)=1.
    CALL TRANSP(F,M,M,FT)
    CALL MULT(XI,FT,Y,Y,XI)
    CALL MULT(XI,FF,M,M,M,FYF)
    CALL NULT(FYF,VM,M,M,K,IM
    RITE(6.15)
```



```
    DO 1O I=1, स
    FGRMAT(iHO)
    WRITE(6,20) 1,VN(1),IN(1),VM(1),IM(1)
    FORMAT(110.4E20.6)
    VO1=VM(1)
    VQI=VM(2)
    VO2=VM(3)
    V02=VM(4)
    {0)=[M(2)
    lU2=1M(3)
    lo2={M(4)
    PSIU1=-v31
PSS1D2=V02 
```



```
    WRITE(6,26) VO1,VO1,V02,VO2
```



```
    | vQ2=-.E13.6)
    A1(1,2)=1.
    2)=-N0**O1/(2.*H2)
    A1(3,3)=-1./TE1
    A1(4,3)=40
    A1(5,6)=1.
    A1(0.6)=-WO*KD2/(2.*H2)
    A1(7,7)=-1./TE2
    A1(8,7) = WO
    B(1,3)=KE1/TE{
    B(2,7)=K\in2/TE2
    C(2.2)=-W0/(2.*H1)
    C(4.1)=-HO*PF1
    C(0,5)=-WO/(2.*H2)
    C(1,6)=-KE2/TE2
    C(B,4)=-W0*RF2
    E(1,1)=1./Xf1
    E(3,1)=VOL*XFOL/(VTI*XFL)
```

```
    E{3,2)=({VO1*PSIDI)-(VOL*PSIOS)!/(VT1*NO)
    E(4,3)=1.1XF2 
    (6,3)=(vO2*XF2XF2
    E(6,4)=((v2)*PS102)-(VO2*PS 102))//VT2**O)
    E(6,4)=(CV2z*PS 
    (2,2)=(101*XFD1*XFD1/XF1)-(101*XD 1)-PSI2
    (3,1)=1(xFJ)*XFD1/XF1)-X01)*VO1/VT1
    (3.2)=V01**:*)
    (4,3)=xFD2/XF2
    G(5,4)=PS 102*(102*X02)
    G(6,4)=V02*x02/VT2
    G(6,4)=V02** 2/V
    R(2.1)=XFD1/XF1
    R(2,2)=PSIO2/WO
    R(3,4)=-PS 1C2/m
    R(4,3)=Xf 52/XF
    S(1,2)=x.0)
    (2,1)=(XFJ1*XFDI/XF 1)-XD
    (3,4)=\times02
    S(4,3)=(XFO2*XFD2/XF2)-XD2
    DF1(1,1)=-SIN(OELI)
    DF{(2,1)=-\operatorname{cos(DELI)}
    DF1(2,2)=-SIN(DELI)
    DFT1(1,1)=-SIN(DELI
    DF1(1,2)=-COS(OELL
    OFT1(2,2)=-51H(DEL1)
    F2(3,3)=-SINIOEL2)
    F2(3,4)=\operatorname{CSs(DEL 2)}
    F 2(4,4)=-SIN(OEL2)
    FT2(3,3)=-SIN(DEL2
    F12(4,3)= cos
    OFI2(4,4)=-SIN(DEL2)
\1(1,4)=1.
J1(3.8)=1.
J1(4,0)=10
\ J2(1,1)=1,
13(1,1)=1.
    J3(2,2)=1,
    3 3(3.3)=1.
    3 3(4,6)=1.
    J4(1,1)=1.
    J4(2,0)=1.
4(3,3)=1.
```

${ }_{c}^{c}$
ε

E(3,2)=(eVO1*PSID1)-(VOL*PSIO:1)//(VT1*MO

$(6,3)=(V 02 * x F 02) / 1 v$
(1)
$\{(3,1)=11 \times F 01 * \times F D 1 / X F 1)-\times 01) * V 01 / V T 1$
$(4,3)=x \neq 021 \times F 2$
(21-1122*x021-95102
$(16.3)=1($ XFF $2 *$ xFO2 (XF2)
$(6,4)=V 02 * x 02 / \mathrm{VT} 2$
(2,1) $=x F_{01 / X F 1}$
$R(3,4)=-\mathrm{PS} 162 / 40$
S $(1,2)=x \cdot 1$
$(3,4)=\times 02$
(4,3)×(XF
${ }_{c}^{c}$
F 11112) $=\operatorname{COS}(D E(1)$
FFI(2,2)=-SIN(OELI
DFII(1,2)=-COS(OEL1)
DFT1(2,2)=-51H(DEL2)
OF $2(3,3)=-$ SINTOEL2)
FF2(4,3) $=-\cos (0 \in L 2)$
DF $2(4,4)=-$ SIN(DEL2)
DF $12(3,4)=-\cos (D E(2)$
DFI2(4,4) $=-$ SIN(DEL2)

J4(4.4) $=1$.
imat = IOENTITY MATRIX
matil 1.1$)=2$.
1mat $(2,2)=1$
IMAT $(3,3)=1$.
IMAT $(4,4)=1$.

CALL MULT(OF1, $\times 2,16,16,16, \times 3)$ CALL MULT(X1,OFT1,66,(6,16,X4) CALL ADU($\times 3, \times 4,16,16, \times 5)$, ,
CALL MULT $(\times 5, V M, L 6, L 6, L 1, T$ I)

CALL MULTIDF $2, \times 2,16, L 6, L 6, \times 3)$ CALL MJIT $\times 1$, DFT $2,16, L 6,16, \times 4$) CALL ADO $\times 3, \times 4, L 6, L 6, \times 5)$

DO 100 1=1, L6
T(1.11FT1111
$T(1,2)=T 1211$
CALCULATE JFYFJRJ+JT
CALL MULT(J3,FYF,L4,L6,L6,X1) CALL MULT(X1,J4,L4,L6, L4, X2) CALL MULI (X2,R, $44,24,(4, \times 3)$ CALL MULTIX1, J2,L4,L2,L10, $\times 3$ CALL $A 001 \times 4, \times 3,14,110, \times 5)$
C
C
$C A L C U L A T E ~ I N V(I-J F Y F J S) ~$
CALL MULT (J3,FYF,L4,L6,L6, X1) CALL MULI($\times 1, J 4,14, L 6,14, \times 2)$
CALL MULT(X2,5,L4,L4,L $4, \times 31)$ 00 $200 \quad 1=1.14$

- $\quad x 4(1, J)=1$ MAT(1, J)-x3(1,J)

CALL INVERT(X4, L4, X1)
CALL MULT(X1, X5.L4.L4,L10, x2) CALL MULTIG, $\times 2,16,14,110, \times 31$
CALL MULT(C, $\times 3,110,16,110, \times 5)$
c calculate cej
CALL MULT(C,E,L10,16,14, X1)
CALL MULT(XI, J1,L10,L4,L10, X4)

$\begin{array}{ll}250 & 1=1.610 \\ 250 \\ 20 & 1.610\end{array}$

A(I, J) $=A 1(1, J)+X 4(1, J)+\times 5(1, J)$
write output
NRITE(6.300)

DO $3101=1$, 1
WRIE 10.90$)^{1}$
DO $310 J=1.110$

320 FORMATIIG,15,2X.7(2X.E13.6))
 $0 \mathrm{C} 410:=1,16$

WRITE(6.420) 1.J.E(I.J).G(I,J).R(I,J).S(I,J).F(I.J)
FORMATIS. $15.2 \times .5(2 \times . E 13.61)$
6 puich output
$00520 \quad 1 \mathrm{Jx}, 3$
$00500 \quad 1=1, L 10$

10 FOKपムT(2110,2E20.6)
520 CONTINE
sprop
ENO
IST
SENDLIST

APPENDIX D

SUBROUTINES USED IN COMMON BY OTHER PROGRAMS


```
SUBROUT INES
c/1/11111111/111111111111111111111111111111111111111111111111111111111
        SUBROUTINE 221&X112,K121,A12,A21,B1,B2,61,C2.G011.GIO22.2011.2022
    M NOM1,S1,N2,M2,S2,L12,RES2,G12,GT121, ITERZI
```



```
    INTEGER S1.S2
    REAL K112110,101.0121(10,101
    SINE YS1ONA12120,12),A21(10,10), 81(10,10),82(10,10),C1(10,10),
    * G112110,10),G1121(10,101,\times1110,101,\times2110,101,\times3(10,10).
CALL MULT(K112,C2,S1,M2,N2,\times1)
    GALL MULT(H1,X1,N1,S1,N2,22)
    CALL MULT(K121,C1,S2,G1,N1,X1)
    GALL ADO\A21,X2,V2,S2,N1,\times2
    CALL TRANSP(X1,N2,N1,OT121)
C CALL MULTGO12, 2022,N1,V2,V2,\times1)
    CALL MULT(G112,2022,N1,V2,V2,\times1)
    CALL MULY(2011,G5121,N1,
    CALL SOLN(GTO22,CO11,\times3.N2,N1,2112.RESZ.1TER2)
    RETUR
    SUBRSUTINE PP1:GT121,G112,PO1,P022,GT011,G022,012,K012,K022.K121.
    K112,R1,R2,CT1,C2,NL,M1,S1,N2,M2,S2,P112,RESP.ITERPINO220K121
```



```
C this Su_RCutine calculates P112 & and P121
    MTEGER SIOS2
    KELL K121110,10),K112(10,10),K011(10,10),K022110,10)
    DIMENSIOYST121(10,10).G112110,101.P011/10,101,P022(10,101
```



```
    * x2110,101,\times3(10.10),Y2110.101,Y2110.10)
    DIMENSION 021110,101
    CALL MUTTGT121,PO22,NL,N2,N2,X1)
    CALL MURTIPO11,G112,N1,N1,N2,X2)
Call aDJ(X1,\times2,N1,N2,Y1)
    CALL MULT{KO22,C2,S2,M2,N2,X1%
    CALL MRANSP(x121,S2,S2,N2,x2)
    CALL TRAN(P1\times121,S2,M1,\times1)
    CALL MULT(CTL,X3.NL,N1,N2,Y2)
C CALL MULTSKIL2,C2,S1,M2,N2,XI
    CALL MULT(R1,X1,S1,S1,N2,\times2,
    CALL MULT(X1,x2,41,S1,N2,\times3)
c
```

CARL $A O O(Y 1, Y 2, N 1, N 2, \times 2)$
CALL $A D O(\times 2, X 1, N 1, N 2, \times 3)$
CALL $A O O(X 3, O 12, N 1, N 2, Y 1)$
CALL $A D O(X 2, \times 1, N 1, N 2, \times 3)$
CALL $A O D(X 3,12, N 1, N 2, Y 1)$
GALL SOLNIGO22.GTOL1,Y1,N2.N1,P1I2.RESP,ITERPI
RETUR
SUBROUTINE KK1LR1,KO11,C1,CT2,C2,2112,2022,BT1.PO21,P112,M1.
S1,S1,N2,M2,S2,K112,C2C2,RINVI)

C THIS SUBROUTINE CALCULATES K112 1 AND K1211
INTEGER 51,52
REAL KO1110.10), K112110.10)
DIMENSION RINV1(10.101
Dimension rinvilio.10)
oimension czC2(10.10)
DIMENSIONR1(10.10),C1(10,10),C2110,10),CT2110,10),2112(10.10),

CALL MULT(R1,KO11,S1,S1,M1, X1)
CALL MULT(X1,C1,S1,M1,N1,
CALL MULT(x1,C1,51,M1,N1, $\times 21$
CAAL MULT(X2, $2112, S 1, N 1, N 2, \times 1)$
CALL MULTETL,PO11,S1,N1,N1, X1)
CALL MULT(X1,2112,S1,N1,N2, X2)
CALL MULT(x2;CI2,S1,N2,42, $\times 11$
CALL MULT(BT1, P112,S1,N1,N2, X1)

CALL MULT(X2,2022,S1,N2,N2, C (X2)

CALL MULT(Y1,C2C2,S1,M2,M2,Y21
CALL MULT(RINVI,Y2,S1,S1,M2,K12)
RETURN
RETUR
SUBROUTINE 2L2IK211,B2.C 1,2011,2121.2112.G212.GT112.6011.GT011。

C THIS SUBROUTINE CALCULATES 2211 1 AND 22221
INTEGER S1. S2
REAL K21110.10)

* . $2112120,101, \times 1110,101, \times 2(10,10), \times 3(10,10), Y 1(10,10), Y 2110,10)$
C CALL MULT(GG211,2011,N1,N1,N1, X1)
CALL MULT(LO11,GST211,N1)
CALL $A D O(X 1, \times 2, N 1, N 1, Y 1)$
CALL MUUITIG112,N1,21,N1,N2,N1, $\times 11$
CALL MULT(G112,2121,N1,N2,N1, $\times 11$
CALL MULT(2112,G112,N1,N2,N1, 2)
CALL ALDOLX1,x2,N1,N1,Y2)
ALFA $=2$.
CALL MULTH1/Y2,ALFA,N1,N1, X1)
CALL MULTH11Y2,ALFA,N1,N
CALL ADOCY1,XI, NL,N1,Y21
$\mathrm{N}_{1, \times 11}$
CALL ADJIY1,X1,N1,N1,Y21
CALL SOLNIGTOII,GOL1,Y2,N1,N1,L211,RESZ,ITERI

```
    RE TURN
    END SUROUTINE PP2IGGT211,GG211,PO11,P121,P112,R1,R2,G121,GT121,GTO11/
    G011,C1,CT, K011, 5121, K211,N1,M1, S1,N2,N0.S2,P211, RESP.ITER1)
```



```
C THIS SURROUTINE CALCULATES P211 & AND P222 I
    INTEGER S1,S2
    l
    D!MgNSIGNGGT21110.101, PO11110,101,P121110,101,
    * Pl12110.101.G121(10.10),GT121(10.10),G1012(10,10),G011110.10),
    * ),\times1(10.10),\times2(10,10),\times3(10,10),x4(10,10),Y1(10,10),Y2(10,10),
    * r3110,10),RESPi(0,10)
c
CALL MULT(GGT211,PO11,N1,NL,N1,X1)
    CALL MULT(PO11,GG211,N1,N1,N1,\times2)
    CALL AOJ(X1,\times2,N1,N1,Y1)
    CALL MULT(P112.C121,N1,N2,N1,X1)
    CALL MULT(P112,G121,N1,N2,N1,X2
    CALL ALAO.
    CALL MULT11(Y2,ALFA,N1,N1,X1)
c
    CALL MULT(K011,C1,S1,Y1,N1,Y1)
    CALL MLT(R1,Y1,S1,S1,N1,N2)
    CALL TRA%SP(Y3,SI,N1,X1)
    CALL MULT (X1, 隹,N1,S1,N1,X4
c CALL ADD(X4,Y2,NL,NL,X1)
    CALL MULT(R1,Y3,S1,S1,N1,X2)
    CALL TRA:SP(Y1,S1,N1,N3)
C CALL ADO(XI{X4,N1,N1,Y1)
    CALL MULT(KI21.C1,S2,M1,N1,X1)
    CALL RAVSP(X,SL,N1, N2)
    CALL MLT(X2, X3,N1,52,N1,N3)
    CALL MULTII(X4,ALFA,N1,N1,Y2)
IYl,Y2,N1,N1,Y3
    CALL SOLNIGOLI.GTOLI.Y3,NL.NL.P2IL.RESP.ITERI
    RETUQ
    END SUBROUTINE KK2IRI,RIAV1,BTL,C1,C2,CT1,P212,P112,POL1,2011,2121.
    2211,K112,\times011,C2C1,N1,M1,S1,N2,M2,S2,K211
```



```
C THIS SUBRJUTINE CALCULATES -K211, ANO-K222,
INTEGER S1,S2 (0),K112110,101,K011(10.101
OIMEVSIJV R1(10,10),RINVIG10,101,8T1(10,10),C1110,10),CT1(10,20).
C210.10), 111(10.10),P1121:0.10).P011(10.10),201(110,10)
M Y1110.10),Y2(10,10)
```

CALL MULTBT1, P211,S1,N1,N1, XLS
CALL MULT(X2,CT1,S1,N1,M1.Y1)
CALL MUT T(ST1.P112,S1.N2,N2.x1) CALL MULT(X1,2121,S1,N2,N1, $\times 2$ ALFA=2.
CALL MULT11(X1,ALFA, S1,41, x2)
CALL AJOIY1. $\times 2.51 . \mathrm{ML}, \mathrm{Y} 21$
CALL MULT(BT1,PO11, S1,N1,N1, X1)
CALL MULT(2211,CT1,N1,N1,M2,Y1) CALL MULT(X1,Y1,S1,N1,N1, M1, M_{2},
c
CALL MULTRI, K112,S1,S1, M2, X1)
CALL MULT(x1,C2,S1, M2,N2, $\times 21$
CALL MULT(x2,2121,S1, V2, A1, $\times 1)$

CALL MULTII $\times 2$, ALFA, S1, 41, X

CALL MULT(X2,r1,SLi,N1,M1, XL
CALL ADOU $\times 1, Y 2, S 1, M 1, Y 1)$
c
CALL MULT(Y1,C2C1,SI,M1, M1, Y2) CALL MUL
RETURN
ENO
SULRDUTIME SOLNSB, A, C,M,N,P,RES, IER)
 $A(M, M), B(N, N 1, C(M, N), P(M, N)$

OIMENSION A(10,10).B(10,10).C(10,101,P(10,10),RES(10,10).

* $\times 3110,101,81(10.101,=C(100), P P 11001$

DIMENSION X125,251, 2 2125,251,AB(25,26),AABB(625)
THE ABOVE
C THE ASOVE STATEMENT CAN BE USED FOR N=S TR LESS
C FOR N=10 OR LESS. THE FOLLOHING STATEMENT MUST BE USED INSTEAD

DOURLE
MK $=$ MAN
$00 \quad 25 \quad 1=1, \mathrm{MM}$
$\begin{array}{ll}025 \\ \times 1(1, J) & =1, \mathrm{MM} \\ \times 2\end{array}$
$\times 2(1 . J)=0$.
${ }_{c}^{25}$
6 KRONECKER PRODUCT XL=A*I
$\begin{array}{ll}\text { DO } 10 & I=1.4 \\ 00 & 10 \\ J=1 ; M\end{array}$
$\begin{array}{ll}00 & 10 \mathrm{~J}=1, \mathrm{~N} \\ 00 & 10 \mathrm{~K}=1\end{array}$
$0010 K=1, N$
$11=(1-1) * N+K$
$J J=(J-1) * N+K$

APPENDIXES

$K=(J-1)=N+1$
 20 XIMV(I. J) $=\mathrm{Y}(\mathrm{K})$

C Check the accuracy of the resur
IF(TCMECK.NE.1) GO TC 30
 CALL MUL $(x \times X I N V, N, N, N, x X)$
DO $151=1, N$
18 FORYATILHJI
Do $15 \mathrm{~J}=1 \mathrm{~N}$

RETVR
BNOCX DATA
BERE:

C_{c} THIS SUBPROGRAM INITIALILE VARIABLES
(

REAL K011(10.10), K022(10.10)
REAL K112110,101,K121(10,10)
REAL K2111
JIMENSIN A1(10.10).A2(10.10).81(10.10),82(10.10).C1(10.10).

- C2(1J.1J).01(10.10).02110.101.0110.101.02110.10).R1110.10)
- R2110,10), vil10.10), V2(10.10).
- 021(10.101.012110.10),A12110.101.A21(10.10)
ol uens
COMMOV/AA WETGHT(10.10)
COMMOV/3H/A1,A2,A12,A21, B1, B2,C1,C2,01,02,Q1,02,012,021.
- k1,R2.vi,v2

COWMIV/EEI/ K112.K121
CCY4アY/FF1/ K211, 2222
COMYUN/GG1/ K312,K321

CCYMONDIFFO/ LIMITO.EPSO,IPRTO
COMMUN/BJT/ E,ESCALE, MAXIT,IPRINT,NI,NO
c
C
OATA N1,41,51,T1,N2,M2,52,12/4,3,1,4,4,3,2,4/

DATA E/20\%.011
DarA B1/0..0..500..97*0.1
DATA MAXIT/201
DATA ESCALEES.'
DATA TPRINT/1/,
DATA N1 NO/5.6,
OATA WEIGHT/100*1.1
DATA EPSO, IPRTO/1.E-5,11
DATA V1/.0001.10*0...0005.10*0...0003.10*0...0007.10*0..56*0.1

OATA 02/1..10*0..1..10*0..1..10*0..1. .10*0..1..10*0..45*0.1
oata 012,021/200*0.1
DAFA C2/1,.10*0.,1,10*0..11..10*0.,11.,10*0..1..10*0..45*0.1

 END
subrout ine miny
Invert a matrix
usage
CALL MINV(A,N, O.L,M)
a - input matrix iess moyed in coyputation and replaced by
RESULTANT INVERSE.
N - orosr uf matrixa
L- WOKK VECTOR OF LE:NGTH
Emarks
matrix a must be a general matrix
subriutines and function subprograms required
NONE
METHOD
the standaro gauss-jordan method is used. the oeterminant IS ALSO CALCULATED. A D
THE MATRIX IS SINGULAR.

SUBROUTINE MINV(A,N,OL, MI
EN

DIMENSION A(1).LIT).M(1)
DOUBL E PRECISION A,D,BIGA,HOLD,DABS

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED. THE IN : OLUMN I STOULD BE REMOVED FROM THE DOUBLE PRECISION
double precision a. obiga,holo
the C must also be removeo from double precision statements pppearing in other rjutives used in conjuktion hith this OUF
THE DOUBLE PRECISION VEPSION OF THIS SUBROUTINE MUST ALSO 10 must be changeu to dabs.
C

```
```

nnonon

```
```

nnonon
search for largest el ement
search for largest el ement
O=1.0
O=1.0
NK=-N _ N=1,N
NK=-N _ N=1,N
l
l
l
l
M(K)=K
M(K)=K
KK=NK+K
KK=NK+K
BLgA=A(KK)
BLgA=A(KK)
M
M
00 20 1=k,
00 20 1=k,
10 1F(DASS(BIGA)-DABS(A(IJ))] 25.20.20
10 1F(DASS(BIGA)-DABS(A(IJ))] 25.20.20
15 BIGA=A(IJ)
15 BIGA=A(IJ)
L(k)=!
L(k)=!
M0(ki=J
M0(ki=J
IntERCHANGE ROWS
IntERCHANGE ROWS
J=(血)
J=(血)
25{\mp@code{lfI=K-N (J-K) 35.35.25}
25{\mp@code{lfI=K-N (J-K) 35.35.25}
25\mp@code{If(J-K) 35.35.2 }
25\mp@code{If(J-K) 35.35.2 }
MO 30 I=1,N
MO 30 I=1,N
HOLD=-A(xI
HOLD=-A(xI
j1=xi-k+J
j1=xi-k+J
A(xl)=A(JI)
A(xl)=A(JI)
30 A(JI) =HOLO
30 A(JI) =HOLO
c interchange columns
c interchange columns
35 l=m(x)
35 l=m(x)
5 =2M(x) 45,45,38
5 =2M(x) 45,45,38
38 JP=N*(1-1)
38 JP=N*(1-1)
{
{
M
M
MOLD=-A(JK)
MOLD=-A(JK)
40 A(JI) =HOLD
40 A(JI) =HOLD
c
c
divide column by minus pivot ivalue of pivot element'is
divide column by minus pivot ivalue of pivot element'is
45 IF(BIGA) 48,46.48
45 IF(BIGA) 48,46.48
46 D=0.0
46 D=0.0
48 RE 5URN I=1,N
48 RE 5URN I=1,N
48 DO 55 l=1,N
48 DO 55 l=1,N
0}\begin{array}{l}{IK=NK+1}
{A(IK)=A(IK)/1-BIGA}
0}\begin{array}{l}{IK=NK+1}
{A(IK)=A(IK)/1-BIGA}
55 CONIINUE
55 CONIINUE
l
l
reduce matrix

```
        reduce matrix
```

```
        DO 20 I=K,N
```

 DO 20 I=K,N
 46 D=O.0
    ```
    46 D=O.0
```

 \(0065\{-1 . N\)
 $i K=N K+1$
i $K=N K+1$
HOLD
$1 J=1-N$

$\mathrm{DO}_{1=1} 65 \mathrm{~J}=\mathrm{N}=1 . N$
(F(I-k) 60.65 .60

$A(1 J)=H O L D * A(K J)+A(1 J)$
65 CONTINUE
c
c
c
c
divide row ay pivot
$0075 \mathrm{~J}=1, \mathrm{~N}$

KJ(J-K) 70,75,70
$70 A(K J)=A(K J) / B I G A$
70 A(KJ) =AIK
75 CONTINUE
c
c
c
pqounct of pivots
$D=0 * 8$ IGA
replace pivot by reciprocal
A(KK)=1.0/8IGA
CONHINUS
final row and column interchange
$100 \begin{aligned} & k=N \\ & k=(k-1)\end{aligned}$
$100 \quad 1 F(K) \quad 150.150,105$
$105 \begin{aligned} & 1=L(K) \\ & \mid F(I-K) \quad 120,120,10\end{aligned}$
1F(1-k) 120.120,108
$J O=N *(K-1)$
$J R=N *(1-1)$
Do $110 \mathrm{~J}=1$, N
jK=j0+J

$\Rightarrow 1=J R+J$
$A(J K)=-A(J)$
110 A(J) 10 HOLD
$120 \begin{gathered}1=M(K) \\ I F(J-K) \quad 100,100.125\end{gathered}$
$125 \mathrm{KI}=\mathrm{K}-\mathrm{N} \quad 1=1, \mathrm{~N}$
KI $=\mathrm{KI} I+\mathrm{N}$
HOLD
$J I=K I-K+J$
$\mathrm{J}=\mathrm{kI}(-x+J$
$A(k I)=-A(1)$
130 A(JI) $=$ HOLD
130 AlJI) $=$ HOL
GU TO 100
150 RETURN
$\stackrel{c}{c}$
END SUBROUTINE DGELG
murpose
to solve a general system of simultaneous linear equations. uSAGE

CALL DGELG(R.A.MON.EPS.IER)
description of parameters
double precision m oy r right hano sioe matrix (oestroyed). oy return a contains the solutions of the euvations.
a - dousle paecision m by m coefficient matrix

- The number

N - THE NUMBER OF EQUATIONS IN THE SYSTEM.

ier - resulting error parameter coded as follows
IER=0 - NO ERRDR
IER=-1 - NO RESULT bECAUSE OF M LESS THAN 1 OR pivot elem
EUUAL TO 0
IER=K - WARVING DUE TO PJSSIGLE LOSS OF SIGNIFICANCE INDICATED AT ELIMINATION STEP K HERE PIVOT ELEMENT HAS LESS THAN OR absolutely greatest element of matrix a.
remarks
input matrices r añ a are assumed to be stored columnwise IN MAY RESP. M M H SUCCESSIVE STORAGE LOCATIONS. UN RETURN
SOUTION MATRIX R IS STORED COLUMNA ISE TOO.
The procedure gives results if the number of equations m is GPEATER THAN O ANJ PIVOT ELEMENTS AT ALL ELIMINATION STEPS ARE UIFFERENT FROM O. HONEVER HARNING IER=K - IF GIVEN SCALED MATRIX A ANO APPROPKIATE TOLERANCE EPS, IER=K MAY OE Initerpreted that matrix a has the rank k. no warning is
Given in case mal.
surrcuy
Nove
METHOO
soiution is done by means of gauss-elimination hith COMPLETE PIVOTING.

SURROUTINE OGELG(R.A.M,N.EPS,IER)
Dimension all), R(1)
DJUELE PREC ISION R,A,PIV,TB,TOL,PIVI
DJUBLE PRECISION DABS
c
c

```
    1\begin{array}{c}{1ER=0}\\{PIV=0}\end{array})
        PIV=0.DO
        NM=N*M
        OO3 L=1.MM
        TY=0ABS(A(L))
        MFITB-PIVI3.3.2
    2 P! =L=T
    3 CONTINUE
c start elimination locp
    LST=1
        OO 17 k=1.M
C TEST ON SINGULARITY
        IFIPIVI23.23.4
    4 IF(IER)T.5.7
    5 IF(PIV-TOL16,6.7
    6 IER=K-1
        M=|I-1;/M
        M=(1-J*M-K
        M=7-j*M-k
C Itk is roh-index. j+k column-inoex of pivot element
C PIVOT ROW REOUCTION ANO ROW INTERCHANGE IN RIGHT HAND SIDE R
        DN 8 L=K.NY,M
        ll=l+1
        M&=PIVI*R(LL)
    | R(L)=TB
c
c. IF(K-M)9,18,18
c. column interchange in matrix a
    9(F(J)12,12,10
    10 11=J*M
        OO 11LL=LST,LENO
        {\begin{array}{l}{B=A(L)}\\{LL=L+1!}\end{array}
        A(L)=A(LL)
    11 AlLL)=TB
C
    roh interchange and pivot ron reduction in matrix a
        20O 13 L=LST.MM,M
        LL=L+I
    A(LL)=ACL
c
save column interchange information
A(LST) =J
element reduction and next pivot search
```

```
    Clv=0.00
    j=0
    Mivi=-Alil
    IST=1
    j=J+1
    H2=にJ
    A(L)=A(L)+PIVI*A(LL)
    im,
    24 PIVFTB
    scomilvue
        0. 10 L=K,NH,M
        u=Lゃう
    {20
    LST=LSTty OF ELIMINATION LOOP
c back substitution ano bacx interchange
    MACK SUBSTITUTIO
    \ST=MM+M
        LSY=M+1
        H=LST-1
        cicisfisT-L
        L=A(L)+.500
        l
        \dzk(J)
        DJ 20 K=1 ST.MM.M
```



```
        l}\begin{array}{l}{k=J+L}\\{R(J)=R(K}
    21 R(k)=TB
c
C ERRJR RETURN
```



```
        MEFURN
        SUZKJUTINE BOTM (X.EON.EF.ESCALE,IPRINT.YAXITOM,NI NO.NHI
```



```
C NUMSER=O
    *Klte (NO.001)
    OO1 FURMAT ILH1,10X.32HPOMELL-SOTM OPTIMIZATION ROUTINE,
    O01 FURHAT (1H1,10X, 32HPOWELL-8OTM OPTIMIZATION ROUTINE ', E(J), J=1,
```



```
    _2 1PE16.8)-(%.2X.31HA
    1sT=11+M
    A(L)=A(L)+P泣*ACLU)
    5 cominvuE,NH,N
        l1=LST-1
    TB=TU-A(K)*R(LL)
```

```
35 FB=F
    G0 TO 21
    24 FE=FA
    FA=F
21 00 TO (83.23).ISGRAO
    3 [ }0=03+05-0
    G0 fo 8
83 D=0.5*(JA+OB-(FA-FB)/(DA-08))
    If=4
```



```
26 J=08+SIGV (ODMAX.D8-DA)
    IS=1
    OOYAX =00MAX +DOMAX
    IF (OTHAG.GE.1.OE+60) DDMAG = 1.0E+60
    1F(004:X-D.4AX)8,4.27
27 524ax=04AX
13 IF(F-FA) 28,23,23
    FC=Fa
    OC=D3
    F
    GO ra 30
12 1F(F-FB)28.28.31
31 FA=F
    ga=0
11 1F(F-FG)32,10,10
32 (1) FA=F3
    01=09
1%OLO2.
    ODL=1,
    FA=FP
    0A=-1.
    Fg=FHOLD
    D=1.
10}\begin{array}{l}{\textrm{F}=1}\\{\textrm{FC}=7}\\{D=0}
30 AC=D A (0B-OC)*(FA-FC)
A=103-DC)*(FA-FC
    IF((A+B)*(DA-DC)133.33.3A
33 FA=FB
    DA=DB
    FB=FC
34 O=O.5*(A*(OS+DC)+B*(OA+DC))/(A+B)
    O1=09
IF(FB-FC)44.44.43
4 3 \text { DI=OC}
```

FI-F
44 GO TO (86,86.85), ITONE
85 ITONE=2
86 IF (ABS (D-DI)-DACC) 41.41.93

93 if $(A B S ~(D-D 1)-0.03 * A B S ~ 101)$
45 If $(10 A-D C) *(D C-D) 1) 47.46 .46$
$\left.46 \begin{array}{c}F A=F B \\ D A=D Y \\ \end{array}\right)$
$D A=D B$
$F B=F C$
$F B=F C$
$D S=D C$

4 | GO 1025 |
| :---: |
| $15=2$ |

$47 \quad 15=2$
48 If ($(09-0) *(0-D C)) 48,8,8$
48 GO TO
$41 \begin{aligned} & \mathrm{F}=\mathrm{Ft} \\ & \mathrm{D}=\mathrm{D}, \mathrm{D} \\ & \mathrm{D}\end{aligned}$
$0=D 1-D C$
$D D=S O R T(D C-D B) *(D C-D A) *(J A-D B) /(A+B))$
$00=50 R T$
0049
$1=1, N$
$x(1)=x(1)+D * W(10 I R N)$
$49 \begin{aligned} & \text { H(IDIRN) } \\ & \text { (OIRN }=101 R N+1\end{aligned}$
W(IIINE)=WCIIINEI/OD
W(LINE)
ILINE
ILINE
IN
IFIPRINT-1)51,50.51
50 WRITE(NO,52)ITERC,NFCG.F. EXC(1), T=1, 101
 +S(E16.8.2x)
NUMUER $=$ NUMBERH1
IF (NUMRER.GT.N) NUMBER=1
WRITE(6.1000) NUMEER

60 TOT51.531, IPRINT
51 GO TO $(55,38)$, 1TONE
55 IF (FPREV-F-SUM) $94,95,95$
95 SUM=FPMEV-F
JIL=ILINE
94 IF (IDIRN-JJ) 7,7,84
84 GO TO 192,721 . IND

$15=0$ $1 \times P=J$

$00591=1, N$
$59 \quad \begin{aligned} & \quad 1 \times P=1 \times P+1 \\ & \quad(1 \times P)=X(1)-W(1 \times P)\end{aligned}$
$0 D=1$.
96 G0 T0 58 (112.87).IND
112 IF (FP-F) 37.37,91
(FHOLD)/(FP-F)**2
87 If (D*(FP-FHOLD-SUM) **2-SU4) 87,37.37
$60 \begin{array}{cc}\text { IF }(J-J J) ~ \\ 00 & 60.60 .62\end{array}$
60 00 $621=\mathrm{L}=\mathrm{JJ}$
$62 W(K)=W(1)$


```
61 TOIRN=IDIRN-N
ITONE \(=3\)
\(\mathrm{k}=1018 \mathrm{l}\)
\(\mathrm{i} \times \mathrm{P}=\mathrm{Jj}\)
AAA=O.
\(0067 \quad 1=1, N\)
\(1 \times P=1 \times P+1\)
\(1 \times p=1 \times p+1\)
\(W(x)=N(1 x p)\)
IF (AAA-ABS (K(K)/E(I))) 66.67.67
```



```
\(67 \begin{aligned} & K \times K+1 \\ & 00.4 A G=1 .\end{aligned}\)
wil: = ESCALE/AAA
```



```
37 1xp=j」
\(A A A=0\).
\(f=F\) HOLD
RO \(99 \quad 1=1, N\)
DO
\(x(1)=x(1)-H(1) \times P\) )
IF(AAA*ABS (E(!))-ABS (W(IXP)I)) 98,99.99
99 AAA=AOS (WIXP)/E(I))
99 Curtinue
GO to 72
\(38 A A A=A A *(1 .+D 1)\)
GJTJ (72.106),1NO
72 IFITPRINT-2153,50.50
53 GO YO (109.88) 1NO
109 IF (AAA -0.1\()(20.20 .76\)
\(C^{76}\) IFIF-FP) \(35,78,78\)
78 WRITE (NO, BO)
SO fORMAT (SX, 31 HACCURACY LIMITEO OY ERRORS IN EI
o format lsx, binaccuracy
-
88 IND \(=1\)
35 DOMAG \(=\)
```



```
C 108 ITEPC= ITERC+1
81 WRITE (NO,82) MAXIT
82 FORMAT (I5.29H ITERATIONS COMPLETED BY BOTM)
```



```
10 FAFKEEP
\(00111 \mathrm{I}=1, \mathrm{~N}\)
\(111 x(1)=W(1) J)\)
- go roz20
\({ }^{C} 106\) IFIAAA-0.1) 20.20.107
20 EF=F
RETURN
```


r
 VITA
 Panthep Laohachai
 Candidate for the Degree of
 Doctor of Philosophy

Thesis: SUBOPTIMAL CONTROL OF INTERCONNECTED POWER SYSTEMS Major Field: E1ectrical Engineering

Biographical:
Persona1 Data: Born in Chieng Mai, Thailand, October 6, 1948, the son of Mr. and Mrs. Lao Sia Teng.

Education: Graduated from Montfort College, Chieng Mai, Thailand, in April, 1967; received the Bachelor of Engineering degree in Electrical Engineering from Chulalongkorn University in April, 1971; received the Master of Engineering in Electrical Engineering degree from Chulalongkorn University iñ May, 1973; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1977.

Professional Experience: Graduate Trainee, Metropolitan Power Authority, Bangkok, Thailand, summer, 1971; instructor, Electrical Engineering, Kasetsart University, Bangkok, Thailand, 1971-1973.

Professional Organizations: Member of Institute of Electrical and Electronics Engineers and Engineering Institute of Thailand; Registered Professional Engineer, Thailand.

[^0]: \#Approximate value.

[^1]: \#Approximate value.

