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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

Nowadays most electric power generating units are tied 

together to form a large interconnected power system. The 

primary motivation for interconnection is to obtain the 

economic benefits df new large-scale generation and transmis­

sion facilities. Advantage is taken to transfer power gener­

ation over interconnecting tie-lines from an area of low 

demand to one of high demand. It also enables utilities to 

share spinning reserves during emergencies so that spinning 

reserve requirement in each area is reduced. Thus, overall 

operating economies and high reliability are achieved. 

Interconnections, however, increase the degree of com­

plexity of power system operating problems. These problems 

arise as a consequence of the complexity of the network to­

pology and of dynamic behavior of the system when subject to 

disturbances occurring not only internally but also elsewhere 

in other systems in the interconnections. In order to cope 

with this problem, control of power system dynamics has become 

the focus of considerable interest. 

1 
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Power system control can be divided into two separate 

problems, namely synchronous machine control and load frequen­

cy control. Both of them can be viewed as dynamic control 

systems in which control is required to damp out system 

oscillations or swings. Feedback signals of some or all 

variables are usually used as input to the system controller. 

The difference between them is that synchronous machine con­

trol deals with interactions between one or a few generating 

units with the rest of the system considered as an infinite 

bus while load frequency control deals with all of the gener­

ating units within the system with equal attention. Since 

there is a large number of generating units within a system, 

and the main variables of interest are load demand and energy 

supply, it is general practice to eliminate electrical dy­

namics from load frequency control system. 

The applications of modern control theory to stabilize 

power system dynamics for both synchronous machine control 

and load frequency control problems were proposed in 1970. 

The technique yielded good damping results. However, if all 

state variables are not available to be fed back and if the 

dimension of the system is increased, the computer time and 

memory for optimal gain calculation will be increased signi­

ficantly. It is correspondingly important tn investigate a 

new approach to the solution of optimal control of the sys­

tems such that it can be applied to large interconnected 

power systems. 
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1.2 Literature Review 

In this section a review of works in both synchronous 

machine control and load frequency control are presented. The 

development of load frequency control is described in the 

first part. The development of synchronous machine control is 

described in the second part. Since the conventional control 

techniques for the load frequency problem is well established 

and has been used widely for many years, only a general discus­

sion of the technique is presented. More reviews are given to 

those studies dealing with modern control theory. 

1.2.1 Load Frequency Control of 

Power Systems 

The conventional approach to load frequency control of 

power systems is called tie-line bias control. The comprehen­

sive presentation of the control design can be found in Refer­

ence [12]. In this approach the problem is considered as a 

static one. The design of system control involves steady 

state quantitiesa There are three steps to deal with load 

frequency control. First, total system generation must be 

matched to total system load. This can be done by speed 

governor control of the system. The criterion for determining 

when total demand has been satisfied is an unchanging system 

frequency. Second, total system generation among the areas is 

allocated so that each follows its own load chnages and does 

its share of frequency regulation. This objective is accom­

plished by net interchange tie-line bias control such that 
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area net interchange is on schedule, i.e., area control error 

is reduced to zero. Third, each unit should operate at the 

same incremental cost in order to minimize combined system 

cost. This is the function of economic dispatch control. 

Studies of tie-line bias control during dynamic period were 

carried out by Concordia and Kirchmayer [13] [14]. 

The control design using optimal control theory was pro­

posed by Elgerd and Fosha [23] [27]. They made use of linear 

models of the turbine, speed regulator, and power system. 

Then they derived the optimal feedback gain that minimized the 

standard integral quadratic objective function via Riccati's 

equation. The simulation results of system behavior following 

a disturbance were given. Cavin et al. [11] applied stochas­

tic control theory to the load-frequency control problem. The 

Kalman filter was used for estimation and the separation 

theory was used to derive the control law. Miniesy and Bohn 

[45] considered the demand to be an unknown. Two methods were 

suggested for demand identification. The first method made 

use of differential approximation. The second method made use 

of Luenberger observer. Bohn and Miniesy [7] applied sampled­

data control to the problem considered earlier [45]. In that 

paper an adaptive observer was introduced and its effective­

ness was illustrated. Glover and Schweppe [30] proposed a 

discrete time, linear-plus-deadband, feedback control law. A 

simulation of system response to a step load change was pre­

sented. Calovic [9] considered the control based on a combin­

ation of conventional and optimal control design. Results of 
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a digital simulation of the optimal system showed significant 

improvement of system transients while maintaining the desired 

steady-state characteristics. His proportional-plus-integral 

control law extended to multi-area interconnections was pre­

sented in Reference [10]. Recently, Kwatny et al. [41] formu­

lated the load frequency control as a tracking problem instead 

of a regulation one. In their paper the prime mover energy 

source was recognized as a part of the system dynamic model. 

The control system included estimation and prediction of loads 

which were used to regulate power flow and frequencies. 

1.2.2 Synchronous Machine Control System 

In the early studies of stabilization of synchronous 

machine dynamics most researchers focused their attention on 

the so-called excitation control. Ellis et al. [24] made a 

stability study of the Peace River transmission system and 

proposed that the stability could be improved by using speed 

error as an input to the excitation system. Shier and Blythe 

[SS] confirmed that idea by computer simulation and field 

tests. They demonstrated that a practical stabilizer can be 

devised using simple electrical devices. Hanson et al. [33] 

studied the oscillation control by reducing gains on automatic 

voltage regulators. They carried out a series of tests and 

found that the system obtained was properly damped. deMello 

and Concordia [19] reported analytical results concerning 

excitation control of power system dynamic stability. The 

gain parameters of the voltage regulator that stabilized the 
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system was derived. The transfer function for speed-derived 

signals was also studied. Byerly et al. [8] studied the use 

of electrical power as an auxiliary signal input to the exci-

tation system. The paper included the effects of rotor-iron 

saturation on generator damping. Schleif et al. [54] showed 

that damping was improved by supplementing excitation control 

with a derived function of frequency deviation. Results of 

the studies were verified in actual field tests. 

The application of the modern control theory to power 

systems was proposed by Yu et al. [58]. They applied the 

optimal control to minimize an integral quadratic performance 

index of a power system. All the state variables were assumed 

to be measurable. The constant feedback gain was obtained by 

solving the Riccati's equation. Anderson [l] reported a simi-

lar approach to a slightly different model. In his paper 

simplified Park's synchronous machine variables [49] were 

used. The comparison of the optimal control technique to that 

of the excitation control was carried out by Yu and Siggers 

[59]. They found that a well-designed system obtained from an 

excitation control technique yielded the results which were 

as good as those obtained from optimal control technique; 

However, the design procedure of the excitation control tech-

nique had to be done in trial-and-error fashion. Davison and 

Rao [18] considered the problem where not all state variables 

were available for measurement. They solved this problem by 

' using a gradient method of parameter optimization. Elangovan 

and Kuppurajulu [21] considered another approach to the 
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limited state variable feedback problem. They reduced the 

dimension of the original state vector to the one that had 

only measurable variables. The technique which retained domi­

nant eigenvalues was applied to the problem. Yu and Moussa 

[60] made a study of multimachine control system. A reduced­

order model was used. They found that a controller obtained 

from the multimachine system design was better than the one 

that was obtained from a one-machine infinite-bus system de­

sign. Moussa and Yu [46] developed a method to determine the 

weighting matrix Q such that the dominant eigenvalues were 

shifted to the left in the complex plane as far as the prac­

tical controllers permitted. They applied the eignevalue sen­

sitivity analysis technique to the problem. By this method 

the weighting matrix Q can be determined analytically. 

Habibullah and Yu [31] presented a method to determine both 

weighting matrices Q and R. Their controls were found to be 

able to stabilize the system under a wide range of operations. 

Elmetwally et al. [25] presented a method of optimal control 

in which the system controllable parameters were selected so 

as to correspond to the region of near zero sensitivity. 

Elmetwally et al. [26] and Newton and Hogg [47] reported the 

implementation of the optimal controller to real micro­

machines. Experimental results showed that the controller 

worked well under small disturbances. Daniels et al. [17] 

developed a technique to determine a control which is a linear 

combination of some selected state variables. They used an 

unconstrained optimization routine to minimize the performance 
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index with respect to the nonlinear system of differential 

equations. The synthesized controller was implemented on a 

micro-machine and the experimental results demonstrated the 

advantages of the technique. Raina et al. [52] presented a 

method of optimal control of power systems. Modification to 

the usual proportional controller was suggested and a good 

damping response was found under a wide range of operating 

conditions. Quintana et al. [51] studied an optimal output 

feedback control design with a compensator. A number of com­

binations of measurable output variables were used as input 

to the controller. 

1.3 Research Objective 

The objective of this research is to develop a subopti­

mal control technique for interconnected power systems. In 

the first part, a fixed configuration control whose control­

lers are a linear transformation of some certain state vari­

ables will be formulated. Attempts will be made to subdivide 

the interconnected system into subsystems. Necessary condi­

tions for optimality as functions of these subsystems will 

then be derived. Since the dimensions of the subsystem 

matrices are less than those of the original interconnected 

system, it is expected that calculations of optimal gain in 

subsystem equations will require less computer time and 

memory than using the original equations. In the second part, 

applications of the results obtained from the first part to 

interconnected power systems will be studied. Linear system 
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models for both multi-area load frequency control systems and 

interconnected synchronous machine control systems will be 

formulated. The optimal control and the suboptimal control 

gains will be calculated and compared. 



CHAPTER II 

OPTIMAL LIMITED STATE VARIABLE FEEDBACK 

CONTROL OF LINEAR STOCHASTIC SYSTEMS 

2.1 Introduction 

Over the past years considerable contributions were made 

in the area of optimal limited state variable feedback cofi­

trol systems. Different models were used by different 

researchers. Levine and Athans [42] reported necessary condi­

tions for a deterministic linear time-invariant control system. 

The initial condition for the state vector was assumed to be 

a set of random variables which were uniformly distributed on 

the surface of the n-dimensional unit sphere. Sims and Melsa 

[56] worked on a linear stochastic system. A filter which 

was a linear combination of state variables and control vari­

ables was used. The dimension of the filter was prespecified. 

The control was assumed to be a linear transformation of the 

filter. They found that performance does not depend on the 

filter dynamics. McLane [43] considered a system in which 

the plant noise was dependent on both state and control vari­

ables. In his study the measurement noise was not presented. 

Recently, Mendel [44] provided necessary conditions for a 

linear time-invariant stochastic system. In that paper an 

infinite final time for the performance index was considered. 

10 
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Assumptions were made so that the compensation plant matrix 

could be optimized. 

In this study the interconnected power system will be 

represented by a linear time-invariant model with or without 

plant noise. Since the results for the deterministic case 

was given in Reference [42], in this chapter necessary condi-

tions for limited state variable feedback control of a linear 

time-invariant stochastic system with p~rfect measurement 

will be derived. It will be seen that even though the 

assumptions and the approach used in this derivation are 

different from those of Reference [42] the results are very 

similar. Thus, with a minor change the approach given in 

this chapter is applicable to both the deterministic case and 

the stothastic case with perfect measurement. 

2.2 Optimization Problem Formulation 

Consider a first-order system of linear equations. 

dx(t) = Ax(t) + Bu(t) + Dw(t) 
dt 

y(t) = Cx(t) 

( 2. 1) 

( 2. 2) 

where x(t) is a state vector of dimension n; u(t) is a con­

trol vector of dimension s; y(t) is an output vector of 

dimension m; and w(t) is a noise vector of dimension 1. A, 

B, C, and D are constant matrices of compatible dimensions. 

The noise vector is assumed to be white with zero mean and 

its covariance is: 

E{w(t)wT(t)} = Vo(t-1) (2.3) 
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where V is a positive definite noise intensity matrix. Mean 

and covariance of the initial states are: 

The performance index to be minimized is: 

tf 
J 0 = E f {xT(t) Qx(t) + uT(t) Ru(t)}dt 

to 

(2.4a) 

(2.4b) 

( 2. 5) 

where Q is a positive semi-definite matrix and R is a posi­

tive definite matrix. Let the control, u(t), be constrained 

to be a linear transformation of the output vector, i.e., 

u ( t) = Ky ( t) ( 2. 6) 

where K is the constant matrix to be determined. From Equa-

tions (2.1), (2.2), (2.5), and (2.6) we have 

dxa\t) = (A + BKC) x(t) + Dw(t) ( 2. 7) 

(2.8) 

From Theorem 1.54 of Reference [39], the Equations (2.7) and 

(2.8) may be rewritten as: 

tf 
J 0 = tr{P(t )Q + f DVDTP(t)dt} 

0 0 t 
0 

where P(t) satisfies 

_d~~t) = (A+ BKC)T P(t) + P(t)(A + BKC) 

+ Q + CTKTRKC 

(2. 9) 

(2.10) 
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If (A + BKC) is asymptotically stable, P(t) has a steady 

state value as t approaches infinity. Let P be the steady 

state value of P(t). Equation (2.10) becomes 

If tf approaches infinity, Equation (2.9) becomes 

J 1 = 1 im J 0 = 1 im { tr [ P ( t 0 ) Q0 + ( t f - t 0 ) DVD T P] } 
tf+co tf+co 

(2.12) 

In order to avoid an infinite number in Equation (2.12), let 

us define a new performance index: 

J 
Jl 

= 1 im t _ t 
tf+co f 0 

J = tr(DVDTP). (2.13) 

2.3 Statement of the Problem 

Given the plant matrices A, B, C, D, white noise inten­

sity V, weighting matrices Q, R, and the performance index, 

J = tr(DVDTP) (2.14) 

where P is the solution of the equation, 

(A+ BKC)TP + P(A + BKC) + Q + CTKTRCK = 0 (2.15) 

Find the real constant matrix K which minimizes J assuming 

that K makes (A + BKC) a stable matrix,· i.e., all of its 

eigenvalues have negative real parts. 
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2.4 Necessary Conditions for Optimality 

The main result is summarized in the following theorem. 

Theorem 2 .1: Let K be a real ma tr ix. Assuming that (A+ BKC) 

is stable, then, in order for K to be optimal for the problem 

defined in section 2.3, it is necessary that 

(2.16a) 

where Z satisfies the equation 

DVDT + (A+ BKC)Z + Z(A + BKC)T = 0 (2.16b) 

and P satisfies the equation 

Proof: 

The necessary conditions for optimality are derived by 

applying the gradient matrix concept [2] [3] to an augmented 

function L. 

Define: 

L = tr[DVDTP] + tr{[(A + BKC)TP + P(A + BKC) 

+ Q + CTKTRKC]ZT} (2.17)· 

where Z is an n x n multiplier matrix. 

The conditions for extremum are 

.aL = O 
al< 

aL ap = 0 

(2 .18a) 

(2.18b) 
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aL TI = o (2.18c) 

By some matrix manipulation of Equation (2.18) and using the 

results of Reference [2], Equation (2.16) is obtained. 

2.5 Properties of Matrices at 

the Extremum Condition 

It should be noted that Equation (2.16b) and (2.16c) 

have the same form as the Lyapunov matrix equation. Proper­

ties of this equation are given in the following theorems. 

The proof of these theorems can be found in References [5] 

and [ 2 8] . 

Theorem 2.2: Given the Lyapunov matrix equation 

AX + XB + C = 0 (2.19) 

where A, B, and Care mxm, nxn, and mxn matrices, respec-

tively. Let A.. , i = 1, 2, 
1 . . . ' m, and µ . , j = 1, 2 , . 

J . . ' n 

denote the eigenvalues of A and B, respectively. Then Equa­

tion (2 .19) has a unique m x n matrix solution X if and only 

if for all i,j 

A. + µ. 'f 0. 
1 J 

Theorem 2.3: Given the Lyapunov matrix Equation (2.19). If 

all the eigenvalues of A and B have negative real parts, then 

Equation (2.19) has a unique solution given by: 

(2.20) 
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Theorem 2.4. Given the Lyapunov matrix Equat~on (2.19). If 

C is nonnegative definite, all eigenvalues of A and B have 

negative real parts, and 

then X is a constant symmetric nonnegative definite matrix. 

From the above theorems, properties of matrices satis­

fying Equation (2.16) are as follow: 

(1) It can be proven by means of Theorem 2.3 that Equa­

tion (2.16) has a unique solution, K, P, and Z, that yields 

a stable system. Furthermore, it follows from Theorem 2.4 

that P and Z are nonnegative definite. 

(2) The reverse of (1), however, is not true. It has 

been found that there exists a K which satisfies Equation 

(2.16) but does not stabilize the system. The corresponding 

P and Z are not nonnegative definite. This has been a cause 

of trouble in determining optimum feedback gain of the sys-

tern. 

(3) If C is an identity matrix, the necessary condi­

tions, Equation (2.16), are the same as those of the state 

feedback control problem. 

(4) For the deterministic case the necessary conditions, 

to solve for K, are obtained by substituting for DVDT in 

Equation (2.16b), an identity matrix. The .result is the 

same as the one given in Reference [42]. It should be noted 

that this does not imply that either D or V is an identity 

matrix. 



17 

(5) If D or V is a null matrix, we get a singular prob­

lem. It can be verified by writing the closed-form solution 

of Equation (2.16b) as 

co 

Z = f {exp (A+ BKC)Tt} {DVDT} {exp(A+BKC)t}dt 
0 

if DVDT = 0, then Z = O. 

(6) The solution of Equation (2.16) is, clearly, depend-

ent on the noise intensity V. However, even though V has a 

significant effect on Z, it has been found that V has a 

smaller effect on K. 



CHAPTER III 

SUBOPTIMAL CONTROL OF INTER­

CONNECTED SYSTEMS 

3.1 Introduction 

One problem that is encountered very often in practical 

controller design of interconnected systems is long computer 

time and large memory requirements. It arises as a conse­

quence of the large dimensions of the systems. Because an 

unlimited computer capability is not usually available, the 

design is generally carried out by using a simplified model. 

Two methods of model simplification which are usually found 

are decoupling and deleting of state variables. The decou­

pled system model is utilized if certain portions of the sys­

tem are weakly coupled such that it may be possible to break 

the system into several mutually exclusive low-order subsys­

tems. This model is usually used in systems consisting of 

many subsystems or components and the effects of interaction 

between them are negligible. Deletion of state variables 

can be applied to those variables which have small contribu­

tion to system dynamics. But in some cases where computer 

burden indicates that it is necessary to simplify the model, 

state variables which are not considered negligible are also 

eliminated. Here the designer must depend on the physical 

18 
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understanding of the system in selecting which state vari­

able to delete. It must be done very carefully and always 

with some risk. These two methods of model simplification 

can reduce the computation to a large extent. However, the 

quality of system performance is sometimes unsatisfactory 

and instability may result if the model is simplified im­

properly. 

In this chapter another technique for limited state 

variable feedback controller design is presented. It is 

achieved by dividing the interconnected system into several 

subsystems. The feedback gain matrix is derived by Taylor 

series expansion of matrices K, P, and Z (see Chapter II) 

with respect to a coupling parameter. This technique does 

not require model simplification so that generally a better 

performance should be obtained. It also makes use of the 

low-order subsystem to offer less computation. Thus it is 

expected that the technique is suitable for large scale sys­

tem controller design without requiring large computer capa­

bility. 

The method of Taylor series expansion in linear systems 

was applied earlier by Kokotovic et al. [37] [38] [53] to find 

an approximate solution to Riccati's equation. In this chap­

ter the method is applied to necessary conditions derived in 

Chapter II. The results are applicable to both complete and 

limited state variable feedback control systems with and 

without plant stochastic noise. 
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3.2 Interconnected System 

Suppose that the system considered in Chapter II con­

sists of subsystems. Each subsystem is described by 

q dx. (t) 
i 

dt = A.x.(t) +Er A .. x.(t) + B.u.(t) 
i i j=l iJ J i i 

+ D.w. (t); 
i i 

y.(t) = c.x.(t); i i i 

i = 1, 2, ... ' q 

i = 1, 2,.. ' q 

(3.1) 

(3.2) 

where x.(t), y. (t), u. (t), w. (t) are the state, output, con-i i i i 
1 d . f h . th b . 1 tro , an noise vectors o t e i su system, respective y. 

w. (t) is a white noise process with zero mean and 
i 

E{ w i ct) w r c T) } = vi o ct_ T) ; i = 1 , 2 , . . . , q c 3 . 3) 

where v. is a positive definite noise intensity matrix. 
i 

Interactions between subsystems are represented by a para-

meter E which has a value between 0 and 1. If E = 0, the 

interactions are neglected and the interconnected subsystems 

are decoupled. If E = 1, Equations (3.1) through (3.3) 

represent the original interconnected system. 

In Chapter II the control is assumed to be a linear com-

bination of the output: 

u(t) = Ky(t) 

The problem is to determine the matrix K that minimizes the 

performance index given in Equation (2.5). With some mani-

pulation and approximations, necessary conditions for optimum 

Kare given in Equation (2.16). 
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In this chapter K, P, and Z are approximated by a finite 

term Taylor series expansion about e = O, i.e., 

r-1 j . 
K(e) - 2 e KJ ( 0) = 

j=O rr (3.4a) 

r-1 £j 
pj (0) P(e) - l = -.-, 

j=O J. 
(3.4b) 

r-1 £j 
Zj (O) z ( £) - l = IT 

j=O J. 
(3.4c) 

h h . . K P d Z . th . 1 w ere t e superscript J on , , an represent J part1a 

derivatives of K, P, and Z with respect to e, respectively, 

and r is the number of terms in the series. We shall derive 

necessary conditions for the terms in the series of Equation 

(3.4). 

In order to simplify the problem, we shall work with a 

system consisting of two coupled subsystem so that 

A = 

= 

where 
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B = 

c = 

ll 0] D = 
0 D2 

Rl 

:2] R = 
0 

v1 

:2] v = 
0 

Q 
= [Ql Q3] 

Q4 Q2 

{ Ql oQlj 
£Q21 Q2 

where 
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It should be noted that the approach used in this study 

can be extended to a system consisting of an arbitrary num-

ber of coupled subsystems. However, one may be faced with a 

very long expression. 

3.2.1 Special-Type Matrices 

Since we are going to deal with matrices consisting of 

four submatrices, some of which have two null submatrices 

on either the diagonal or the off-diagonal, it is useful to 

define symbols for some types of those matrices and subma-

trices. 

Let M be any matrix consisting of four submatrices, we 

shall write 

(3. Sa) 

Let us define two types of matrices: 

1. A matrix whose off-diagonal submatrices are null 

matrices is called an a-type matrix and is written as 

M 
a (3.Sb) 

2. A matrix whose diagonal submatrices are null 

matrices is called a S-type matrix and is written as 



From the above definitions it can be verified that: 

(i) 

(ii) 

M = M + M 
Ct (3 

If 1 = M N 
Ct Ct 

then 1 is of a-type, where 

11 = MlNl 

12 = M2N2 

(iii) If 1 = Ma.NB 

then 1 is of (3-type, where 

(iv) If 1 = M13 Na 

then 1 is of (3-type, where 

112 = M12N2 

1 21 = M21Nl 

(v) If 1 = M13 N13 

then 1 is of a-type, where 
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(3.6a) 

(3.6b) 

(3.6c) 

(3.6d) 

(3.6e) 

(3.6f) 

(3.6g) 

(3.6h) 

(3.6i) 

(3.6j) 

(3.6k) 

(3.61) 

(3.6m) 

We can apply these equations to find submatrix equations 

from a given matrix equation. For example, let 



By means of Equation (3.6) we get 

L is of a-type 

11 = M1N1z 821T1 

1 2 = MzN21 812T2 
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With the definitions in Equation (3.5), A and Q can be 

written as 

A = A + t.A 
a S (3.7a) 

(3.7b) 

It also can be seen that the matrices B, C, D, and R are of 

a-type. 

3.3 Necessary Conditions for Optimality 

in Subsystem Forms 

When a system is described by Equations (3.1) through 

(3.3), the matrices K, P, and Z can be written as Equation 

(3.4). Necessary conditions for matrices in the series of 

K, P, and Z are presented in the following theorem. They 

are written in a general form. 

Theorem 3.1: If the matrices K, P, and Z of Equation 

(2.16) can be presented by the Taylor series, the following 

equations are necessary conditions for the ith derivative 

of jth subrnatrices of the matrices in the series: 

i i i K. = F(P., Z.) 
J J J 

(3.8a) 
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(A + B K°C ) Tp~ + P~ (A + B K°C ,) + G = 0 
m m m m J J n n n n 1 

(3.8b) 

(A + B K° C ) Z ~ + Z ~ (A + B K° C ) T + G 2 = 0 m m m m J J n n n n (3.8c) 

where i = 0 ' 1 ' 2 ' 3' . 
If i is even, 

j = 1, 2 

m = n = j . 

If i is odd, 

j = 12, 21 

m = 1 

n = 2. 

F, G1 , and G2 are matrix functions of other submatrices. 

Since submatrices of K, P, and Z of lower derivative than i 

have already been determined in an earlier step, these sub-

matrices can be considered as constants. By this assumption 

G1 and G2 become constant matrices and F becomes a matrix 

i i function of P. and Z .. 
J J 

The proof of this theorem is presented in the next 

section. Necessary conditions for the first few terms of 

the series of K, P, and Z are derived. It can be seen that 

Equation (3.8) is the generalized form of those equations. 

3.4 Derivation of the Results 

In the derivation of Theorem 3.1 a certain set of matrix 

equations is involved. The solution of this set of equations 

is given in the following lemma. 
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Lemma 3.1: Given 

w = c1xc 2 + c3Yc4 (3.9a) 

T T T T D l WD z + Dz W D l + D 3 X + XD 3 = 0 (3.9b) 

T T T T El WE 2 + E 2 W El + E 3 Y + YE 3 = 0 (3.9c) 

where W, X, and Y are sxm, nxn, and nxn unknown matrices, 

respectively; and Ci, i = 1, ... , 4; Dj and Ej, j = 1, . , 

3 are constant known matrices of compatible dimension. 0 is 

an nxn null matrix. 

If unique solutions of Equation (3.9) exist, they are 

w = 0 

x = 0 

y = 0 

(3.lOa) 

(3. lOb) 

(3.lOc) 

This result is obtained when one recognizes that Equation 

(3.9) can be transformed to a set of homogeneous system of 

equations. 

The set of necessary conditions, Equation (2.16), can 

be rewritten by using Equation (3.7) as 

(3.lla) 

DVDT +(A + eA + BKC)Z + Z(A + eA + BKC)T = 0 
a 8 a 8 

(3.llb) 

(Aa + EA8 + BKC) T P + P (Aa + EA~ + BKC) 

(3.llc) 
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Derivations of matrices in the series are presented as 

follow: 

(i) If E = 0, the two subsystems are completely de­

coupled. In this case Equation (3.11) may be expressed in 

submatrix form as follows: 

o 1 T o o T o T ~1 . K. = -R~ B.P.Z.C. (C.Z.C.) ; 1 :::; 1, 2 
1 1 1 1 1 1 1 1 1 

(3.12a) 

T o o o o T D. V. D. + (A. + B. K. C.) Z. + Z. (A. + B. K. C.) 
1 1 1 1 1 1 1 1 1 1 1 1 1 

= O; i = 1, 2 (3.12b) 

o T o o o 
(A. + B. K. C. ) P. + P. (A. + B. K. C. ) 

1 1 1 1 1 1 1 1 1 1 

T oT o . 
+ Q. + C.K. R.K.C. = O; 1 = 1, 2 

1 1 1 1 1 1 
(3.12c) 

Since K0 P0 
' ' 

z0 are a-type matrices consisting of K?, P?, 
1 1 

Zo · 1 2 . ; i = , , as 
1 

their diagonal submatrices, the first terms 

of these unknowns are obtained. 

(ii) Taking the derivative of Equation (3.11) with 

respect to E and letting E = 0, the following set of equa-

tions is obtained. 

(3.13a) 

(A + BK°C)Z 1 + z1 (A + BK°C)T + (AS + BK1C)Z 0 
a a 

+ z0 (A + BK1C)T = 0 (3.13b) s 

(A + BK°C)TPl + P1 (A + BK°C) + (A + BK1C)TPo 
a a f3 

+ P0 (A + 
f3 

BK1C) + Q + CTKlTRK°C 
f3 

+ CTKoTRK1C = 0 ( 3 • J 3c) 
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Let, 

(3.14a) 

zl = zl + zl 
a B 

(3.14b) 

(3.14c) 

Substitute Equation (3.14) into Eqatuion (3.13). Since 

a-type and B-type matrices are independent, two sets of 

equations are obtained. The first set is: 

BTP z0 cT + BTPozlcT + RK1cz 0 cT + RK0 cz 1cT = 0 a a a a 

(3.lSa) 

(A a + BK°C)Z 1 + z1 (A a a a + BK°C)T + (BK1C)Z 0 
a 

+ z0 (BK1C)T = 0 (3.lSb) a 

(A + BK°C)TPl + P1 (A + BK°C) + (BK1C)TPo 
a a a a a 

(3.lSc) 

The second set of equations is: 

(3.16a) 

(3.16b) 
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(3.16c) 

Equation (3.15) has the same form as Equation (3.9). 

Thus from Lemma 3.1: 

K1 = 0 P1 = 0, z1 = 0 
Cl ' Cl Cl 

(3.17) 

Equation (3.16) may be written in submatrix form as 

(3.18a) 

(3.18b) 

(3.18c) 

1 1 1 K12 , P12 , and z12 can be obtained by solving Equation 

(3.18) simultaneously. The set of equations that is u~ed to 

1 1 1 solve for K21 , P21 , and z21 is the same as Equation (3.18) 
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except all of the subscripts must be changed from 1 to 2, 

from 2 to 1, from 12 to 21, and from 21 to 12. 

(iii) Taking the derivative of Equation (3.11) with 

respect to e and letting e = O, the following set of equa-

tions is obtained: 

+ 2RK1cz 1cr + RK0 cz 2cr = o (3.19a) 

(Aa + BK°C)Z 2 + z 2 (Aa + BK°C)T + (BK2C)z 0 

+ z0 (BK2C)T + 2(As + BK1C)Z1 

+ 2Z 1 (As + BK1C)T = 0 (3.19b) 

(Aa + BK°C)TP 2 + P2 (Aa + BK°C) + (BK2C)TPo 

+ P0 (BK2C) + 2(As + BK1C)TPl + 2P1 CAs + BK1C) 

(3.19c) 

Equation (3.19) may be rewritten in submatrix form by using 

the same procedure as before. Separating P2 , z2 , and K2 

into a-type and S-type matrices, we get two sets of equa-

tions. The first set is used to 2 2 2 solve for P , Z , and K . 
a a a 

The second set is used to solve for P~, Z~, and K~. Apply-

ing Lemma 3.1 to the second set of equations we have 

P~ = 0, Z~ = O, K~ = O. (3.20) 

The submatrix form of the first set of equations is 
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(3.2la) 

o 2 2 o T 2 o 
(Al+ BlKlCl)Zl + zl (Al+ Bl Kl Cl) + (BlKlCl)Zl 

o 2 T 1 1 
+ zl (Bl Kl Cl) + 2 (Al2 +Bl Kl2C2) Z21 

1 1 T 
+ 2Zl2 (Al2 +Bl Kl2C2) = 0 (3.2lb) 

(3.2lc) 

Ki, Pi, and zi can be obtained by solving Equation (3.21) 

simultaneously. The set of equations that is used to solve 
2 2 2 for K2 , P2 , and z 2 is the same as Equation (3.21) except all 

of the subscripts must be changed from 1 to 2, from 2 to 1, 

from 12 to 21, and from 21 to 12. 

3.4.1 Summary of the Procedure 

The procedure to derive necessary conditions for the 

terms in the series of K, P, and Z can be summarized as 

follows: 

(a) For K0 , P0 , and z0 necessary conditions are ob-

tained by decoupling of the system. Then Equation (2.16) 

is applied directly to each decoupled subsystems. 
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(b) For Ki, Pi, and Zi, where i = 1, 2, ... , the de-

rivation proceeds as follows: 

(i) Take the ith derivative of Equation (3.11) 

with respect to E and let E = 0. 

(ii) Separate the equations obtained into two 

sets of equations. The first set is an a-type matrix 

equation. The second set is a B-type matrix equation. 

(iii) Apply Lemma 3.1 to the equations. If i is 

odd, the a-type matrix equation yields 

If i is even, the B-type matrix equation yields 

(iv) Write necessary conditions for nonzero ele-

ments of K, P, and Z in submatrix form by using Equation 

(3.6). 

Theorem 3.2: Let Ki, Pi, 
a a 

h .th . h . f t e i terms in t e series o 

ing Equation (3.8) when E = E • a 

and zi i = 1 ' 2 ' . . be a' ' 

the optimal matrices satisfy-

Let Ki i and i i Pb' zb' = b' 
1 ·2 b h . th . h . f h . 1 , , ... , e t e i terms in t e series o t e optima 

matrices satisfying Equation (3.8) when E = Eb. Then, 

EiKi i i = Eb Kb a a 

EiPi i i = Eb Pb a a 
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for all i = 1, 2, ... , provided QS of Equation (3. 7b) is a 

null matrix. 

Proof: This theorem can be proved by using the follow­

ing procedure for each of the ith derivative sets of K, P, 

and Z. 

(i) Multiply the necessary conditions for K~, 

and zi where E: 
a 

(ii) AS for E: = E:b is equal to As for E: = E:a 

multiplied by E:a/E:b. 

(iii) Compare these equations to necessary condi-
i i i tions for Kb, Pb, and Zb. Using the fact that the 

solutions are unique (Theorem 2.3), the above results 

are obtained. 

Corollary: The matrices K, P, and Z, whose series 

terms are solutions of Equation (3.8), are the same for every 

finite and nonzero value of E:, provided Q6 of Equation (3.7b) 

is a null matrix. 

Proof: This corollary can be proved by substituting 

the results of Theorem 3.2 into Equation (3.8). It can be 

seen that both sets yield the same solution. 

3.5 Computational Algorithm 

The difficulties with solving a set of equations of the 

same form as Equation (2.16) or (3.8) have been reported 

elsewhere [42] [44]. In this section three methods of solv­

ing Equation (2.16) or (3.8) are presented. The first 
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method is an iterative method. It is found that conventional 

fixed-point iteration [16] suggested in Reference [42] yields 

divergence in nearly all of the numerical problems examined 

in this study. So another iterative algorithm is considered. 

In this algorithm an increment of K~ for the next iteration 
J 

is a fraction of the difference between its old value and 

its new value. The second method makes use of an existing 

optimization algorithm to find K7 such that when substitut-. J 

ing into Equation (3.8) its residue is a minimum. The third 

method uses the optimization algorithm to minimize tr(DVDTP). 

Some modification is made so that K stabilizes the system. 

An additional algorithm to solve the Lyapunov equation is 

also presented. 

3.5.1 Iterative Algorithm 

The iterative algorithm to solve Equation (3.8) is as 

follows: 

for 

(1) 

(2) 

(3) 

(4) 

K~ J,new 

Make initial for l an guess K .• 
J 

Substitute K~ into Equation (3.8b). 
J 

Substitute K~ into Equation (3.8c). 
J 

Substitute p~ and z~ into Equation 
J J 

Solve for l p .. 
J 

Solve for i z .. 
J 

(3.8a). Solve 

(5) Update the value of K~ by using this equation: 
J 

K~ = K~ 
J J 

where 

i 
a (IC. 

J 
Ki ) 

j,new (3.22a) 
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a = 
I Kl - Kl I 

(3.22b) 

j j ,new max 

IK~ K~ I is the maximum element of the absolute value J J,new max 
of the residue of K~. 

(6) 
J 

If the maximum residue of K~ is not as small as 
J 

required, go to step (2). Otherwise stop. 

Convergence and speed of convergence of this algorithm 

depends on a. If a = 1, it is the same as the fixed-point 

iteration. It has been found that convergence is achieved 

only if a is small. But a small value of a results in slow 

convergence. Thus a should be adaptable to convergence con-

ditions. The choice of a given in Equation (3.22b) has been 

found to give satisfactory results. However, the value of o 

should be adaptable also. The following is a typical exam­

ple of o and a. 

0 = 1 if the maximum residue of K~ is greater than 5. 
J 

0 = 0. 5 if the maximum residue of K~ is less than 5. 
J 

a = 0 if the maximum residue of K~ is less than 1. 
J 

3.5.2 Residue Minimization Algorithm 

This algorithm uses a standard unconstrained multivari-

able optimization subroutine to minimize weighted sum of 

square of residues of Kt. The algorithm is as follows: 

(1) 

(2) 

i Make an initial guess for K .. 
J 

The main program calls the optimization subroutine. 

K~ is transferred to the subroutine. 
J 
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(3) The optimization subroutine calls a secondary sub­

i routine to evaluate the residue of K .. 

(4) 
J 

The secondary subroutine substitutes K~ into Equa­
J 

i i tion (3.8b) and (3.8c). It solves for P. and Z .. Then it 
J J 

substitutes P~ and Z~ into Equation (3.8a) and solves for 
J J 

K~ 3,new The last duty of this subroutine is evaluating 

weighted i i sum of square of (K. - K. ). 
J 3,new After finishing 

this it returns to the calling subroutine. 

(5) The optimization subroutine compares the residues · 

for several values of K~ and proceeds to the one that has a 
J 

minimum residue. 

The Powell's optimization algorithm [50] [40] is em­

ployed in this study. 

3.5.3 DVDP Minimization Algorithm 

The solution of Equation (2.16) can be obtained by 

minimizing Equation (2.13) with respect to.Equation (2.11) 

using a multivariable optimization algorithm [18] [51]. It 

was pointed out earlier in section 2.5 that K, which does 

not stabilize the system but satisfies Equation (2.16), can 

be found. The corresponding P may not be nonnegative defi­

nite. This means that the value of K may yield a negative 

performance index, tr(DVDTP), which is less than that of the 

real optimum K. In order to avoid this difficulty, a stabi­

lity indicator should be included in the performance index. 

In this study Powell's optimization algorithm [50] [40] 

is used. The performance index is modifed as follows: 
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Let p be the maximum real part of eigenvalues of 

(A+BKC), then 

J = tr(DVDTP); if p < 0 (3.23a) 

J = tr(DVDTP) + (p·s); if p > 0 (3.23b) 

where s is an arbitrarily large positive number. 

3.5.4 Kronecker Product Algorithm 

The general form of Equation (3.8b) and (3.8c) is 

AX + XB + C = 0 (3.24) 

The solution of this equation is obtained by applying the 

Kronecker Product method [5] [6] to Equation (3.24). 

Define: 

F = A * I + I * BT 1 2 (3.25) 

where * is the Kronecker product operator. 

r1 and r2 are identity matrices of compatible dimen­

sion. It can be proven that [5] [6] 

Fy = -z (3.26) 

where y is the vector consisting of all elements of X and z 

is the vector consisting of all elements of C. 

Then Equation (3.26) is solved for y by the Gauss 

elimination method [16]. The result is obtained by trans-

forming the vector y to the matrix X. 
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3.5.5 Comparison of the Algorithms 

The solution of Equation (2.16) can be found by means 

of the three algorithm. The iterative algorithm yields the 

solution within the shortest time. A FORTRAN program for 

the algorithm is less complicated than that of the other 

two. However, it inherits certain disadvantages. It has 

been found that in some numerical problems the algorithm 

results in a solution, K, which does not stabilize the sys­

tem. The only way to get the right K when this difficulty 

happens is by making an initial guess of K which is very 

close to the right solution. It is impossible to make such 

a guess in a practical problem. Another disadvantage of the 

iterative algorithm is that optimal values for a and 8 have 

to be chosen by trial and error. In the DVDP minimization 

algorithm the problem of getting the wrong K has been solved 

by using a modified performance index described in section 

3.5.3. Since eigenvalues have to be calculated every time 

the performance index is evaluated, the algorithm requires 

large amounts of computer processing time. Writing a FOR­

TRAN program for this algorithm is somewhat more complicated 

than the iterative algorithm, even though standard subpro­

grams for optimization and eigenvalue evaluation are used. 

In some numerical problems this algorithm cannot find a very 

accurate solution because the value of the performance does 

not change for a small change of K. In that case the resi­

due minimization algorithm or the combination of the DVDP 



minimization algorithm and the iterative algorithm can be 

used. 

The solution for the suboptimal control problem pre­

sented in this chapter can be obtained by means of the 
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iterative algorithm or a combination of residue minimization 

algorithm and DVDP minimization algorithm. The use of the 

iterative algorithm to solve Equation (3.8) is practically 

the same as described above. In the second algorithm the 

DVDP minimization algorithm is used to solve the zeroth_ 

order of Equation (3.8) or (3.12). The algorithm minimizes 

T D.V.D.P. with respect to K1. with Equation (3.12c) as an 
1 1 1 1 

equality constraint, where i = 1, 2. For the values of the 

first order and higher of K, P, and Z in Equation (3.8) the 

residue minimization algorithm is used. It should be noted 

that after K~ and K~, which are solutions to Equation 

(3.12) and which stabilize the subsystems, are obtained the 

solution for Equation (3.8) is unique. This can be proven 

by Theorem 2.3. So there is no need to calculate eigenvalues 

in the residue minimization algorithm and the computer time 

required for this algorithm is not too large. In general, 

the iterative algorithm should be used if it is expected to 

converge to the right solution, since it is faster and some-

times gives more accurate results. Residue+ DVDP minimiza­

tion algorithm should be used if the iterative algorithm 

does not work. 



3.5.6 Some Symmetrical Properties 

By applying Theorem 2.4 to the equations obtained 

earlier it can be proved that: 

(1) 

symmetric. 

2 
p2' 

(2) 

Even derivatives of submatrices of Z and P are 

"12" submatrices of odd derivatives of Z and P 

are equal to transpose of "21" submatrices of their own 

matrices, e.g., 

zlT 
21 

plT 
21 
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These symmetrical properties are very useful. They may 

be used to simplify the computer program and reduce the com­

puter burden to a large extent. 

3.6 Conclusion 

It has been discussed that solving necessary condition 

Equation (2.15) for optimal feedback gain of a large system 

is not a trivial job. In order to cope with this problem 

an approach to suboptimal gain calculation is developed in 

this chapter. The method involves Taylor series expansion 

of the matrices K, P, and Z with respect to the system coup-

ling parameter, e. Necessary conditions to be solved for 

the matrices in the series are derived. With some matrix 

manipulation, these equations can be presented as functions 
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of submatrices. The general form of the equations is given 

in Theorem 3.1. The proof of the theorem is carried out by 

an induction method. In this study the first few terms of 

matrices in the series of K, P, and Z are derived. A 

general procedure of derivation is given so that higher de­

rivative terms can be derived if necessary. Computational 

methods for solving Equation (2.16) or (3.8) are presented 

in section 3.5. The iterative algorithm offers the fastest 

speed. Unfortunately, in some problems it converges to 

wrong solutions or does not converge at all. When this prob­

lem arises, the DVDP minimization algorithm, or the residue 

minimization algorithm, or a combination of both is recom­

mended. These algorithms mak~ use of an existing optimiza­

tion routine to solve the problem. The listing of programs 

used in this study is shown in the appendices. 



CHAPTER IV 

LOAD FREQUENCY CONTROL OF MULTIAREA 

POWER SYSTEMS 

4.1 Introduction 

Load frequency control of electric power systems repre­

sents the first realization of large scale complex system 

control. 

possible. 

It has made the operation of interconnected systems 

The objective of load frequency control is to 

maintain a balance between system's generation and consump­

tion. Today the tie-line bias control is widely applied. A 

linear combination of net interchange error and frequency 

deviation, called area control error, is used to control the 

system generating units. Each area tends to reduce the area 

control error to zero. When this aim is achieved the system 

frequency equals the desired value and the interchange sched­

ule is met. The conventional approach to this problem is 

mainly concerned with steady-state power balance. Little 

attention has been paid to the optimization of system transi­

ents. Recently, some attempts have been made to apply linear 

optimal control theory to the load frequency problem. The 

main purpose of those studies is to stabilize power swings 

which occur when the system is subjected to disturbances. 

43 
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The approach results in a minimum of weighted sum of power 

swings (state variable deviations) and control efforts. Nor­

mally, it is assumed that all variables are measurable and the 

feedback gain is calculated by solving the Riccati equation. 

In this chapter the load frequency control is modeled 

as a limited state variable feedback control system. Then 

the approach given in Chapter III is applied to calculate 

the suboptimal feedback gain. As an example, the control of 

a two-area system will be considered. The results of the 

suboptimal approach will be compared to those of the optimal 

approach. 

4.2 System Modeling 

The development of the system model is considered in 

this section. Turbines and their speed-governing systems are 

very important components in the load frequency control sys­

tem, so considerable details are presented in the first part. 

The relationship between the system power balance and its 

frequency is given in the second part. Then the models of 

each component are grouped to form a model of load frequency 

control system. It is presented in a standard state vari­

able form in the third section. 

4.2.1 Speed-Governing System and 

Turbine Models 

Standard modeling of steam turbines and hydroturbines 

and their speed-governing systems was provided by the IEEE 
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Task Force [35]. The model descriptions were typical of 

those in use by utilities and service centers. The basic 

diagram showing location of speed-governing system and tur­

bine relative to the system is shown in Figure 1. A general 

model for speed~governing systems is shown in Figure 2. In 

the model many nonlinearities are neglected except rate 

limits which may occur for large, rapid speed deviations and 

position limits which may correspond to wide-open valves or 

the setting of a load limiter. Rate limiting of servomotor 

is shown. at the input to the integrator representing the 

servomotor. This model shows the load reference as an ini­

tial power P0 . This initial value is combined with the 

increments due to speed deviation to obtain the valve posi­

tion, h, subject to the time lag, T3 , introduced by the 

servomechanism. 

Models for different types of steam turbine systems are 

shown in Figure 3. In these models flows into and out of any 

steam vessel are related by a simple time constant. The time 

constants TCH' TRH' and Teo represent delays due to the steam 

chest and inlet piping, reheaters, and crossover piping, 

respectively. 

A general model for speed-governing system for hydro­

turbines is shown in Figure 4. Linear characteristics of the 

distributor valve and gate servomotor, and the dashpot feed­

back are utilized. Position limits are presented at the out­

put of the system. Nonlinearities in rate limits, permanent 

droop compensation, etc. are neglected. 
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so 

A linear model for hydroturbines which is most often 

used is shown in Figure 5. The transient characteristics of 

hydroturbines are determined by dynamics of water flow in 

the penstock. The time constant Tw is called the water 

starting time or water time constant. A method for estimat-

ing this time constant is given in Appendix II of Reference 

[ 3 5] • 

4.2.2 Power System Inertia Model 

Whenever there is an imbalance in the applied torques 

of a power generating unit, acceleration takes place. The 

mechanical torque equilibrium equation can be written as 

where 

3lt + Dw = ilT (4.1) 

J =moment of inertia of the moving parts; 

D = damping coefficient, including mechanical viscous 
friction plus electrical damping torque from field 
coil and damping coil; 

ilT = change of torque from equilibrium state; and 

w = angular velocity. 

It is customary to normalize Equation (4.1) using the 

inertia constant H which is defined to be the kinetic energy 

at rated speed w0 divided by the generator MVA base Sb: 

H = ( 4. 2) 

Linearizing Equation (4.1) around the operating point 

and making use of Equation (4.2), we get 



where 

ti = 

f = 

f = 
0 

p = 

K = 
d 

2H d tif r at + Kd tif = p 
0 

incremental operator; 

system 

rated 

power 

2Tiw D 
0 

frequency; 

frequency; 

output of the system 
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(4.3) 

in per unit; and 

Change of power output from equilibrium state, tiP, of 

Equation (4.3) takes the form 

(4.4) 

where 

p = power generation; g 

pd = increment in load demand; and 

pt = increment in 
areas. 

tie-line power imported from other 

The increment in tie-line power can be represented by 

where 

0 = 

0. = 1 
s. 1 = 

=I S.(tio. - tio) 
1 1 

1 

angular displacement 

angular displacement 

of the area; 

of the remote 

synchronizing coefficient between 
the remote area i. 

( 4. 5) 

area i; and 

the area and 

Thus the load frequency control system 1s described by the 

following equation: 



d f 
ti f = 0 ( tlP - tlPd - tlPt - Kd ti f) (ff 2H g 

d 1 (tlh - tlP ) dt tlPg = 
Tt g 

d tlh 1 tlf tlh) (ff = T (tlu - - -
R g 

tlPt = 2'1r l s. (f t1f.dt - f t1fdt) 
i l l 

where 

Tt = time constant of the turbine; 

T = time constant of the speed-governing 
g 

h = valve position; 

u = input to speed-governing system; and 

R = speed regulation parameter. 

4.2.3 Integrated Model for Load Frequency 

Control Systems 
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(4.6a) 

(4.6b) 

(4.6c) 

(4.6d) 

system; 

Unlike models designed for transient or dynamic stabi-

lity studies, the objective is a model to represent the 

interplay between system load demand and mechanical energy 

supply. This model must describe the system dynamics with 

sufficient accuracy and at the same time must be of reason-

ably small dimension such that its solutions are attainable. 

In order to achieve this goal the following assumptions must 

be made because there are a large number of power generating 

units within an area of a power system. First, the effects 

of network electrical dynamics can be eliminated from the 
, ' 

load frequency problem. Second, all power generating units 

belonging to an area are similar and they are tied via stiff 
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lines such that they have coherent phase and frequency. 

Third, variations of variables are small so linearization of 

system equations around a nominal operating condition is per­

mitted. With these assumptions a power system area for load 

frequency control can be represented by a single power 

generating unit. 

The block diagram model of a load frequency area is 

shown in Figure 6. It consists of a turbine, its speed-

. governing system, and a power-frequency transfer function. 

The turbine is assumed to be a nonreheat steam type which has 

only one time constant representing time delay in its steam 

chest. The speed-governing system is assumed to be a mechan-

ical-hydraulic type with negligible speed relay time constant. 

So it can be represented by a first order system. The power-

frequency transfer function can be derived from Equation 

(4.6a) where 

K 1 = 
Kd p 

(4.7a) 

T = 2H 
p f oKd 

( 4. 7b) 

Nonlinearities in every component are neglected since we 

shall consider system dynamics under small disturbances. 

4.3 Control of Two-Area System 

In this section we shall consider an interconnected 

power system consisting of two areas. The state equation 

for the system can be written as 



+ 

I 
R 

I -t sTg 

LH 

I+ sTt 

SPEED-GOVERNING TURBINE 
SYSTEM 

Kp 
I+ sTp 

POWER-FREQUENCY 
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Figure 6. Linear Model for Single-Area Load 
Frequency Control System 
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SS 

~ = Az + Bu + Ev ( 4. 8) 

where 
T [f tifldt, tifl, AP Ah 1 , f tif 2dt, z = g' 

tif 2' APgZ' tih2] 

T [Au1 , AUz] u = 

T 
[APdl' APd2] v = 

The matrices A, B, and E are shown in Table I. In order that 

modern optimal control technique can be applied to this prob­

lem, Equation (4.8) must be modified to the standard form: 

dx at = Ax + Bu ( 4. 9) 

Several methods have been suggested such that the system 

equations can be written as Equation (4.9) [9] [27] [29]. 

Since we are interested only in dynamic.aspects of the prob­

lem, in this study the method in Reference [27] is used. The 

new vector x is defined by 

x = z - z 
SS 

where zss is the steady state value of z, and 

x(o) = -z 
SS 

(4.lOa) 

(4.lOb) 

With this modification the matrices A and B of Equations 

(4.8) and (4.9) are still the same. 

4.4 Two Area Control System Example 

In the study of the two-area load frequency control 

system an iterative algorithm is used to calculate the opti­

mal and suboptimal gain matrices. The program is designed 
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to calculate three terms in the series of the matrices, K, P, 

and Z. 0 Eigenvalues of the closed-loop system, A+BK C, are 

0 0 0 evaluated after K , P , and Z are found to make sure that 

the feedback gain yields a stable system. The program is 

constructed in such a way that it can be used for subsystems 

of dimension up to 10. Since the necessary conditions of the 

optimal gain are similar to those of the first term of the 

series of K, P, and Z, the first part of the program can be 

used to calculate the optimal gain. The program is imple-

mented on a 370/158 computer system. A G-level FORTRAN com-

piler is used. 

Numerical data for the system under study are shown in 

Table II. The matrices D, Q, and Rare assumed to be iden-

tity matrices. The performance index is an infinite integral 

of sum of square of all state and control variables. Both 

deterministic and stochastic cases are considered. In the 

deterministic case the matrix DVDT is replaced by an identity 

matrix. The numerical value of V for the stochastic case is 

given in Table III. The number of output variables in each 

subsystem varies from 2 to 4. For the load frequency control 

system, the minimum number of the feedback variables which 

can stabilize the system is 2. They are the frequency and 

the phase angle of the area. If the generated power is 

assumed measurable, the dimension of the output vector of the 

area is 3. If all of the state variables are measurable, the 

dimension of the output vector of the area is 4 and this case 

is equivalent to the optimal linear regulator problem. 



TABLE II 

DATA OF THE TWO AREA LOAD FREQUENCY 
CONTROL SYSTEM 

Variable· Area No. 1 Area No. 2 

0.08 0.1 

0.3 0.25 

R 2. 4 2. 5 

H 5.0 8. 0 

Kd 0.008 0.01 

s12 0.545 0.545 

a12 -1 -1 

f 60 60 
0 
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TABLE III 

STOCHASTIC NOISE INTENSITY MATRIX 

.0001 0 0 0 0 0 0 0 

0 .0005 0 0 0 0 0 0 

0 0 .0003 0 0 0 0 0 

0 0 0 .0007 0 0 0 0 

0 0 0 0 .0002 0 0 0 

0 0 0 0 0 .0009 0 0 

0 0 0 0 0 0 .0005 0 

0 0 0 0 0 0 0 .0008 



The results of the study are presented in Tables VI 

through XXVII. It is observed that: 
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1. The optimal feedback gain matrix, K, for the deter­

ministic system and the stochastic system are very close. 

2. The coupling coefficient, E, having the values 

between 0 and 1, results practically in the same suboptimal 

feedback gain matrix. The time spent in the calculation, 

however, is not the same for different E's. It is found that 

the value of E = 0.5 converges faster than other values. 

Thus this value is used throughout the study. 

3. When the generated power of the area is used as an 

input to the controller in addition to the frequency and the 

phase angle, the performance of the system is significantly 

improved. Thus it is beneficial to transmit the generation 

power signal other than the frequency and phase angle sig­

nals of each area to other areas in the pool for the purpose 

of an automatic power generation control of the intercon­

nected system. The valve position of the turbine, on the 

other hand, yields only small improvement in the system per­

formance when all other variables are used. Thus this vari­

able need not be used as a control signal because it will 

increase the cost of telemetering while it does a small con­

tribution to the system stabilization. 

4. The performance of the optimal system is better 

when more variables are used as the controller inputs. This 

is not surprising since in that case more information is 

obtained. But the performance of the suboptimal control 
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system may not follow the rule. For example, the performance 

index of the suboptimal control system using 8 variables as 

inputs to.the controller is higher than that using 6 vari­

ables. This happens because the error when calculating the 

suboptimal gain for the system with 8 dimensional output 

vector is more than that with 6 dimensional output vector. 

5. -Only two terms in the series of the suboptimal gain' 

matrix give results which are considerably close to those of 

the optimal control system. It is consequently believed that 

using two terms is enough for suboptimal feedback gain calcu­

lation of any two-area load fr~quency control system design. 

6. The suboptimal gain calculation consumes much less 

computer burden than the optimal gain calculation. In this 

study the optimal gain calculation which starts from the 

results of the suboptimal gain calculation spent about four 

to seven times longer execution time than that of the sub­

optimal gain calculation which starts from an arbitrary value 

(0 is used). It is expected that if both methods start from 

the same initial value, the optimal method will use more than 

ten times the computer time used by the suboptimal method for 

the same 8 dimensional system. The memory required for the 

optimal gain calculation is three to four times more than 

that of the suboptimal gain calculation. This amount of 

memory saving is very attractive for those using a computer 

with limited memory size to calculate the feedback gain for 

a large system. However, the program architecture is more 

complex and compilation time is longer for the suboptimal 
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method. But these are trivial disadvantages compared to the 

benefits described above. 

7. When all the state variables are available for mea­

surement, i.e., C = I, the matrix Z has no effect on the 

optimal feedback gain. In this case the optimal matrix K is 

the same for both the deterministic system and the stochas­

tic system. 

4.5 Conclusion 

In this chapter the suboptimal approach for the feed­

back gain calculation of linear limited state variable feed­

back developed in Chapter III is applied to multiarea load 

frequency control. In section 4.2 models of components 

within an area of load frequency control system is presented; 

it consists of a turbine, speed-governing system, and power­

frequency transfer function. The integrated model of these 

components for two-area interconnected system is described in 

section 4.3. It is presented in a standard form of state 

equations. The system with and without plant noise are stud­

ied. The iterative algorithm is used to calculate the sub­

optimal and optimal feedback gains. Convergence is obtained 

in all of the problems considered in this step. The results 

are presented in Tables VI through XXVII. They show that the 

suboptimal approach yields results which are close to those 

of the optimal approach but the suboptimal approach requires 

much less computer burden. From the study of the load 



frequency control system it is suggested that frequency, 

phase angle, and power generation be used as feedback sig­

nals to the system controller. 
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Case 
Study 

D4 

D6 

D8 

S4 

S6 

S8 

Feedback 
Gain Matrix 

K a 

Kb 

K c 

K* 

TABLE IV 

NOMENCLATURE OF CASE STUDIES 

Type of Dimension of 
Dynamic System Output Vector 

Deterministic 4 

Deterministic 6 

Deterministic 8 

Deterministic 4 

Deterministic 6 

Deterministic 8 

TABLE V 

NOMENCLATURE OF FEEDBACK GAIN MATRICES 

Number of 
Terms Used Formula 

1 K = Ko 
a 

2 Kb = Ko+ i::Kl 

2 2 
3 K = Ko+ i::Kl + ~ 

c 
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K* 0 1 i:: 2K2 i:: 3K3 
<X> = K + i::K + ~+ --rr-+· .. 



K = a 

K = b 

K = c 

K* = 

TABLE VI 

FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY 
CONTROL SYSTEM, CASE STUDY D4 

[ .15066 -.0388 0 

0 .0812 

[ .1566 -.0388 -.4316 

.3301 -.0940 .0812 

c-1500 -.0634 -.4316 

.3301 -.0940 .0311 

[.1382 -.0666 -.4500 

.3576 -.1073 .0270 

-.1:41] 
-.1761] 
-.1141 

-.1761] 
-.1674 

-.1803] 
-.1679 

°' °' 



TABLE VII 

COMPUTER BURDEN OF FEEDBACK GAIN MATRIX CALCULATION 
OF THE LOAD FREQUENCY CONTROL SYSTEM, 

CASE STUDY D4 

Feedback Gain Memory Number of# Execution Time If Compilation Time 
Matrix Obtained CK-Byte) Iterations (Seconds) (Seconds) 

K 120 19 8.74 11. 65 a 

Kb 132 41 15.17 15.85 

Kc 148 64 24.34 2 0. 74 

K* 440 15 76.15 9.81 

#The initial values used to calculate Ka, Kb, and Kc are zeros. 
Then K is used as the initial value to calculate K* c 

°' -...:i 



TABLE VIII 

PERFORMANCE INDICES OF THE LOAD FREQUENCY 
CONTROL SYSTEM, CASE STUDY D4 

Feedback Gain 
Matrix Used 

K a 

TABLE IX 

Performance Index 

8.357 

8.306 

8.288 

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), 
OF THE LOAD FREQUENCY CONTROL SYSTEM, 

CASE STUDY D4 

(A+BKaC) (A+BKbC) (A+BK C) c (A+BK*C) 

-13.36 -13.37 -13.41 -13.41 

-11.00 -10.99 -11.06 -11.06 
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-1.46 .!_j2.44 -1.09 .!_j2.47 - 1.05.!_j2.62 -1.04.!_j2.62 

-1. 43 -1.04 - 1. 02 -1. 00 

-0. 71.!_j3.33 -0.93.!_j3.16 -0.92.!_j3.23 -0.91.!_j3.23 

0.22# -0.48 -0.49 -0.54 

# 
Unstable eigenvalue. 



TABLE X 

FEEDBACK GAIN MATRICES OF THE LOAD 
FREQUENCY CONTROL SYSTEM, 

CASE STUDY D6 

K = [2432 -.3184 -1.0483 0 0 
a O 0 0 .0620 -.4225 

[2432 -.3184 -1.0483 -.6556 -.1530 
Kb = • 4 777 -.1057 -.1020 .0620 -.4225 

[1134 -.3613 -1.1035 -.6556 -.1530 
K -c - .4777 -.1057 -.1020 -.0813 -.4879 

. - [·0916 -.3670 -1.1110 -.7313 -.1809 
K - -.5433 -.1261 -.1314 -.1085 -.4941 

-. 78°271 

-.10511 
-.7827 

-.1051] 
-.8350 

-.1291] 
-.8417 

°' \!) 



TABLE XI 

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE LOAD 
FREQUENCY CONTROL SYSTEM, CASE STUDY D6 

Feedback Gain Memory Number of# Execution Time# Compilation Time 
Matrix Obtained Ck-byte) Iterations (Seconds) (Seconds) 

K a 120 10 4.19 11.59 

Kb 132 20 7.94 15.05 

K c 148 30 12.60 20.93 

K* 440 9 50.84 9.66 

#The initial values used to calculate Ka, Kb, and Kc are zeros. 
is used as the initial value to calculate K* 

Then Kc 

'-l 
0 



TABLE XII 

PERFORMANCE INDICES OF THE LOAD FREQUENCY 
CONTROL SYSTEM, CASE STUDY D6 

Feedback Gain 
Matrix Used 

K c 

K* 

TABLE XIII 

Performance 
Index 

6.921 

6.762 

6.737 

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), 
OF THE LOAD FREQUENCY CONTROL SYSTEM, 

CASE STUDY D6 

71 

(A+BK C) a (A+BKbC) (A+BK C) c (A+BK*C) 

-8.11 -8.28 -7.77 -7.84 

-5.51 + j2.32 -5.27 + j 2. 71 -5.32 + j3.05 -5.38 + j3.22 

-3.90 + j2.63 -2.93 + jl.90 -3.29 + jl.59 -2.99 + j .144 

-1. 57 + j 2. 70 -2.32 + j 1. 96 -2.05 + j2.24 -2.15 + j 2. 2 0 
-

0 .17 3 11 -0.596 -0.831 -1.04 

11 Unstable eigenvalue. 



K = [- 2951 
a 0 

[2951 
Kb = • 6 77 8 

[- 0902 
K -c - .6778 

• - [-0573 
K - -.7782 

TABLE XIV 

FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY 
CONTROL SYSTEM, CASE STUDY DB 

-.7653 -.1407 -.6581 0 0 0 
0 0 0 .0490 -.8613 -.9536 

-.7653 -.1407 -.6581 -.9504 -.2353 -.1210 

- .1551 -.1412 -.0229 .0490 -.8613 -.9536 

-.8389 -.2089 -.6689 -.9504 -.2353 -.1210 

-.1551 -.1412 -.0229 -.1766 -.9649 -1.0127 

- .8486 -1.4821 -.6700 -1.0652 -.2809 -.1453 

-.1890 -.1702 -.0274 -.2139 -.9755 -1.0172 

I 

-.6~22J 
-.02871 
-.6622 

-.0287 

-.6761 

-.03431 
-.6771 

-.....) 

N 



TABLE XV 

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE LOAD 
FREQUENCY CONTROL SYSTEM, CASE STUDY DB 

Feedback Gain Memory Number of 
Iterations# 

Execution Time# Compilation Time 
Matrix Obtained Ck-byte) (Seconds) (Seconds) 

K a 120 18 7.82 11. so 

Kb 132 37 15.70 15.79 

K c 148 57 23.93 21. 49 

K* 440 18 98.49 9.69 

#The initial values used to calculate Ka, Kb, and Kc are zeros. Then Kc 
i~ used as the initial value to calculate K*. 

-...J 
VI 



TABLE XVI 

PERFORMANCE INDICES OF THE LOAD FREQUENCY 
CONTROL SYSTEM, CASE STUDY D8 

Feedback Gain 
Matrix Used 

K a 

K 
c 

K* 

TABLE XVII 

Perf orrnance 
Index 

7.802 

7.491 

6.655 

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), 
OF THE LOAD FREQUENCY CONTROL SYSTEM, 

CASE STUDY DB 

74 

(A+BK C) a (A+BKbC) (A+BK C) c (A+BK*C) 

-21.18 -21.19 -21.20 -17.84 

-14.18 -14.18 -14.18 -14.18 

-2.91 -2.37 :_jl.18 -2.64 -3.05 
- 2. 20 + j 1. 67 -1.17 -2.00 + - j 1. 33 - 2. 50 + jl.94 

-1.12 + j3.91 -1.21 :_j3.88 -1.18 + - j3.93 -2.03 + j2.62 
o .15 tt -0.50 -0.64 -0.95 

# Unstable eigenvalue. 



K a 

Kb 

K c 

K* 

TABLE XVIII 

FEEDBACK GAIN MATRICES OF THE LOAD 
FREQUENCY CONTROL SYSTEM, 

CASE STUDY S4 

" [" 1 :96 -.0745 0 -.1~34] .1000 0 

[1796 -.0745 -.3496 -.1328] 
.3570 -.0686 .1000 -.1434 

[1363 -.0860 -.3496 -.1328] 
= .3570 -.0686 .0583 -.1963 

l.1372 -.0945 -.3806 -.14391 
= .3667 -.0857 .0494 -.1943 
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TABLE XIX 

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE 
LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S4 

Feedback Gain Memory Number of Execution Time# Compilation Time 
Iterations # Matrix Obtained (K-byte) (Seconds) (Seconds) 

K 120 20 9.27 10.51 a 

Kb 132 42 17.32 14.32 

K 144 67 27.31 19.45 c 

K* 440 19 103.86 9.61 

-
#The initial values used to calculate Ka, Kb' and Kc are zeros. Then Kc 

is used as the initial value to calculate K*. 

--..J 
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TABLE XX 

PERFORMANCE INDICES OF THE LOAD FREQUENCY 
CONTROL SYSTEM, CASE STUDY S4 

Feedback Gain 
Matrix Used 

K a 

TABLE XXI 

Performance 
Index 

.002896 

.002861 

.002855 

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), 
OF THE LOAD FREQUENCY CONTROL SYSTEM, 

CASE STUDY S4 

77 

(A+BK C) a (A+BKbC) (A+BK C) c (A+BK*C) 

-13.42 -13.42 -13.44 -13.45 

-11.05 -11.04 -11.12 -11.11 

-1. 45 + j2.55 -1.15 + j 2. 54 -1.11 + j2.67 -1. 08 + j2.67 

-1. 32 -0.93 + j3.31 -0.93 -0.93 

-0.74 + j3.43 -0.92 -0.89 + j3.34 -0.90 + j3.35 

0. 24 II -0.38 -0.44 -0.47 

/tuns tab le eigenvalue. 



TABLE XXII 

FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY 
CONTROL SYSTEM, CASE STUDY S6 

K =1·2361 -.3355 -1.0922 0 0 

a 0 0 0 .0544 -.4427 

[ 2361 -.3355 -1.0922 -.6652 -.1505 
Kb = • 4 7 59 -.1062 -.1046 .0544 -.4427 

[.1010 -.3787 -1.1420 - .6652 - .1505 
K -c - .4759 -.1062 -.1046 -.0959 -.5082 

. - [.0802 -.3842 -1.1492 -.7395 -.1779 
K - -.5446 -.1260 -.1308 -.1222 -.5142 . 

-.8~381 
-.10111 
-.8238 

-.10111 

- .8756 I 

-.12041 
-.8787 

-....] 

00 



TABLE XXIII 

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE 
LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S6 

Feedback Gain Memory Number of 
Iterations# 

Execution Time# Compilation Time 
Matrix Obtained (K-byte) (Seconds) (Seconds) 

K 120 a 9 3.72 10.63 

Kb 132 18 7. 2 5 14.79 

K c 144 29 11. 8 2 19.62 

K* 440 8 44.33 9.59 

#The initial values used to calculate Ka, Kb, and Kc are zeros. Then Kc 
is used as the initial value to calculate K*. 

'-I 
\.0 



TABLE XXIV 

PERFORMANCE INDICES OF THE LOAD FREQUENCY 
CONTROL SYSTEM, CASE STUDY S6 

Feedback Gain 
Matrix Used 

K a 

TABLE XXV 

Performance 
Index 

.002306 

.002258 

.002251 

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), 
OF THE LOAD FREQUENCY CONTROL SYSTEM, 

CASE STUDY S6 
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(A+BK C) a (A+BKb C) (A+BK C) c (A+ BK*C) 

-7.64 -7.83 - 7. 2 7 -7.33 

-5.49 + j2.70 -5.36 + j3.09 -5.40 + j3.36 -5.43 + j3.46 -

-4.15 +. j2.60 -3.24 + 
- jl.89 -3.50 + jl.54 - 3. 2 7 + jl.42 

-1. 58 + j2.66 -2.14 + jl.89 -2.00 + j 2 .18 -2.07 + j 2 .11 

0.16# -0.60 -0.85 -1. 06 

# 
Unstable eigenvalue. 



TABLE XXVI 

PERFORMANCE INDICES OF THE LOAD FRiQUENCY 
CONTROL SYSTEM, CASE STUDY S8 

Feedback Gain Performance 
Matrix Used Index 

K a 

Kb .002495 

K c .002436 

K* .002201 

#other results of Case Study SS are the 
same as Case Study D8. 
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Dimension of 
Output Vector 

4 

4 

4 

4 

6 

6 

6 

6 

8 

8 

8 

8 

TABLE XXVII 

COMPARISONS OF PERFORMANCE INDICES OF THE 
LOAD FREQUENCY CONTROL SYSTEM 

Feedback Gain Performance Index 

Matrix Used Deterministic System Stochas-tic System 

K a 

Kb 8.357 .002896 

K 8.306 .002861 
c 

K* 8.288 .002855 

K a 

Kb 6.921 .002306 

K 6.762 .002258 c 
K* 6.737 .002251 

K a 

Kb 7.802 .002495 

K 7.491 .002436 c 
K* 6.655 .002201 

00 
N 



CHAPTER V 

CONTROL OF INTERCONNECTED SYNCHRONOUS MACHINES 

5.1 Introduction 

Within the past few years studies have been made to 

apply optimal control theory to synchronous machine stabili­

zation problems. With the increasing size and complexity of 

power systems improved techniques are required in order to 

achieve a better stability limit. The first part of the 

works reported in the literature is primarily concerned with 

state feedback strategies [l] [31] [46] [58] [59]. The results 

of the controller design in the real implementation on a 

micro-machine shows a good dynamic response for a small dis­

turbance [26] [47]. One of the main disadvantages of this 

technique is that all the state variables are not always 

available for measurement. To overcome this difficulty out­

put feedback control has been considered [18] [20] [51] [52]. 

The publications described above confine themselves to 

a model consisting of one machine connected to an infinite 

bus. However, there are some situations where a multimachine 

model is preferred. When using this model computational 

difficulty has been experienced because of the large dimension 

of the system. Usually optimal control design of the multi-

83 
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machine system is carried out by using a reduced-order model 

for each machine [60]. 

Instead of deleting some state variables which result 

in reduced-order system design or semi-decoupling the system 

which results in a one-machine-infinite-bus design, in this 

chapter the suboptimal technique developed in Chapter III is 

applied to the multimachine control problem. The technqiue 

requires less calculation than the optimal design given in 

Chapter II so it is suitable for multimachine design problem 

whose dimension is, in general, large. However, since it is 

desirable to compare the results of the suboptimal control to 

those of the optimal control, th~ reduced-order models for 

synchronous machine and its exciter are used. An intercon­

nected network consisting of two machines and an infinite bus 

is considered in this study. 

5.2 Interconnected Synchronous 

Machine Model 

5.2.1 Synchronous Machine Equations 

Comprehensive mathematical equations describing the be­

havior of a synchronous machine, both during steady state and 

transient state, were derived by Park [49]. Since then there 

have been numerous publications dealing with mathematical 

models of the machine. Different forms of the model can be 

found in different problems. References [15] [22] [32] [36] 

[48] are examples of papers and books that present the 
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machine's equations. The following are synchronous machine 

equations in per unit (except for time). The variables con-

sist of magnetic flux, voltage, and current in direct and 

quadrature axes, and field circuit. 

ijJ f == xf if - xfd 1 d + xfkdikd (5.la) 

ij;d xfdif - Xdld + x akd 1 kd (5.lb) 

iJ!kd == xfkdif - xakdid + xkkdikd (5.lc) 

iJ!q -x i + x i q q akq kq (5.ld) 

iJ!kq -x akq i + xkkqikq q (5.le) 

1 diJ;f 
vf = w-crt + rfif (5.lf) 

0 

1 dij;d 
raid 

w 
ij;q vd == crt - -w w 

0 0 

(5.lg) 

1 
dijJ 

of + 
w 

ij;d v = - r 1 -q w a q w 
0 0 

(5.lh) 

0 
1 dijJkd 

+ rkdikd = 
WO~ 

(5.li) 

0 
1 dijJkq 

rkqikq (ft + w 
0 

(5.lj) 

2 2 2 
Vt = vd + v q (5.lk) 

T· iJ;diq ijJqid a 
(5.11) 

d(JJ WO 
[T. T Kdw] dt = 2H 

- -
1 a (5.lm) 

do 
dt w (5.ln) 



where subscripts f, d, q, kd, kq stand for field, d-axis 

armature, q-axis armature, d-axis amortisseur, and q-axis 

amortisseur windings, respectively; and 

r. 
J 

x. 
J 

i . 
J 

v. 
J 

ijJ. 
J 

w 

w 
0 

T. 
l 

H 

Kd 

cS 

= resistance of circuit j ; 

= reactance of circuit j ; 

= current in circuit j ; 

= voltage in circuit j . 
' 

= flux linkage of circuit j ; 

= angular velocity of rotor; 

= base angular velocity; 

= machine terminal voltage; 

= air gap electromagnetic torque of synchronous 
machine; 

= prime mover input torque; 

= per unit inertia of the generating unit; 

= system damping coefficient; and 

= phase angle of machine. 

86 

In this study a linearized third-order model of a syn-

chronous machine and a first order excitation system is used. 

The block diagram of the exciter is shown in Figure 7. The 

third-order model of a synchronous machine is obtained by 

neglecting effects of amortisseur windings, armature resist-

ance, and time rate of change of magnetic fluxes. The re-

sults are four state equations and seven algebraic equations 

as follow: 
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I+ sTe 

Figure 7. Excitation System 
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State equations: 

(5.2a) 

d 
at 60 ( 5. 2b) 

d w 
6w 0 [6T + Kd6w] at = -2H a (5.2c) 

d 
6vf 

1 [K 6U K e6Vt 6V f] at = T - -
e (5.2d) 

e 

Algebraic equations: 

6!/Jf = Xf6if xfd6id (5.3a) 

6!/Jd xfd6if Xd6id (5.3b) 

6!/J = -x 6i q q q (5.3c) 

vd v 
6Vt - 6V + _g_ 6V 

Vt d Vt q (5.3d) 

6Vd = - 6!/J -
l/Jq 

6w q w 
0 

(5.3e) 

6v 6!/Jd 
l/Jd 

+ - 6w 
q w 

0 

(5.3£) 

6T l/Jd6iq + iq6l/Jd - l/Jq6id id6l/Jq a (5.3g) 

The state Equation (5.2) may be written as: 

(5.4) 

where 

T 
x = [Ai'i, !J.w, 6vf, !J.l)Jf]; 

T 
z [Aif' 6Ta' 6vt]; 
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and A1 , B, and C are shown in Table XXVIII. 

By manipulation of Equation (5.3a) and (5.3d) through 

(5.3g) the following equation is obtained: 

z = EW + GI ( 5. 5) 

where 

WT U.t/Jf' llw] 

IT = [!.'lid, fl i J q 

and E and G are shown in Table XXVIII. 

From Equation (5.3a), (5.3b), (5.3e), and (5.3f) we 

have 

v RW + SI (5.6) 

where 

and R and S are shown in Table XXVIII. 

5.2.2 Multimachine Equations 

In order to make use of equations and symbols presented 

in section 5.2 and extend it to a two-machine system, we 

shall modify equations as follow. Suppose an equation for 

a one-machine system is of the form 

x = HY (5.7) 

where 

T 
[xl' x2] x = 

T 
[yl' Yz] y = 
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II 

We shall write Equation (5.7) for a two-machine system as 

x == H y ( 5. 8) m mm 

where 

XT == [xla' x2a' xlb' X2b] m 

yT == [yla' Yza' ylb' Yzb] m 

hlla hl2a 0 0 

h2la h22a 0 0 
I-I == 

m 
0 0 hllb hl2b 

0 0 h2lb h22b 

Using this notation Equations (5.4), (5.5) and (5.6) may be 

written for a multimachine system as 

d A1 x + B u + c (ff x z 
m m m m m m m 

( 5. 9) 

z == E w + G I m m m m m (5.10) 

v == R W + s I . m m m m m (5.11) 

5.2.3 Transmission Network Equations 

The transmission network under study is shown in Figure 

8. It consists of three buses. Two of them are connected 

to synchronous machines. The third is an infinite bus. The 

equation for the network current and voltage is 
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Figure 8. Transmission Network 
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I = Y V n n n (5.12) 

where 

IT = [iDl' iQl' 1 D2' iQZ' iD3' iQ3] n 

VT = [vDl' VQl' VDZ' VQZ' VD3' VQ3J n 

and Y is a bus admittance matrix as shown in Table XXVIII. n 

The relationship between the machine-reference quanti-

ties and the netwo~k-reference quantities is given by Taylor 

[57] as 

V = FV mm n (5.13) 

I = FI mm n 
(5.14) 

where 

VT = [vdl' v vd2' v vd3' vq3] mm ql' q2' 

IT = [idl' i id2' i id3' iq3] mm ql' q2' 

and F is a function of o1 , and o2 , the displacement between 

the machine reference and the network reference. It is 

shown in Table XXVIII. 

since 

From Equations (5.14) and (5.12) 

I = FY V mm n n 

-1 
F 

1mm = FY n 
(5.15) 

Equation (5.15) can be written in linearized form and using 

the fact that bus No. 3. is infinitely strong, i.e., Ao 3 = 0, 

we get 



where 

Ld mm FY 
n 

+ (~ y FT+ FY aF T 
a o 2 n n a o 2 ) V mm ti 0 2 
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(5.16) 

T T 
T "' [ ( ~ Y FT + FY a F ) V ( ~ Y FT + FY ~ ) V ] 

a o 1 n n a c5 1 mm ' a c5 2 n n a o 2 mm 

From definitions, the following equations are obtained: 

w Jlxm (5.17) m 

tio == J2xm (5.18) mm 

I == J3tiimm (5.19) m 

tiV == J4Vm (5. 20) mm 

where J 1 , J 2 , J 3 , and J 4 are shown in Table XXVIII. 

By manipulation of Equations (5.9), (5.10), (5.11), 

(5.17), (5.18), (5.19), and (5.20), the state equation in 

standard form is obtained: 

dx 
dtm == {Al + C E Jl + C G (I - J3F y FT J4S ) -1 m m m m m m n m 

(5.21) 



B 

c = 

-w 

TABLE XXVIII 

CONSTANT MATRICES IN THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM 

0 

0 

0 

0 

0 

0 

K e 
T e 

0 

0 

0 

0 

0 rf 

1 

0 

0 

0 

w 
0 

- ZH 

0 

0 

0 

0 

w 
0 

0 

0 

0 

0 

0 

0 

K e -r 
e 

0 
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TABLE XXVIII (Continued) 

1 
0 

xf 

iq xfd 
0 E = xf 

v xfd Vq1/Jd - Vd1/J q . g 
v t xf w Vt 0 

xf d 
0 

xf 

i 2 
xfd 

G = q 
iqxd - 1/Jq 1/Jd + idxq xf 

2 
v xf d vdxq _q_ (- - xd) 
Vt xf Vt 

0 -~ 
w 

0 

R = 

xf d 1/Jd 

Ix;- WO 
I 

0 x q 

s = 2 
xf d 

0 - xd xf 



y = 
n 

where 

F 

TABLE XXVIII (Continued) 

Y11 Y1z Y13 

Yz1 Yzz Yz3 

Y31 Y3z Y33 

[gij -b .. 
lJ 

y .. 
lJ b .. g .. 

lJ lJ 

g .. == real part of admittance y .. ; 
lJ lJ 

b .. = imaginary part of admittance lJ 

cos 01 sin 01 0 0 

-sin 01 cos 01 0 0 

a a cos Oz sin Oz 

a a -sin oz cos oz 

0 a a a 

a a a 0 

a a o i o a a o 
a 1 o a a 
o a a o o 
o a a o o 

o o a 
a o 1 

1 0 0 

96 

and 

y ... 
lJ 

0 0 

0 0 

0 a 

a a 

1 a 

a 1 



TABLE XXVIII (Continued) 

0 

0 

0 

0 

0 0 0 

0 1 0 

1 0 0 0 0 0 

0 1 0 0 0 0 
3 3 = 0 0 1 0 0 0 

0 0 0 1 0 0 

1 0 0 0 

0 1. 0 0 

0 0 1 0 
J4 = 0 0 0 1 

0 0 0 0 

0 0 0 0 

0 

0 
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5.3 Interconnected System Example 

In the study of the interconnected synchronous machine 

control system, minimization algorithms which are discussed 

in section 3.5 are used to calculate the optimal gain and the 

suboptimal feedback gain matrices. The iterative algorithm 

has been tried but very often it converged to the wrong solu-

tion (see section 2.5). The program is designed to calculate 

the first three terms of the series of the matrices K, P, and 

Z. The DVDP minimization algorithm is used to find the first 

terms: 0 0 0 K , P , and Z . Eigenvalues of the closed loop sys-

tern, A+BK0 c, are calculated in each function evaluation to 

insure that the solution yields closed-loop stability. After 

a solution is obtained the iterative algorithm is applied to 

refine the result to a more accurate one. For the terms of 

higher derivative the residue-minimization algorithm is used. 

The network under study in this chapter is depicted in 

Figure 8. The numerical data for the two synchronous 

machines, network impedances and voltages, are shown in 

Tables XXIX and XXX. The matrices D, Q, and R are assumed 

to be identity matrices. The numerical value of the matrix 

A is shown in Table XXXI. Both deterministic case and 

stochastic case are considered. In the deterministic case 

the matrix DVDT is replaced by an identity matrix. The 

numerical value of the matrix V for the stochastic case is 

given in Table III. The number of state variables for the 

interconnected system is eight. The numbers of feedback 

variables of six and eight are studied. The system of four 



Constants 

rf 

xf 

xf d 

xd 

x 
q 

H 

Kd 

K e 

T e 

TABLE XXIX 

SYNCHRONOUS MACHINES' CONSTANTS 

Machine No. 1 Machine No. 

0.0010 0.0016 

1.5 1.47 

0.9 1.33 

1.1 1.20 

0.85 1. 07 

5.0 3.20 

0.003 0.001 

50.0 35.0 

0.1 0.08 

99 
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Variable 

vl 

Vz 

V3 

81 

Oz 

83 

z a 

zb 

z c 

zd 

z e 

TABLE XXX 

NETWORK DATA 

Numerical Value 

1.05 p.u. 

1.00 p.u. 

1. 00 p.u. 

5 degree 

3 degree 

0 degree 

0.020 + j 0. 40 p.u. 

0.030 + j 0. so p.u. 

0.015 + j0.25 p.u. 

2.120 + j0.076 p.u. 

1. 050 + j 0. 49 p.u. 

100 



TABLE XXXI 

PLANT Iv1ATRIX A OF THE EXAMPLE SYSTEM 

0 1. 0000 0 0 0 0 

-45.8617 -0.0698 0 -20.1032 8.0283 -0.0126 

50.2127 -0.3048 -10.0000 -60.2574 -100.4260 -0.5633 

-0.1796 -0.0008 376.9910 -0.4423 0.1086 0.0004 

0 0 0 0 0 1.0000 

27.5730 0.0444 0 15.8685 -146.9050 -0.3531 

42.5993 -0.0442 0 -1.5547 -171. 7630 -0.9996 

0.2338 0.0010 0 0.2780 -1.5496 -0.0059 

0 

0 

0 

0 

0 

0 

-12.5000 

376.9910 

0 

-1. 3920 

-216.7320 

0.1782 

0 

-181. 8650 

-382.4629 

-2.7467 

I-' 
0 
I-' 
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feedback variables was tried but accurate results for the 

nonlineir matrix equations were very difficult to get, so 

it is disregarded. 

The results of the study of interconnected synchronous 

machine control systems are presented in Tables XXXII through 

XLVIII. From these results the following statements can be 

made: 

1. The optimal feedback gain matrix, K, is not sensi­

tive to changes in values of the noise intensity V. 

2. When more variables are used as the controller in­

puts the performance index is better for both optimal system 

and suboptimal system. 

3. Using the first two terms of the series to calculate 

K yields results which are close to those of the optimal sys­

tem. However, for a system of higher dimension it is wise to 

check whether or not more terms are necessary. 

4. Like the case of load frequency control, it is found 

that using three feedback variables for each machine gives 

results close to those using four feedback variables. So it 

is suggested that output feedback variables be frequency, 

phase angle, and field voltage for each generating unit. The 

field flux linkage does not contribute a significant improve­

ment in the system performance and it is practically unmea­

surable. So the variables should not be used as an output 

feedback variable. 

5. The optimal gain matrix calculation requires much 

more calculation time than the suboptimal one, even if the 



103 

former uses the results of the latter as a starting value 

which is very close to the optimal value. The memory re­

quirement for the optimal gain calculation is about three 

times more than that for the suboptimal gain calculation. 

6. When the minimization algorithm is used, the memory 

requirement for the optimal gain calculation is about three 

times more than that of the suboptimal gain. The computation 

time is also longer for the optimal method, even if the re­

sults of the suboptimal gain method are used as a starting 

value for the optimal value. It should be noted that the 

optimal gain matrix for this problem is obtained by the 

iterative method, since an initial value which is near the 

optimal gain matrix is available. The minimization algorithm 

is applied to calculate the optimal gain matrix for the sake 

of comparison only. 

5.4 Conclusion 

The applications of the suboptimal control technique to 

interconnected synchronous machine system are studied in 

this chapter. In section 5.2 a model for interconnected syn­

chronous machines in the standard state variable form is 

developed. It represents dynamic aspects of the three-bus 

power system network. One of the buses is assumed to be in­

finitely strong. Control signals are derived from some of 

the state variables: frequencies, phase angles, field vol­

tages, and flux linkages of field windings. Optimal and 

suboptimal feedback gain matrices are calculated and 
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compared. The minimization algorithm is used. The results 

of the study show that the suboptimal gain calculation is 

very effective. It requires much less calculation than that 

of the optimal gain while the former technique results in a 

small amount of performance degradation. 



l-. 0620 K = a 0 

1-.0620 
Kb= -.0726 

[-.0689 
K -c - -.0726 

[-.0689 
K* -- -.0676 

TABLE XXXII 

FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, CASE STUDY D8 

1.0078 -1.5472. -.9653 0 0 0 

0 0 0 .2477 1.0026 -1.5902 

1. 0078 -1.5472 -.9653 .3546 -.0797 .1289 

.0883 .1138 .0634 .2477 1. 0026 -1. 5902 

1. 0044 -1.5473 -.~730 .3546 -.0797 .1289 

.0883 .1138 .0634 .2468 1.0011 -1.6183 

1.0029 -1. 5463 0.9721 .3478 -.0839 .1291 

.0908 .1130 .0636 .2473 .9993 -1.6160 

-.9~98] 
. 4414 J 

-.9398 

.44141 

-1.0016J 

. 4420 l 
-.9983 

I-' 
0 
U1 



TABLE XXXIII 

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, CASE STUDY D8 

Feedback Gain Memory Number of # Execution Time # Compilation Time 
Matrix Obtained CK-byte) Function Evaluated (Seconds) (Seconds) 

K a 136 328 60 16.62 

Kb 148 431 89 21. 27 

K 164 512 114 26.65 c 

K* 440 >100 >300 10.04 

#Approximate value. 

I-' 
0 

°' 



TABLE XXXIV 

PERFORMANCE INDICES OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, 

CASE STUDY DB 

Feedback Gain 
Matrix Used 

K a 

TABLE XXXV 

Performance 
Index 

4.01368 

3.96699 

3.96593 

3.96592 
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EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF 
THE SYNCHRONOUS MACHINE CONTROL SYSTEM, 

CASE STUDY DB 

(A+ BK C) a (A+BKbC) (A+BK C) c (A+BK*C) 

-367 + j 200 -3B5 ~ jl94 -3B6 + jl99 -3B6 ~ jl99 -

-295 + j 37 4 -283 + j37B -292 + j 386 -292 + j 3B6 - - -

-149.1B4 -136.7B7 -129.496 -129.5BO 

-16.519 -17.430 -17.150 -17.139 

-2.B77 -2.927 -2.961 -2.963 

-1.313 -1.261 -1.310 -1.311 



TABLE XXXVI 

FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS MACHINE 
CONTROL SYSTEM, CASE STUDY D6 

[1319 .0988 -.5279 0 0 -.9~77] K = 0 0 .2840 .4555 a 0 

F.1319 .0988 -.5279 .1535 .2067 -.5031] 
Kb = t_. 0643 .0764 .2831 .2840 .4555 -.9877 

[1218 .1308 -.4812 .1535 .2067 -.50311 
K -

.0764 .2831 .3113 .4544 -1.036SJ c - .0643 

[" 1223 .1298 -.4973 .1564 .1990 -.5250] 
K* -

.0740 .2355 .3106 .4552 -1.0187 - .0700 

I-' 
0 
00 



TABLE XXXVII 

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, CASE STUDY D6 

Feedback Gain Memory Number of 1± Execution Time# Compilation Time 
Matrix Obtained CK-byte) Function Evaluated' (Seconds) (Seconds) 

K 136 179 34 16.95 a 

Kb 148 436 104 20.87 

K 164 534 134 26.09 c 

K* 440 >100 >300 10.12 

#Approximate value. 

I-' 
0 
\.0 



TABLE XXXVII I 

PERFORMANCE INDICES OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, 

CASE STUDY D6 

Feedback Gain 
Matrix Used 

TABLE XXXIX 

Performance 
Index 

4.55949 

4.18517 

4.01546 

4.00669 

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF 
THE SYNCHRONOUS MACHINE CONTROL SYSTEM, 

CASE STUDY D6 
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(A+BK C) a (A+BKb C) (A+BK C) c (A+BK*C) 

-235 -171 + j335 -176 ~ j327 -175 + j323 - -

-165 + j285 -145 + j49 -131 + j 51 -129 + j 51 -

-71 + j 99 -77.54 -81.73 -89.39 

-9.74 -65 + j 2 .1 -18.91 -18.73 
-

-3.98 -1. 25 -2.94 -2.91 

-1. 08 -1.31 -1.30 



[· 0620 K = a 0 

[0620 
Kb = . 0 7 2 5 

[0688 
K -c - .0725 

t.0689 
K* = -.0676 

TABLE XL 

FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS MACHINE 
CONTROL SYSTEM, CASE STUDY SS 

1.0078 -1.5472 -.9653 0 0 0 

0 0 0 .2477 1.0026 -1.5902 

1.0078 -1.5472 -.9653 .3541 -.0812 .1305 

.0879 .1143 .0637 .2477 1.0026 -1.5902 

1.0038 -1.5469 -.9726 .3541 -.0812 .1305 

.0879 .1143 .0637 .2463 .9993 -1.6164 

1. 0031 -1.5464 -.9721 .3478 -.0839 .1291 

.0908 .1130 .0636 .2473 .9993 -1.6160 

-. 9~98 J 

.4434 

-.9398 

. 44341 
-.9992 

.4420J 
-.9983 

,.... 
,.... 
,.... 



TABLE XLI 

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, CASE STUDY SS 

Feedback Gain Memory Number of Execution Time# Compilation Time 
Matrix Obtained CK-byte) Function Evaluated# (Seconds) (Seconds) 

K a 136 279 54.39 17.52 

Kb 148 376 81. 87 21. 02 

K 164 452 103.41 25.29 c 

K* 440 >100 >300 11. 35 

#Approximate value. 

I-' 
I-' 
N 



TABLE XLII 

PERFORMANCE INDICES OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, 

CASE STUDY SS 

Feedback Gain 
Matrix Used 

K a 

TABLE XLI II 

Performance 
Index 

.0005780 

.0005720 

.0005718 

.0005718 

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF 
THE SYNCHRONOUS MACHINE CONTROL SYSTEM, 

CASE STUDY SS 
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(A+BK C) a (A+BKb C) (A+BK C) c 
(A+BK*C) 

-368 + j 200 -385 .:._jl94 -386 + jl99 -386 + jl99 - -

-295 + j 37 4 -283 .:.. j 377 -292 + j 386 -292 + j 386 - -

-149.18 -136.80 -129.41 -129.58 

-16.52 -17.43 -17.15 -17.15 

-2.88 -2.93 -2.96 -2.96 

-1. 31 -1.26 -1.31 -1. 31 



K 
a 

Kb 

Kc 

K* 

TABLE XLIV 

FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, 

CASE STUDY S6 

= t· 1~56 .1057 -.4508 0 0 

0 0 .2918 .4613 

[ ll56 .1057 -.4508 .1672 .2183 
= .0859 .0660 .3986 .2918 .4613 

[ll33 .1352 -.3820 .1672 .. 2183 
= .0859 .0660 .3986 .3440 .4778 

[1149 .1337 -.4017 .1746 .2135 
= .0945 .0633 .3352 .3379 .4745 

114 

-. 9~sJ 
- . 478~ 
-.9555 

-.478~ 
-1.0740 

- . 508~ 
-1.0371 



TABLE XLV 

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, CASE STUDY S6 

Feedback Gain Memory Number of i Execution Time# Compilation Time 
Matrix Obtained CK-byte) Function Evaluated# (Seconds) (Seconds) 

Ka 136 182 35 16.50 

Kb 148 387 91 20.84 

K 164 491 122 26.46 c 

K* 440 >100 >300 10.95 

-
# . . Approximate value. 

..... ..... 
Vl 



TABLE XLVI 

PERFORMANCE INDICES OF THE SYNCHRONOUS 
MACHINE CONTROL SYSTEM, 

CASE STUDY S6 

Feedback Gain Performance 
Matrix Used Index 

K .0007028 a 

Kb .0006082 

K c .0005931 

K* .0005913 

TABLE XLVII 

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF 
THE SYNCHRONOUS MACHINE CONTROL SYSTEM, 

CASE STUDY S6 

116 

(A+BK C) a (A+BKbC) (A+BK C) c (A+BK*C) 

-209.92 -155 + j360 -167 + j339 -167 + j 338 - - -

-158 + j 292 -134 + j 61 -107 + j 56 -109 + j 66 - - - -

-63 + jll2 -73.15 -113.57 -104.24 -

-10.64 -10.68 -20.95 -20.58 

-3.79 -5.10 -2.83 -2.84 

-1. 09 -1.24 -1.31 -1.30 



Dimension of 
Output Vector 

6 

6 

6 

6 

8 

8 

8 

8 

TABLE XLVIII 

COMPARISONS OF PERFORMANCE INDICES OF THE 
SYNCHRONOUS MACHINE CONTROL SYSTEM 

Feedback Gain Performance Index 
Matrix Used Deterministic System Stochastic System 

K a 4.55959 .0007028 

Kb 4.18517 .0006082 

K c 4.01546 .0005931 

K* 4.00669 .0005913 

K a 4.01368 .0005780 

Kb 3.96699 .0005720 

K 3.96593 .0005718 c 
K* 3.96592 .0005718 

I-' 
I-' 
-.._.] 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Summary 

The purpose of this research was to find a control de­

sign technique which does not require extensive off-line 

computation. Such a technique is useful for the development 

of interconnected power system control and other large inter­

connected control schemes. The control is required to be a 

linear transformation of only some state variables which are 

measurable. The performance index is an integral quadratic 

type with infinite final time. In order to satisfy these 

conditions the feedback gain matrix of the control must be 

the solution of a set of nonlinear matrix equations, called 

necessary conditions, and it must stabilize the closed-loop 

system. Usually a considerable effort is needed to solve the 

necessary conditions. If the system is a large one, the 

problem involved with calculation of the optimal feedback 

gain is not trivial. A solution to this problem is obtained 

by applying the technique developed in this research. 

In this study the system is assumed to consist of two 

subsystems. The interactions between the subsystems are 

functions of a coupling coefficient. When the coefficient 

is zero the interactions are neglected and the two subsystems 

118 



119 

are independent. This makes the calculations using the sub­

system matrices possible. With the use of the coupling co­

efficient the optimal feedback gain matrix can be approxi­

mated by a finite term Taylor series expansion. The terms 

in the series of the suboptimal feedback gain matrix can be 

calculated from sets of equations which are functions of 

these subsystem matrices. If the number of terms is selected 

properly the suboptimal approach potentially offers large 

reductions in computational requirements while introducing 

only a small amount of performance degradation. 

It is shown that the sets of equations used to solve for 

the terms in the series for the suboptimal feedback gain has 

a similar structure to necessary conditions of the optimal 

feedback gain. Furthermore, the even derivative terms of the 

series are of a-type and the odd derivative terms of the 

series are of B-type. It is also proved that the nonzero 

coupling coefficient has no effect on the feedback gain 

matrix if the weighting matrix Q is of a-type. 

Three numerical methods to solve the sets of the matrix 

equations are developed. They are the iterative algorithm, 

the DVDP minimization algorithm, and the residue minimiza­

tion algorithm. The iterative algorithm requires less com­

puter processing time but convergence to the right solution 

is not guaranteed. The DVDP algorithm usually converges to 

the right solution but it requires a longer execution time 

an<l the result may not be very accurate. Furthermore, the 

performance index to be minimized must be well defined. If 
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it is not, for example in the case of necessary conditions 

for derivative terms of the series of the feedback gain 

matrix, the residue minimization algorithm can be applied. 

This algorithm requires more processing time but a more 

accurate result can be obtained. 

The applications of the techniques to interconnected 

power systems are studied. Dynamic models for the load fre­

quency control system and the synchronous machine control 

system are developed. The optimal and suboptimal feedback 

gain matrices are calculated and compared. The results show 

that the suboptimal technique results in a closed-loop con­

trol system whose performance is almost the same as the 

performance of the optimal system but it requires much less 

computer burden. 

6.2 Conclusions 

The suboptimal control design technique presented 

herein makes use of decoupling of the interconnected system 

into smaller subsystems. By this method the difficulties in 

solving the nonlinear set of necessary conditions as well as 

the processing time and the rapid access memory requirements 

for large scale systems have been greatly reduced. Even 

though the technique is suitable for interconnected power 

systems, it may be applied to any large-scale dynamic sys­

tems using a relatively small capability computer. The 

choice of the coupling coefficient may be selected from a 

physical parameter but it can be introduced as a computational 
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tool. The dimensions of the two subsystems need not be equal 

even though equal dimensions are used in this research. 

Since the coupling coefficient of the interconnected 

system can be chosen quite arbitrarily, it is felt that the 

technique presented can be applied to a single large system 

or a system consisting of more than two subsystems. This is 

accomplished by dividing the system into two parts. The 

validity of the suboptimal technique to such a system offers 

a topic for further investigation. 

Three terms of the series of the suboptimal feedback 

gain were used in this study and satisfactory results were 

obtained for the eighth-order power system considered. How­

ever, a criterion to judge the number of terms of the series 

required for a satisfactory performance of the closed-loop 

system when the optimal performance is unknown is still open 

for further research. One suggested method is by observing 

the performance improvement when one more term is added to 

the series. If the performance index is decreased only a 

very small amount, this should be the indication that enough 

terms have been used. 
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APPENDIX A 

PROGRAM TO EVALUATE THE MATRICES IN THE 

SERIES OF THE SUBOPTIMAL FEEDBACK 

GAIN MATRIX USING THE 

ITERATIVE ALGORITHM 
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tlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
c 
t THIS '111.0Glll.A'I Fl'IOS THE SUe:JPTl'IAI. FEEDBACK GAl'I 'IATRIX 
C I TERA TIO°' ALGORITHM IS USED 
c 
Cllllll/lllllllllllll/lllllllllllll///lll/lllflllll//l/lllllllllllllllll 

c 

c 
t 

INTEGER s1.s2,r1,rz 
R:AL KOil! LO,LOJ ,K0!2( !O,!Ol oK021(10.lO: ,K022l !Oo!Ol 
REAL Kll2ll0.IOJ,Kl2ll!O,!O/ 
RHL KZ!lC!O,!OJ ,K222l!O,!OJ 
[)I ME~S l JN A!( 10. !OJ, AZ( l J.101 .s lC l o.i OJ .sz C!0.10 l .cl no,101. 

• (2 ( IJ.!JJ ,O! (LJ, !Jl,OZC!O, !OJ,OIC 10,IJ /,Q2l !0, 101,RIC10,!0lt 
• R2l IG.101, VI 110,! OJ ,VZ( LO,LQJ ,Al2l10,101,AZ!(10.101.Ql2C!Oo!Olo 
• Cl! I l J' l OJ • pc! IC I o, IO I 'p J l z I l 0 .101 .•oz Ill 0. l OJ • P02 2110 .10 I. 
• ZO!lllO.!OJ,ZJl21!0o!O/,Z021110,!0/,l022l!O,IOJ, 
• P2!!( 10.10J,PZ221 !0.! Ol,llllll0,101 .z2zz110.101 • 
• GTJ! I( !J. 10 I. ~ro22110.io1 ,GTIZll IO o!OJ ,GT 112( 10.101 • 
• RESP!llO.!Ol ,RESPZCIJ,101 ,RESH< !O,!Ol ,RESlZl !0,101, 
• RINV'lC 10.10),RH~vzr 10,101 

DIMENSION GClll !J, IOJ,Gll22110, !0J ,GIL2( I0,101,GlZll 10,101, 
• GG2llll0.!0J,GGT2llllO,tOJ,GG2221!0,!0J,GGT22ZllO,!Dlt, 
• Zl!ZI 10.101,z121110.101 ,Plll!!O,!O/,Pl21110olOJ. 
• OT l fl J, l 0 J, bT 2 110, l 0 J, CT 11 I 0, 10 J ,C TZ I IO, IOI , 
• JC. I c 1 0. l 0 I • X2 ' l 0' l 0) 'y l ( la' l 0 J • '( 2 ( l 0' la J ' 
• RESKll!O,IJJ,US<2!!0,lOJ,CZCll!O,lOJ,ClC21l0,101 

C. 0."'!'40N/ A4./"il, Ml , S l , Tl tN.2 , .~l, S 7., T 2 
C.C.'tMQN/bil/Al ,iz ,.\12 ,A21.a1 'B2 ,Cl ,(2 ,01,02 ,01 ,02, rJ12,u21. 

* Pt,P2,v1,v2,KOll1K0221K012,KOZl 
COMMO,./IS/ISUB 
co~~J~/Dlffl/<112,KlZl 

COM•JN/~IFF2/K2!1,KZ22 

COMMJ~/lNV/ICHECK 

l llllT !•30 
L l~I TZ=30 
EPSIL•.5 
I CHECK•Q 
EPSl•l,E-5 
EPS?• l.E-5 
EPS3•.00I 
N~•4 

DO l I•t ,4 
00 I J•l,9 
JJ•J-4 
!FIJ.LE.41 READC5oZI All loJ) 
IFIJ.GT.41 READl5,21 A1211tJJI 

l CONll~UE 
2 F CH•-T IZOX, EZ0.61 

00 3 I•l,4 

3 
c 
c 
c 

OD 3 J•!,8 
JJ•J-4 
!FIJ.LE.41 READl5,ZI A2111,JI 
IFIJ.GT.41 READ!5,21 AZ! l,JJI 
CCNT!l<UE 

WRITE INPUT 

20 

10 

101 

JO 

21 

102 

22 

tn 
40 
c 
c 

c 

c 
c 
c 
c 

150 

c 

Wl'l.ITEf6,201 · 
FCRMAT!'lSUBSYSTEM NUMBER l',///, 

• Jx,•1•,4x,•J•,ax,•A1•.1ox.•e1•,1ox,•c1•,10x,•01•.1ox,•01•.1ox, 
• •R1•.1ox,•v1•,1ox,•K1 1 1 

DO IOI l•l,Nl 
WRITE(6,!0J 
FORMAT I !HOJ 
DD IOI J=!,Nl 
WR 1 TE I 6, ~OJ J , J, All I ,JI, Bl! I ,JI oCI Cl ,JI oDl ll oJI oOl II oJI, Rll I oJJ, 

* Vlll,JJ,KOlll!,Jl 
FOR~AT(lH , 13,15,2x,ac2x.F10.4JJ 
WRIT!'l6,Zll 
FQ~~ATI/////,• SUBSYSTE" NUMBERZ•,///, 

• 3x,•r• ,4x, 1 J•,sx.•A2 1 ,1:>x,•s2•,1ox,•c2•,1ox,•oz•,1ox,•oz•,1ox, 
• '1'.2 1 .1ox,•v2•,1ox, 1 KZ'J 

DO !JZ l=loNZ 
WRITE 16.!0J 
DO lJZ J= I.NZ 
WPI IE (6,301 J ,J. All 1.J1, 11211.J1,c2c 1,J1,oz1 loJJ,QZll.JJ, 

• R211,J> ,v2r1 ,JJ .1e.oz211,JJ 
WRITElb,l2l 
FORMATC/////,• COUPLING MATRICES',///, 

• 3x,•1•,4x,•J•,ax, 1 A12•,9x, 1 A21•,qx,•01z•,9x,•Q21•1 
00 103 I= !,NI 
WRITElh.lOJ 
00 103 J=l,Nl 
WRITE16,'•0l [,J,AlZ(l,JJ,AZlll,JJ,QlZll,Jl,QZ!Cl,JI 
FURMATCltt 1l3,f5,2X,~12X1Fl0.4)J 

CALL TRANS Pl Bl ,NI ,SI ,dT! I 
CALL TRA~SPIC! ,Ml .NI .en I 
CALL INVE~TIRt,Sl,R!NV!J 
CALL TkA~JSPtOl ,NL ,TL ,X:lJ 
CALL ~ULT{IJl,Xl,Tl,T l,Nl,XZ) 
CALl MULT(Dl,X2,Nl1T l,NI.,YlJ 
NUTE:. Yl=Ol•Vl•Ol· 
CALL TRh,SPIOZ,NZ,S2,BT21 
CALL TRANSPICZ,MZ,N2.cr21 
CALL INVERTIRZ,S2,R!NVZI 
CALL TR"SPID2,N2,T2,Xll 
~ALL HULT 1v2,x1. r2,T2,N2 1XZJ 
CALL ~ULTCD2,X2,N2,T2,N2,Y2J 
NOTE vz=oz•vz•oz 
DECOUPLED FEEOdAC~ GAIN 

I SUB•! 
CALL lf R3 I Al. Bl ,Cl .01 .vi ,QI .Rl ,yt .sn .en .RI NYl.Nlo Mt .s1.u. 

• KO! !,POI!, ZO! l, GO!l,G TO!ll 
l SUB•Z 
CALL ZERJIAZ,B2.cz.Dz.v2.oz,Rz.v2.srz,cTZ,RINVZ0"2t"'20SZoTZ. 

• KJZ2.ro22,zo22.co22.Gro221 

C FIRST DERIVATIVE OF FEEJBACK GAIN 
c 
200 MMM•O 

DD 210 l•l,Nl 
DD Z!O J=J,NZ 

210 Al21 l ,Jl=Al21 I ,JJ/EPSIL f--' 
N 
<.O 



211 
c 
c 
c 

c 

c 
c 
c 
zso 

c 

c 

c 
c. 
c 

220 

225 
t 
c 
c 

ZJO 

DO Zll I• lo!CZ 
DO 211 J•l o NI 
A2llloJl•A2llloJll!PSll 

FIND czc1.czcz 

CALL HULT!CloZOlloHloNloNloXl) 
CALL ,.JLT IHoCTloHloNloHl.XZI 
CALL INYERTIX2oMl,CZCLI 

CALL 1'ULT 1cz.zo22.~z.~2. N2.X11 
CALL "f!JLT(Xl.CTZ,M.Z,P\Z,MZ,XZ> 
CALL IWERT(xz.•2.czc21 

I TERAT!O~ LCOP 

"K~•~M~•l 

CALL ZZllKl!2,Kl21,AlZ,A2l,Blo8ZoCltCZoGDlloCT022oZOlloZ022o 
• Nl,MI,SI.~z.~z.s2.z112.RESZl.C112oGT121olTERZll 

CALL ZZl(Kl2loKl!Z,A2!,Al2oB2oBloC2oCloG022oGTOlloZ022,Z011o 
* N2,M2,S2,Nl,MloSloZl2l,RESZ2oGl2l,GTll2olTERZ2l 

CALL PPllGT!Zl,Gll2oPOlloP022oGTOlloG022oOl2oKOlloK022oKl2loKl12o 
• Rl.R2,cr1.c2.~1.M1,s1 .N2.~Z.SZ.PllZ1RESPl,ITERPlJ 

CALL PPl(GT112,GlZl,POZZ.ro11.GTOZZ.GOll.OZl,KOZZ.KOlloKll2,Kl2lo 
• RZ,Rl1CT2,c1.~2.~2.s2.NltMl,Sl.Pl2ltRESP2,ITEPP2) 

CALL KK11Rl,KOll,Cl,CTl,(2,Zl12,Z022rBTl,POll,P112rNL,Hl1Sl, 
• N2.~2,S2,Yl,ClC2,Al~Vl) 

'ALL ~Kl(R2.~0~2.c2,cr1.c1.z121,zo11.ar2,Po22,P121.NZ,HZ.SZ. 
• ~l,Ml,Sl,Y21CZCI,RlNV2J 

FINO RESIDUE OF Kl 

BlGR•O, 
00 220 l•l,Sl 
DO 220 J•l,MZ 
RE5Klll,Jl=Kll2(1,Jl+YllloJI 
RKK•ASSl~ES<llloJll 
BIG~•AMAX!IBIGR,RKK) 
DO 225 l•l,S2 
DO 225 J•l,Ml 
RES<21 l,J l•KIZll loJl+Y21 loJI 
RKK• AllS I ~ESK2 (I ,J 11 
BIGk•A"AXllBIGR,~KKI 

WRITE OUTPUT 

WRITElo.ZJOI MM",BIGR,ITERZl,ITERZZ,ITER'l•IT!RPZ 
FOR~H 1' l ITERATION NUMBER'o 15,1/o 

• • HAXt."1UM RESIDUE OF Kl' tE20.t:>,//, 
• • ~U .. BER OF ITEUTIO~ USED:'otox.•ITERZU2 ........ tox. 
• 1 [TERll21 a 1 ,J4,10X1' lTEilPll2 • 1 1l~tlOX,'ITERPlZl •',14.l/e 
• • FlkST OERIV~TIVE OF FEEDBACK GAIN',ff/, 
• 3x,•1•,.r.x,•J•,9x,•z112•, 
• 9X' 'RE SZl' .1ox ,• z 121 1 ,9x' 'RESZ2 1 , 1 ox. I Pll2 1 ' 9X, 'RE SPl. ,9x, 1x. 

'?121'19X, 'RESP2 1 ) 

DO 2"0 l•l,!'IN 
WRITE lo.IOI 
DO 24il J• 11 r-,N 

240 

zo 
260 

ZU 

t 
c 
c 

c 
c 
c 

270 

2n 

c 
c 
c 
c 

. 300 
c 
c 
c 
310 

c 
c 

c 
c 

c 
c 

WRITEl6o245) f,J,Zll21!,Jl,RESZ1f!,J),Zl2l!l.J),RESZZ!!,JJ, 
* P 112( I ,JI oRE SPl! I oJI, Pl211 I ,JI .RESP21l ,J) 
FOR.~AT I lX .!3. 1s,2x. e 12x. E!Z. 511 
WRITE (6,2601 
FOR~A r r vu,,, 3X, •I•, ~x. •·J•, 9X, 1 Go11 • ,9x,• cro2z• ,1ox,• c112•, 

• tox. 1 GlZl'1 9X, 1 i<.11200.·.~x. 1 -K112f'1•1J 1 16X1'K1210d',4X1 
• '-KlZllN+ll' I 

00 265 J:sl,NN 
WRITE (6, !OJ 
DO 265 J~l,NN 
WR I TE I 6, 2451 1,J,GOl ll I, J ),GT0221 I oJI ,Gll 211,JI oG1211 I oJl, 

• Kiili !,J),Y!(l,Jl,KlZllloJl.Y21 l,Jl 

TEST FOR TERMINATION 

IF(M ...... GE.L!MITll GO TO 300 
IFIBIGR.LT.EPSll GO TD 300 

UPDATE Kl 

ALFA• l. 
IFIBIGR.LT.l.I ALFA•.5 
lF!RIGR.L T.1.1 BIGR•l. 
00 210 l•l,Sl 
DO 270 J•l,M2 
KI l2( I, J 1 •KllZI I, Jl-ALFA•RESKll I ,Jl/!lGR 
00 275 rz1,s2 
DO 275 Js-t ,Ml 
K 121( I, J l=K 12111, Jl-ALFA•RE SK21 I ,Jl/81G~ 
GO TO 250 

SECOND OEklVATIVE Of FEEOBACK GAIN 

MMM•O 

IHPUION LOOP 

MMM=\4MM+l 
CALL MULT(K2ll,CloSloMl,NloXll 
CALL MULTIBloXl.Nl.st.Nl ,GG2lll 
CALL TRA~SP(GGZll,NloNl,GGT2111 
CALL ~ULTIKZZ2.c2.s2.~2.N2.x11 
CALL MULT<BZ,Xl,NZ,S2,N2,GG222l 
CALL TRA~SPIGG222,NZ,NZ,GGTZ221 

CALL ZZ21KZll,Bl,Cl,ZOll,Zl2l,Zll2,Gll2oGTll2,GOll,GTOlle 
• Nl,Ml,Sl,NZ,M2,S2,GG2ll.GGTZlloZ211,RESZl,ITERZll 

CALL Zl21K2ZZ,HZoCZ,lOZZ,Zll2,Zl21,Gl2loGT121,C022,GT022o 
• N2,MZ.SZ,Nl.Ml,Sl,GGZ22,GGT222oZ222oR~SZ2.ITERZ21 

CALL PPZIGGTZll,GGZll,POll,P1Zl,Pll2,Rl,RZ,GlZloGTl2loGTOll, 
• G' I l ,Cl, CT lrKO 11, Kl2l ,1<.2 l l ,Nl. Ml, Sl,NZ,HZ,SZ,P21 l,P.ESPt,J TER,lJ 

CALL PP2(GGTZZ2,GGZZZ,P022,Pll2,PIZl,R2,Rl,Gll2oGTl!Z,GT022, 
• GOZ2r C2,CT2,K0221Kll21K222rNZ,H.21S.2rNl,1"1l,Sl,P22Z, 

RES?l, ITERPZ I 

I-' 
U-1 
0 



tALl KKZI it1, l\tNY1.11r i. ti ,cz,cn.nu,,.11z, 1'011,z 01i.z i21.zz11, 
• Kll2.KOlloCZCloNl,MloSloN2o"2oS2oYll 

CALL KK21R2,RINV2,ST2oC2oCl,CT2oPZ22,Pl2loP022oZ022,Zll2oZ222o 
• K12l oK022.CZCZ."2 .~.z.sz.N1.111,s1.rz1 

c 
C FIND RESIDUE OF K211, K22Z 
c 

!IC~•O. 
DO 320 l•l, SI 
DO 320 J•l, Ml 
RE SK ll I , J 1-<Z 1111•JI+Y11 ! ,JI 
R<K•l9S!RfSKll l,Jll 

320 B!CP•A•IXllBIGR,RKKI 
OD 325 l•l,52 
DD 3.15 J=l,•Z 
R•SKZI I ,JI •K2ZZll ,Jl+Y21 loJI 
RKK•IBSl~ESKZI f,JJI 

325 bl~R=A•AXll31GR,RKKI 

t 
c 

WRITE16,3301 HMM,BlCR,!TERZlolTE~ZZo!TE~l'lolTI:l\~Z 
330 FOR•ATl'l!TERATIG~ NUM8ER'ol5o//, 

• ' .,.4.XIMU .. RESIDUE OF t<.Z',E20.61//, 
• ' ·'N•oER OF ITERAT!O~ USEO:'.tOX.'ITE,Z2ll •'oI4o10Xo 
• 1 1 TEP.l222 •' .11t,1ox,• JTERPZll •',14.t:>x.• ITERP22Z -•.t4.tl. 
• ' SECL•;O DER!VAT! VE JF FEEDBACK CAIN' ,/If, 
• 3x,• 1• ,4x, 1 J•,9x, •z211•,9x,•Resz1•.1ox,•z222•,9x,•Resz2•, 
• tox. • P211' ,9x, 1 RE SPl' ,9x,1x, • PZZZ' ,9x, 'RESP2' J 

00 340 l<!,NN 
WRITECb,10) 
DO HO J= l .~N 

340 WRITE (b, Z'5 I ! ,J .z z 1111, Ji. RE sz 111 ,JI .zzzz11 ,JI. RE szz Cl ,JI. 
• PZ 11 I I , JI, RESP! I I , J >. .PZ 2 2 I I, J J, RESP 211, JI 

\iiRITE.(6,360) 
360 FcRw.e. rt lH i, 1, JX, • 1 •, -'tXr • J.', 9X, 'GG211' ,ax. 'GG222' ,ex, 

• I ,.;.211 (NJ I ,6x'.-K2l1 ( N+l} •• sx •• ,Q. ESK 1'' 9 x. I K222 (N) •• 6X, 
• '-l(.22ZCN•l) •.sx. 'RESKZ'J 

DD 365 l•l.~N 
WRITE!b.101 
DO 365 J=l.~N 

365 WR!TEl6,2451 (,J,GG21lll•Jl,GG2Z211,J),K2111 loJl,YllloJlo 
• RESKl!l .JJ .11z2211,J1,v211.JJ,RESKZll0JI 

c 
C TEST FOR TERMINATION 
c 

c 

IFIM~~.GE.LIHITZI GO TO 400 
IFIBIGR,LT.EPS21 GO TO ~00 

C UPDATE K2 
c 

IFl81GR.LT.1.I AlFA•.5 
IF181GR.LT.l.I BIGR•l. 
Ou 31? l•!,SI 
DO 370 J•l,MI 

370 k2111 I ,J l•K2111 I oJl-AlFA•RESKU I .JJ/SIGll 
DO 375 l•l,S2 
00 315 J•l,MZ 

375 KZ22f l,Jl•K22ZIIoJl-AlFA•l\ESKZlloJl/ISIGI\ 
CO TO 310 

400 STOP 

END 
SUBl\01.fl' ll'IE ZEl\0( "·a. c. 0. v. Q, I\, ovo. ST. CT.~ !lt'I .N.11. s. T. K, .... z,A&KC. 

• ASKCTl 
Cllllfl•lltllfllt•ffllllllllllllflllllllllllllltt11111111111111111111111 
C THIS SUSPOUT !NE FINDS DECOJPlED FEEDBAC< GAIN ,,,,,,, ......... ,,,,,,,,,,,,,,,,,,.,, .. ,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

c 

INTEGEo, S,. T 
REAL K( 10.!0I 
C.O.~PLEX lll,W 
DlME~Sto~ w1101.zu110.101,wKtl20l 
DIMENSION A9KCTllQ,IOI 
DI MENS IO~ ~Tl 10.101, C TC 10, 101 ,RI NV! 10 0 101 oAI 10 ol OJ oBllOolOl o 

• er 10.101,oc10.101,vr10,101,Q110, 101.~110, 101.PI 10, 101,z110,101, 
• ov,J( IO, IOI. XI (Io, 101. X2( 10.10 J ,x3110.1 OJ, XH 10.101, ABKCI 10.101. 
• RESPC!Ot!O),~F.SI(( lOrlOJ,f.<ESZ( 10,.lOJ 
CO~M~N/JIFFO/ ll~llO,EPSO.!PRTO 
CCHH':J""/Sl/rl,[PS 
COMHOIU 15/ ISUB 

'1HH.:111"Q 
10:> HMM=MMM+l 
c 
t FIND 
c 

c 

CALL MULTCK,C.S1M1NtXlJ 
CALL MULTCB.xt.N.s.N.XZJ 
CALL AUO(A,xz.N.N,ABKC> 
CALL TRANSP!A~KC,N,N,X31 
CALL IRANSP(ASKC,N,N,ABKCTI 
CALL SOLNIX3,ABKC,OVD,N,l'loZoRESZ,~ZI 

C FINO P 
c 

c 
c 
c 

c 
c 
c 
c 

l 
c 
c 

CALL MULTCR.x1.s.s.N.XZJ 
CALL TRANSP(Xl ,S ,N,X't) 
CALL MULT(X4,X2,~.S,N,Xl) 
CALL A00(0,Xt,N,N,X2J 
CALL SOLNIA~KC,XJ,XZ,N,N,P,RESP.MPJ 

FINO K 

CALL HULTrz.cr,N,N,M,XlJ 
CALL MULTCCrXl,H,N,M,XZJ 
CALL INVEP.TIX2,M,X3l 
CALL ~ULTCX1,X3,N,M,~,X4J 
CALL HULTCP,X4,N,N1M1XlJ 
CALL MULT(tlT,x1.s,N,M1XZ) 
CALL MULTCklNv,xz.s.s,M,X~J 
NUTE X4=RINV•~T•P•Z•CT•llC•Z•CTl•*-11 

FINO RESIDUE OF K 

8!GR•O, 
00 I 1•1,S 
DO 1 J= 1, M 
RE SK I I , J J •KI I , JI + X4 I I, JI 
RR•A8SIRESKl!,Jll 
81GR=AMAX1!81GR,RRl 

f-1 
t.N 
f-1 



W~fTEl6o101 "llM,M,,MZo8fCR,fSU8 
10 FOR~ATl'lOUTPUT OF SUB~OUTINE ze~o·.111. 

• ' ITERAT!CN NUM~ER'o!S,///o 
• ' ~~SER OF ITERATION USED TO Fl!'ID p•, 15olflo 
• • NU·•~FR CF IHRAT!ON USED TO FINO zo,1s.111. 
• ' "t.u:IM:.J"I RESIDUE Of K',E15.6,///, 
• ' DECOU>L~:J FEEDBACK GAl•i OF SUSSYSTE~ N'JMSER'.1501//, 
• 1Ho,2x, 'I •,1tx, 1 J 1 .1x, 'ltI ,JJ • ,1x, 1 RESZ(l,JJ' .ax.•Pll.JJ• • 
• 7X, 1 Rf$P(f1J)•,7x,•KZ(l,J) 1 ,9X, 1 K([,JJ',7X,'RESK(l,JJ') 
00 3 I ==l 1"l 
WR!TElb,201 

20 FORMATllHOl 
00 3 J=!,N 

l WR!TElbolOl !,J,Zl!,JloRESll!,J),Pll,Jl,,ESPlloJloX411,JI, 
• KlloJ),~ESKl!,JI 

30 FOR~ATC!H .13,[5,2x,1c2x.El3.611 
c 
C Fl~D THE PERFORMANCE INDEX 
c 

CALL MULT(OV01P1N1N1N1Xll 
PFX •O. 
00 300 !•l,N 

300 PFX•PFX•Xl({,[) 
w•ITElb,50~) PFX 

500 FORW4T[//,l011H•l.5X.'PERFORMANCE INDEX •0,!1•.61 
t 
t TEST FOR TER~INATION 
t 

t 

!FCM.~M.GE.LIM!TOI GO TO 400 
!F!BlGR.LT.EPSOI GO TO 400 

t UPDATE K 
c 
ZOO ALFA•!. 

lFCB!GR.lT.!.I ALFA•oS 
lFIBlGR.LT.l.I 8IGR•lo 
oo ., 1•1.s 
00 ~ J•l,11 

4 KlloJl•KC!,Jl-AlFA•RESKlloJl/81G~ 
Gu TU 100 

400 IA• 10 
I l• 10 
lJUB•2 
CALL EIGRFIAeKC.N.lAolJOB.w.zzz.rz,llt(,IE~I 
~•lTElbolbOOI wl\lll, IER, (!,Will. l•loNI 

1600 FOR"4ATl'lWl't(lJ•' .El5.6,//,• IER••.no.11 
• e1 • wt •,12.•>••,ze1s.6,/Jl> 
RETUR~ 

E ~D 
SENOLIST 

1--' 
(J.l 

N 



APPENDIX B 

PROGRAM TO EVALUATE THE MATRICES IN THE 

SERIES OF THE SUBOPTIMAL FEEDBACK 

GAIN MATRIX USING THE MINI­

MIZATION ALGORITHM 

133 



Cllllllll/llllllllllllllllll/llllllllll/lllllll/lll/llllJllll/lllllll/ll 
c 
c 
c 

THIS PROGRA" FINDS TloE SUl!OPTIMAL FEEDBA::K CAIN MATRIX 
THE COMBINATIO~ OF ALGORITH~S IS USED 

c 
Clllllllllllll//lllllllllllllllllll//l/lllllllllllllllllllllllllllllllll 

c 
c 

c 
t 

c 
t 

1~re~~R s1.s2,r1,rz 
OIMEN~IO~ Al!lO,LOJ,A21LO,lOl,8lllO•lOl,B21lO,lOl,ClllO,lOI, 

• Cll l 0 ,10 I oDl llO ,LCI ,02110·, 10IoIll110, LO I ,OZ(l0, 101, Rll l0.101 • 
• R ZI 10. LOI. Vll lO.LOI .vz1 L0.101.uz110.101 .A21110.10 I .012 uo .101. 
• 02lllJ.lOJ,POllll0olOJ,POl21l0.101,Po21110.101,P0221lO.lOI. 
• lO 111100101 olOlZ I 10,l 01, lOZl 110.10 J ,Z022110, 10 I, 
• RE5Pll 10.LOl,•ESP2110,101 ,RESZlll0,101 oRESZZll0,101 
• PZ l l 110. lJ 1. P222 11 o. L 0 I. Z2 l ll l0 .10 1.zz 2 21 10, l 01 
& ~ !J II I lo>.l 01ouTOZll10 olOI ,GTLZl llO ,101, GT 112 I 10, 10 I 
• Rl"IVlll0,101,~l'<VZl lO.LOl,XI 1001,EI 1001 ,Wll301 

01 MENSI ON Cl(l 110, 10I,ClC2110.LO J ,RESK ll 10.LOI ,RESKZI 10.101, 
• Sllll0.101 ,s12110,101,cT1110,lJ1 ,c12110.io1, * ZllZllJ,lOJ,ll2l!lO,lOl,Pll2110,lOl,Pl2lllO,l011 
• • 

GOll 110 ,10 J ,G0221 l0o l01, GllZl l0, 101, Gl2ll 10.LOI, 

• 
REAL 
RE~L 
REAL 

GGZ l ll 10, l 01 .~GT2 ll I l0.LOI ,GGZU 11Q,l01,GG12221101101 o 
X 1110, 1J J, X211o,10 I, Y ll l O, 10 I, Y 211 O, 1 OJ 

KOil 110,101,KOl2110 ,101, K02l I l0, LOI. K022110.LOI 
Kll21lC, lOl,Kllll lO.lOI 
K2llllO,lOl,K22lllO,lOI 

COM~O~/~A/ Nl1~l.~l.Tl1N2,~21S2,T2 

COMl'OiUBB/ Al .AZ,A12 .AZ1.s1.s2.c1.c2.D1.oz.01.oz.012.oz1. 
• R.1,R2,v1,vz 
C0~~0~1CCI ~Tlo8TZ,CTloCTZ,RlNVloRINV2oCZCl,tZC2 
:c~MD~/OJ/ ZOllol022,P011,P~22oGOlloGOZZ,GTOlloGT022 
CC~"J~IEE I Z 112. Z 12 l ,p u z;p 121oG11 Z oGlZl, G Tl12 ,G Tl21 
cc••1~/Ff/ Z211,Z22Z,P211,P222,GG211oGG2l2,GGT2lloGGTZZZ 
CCM~J'<ID~l/ K0ll,K022 
COM•C~/EEl/ Kll2oK12l 
(;0MMO"FFl/ KZll,KlZZ 
Cu•~o~ll Sil SUH 
cn••u,,nJ TI E. ES CALE ,MAX IT. l PR I NT. NI. NO 
CG•MO~/l~V/!CHECK 

(;OMM~N/CALC/ IDER 

EPSIL•.5 
ICHEC~•O 
E PS l •.OJl 
EPSZ•,001 
NN•4 
IDER•O 

DO l l•l,4 
00 l J•l18 
JJ•J-4 
IFIJ,LE.41 READl51ZI All l1JI 
IFIJ,GT,41 READIS1ZI AlZCl1JJI 

l CO"'T l'IUE 
Z FORMATl20X1EZ006I 

00 3 l•l •" 

' t c 
c 

zo 

10 

101 

30 

21 

102 

zz 

103 
40 
c 

·c 

t 

t 
c 
c 
t 

DD 3 J•l18 
JJ•J-4 
IFIJ.lE.41 REA015.ZI AZtcr.JI 
lf(J,GT,41 REA015,ZJ AZll1JJI 
CONTINUE 

WR !TE INPUT 

WRITEl6o201 
FOR-.ATl'ISUSSYSTEN NUMBER 11 ,f//o 

• 3x, • 1 • ,.,x, • J •.ax. •Al• , 1ox. • 81' .1ox. •c1 •. iox. •01• ,1ox·, •01• .1ox. 
• 'Rl • .1ox,•v1 • ,1ox ,•Kl• t 

DO 101 l•loNl 
WR!TElb.101 
F ORMA Tl 1~ 01 
DD 101 J• loNl 
WRITE lb,] 0 I f ,J, Al 11,J I. 1111 l1Jl0Cll f, JI.DU I 0Jl0Qll I 1JI oltUl,JI, 

• Vlll .JI oKOllll,JI 
FORMAT(!~ ,13,15,2x.a12x,F1D.411 
WRITflb,211 . 
FORMAT! Ill/lo' SUS SYSTEM NUMBER21 olll1 

• 3x,•1•,4x,•J•,ex, 1 l2 1 ,1ox,•e2•,1ox,•cz•,1ox,•02•.1ox,•az•.1ox, 
• 'R2' ,1ox,•v2• ,1ox, 1 KZ. 1 t 

00 102 l•loNZ 
WRITElbolOI 
00 102 J•loNZ 
WR IHI b, JOI I ,J,AZl 1.JI.8211.JI .c211,J1,oz11.J1tOZll 1JI. 

• RZ fl ,JI oVZI loJJ,K0221 I.JI 
WR! TE (b,221 
FORMAT(/////,• COUPLING HATRICES'1lll1 

• lX ,• 11 ,4x, 1 J•,ex, 1 A1.z•,9x,••21•.9x.•g12•.9x. •az1•1 
OU 103 1•1,Nl 
WRITElo.tOI 
DO lOJ J•l,Nl 
WRITElb,401 f ,J,Al21 loJI ,lZlll,JI ,Qt211,Jl,Q2lll.JI 
FOR~ATllH .13,15,zx.~2X,flO.~ll 

CALL TkANSPCBl,NloSl,BTll 
CALL TRANSPCCl,HloNl,CTll 
CALL INVFRTIRloSloRlhVll 
CALL TRA~SPIOloNl, Tio XII 
CALL HULT 1v1.x1.Tl,Tl.Nl.XZI 
CALL HULT CO lo X2 oPll o Tl, NI oYll 
NOTE Yl=Dl•V!•Ol 
t•LL TkANSPCs2 ,Nz·,sz ,s1z 1 
CALL TRANSPIC2,HZ,N2,CTZI 
CALL HlVERTIR2oS2oRINV2l 
CALL TRANSPI02 ,NZ ,12 ,Xll 
CALL ~ULTIV2oXlol2,J2,N2oXZI 

CALL MULTI02,x2,N2.r2,N2,v2J 
NOTE Y2•DZ•v2•02 

OCCOUPLED FEEDBACK GAIN 

ISUB•l 
CALL ZEROIAl.BloCloDl0Vl1Ql,Rl1Ylo8Tl1CTloRINYl,NloMloSlofl1 

• KOlloPOll,lOll,GOll,GTOlll 
CALLZER09CAlo8l,Cl,OloVloOl,RloY118Tl,CTl1RfNYl,NloMl1SloTlo 

• KOll,POlloZOll,GOlloGTOlll 
f--' 
(J..l 

+::-



150 ISl.e•Z 

c 

CAl..L ZER~IAZ.ez.cz.02.vz.02.RZoTZ,STZ.CTZoRINYZoNZo"Z·SZ·TZ· 
• K022oP022oZ02ZoG02ZoGT0221 
C4LLZfR09lAZ,e2.cz.02.vz.02,RZoTZ,eTz,cTZ.~INYZoN20MZoSZ.TZo 

• K~ZZoP022oZ022oG022oGT0221 

C FIRST DERIVATIVE OF FEE:JBACX GAIN 
c 

IDERsl 
DO ZlO l•loNl 
D:l 21J J•l,NZ 

210 llZlJ ,Jl•AlZll oJJ/EPSIL 
DJ 211 I•l,;\12 
OJ 211 J=l.~l 

211 A2lll oJl•AZlll,Jl/EPSIL 
c 
c 

c 
c 

CAll •UlT!Cl,ZOlloMl,~l,NloXll 
C4LL •ULT!Xl,CTl,Hl,Nl,Hl,XZI 
CALL lNVEHlX2,Hl,CZCll 
CALL HULTtc2.zo22,112.N2.NZ0Xll 
CALL •ULT!Xl,CTZ,~2,NZ,HZ,XZI 

CALL INVERT lx2,HZ,CZC21 

N~N•!Hl•Sll+l~Z•SZI 
NW2t.IN:','*(~N.Nt-3t 

00 Zbl l•l,SI 
DO 261 J•t.n 
ll•II-lJ•Ml•J 

Zbl Xl!ll•KllZll,JI 
OJ Zbl l=l,SZ 
00 2b2 J•l.~l 

I !=IS l ••21 +I !-11 •Hl•J 
Zl>Z X l l 11•Kl21 l l, JI 

CALL BOTHIX,E,NNN,EFoESCALEolPRINT,HAXIToMoNl,NOoNWI 
c 
c· SfCO·'lD OERIVAT lYE OF FEEDBACK GAIN 
c 

l DER• 2 
OJ 3bl l•l.Sl 
DO 361 J•l oHZ 
II•( l-ll•MZ+J 

31>1 Xllll•K2111!,JI 
DO 362 l•l ,S2 
00 362 Js 1, ~l 
11•1Sl•~21+l !-ll•Hl+J 

362 Xlll1•~22211,Jl 
CALL BOT•IX,E,NNN,EfoESCALEol,RINT 0PIAXIT0MoNl,NOoNMI 
STCP 
END 
SUBRJUTl~E CALCFX(NNN,X,Fl 

c1111•••••••••t1•••••1t111111•1111111111111111ttlllllllllllllllllllllltl 
C lrllS SU5'D~T!NE CALLS OTHER SUBROUTINE 
C TO EVALUATE THE PERFGRMANCE INDEX ,,,,,,, ............................................•.•.•..••.•.. ,,,,,,,, 

OIM=~SIO'l XCIOOl 
COM~ON/CILC/ IDER 
IFCIJfR.EQ.01 CALL ZER055CNNN,XoFI 
IFCIDER.EQ.ll CALL FIRSTCNNN,X,Fl 

IFllOeR.eQ,ZI CALL SECONDINNNoXoFI 
11.ETU!I~ 
ENO 
SUBROUTINE ZE~OIA.a.c.o.v.o.R.OYDoBToCT.(INV.N.~.s.T,K•'·l· 

• AB~C, ABKCT I 
Ctftt111•••••111111111111111111111tt#t111111111111111ttttlJttfttfltttttf 
t THIS SU3ROUT!NE CALCULATES DECOUPLED FEEOBAC~ GAIN BY BOT~ ~OUTlhf 
C••••••••M•~•5M'#*##•••••••##J#ll#ll##~ffft•••··················'''''''' 

c 

c 

!NH:GER S, T, SS 
REIL Kll0,101 
D ! Mf NS! O" A ( l 0 .101 ,B ClOo 10) ,c (10 olO lo 0(1J, 10 Io V( 10, 10 lo 01 lJ, IOI, 

• • ( 10.101. DVD( 10.101.s Tl 10.101 .c Tl! 0,101,RINVI10 olDl ,Pl l0, 101, 
• l I l 0 .I 0 I , ABK Cl l 0, 10 I, A8KC TI I 0, l 0 I, XI 100 J, WI 1301 ,E ( I 001 
01"4-~NSlO~ AA( l01lOl ,8B!l01lOJ ,cct10.10) ,PPll01lO).o;c10,101. 

• RR 11o,10 I, DOVDOI l O, 10J,AACC110, 101 , AA:C Tl 10 .lOl 

C.O~Ht)N/C At I AA' RB .cc • pp, UiJ, i(K 'OOVDD .AACC. AAC er. M ..... SS' NN 
COMMON/BOT/ E,ESCALE,MAXIT,IPAINT,~l,NO 

00 l l • l, s 
00 1 J=l,M 
!l•l !-ll•M+J 

1 Xllll=Kll,JJ 
c 

c 

CALL EOUAL(A,N,N,AAI 
CALL EUUAL(8,N,S,88J 
CALL EOUALCC,M,N,CC) 
CALL EUUAL(Q,N,N,QQ) 
CALL EOUAL{R,S,S,RRI 
CALL EOUAL(O~O,N,N,DOVODI 

M...,,::::M 

SS= S 
NN=N 
Nr~r-..= M$S 
NW=N~~· ( NNN•3J 
CALL BOT~tx,E,NNNoEFoESCALE,IPRINToPIAXIToMoN!,NOoNMI 
DO 2 l=l,S 
DO Z J• l, M 
!!=l!-ll•M+J 

2 Kll.Jl=Xl!ll 
CALL FOUAL(AACCoNoNoABKCI 
CALL EQUAL (AACCT,N,N,ABKCTI 
RETUKN 
END 
SUbKDUT!NE ZER0551NNN,X,FI 

c1111•••••••••••••••N#####l###l##l#t111111111111111111111111111111111111 
C THIS SU~KOUT!NE CALCULATES OBJECTIVE FUNCTIONS 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 

fNTEGER ~.T 

COMPLEX z,w.lN 
REALKllO,lOJ 
DI MENS ICN A Cl 0,[0I.~110, 10 I , Cl 10, 10 I. Pl l 0, 10 I, Qt 10, 101 o~ I 10, l OJ, 

• 0 VDt 10, I OJ , X l I I 0, I 01 , X2 l 10 o l OJ , X3 l !O, l 0 I, X4110.l 0 I 
D!Mfr.SION Wl!Ololl 10,101,WKI 1201,RW( 101 
OIMENSlO' AoKC!IOo!Ol.ABKCT(lO,lOJ 
Dl~E~SIO' RESP! l0, 101 
D!MF,SIDN XllOOl 
COMMON/CAL/ A,a,c,P,Q,R,OVO,ABKC,AB~CT,M1S.H 

I-' 
V'1 
Ul 



c 

l 
c 

c 

c 

DO l l•loS 
DO 1 J•l.~ 
11•1!-ll•>l+J 
Kii oJl•Xll 11 

CALL l\ILTIK1CoS0MoN0XlJ 
CALL TRA~SPIXloSoNoXZI 
CALL ~ULTIR,x1.s.s.N.X31 
CALL ~ULT(X2.~3.~.s.~.x~J 
CALL 4~~(~,X•,N,~,X3J 

CALL ~ULTIB,X!,NoSoNoXZI 
CAtl e.0011.xz.~.'i.l!.SKCJ 
CALL TRA\SPIABKC,N,N,ABKtTI 

CALL SDLNIAaKC,A6KCT.x3.N,NoPoRESPo"'' 
CAlL >IULTIDViloP.~.N,N.Xll 
F•O.O 
00 2 l•loN 

Z F•F•Xllloll 
c 
C FINO EIGENVALUES 
c 

c 

IA•lO 
IZ•lO 
IJO!la2 
CALL EIGRFCABKCoN,IA1IJ08olloZ1IZollKol!AI 

E IG"1AX•O. 
DO 5J l•l 1N 
Rolll•REALIWllll 

SD IFIRWlll.GT.EIG."IAXI EIGllAX•Rlllll 
F•f+IEIG"IAX•!O,EZOI 

100 RETURN 
END , 
SU~ROUTINEZERC91A,e,t,D,YoQoRoDYDo!T,CToRINVoNo"•SoToKoPoZoA!KCo 

A.:IKCTI , .... , .............. , .. ,,,,.,~, .. ,,,,,,,,,,, .. ,,,,,,,,,,,,,,,,,.,,.,,,,. 
t Tnl s sugR(!UTINE FINDS DECOUPLED FEED8AtK GAIN !Y ITERATION 'IETIOD 
Cllllltl•lt••lllftlllttltltlllll#l#t#ltllllllllll##l#llllllfllfllll#l#ll 

c 

INTEGER s.T 
REAL Kl l0, 101 
CU'°L EX lll o W 
Dl~ENSIDN !TllOolOJ,CTllOolOloRINYl!OolOl,AllOolOl,8110o!Olo 

• Cl 10.10 I.DI !0, 101,VI 10, 101oQI10,101oRI1 OolOI, Pl 10o101, ZClO o!O I 1 
• DVOll 0.10J,X1110, 10 Io X21 l Oo 101, X31 lO, 1 OS. X~l l 0.101 ,A8KC 110o101 1 
• P~SPI l0, 101 oRESKC lO,l 01,RESll!O, lOI 
Dl"·E~SIJ~ AB~CTI 10,101 
UlllE~SIJ~ WllQl,lllllJ,IOl,WKll201 
COllllO~/OIFFO/ Lll41TO,EPSO,IPRTO 
CO~>ION/SL /H, EPS 
to~110~11s11 sue 

M!lltM•O 
100 IOIH• H .. H•I 
c 
t FIN:> Z 
c 

tALL ~LTIK,C,SoM1N1XlJ 

c 
c 
c 

c 
c 
t 

c 
c 
t 
t 

1 
t 
c 
c 

10 

20 

3 

30 
t 
t 
t 

300 

CALL "ULTC!0Xl1N1S1N1XZI 
CALL ADDIA,XZ1N1N1A8Ktl 
tALL TRANSPIABKtoN,N,X31 
CALL TRASSPIABKCoN,N,A6KtTI 
CALL SDLNIX30AU~t.ovo.N,N1Z1R!SZ1MZI 

FIND P 

CALL >UL Tl R,Xl ,s, S o.N ,XZI 
CALL TRA~SPIX!, S,N,X41 
CALL MULTIX4,X21N1S1N1XlJ 
CALL ADDI QoXl ,N,NoX2 I 
CALL SOL~ I AB.KC, X3, XZ ,N,N1P1RESP1MPI 

FIND K 

CALL 
CALL 

·CALL 
CALL 
CALL 
CALL 
CALL 
NUTE 

~ULTCl1CT,N1N1M1XlJ 

HULTCC1Xl,M,N,H1X2J 
INVEPTIX2,HoX31 
HUlTCXl1X31~1M1M1X4J 
~l TC P,X4 ,N,N,!i1 1 XlJ 
~ULT (RT ,Xl, S1N114, XZ J 
·HuL r 'R INV. xz, s, s,.M, X4J 

X4=RINV•8T•P•l•CT•llt•Z•CTJ••-11 

FINU RESIDUE OF K 

BIGR•O, 
00 1 (.:cl, s 
DO l J•l oH 
RES•l l,Jl•Kll,Jl•X41 loJI 
RR=ABSIRESKCloJll 
81GR•AMAX1181GR,RRI 

WRITE OUTPUT IF IPRT•l 

IFllPRTO.NE.11 GO TO 200 
WRITEl6,IOI MMll,MP,llZ,81GRolSU8 
FORHATl'IUUTPUT OF SUBROUTINE ZERO'ol/lo 

e ' ITERATION NU118ER 1 ,15,///, 
• ' NUMDER OF ITE~ATIO~ USED TO FIND P'ol5o/l/o 
e ' NU"BER OF ITERATION USED TO FIND Z'ol5,///o 
• 1 H4XIMUM ktSlDUE OF K 1 1E15.b,///1 
• ' DECOUPLED FEEDBACK GAIN OF SU~SYSTE~ NU"BER 0 1l511//1 
• lt-10 I zx' It' I 4X •' J' I 1 x. 1 l( I ,J J' '1 x '. R. ESL ( 1. J) I .sx •• p u •• u •• 
• 1x. 'RE SP(l ,J) ., 7X,•l'.Zf 1,JJ 1 ,9x.•K(l1JJ '.1x. 'RfSK(l eJJ' J 

DO J l•l,N . 
Wl\ITF.16,20) 
FORllAT I lt!O I 
DO 3 J•l,N 
WR! TE 16, 301 I ,J,Z 11, JI ,RESZ I I ,JI ,P II, JI,, ESPI I 1JJ,X4110Jl1 

e K(l,JJ,RESKlloJI 
FORHATl!H .13,15,2x.112x.El3.6ll 

FIND THE PERFORHANCE INDEX 

CALL MULTIDVD,P,N,N,N,Xll 
PFX•O. 
DO 300 l•loN 
PFX=PfX•Xll I ,11 

~ 

Vol 

°' 



WRITE(6,500l P~X 

500 FORHATC//,10!1H•lo5X,•PERFORMANCE INOEX • 1 oE14.6) 
c 
C TEST FOR TER~INATION 
c 

c 

IF!H~.~.GE ,l!HITOI GO TO 400 
IFIBIGR,LT.EPSO! GO TO 400 

C UPOATE K 
c 
ZOO ALFA•l. 
c 

IF!6lGR.lT.l.I ALFA•,05 
lf!blGR.LT,1.1 BIGR•l· 
DO 4 !•l,S 
DO 4 J•l,H 

4 K(f ,JJ•Kll,JJ-ALFA•RESKll1Jl/8[(;11 
~O TO 100 

400 IAzlJ 
I l •l 0 
[JCB~2 
C~LL E IGRF (A&KC,N, IA. IJ08,11,zzz.1z.W!l.IER) 
w•ITEl6,l600J WKl1J,IER.11.w111.1•1.NJ 

1600 fnR~AT('htK(lJ••.e1s.6,//,• lER••.110.11 
• AP w<•.12,•J••,2e1s.6,//Jl 
llETU•~ 

ENJ 
SUBRJUTl~E FIRSTINNN,X,FJ 

,,,,, ••••• , ••••••••••••••••••••••••• #ll#llll#lllllllllllllllllllllllllll 
c THIS sv~~OUT!~E FIN~S THE FIRST DERIVATIVE TERM 
C1111111••••••••••tt•lllll1l#lltl##l#lt#ttl#tllllfftlflltlfftlttlttltttf 

INTEC~R s1.s2.r1,r2 
UAL KOll I 10, 101,K 022110 .lOhK llZ ( 10,101, Kl2ll l 0,1 OJ 
DI ."HS !C';X ! !OJ I, Al 110, 10l,AZt10, 10 I, UZI 10.l DI ,AZll !0,101, 

Bl I I J, I 01 , B 2Il0,1 01 , Cl I ID,! 0 I, CZ ( l 0 .! 0 I, 0 l( I 0, 10 l, DZ l 10, 10 J, 
0 It I 'l, 101, Q Z I lo, I 0 I, R lt lD, l DI , R Zt l 0.10 l , V It l 0, 101 , VZ I l O, l 0 I , 
ST! I 1~.101. 8T2 (10 ,101.criI10.101.c TZ( 10.101. 

• R ! '<Vlt 10 .101 .RI ~V21I0 .1 OJ .c zc l( 10. 101. ClCZt 10 .l 01. lOll 110, 101. 
• ZJ22(1J.101,P0ll( l·J,lOl,P0221!0,101,GOllt10.101 ,GOZ2110,l0l, 
• G TOI II I 0, l DI ,G TOll ll 0 , 10 I , z 11ZI10, l DI, l IZ II l 0, I 0 I, P 11 Z ( 10, 101 • 
• P IZ II l 0, l 01 ,G 1121 10 .! 01 , GI 2 l ( ID.! 0 I ,GT 112 I l 0, 10 I , G ll 2 l I 10, IOI, 
• i< EI GrlT I l 0, ta I, YI ( I 0, 1 ~I, Y Z ( l O, 10 l 

DIME '<SI J'< RESll t I J,I 01,RESlZ I 10, lOI ,RESP! I 10,101,RESPZI10, lDI 
OP1ft-.SIJ'l OlZllV,lOJ 10.Zl<l.J,lOJ 
C.CM!-10~1/AA/ Nl,"'11.Sl,Tl,N2,."t2,S2,T2 
COl":MJ·~/BB I Al' .\2 ,All ,A.21 ,Bl ,82 ,ct .cz '01,oz ,Q}. QZ ,Ql21 Q21, 

• R1,qz,v1.v2 
CC~•J•ICC/ sr1.srz,cr1.crz,RINVl.RINV2.ClCl.ClC2 
c c••J'1UJ I l 011. z JlZ ,p 01 1, p 022 .coll ,G022. G TO 11. GTOZZ 
CO••G~/ EE/ l llZ. l lZl ,p 11z,pIz1.c11z.c 121. G n lZ ,c Tl2l 
CC~M0~/001/ KO!l,KOZ2 
CO~MuN/EEl/ Klll,Kl21 
co~~O~l~•I WEIGHT 
00101•1,Sl 
DO 10 J•l1MZ 
11•11-11·~2+J 

10 Kll2(1,Jl•Xlll) 
00 ZJ 1•1,SZ 
DO 20 J•I, ~l 
ll•!Sl•MZl•ll-ll•Hl+J 

ZO KlZl(l,JJ•Xllll 
c 

' CALL ZZllKllZ.KlZl.AlZ.A21.&1.SZ.Cl.CZ.GOll.GTOZZ.ZOll·ZOZ2. 
• Nl,Ht.s1,Nz.MZ.s2.z112.~esz1.G112,GT12l.ITERZll 

CALL ZZl!Kl2!,KllZ,AZl,Al2,B2,8!,C2,Cl,G,22.GTOll,Z022,ZOtl. 
• NZ. ~z. sz. Nl. Ml· SI .z lZ l. ~E Sl 2 ,c IZl.G Tl 12.1 TE RZZI 

CALL PP! I GT! 21 , Gll Z, PO 11 , POU, GT 0 ll • G022, Q IZ, K 011"<022, Kl 21, ltllZ • 
• R 1.R2, er 1.c2, 'It. P.a-, s1 .NZ, ~z. sz, P112 ,RESP!. n EF<P1, 

CALL PPllGT!l2,Gl21,P022,POll,Gf022,GOll,"21,KC22,KO!l,KllZ,Kl2l• 
• R~.R1.cr2.c1.,xz,M2,s2,rn,1<11.s1,Pl211RESP2,ITEPP2) 

CALL KKl(Rl,K011,Cl,CT2,C2,Zll2rZ022,BTl,POll,Pll21NltMleSlt 
• N2,M2,s2,Y1,czc2,Rr~v1, 

CALL KKllR2,K022,CZ.CT!,Cl,Zl21.l01l.BTZ,P022,Pl2l.N2.HZ.sz. 
• Nt,M1,s1,v2,czc1,RtNvZJ 

Fl•O. 
f 2•0. 
00 220 l•l,Sl 
00 220 J•l,M2 
ff-F•'<ll2(1,JJ+Ylllr.I) 
Fl=fl+Fff*FFF*~EIGHTll,JI 

220 CONT I NUE 
00 230 l•l,SZ 
DO 230 J•l,Ml 
HF«lZlt (,Jl•Y21!,JJ 
f2=F2+FFF•FFF•WEIGHTCl,Jl 

ZlO CO~T I NJE 
F=Fl+F2 
RHURN 
ENO 
SUeROUTINE SECONOINN~,X,FI 

Cltff#l#####fH####ll#l##f#l#f##fflflftl#fltffttttflf#fffffltfftfJtlftlll 
C TH!S SUSRUVTINE FINDS THE SECOND OER!VATIVE TERM 
C•••••·············••H••···~··········••M##f###I••••···················· 

INTfG~R s1.s2.r1.r2 
REAL KOil ii 0, !O I, KOll I lD ,10l,KllZ110, 101, K 121110, 101 
KEAL K211110,!DI ,KZ22110.101 
0 !MENS IJ•X t 100 J, All IQ, 10 J ,A 2 I 10.101,A121 l O, I Cl ,A2ll l0 ,IOI• 

• Bl 110.LOl ,BL{lQ,lOJ .ClflO,lOJ,C2ftO,tJJ,OUlO,lOJ,02( 10,lOJ. 
• Q 1110, 10 I, Olt 10, l 01,KII10 .lOl ,RZl l 0 ,10 J ,VII l 0 ,101, VZ 110,101, 
* bTlllv.IOl,bTZllO,lOJ,CT!llO,lOl,CTZ(lD,lCI, 

P!NVll 10,101,RtNv211a,101.czc1110.101,czczt 10,to1,zo11110,101. 
1022 c 1 o, l oJ , Pot 1 < tJ, l OJ , P 022' lo, lo J ,Go 1 u 10, lo, • c.::> 22r1o,1 01 , 

• Gr 011 I l 0 .l 0 J. GTOlZ I l 0 .10 I • z 11 z I 10. 10 J. Z 12 I! 10 .l 01 • p 112( 10 .l DI • 
• Pllll I0,101 ,Gll21 !O,l01,G!21 !lO,!Ol ,GTll21!D,lOl,GTl21110.!0I, 
* WEIGHTllO,l:JJ,YUlO,lOl1Y2flO,lt.H 

01 MENSI O.~ Rf'Sll ( 10, 1 Ol ,R ESl21!0,10 J. RESPl I 10 .10 I ,R ESP21lD,101 
OlME~Stll:~ ~121 !C,!Ol ,~Zll!O,lOI 
Dl~F."..i<;. (Ll~ l2lll l.J, lOJ,l22d 10, lOJ ,P211C l0110),PZ22(10rlOJ, 

• :;:;z11t10,101,GG22211J.tOl,GGT2ll!lO,lJl,GGTZ22( lD. lOJ.Xll!0,101 
COMM:J"llAA/ NlrMl,Sl,Tl,Nl11'121SZ1T2 
COMMCJN/~8/ Al,A2,Al21AZlr~l1B2,c1,c2,u1.02,c1.02,012,021, 

• Kl,R2,VI ,vz 
COMM1YUCC/ BT 1, B rz.c Ti,:: rz. R r f-tY l ,RI NV z.czc 11 Cl CZ 
CUMM~~/OU/ ZJll,l022,POll,P~22,GOll,G022,GIO!l.GT02Z 

cnK~ON/EE/ Zll2.ll2l,PllZ.Pl2l.Gll2,G12l.GTllZ.GT1Zl 
COMMON/FF/ l2ll,l2ZZ,PZll,PZ22,GG2Ll,GGZ2Z,GGTZll,GGT222 
COMMUN/001/ KO!l,K02Z 
CuMMO~/fEI/ Kl12,Kl2l 
COHMO.~/FFl/ KZll,K222 

~ 
(J.I 

--..J 



c 
COll.'IDN/llV/ W!IGHT 

DO 10 l•leS1 
DO lO J•l,"2 
11• 11-l l•>IZ•J 

10 KZllll,Jl•Xllll 
DO 20 l•l ,SZ 
00 20 J•l,Ml 
11 •I SI ·~z I>! 1-ll•!U•J 

20 KZZ211,Jl•Xllll 

c 
c 

c 
t 

CALL >'ULT IKZ11.c1.s1.11i.rc1.x11 
CALL HULll~l.x1.~1.s1,N1,GGZlll 
CALL IRA'I SP I GG21lo "I l oN 1. GGT 2111 
CALL "4.JLllKZZZ0CZ.sz,>1z,Nz.x11 
CALL ~ULTISZ,X!,N2,$2,"IZ,GG2221 
CALL TAA~SPIGG222oN2o"l2oGGT2221 

CALL ZZZIK2lloB1,Cl,ZOll,Zl21,ZllZ•Gll2eGT112,GOlleGTOll• 
• N1.~1.s1.N2,M2.s2.cc211.ccr211.z211,~esz1,1reRz11 

CALL Zl21K222,82,C2,ZOZZ,Zl1Z,Zl2l,Gl21,GT12l•G02Z•GT022• 
• ~z.~2.s2.N1,H1.s1.ccz22.ccr222.zzz2.RESZZ.ITERZZI 

CALL PP2IGGTZI1, GG2 l l, PJ ll o P 121,P 1 lZoR lo~ z,Cl2 l.GT 121,GTOUo 
• :00·11,C 1,C !l oKOll o KIZI ,KZ 11 o NI ,Hl ,51 ,NZ, l'2 oSZ ,pZ 11 o RESPl, ITERl'll 

CALL PPZCGGl222,GGZZZoPJ22oP11ZoP12loR2oRloGl12oGT112,GT022o 
• GOZZ, Cl,CTL,K02Z,Kl121K222tN2,H2,S21Nl1Hl,Sl1P2221 
• RESrZ, I TERPZl 

CALL KK 2 (~I. R WV 1. Bl 1. Cl .c2. c T 1. P2llop112 ,Pou ,z 011.z 121. z211. 
• Klll,KOlltCZCl1Nl ,"4l1Sl,'12,H21S2,Yll 

CALL ~KZIRZ.~!~v2.srz.cz.c1.crz,pzz2,PIZl,P022.Z022oZllZoZZZZ. 
• KlZloK022oCZC2oN2oH2oSZ,Nl,HloSloYZ) 

Fl•O·. 
F2•0, 
O:J 220 1•1,Sl 
oo 220 J•1.n 
FFF•KZlll I,Jl•Yl II.JI 
Fl•Fl+FFF•FFf•WEIGHTll,JI 

ZZO CONTINJE 
oo 2.10 1-1.sz 
00 ZJO J•loHI 
FFF•~222 CI ,Jl•Y2 I J,J I 
F2~F2+FFF•FfF*WEIGHTll,JI 

ZJO tu•,T IW~ 
Fafl+F2 
R~TUR~ 

E'<O 
SENDLIST 

...... 
Vl 
o:> 
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Cllllllllllll/lll//1//111/lllllllllllllllllllll//lllllllllllllllllllllll 
c 
C THIS PROGRA" Fl~DS THE ~ATRIX A OF THE SYNCHRONOUS "ACHlNE SYSTEM 
c 
tlllllllllll/lllll/lll/lllllllllllllllllll/l/lll////l/llllllllll/l/1/lll 

c 
c 

c 
t 

REAL J 111Oo10 J, J 2110 olOI oJ31!Oo101oHI10, lOl ol MAT( t,,4), 
• KOl ,l(.~2. it.El ,l(E2. I 01.I 02. t 01, 102' 11. rz. KAl ,KAZ 1KB l1 K82 
• , (M( 10), l~l !Cl 

DI ll~~s IJ~ All !0.101. Al 10.IOI.8110, 101 .en 0.101 .e ( 10.1 Ol. Gil Oo!Ol. 
• Rl!O.!Ol .s110.ioi ,;)Fl llJ.tJ),DFZl!O.!J),OfTll !0.101.0FTZl lOolOI 
• • TC l JI 10 J. TT l( l 01 'T TZ Cl 0 J • x 1( l 0 .10 I .x:2 (10 .10) 'X3 (l 0 .10 I. 
• fl!Uo!Jl,f!l!J,lJ),YI 10,101,VMl!O),V~I101 ,FYFl!O,!Ol, 
• htto.101.xsno.101 

DATA Y/.823,-0.~9l.-.239,3.986,-.1zs.2.49,~•o., 

• 6.4921 .8231 -] .9:Jb .-.2 39, -z. 49, - .125,4•0,, 
• -.239,3.966,l.1~2.-b.33~.-.12.1.99,4•0., 
• -3.9Qb,-.239,b.3)9,J.142,-l.99,-.12,4•0 •• 
• -.1zs,2.""'·-.1i,1.99, .zir.i;,-4,49,"'•o., 
• -z,4~.-.12s.-t.99,-.1z,4,4a,.z45,44•0.1 

DATA K4l1KA2,KB1,K~2/4•.5/ 

DATA v1.vz.TETA!,TETA2/l.05.1 ••• oa1266,,05Z36/ 
DATA Hl1KVl1r.El1fEl,THll,.t.003,15 ••• 1 •• ss1 
DATA HZ,KOZ,KEZ1TEZ,TMZll.2,.001,10 ••• oe •• 35/ 
DATA vT1.vr2.vT3/t.os.1 • .i.1 
DATA Jl,J21J3,J~,l~AT/4~~•0.,16•0./ 

O•TA Al,!,s,c.e.G,R/700•0./ 
DATA S,JF!,OF2,DFT1,DFT2/500•0,/ 
DATA Xfl ,XfJl ,XQ1,X!Jl,R.Fl/l .51.91l.l1.851 .001/ 
DATA XFZ.XFJ2,xoz.xo2,RF2/l.47,t.33ol.z.1.01,.0016/ 
DATA Ll1LZ1Ll1l~1L51L61l lO/l12131~151618/ 
DATA WJ/376.?91/ 
DATA 11(,r<./61 l/ 
DATA f/!OO•O,/ 

VNll l•V !•COSI TETA ll 
VNl21•Vl•SINITETA!l 
VNl31•V2•COSCTETA2) 
VN I 4 l •V Z•S HU TE TAZI 
VNl51 •l, 
YNlbl•O. . 
CALL MULTtY,VN1M1HtKtlNJ 
8ETA!=ATAN211N12J,IN11 ll 
8~TAZ•ATAN211Nl4lolNl3ll 
Z•l l"lll .. Zl•l INIZl .. 21 
II ·~~RT 1 Zl 
Z•llNl3!••21•( INl4J••Zl 
I Z•SO~TIZ I 
Zl•IV!•COSITETA!ll-IXQl•ll•SIN!SETAlll 
z l•-l l 
Z2•1Vl•SINITETllll•IXQl•ll•COSl8ETAlll 
DELl•ATAN21Zl,ZZl 
Zl•IVZ•COSITETA211-IX02•12•SINl8ETA2ll 
Zl•-Zl 
Z2•1V2•SINITETA2ll•IX02•12•COSl8ETAZll 
DELZ•4TANZ1Zl,Z21 
Flloll•CDSIOEL!l 

Ffl,Zl•SIN!OELll 
Fl2oll•-Fll,21 
FC2o2l•F(l,!l 
F(3,31•COSIOEl21 
F13,41•SINIOELZI 
f(4,3)•-F(3,4) 
F(4,4JzF(3,3J 
Ft5,5)sl. 
Ff 616)-= l. 
CALL TRANSP(F,M,M,FTI 
CALL ~ULT(f,Y,~.~,M,XlJ 

CALL ~ULTfXl-,FT,~,~.M,FVF! 
(ALL ~ULT{F,VN,M,~,K,VH) 

C.ALL .'4.JLT (FYF,VM,M,H,K., IMJ 
W~I TE I 6.151 

1; FOR~AT(lHt,10x,•1•,9x, 1 vN•.1ex.•1N•.1ex.•YM•.1sx.•tN'J 
DO 10 l=l,M 
WRIHlb,YOI 

'10 FOR"1AT(lti0) 
10 WR I TE 16 ,z Ol I oVNI 11 o INll I oVMI II o IMII I 
20 FORMAT( l!Oo4E20,6l 

VD!=V~l 11 
VQ!=VMI 21 
VDZ=VMI 3) 
VQ2=VMI 4) 

IDl=IMlll 
H.ll=IM12l 
IU2= l Ml 31 
I 02•1Ml41 
PS IOl=VOl 
PSIUl•-VJl 
PS!D2•VQZ 
PSI02=-VD2 
WRITE 160251 IDlo IQlolOl,fQZ 

25 FORW,AT(////J,• 101•'• El.3.6./•/•' tQl•'eEll.61//•• IDZ•'•!13 .. 6e//• 
• • to2=•,e1J.6J 

WRllElb,£61 VOloYQloVOZoV02 
26 FOk~ATCJ////,• VOl•'tE13.6// 1 1 VQl•'•E13.6.l/1' YOZ•'eE13.6,// 

c 
c 

• 1 V02=',El3.b) 

All!,Zl=l, 
AllZ,Zl=-WO•K0!/12.•Hll 
All3,31•-l,/TE! 
Al14,3l•WO 
All 5,6! :l, 
A 11b,6 l •-WO•KDZ/I z. •HZI 
All7,7)=-l./TEZ 
All8,71•W0 
81 l,31•KE1/TEI 
Bl2,71=KEZ/TEZ 
CIZ,21=-W0/(2.•Hll 
((3,Jl=-KE!/TE! 
Cl4oll•-WO•PF! 
Clb,Sl=-WO/IZ.•HZI 
Cl 7,6)•-K EZ/TEZ 
C.t814)=-HQ>:>:RF2 
Ell. ll•l,/XF! 
EI Zo l I= 10 l•XFO l/XF! 
El3,ll=VUl•XFOl/IVTl•XFll 

......... _.,. 
0 



E 131 Zl• I IYOl•PSIDU-1YD1•S10111 ll YTl•llOI J414.41 •1. 
El4o31•l./XF2 c 
Et5,31•1QZ•XFDZ/XFZ c !MAT• !DENT ITV MATll.lll 
El6,3l•IVOZ•XFOZl/IVT2•llF21 c 
E 16 .~ J •I I voz •PS l 021-IVOZ •PS !OZ l l/IYTZ"WOl IMATI 1,11•1. 
GI l, !l•XFOl/XF! !MAT 12,Zl•l. 
GIZ,lJ•l lO!*XFJ!•XFOl/XFll-l lQl•XOll-PSUl ll'!ATf 3,3)•1• 
Gl2oZJ=PS!Jl•l!Dl•XCll IMATl4,4J•l• 
CD, I J= 11 XFu l •XFD l/XF 11-XOll •VOl/VTl c 
Gl],Zl•VDl•X~l/VTl c FURM MATRIX T 
Gl 4 ,J) :;\F DL I XFZ c 
Gl5,3l•llJL••~UZ•XFOZ/XFZl-ll~Z•XOZl-PSl02 CALL HULTIF,Y,L6,l6,L6,xll 
Gl5,4 l=PS !DZ•I !DZ•XOZI CALL MULTIY,FT,L6,L60L61XZI 
Gl6,]J•llXF~L•XFOZ/XFZl-X021•V02/VT2 c 
GC6,4Jz~Dl•X02/VT2 CALL MULT 10fl,X2,L6,L6,L6,X31 
Rll,z>~-PSl,l/~O CALL HULTIXl,OFTltLb,L6,Lb1X4J 
R 12. lJ. xrn l / XF 1 CALL AOOtX3,X4,L6,L6,XSJ 
Rl2,ZJ:ii:PSl~l/WIJ CALL MULT(X5,VM1L6,L6,Ll1TTll 
Rl3,4Jz-PStCL/MO c 
Rl4, 3J•HD2/XF2 CALL HULTIDF2,X2,L6,L6rL61X3) 
Rl4,4l•PS 112/wJ CALL MULT(Xl1DfTZ,L61Lb1Lb,X4J 
Sil ,Zl•XJ! CALL ADD(X3,X41L61L6,X5J 
s I z. lJ •I xrn l• XFO l/Xf 11-XOl CALL MULT(XS,VM.LOtlbtll,Tf2) 
SIJ,4 l•XOZ c 
Sl4,Jl•IXFD2•XFD2/XFZl-XOZ 00 100 l•lolb 

c Tl I.I l•Tlll II 
c 100 Tf(,ZJ•TTZlll 

DFlll ,I J•-SINIDELll c 
OF 111,21• COS!DELll c CALCULATE JFYFJRJ•JTJ 
DF1!2,ll•-COSIOEL11 c 
DF112,21•-SINIOEL11 CALL HULT(J3,FYF,L4,L61l61Xl) 
OFT!l !, lJ•-S!NIDElll tALL HULT(Xl,J4,L4,l6tl41XZJ 
OFTlll,21•-COSlDELll CALL MULTCX2,A.,L4,L't1l't-1>0) 
OF Tl 12, IJ •C JS IDE LI I CALL MULTCX3,Jl,L41L41Ll01X~l 

OFTllZ,21•-S!NIDELll c 
c (ALL MULTCJ31T1L41l~1L21XlJ 

t CALL MUL TIXt,J2,L4,L2,Ll O,X3) 
OF213,3J•-SINIDEL2l CALL AOO(X4,X3rL4rLl01X)) 
DFZ13,41•CCSIOEL21 t 
DF,l I~ ,3, ·-cos I DELZ I c CALCULATE INVI 1-JFYFJSI 
DF214,4J•-S!NIOEL21 c 
OFT21],3l•-SlNIDELZI CALL MULTfJ3,FYF,L4,Lb,L6rXl) 
OFT213,41•-COSIDEL21 CALL MULTCX1,J4,L41L61L4,X2J 
OFT2t4,3l• COSIOELZI CALL MULT(X21S1L4,L41L4,X3J 
DFT214,41•-SINIOEL21 00 ZOO !•J,L4 

c DO 200 J•l,L4 
c zoo X411,JJ•IMATI [,Jl-XJl[,J I 

Jl!l.41•1. CALL [NVEQTIX4,L4,Xll 
Jll2.2l•l. c 
JllJ.81•1. CALL MULi 1x1.x5.L4.L4.Ll0,X21 

Jl "·· bJ:z.t. C.All HULT(G,X2,Lb1l4rll01X3) 
JZll,ll•l. CALL MULT(C,X31LlOrl61LlO,X5J 
J212. 51•1. c 
J311.!l•l. c CALCULATE CEJ 
J3fZ,ZJ•l, c 
JJI ].31=1. CALL MULTIC,EoLID,tb,l4oXlJ I-' 
J314,") .. 1. CALL MULTIXl,Jl,LlO,L4,LlO,X4J .p. 
J4!1.ll•I, c I-' J4(2,2Jzl. c 
.HIJ,31•1. t 



oo no 1•1.uo 
DO Z50 J• l. LlO 

Z50 All.Jl•Alll.Jl•X4lleJt•X511,Jt 
c 
C WRIT! OUTPUT 
c 

llRITEll>o3001 
103 FoR~Ar11tt1,sx.•1•.•x.•J•,9x,•A1•,1sx.•1•,14X,•c•,14x,•Y•,13x,•,vF• 

• ,13x,•F•,14X1 1 A') 
00 310 l•l,LlO 
llRI TE lb ,90 I 
DO 310 J•loLIO . 

310 wRI TE I oo 3ZO I I ,J,All l,J I ,811 eJ I.CCI ,JI t'l'C l.J t.FYFll ,JI el'll ,Jt • 
• Al I ,JI · 

3ZO F0R"'ATll6ol5,ZX,712XoE13.611 
WR!Tt(b,4001 

400 FORMATClHl1Sx,•1•,4x•J•,9x,•e•,14x,•G•el4X1'R'114X,•s•.14x,•T•t 
DO 410 l•loL6 
WRITElb,901 
OU '410 J•l,Ua 

410 wRITEl6o4ZOI l,J,Ell,Jl.Gll,JleRll,JleSCleJ),TCl1Jt 
4Z:> F0RMATllbol50ZX1512Xofl3.6ll • 
c 
C PU~ICH OUTPUT 
c 

00 520 IJ•l,3 
DO 500 l•l,LlD 
DO SJO J•lollO 

500 WRITEl1,5101 l,J,AlleJloBlltJI 
510 FOk~lTl2110 0 2EZ0.61 
520 CCNTl~E 

STOP 
E~O 

IENDLIST 

1--' 
+::­
N 
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Clllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
c 
C SUllROUTl!tES t 
tl///lllllllll//l//l/lllll/l/lllllllllllllllllll/llllllllllllllllll//ll/ 

SUBROUTl~E ZZllK11ZoKl2loAl2oAZloBlo82oClotZoGOlloGTOZZoZOlloZOZZo 
• ~l .~l. Sl oN2, MZ ,52 oZJ.l l oRESZ oGll2 oGTlZl o IT ERZJ 

C•••··························•••i·•···································· 
C THIS SUSRuUTINE CALCULATES Z11Z,G112oGT121 IAND Z1ZloGT112oGlZll ,,,,,,,, ...........•. ,, ............... ,,,,,,,,,,, .. ,,,,,,,,,,,,,,,,,,,,, 
c 

c 

INTEGER s1.s2 
~EAL Kl12110,IOloKl2lllJ,101 
)IMC~SION Al211JolOJ,A21110,lOlo8lll0,101o82110olOl,C1110olOI, 

• C2110olOloC011110olOJ,GT022!10olOl,zll2110olOJ,RESZl10ol0Jo 
• c112110.101.cr121110.101,x1110;101,xz110,101,x3110,101. 
• zo11110.101,zo22110,101 

CALL HULTIKU2.cz.s1.~z.112.x11 
CALL 't:UL Tt~l,Xl,!'41,Sl,N2,X2) 
CALL ADOIAl2oXZ,Nl,~Z,GllZI 
tALl ritULTll'tl211(1,S2 1Hl1f'fl,Xll 
tALL ~ULT{dl1Xt.~l.S2,s1.xz1 
CALL AO~l42l,X2,~2.Nl,XlJ 
(All TA:At.SPIXl1N2,Nlt.~Tl2l) 

CALL ".JLTIGll2oZJ22,Nlo~2.~2.Xll 
CALL MULTllO!loGT121,NloNloNZoXZI 
CALL Ail0(Xl,X2,Nlo'<2,XJI 
CALL SOLNIGT022.co11.x3,Nz,N1.z112.RESZ.IT~ZI 
RETU~N 
ENO 
SU8RJUT !NE PPl I GTlZl,Gll z,POH,POZZeGTOU ,GQZZo012eKOlloKOUoK1Zl. 

• tl.l lZ ,it l ,R2 ,(Tl ,cz 1Nl, Ml, SL 1NZ-1H21S21Pl 121 RESP1 ITERP J 
Clltllllillll1•••11#oll#llflollll#l#ll#lllll#lll#lt#llll##tl#ll#ll#lflll 
t THIS SUdRCuTINE CALCULATES PllZ I AND PlZl I 

t••····································································· 

c 

t 

c 

l~TE~ER 5loS2 
REAL KlZltlO,lOl,KllZllOolOloKOllllOolOloK022110,101 
D IHF~SIO~ :; T 121110.l OJ ,G 112 I l O, l 01 ,POU II Ool 01,P022110,10 J, 

• GTOll I 10.101, GOU 110, IOI 00121100101,R1110 olOI oRZl I0.101, 
• CT l ( l Q, l JI oC2 llJ.!Cllo PllZ 110 olO I ,RESP( lOo 101, XI llOolOI, 

X2 I II), 101. Xll 10.l CJ ,yl( 10.101.vz110.101 
OlME~SlO~ 021110,lJI 
CALL HULTlGT121,POZl,~l.N2.,N2,X1J 

CALL MUL T IPOlloGll2,Nl,'<loN2,X2J 
CALL AOJIXl,X2,NloN2,Yll 

CALL HULTl~022.c2.s2,M2,N2.x11 
CALL MULTl~z.x1.sz.sz.N2.xz1 
CALL TRANSPIK12l,S2,Hl,Xll 
CALL MULT1x1.xz.~1.s2.Nz.x31 
C:ALL HULTICTL.Xl.~l.•lollZoYZI 

CALL ~ULTIKllZ.cz.s1.H2.Nz.x11 
C:ALL MULTIRl,XloSl,Sl,NloX21 
tAll TRA/'4 SPIKOll, SI, HI ,x II 
CALL ~ULTIXloX2,MloSloN2,X31 
C.ALL llllLl ICTI oXl oNl, Ml ,NZ oXll 

CALL AOOIYloYZ,Nl,NZ,XZI 
CALL AOOIXz.x1.N1.NZ.X31 
CALL AODIX3,Q1ZoNloNZoY11 
CALL SOLNIG022oGTOlloYloN2oNloP112o~ESP,1T~PI 
RETU'IN 
E'IO 
SUBROUT !NE KKl IRl. KO 11.ci.cr z.cz. z uz.zozz.1111.l'OU.l' UZ.!tl. 
S~l.SloNZ,MZ,SZ,KllZ,CZCZ,RINYll 

t•••••••••••••r•••••••**''"*'''''''''''''''''''''''''''''''''''''''''''' C THIS SUBROUTll<E CALCULAIES Kll2 ( ANO Kl2ll 

t•••••••••••t•••······~······~·········································· 

t 

c 

c 

t 

INTEGe~ S lo SZ 
REAL KOllll0,101,KllZllOolOI 
OtMrnSlON RH<Vlll0.101 
DIMENSION ClCZllOolOl 
DIMtNSIONR1110.101,c11to.101.cz110.101.crz110.101.z11z110.101. 

SZOZ2 I 10, l Ol, 6 T ll 10.l OJ,P Ol-1110, 1 OJ oPll2 ll 0 o l 01 • 
SXlllJ,IJJ,X21lO,lOJ,Y1110,IOJ,Y2tlOolOJ 

CALL MULTIHl,KOll.Sl,Sl,Ml,Xll 
CALL MULTIXl,CloSl,Ml,Nl,XZJ 
CALL MULTIXZoZll2oSI ,Nl,"'2,Xll 
CALL MULTlx1,cr2.s1.N2.~2.Yll 

CALL MULTl8Tl,POll1~l1Nl.NL.XlJ 

CALL MULTIXl,ZllZ,Sl,NloN2oX21 
CALL MULTIXZ,CTZ,Sl.~Z.~2.x11 
CALL ADDI YI .x1. Sl .M2 ,yz I 

CALL MULTIBTl,Pll2oSloNloN2,Xll 
CALL MULT1x1.zo22.s1,NZ0N20XZI 
CALL MUL T1x2.crz.s1,Nlo'4Z0Xll 
CALL AUDIY2,Xl,SloM2,Yll 

C:ALL HULTIYl,CZC2,SloM2,M2,iZI 
CALL MULTIRINYl,Y2oS1,Sl,M2oKllZI 
RETURN 
END 
SUBROUTINE ZZ21K211,8loCloZOlloZ12l•lllZoGll2oGT11ZoGOlloGTOllo 

• Nl,Hl,Sl,NZ,M2,S2,GGZlloGGT21loZZlloRESZ,lTE~l 

t•••··········#························''''''''''''''''''''''''''''''''' t THIS SUBROUTINE CALCULATES 2211 I AND Z22ZI 
ClllllM•#ol###l#.##l~#l###l####•ff#M####lll##f##llf#tllltlflllllltlllllt 

• c 

l/'4TE~ER SI oSZ 
REAL K211110ol01 
O!McNS!ON GUllll~olOJ,GT.011110,101 
I) I HENS I 014 B 1I10.10I.c111 J, 10" zo11110.101 ,GUZI 10.101 ,GT 112110.1 OJ. 

oGuZllllO,lOJ,GGTZllllO,lOloZZllllOo10loZl21110olOJ,RESZl10olOJ 
o l 1121 10, 101 o Xll l C, 10 I, XZ I 1Oo101 oX3110 olOl oYl llOolOl ,YZ 110,10 I 

CALL HULTIGGZlloZOlloNl,NloNl,Xll 
CALL MULTll0lloG~T211,Nl,Nl,Nl,XZl 
CAlL AOu1Xl,X2oNloNloY!J 
CALL MULTIGll2olllloNloNZoNL,XlJ 
CALL MULTIZ112,GT112,Nl,NZ,Nl,X21 
CALL AUOIXl,XZ,NloNl,YZI 
ALFA =2. 
CALL MULTlllYZoALFA,Nl,Nl,Xll 
CALL AOJIY1,Xl,Nl,NloY21 
CALL SDLNIGlOlloGOlloYZoNloNloZZll,RESZ,ITERJ 

I-' 
~ 
~ 



llET~N 
ENO 
SU8ROUTINE PPZIGGTZlloGGZlloPOlloP1Zl,Pll2olll,11ZoG1ZloGT12loGTOllo 

• GOll,C loCTl oKOU, !UZl .KZll oNl ol'll oSl ,NZ ol!Z ,sz, PZllo RESPo ITER I 
C••11111111111111111111111111111111fllfll#f ffl1111••••111111111111111•1• 
C T~IS SUBROUTINE CALCULATES P211 I AND P222 I 

t••····································································· 

c 

c 

c 

c 

c 

INTrGER s1.s~ 
REAL <011110.101 oKLZlC!O,lOJoK2ll C!0,101 
Dl~E•S!C~ GG211!10.10J 
D!~f,,S!l1~ GGTZlll!0.101 ,POlll lOolOl,PlZll lOolOJ, 

• P 112110.101,GIZII10, l 01 oG TlZll l0,10 J ,G TOl 1110, 10 J, GOll llOo 101. 
• Cll I0, 101 ,C Tll 10, lOJ oPZlll IOo lOJ oRl 110, IOI ,R2110o 10 
• J. x 1110 .10 J. Xl 110, IJ J .xH to. 10 J ,X4110. 101. Yl I 10.101. YZI 10.101. 
• Yll 10, lOJ ,RESPi 10.101 

CALL MULTIGGT2ll,POlloNI oNLoNLoXll 
CALL ~ULT IPOll .GGZll .NI. ~L .NL .xzl 
CALL AOJ(Xl,XZ.~1.~H.YlJ 

CALL HULTIGTIZloPLZL .~l.r.loNLoXll 
CALL MULTIPl12oG12LoNl,N2,NL,XZJ 
CALL AOOIXloXZ,NloNloYZJ 
ALH•Z. 
CALL ~ULTlllYZ,AlFA,NLoNLoXlJ 

CALL AODIYloX Lo Nl,NI oY2J 

CALL ~ULTIKOl!,Cl,Sl,~1.Nl,Yll 
CALL "ULTIRl,Yl,Sl,Sl,NloX21 
CALL HULTIK211,CloSl,HloNl,Y31 
CALL TRA'1SP!Y30Sl,Nl,Xll 
CALL lt.JLT(Xl1XZ,~l1Sl1Nl1X~l 
CALL AODIX4,Y2,NloNl,XlJ 

CALL OULTIRl,YJ,SloSl,Nl ,>;zl 
C.\LL TRA'~SP('rl.Sl,Nl ,X3) 
CALL llULT(Xi.xz.~1.s1.N1,x~1 
(;All AOOIXI X~,NI,Nl ,YIJ 

CAll ~ULTIKlZI.CI,SZ,111,NloXll 
CALL TRA.~SP!Xl .s2.N1 .x21 
CALL HULT(KZ1Xl.Sl1Sl1~l,Xl) 

CALL "'ULT IX2,Xl,Nl,S2rNl ,X4J 
CALL MUlllllX4,ALFA,~1.Nl,Y2) 

CALL ADOIYloYZ,Nlo~l,Y3J 

CALL SOLNIGO!l,GTOlloY3,NloNl,P2lloRESPolT!RJ 
RETUqN 
E~D 

SUBROUTINE KKZIRloRl~Vt,8Tl,CloCZoCTl,P211,PllZoPOlloZOlloZ12lo 
• Z2lloKl1ZoKOll,CZCl,NloHloSloNZoH2oS2oK2111 

c111•11111111•11111111111111•~l#l#ltf#tfl#lf#l#flf#lltll#ltt#llfltfflfff 
C THIS SU~R·JUl!NE CALCULATES -KZll I AN!> -K222 I 

t••••··································································· INHGE~ s1.s2 
REAL K2IllI0,101oKll21IO,lOl,KOllllO,lOJ 
0 IME~S IJ~ R 1110.101. RINV 1110. 10 J, 8 Tll l0.101.cu 10.101.cTl110.101. 

CZ 110 ,101 , PZ I l Cl 0 olOJ oPll2 ll o, t 0 J, POll 110.tO J olOll I lOo 101, 
Z lZll I0.101.z ZI ll 10.1 OJ .c LC ll l 0.101 ,x1I10 .10 J .x2 uo.101. 
v1110,101,v2r10.101 

DIHf~SIUN Y3110ol01 

c 

c 

c 

c 

c 

c 

CALL "llLT(8Tl,P211tS1,NloN1,xll 
CALL MUI. Tl x1.zo11.s1 .N1.111. XZI 
CALL MULTIX2.CTI.s1.N1.111.u1 

CALL MULTISTl,Pllz.st.Nl .NZ.Xll 
CALL MULT1x1.z121.s1.~2.N1.x21 
CALL MULT(X2,CT11Sl ,,,.l,Hl1XlJ 
ALFA•Z. 
CALL HULT111Xl,ALFA,Sl,~l.X2J 
CALL A'O!Yl .x2.s1 .111.v21 

CALL MULTIBTloPOll,Sl,Nl,NloXll 
CALL MULTIZ21loCTl,Nl,NloHloYll 
tALL HULTIXl,Yl,SloNl,111,XZJ 
CALL ADOIYZ,x2,s1.111,Y3J 

CALL 'HULTIRl,Kll2,Sl,Sl,H2oXIJ 
CALL lilllT 1X1,c2.s1.Hl1NZ1Xll 
CALL Huu1xz.z121.s1 .~z.~1.x11 
CALL MULT lXl1CTl1Sl,Nl1H l1XZJ 
CALL MULT111X2,ALFA,Sl,~l,Xll 
CALL ADDIY3.Xl.St.111,vz1 

CALL oULTIRl,KOll,Sl .s1.111,x11 
CALL MUl TIXltCl,Sl,l'H,Nl 1X2) 
CALL MULTIX2,Yt.s1.~1.111,x11 
CALL ADDCXl1YZ1Sl,Hl1Yl) 

CALL MULTIYl,CZCl,SloMl,111,Y2J 
CAll MULTI RI NV! ,yz,s1.s1 .111.K2111 
RETURN 
ENO 
SUURIJUT lllE SOLN I B, A, C,H, N,P ,P.ES, IEI\ I 

Clflll#M•••••••Nll###tN••••••f·········································· 
c THIS SUBROUTINE FI .. DS me SOLUTION OF I PB+AP•C•O 
c ACH,t-U,lHN.NJ .co-1.NJ ,P(M,NJ . 
Cll#l#IN••••••••••••••••••1•11#1#1111•tlll#llllll#lfl~111111111•11111111 
c 

c 
c 
c 

25 
c 
c 
c 

OIHENSION AllOolOJ,ij([0,101.c110.101,P1to.101,RESllDolOI. 
• XJIIO,IOl,BT!lO,IOJ,:C!IOOJ,PPllOOJ 

OIMENS ION X 1125, 25 J, X212 5, 251,AB125, 261 ,A468 I t.251 
THE A~O~E STATEMENT CAN BE USED FOR N=5 JR LESS 
FOR N=lO OR LESS, THE FOLLOWl~G STATEMENT MUST BE USED INSTEAD 
DJM[NSION x11100.1001.xz1100, 1001,ABI 100, IOlJ.AA881 lODDOJ 
DOUALE PRECISION AABBoCC 
HM=MCIN 
0025 l•l,MH 
00 25 J=l ,MM 
X 11 J, Jl=O. 
XZIJ,JJ=O. 
CONTINUE 

KRONECKER PRODUCT Xl•A•I 

DO 10 l•l,H 
00 10 J•loM 
DO 10 K=l1N 
ll•ll-ll*N+K 
JJ•I J-1 l•N+K 1--' 

+:> 
U1 



APPENDIXES 



It• IJ-11'""1+1 
ZO XINYlloJl•YllCI 
t 
t tl!Etlt THE AttUUCY OF TME RESULT 
t 

IFI IC,.ECK,NE.LJ GO TC 30 
WRITEl6.l71 

17 FCQ~ATI////,• THE RESULT OF MATRIX !NY!llSllJN'o/lo 
• 1tx. • 1•,4x, • J'. t3x ,• x• .11x., • XIN.V', 16x,• x•x !NV' J 

CALL ~ULT(X1X[NV1NtN1N1XX) 
DO 15 l•!,N 
WR.I TE C6, ltlJ 

11 FOP•ATllHJI 
00 15 J•l, N 

15 wR!TEl6,lbl loJtXll,JltXINYlloJltXXlltJI 
16 FCR•ATl215,3E20.61 
30 RETllRN 

ENO 
HLt'C< DATA , 

t••••··································································· C T~IS SUB•ROGRAH INITIALIZE VARIABLES 

t••····································································· 

c 
c 

INTEGE~ s1.T1.s2.T2 
REAL K~lll!0,101,~022110t101 
REAL Kl!ZllO.IOJ,Kl21110.t01 
REAL Kl!l I lO,lOJ ,K222110 ,101 
J IMENSl~'j A 1110.101. A~l l :i, 101.e1110.101 .e2110.101.t1110 .101. 

• ClllJ,!Jl,DlllO.tOJ,D2110,101,Qll10,lOl,QZl10olOloR1110,101o 
• R 21 l 0 , l 0 I , V 111 0, l OJ • Y 211 0, 1 0 I , 
• Q2ll !O. !Ol ,o 12110, 101 ,A 121 !0olOI tAZll 10,101 
DIME,SIO~ EIZOI 
Dl~ENSIU'~ wEIGHTClO,lOJ 
CO••O,/AA/Nt.M!,S1.Tl,NZ.~2.s2,T2 
COH~O~/ dB/ Al. AZ. Al 2. A2 I ,'s1. 82. c 1.c2. Dl. 0z.o1. 02.0 lZo 021. 

• K1,R2.v1,vz · 
COM"J,/DJI/ KO!l,KOZ2 
CQ~U[J~/EEl/ ~112.K121 
CC•~J~/FFI/ K21!,K222 
COM"U~/GGI/ K3!2,K321 
cu~~JNl••I •EIGHT 
CCM!otON/SL/H,EPS 
CC"MO'</DIFFO/ L 1111TO,EPS0o IPRTO 
COMMU~/ijJT/ f,ESCALE,MAXITolPRINToNloNO 

DATA LI "I T0/30/-
0Afa N1.~1.s1,Tt,NZ.MZtSZ.TZl~.,.1,4,4,,,1.4/ 
DATA K011,K022,K1Zl,ltl12,K2lloK22Z/600*0o/ 
DATA E/Z0•,01/ 
DAU 91/0 .. o •• ~o0 .. 97•0. / 
DATA s210 .. o .... 37.5,97•0.1 
DATA MAXI T/20/ 
DATA ESCALE/5./ 
DATA !PRINT/I/ 
DATA Nl ,NO/'S,bl 
DATA wEIG~r/1,0•1.1 
DATA EPSQ,JPRTO/l,E-5ol/ 
DATA v11.0001.10•0 ••• ooos.10•0.,.0003,10•0 ••• 0001,10•0,,56•0.1 
DATA v21.0~02.10•0.,.00J9,10•0.,.ooos.10•0.,.oooa,10•0 •• 56•0.1 
DATA Ul/l •• 10•0.,1 •• 1o•a •• 1 •• 10•0 •• 1 •• 10•0 •• 1 •• 10•0.,45•0./ 

c 
t 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

t 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DATA 02/1.,lO•o.,1,,l0-0.,1.,10•0 •• 1.,1~0.,1.,l~0.145•0,/ 
DATA 01Zo0Z1/ZOO•O,/ 
DATA c111 •• 10-o •• 1 •• 10-o •• 1 •• 10•0 •• 1 •• 10•0 •• 1 •• 10•0.,4S•O.I 
OAT A c211 •• io•o .. 1.' 10•0 •• 1 •• 10•0 •• 1., 10• o.' 1 •• 1 ()110;.. ~5•0. / 
DATA 0111 •• 10•0 •• 1 •• 10•).,1 •• 10•0 •• 1 •• 10•0.,1 •• ss•o.1 
DATA 0211 •• 10•0.' 1 •• 10•0.' 1. 'to•o •• 1. ,10• 0 •• 1. ,55•0.1 
DATA R111 •• 1c•o •• 1 •• 10•0 •• 1.,10•0 •• 1 •• 10•0.,1 •• 1c•o.,1t5•0./ 
DA TA R.2 /l. 1 lO•O. ,1., lO•l., 1. e 10*0 •• 1., lO•O., t., 10•0., "5•0./ 
END 

SUBROUTINE H INV 

.!~VERT A MATRIX 
PURPOSE 

USAGE 
CALL HINYIA,N,Q,L,MI 

DESCRIPTION OF PARAMETERS 
A - INPUT MATRIX, DESTROYED IN tO~PUTATlON A~O REPLACED SY 

RE SUL TANT INVERSE. 
N - ORDER UF ~ATR! X A 
0 - RESULTANT DETERMINANT 
L - WORK VECTOR OF LE•jGTH N 
H - WORK VECTOR OF LENGTH N 

RE'IARKS 
HATRIX A MUST BE A GENERAL MATRIX 

SUBRIJUTINES AND FUNCTION SU.BPROGRAMS ltEOUIRED 
NJNE 

HETHOD 
THE STANDARD GAUSS-JOROAN ~ETliJO IS USED, THE OETEIUllNANT 
IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT 
THE HAUi X IS SINGULAR, 

SUBROUTINE MINVIA,N,O,L,HI 
OIHENSln~ Al!l,L.111,Hlll 
.DOUBLE PRECISION A,0,81GA,HOLD.DA8S 

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIREOo THE 
c IN :OLU~N 1 s;ouLD BE REHOYEO FROH TllE DOUBLE PRECISION 
STATEMEIH WHICH FOLLOWS. 

DOUbLE PRECISION A,D,SIGA,HOLD 

THE C HUST ALSO BE REMOVED FROM DOUBlE PRECISION STATEME~TS 
APPEARING IN OTHER RJUTl~ES USED IN CONJUl<TION WITH THIS 
ROUTl~E. 

THE DOUBLE PRECISION VEPSIOl'I OF TlflS SUBROUTINE MUST ALSO 
CONTAIN DOUBLE PRECIS IO~ FORTRAN FUNCTIO~S. ABS IN STATEMENT 
10 MUST BE CHANCEU TO DASS. 

"-' 
..j::> 
-J 



c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
t 

c 
c 
c. 

.....••........••..••..........•••.•........••.•............••• 
SEA"CH FOR LA"GEST a. EllEl'IT 

0-1.0 
NK-N 
DO 80 lt•l.N 
~K•N't+N 

LI Kl •It 
"4(K.J•K 
~K•Nl(.•I( 

blGA•Alltltl 
DO io J•K.N 
IL•r.• IJ-11 
DO 20 l•K.N 
IJ•ll•I 

10 IFIOA~SlBIGAl-DABSIAllJlll is.zo.zo 
15 BIGA•AllJI 

LIK I• I 
Ml•l•J 

20 CDr•TI NUE 

INTERCHANGE ROllS 

J•LIKI 
IFIJ-KI 35,35.zs 

25 kl•k-N 
DO 3) l•loN 
IC.l•KI•Pli 
HOLO•-AIKll 
Jl•Kl-K•J 
AIKll•AIJll 

30 AC JI I •HOLD 

l~TERCHANGE CDl.UMNS 

35 l•Ml~I 
IFll-KI 45,45,39 

38 JP•l.• 11-11 
DO 40 J•l.N 
JK::11Nl(+J 
Jl•J?•J 
HOLD•-"AIJKI 
AIJKl•AIJll 

40 AIJll •HOLD 

DIVIDE COLUMN llY MINUS PIVOT IYALUE OF PIYOT ELEMENT IS 

45 UIBIGAI <U,46,U 
46 D•O.O 

RETURN 
48 Oil 55 l•lol'I 

IFll-kl 50o55o50 
50 IK•NK•I 

AllKl•AllKl/1-BIGAI 
55 C11NT! NUE 

R"EDUCE HATR IX 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

DO 65 l•lol'I 
I K•NK•I 
HOLO•Al I Kl 
IJ•l-!'.1 
DO 65 J•loN 
IJ•IJ•N 
IFll-KI 60,65060 

60 IFIJ-KI 62,65062 
62 KJ=IJ-l•K 

AllJl•HOLD•AIKJl+ACIJI 
65 cor.T I NUE 

DIVIDE ROW BY PIYOT 

KJ=K-N 
DO 75 J•loN 
KJ•KJ+N 
IFIJ-KI 70,75,70 

70 AIKJl=AIKJl/BIGA 
75 COl.TINUE 

pqouucT OF PIVOTS 

D•0•8 IGA 

REPLACE PIVOT BY RECIPROCAL 

AIKl\J•l.O/BIGA 
10 CONTINUE 

FINAL ROW AND CDl.UMN INT ER CHANGE 

K•N 
100 K•IK-11 

IFIKI l50ol50ol05 
105 l•ll Kl 

!Fii-Ki 120ol20ol01 
108 JO•~• I K-11 

JR•N•ll-11 
00 110 J=l,N 
JK=JU•J 
HOLO•AIJKI 
.Jl•JR+J 
AIJKl•-AIJll 

110 AIJll •HOLD 
120 J=MlKI 

IF l J-KI 100o l00o 1Z5 
125 K l=K-N 

DO LIO l•l ,N 
Kl=Kl+N 
HOLD= AIK 11 
Jl=Kl-K+J 
AIKll=-AIJll 

130 AIJll •HOLD 
GO TO 100 

150 RETURN 
ENO 

SUBROUTINE DGELG 

t---1 
~ 
00 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
t 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

l'URPOSE 
TO SOLVE A GENERAL SYSTEM OF Slf'l\ILTAH£a/S LINEAR EQUATIONS. 

USAGE 
CALL DGELGCR,A,M,NoEPS,IERI 

OESCR!n!ON OF PARA.~ETERS 

R - DOUBLE PRECISION M ev N RIGHT HANO SIDE MATRIX 
tJESTROYEDl. O~ RETURN R CONTAINS THE SOLUTIONS 
OF THE EQUATIONS. 

A - DOUSLE PRECISION M BY M COEFFICIENT MATRIX 
(DEST ROYE DI. 

H - THE ~UMBER OF EQUATIONS IS THE SYSTE~. 
N - THE NU""" R JF R lGHT HAND SIDE VECTORS. 
EPS - SINGLE PRECISION INPUT CD•STANT WHICH IS USED AS 

RELATIVE TOLEkANCE FOR TEST O~ LOSS OF 
SIG,IFICANCE. 

IER - RESULTING ER~OR PARAMETER CODED AS FOLLOWS 

REMARKS 

ICR=O - NO ERROR, 
IER•-1 - NO RESULT BECAUSE CF M LESS THAN l OR 

PIVOT ELEMENT AT ANY ELIMIN•TION STEP 
EQUAL TO O, 

IER•K - WAKNING OUE TO PJSSIBLE LOSS OF S!GN!Fl­
ChNCE INDICATED AT ELIHl~ATION STEP K+l, 
WHERE PIVOT ELEMENT I.AS LESS THAN OR 
EOUAL TO THE INTERNAL TOLERANCE EPS TIMES 
ABSOLUTELY GREATEST ELEMENT OF MATRIX A. 

INPUT MATRICES R AND A ARE ASSUMED TO BE STORED CDLU•Nw!SE 
IN MO~ RESP. M*'! SUCCESSIVE STORAGE LOCATIONS. ON RETURN 
SOLUTION MATRIX R IS STORED COLUMN• I SE TOO. 
TH~ PROCEDURE GIVES RESULTS IF THE NUMBER OF E~UATIONS M IS 
GREATER THAN 0 ANl PIVOT ELEMENTS AT ALL ELIMINATION STEPS 
ARE UlFFERENT FROM O. HO•EVER WARNING IER•K - IF GIVEN -
INDICATES POSSIBLE LOSS OF SIG~IFICANCE. IN CASE OF A WELL 
SCALED MATRIX A AND APPROPRI l!E TDL ERANCE EPS, IER>K MAY BE 
INIERPRETEO THAT MATRIX A HAS THE RANK K. NJ WARNING IS 
GIVEN IN CASE ,..I. 

SUBROUTINES AND FUNCTION SUBPROGRAMS RE<JUIRED 
NO~E 

~TH~ 
SOlUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH 
CO~PLETE PIVOTING. 

••••········································•····•···········••··• 
SU8ROUTINE DGELGIR,A,H,N,EPS,IERI 

DIMENSION Alli.Rill 
D:IUBL E PRECISION R, A ,PIY, TB, TOL,PI YI 
OuUSLE PRECISION DABS 
IFIHJZJ,Z3,l 

SEARCH FOR GREATEST ELEMENT IN MATRIX A 

c 
c 
c 
c 

c 
c 

c 
c 
c 

c 
c 

c 
c 

c 
c 

c 
c 
c 
c 

IER-0 
PIV-0.DO 
"'~•M*~ 
NM•N*M 
00 3 l•l ,MM 
TB=OABSIACLll 
IF(Tq-P1v13,3,z 

Z PIV=TB 
l=L 

3 CONT IWE 
TOL=E PS•PI Y 
Al 11 IS PIVOT ELEMENT. 'IV CONTAINS THE ABSOLUTE VALUE OF ACIJ. 

STA~T ELIMINATION lOCP 
LST•l 
00 17 K•l ,M 

TEST ON SINGULARITY 
IFIPIVl23,23,4 

4 IFllERJ7,5,7 
5 !FIPIV-TOL)6,b,T 
6 I ER•K-1 
1 PlVl•l.D~/All) 

J-Cl-ll/H 

9 

10 

11 

12 

13 

I ""l-J 11 M-K 
J=J+l-K 
l•k 15 ROW-INDEX. J+K COLUMN-INOex OF PIVOT ELEMENT 

PIVOT ROW REDUCTION AND ROW INTERCHANGE IN RIGHT HAND SIDE~ 
00 8 LaK,N~,M 
ll=L+ I 
TB=PIVl•R!Lll 
RILLl•R!LI 
Rlll•TB 

IS ELIMINATION TERMINATED 
IF (K-MJ 9, !8.18 

COLUMN INTERCHANGE IN MATRIX A 
LEND•LST+M-K 
IFIJl!Z.!Z.!O 
I J •J•M 
DO !I L•LSToLEND 
TB=Alll 
Ll=L+Il 
AILl,AtLll 
AILLl=TB 

ROW INTERCHANGE AND PIVOT ROW REDUCTION IN MATRIX A 
00 13 L~LST,MH,M 

LL=L+ I 
TB•PIVI •A!Lll 
AILLl •AILI 
Alll•TB 

SAVE COLUMN INTERCHANGE INFORMATION 
AILSTl=J 

ELEMENT REDUCTION AND NEXT PIVOT SEARCH 

,__. 
-""' 
\0 



PIY.O.DO 
LST•LST+l 
J•O 
DO 16 ll•LSTeUNO 
PIVl•-Allll 
I ST•ll+H 
J•J•l 
DC 15 L•ISToHMoH 
LL=l-J 
AILl•Alll+PIV!•Allll 
TB•;JABSIA!LIJ 
IFITB-PIVl15,15ol4 

H PIV•Til 
I •L 

15 C~'-Tl~LIE 
DLI II> L•ll,NH,H 
ll•L•J 

16 RILll•RILll+PIVl•RILI 
17 lSf•lST +'I 

C EN;J OF ELIMINATION LOOP 
c 
c 
C BACK SUBSTITUTION AND BACK INfERCHANG! 

c 
c 

18 IFIH-l123,ZZol9 
19 IST•M+H 

L ST•'l+l 
00 21 1•2,H 
ll•LST-1 
I ST•I ST-LST 
L•IST-.'I 
L•AIL l+.500 
DO 21 J•ll ol'lM,H 
Td•RIJI 
ll•J 
DJ 20 K•IST,HM,H 
ll=ll+l 

ZO TB•T8-AIKl•RILLI 
K•J•L 
RIJl•lllKI 

Zl Rl<l•T8 
ZZ RETU~N 

C ERRJR RETURN 
23 IER•-1 

RETURN 
E~D 

suakOUTINE 8DTH IXeEeNeEFeESCALEolPRINTe~AXITeNoNleNOeNlfl 
c •••••....•••••.••.••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

DIMENSION XINle WINNI, EINI 

NU"dER•O 
.. ~ITE IN0,0011 

001 FURHAT llHl,lOX.3ZHPONELL-BOTH OPTIMIZATION ROUTINE I 
WlllTE INJoOOZI No MAXIT, ESCALEo (I, XIIlo l•loNlo IJo EfJlo J•le 

I NI 
002 FURHAT l//,2XolOHPARAHETERS,//oZX,4HN • ol2,4X,8HHAXIT • ol4o4Xo 

I 9HoSCALE • ,F5.2o//o2Xol5~1NTTIAL G:.IESSESof/,212Xo2HXlol2o4HI • 0 
2 lPEll>.dlo//,ZX.llHACCl.RACY REQUIREO FOR VARIABLES .11.21zx.2HEl0 
l 12,~HI • ,£1~.ll ) 

c 

c 

c 

c 

ODHAG-0.l•ESCALE 
SCER•0.05/ESCALE 
JJ•N•IN•ll 
JJJ•JJ+N· 
K•N+l 
NFCC•l 
IND•l 
l"N•l 
DO 4 l•loN 
111'1 l•ESCALE 
DO 4 J•loN 
WIKl=O, 
IF!l-Jl4o3olo 

3 WIKl•A8S IEllJI 
4 K~K+l 

IT EPC•l 
I SGRAD•2 
CALL CALCFXINo XoFI 
FKEEP•Z.•ABS IFI 

! I TGNE 31 l 
FP=F 
SUM=Oo 
I XP•JJ 
DO b l•loN 
IXP=IXP+l 

6 WllXPl•Xlll 
I DIR~=N•l 
l llNE•l 

7 OHAX•WI ILINEI 
DAtC•DMAX•StEll 
DHAG =AMI Nl lllDMAGoO. l•O'IAXI 
OMAG=AMAXllOHAG,20.•0ACCI 
DOM AX= 10. •OMAG 
GO TD 170o70o7llolTONE 

1'0 Ol•O. 
D=OHAG. 
FPREV•F 
I 5•5 
FA=FPREV 
OA•DL 

8 00•0-Dl 
Dl•D 

58 K•IOIMN 
DO 9 l•loN 
Xlll=Xlll+DO•WCKI 

9 Ksk+l . 
CALL CALCFXINoXeFI 
NfCC•NFCC • 1 
GO TO llDoll.12olJol4o961elS 

14 1Flf-FAl!5,!6o24 

16 IF CABS 101-DMAXI l7ol7o 18 
17 D=D•D 

GO TO B 
18 WRITE IN0,0191 
19 FORHAT15X,38HHAXIHUH CHANGE DOES NOT ALTEll FUNCTIONI 

GO TO 20 I-' 
V1 
0 



l5 F!l-F 
011•0 
GO TO 21 

24 FS-H 
08•DA 
FA•F 
OA•O 

ZI •o TO 183,231,ISGRAO 
23 O= :ltH·OS•OA 

IS•! 
GO TJ 8 

83 O•O.S•!JA•OB-IFA-FBl/IOA-0911 
IS•~ 
lft!JA-Ol•ID-DBllZ5.8.8 

25 IS•! 
lftAas (0-081-DD~AXIB.a.26 

Z6 J•OB+S!G~ IDD~AX.08-DAI 
IS• l 
OD~AX=OQ~AX+ODMAX 

OU~AG=OOMAG+DD~4G 

IF IJ:l><AG.GE.!.OE•601 DDHAG • lo0!!+6D 
IF!OOM~X-O~AXl8o8,27 

27 C,:l.,.AX=0"1AX 
CC TO 8 

13 IFtF-FAJZS,Zl,23 
28 FC•Fa 

OC•C3 
29 F8•F 

08=0 
GO TO 30 

12 IF!F-Fdl28e28o31 
31 FA= F 

:l.\•O 
Ga TO 30 

II lflf-FSIJ2,10o10 
32 FA=F3 

Ol.=C'S 
GO TO 29 

71 DL•l• 
DDMAX•5o 
FA•f P 
O.t111-1. 
f 9-=FttOLD 
Ob•O. 
D•l, 

10 FC•F 
DC=D 

30 A•toa-DCl•IFA-FCI 
B•IOC-OAl•IFB-FCJ 
IFllA+&l•IDA-DCll33,J3,J4 

:n FA=FS 
OA=CB 
FH•FC 
Od•UC 
GO TO 26 

34 J•0.5•1A•CD8+0Cl+S•IDA•OCll/IA+81 
D 1•08 
f l•FB 
lflf8-FCl"•44,43 

413 Dl•DC 

c 

Fl•FC 
441 GD TO l86e86o85J,ITOIE 
85 ITO>.!E•2 

GO TO 45 
86 IF I ABS I D-Dil-DACC I 4le 41,93 
93 If !ASS 10-or1-o.03•A8S IDll 4le41.45 
45 If llDA-DCl•IDC-011 47,46,46 
46 FA•Fd 

DA=Da 
f B=FC 
OB•DC 
GO TO 25 

47 IS•2 
IF ((08-Dl•IO-DCll 4&.s.a 

48 IS• 3 
GO TO 8 

41 F•F I 
O=Dl-Dl 
OD= SORT I 1oc-oa1•1oc-0A1.•IJA-OlllllA+llll 
00 49 !•1.N 
XI ll=Xt ll•ll•WllDIRNI 
WllOIRNl=DD•WllDIRNI 

49 IOl•N=IDIRN+l 
><I IL I NE I= WI ILINEl/DD 
I LI NE•lll NE+I 
lFtlP~INT-1151,50,51 

50 WRITE IN0,521 ITERC,NFCC,Fo IXI ti, l•l, lOJ 
52 FORMATl/10~ ITERAT10Nel5,fl5,l6H FUNCTlON YALUES,lOX,JHF •oE15,I/ 

+5!Elb.Bo2Xll 
NUMllER=NU~UE R +I 
IFINU.~~E~.GT.NI NU~BER•l 
WRITEt6,tOOOI NUMBER 

1000 FURMATl5X,'SUB-ITERATION llUH8ER 1 ef5o/ol0011H•J,//J 
&O TOIS1,53J,IPRINT 

51 GO TO IS5,3BJ, ITONE 
55 IF !FPREV-F-SUHJ 94,95,95 
95 SUM=fP~(V-F 

JIL•I LINE 
94 IF llD!RN-JJI 7,7,84 
84 GO TO l9Z,7ZJ,IND 
n f>iOLO=F 

I S•6 
I XP•JJ 
DO 59 l•l ,N 
I XP= I XP+I 

59 WllXPl•Xlll-WllXPI 
00•1. 
GO TO 58 

96 GO TO 1112,871,IND 
112 lf!FP-FI 37,37,91 
91 O•Z.•tFP+f-2,•FHOLOl/IFP-Fl••2 

IF tO•tFP-FHOLD-SU~l••2-su~1 97,37,37 
87 J.cJIL•N+l 

IF IJ-JJI 60,60,61 
60 DO b:? l=J .·JJ 

K.=J-~ 

62 WIKl•W( II 
00 'l7 l•JIL,N 

97 WI 1-1 l•WI II 
I-' 
u-r 
I-' 



61 IDlllN•IDIRN-11 
ITONE•3 . 
K•IDiRN 
I XP•JJ 
A4A•O. 
DO 67 l•loN 
I XP•I XP• I 
wC<l••llXPI 
IF !AAA-ABS IWIKl/Ellllt 66067067 

66 AAA•A~S lwlKl/Ellll 
67 K•K.•l 

DD'4AU•l. 
~!Nl=ESCHE/AU 
lll~E=N 

GO Trl 7 
37 I XP•JJ 

AAA=O • 
F•F~OlD 

DO 99 l•loN 
IXP•IXP•l 
Xlll•Xlll-WllXPI 
IFIAAA*ABS lEllll-ABS IMllX,111 98o99o99 

99 AA .. AoS IWllXPl/Ellll . 

c 

c 

c 

c 

99 Cll'<TlNUE 
GO f'l 72 

38 AAA=AAA•lla+Dll 
GJ TJ l 7Z,106J ,1Pf0 

72 IFllP~lNT-2153050,50 
53 GO TO 11090881,IND 

109 IF l UA - 0.11 ZG,Z0, 76 

76 
78 
80 

IFIF-FPl35,78,78 
•RITE 1,.a,ao1 
FCPMATl5X,31HACCURACY 
GO TO 20 

88 I NO•l 

LIMITED av EllRDRS IN Fl 

35 DOMA~•0.4•S~RTIA8SIFP-Fll 
IF IOOMAG,GE.1.0E+601 DDMAG • loDE+60 
I SGRAO•l 

108 ITEP.C•ITERC+l 
1r11TERC-MAXITJ5,5,8l 

81 W~ITE INJ,821 MAXIT 
IZ FCR~ATll5,29H ITERATIONS COMPLETED BY BOTMI 

IFIF-FKEEPl20,20oll0 
110 F•FKEEP 

DD Ill l•l ,N 
JJJ•JJJ+ I 

111 Xlll•WIJJJI 
GO TO 20 

106 IFIAAA-0.11 2Do20ol07 
c 

20 EF•F 
RETURN 

c 
107 INN• I 

GO TO 35 
c 

END 
IENDLI ST 
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