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CHAPTER I
INTRODUCTION
1.1 Statement of the Problem

Nowadays most electric power generating units are tied
together to form a large interconnected power system. The
primary motivation for interconnection is to obtain the
economic benefits of new large-scale generation and transmis-
sion facilities. Advantage is taken to transfer power gener-
ation over interconnecting tie-lines from an area of low
demand to one of high demand. It also enables utilities to
share spinning reserves during emergencies so that spinning
reserve fequirement in each area is reduced. Thus, overall
operating economiés and high reliability are achieved.

Interconnections, however, increase the degree of com-
plexity of power system operating problems. These problems
arise as a consequence of the complexity of the network to-
pology and of dynamic behavior of the system when subject to
disturbances occurring not only internally but also elsewhere
in other systems in the interconnections. In order to cope
with this problem, control of power system dynamics has become

the focus of considerable interest.



Power system control can be divided into two separate
problems, namely synchronous machine control and load frequen-
cy cont}ol. Both of them can be viewed as dynamic control
systems in which control is required to damp out system
oscillations or swings. Feedback signals of some or all
variables are usually used ae input to the system controller.
The difference between them is that synchronous machine con-
trol deals with interactions between one or a few generating
units with the rest of the system considered as an infinite
bus while load frequency control deals with all of the gener-
ating units within the system with equal attention. Since
there is a large number of generating units within a system,
and the main variables of interest are load demand and energy
supply, it is general practice to eliminate electrical dy-
namics from load frequency control system.

The applications of modern control theory to stabilize
power system dynamics for both synchronous machine control
and load frequency control problems were proposed in 1970.
The technique yielded good damping results. However, if all
state variables are not available to be fed back and if the
dimension of the system is increased, the computer time and
memory for optimal gain calculation will be increased signi-
ficantly. It is correspondingly important to investigate a
new approach to the solution of optimal control of the sys-
tems such that it can be applied to large interconnected

power systems.



1.2 Literature Review

In this section a review of works in both synchronous
machine control and load frequency control are presented. The
development of load frequency control is described in the
first part. The development of syﬁchronous machine control is
described in the second part. Since the conventional control
techniques for the load frequency problem is well established
and has been used widely for many years, only a general discus-
sion of the technique is presented. More reviews are given to

those studies dealing with modern control theory.

1.2.1 Load Frequency .Control of

Power Systems

The conventional approach to load frequency control of
power systems is called tie-line bias control. The comprehen-
sive pfesentation of the control design can be found in Refer-
ence [12]. 1In this approach the problem is considered as a
static one. The design of system control involves steady
state quantities. There are three steps to deal with load
frequency control. First, total system generation must be
matched to total system load. This can be done by speed
governor control of the system. The criterion for determining
when total demand has been satisfied is an unchanging system
frequency. Second, total system generation among the areas is
allocated so that each follows its own load chnages and does
its share of frequency regulation. This objective is accom-

plished by net interchange tie-line bias control such that



area net interchange is on schedule, i.e., area control error
is reduced to zero. Third, each unit should operate at the
same incremental cost in order to minimize combined system
cost. This is the function of economic dispatch control.
Studies of tie-line bias control during dynamic period were
carried out by Concordia and Kirchmayer [13] [14].

The control design using optimal control theory was pro-
posed by Elgerd and Fosha [23] [27]. They made use of liﬁear
models of the turbine, speed regulator, and power system.

Then they derived the optimal feedback gain that minimized the
standard integral quadratic objective function via Riccati's
equation. The simulation results of system behavior following
a disturbance were given. Cavin et al. [11] applied stochas-
tic control theory to the load-frequency control problem. The
Kalman filter was used for estimation and the separation
theory was used to derive the control law. Miniesy and Bohn
[45] considered the demand to be an unknown. Two methods were
suggested for demand identification. The first method made
use of differential approximation. The second method made use
of Luenberger observer. Bohn and Miniesy [7] applied sampled-
data control to the problem considered earlier [45]. In that
paper an adaptive observer was introduced and its effective-
ness was illustrated. Glover and Schweppe [30] proposed a
discrete time, linear-plus-deadband, feedback control law. A
simulation of system response to a step load change was pre-
sented. Calovic [9] considered the coﬁtrol based on a combin-

ation of conventional and optimal control design. Results of



a digital simulation of the optimal system showed significant
improvement of system transients while maintaining the desired
steady-state characteristics. His proportional-plus-integral
control law extended to multi-area interconnections was pre-
sented in Reference [10]. Recently, Kwatny et al. [41] formu-
lated the load frequency control as a tracking problem instead
of a regulation one. In their paper the prime mover energy
source was recognized as a part of the system dynamic model.
The control system included estimation and prediction of loads

which were used to regulate power flow and frequencies.

1.2.2 Synchronous Machine Control SYstem

In the early studies of stabilization of synchronous
vmachine dynamics most researchers focused their attention on
the so-called excitation control. Ellis et al. [24] made a
stability study of the Peace River transmission system and
proposed that the stability could be improved by using speed
error as an input to the excitation system. Shier and Blythe
[55] confirmed that idea by computer simulation and field
tests. They demonstrated that a practical stabilizer can be
devised using simple electrical devices. Hanson et al. [33]
studied the oscillation control by reducing gains on automatic
voltage regulators. They carried out a series of tests and
found that the system obtained was properly damped. deMello
and Concordia [19] reported analytical results concerning
excitation control of power system dynamic stability. The

gain parameters of the voltage regulator that stabilized the



syétem was derived. The transfer function for speed-derived
signals was also studied. Byerly et al. [8] studied the use
of electrical power as an auxiliary signal input to the exci-
tation system. The paper included the effects of rotor-iron
saturation on generator damping. Schleif et al. [54] showed
that damping was improVed by supplementing excitation control
with a derived function of frequency deviation. Results of
the studies were verified in actual field tests.

The application of the modern control theory to power
systems was proposed by Yu et al. [58]. They applied the
optimal control to‘minimize an integral quadratic performance
index of a power system. All the state variables were assumed
' to be measurable. The constant feedback gain was obtained by
solving the Riccati's equation. Anderson [1] reported a simi;-
lar approach to a slightly differeht model. In his paper
simplified Park's synchronous machine variables [49] were
used. The comparison of the optimal control technique to that
of the excitation control was carried out by Yu and Siggefs
[59]. They found that a well-designed system obtained from an
excitation control technique yielded the results which were
as good as those obtained from optimal control technique.
However, the design procedure of the excitation control tech-
nique had to be done in trial-and-error fashion. Davison and
Rao [18] considered the problem where not all state variables
were available for measurement. They solved this problem by
using a gradient method of parameter opfimization. Elangovan

and Kuppurajulu [21] considered another approach to the



limited state variable feedback problem. They reduced the
dimension of the original state vector to the one that had
only measurable variables. The technique which retained domi-
nant eigenvalues was applied to the probiem. Yu and Moussa
[60] made a study of multimachine control system. A reduced-
order model was used. They found that a controller obtained
from the multimachine system design was better than the one
that was obtained from a one-machine infinite-bus system de-
sign. Moussa ahd Yu [46] developed a method to determine the
weighting matrix Q such that the dominant eigenvalues were
shifted to the left in the complex plane as far as the prac-
tical controllers permitted. They applied the eignévalue sen-
sitivity analysis technique to the problem. By this method
the weighting matrix Q can be determined analytically.
Habibullah and Yu [31] presented a method to determine both
weighting matrices Q and R. Their controls were found to be
able to stabilize the system under a wide range of operations.
Elmetwally et al. [25] presented a method of optimal control
in which the system controllable parameters were selected so
as to correspond to the region of near zero sensitivity.
Elmetwally et al. [26] and Newton and Hogg [47] reported the
implementation of the optimal controller to real micro-
machines. Experimental results showed that the controller
worked well under small disturbances. Daniels et al. [17]
developed a technique to determine a control which is a linear
combination of some selected state variables. They used an

unconstrained optimization routine to minimize the performance



index with respect to the nonlinear system of differential
equations. The synthesized controller was implemented on a
micro-machine and the experimental results demonstrated the
advantages of the technique. Raina et al. [52] presented a
method of optimal control of power systems. Modification to
the usual proportional controller was suggested and a good
damping response was found under a wide range of operating
conditions. Quintana et al. [51] studied an optimal output
feedback control design with a compensator. A number of com-
binations of measurable output variables were used as input

to the controller.
1.3 Research Objective

The objective of this research is to develop a subopti-
mal control technique for interconnected power systems. In
the first parf, a fixed configuration control whose éontrol—
lers are a linear transformation of some certain state vari-
ables will be formulated. Attempts will be made to subdivide
the interconnected system into subsystems. Necessary condi-
tions for optimality as functions of these subsystems will
then be derived. Since the dimensions of the subsystem
matrices are less than those of the original interconnected
system, it is expected that calculations of optimal gain in
subsystem equations will require less computer time and
memory than using the original equations. In the second part,
applications of the results obtained from the first part to

‘interconnected power systems will be studied. Linear system



models for both multi-area load frequency control systems and
interconnected synchronous machine control systems will be
formulated. The optimal control and the suboptimal control

gains will be calculated and compared.



CHAPTER II

OPTIMAL LIMITED STATE VARIABLE FEEDBACK
CONTROL OF LINEAR STOCHASTIC SYSTEMS

2.1 Introduction

Over the past years considerable contributions were made
in the area of optimal limited state variable feedback con-
trol systems. Different models were used by different
researchers. Levine and Athans [42] reported necessary condi-
tions for a deterministic linear time-invariant control system.
The initial condition for the state vector was assumed to be
a set of random variables which were uniformly distributed on
the surface of the n-dimensional unit sphere. Sims and Melsa
[56] worked on a linear stochastic system. A filter which
was a linear combination of state variables and control vari-
ables was used. The dimension of the filter was prespecified.
The control was assumed to be a linear transformation of the
filter. They found that performance does not depend on the
filter dynamics. McLane [43] considered a system in which
the plant noise was dependent on both state and control vari-
ables. In his study the measurement noise was not presented.
Recently, Mendel [44] provided necessary conditions for a
linear time-invariant stochastic system. In that paper an

infinite final time for the performance index was considered.

10
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Assumptions were made so that the compensation plant matrix
could be optimized.

In this study the interconnected power system will be
represented by a linear time—invariﬁnt model with or without
plant noise. Since the results for the deterministic case
was given in Reference [42], in this chapter necessary condi-
tions for limited state variable feedback control of a linear
time-invariant stochastic system with perfect measurement
will be derived. It will be seen that even though the
assumptions and the approach used in this derivation are
different from those of Reference [42] the results are very
similar. Thus, with a minor change the approach given in
this chapter is applicable to both the deterministic case and

the stochastic case with perfect measurement.
2.2 Optimization Problem Formulation

Consider a first-order system of linear equations.

df;f) = Ax(t) + Bu(t) + Dw(t) (2.1)
y(t) = Cx(t) (2.2)

where x(t) is a state vector of dimension n; u(t) is a con-
trol vector of dimension s; y(t) is an output vector of

dimension m; and w(t) is a noise vector of dimension 2. A,
B, C, and D are constant matrices of compatible dimensions.
The noise vector is assumed to be white with zero mean and

its covariance is:

E{w(t)wl(t)} = Vé(t-1) | (2.3)
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where V is a positive definite noise intensity matrix. Mean

and covariance of the initial states are:

X : (2.4a)

E{x(to)} o

E{x(to)xT(to)} Q (2.4b)

(o)

The performance index to be minimized is:
te

J,= B, {xT(t) Qx(t) + u'(t) Ru(t)}dt (2.5)
(o)

where Q is a positive semi-definite matrix and R is a posi-
tive definite matrix. Let the control, u(t), be constrained

to be a linear transformation of the output vector, i.e.,
u(t) = Ky(t) (2.6)

where K is the constant matrix to be determined. From Equa-

tions (2.1), (2.2), (2.5), and (2.6) we have

dx(t) - (A + BKC) x(t) + Dw(t) (2.7)
t

J,= B [T x'(t) [+ c'kTRC] x(t)dt  (2.8)
t
0

From Theorem 1.54 of Reference [39], the Equations (2.7) and
(2.8) may be rewritten as:

te

J, = tr{P(t)Q, * ft DVDIP(t)dt } (2.9)

(o)

where P(t) satisfies

4P - a + BkC)T P(t) + P(t) (A + BKC)

+ Q + CTKTRKC (2.10)
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P(tf) = 0

If (A + BKC) is asymptotically stable, P(t) has a steady
state value as t approaches infinity. Let P be the steady
state value of P(t). Equation (2.10) becomes

T,T

0 = (A + BKC)'P + P(A + BKC) + Q + C'K'RKC (2.11)

If te approaches infinity, Equation (2.9) becomes

= 13 = 13 - T
J1 -.glm Jo = 1im {tr[P(to)QO + (tf tO)DVD P]}
£ tere |

(2.12)

In order to avoid an infinite number in Equation (2.12), let

us define a new performance index:

J
J = 1lim 1
t +wtf-to
f
- T .
J = tr(DVD"P). (2.13)

2.3 Statement of the Problem

Given the plant matrices A, B, C, D, white noise inten-

sity V, weighting matrices Q, R, and the performance index,
J = tr(DVDP) (2.14)

where P is the solution of the equation,

T,T

(A + BKC)'P + P(A + BKC) + Q + C'KIRCK = 0 (2.15)

Find the real constant matrix K which minimizes J assuming
that K makes (A + BKC) a stable matrix, i.e., all of its

eigenvalues have negative real parts.
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2.4 Necessary Conditions for Optimality
The main result is summarized in the following theorem.

Theorem 2.1: Let K be a real matrix. Assuming that (A + BKC)

is stable, then, in order for K to be optimal for the problem

defined in section 2.3, it is necessary that

= -r°18TpzcT(czcTy L (2.16a)
where Z satisfies the equation
T T .
DVD" + (A + BKC)Z + Z(A + BKC)" =0 (2.16b)

and P satisfies the equation

(A + BKC) P + P(A + BKC) + Q + CLKIRKC = 0 (2.16¢)

Proof:
The necessary conditions for optimality are derived by
applying the gradient matrix concept [2] [3] to an augmented

function L.

Define:

L = tr[DVD'P] + tr{[(A + BKC) P + P(A + BKC)

T, T

+qQ + cxTrkcyzT 3 (2.17)

where Z is an nxn multiplier matrix.

The conditions for extremum are

(2.18a)

o)i'q)
i
I
o

@
e
]
(=)

(2.18b)

%)
dJ
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3L _
=7 0 (2.18C)

By some matrix manipulation of Equation (2.18) and using the

results of Reference [2], Equation (2.16) is obtained.

2.5 Properties of Matrices at

the Extremum Condition

It should be noted that Equation (2.16b) and (2.16c)
have the same form as the Lyapunov matrix equation. Proper-
ties of this equation are given in the following theorems.
The proof of these theorems can be found in References [5]

and [28].

Theorem 2.2: Given the Lyapunov matrix equation

AX + XB + C =0 (2.19)

where A, B, and C are mxm, nxn, and mxn matrices, respec-
tively. Let Asos i=1,2,..., m, and “j’ j=L2,...,n

denote the eigenvalues of A and B, respectively. Then Equa-
tion (2.19) has a unique mxn matrix solution X if and only

if for all i,j

)\i+uj7£0.

Theorem 2.3: Given the Lyapunov matrix Equation (2.19). If

all the eigenvalues of A and B have negative real parts, then

Equation (2.19) has a unique solution given by:

e eAt

X = [T eMtc ePtat. (2.20)



16

Theorem 2.4. Given the Lyapunov matrix Equation (2.19). 1If

C is nonnegative definite, all eigenvalues of A and B have

negative real parts, and

A = B!

then X is a constant symmetric nonnegative definite matrix.

From the above theorems, properties of matriceslsatis-
fying Equation (2.16) are as follow:

(1) It can be proven by means of Theorem 2.3 that Equa-
tion (2.16) has a unique solution, K, P, and Z, that yields
a stable system. Furthermore, it follows from Theorem 2.4
that P and Z are nonnegative definite.

(2) The reverse of (1), however, is not true. It has
been found that there exists a K which satisfies Equation
(2.16) but does not stabilize the system. The corresponding
P and Z are not nonnegative definite. This has been a cause
of trouble in determining optimum feedback gain-of the sys-
tem.

(3) If C is an identity matrix, the necessary condi-
tions, Equation (2.16), are the same as those of the state
feedback control problem.

(4) For the deterministic case the necessary conditions,
to solve for K, are obtained by substituting for DVDT in
Equation (2.16b), an identity matrix. The result is the
same as the one given in Reference [42]. It should be noted
that this does not imply that either D or V is an identity

matrix.
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(5) I£f D or V is a null matrix, we get a singular prob-
lem. It can be verified by writing the closed-form solution

of Equation (2.16b) as

o«

z = [ {exp (A + BKC) "t} {DVD!} f{exp(A + BKC)t}dt

if DVDL = 0, then Z = 0.

(6) The solution of Equation (2.16) is, clearly, depend-
ent on the noise intensity V. However, even though V has a
significant effect on Z, it has been found that V has a

smaller effect on K.



CHAPTER III

SUBOPTIMAL CONTROL OF INTER-
CONNECTED SYSTEMS

3.1 Introduction

One problem that is encountered very often in practical
controller design of interconnected systems is long computer
time and large memory requirements. It arises as a conse-
quence of the large dimensions of the systems. Because an
unlimited computer capability is not usually available, the
design is generally carried out by using a simplified model.
Two methods of model simplification which are’usually found
are decoupling and deleting Qf state variables. The decou-
pled system model is utilized if certain portions of the sys-
tem are weakly coupled such that it may be possible to break
the system into several mutually exclusive low-order subsys-
tems. This model is usually used in systems consisting of
many subsystems or components and the effects of interaction
between them are negligible. Deletion of state variables
can be applied to those variables which have small contribu-
tion to system dynamics. But in some case$ where computer
burden indicates that it is necessary to simplify the model,
state variables which are not considered negligible are also

eliminated. Here the designer must depend on the physical

18
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understanding of the system in selecting which state vari-
able to delete. It must be done very carefully and always
with some risk. These two methods of model simplification
can reduce the computation to a large extent. However, the
quality of system performance is sometimes unsatisfactory
and instability méy result if the model is simplified im-
properly.

In this chapter another technique for limited state
variable feedback controller design is presented. It is
achieved by dividing the interconnected system into several
‘'subsystems. The feedback gain matrix is derived by Taylor
series expansion of matrices K, P, and Z (see Chapter II)
with reépect to a coupling parameter. This technique does
not require model simplification so that generally a better
performance should be obtained. It also makes use of the
low-order subsystem to offer less computation. Thus it is
expected that the technique is suitable for large scale sys-
tem controller design without requiring large computer capa-
bility.

The method of Taylor series expansion in linear systems
was applied earlier by Kokotovic et al. [37] [38] [53] to find
an approximate solution to Riccati's equation. In this chap-
ter the method is applied to necessary conditions derived in
Chapter II. The results are applicable to both complete and
limited state variable feedback control systems with and

without plant stochastic noise.
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3.2 Interconnected System

Suppose that the system considered in Chapter II con-

sists of subsystems. Each subsystem is described by

dxi(t) ' q
+ Diwi(t); i=1, 2, .5 q (3.1)
y; (t) = C.x,(t); i=1, 2, -5 q (3.2)

where xi(t), yi(t), ui(t), wi(t) are the state, output, con-

th

trol, and noise vectors of the i subsystem, respectively.

wi(t) is a white noise process with zero mean and

E{w, (t) w§(r)},= Vis(t-t); i=1,2,...,q (3.3)

where Vi is a positive definite noise.intensity matrix.
Interactions between subsystems are represented by a para-
meter € which has a value between 0 and 1. If € = 0, the
interactions are neglected and the interconnected subsystems
are decoupled. If ¢ = 1, Equations (3.1) through (3.3)
represent the original interconnected system.

In Chapter II the control is assumed to be a linear com-

bination of the output:

u(t) = Ky(t)

The problem is to determine the matrix K that minimizes the
performance index given in Equation (2.5). With some mani-
pulation and approximations, necessary conditions for optimum

K are given in Equation (2.16).
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In this chapter K, P, and Z are approximated by a finite

term Taylor series expansion about ¢ = 0, i.e.,

r-1 j
K(e) = _20 38-.,_ xJ (0) (3.4a)
J=
r-1 j .
P(e) = 'zo -§—, PJ (0) (3.4b)
J:
_r-1 ej 3
Z(e) = ;20 5T 27(0) (3.4¢)
J=

where the superscript j on K, P, and Z represent jth partial
derivatives of K, P, and Z with respect to e, respectively,
and r is the number of terms in the series. We shall derive
necessary conditions for the terms in the series of Equation
(3.4).

In order to simplify the problem, we shall work with a

system consisting of two coupled subsystem so that

Ay Ag
A =

Ay Ay

Ay ehyy
LeA21 A2
where
A A
A, = =, Ay = —



where

B, 0
0 B,
c, o0
0 ¢,
D, 0]
0 D,
R, O
0 R,
v, 0
0 v,
Q; Q3
Q Q;
N i
Qy eQq;
eQy1 Q

22
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Qs Q

Qo =% Q= ¢

It should be noted that the approach used in this study
can be extended to a system consisting of an arbitrary num-
ber of coupled subsystems. ‘Howevér, one may be faced with a

very long expression.

3.2.1 Special-Type Matrices

Since we are going to deal with matrices consisting of
four submatrices, some of which have two null submatrices
on either the diagonal or the off-diagonal, it is useful to
define symbols for some types of those matrices and subma-
trices.

Let M be any matrix consisting of four submatrices, we

shall write
M = : (3.5a)

Let us define two types of matrices:
1. A matrix whose off-diagonal submatrices are null

matrices is called an a-type matrix and is written as
(3.5b)

2. A matrix whose diagonal submatrices are null

matrices is called a B-type matrix and is written as
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From the above definitions it can be verified that:

(1) M =M +M, (3.6a)

(ii) If L

M N (3.6b)

o o

then L is of a-type, where

Ly = MjNy (3.6c)

L, = MyN, (3.6d)

(iii) If L = MaNs (3.6¢€)
then L is of B-type, where

Li, = MjN;, (3.61)

Ly; = MyNyy (3.6g)

(iv) If L = MBNG (3.6h)
then L is of B-type, where

Ly, = M{,N, (3.61)

La1 = MMy (3.63)

(v) If L = MBNB (3.6k)
then L is of a-type, where

Ly = M,Nyy (3.61)

LZ = M21N12 (3.6m)

We can apply these equations to find submatrix equations
from a given matrix equation. For example, let
L = MaNBS

BTa
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By means of Equation (3.6) we get

L is of o-type

M.N,,S,.T

Ly = MN3»81T

M,N,.S,,T

Ly = MyNy1812T)

With the definitions in Equation (3.5), A and Q can be
written as |

A=A + €A (3.7a)

+ €Q (3.7b)

It also can be seen that the matrices B, C, D, and R are of

a-type.

3.3 Necessary Conditions for Optimality

in Subsystem Forms

When a system is described by Equations (3.1) through
(3.3), the matrices K, P, and Z can be written as Equation
(3.4). Necessary conditions for matrices in the series of
K, P, and Z are presented in the following theorem. They

are written in a general form.

Theorem 3.1: 1If the matrices K, P, and Z of Equation

(2.16) can be presented by the Taylor series, the following

th

equations are necessary conditions for the i derivative

of jth submatrices of the matrices in the series:

K; = F(p}, z;) ‘ (3.8a)
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0~ Tpi, pi on " -

(Am + BmeCm) Pj + Pj (An + BnKnCn) + G1 0 (3.8b)
o] i i o] T _

(Am + BmeCm)Zj + _Zj (An + BnKnCn) + G2 = 0 (3.8c)

1]

o
-

Pt
-

[\
-

w
-

where i

If 1 is even,

(=}
1}
—
-
[SS]

If i is odd,

j = 12, 21
m =1
n = 2.

F, Gl’ and G2 are matrix functions of other submatrices.

Since submatrices of K, P, and Z of lower derivative than i
have already been determined in an earlier step, these sub-
matrices can be considered as constants. By this assumption
G1 and G2 become constant matrices and F becomes a matrix
function of P; and Z;.

The proof of this theorem is presented in the next
section. Necessary conditions for the first few terms of
the series of K, P, and Z are derived. It can be seen that

Equation (3.8) is the generalized form of those equations.
3.4 Derivation of the Results

In the derivation of Theorem 3.1 a certain set of matrix
equations is involved. The solution of this set of equations

is given in the following lemma.
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Lemma 3.1: Given

W = C XC, + C,YC, | (3.9a)
T, T.T T _

DyWD, + D,W D] + DX + XD3 = 0 (3.9b)
T, T_T T _

E{WE, + EJW E] + E.Y + YE3 = 0 (3.9¢)

where W, X, and Y are sxm, nxn, and nxn unknown matrices,
respectively; and Ci’ i=1,..., 4;Dj and Ej’ j=1,...,
3 are constant known matrices of compatible dimension. 0 1is
an nxn null matrix.

If unique solutions of Equation (3.9) exist, they are

W =0 (3.10a)
X = 0 | (3.10b)
Y = 0 (3.10c¢)

This result is obtained when one recognizes that Equation
(3.9) can be transformed to a set of homogeneous system of
equations.

The set of necessary conditions, Equation (2.16), can

be rewritten by using Equation (3.7) as

1.T 1

K = -R 'BTpzcT (czeTy~ (3.11a)
T T
DVD' + (A, + A, + BKC)Z + Z(A, + eA, + BKC)| = 0
(3.11b)
T .
(Aa + eAB + BKC) P-+P(Aa + sAB + BKC)

$Q, * eQ, * cTkTrRkC = o (3.11c)
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Derivations of matrices in the series are presented as
follow:
(i) If ¢ = 0, the two subsystems are completely de-
coupled. 1In this case Equation (3.11) may be expressed in

submatrix form as follows:

1gT

1

poz%cl (c,2%cn ™t i =1, 2 (3.12a)

K. = -R.
1 1 1 1 1 1

D.V.DY + (A. +B.xK%¢.)z% + z9(A. +B.k%C.)T
1 1 1 1 1 1 1° 1 1" 1 1 1 1
=0;i=1, 2 (3.12b)

o T.o 0 o)
(Ai-+BiKiCi) Pi + Pi(Ai-FBiKiCi)

T,0T 0 = ne 3 =
+ Qi + CiKi RiKiCi = 0; 1 1, 2 (3.12c)
Since KO, PO, 7° are a-type matrices consisting of Kg, P?,
Z?; i=1, 2, as their diagonal submatrices, the first terms

of these unknowns are obtained.

(ii) Taking the derivative of Equation (3.11) with
respect to ¢ and letting ¢ = 0, the following set of equa-

tions is obtained.

T,1,0,T T,0,1,T 1

glplzocT + gTpoz1cT 4+ rylezOcT

+ Re%czict = o

(3.13a)
a, + Bk°Cyzt + ztea, + BT + (A, + BKTC)ZO
¢ 2%, + Bk1c)T = o (3.13b)
(A, + Bk°C) TPt + pl(a  + BKOC) + (A + Bktc)Tp°
+ PO, + BKlC) + Q, * cTk1Trkc

+ cTx°Trilc = o (3.13¢)
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Let,
pl = pl 4 Pé, (3.14a)
2t =zl s zé (3.14b)
k' =k + Ké (3.14c)

Substitute Equation (3.14) into Eqatuion (3.13). Since
a-type and B-type matrices are independent, two sets of

equations are obtained. The first set is:

8Tp 29T + BTpoz1cT + rkiczOcT + rkCczicT = o
o o o o
(3.15a)
o JN | 1 0T 1 0
(A, + BK°O)zl + zlea, + Bx°0)T + (BKklC)z
+ 2°3Ki0)T = 0  (3.15b)

A+ BK°O) TPl + plea + BKOC) + (BKIC)TRO
[0 o a o [0

+ po3kic) + cTkITRkC + cTkOTRrKlc = o
(3.15¢)
"The second set of equations is:
BTPéZOCT . BTpozécT + RKéCZOCT . RKOCZéCT =0
(3.i6a)

o) 1 1 0~~T 1 o
(Aa + BK C)ZB + ZB(Aa + BK'C)" + (AB +.BKBC)Z

+ 20, + BK%C)T =0 (3.16b)
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0~T-1 1 o} 1..T.0
(Aa + BK'C) PB + PB(Aa + BKC) + (AS + BKBC) P

o) 1 T,1T,, 0
+ P (AB + BKBC) + QB + C K8 RK™C

+ CTKOTRKéC = 0 (3.16¢)

Equation (3.15) has the same form as Equation (3.9).

Thus from Lemma 3.1:
K- =0, P =0, Z =0 (3.17)

Equation (3.16) may be written in submatrix form as

1 T,1 ,0.T

_ 1. 0. .1 T . -To0,1 .T
Kip = -Ry7(R{KjCy27,C) + ByP177,C) + ByPy,79C5)
o.T,-1
(CZZZCZ) (3.183.)
o 1 1 o} T
(Ay +ByKjCy) 27, * 27, (A, + ByKHC))
1 0 o] 1 T _
* (App +ByKy,C)25 + Z7(Ay +ByKH1Cy) " = 0
(3.18b)
o) T,1 1 o
(A +ByKjCp) Py + Prp(A, + ByKoCy)
+ (A, +B.K,.C.) PO + PO(A.. +B. KL C.)
21 ¥ ByKy1C1) Py 1 (A1 * BiKyoCy
T 1T 0 T, 0T 1 _
* Qpy * C Ky RKCH + CIKPTR Ky HCy = 0
(3.18c)
K1 P1 and Z1 can be obtained by solving Equation
122 127 12 b4 g tq [
(3.18) simultaneously. The set of equations that is used to

solve for K%l, P%l, and Z%l is the same as Equation (3.18)
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except all of the subscripts must be changed from 1 to 2,

from 2 to 1, from 12 to 21, and from 21 to 12.

(iii) Taking the derivative of Equation (3.11) with
respect to ¢ and letting ¢ = 0, the following set of equa-

tions is obtained:

BIp2z9cT + 28TplzicT + BTPOz2¢T & rkZczocT

1.,1.T

+ 2rktczlc 2T

+ RK°czc' = 0 (3.19a)
(A, + BK°C)z% + z2%(a, + BKOO)T . (3x%0)2°

+ ZO(BKZC)T + 2(A, + BKlO) 2!

+ 22t ag + BKIC)T = 0 (3.19b)
(A, + BK°C)TP? + P2(a, + BK°C) + (BK%C)TP®

+ PO(BKEC) + 2(Aq + BKICO)TPY + 2T (A, + BKMC)

T,2T

+ cTx2Tpk%c + T

oT_ .2 T,1T,,1

K" "RK"C + 2C'K"'RK'C =0

(3.19¢)

Equation (3.19) may be rewritten in submatrix form by using

the same procedure as before. Separating Pz, Zz, and K2

into o-type and B-type matrices, we get two sets of equa-
2,2 2

tions. The_first set is used to solve for Pa, Za, and Ka.
The second set is used to solve for Pé, Zé, and Kg. Apply-

ing Lemma 3.1 to the second set of equations we have

p. =0, Z, =20, X, = 0. (3.20)

The submatrix form of the first set of equations is
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2 _ 5-1.,T752,0.T To1 1 AT T50,2.T
Ky = -Ry7(ByPyZ,Cy + 2ByP1,254C° + ByP1Z Cy
1 1 T o) 2.T 0.Ty-1
* 2RyK7,C5259Cy + RyK;C129C1) (C4Z9Ch)
(3.21a)
o} 2 2 0 T 2 0
(g +ByKSC )23 + 22y + ByxkYep T+ (3K ey) S

o) 2 T 1 1
+ 2y (BKJCy) "+ 2(Ag, + BiKy,Cy) T,

+ 221, (A, + BLKT,CHT = 0 (3.21b)
(Ap + BX0C)TP] + PT(Ay + ByKJCy) + (ByK{C)) RS
* Pg(BlKiclj + 2(Ayq *+ B,Kp1Cp) Py
¥ Pél(A21'*BzK%1C1) + C1K{TRyKPC)
+ CIkSTR KIC, + 2CTK R K5 Cq = O (3.21¢)
K2 P2 and Z2 can be obtained by solving BQuation (3.21)

1’ 71 1
simultaneously. The set of equations that is used to solve

g, P%, and Zg is the same as Equation (3.21) except all

for K
of the subscripts must be changed from 1 to 2, from 2 to 1,

from 12 to 21, and from 21 to 12.

3.4.1 Summary of the Procedure

The procedure to derive necessary conditions for the
terms in the series of K, P, and Z can be summarized as
follows:

(a) For KO, PO, and z° necessary conditions are ob-
tained by decoupling of the system. Then Equation (2.16)

is applied directly to each decoupled subsystems.
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(b) For Kl, Pl, and Zl, where i =1, 2, ..., the de-

rivation proceeds as follows:

(i) Take the ith

derivative of Equation (3.11)
with respect to ¢ and let ¢ = 0.

(ii) Separate the equations obtained into two
sets of equations. The first set is an a-type matrix
equation. The second set is a B-type matfix equation.

(iii) Apply Lemma 3.1 to the equations. If i is

odd, the a-type matrix equation yields

If i is even, the B-type matrix equation yields

K: = 0, P; =0, z! =o0.

(iv) Write necessary conditions for nonzero ele-
ments of K, P, and Z in submatrix form by using Equation
(3.6).

i

Theorem 3.2: Let Kl, P,
a a

th

and Z;, i=1, 2,..., be

the i terms in the series of the optimal matrices satisfy-

ing Equation (3.8) when ¢ = €g4° Let K, P;, and Z;, i-=

b’

1, 2, ..., be the ith terms in the series of the optimal
matrices satisfying Equation (3.8) when ¢ = €y Then,
E;K; f e%K%
elpl = clpl
elzl - lid
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for all i =1, 2, ..., provided QB of Equation (3.7b) is a

null matrix.

Proof: This theorem can be proved by using the follow-

th derivative sets of K, P,

ing procedure for each of the i
and Z.
(i) Multiply the necessary conditions for K;,
P;, and Z; where ¢ = €, by (ea/eb)i.
(11) AB for € = €h is equal to AB for ¢ = €
multiplied by ea/sb.
(iii) Compare these equations to necessary condi-
tions for K%, Pé, and Zg. Using the fact that the
solutions are unique (Theorem 2.3), the above results

are obtained.

Corollary: The matrices K, P, and Z, whose series
terms are solutions of Equation (3.8), are the same for every
finite and nonzero value of e, provided QB of Equation (3.7b)

is a null matrix.

Proof: This corollary can be proved by substituting

the results of Theorem 3.2 into Equation (3.8). It can be

seen that both sets yield the same solution.
3.5 Computational Algorithm

The difficulties with solving a set of equations of the
same form as Equation (2.16) or (3.8) have been reported
elsewhere [42] [44]. 1In this section three methods of solv-

ing Equation (2.16) or (3.8) are presented. The first
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. method is an iterative method. It is found that conventional
fixed-point iteration [16] suggested in Reference [42] yields
divergence in nearly all of the numerical problems examined
in this study. So another iterative algorithm ié considered.
In this algorithm an increment of K% for the next iteration
is a fraction of the difference between its old value and

its new value. The second method makes use of an existing
optimization algorithm to find K? such that when substitut-
ing into Equation (3.8) its residue is a minimum. The third
method uses the optimization algorithm to minimize tr(DVDTPL
Some modification is made so that K stabilizes the system.

An additional algorithm to solve the Lyapunov equation is

also presented.

3.5.1 Iterative Algorithm

The iterative algorithm to solve Equation (3.8) is as
follows:

(1) Make an initial guess for K;.

(2) Substitute K; into Equation (3.8b). Solve for P;.

(3) Substitute K; into Equation (3.8c). Solve for Z?.

(4) Substitute P; and Z; into Equation (3.8a). Solve
i
for Kj,new'

(5) Update the value of K; by using this equation:

K§ < K; . u(K§ . K;,new) (3.22a)

where
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@ = —— (3.22b)
j Kj,newlmax

i

3 newlmax is the maximum element of the absolute value
b

|K§~ K .
of the residue of K;.

(6) If the maximum residue of K; is not as small as
required, go to step (2). Otherwise stop.

Convergence and speed of convergence of this algorithm
depends on o. If o = 1, it is the same as the fixed-point
iteration. It has been found that convergence is achieved
only if o is small. But a small value of a results in slow
convergence. Thus a should be adaptable to convergence con-
ditions. The choice of o given in Equation (3.22b) has been
found to give satisfactory results. However, the value of 6
should be adaptable also. The following is a typical exam-
ple of & and a.

8

1 if the maximum residue of K; is greater than 5.

8 0.5 if the maximum residue of K; is less than 5.

o 8 if the maximum residue of K; is less than 1.

3.5.2 Residue Minimization Algorithm

This algorithm uses a standard unconstrained multivari-
able optimization subroutine to minimize weighted sum of
square of residues of K;. The algorithm is as follows:

(1) Make an initial guess for K?.

(2) The main program calls the optimization subroutine.

i

Kj is transferred to the subroutine.
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(3) The optimization subroutine calls a secondary sub-
routine to evaluate the residue of K;.

(4) The secondary subroutine substitutes K§ into Equa-
tion (3.8b) and (3.8c). It solves for P% and Z;. Then it

substitutes P} and Z; into Equation (3.8a) and solves for

K; new" The last duty of this subroutine is evaluating

, _

weighted sum of square of (K} - Kkt ). After finishing
' J J,new \

this it returns to the calling subroutine.

(5) The optimization subroutine compares the residues"
for several values of K} and proceeds to the one that has a
minimum residue.

The Powell's optimization algorithm [50] [40] is em-

ployed in this study.

3.5.3 DVDP Minimization Algorithm

The solution of Equation (2.16) can bé obtained by
minimizing Equation (2.13) with respect to Equation (2.11)
using a multivariable optimization algorithm [18] [51]. It
was pointed out earlier in section 2.5 that K, which does
not stabilize the system but satisfies Equation (2.16), can
be found. The corresponding P may not be nonnegative defi-
nite. This means that the value of K may yield a negative
performance index, tr(DVDTP),which is less than that of the
real optimum K. In order to avoid this difficulty, a stabi-
lity indicator should be included in the performance index.

In this study Powell's optimization algorithm [50] [40]

is used. The performance index is modifed as follows:
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Let p be the maximum real part of eigenvalues of

(A+BKC), then

J = tr(DVD'P); if p < O (3.23a)

J = tr(DVD'P) + (p-£); if p > O (3.23b)

where ¢ is an arbitrarily large positive number.

3.5.4 Kronecker Product Algorithm

The general form of Equation (3.8b) and (3.8c) is
AX + XB + C = 0 (3.24)

The solution of this equation is obtained by applying the
Kronecker Product method [5] [6] to Equation (3.24).
Define:

F=A#*1I, +1,%BT

1 ) (3.25)

where * is the Kronecker product operator.
I and I, are identity matrices of compatible dimen-

sion. It can be proven that [5] [6]
Fy = -z (3.26)

where y is the vector consisting of all elements of X and z
is the vector consisting of all elements of C.

Then Equation (3.26) is solved for y by the Gauss
elimination method [16]. The result is obtained by trans-

forming the vector y to the matrix X.
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3.5.5 Comparison of the Algorithms

The solution of Equation (2.16) can be found by means
of the three algorithm. The iterative algorithm yields the
solution within the shortest time. A FORTRAN program for
the algorithm is less complicated than that of the other
two. However, it inherits certain disadvantages. It has
been found that in some numerical problems the algorithm
results in a solution, K, which does not stabilize the sys-
tem. The only way to get the right K when this difficulty
happens is by making an initial guess of K which is very
close to the right solution. It is impossible to make such
a guess in a practical problem. Another disadvantage of the
iterative algorithm is that optimal values for o and § have
to be chosen by trial and error. In the DVDP minimization
algorithm the problem of getting the wrong K has been solved
by using a modified performance index described in section
3.5.3. Since eigenvalues have to be calculated every time
the performance index is evaluated, the algorithm requires
large amounts of computer processing time. Writing a FOR-
TRAN program for this algorithm is somewhat more complicated
than the iterative algorithm, even though standard subpro-
grams for optimization and eigenvalue evaluation are used.
In some numerical problems this algorithm cannot find a véry
accurate solution because the value of the performance does
not change for a small change of K. 1In that case the resi-

due minimization algorithm or the combination of the DVDP
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minimization algorithm and the iterative algorithm can be
used.

| The solution for the suboptimal control problem pre-
sented in this chapter can be obtained by means of the
iterative algorithm or a combination of residue minimization
algorithm and DVDP minimization algorithm. The use of the>
iterative algorithm to solve Equation (3.8) is practically
the same as described above. 1In the second algorithm the
DVDP minimization algorithm is used to solve the zeroth-
order of Equation (3.8) or (3.12). The algorithm minimizes
DiViDEPi with respect to Ki with Equation (3.12c) as an
equality constraint, where i = 1, 2. For the values of the
first order and higher of K, P, and Z in Equation (3.8) the
residue minimization algorithm is used. It should be noted
that after Kg and Kg,’which are solutions to Equation
(3.12) and which stabilize the subsystems, are obtained the
solution for Equation (3.8) is unique. This can be proven
by Theorem 2.3. So there is no need to calculate eigenvalues
in the residue minimization algorithm and the computer time
required for this algorithm is not too large. 1In general,
the iterative algorithm should be used if it is expected to
converge to the right solution, since it is faster and some-
times gives more accurate results. Residue+ DVDP minimiza-

tion algorithm should be used if the iterative algorithm

does not work.
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3.5.6 Some Symmetrical Properties

By applying Theorem 2.4 to the equations obtained
earlier it can be proved that:

(1) Even derivatives of submatrices of Z and P are

o) 0 o) 2 2 2

symmetric. The submatrices are ZO, ZZ’ Pl’ PZ’ Zl’ ZZ’ Pl’
2
P2,. . v
(2) "12'" submatrices of odd derivatives of Z and P

are equal to transpose of '"21" submatrices of their own

matrices, e.g.,

1 1T
212 = 291

1 1T
P12 = Py

These symmetrical properties are very useful. They may
be used to simplify the computer program and reduce the com-

puter burden to a large extent.
3.6 Conclusion

It has been discussed that solving necessary condition
Equation (2.15) for optimal feedback gain of a large system
is not a trivial job. In order to cope with this problem
an approach to suboptimal gain calculation is developed in
this chapter. The method involves Taylor series expansion
of the matrices K, P, and Z with respect to the system coup-
ling parameter, e. Necessary conditions to be solved for

the matrices in the series are derived. With some matrix

manipulation, these equations can be presented as functions
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of submatrices. The general form of the equations is given
in Theorem 3.1. The proof of the theorem is carried out by
an indﬁction method. 1In this study the first few terms of.
matrices in the series of K, P, and Z are derived. A
general procedure of derivation is given so that higher de-
rivative terms can be derived if necessary. Computational
methods for solving Equation (2.16) or (3.8) are presented
in section 3.5. The iterative algorithm offers the fastest
speed. Unfortunately, in some problems it converges to
wrong solﬁtions or does not converge at all. When this prob-
lem arises, the DVDP minimization algorithm, or the residue
minimization algorithm, or a combination of both is recom-
mended. These algorithms make use of an existing optimiza-
tion routine to solve the problem. The listing of programs

used in this study is shown in the appendices.



CHAPTER IV

LOAD FREQUENCY CONTROL OF MULTIAREA
POWER SYSTEMS

4,1 Introduction

Load frequency cbntrol of electric power systems repre-
sents the first realization of large scale complex system
control. It has made the operation of interconnected systems
possible. The objective of load frequency control is to
maintain a balance between system's generation and consump-
tion. Today.the tie-line bias control is widely applied. A
linear combination of net interchange.error and frequency
deviation, called area control error, is used to control the
system generating units. Each area tends to reduce the.area
control error to zero. When this aim is achieved the system
frequency equals the desired value and the interchange sched-
ule is met. The conventional approach to this problem is
mainly concerned with steady-state power bélance. Little
attention has been paid to the optimization of system transi-
ents. Recently, some attempts have been made to apply linear
optimal control theory to the load frequency problem. The
main purpose of those studies is to stabilize power swings

which occur when the system is subjected to disturbances.

43
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The approach results in a minimum of weighted sum of power

swings (state variable deviations) and control efforts. Nor-

mally, it is assumed that all variables are measurable and the

feedback gain is calculated by solving the Riccati equation.
In this chapter the load frequency control is modeled

as a limited state variable feedback control system. Then

the approach given in Chapter III is applied to calculate

the suboptimal feedback gain. As an example, the control of

a two-area system will be considered. The results of the

suboptimal appfoach will be compared to those of the optimal

approach.
4.2 System Modeling

The develbpment of the system model is considered in
this section. Turbines and their speed-governing systems are
very importaﬁt components in the load frequency control sys-
tem, so considerable details are presented in the first part.
The relationship between the system power balance and its
frequency is given in the second part. Then the models of
each cémponent are grouped to form a model of load frequency
control system. It is presented in a standard stateivari-

able form in the third section.

4.2.1 Speed-Governing System and

Turbine Models

Standard modeling of steam turbines and hydroturbines

and their speed-governing systems was provided by the IEEE
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Task Force [35]. The model descriptions were typical of
those in use by utilities and service centers. The basic
‘diagram showing location of speed-governing system and tur-
bine relative to the system is shown in Figure 1. A general
model for speed-governing systems is shown in Figure 2. In
the model many nonlinearities are neglected except rate
limits which may occur for large, fapid speed deviations and
position limits which may correspond to wide-open valves or
the setting of a load limiter. Rate limiting of servomotor
is shown at the input to the integrator represénting the
servomotor. This model shows the load reference as an ini-
tial power Po’ This initial value is combined with the
increments due to speed deviation to obtain the valve posi-

tion, h, subject to the time lag, T introduced by the

3>
servomechanism.

Models for different types of steam turbine systems are
shown in Figure 3. In these models flows into and out of any
steam vessel are related by a simple time constant. The time
constants TCH’ TRH’ and TCO represent delays due to the steam
chest and inlet piping, reheaters, and crossover piping,
respectively.

A general model for speed-governing system for hydro-
turbines is shown in Figure 4. Linear characteristics of the
distributor valve and gate servomotor, and the dashpot feed-
back are utilized. Position limits are presented at the out-

put of the system. Nonlinearities in rate limits, permanent

droop compensation, etc. are neglected.
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A linear model for hydroturbines which is most often
used is shown in Figure 5. The transient characteristics of
hydroturbines are determined by dynamics of water flow inr
the penstock. The time constant Tw is called the water
starting time or water time constant. A method for estimat-
ing this time constant is given in Appendix II of Reference

[35].

4.2.2 Power System Inertia Model

Whenever there is an imbalance in the applied torques
of a power generating unit, acceleration takes place. The

mechanical torque equilibrium equation can be written as

Jdw - 1
T5 +* Dw = AT : (4.1)
where

J = moment of inertia of the moving parts;

D = damping coefficient, including mechanical viscous
friction plus electrical damping torque from field
coil and damping coil;

AT = change of torque from equilibrium state; and

w angular velocity.
It is customary to normalize Equation (4.1) using the
inertia constant H which is defined to be the kinetic energy

at rated speed W, divided by the generator MVA base Sb:

—%— sz

S

(4.2)

H =
b

Linearizing Equation (4.1) around the operating point

and making use of Equation (4.2), we get
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%‘E dof ko = P (4.3)
where
A = incremental operator;
f = system frequency;
fo = rated ffequency;
P = powef output of the system in per unit; and
anoD
“a = 5,

Change of power output from equilibrium state, AP, of

Equation (4.3) takes the form

AP = APg - APd - APt (4.4)

where
Pg = power generation;
Pd = increment in load demand; and

P, = increment in tie-line power imported from other
areas.

The increment in tie-line power can be represented by

AP, = g Si(Aéi - AS) (4.5)
where
6§ = angular displacement of the area;
§, = angular displacement of the remote area i; and
S. = synchronizing coefficient between the area and

the remote area 1i.
Thus the load frequency control system is described by the

following equation:
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f
d - 0 - - -
I 6 = op (APg APy - AP K40£) (4.6a)
d _ 1 _
It APg = T; (Ah APg) (4.6Db)
d o1 L Af
It Ah = T (Au R Ah) (4.6c)
g
AP, = 2m ) S, (faf;dt - [afdt) (4.6d)
i
where
Tt = time constant of the turbine;
Tg = time constant of the speed-governing system;

h = valve position;
u = input to speed-governing system; and

R = speed regulation parameter.

4.2.3 Integrated Model for Load Frequency

Control Systems

Unlike models designed for transient or dynamic stabi-
lity studies, the objective is a model to represent the
interplay between system load demand and mechanical energy
supply. This model must describe the system dynamics with
sufficient accuracy and at the same time must be of reason-
ably small dimension such that its solutions are attainable.
In order to achieve this goal the following assumptions must
be made because there are a large number of power generating
units within an area of a power system. First, the effects
of network electrical dynamics can be eliminated from the
load frequency problem. Second, all power generating units

belonging to an area are similar and they are tied via stiff
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lines such that they have coherent phase and frequency.
Third, variations of variables are‘small so linearization of
system equations around a nominal operating condition is per-
mitted. With these assumptions a power system area for load
frequency control can be represented by a single poWer
generating unit.

The block diagram model of a load frequency area is
shown in Figure 6. It consists of a turbine, its speed-
- governing system, and a power-frequency transfer function.
The turbine is assumed to be a nonreheat steam type which has
only one time constant representing time delay in its steam’
chest. The speed-governing system is assumed to be a mechan-
ical-hydraulic type with negligible speed relay time constant.
So it can be represented by a first order system. The power-
frequency transfer function can be derived from Equation

(4.6a) where

1
K = _* (4.73)
1Y Kd
2H
T = (4.7b)
p EEoKd ,

Nonlinearities in every component are neglected since we

shall consider system dynamics under small disturbances.
4.3 Control of Two-Area System

In this section we shall consider an interconnected
power system consisting of two areas. The state equation

for the system can be written as
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%% = Az + Bu + Ev . (4.8)
where
. [fAfldt, 6ty APg, Ahl, fAdet,
af,, Asz, Ahz]
uT = [Aul, Aué]
vl o= [apyy, 2Py, ]

The matrices A, B, and E are shown in Table I. In order that
modern optimal control technique can be applied to this prob-
lem, Equation (4.8) must be modified to the standard form:

dx _ '
It = Ax + Bu (4.9)

Several methods have been suggested such that the system
equations can be written as Equation (4.9) [9][27][29].
Since we are interested only in dynamic. aspects of the prob-
lem, in this study the method in Reference [27] is used. The
new vector x is defined by

X =z -z | (4.10a)

where Zgs is the steady state value of z, and

x(0) = -z (4.10b)

Ss
With this modification the matrices A and B of Equations

(4.8) and (4.9) are still the same.
4.4 Two Area Control System Example

In the study of the two-area load frequency control
system an iterative algorithm is used to calculate the opti-

mal and suboptimal gain matrices. The program is designed



TABLE I

MATRICES A, B, AND E OF THE TWO-AREA LOAD
FREQUENCY CONTROL SYSTEM

0 0 0 0 0 0
£S5, fKp £ . £.512 .
oH, 2H, piin T
1 1
0 0 1 1 0 0
T Teq
1 1
0 -1 0 -1 0 0
T T
0 0 0 0 0 1
-a1,£,512 . . 0 a5, “fKap
T, 7H, 7H,
0 0 0 0 0 T—l—
t2
0 0 0 0 0 —-%.—
RZgZ

1
-

m'-]
[}
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to calculate three terms in the series of the matrices, K, P,
and Z. Eigenvalues of the closed-loop system, A+BKOC, are

0, and z° are found to make sure that

evaluated after KO, P
the feedback gain yields a stable system. The program is
constructed in such a way that it can be used for subsystems
of dimension up to 10. Since the necessary conditions of the
optimal gain are similar to those of the first term of the
series of K, P, and Z, the first part of the program can be
used to calculate the optimal gain.‘ The program is imple-
mented on a 370/158 computer system. A G-level FORTRAN com-
piler is used.

Numerical data for the system under study are shown in
Table II. The matrices D, Q, and R are assumed to be iden-
tity matrices. The performance index is an infinite integral
of sum of square of all state and control variables. Both
deterministic and stochastic cases are considered. 1In the
deterministic case the matrix DVDT is replaced by an identity
matrix. The numerical value of V for the stochastic case is
given in Table III. The number of output variables in each
subsystem varies from 2 to 4. For the load frequency control
system, the minimum number of the feedback variables which
can stabilize the system is 2. They are the frequency and
the phase angle of the area. If the generated power is
assumed measurable, fhe dimension of the output vector of the
area is 3. If all of the state variables are measurable, the
dimension of the output vector of the area is 4 and this case

is equivalent to the optimal linear regulator problem.



TABLE II

DATA OF THE TWO AREA LOAD FREQUENCY
CONTROL SYSTEM

Variable Area No. 1 Area No. 2
T .
g 0.08 0.1
Tt 0.3 0.25
R 2.4 2.5
H 5.0 8.0
Kd 0.008 0.01
S12 0.545 0.545
al2 -1 -1




TABLE III
STOCHASTIC NOISE INTENSITY MATRIX

0 0 0 0 0 0
.0005 0 0 0 0 0

0  .0003 O 0 0 0

0 0  .0007 O 0 0

0 0 0  .0002 O 0

0 0 0 0  .0009 0

0 0 0 0 0  .0005

0 0 0 0 0 0

60
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The results of the Study are presented in Tables VI
through XXVII. It is observed that:

1. The optimal feedback gain matrix, K, for the deter-
ministic system and the stochastic system are very close.

2. The coupling coefficient, e, having the values
between 0 and 1, results practically in the same suboptimal
feedback gain matrix. The time spent in the calculation,
however, is not the same for different ¢'s. It is found that
the value of € = 0.5 converges faster than other values.
Thus this value is used throughout the study.

3. When the generated poWer of the area is used as an
input to the controller in addition to the frequency and the
phase angle, the performance of the system is significantly
improved. Thus it is beneficial to transmit the generation
power signal other than the frequéncy and phase angle sig-
nals of each area to other areas in the pool for the purpose
of an automatic power generation control of the intercon-
nected system. The valve position of the turbine, on the
other hand, yields only small improvement in the system per-
formance when all other variables are used. Thus this vari-
able need not be used as a control signal because it will
increase the cost of telemetering while it does a small con-
tribution to the system stabilization.

4. The performance of the optimal system is better
when more variables are used as the controller inputs. This
is not surprising since in that case more information 1is

~

obtained. But the performance of the suboptimal control
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system may not follow the rule. For example, the perfbrmance
index of the suboptimal control system using 8 variables as
inputs to the controller is higher than that using 6 vari-
ables. This happens because the error when calculating the
suboptimal gain for the system with 8 dimensional output
vector is more than that with 6 dimensional output vector.

5. -Only two terms in the series of the suboptimal gain’
matrix give results which are considerably close to those of
the optimal control system. It is consequently believed that
using two terms is enough for suboptimal feedback gain calcu-
lation of any two-area load frequency control system design.

6. The suboptimal gain calculation consumes much less
computer burden than the optimal gain calculation. In this
study the optimal gain calculation which starts from the
results of the suboptimal gain calculation spent about four
to seven times longer execution time than that of the sub-
optimal gain calculation which starts from an arbitrary value
(0 is used). It is expected that if both methods start from
the same initial value, the optimal method will use more than
ten times the computer time used by the suboptimal method for
the same 8 dimensional system. The memory required for the
optimal gain calculation is three to four times more than
that of the suboptimal gain calculation. This amount of
memory saving is very attractive for those using a computer
with limited memory size to calculate thé feedback gain for
a large system. However, the program aichitecture is more

complex and compilation time is longer for the suboptimal
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method. But these are trivial disadvantages compared to the
benefits described above.

7. When all the state variables are available for mea-
surement, i.e., C = I, the matrix Z has no effect on the
optimal feedback gain. In this case the optimal matrix K is
the same for both the deterministic system and the stochas-

tic system{
4.5 Conclusion

In this chapter the suboptimal approach for the feed-
back gain calculation of linear limited state variable feed-
back developed in Chapter III is applied to multiarea load
frequency control. In section 4.2 models of components
within an area of load frequency control system is presented;
it consists of a turbine, speed-governing system, and power-
frequency transfer function. The integrated model of these
components for two-area interconnected system is described in
section 4.3. It is presented in a standard form of state
equations. The system with and without plant noise are stud-
jed. The iterative algorithm is used to calculate the sub-
optimal and optimal feedback gains. Convergence is obtained
in all of the problems considered in this step. The results
are presented in Tables VI through XXVII. They show that the
suboptimal approach yields results which are close to those
of the optimal approach but the suboptimal approach requires

much less computer burden. From the study of the load



frequency control system it is suggested that frequency,
phase angle, and power generation be used as feedback sig-

nals to the system controller.
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TABLE IV

NOMENCLATURE OF CASE STUDIES

Case Type of Dimension of
Study Dynamic System Output Vector

D4 Deterministic 4

D6 Deterministic 6

D8 Deterministic 8

S4 Deterministic 4

S6 Deterministic 6

S8 Deterministic 8

TABLE V

NOMENCLATURE OF FEEDBACK

GAIN MATRICES

65

Feedback Number of
Gain Matrix Terms Used Formula
K 1 K = k°
a a
Ky 2 K, = K + ekl
2.2
K, 3 K, = K°+eK1+ETI,<—
2.2 3
K* © K* = K°+eK1+€21§ + 31!< +,




TABLE VI

FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY
CONTROL SYSTEM, CASE STUDY D4

K*

i

1566 -.0388 0 0o
0 0 .0812 L1141 |
[ . 1566 -.0388 4316 1761
-.3301 -.0940 0812 .1141 |
.1500 -.0634 4316 1761 ]
- . 3301 -.0940 0311 1674 |
— _
1382 -.0666 .4500 .1803
-.3576 -.1073 0270 11679 |

99



TABLE VII

COMPUTER BURDEN OF FEEDBACK GAIN MATRIX CALCULATION
OF THE LOAD FREQUENCY CONTROL SYSTEM,
CASE STUDY D4

Feedback Gain Memory Number of Execution Time# Compilation Time
Matrix Obtained (K-Byte) Iterations (Seconds) (Seconds)
K, 120 19 8.74 11.65
Ky 132 41 15.17 15.85
K. 148 64 24.34 20.74
K* 440 15 76.15 9.81

#The initial values used to calculate K,, Ky, and K. are zeros.

Then KC is used as the initial value to calculate K¥*.

L9
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TABLE VIII

PERFORMANCE INDICES OF THE LOAD FREQUENCY
CONTROL SYSTEM, CASE STUDY D4

Feedback Gain

Matrix Used Performance Index
K S
a
Kb 8.357
K 8.306
c
K* 8.288
TABLE IX

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC),
OF THE LOAD FREQUENCY CONTROL SYSTEM,
CASE STUDY D4

(A+BK_C) (A+BK, C) (A+BK_C) (A+BK*C)
-13.36 -13.37 -13.41 -13.41
-11.00 -10.99 -11.06 -11.06
-1.46 + j2.44 -1.09 + j2.47 - 1.05+3j2.62 -1.04+3j2.62
-1.43 -1.04 - 1.02 -1.00
-0.71+3j3.33  -0.93+j3.16  -0.92+j3.23  -0.91+j3.23

0.22" -0.48 -0.49 -0.54

#Unstable eigenvalue.



TABLE X

FEEDBACK GAIN MATRICES OF THE LOAD

FREQUENCY CONTROL SYSTEM,

CASE STUDY D6

K*

.2432

.2432
A777

.1134
AT777

.0916
. 5433

.3184

.3184
.1057

.3613
.1057

.3670
.1261

.0483

.0483
.1020

.1035
.1020

.1110
.1314

0

.0620

.6556
.0620

.6556
.0813

.7313
.1085

0

L4225

.1530
4225

.1530
.4879

.1809
.4941

.7827
-

.1051
.7827

.1051
.8350

.1291
.8417

0
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TABLE XI

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE LOAD
FREQUENCY CONTROL SYSTEM, CASE STUDY D6

#

Feedback Gain Memory Number of Execution Time Compilation Time
Matrix Obtained (k-byte) Iterations (Seconds) (Seconds)
K, 120 10 4.19 11.59
K 132 20 7.94 15.05
KC 148 30 12.60 20.93
K#* 440 9 50.84 9.66

"The initial values used to calculate Ka, Kp, and K. are zeros. Then K_
is used as the initial value to calculate K*

0L
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TABLE XII

PERFORMANCE INDICES OF THE LOAD FREQUENCY
CONTROL SYSTEM, CASE STUDY D6

Feedback Gain Performance
Matrix Used Index
K - -
a
Kb 6.921
K 6.762
c
K* 6.737
_TABLE XIITI
EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC),

OF THE LOAD FREQUENCY CONTROL SYSTEM,
CASE STUDY D6

(A+BKaC) (A+BKbC) (A+BKCC) (A+BK*C)
-8.11 -8.28 -7.77 -7.84
-5.51 + j2.32  -5.27 + j2.71 -5.32 + j3.05 -5.38 + j3.22
-3.90 + j2.63  -2.93 + j1.90 -3.29 + j1.59 -2.99 + j.144
-1.57 + j2.70  -2.32 + j1.96 -2.05 + j2.24 -2.15 + j2.20
0.173" -0.596 -0.831 -1.04 ‘

Tunstable eigenvalue.



TABLE XIV

FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY
CONTROL SYSTEM, CASE STUDY D8 '

.2951 -.7653 -.1407 -.6581 0 0 0 0
0 0 0 0 - .0490 -.8613 -.9536 -.6622
.2951 -.7653 -.1407 ~-.6581 -.9504 -.2353 -.1210 -.0287'__1
L6778 -.1551 -.1412 -.0229 .0490 -.8613 -.9536 -.6622
.0902 -.8389 -.2089 -.6689 -.9504 -.2353 -.1210 -.0287
.6778 -.1551  -.1412 -.0229 -.1766 -.9649 -1.0127 -.6761
-
.0573 -.8486 -1.4821 -.6700 -1.0652 -.2809 -.1453 -.0343
L7782 -.1890 -.1702 -.0274 -.2139 -.9755 -1.0172 -.6771

ZL



TABLE XV

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE LOAD
FREQUENCY CONTROL SYSTEM, CASE STUDY D8

Feedback Gain Memory Number of Execution Time' Compilation Time
Matrix Obtained (k-byte) Iterations’ (Seconds) (Seconds)
K, 120 18 7.82 11.50
Ky 132 | 37 15.70 15.79
K. 148 57 23.93 21.49
K* 440 18 98.49 9.69

#The initial values used to calculate Ka, Kp, and Kc are zeros. Then K¢
is used as the initial value to calculate K*.

A



TABLE XVI

PERFORMANCE INDICES OF THE LOAD FREQUENCY

CONTROL SYSTEM,

CASE STUDY D8

Feedback Gain
Matrix Used

Performance
Index

7.802

7.491

6.655

TABLE XVII

EIGENVALUES OF THE CLOSED-LOOP SYSTEM,
OF THE LOAD FREQUENCY CONTROL SYSTEM,
CASE STUDY D8

(A+BKC),

74

(A+BK_C) (A+BK, C) (A+BK_C) (A+BK*C)

-21.18 -21.19 -21.20 -17.84

-14.18 -14.18 -14.18 -14.18

-2.91 -2.37+31.18  -2.64 -3.05
-2.20 + j1.67 -1.17 -2.00+ j1.33  -2.50 + j1.94
-1.12 + j3.91 -1.21+3j3.88 ~-1.18+ j3.93 -2.03 + j2.62
0.15" -0.50 -0.64 -0.95

#Unstable eigenvalue.



TABLE XVIII

FEEDBACK GAIN MATRICES OF THE LOAD
FREQUENCY CONTROL SYSTEM,
CASE STUDY S4

.1796 -.0745 0 0
0 0 .1000 -,1434_
.1796 -.0745 -.3496 -.1328
T }.3570 -.0686 .1000 -.1434
1363 -.0860 - .3496 -.1328
- .3570 -.0686 .0583 -.1963
L1372 -.0945 -.3806 -.1439
T +.3667 -.0857 .0494 -.1943




TABLE XIX

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE
LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S4

Feedback Gain Memory - Number of Execution Time Compilation Time
Matrix Obtained (K-byte) Iterations (Seconds) (Seconds)
Ka 120 20 9.27 10.51
Ky 132 42 17.32 14.32
K. 144 67 27.31 19.45
K* 440 19 103.86 9.61

"The initial values used to calculate Kq, Kp, and K; are zeros. Then K¢
is used as the initial value to calculate K*.

9L



TABLE XX

PERFORMANCE INDICES OF THE LOAD FREQUENCY

CONTROL SYSTEM, CASE STUDY S4

Feedback Gain Performance
Matrix Used Index

K - -

a

Kb .002896

K .002861

c

K* .002855

TABLE XX

I

EIGENVALUES OF THE CLOSED-LOOP SYSTEM,
OF THE LOAD FREQUENCY CONTROL SYSTEM,

CASE STUDY S4

(A+BKC),

77

(A+BK_C) ~(A+BKbC) (A+BK_C) (A+BK*C)
-13.42 -13.42 -13.44 -13.45
-11.05 -11.04 -11.12 -11.11
-1.45 + §2.55 -1.15 + j2.54 -1.11 + j2.67 -1.08 + j2.67
-1.32 -0.93 + j3.31 -0.93 -0.93
20.74 + j3.43 -0.92 -0.89 + j3.34  -0.90 + j3.35
0.241 -0.38 -0.44 -0.47

funstable eigenvalue.



FEEDBACK GAIN MATRICES OF THE LOAD FREQUENCY

TABLE XXII

CONTROL SYSTEM,

CASE STUDY S6

K*

1]

.2361

.2361
L4759

.1010
.4759

.0802
. 5446

.3355

0

.3355
.1062

.3787
.1062

.3842
.1260

-1.

0922
0

.0922
.1046

.1420
.1046

.1492
.1308

.0544

-.6652
.0544

-.6652
-.0959

-.7395
-.1222

L4427

.1505
L4427

.1505
.5082

L1779
.5142

.8238

.1011
.8238

.1011
.8756

.1204
.8787

8L



TABLE XXITII

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE
LOAD FREQUENCY CONTROL SYSTEM, CASE STUDY S6

Feedback Gain Memory “Number of Execution Time Compilation Time
Matrix Obtained (K-byte) Iterations” (Seconds) (Seconds)
Ka 120 9 3.72 10.63
Kb 132 18 7.25 14.79
KC 144 29 11.82 19.62
K* 440 8 44 .33 9.59

fThe initial values used to calculate K,, K, and K. are zeros. Then K;
is used as the initial value to calculate K*.

6L



80

TABLE XXIV

PERFORMANCE INDICES OF THE LOAD FREQUENCY
CONTROL SYSTEM, CASE STUDY S6

Feedback Gain Performance
Matrix Used Index
K - —
a
Kb .002306
KC .002258
K* .002251
TABLE XXV

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC),
OF THE LOAD FREQUENCY CONTROL SYSTEM,
CASE STUDY S6

(A+BK_C) (A+BK, C) (A+BK_C) | (A+BK*C)

-7.64 -7.83 -7.27 -7.33
-5.49 + j2.70  -5.36 + j3.09  -5.40 + j3.36 -5.43 + j3.46
-4.15 +.j2.60  -3.24

| +

j1.89  -3.50 + j1.54 -3.27 + jl.42

-1.58 + j2.66  -2.14

|+

j1.89  -2.00 + j2.18 -2.07 + j2.11

0.16# -0.60 -0.85 -1.06

#
Unstable eigenvalue.
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TABLE XXVI

PERFORMANCE INDICES OF THE LOAD FR;QUENCY
CONTROL SYSTEM, CASE STUDY S8

Feedback Gain Performance
Matrix Used Index

K - -

a

Kb .002495

K .002436

C .
K* .002201

fother results of Case Study S8 are the
same as Case Study DS8.



TABLE XXVII

COMPARISONS OF PERFORMANCE INDICES OF THE
LOAD FREQUENCY CONTROL SYSTEM

Performance Index

Dimension of Feedback Gain
OQutput Vector Matrix Used Deterministic System Stochastic System
4 K --- ---
a .
4 Kb 8.357 .002896
4 »Kc 8.306 .002861
K* 8.288 .002855
6 Ka --- ---
6 Kb 6.921 .002306
6 KC 6.762 , .002258
6 K* 6.737 .002251
8 Ka --- ---
8 Kb 7.802 .002495
8 KC 7.491 .002436
8 K#* 6.655 .002201

Z8



CHAPTER V
CONTROL OF INTERCONNECTED SYNCHRONOUS MACHINES
5.1 Introduction

Within the past few years studies have been made to
apply optimal control theory to synchronous machine stabili-
zation problems. With the increasing size and complexity of
power systems improved techniques are required in order to
achieve a better stability limit. The first part of the
works reported in the literature is primarily concerned with
state feedback strategies [1][31][46][58][59]. The results
of the controller design in the real implementation on a
micro-machine shows a good dynamic response for a small dis-
turbance [26]([47]. One of the main disadvantages of this
technique is that all the state variables are not always
available for measurement. To overcome this difficulty out-
put feedback control has been considered [18][20][51][52].

The publications described above confine themselves to
a model consisting of one machine connected to an infinite
bus. However, there are some situations where a multimachine
model is preferred. When using this model computational
difficultyyhas been experienced because of the large dimension

of the system. Usually optimal control design of the multi-

83
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machine system is carried out by using a reduced-order model
for each machine [60].

Instead of deleting some state variables which result
in reduced-order system design or semi-decoupling the system
which results in a one-machine-infinite-bus design, in this
chapter the suboptimal technique developed in Chapter III is
applied to the multimachine control problem. The technqiue
requires less calculation than the optimal design given in
Chapter II so it is suitable for multimachihe design problem
whose dimension is, in general, large. However, since it is
desirable to compare the results of the suboptimal control to
those of the optimal control, the reduced-order models for
synchronous machine and its exciter are used. An intercon-
nected network consisting of two machines and an infinite bus

is considered in this study.

5.2 Interconnected Synchronous

Machine Model

5.2.1 Synchronous Machine Equations

Comprehensive mathematical equations describing the be-
“havior of a synchronous machiﬁe, both during steady state and
transient state, were derived by Park [49]. Since then there
have bcen numerous publications dealing with mathematical
models of the machine. Different forms of the model can be
found in different problems. References [15] [22] [32] [36]

[48] are examples of papers and books that present the
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machine's equations. The following are synchronous machine
equations in per unit (except for time). The variables con-
sist of magnetic flux, voltage, and current in direct and

quadrature axes, and field circuit.

Ve = Xple - Xpglg * Xgpgliyg (5.1a)
Vg T Xegle - Xglg * Xardiia (5.1b)
Vka = Xfkdif T Xakdld t *kkalkd (5.1c)
bq ® Xqiq * Xakqikq (5.1d)
wkq = _xakqiq + kaqikq (5.1e)
dy
1 dvg .
Ve = 53 a5t Telg (5.1f)
dy
1 d oW
Va T oo dt C Tala T e Vg (5.1g)
(o] (o]
1 dv . w
Vq = 5; THg - Talq + Eg vq (5.1h)
dy
1 g
0 =& —at ¥ Txalkd (5.11)
dy
1 dvy
0 =3~ —TF * Tkq'kq (5.13)
2 _ 2 2
Vi V3 + Vq | (5.1k)
T, = Vgiq - Yqig (5.11)
dw _ “o _ _
ds
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where subscripts f, d, q, kd, kq stand for field, d-axis

armature, ¢g-axis armature, d-axis amortisseur, and g-axis

amortisseur windings, respectively; and

$

resistance of circuit j;
reactance of circuit j;
current in circuit j;
voltage in circuit j;

flux linkage of circuit j;
angular velocity of rotor;
base angular velocity;
machine terminal voltage;

alr gap electromagnetic torque of synchronous
machine;

prime mover input torque;
per unit inertia of the generating unit;
system damping coefficient; and

phase angle of machine.

Ih this study a linearized third-order model of a syn-

chronous machine and a first order excitation system is used.

The block diagram of the exciter is shown in Figure 7. The

third-order model of a synchronous machine is obtained by

neglecting effects of amortisseur windings, armature resist-

ance, and time rate of change of magnetic fluxes. The re-

sults are four state equations and seven algebraic equations

as follow:



ut

Figure 7.

Mi

|+ STe I

Excitation System
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State equations:

Algebraic

The state

~
1

N
1}

c
I}

d

af-Awf = wOAVf - worfAif
EldT AS = Aw

d Aw = _fg [AT + K,Aw]
dt °¢ 2H a a-v

d _ 1 - _ )
a—E AVf = 'T; [}\eAu KeAvt Avf]

equations:

Mpp = xpbi A

£ 7 Xpatlg

Awd = xfdAif - diid

A = -X Al
Vq T Xqq
Vd Vv
Avt = v—-Avd + V& AV
t t 4
U]
Ay = oMY, - 9 py
q w
(0]
Y
av. = ap. + S Ay
q d W
(o]
AT, = wdAlq *Agbug t webig - ighv,

Equation (5.2) may be written as:

dx _ '
Iz = Alx + Bu + Cz

[as, dw, ave, dvel;

[ai AT, Avt];

f’

Au

(5.

(5.

(5.

(5.

(5.
(5.

(5.

(5.

(5.

(5.

(5.

88

2a)

2b)

2¢)

2d)

3a)
3b)

3c)

3d)

3e)

3f)

3g)

(5.4)
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and A B, and C are shown in Table XXVIII.

1’
By manipulation of Equation (5.3a) and (5.3d) through

(5.3g) the following equation is obtained:

z = EW + GI (5.5)
where
Wl o= [a0e, dw]
T ..
I [Ald, Alq]

and E and G are shown in Table XXVIII.
From Equation (5.3a), (5.3b), (5.3e), and (5.3f) we

have
V = RW + SI (5.6)

where

T _
Vo = [Avd, Avq]

and R and S are shown in Table XXVIII.

5.2.2 Multimachine Equations

In order to make use of equations and symbols presented
in section 5.2 and extend it to a two-machine system, we
shall modify equations as follow. Suppose an equation for

a one-machine system is of the form

X = HY | | (5.7)

~
|

[x,, x,]

Yo = [y, v,
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hyp hyy

H =
h21 h22

We shall write Equation (5.7) for a two-machine system as

X = HY (5.8)
where
T _
Xm'- [Xla’ X2a2 *1b° X2b]
T
Yo = Viar Y240 Yipe Yop)
- _
hi1a M12a O 0
H = h21a hZZa 0 0
m
0 0 hyyy hypp
0 0 hy;y hyoy

Using this notation Equations (5.4), (5.5) and (5.6) may be

written for a multimachine system as

I Xg © Almxm + Bmum + szm (5.9)
z, = Emwm + GmIm (5.10)
Vm = mem + SmIm. (5.11)

5.2.3 Transmission Network Equations

The transmission network under study is shown in Figure
8. It consists of three buses. Two of them are connected
to synchronous machines. The third is an infinite bus. The

equation for the network current and voltage is
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LLL1000 BUS No. 3

Vi, 83
Zq Zp,
I Zc l ]
Zd : <::) <:i) Ze
BUS No. 1 BUS No. 2
= Vi, 8, Vs, 55 L

Figure 8. Transmission Network
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Io= Y Vo (5.12)
where
1Y = [inys dnqs dngs dngs dpgs ined
n p1’ 'q1’ ‘nz’ 'qz’ 'p3 g3
T
Vo = Lvpys Vs Vpgs Vozo Vpze Vosd

and Yn is a bus admittance matrix as shown in Table XXVIII.
The relationship between the machine-reference quanti-

ties and the network-reference quantities is given by Taylor

[57] as
me = FVn‘ (5.13)
Imm = FIn (5.14)
where.
VT = [v s v v v v . ]
mm d1’> "ql’ "d2’ "q2’ "d3’ 'q3
T _ r. . . . . .
Inm = Lia1> iq10 taz iq20 1az ig3]
and F is a function of 61, and 62, the displacement between
»the machine reference and the network reference. It is
shown in Table XXVIII.
From Equations (5.14) and (5.12)
I = FY V
mm nn
since
prl o gt
I = FY FTV (5.15)
mm n mm :

Equation (5.15) can be written in linearized form and using

the fact that bus No. 3 is infinitely strong, i.e.,M3 = 0,

we get
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_ T
- T oF T, oF
AImm FYn F Ame+ (a 1 Y F FYn a—T )meA<51
T
T oF
(——-5 Y F o+ FY o )V A8,
T
= FY_F AV + TAS (5.16)
n mm mm
where
T _
As = [as,, as,]
T T
_ T 9F oF T oF
T = [(——”‘Y Frr Y o5 W Gao YnF * FY, 550 )me]
1 2 2
From definitions, the following equations are obtained:
Wm = Jlxm (5.17)
AS o = szm (5.18)
I, = JSAImm (5.19)
AV m = J4Vm : (5.20)
where Jl’ JZ’ JB’ and J4,are shown in Table XXVIII.

By manipulation of Equations (5.9), (5.10), (5.11),
(5.17), (5.18), (5.19), and (5.20), the state equation in

standard form is obtained:

dx
m _ T -1
dt {Alm'FCmEmJl'FCme(Im'_JBF Y, F J4Sm)

' T
[JSF YnF J4RmJ1-+J3TJ2]}xm + Bmum (5.21)
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TABLE XXVIII

CONSTANT MATRICES IN THE SYNCHRONOUS
MACHINE CONTROL SYSTEM

0 1 0 0
w_ K
o d
0 - T 0 0
1
0 ' 0 oo 0
e
0 0 w 0
(o)
L _
0
0
K
_€
T
e
0
0 0 0
wO
0 i 0
Ke
0 0 ST
e
o rf 0 0




TABLE XXVIII (Continued)

X 0
f
i x
Tq "fd 0
X
f
vy Xeq qud - deq
V. Xg Wy Ve
X
de 0
f
. 2
i, Xgq _
—EL————Xf- -1xd—wq l[)d‘*‘ldX
v xZ VX
4 (__f_c_l_ - Xd) d’q
Ve o Xg Ve
v
o --4
W
0
*ra  %a
Xg “o
0
*q
X2
“fd X 0
X¢ d
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TABLE XXVIII (Continued)

where
i “Pyj
Y_ . -
1]
Pij  8ij
gij = real part of admittance yij; and
bij = imaginary part of admittance yij'
cos 51 sin 61 0 0 0
-sin 61 cos 61 0 0 0
. 0 0 cos 62 sin 62 0
0 0 -sin &, cos 3§, 0
0 0 0 0 1
0 0 0 0 0
o 0o 0 1 0 0 0 O
{0 1 0 0 0 0 0 O
Jy =
0 0 0 0 0O O 0 1
0o 0 0 0 0 1 0 O
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TABLE XXVIII (Continued)
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5.3 Interconnected System Example

In the study of the interconnected synchronous machine
control system, minimization algorithms which are discussed
in sectioﬁ 3.5 are used to calculate the optimal gain and the
suboptimal feedback gain matrices. The iterative algorithm
has been tried but very often it converged to the wrong solu-
tion (see section 2.5). The program is designed to calculate
the first three terms of the series of the matrices K, P, and
Z. The DVDP minimization algorithm is used to find the first
terms: KO, PO, and z°. Eigenvalueé of the closed loop sys-
tem, A+BKOC, are calculated in each function evaluation to
insure that the solution yields closed-loop stability. After
a solution is obtained the iterative algorithm is applied to
refine the result to a more accurate one. For the terms of
higher derivative the residue-minimization algorithm is used.

The network under study in this chapter is depicted in
Figure 8. The numerical data for the two synchronous
machines, network impedances and voltages, are shown in
Tables XXIX and XXX. The matrices D, Q, and R are assumed
to be identity matrices. The numerical value of the matrix
A is shown in Table XXXI. Both deterministic case and
stochastic case are considered. In the deterministic case
the matrix DVDT is replaced by an identity matrix. The
numerical value of the matrix V for the stochastic case is
given in Table III. The number of state variables for the
interconnected system is eight. The numbers of feedback

variables of six and eight are studied. The system of four



TABLE XXIX

SYNCHRONOUS MACHINES' CONSTANTS

Constants Machine No. 1 Machine No. 2
re 0.0010 0.0016
X¢ 1.5 1.47
Xeq 0.9 1.33
X4 1.1 1.20
X 0.85 1.07

q
H 5.0 3.20
_Kd 0.003 0.001
Ke 50.0 35.0
T 0.1 0.08

99
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TABLE XXX

NETWORK DATA

Variable Numerical Value
vy 1.05 p.u.
v, 1.00 p.u.
Vs 1.00 p.u.
61 5 degree
8, 3 degree
83 0 degree
Z4 0.020 + j0.40 p.u.
Zy 0.030 + jO.50 p.u.
Z. 0.015 + jO0.25 p.u.
Z4 2.120 + j0.076 p.u.

z 1.050 + j0.49 p.u.




PLANT MATRIX A OF THE EXAMPLE SYSTEM

TABLE XXXI

-45.
50.

27.
42.

8617
2127

.1796

5730
5993

.2338

.0000
.0698
.3048
.0008

.0444
.0442
.0010

0
0
-10.0000
- 376.9910
0
0

-20.

-60

1032

.2574
.4423

.8685
.5547
.2780

-100.

-146.
-171.

.0283

4260

.1086

9050 -

7630

.5496

L0126
.5633
L0004
L0000
.3531
.9996
.0059

0

0
-12.5000
376.9910

-181.
-382.
-2.

.3920

7320

.1782

8650
4629
7467

T0T
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feedback vafiables was tried but accurate results for the
nonlinear matrix equations were very difficult to get, so
it is disregarded.

The resulfs of the study of interconnected synchronous
machine control systems are presented in Tables XXXII through
XLVITII. From these results the following statements can be
made:

1. The optimal feedback gain matrix, K, is not sensi-
tive to changes in values of the noise intensity V.

2. When moré variables are used as the controller in-
puts the performance index is better for both optimal system
and suboptimal systém.

3. Using the first two terms of the series to calculate
K yields results wﬁich are close to those of the optimal sys-
tem. However, for a system of higher dimension it is wise to
check whether or not more terms are necessary.

4. Like the case of load frequency control, it is found
that using three feedback variables for each machine gives
results close to those using four feedback variables. So it
is suggested that output feedback variables be frequency,
phase angle, and field voltage for each genefating unit. The
field flux linkage does not contribute a significant improve-
ment in the system performance and it is practically unmea-
surable. So the variables should not be used as an output
feedback variable.

5. The optimal gain matrix calculation requires much

more calculation time than the suboptimal one, even if the
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former uses the results of the latter as a starting value
which 1s very close to the optimal‘value. The memory re-
quirement for the optimal gain calculation is about three
times more than that for the suboptimal gain calculation.

6. When the minimization algorithm is used, the memory
requirement for the optimal gain calculation is about three
times more than that of the suboptimal gain. The computation
time is also longer for the optimal method, even if the re-
sults of the suboptimal gain method are used as a starting
value for the optimal value. It should.be noted that the
optimal gain matrix for this problem is obtained by the
iterative method, since an initial value which is near the
optimal gain matrix is available. The minimization algorithm
is applied to calculate the optimal gain matrix for the sake

of comparison only.
5.4 Conclusion

The applications of the suboptimal control technique to
interconnected synchronous machine system are studied in
this chapter. In section 5.2 a model for interconnected syn-
chronous machines in the standard state variable form is
developed. It represents dynamic aspects of the three-bus
power system network. One of the buses is assumed to be in-
finitely strong. Control signals are derived from some of
the state variables: frequencies, phase angles, field vol-
tages, and flux linkages of field windings. Optimal and

suboptimal feedback gain matrices are calculated and
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compared. The minimization algorithm is used. The results
of the study show that the suboptimal gain calculation is
very effective. It requires much less calculation than that
of the optimal gain while the former technique results in a

small amount of performance degradation.



FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM, CASE STUDY D8

TABLE XXXII

K*

.0620

.0620
.0726

.0689
.0726

.0689
.0676

.0078

.0078
.0883

.0044
.0883

.0029
.0908

L5472

. 5472
.1138

.5473
.1138

.5463
.1130

-.9653

-.9653
.0634

-.9730
.0634

0.9721
.0636

0

L2477

.3546
L2477

.3546
.2468

.3478
L2473

0

.0026

.0797
.0026

L0797
.0011

.0839
.9993

.5902

.1289
.5902

.1289
.6183

.1291
.6160

.9398

L4414
.9398

L4414
.0016

.4420
.9983

SO0T



TABLE XXXIII

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS
' MACHINE CONTROL SYSTEM, CASE STUDY D8

Feedback Gain Memory | Number of 4 Execution Time" Compilation Time
Matrix Obtained (K-byte) Function Evaluated (Seconds) (Seconds)
K, 136 328 60 16.62
Kb 148 431 89 21.27
K. 164 512 114 26.65
K* 440 >100 >300 10.04

#Approximate value.

90T
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TABLE XXXIV

PERFORMANCE INDICES OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM,
CASE STUDY D8

Feedback Gain Performance
Matrix Used Index
Ka 4.01368
Ky 3.96699
K. 3.96593
K* 3.96592
TABLE XXXV

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF
THE SYNCHRONOUS MACHINE CONTROL SYSTEM,
CASE STUDY D8

(A+BK_C) (A+BK, C) (A+BK_C) (A+BK*C)
367 + j200 -385 + j194 -386 + j199 -386 + j199
-295 + j374 -283 + j378 -292 + j386 -292 + j386
-149.184 -136.787 -129.496 -129.580

-16.519 -17.430 -17.150 -17.139

-2.877 -2.927 -2.961 -2.963

-1.313 -1.261 -1.310 -1.311




TABLE XXXVI

FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS MACHINE

CONTROL SYSTEM, CASE STUDY D6

K*

-.1319

-.1319

-.1218
-.0643

-.1223
-.0700

-.0643

.0988

.0988
.0764

.1308
.0764

.1298
.0740

.5279

.5279
.2831

.4812
.2831

.4973
.2355

0

.2840

.1535
.2840

.1535
.3113

.1564
.3106

0

L4555

.2067
.4555

.2067
L4544

.1990
.4552

.9877

—
.5031
.9877

.5031
.0365

.5250
.0187

80T



TABLE XXXVII

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM, CASE STUDY D6

Feedback Gain Memory Number of , Execution Time Compilation Time
Matrix Obtained (K-byte) Function Evaluated” (Seconds) : (Seconds)
Ky 136 179 34 16.95
Kb 148 436 104 20.87
K. 164 534 134 26.09
K* 440 >100 >300 10.12

#Approximate value.

60T
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TABLE XXXVIII

PERFORMANCE INDICES OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM,
CASE STUDY D6

Feedback Gain Performance
Matrix Used Index
Ka 4.55949
Kb 4.18517
Kc 4.01546
K* 4.00669

TABLE XXXIX

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF
THE SYNCHRONOUS MACHINE CONTROL SYSTEM,
CASE STUDY D6

(A+BK_C) (A+BK, C) (A+BK_C) (A+BK*C)
-235 -171 + j335 -176 + j327 -175 + j323
-165 + j285 145 + j49 -131 + j51 -129 + j51

71 + j99 -77.54 -81.73 -89.39
-9.74 65 + j2.1 -18.91 -18.73

-3.98 -1.25 -2.94 -2.91
-1.08 -1.31 -1.30




FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS MACHINE

TABLE XL

CONTROL SYSTEM,

CASE STUDY S8

K*

.0620

.0620
.0725

.0688
L0725

.0689
.0676

1.0078

1.0078
.0879

1.0038
.0879

1.0031
.0908

. 5472

.5472
.1143

. 5469
.1143

. 5464
.1130

.9653

.9653
.0637

.9726

.0637

L9721

.0636

L2477 1.

. 3541 -.
. 2477 1.

.3541 -
. 2463

.3478 -
.2473

0026

0812
0026

0812

.9993

.0839
.9993

.5902

.1305
.5902

.1305
.6164

L1291
.6160

.9398

L4434
.9398

L4434
.9992

L4420
.9983

I1T



TABLE XLI

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM, CASE STUDY S8

Feedback Gain Memory Number of . Execution Time Compilation Time
Matrix Obtained (K-byte) Function Evaluated”™ (Seconds) (Seconds)
Ka 136 279 54.39 17.52
Ky 148 376 81.87 21.02
KC 164 452 103.41 25.29
K* 440 >100 >300 11.35

#Approximate value.

11



TABLE XLII
PERFORMANCE INDICES OF THE SYNCHRONOUS

MACHINE CONTROL SYSTEM,
CASE STUDY S8

\

Feedback Gain Performance
Matrix Used Index
K .0005780
a
Kb .0005720
KC .0005718
K* .0005718

EIGENVALUES OF THE CLOSED-LOOP SYSTEM,

TABLE XLIII

THE SYNCHRONOUS MACHINE CONTROL SYSTEM,

CASE STUDY S8

(A+BKC), OF
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(A+BK_C) (A+BK, C) (A+BK_C) (A+BK*C)
368 + j200 -385 + j194 386 + j199 -386 + j199
295 + j374 -283 + j377 292 + j386 292 + j386
-149.18 -136.80 -129.41 -129.58

-16.52 -17.43 -17.15 -17.15

-2.88 -2.93 -2.96 -2.96

-1.31 -1.26 -1.31 -1.31




FEEDBACK GAIN MATRICES OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM,

TABLE XLIV

CASE STUDY S6
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L1156

1156
.0859

L1133
.0859

.1149
.0945

.1057

.1057
.0660

L1352
.0660

L1337
.0633

-.4508

-.4508
.3986

-.3820

.3986

-.4017
.3352

.2918

.1672
.2918

L1672
.3440

.1746
.3379

L4613

.2183
.4613

.2183
L4778

.2135
L4745

.9555

L4784
.9555

L4784
0740
-

.5088
.0371




TABLE XLV

COMPUTER BURDEN OF FEEDBACK GAIN CALCULATION OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM, CASE STUDY S6

Feedback Gain Memory Number of u Execution Time Compilation Time
Matrix Obtained (K-byte) Function Evaluated” (Seconds) (Seconds)
K, 136 182 35 16.50
Ky 148 387 91 20.84
KC | 164 491 122 26.46
K#* 440 >100 | >300 10.95

#Approximate value.

STT
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TABLE XLVI

- PERFORMANCE INDICES OF THE SYNCHRONOUS
MACHINE CONTROL SYSTEM,
CASE STUDY S6

Feedback Gain Performance
Matrix Used , Index
K .0007028
a
Kb .0006082
K .0005931
C
K#* .0005913

TABLE XLVII

EIGENVALUES OF THE CLOSED-LOOP SYSTEM, (A+BKC), OF
THE SYNCHRONOUS MACHINE CONTROL SYSTEM,
CASE STUDY S6

(A+BK,C) (A+BK, C) (A+BK_C) (A+BK*C)
-209.92 155 + j360 167 + j339 -167 + j338
-158 + j292 -134 + j61 -107 + j56 -109 + j66
63 + j112 -73.15 -113.57 -104.24
-10.64 -10.68 -20.95 -20.58
-3.79 -5.10 -2.83 -2.84

-1.09 -1.24 -1.31 -1.30




TABLE XLVIII

COMPARISONS OF PERFORMANCE INDICES OF THE
SYNCHRONOUS MACHINE CONTROL SYSTEM

Dimension of Feedback Gain Performance Index
Output Vector Matrix Used Deterministic System Stochastic System
6 K, 4.55959 .0007028
6 Ky 4.18517 .0006082
6 K. 4.01546 .0005931
6 K# 4.00669 | .0005913
8 K, 4.01368 .0005780
8 Kb 3.96699 .0005720
8 K. | 3.96593 .0005718

8 K* 3.96592 .0005718

LTT



CHAPTER VI
SUMMARY AND CONCLUSIONS
6.1 Summary

The purpose of this research was to find a control de-
sign technique which does not require extensive off-line
computation. Such a technique is useful for the development
of interconnected power system control and other large inter-
connected control schemes. The control is required to be a
linear transformation of only some state variables which are
measurable. The performance index is an integral quadratic
type with infinite final time. In order to satisfy these
conditions the feedback gain matrix of the control must be
the solution of a set of nonlinéar matrix equations, called
necessary conditions, and it must stabilize the closed-loop
system. Usually a considerable effort is needed to solve the
necessary conditions. If the system is a large one, the
problem involved with calculation of the optimal feedback
gain is not trivial. A solution to this problem is obtained
by applying the technique developed in this research.

In this study the system is assumed to consist of two
subsystems. The interaétions between the subsystems are
functions of a coupling coefficient. When the coefficient

is zero the interactions are neglected and the two subsystems
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are independent. This makes the calculations using the sub-
system matrices possible. With the use of the coupling co-
efficient the optimal feedback gain matrix can be approxi-
mated by a finite term Taylor series expansion. The terms

in the series of the suboptimal feedback'gain matrix can be
calculated from sets of equations which are functions of
these subsystem matrices. If the number of terms is selected
properly the suboptimal approach potentially offers large
reductions in computationai requirements while introducing
only a small amount of performance degradation.

It is shown that the sets of equations used to solve for
the terms in the series for the suboptimal feedback gain has
a similar structure to necessary conditions of the optimal
feedback gain. Furthermore, the even derivative terms of the
series are of a-type and the odd derivative terms of the
series are of g-type. It is also proved that the nonzero
coupling coefficient has no effect on the feedback gain
matrix if the weighting matrix Q is of o-type.

Three numerical methods to solve the sets of the matrix
equations are developed. They are the iterative algorithm,
the DVDP minimization algorithm, and the residue minimiza-
tion algorithm. The iterative algorithm requires less com-
puter processing time but convergence to the right solution
is not guaranteed. The DVDP algorithm usually converges to
the right solution but it requires a longer execution time
and the result may not be very accurate. Furthermore, the

performance index to be minimized must be well defined. If
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it is not, for example in the case of necessary conditions
for derivative terms of the series of the feedback gain
matrix, the residue minimization algorithm can be applied.
This algorithm requires more processing time but a more
accurate result can be obtained.

The applications of the techniques to interconnected
power systems are studied. Dynamic models for the load fre-
quency control system and the synchronous machine control
system are developed. The optimal and suboptimal feedback
gain matrices are calculated and compared. The results show
that the suboptimal technique results in a closed-loop con-
trol system whose performance is almost the same as the
performance of the optimal system but it requires much less

computer burden.
6.2 Conclusions

The suboptimal control design technique presented
herein makes use of decoupling of the interconnected system
into smaller subsystems. By this method the difficulties in
solving the nonlinear set of necessary conditions as well as
the processing time and the rapid access memory requirements
for large scale systems have been greatly reduced. Even
though the technique is suitable for interconnected power
systems, it may be applied to any large-scale dynamic sys-
tems using a relatively small capability computer. The
choice of the coupling coefficient may be selected from a

physical parameter but it can be introduced as a computational
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tool. The dimensions of the two subsystems need not be equal
even though cecqual dimensions are used in this research.

Since the coupling coefficient of the interconnected
system can be chosen quite arbitrarily, it is felt that the
technique presented can be applied to a single large system
or a system consisting of more than two subsystems. This is
accomplished by dividing the system into two parts. The
validity of the suboptimalvtechnique to such a system offers
a topic for further investigation.

Three terms of the series of the suboptimal feedback
gain were uéed in this study and satisfactory results were
obtained for the eighth-order power system considered. How-
ever, a criterion to judge the number of terms of the series
required for a satisfactory performance of the closed-loop
system when the optimal performance is unknown is still open
for further research. One suggested method is by observing
the performance improvement when one more term is added to
the series. If the performance index is decreased only a
very small amount, this should be the indication that enough

terms have been used.



[1]

(2]

[3]

[4]

[5]

[e]

(7]

[8]

[9]

[10]

[11]

BIBLIOGRAPHY

Anderson, J. H. '"The Control of a Synchronous Machine
Using Optimal Control Theory." Proceedings of
the IEEE, Vol. 59 (1971), 25-35.

Athans, M., and F. C. Schweppe. 'Gradient Matrices and
Matrix Calculations.” Lincoln Laboratory Tech-
nical Note. Lexington, Mass., November 17, 1965.

Athans, M. '"The Matrix Minimum Principle."” Informa-
tion and Control, Vol. 11 (1968), 592-606.

Athans, M., and P. L. Falb. Optimal Control: An
Introduction to the Theory and Its Applications.
New York: McGraw-Hill, 1965.

Bellman, R. E. Introduction to Matrix Analysis. 2nd
edition. New York: McGraw-Hill, 1970.

Bellman, R. E. "Kronecker Products and Second Method
of Lyapunov.'" Mathematische Nachrichten, Vol. 20
(1959), 17-20.

Bohn, E. V., and S. M. Miniesy. "Optimum Load-Sampled-
Data Control with Randomly Varying System Disturb-
ances." IEEE Transaction on Power Apparatus and
Systems, Vol. 9 (1972), 1916-1923.

Byerly, R. T., F. W. Keay, and J. W. Skoolund. '"Damp-
ing of Power Oscillations in Salient-Pole Machines
with Static Exciters." IEEE Transactions on Power
Apparatus and Systems, Vol. 89 (1970), 1009-1021.

Calovic, M. '"Power System Load and Frequency Control
Using an Optimal Linear Regulator with Integral
Feedback.'" Proceedings of the Fifth IFAC Congress

(1972), Part 1, Paper 7.3.

Calovic, M. '"'Linear Regulator Design for a Load and
Frequency Control.'" IEEE Transactions on Power
Apparatus and Systems, Vol. 91 (1972), 2271-2286.

Cavin, R. K., M. C. Budge, and P. Rasmussen. "An Opti-
mal Linear Systems Approach to Load-Frequency Con-
trol.' IEEE Transactions on Power Apparatus and

Systems, Vol. 90 (1971), 2471-2482.

122



[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

[23]

123

Cohn, N. '"Control of Interconnected Power Systems."
Handbook of Automation, Computation, and Control.
Edited by E. M. Grabbe, S. Ramo, and D. E.
Wooldridge. New York: John Wiley and Sons, 1961.

Concordia, C., and L. K. Kirchmayer. '"Tie-Line Power
and Frequency Control of Electric Power Systems."
AITEE Transactions, Vol. 72 (1953), Part 3, 562-
568.

Concordia, C., and L. K. Kirchmayer. 'Tie-Line Power
and Frequency Control of Electric Power Systems--
Part II." AIEE Transactions, Vol. 73 (1954),
Part 4, 133-146.

Concordia, C. Synchronous Machines: Theory and Per-
formance. New York: John Wiley and Sons, 1951.

Conte, S. D., and C. deBoor. Elementary Numerical
Analysis: An Algorithm Approach. 2nd edition.
New York: McGraw-Hill, 1972.

Daniels, A. R., D. H. Davis, and M. K. Pal. '"Linear
and Nonlinear Optimization of Power System Per-
formance." IEEE Transactions on Power Apparatus
and Systems, Vol. 94 (1975), 810-818.

Davison, E. J., and N. S. Rao. "The Optimal Output
Feedback Control of a Synchronous Machine." IEEE
Transactions on Power Apparatus and Systems, Vol.
90 (1971), 2123-2134.

deMello, F. P., and C. Concordia. '"Concepts of Syn-
chronous Machine Stability as Affected by Excita-
tion Control." TEEE Transactions on Power
Apparatus and Systems, Vol. 88 (1969), 316-329.

DeSarkar, A. K., and N. D. Rao. '"Stabilization of a
Synchronous Machine Through Output Feedback Con-
trol." TIEEE Transactions on Power Apparatus and

Systems, Vol. 92 (1973), 159-166.

Elangovan, S., and A. Kuppurajulu. '"Suboptimal Control
of Power Systems Using Simplified Models.'" IEEE

Transactions on Power Apparatus and Systems, Vol.
91 (1972), 911-919.

Elgerd, O. I. Electric Energy Systems Theory: An
Introduction. New York: McGraw-Hill, 1971.

Elgerd, O. I., and C. E. Fosha. "Optimum Megawatt-
Frequency Control of Multiarea Electric Energy
Systems.'" IEEE Transactions on Power Apparatus
and Systems, Vol. 89 (1970), 556-563.




[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

124

Ellis, H. M., J. E. Hardy, A. L. Blythe, and J. W.
Skoolund. '"Dynamic Stability of the Peace River
Transmission System.'" IEEE Transactions on Power
Apparatus and Systems, Vol. 85 (1966), 586-600.

Elmetwally, M. M., and N. D. Rao. '"Sensitivity Analy-
sis in the Optimal Design of Synchronous Machine
Regulators.'" IEEE Transactions on Power Apparatus
and Systems, Vol. 93 (1974), 1310-1317.

Elmetwally, M. M., N. D. Rao, and O. P. Malik. "Ex-
perimental Results on the Implementation of an
Optimal Control for Synchronous Machines.'" IEEE
Transactions on Power Apparatus and Systems, Vol.
94 (1975), 1192-1200.

Fosha, C. E., and 0. I. Elgerd. "The Megawatt-
Frequency Control Problem: A New Approach Via

Optimal Control Theory.'" IEEE Transactions on
Power Apparatus and Systems, Vol. 89 (1970), 563-
577.

Gantmacher, F. R. The Theory of Matrices. New York:
Chelsea, 1959.

Glavitsch, N., and F. D. Galiana. ''Load Frequency Con-
trol with Particular Emphasis on Thermal Power
Stations." Real Time Control of Electric Power
Systems. Edited by E. Handschin. Amsterdam:
Elsevier, 1972.

Glover, J. D., and F. C. Schweppe. '"Advanced Load Fre-
quency Control.'" IEEE Transactions on Power
Apparatus and Systems, Vol. 91 (1972), 2095-2103.

Habibullah, B., and Y. N. Yu. '"Physically Realizable
Wide Power Range Optimal Controllers for Power
Systems." IEEE Transactions on Power Apparatus
and Systems, Vol. 94 (1974), 1498-1506.

Hancock, N. N. Matrix Analysis of Electrical Machin-
ery. 2nd edition. Oxford: Pergamon, 1974.

Hanson, 0. W., C. J. Goodwin, and P. L. Dandeno. "In-
fluence of Excitation and Speed Control Parameters
in Stabilizing Intersystem Oscillations.'" IEEE
Transactions on Power Apparatus and Systems, Vol.
87 (1968), 1306-1313.

IEEE Committee Report. '"Computer Representation of
Excitation Systems.' IEEE Transactions on Power
Apparatus and Systems, Vol. 87 (1968), 1460-1463.




[35]

[36]

[37]

[38]

[39]

L40]

[41]

[42]

[43]

[44]

[45]

[46]

125

IEEE Committee Report. '"Dynamic Models for Steam and
Hydro Turbines in Power System Studies.'" IEEE

Transactions on Power Apparatus and Systems, Vol.
92 (1973), 1904-1915.

Kimbark, E. W. Power System Stability: Synchronous
Machines. New York: John Wiley and Sons, 1956.

Kokotovic, P. V., W. R. Perkins, J. B. Cruz, and
G. D'Ans. "e-Coupling Method for Near-Optimum
Design of Large Scale Linear Systems.' Proceed-
ings of the IEE, Vol. 116 (1969), No. 5.

Kokotovic, P. V., and R. A. Yackel. '"Singular Pertur-
bation of Linear Regulators: Basic Theorems."
IEEE Transactions on Automatic Control, Vol. 17
(1972), 29-37.

Kwakernaak, H., and R. Sivan. Linear Optimal Control
Systems. New York: John Wiley and Sons, 1972.

Kuester, J. L., and J. H. Mize. Optimization Tech-
niques with FORTRAN. New York: McGraw-Hill, 1973.

Kwatny, H. G., K. C. Kalnitsky, and A. Bhatt. "An
Optimal Tracking Approach to Load-Frequency Con-
trol." IEEE Transactions on Power Apparatus and
Systems, Vol. 94 (1975), 1635-1643.

Levine, W. S., and M. Athans. "On the Determination
of the Optimal Constant Output Feedback Gains for
Linear Multivariable Systems." IEEE Transactions

on Automatic Control, Vol. 15 (1970), 44-48.

McLane, P. J. '"Optimal Stochastic Control of Linear
Systems with State- and Control-Dependent Dis-
turbances." IEEE Transactions on Automatic Con-

trol, Vol. 16 (1971), 793-798.

Mendel, J. M. '"Optimal Time-Invariant Compensators for
Linear Stochastic Time-Invariant Systems.' Pro-
ceedings of the 1974 Decision and Control Confer-
ence, Tucson, Arizona.

Miniesy, S. M., and E. V. Bohn. "Optimum Load-
Frequency Continuous Control with Unknown Deter-

ministic Power Demand.'" IEEE Transactions on
Power Apparatus and Systems, Vol. 91 (1972), 1910-
1915.

Moussa, H. A. M., and Y. N. Yu. "Optimal Power System
Stabilization Through Excitation and/or Governor
Control."” IEEE Transactions on Power Apparatus
and Systems, Vol. 91 (1972), 1162-1174.




[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

126

Newton, M. E., and B. W. Hogg. "Optimal Control of a
Micro-Alternator System." IEEE Transactions on
Power Apparatus and Systems, Vol. 95 (1976),
1822-1833.

Olive, D. W. '"Digital Simulation of Synchronous
Machine Transients.'" IEEE Transactions on Power
Apparatus and Systems, Vol. 87 (1968), 1669-1675.

Park, R. H. '"Two-Reaction Theory of Synchronous
Machines, Generalized Method of Analysis, Part
IT." AIEE Transactions, Vol. 52 (1933), 352-355.

Powell, M. J. D. "An Efficient Method for Finding the
Minimum of a Function of Several Variables with-
out Calculating Derivatives.'" Computer Journal,
Vol. 7 (1964), 155-162.

Quintana, V. H., M. A. Zohdy, and J. H. Anderson. '"On
the Design of Output Feedback Excitation Control-

lers of Synchronous Machines." IEEE Transactions
on Power Apparatus and Systems, Vol. 95 (1976),
954-961.

Raina, V. M., J. H. Anderson, W. J. Wilson, and V. H.
Quintana. '"Optimal Output Feedback Control of
Power Systems with High Speed Excitation Systems."
IEEE Transactions on Power Apparatus and Systems,
Vol. 95 (1976), 677-686.

Sannuti, P., and P. V. Kokotovic. 'Near-Optimum Design
of Linear Systems by a Singular Perturbation
Method." IEEE Transactions on Automatic Control,
Vol. 14 (1969), 15-21.

Schleif, F. R., H. D. Hunkins, G. E. Martin, and E. E.
Hattan. "Excitation Control to Improve Powerline
Stability.'" TIEEE Transactions on Power Apparatus
and Systems, Vol. 87 (1968), 1426-1433.

Shier, R. M., and A. L. Blythe. '"Field Tests of Dyna-
mic Stability Using a Stabilizing Signal and Com-
puter Program Verficiation.'" IEEE Transactions
on Power and Systems, Vol. 87 (1968), 315-321.

Sims, C. S., and J. L. Melsa. "A Fixed Configuration
Approach to the Stochastic Linear Regulator Prob-
lem." Proceedings of the 1970 Joint Automatic
Conference, Atlanta, Georgia.

Taylor, D. G. '"Analysis of Synchronous Machine Con-
nected to Power System Networks.'" Proceedings of
the IEE, Vol. 109 (1962), Part C, 606-615.




127

[58] Yu, Y. N., K. Vongsuriya, and L. N. Wedman. "Applica-
tion of an Optimal Control Theory to a Power Sys-
tem." IEEE Transactions on Power Apparatus and
Systems, Vol. 89 (1970), 55-62.

[59] Yu, Y. N., and C. Siggers. '"Stabilization and Optimal
Control Signals for a Power System.'" IEEE Trans-

actions on Power Apparatus and Systems, Vol. 90
(1971), 1469-1481.

[60] Yu, Y. N., and H. A. M. Moussa. 'Optimal Stabilization
of a Multi-Machine System.'" IEEE Transactions on

Power Apparatus and Systems, Vol. 91 (1972), 1174-
1182.




APPENDIX A

PROGRAM TO EVALUATE THE MATRICES IN THE
SERIES OF THE SUBOPTIMAL FEEDBACK
GAIN MATRIX USING THE

ITERATIVE ALGORITHM
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Y
4

4
c

TMIS PROGRAM FINDS THE SUBDPTIMAL FEEDBACK GAIN MATRIX
ITERATION ALGORITHM IS USED

c
CLIPIZV PRI T RPL80002000 0020200080800 020000200280000200000800002120247

OO0

INTEGER S1eS2471,T2

REAL KO11(10,10).%x012(10+10),K021(10,20!,K022(10,10)

REAL K112(10,10),K121(10,10)

REAL X211(10,101,X222(10,101}

DIMENSION Al1(10410)+A2(10,10)481¢10,10)+82(10,10),C1(10¢10),
C€2010410),01(20,101,02(10,10),01¢10+137,02(10,10),RL{10+10}¢
R2(10,10),V1(10,10),v2(10,20),A12(10,10),A21(10,10),Q12(10,10),
02110,10),PCL1(20,10),P012(10,10),P021(10,10),P022(10,10),
2011(10,10),2212(20,102,2021110,104,2022(10,10),
P211(10,12),P222(010,10)42211(10,10),2222¢10.10)
GTOL1(10+10)+57022(10,10),GT221C10+10)sGT112(10,10) &
RESPLL10+10)RESP2{12410),RESZL{10410)4RES22(10.10)s
RINVI(10410),RINV201D,10)

OIMENSION GO11{10,10),6022(10,102,G112(10,20),G1i21(10410),
GG211(10,191,667211(10,10),G6G6222{10,10),GG7222(10,10),,
2112010,1014212101L0010),P122(10,10),PL21(10410)¢
8T1(10,10).672(10,103,CT1(10,10),CT2(10,10},
X1(10+10)9%X2{10s10),Y1(10,10),Y2{10,10),
RESX1(12,12),3€ESK2(10,10),£2C1110,10),C2C2(10,10)

COMMON/AA/NL ML oSLaTLIN2 $M2,4524T2

COMMON/83/A1,42,412,A21+81,+B2,C1,C2,01402,Q1+0Q2,Q12,Q21,

= R1leRP2,V1,V2,K011:¢K022,K012,K021

COMM3%N/IS/ZISUB

COuMIN/DIFFL/K112,K121

COMMON/ODIFF2/K211,K222
COMMON/ZINV/ICHECK

LR B Y B N 4

L L 2R X 2N J

LIMIT1=30
LIMIT2=30
EPSIL=.5
1CHECK=D
EPSl=1,.E-5
EPS2x1.E-S
EPS3=.,001
NAh=4

00 1 I=1,4

DO 1 J=1,8

JI=J~-4

TFLJ.LE.4) READ(5,2) Al(1.d)
IF(J.GT.4) READ(S,2) Al2(1.,JJ)
CONT INUE

FCRMAT (20X, E2046)

D0 3 I=1,4

00 3 J=1.8

Jd=J=4%

IF{J.LE.4) READ(S.,2) A21(I.,J)
IFLJ.GT.4) READLS5+2) A2(1,3J)
CCNTINUE

MRITE INPUT

20

10
101
30
21

102

‘22

123
40

[3Xa¥a¥3)

WRITE(6+20) -
FCRMAT (*1SUBSYSTEM NUMBER 1%,///,

. 3Xe"1% e4Xe?Jt ¢8Xe ALY oL1OXe?BL 410X °CL® 920X *01%¢10Xe*QL%¢ 10X,

. *R1%910Xe*VL®y 10Xy K1)
DO 101 I=1,N1

WRITE (6,10)

FORMATY (1HD)

DO 101 J=1,N1

WRITE (6,20) 1'J-AI(I.J)'Blll.JlnCl(l-J).Dl(l-J'le(loJ).ll(l-le

b VI(L+J)sK011(L,3)

FORMAT(LH +134154+2X+8(2X+FL10e4))
WRITE( 6,21}

FORMAT(///7/4+* SUBSYSTEM NUMBER2',///,

. 3Xe' 1T 04X J® 98X e *A2' 410X+ "B2° 910X, *C2° 910Xy *D2°,10X,°Q2%, 10X,

L 'R2'410Xe*'V2'9 10Xs'K2")

D0 102 I=1,N2

HWRITEL6410)

00 102 J=1.N2

WRITE(6430) 19JoA20TedisB2(10J)eC2(103)0eD2000d),02(0ed),
. R2(1,4)sV2014J),K02211,J) .

WRITE(6,22)

FORMAT(/////+* COUPL ING MATRICES®,///¢
* 3XotI'e4Xe'JeBXeTAL2%49X, "A21" 49X e%QL2,9X Q21" )
DO 103 [=1.N1

WRITE(6,10)

00 103 J=1,N1

WRITE(6440) 1eJoAL2(014J)0A2101sJ04Q12(1sJ)0,Q2L(01,4)
FURMATIIH o13415,2X04(2X oF10.4))

CALL TRANSP(BLl#N1,S1.871)
CALL TRANSP(ClyMl1,N1,.,CTL}
CALL INVERT{RL1+S1.RINV])
CALL TRANSP{DI +NL,TL ,X1)
CALL MULT{VLIsX1,T1sT1,NL,X2)
CALL MULT(OL1¢X2,N1sT1,NLyYL)
NOTE  YL=0l*V]eDl

CALL TRANSP(B2,N2,S2.,8T2)
‘CALL TRANSP(C2,/M2,N2,CT2)
CALL INVERT(R2,S2,RINV2)
CALL TRANSPID2,N2,T2,X1)
CALL MULT (V2eX10T2,T2,N24X2)
CALL MULT(D2,X%X2,N2,T2,N2,Y2)
NOTE Y2=D2*v2%D2

DECOUPLED FEEDBACK GAIN

IsuB=1
CALL ZERD(A14BLsCLeD1eVLsQloR1oYLoBYL ¢CTLoRINVLIoNLoMLoSLeTL,

* K011,P011,20114G0O11,GTOLL)

15uB=2
CALL ZERJI(A2,82+C2+0241V2+Q29R2,Y29BT2,4CT2 4RINV2,N24M2,52,72,
- K322,P022,2022+6022,G6T022)

FIRST OERIVATIVE OF FEE)BACK GAIN

MMM=0

D0 210 I=1,N1

00 210 J=1,N2
AL2(1+J)=A12(1,4J)/EPSIL

6¢CT



211

NOOO

aon

225

230

00 211 Is=i,N2
00 211 J=1,\1
A2101 o 31=A21( 1o J2/EPSIL

FIND C2Cl.CZC2

CALL MULT(C1,20114M1,N1sN1oX1)
CALL MILT {X14CT1oMLoN2oMLoX2)
CALL INVERTUIX2,Ml1,CZC1)

CALL MULT (C242022,424N20 N2, X2}
CALL MULT(X1,CT2,M24N20M24X2)
CALL INVERT(X2,M2.C2C2)

1 TERATION LCOP

MMMx MMM ]

CALL 2Z1(K112.K121,A12,A21,B1,82,C14C2+G011sGT022,2011,2022¢
®  N1,MLoS1.N2,42,52,2112,RESZ1.G112+GTL21.ITERZL)

CALL ZZ1(X121,K112,A21,A12,82+814C2,C14G022,6T011,2022,2011,
* N2eM29S2/N1oM1oS1 42121 9RESZ2,G1214GTL112,1TERZ2)

CALL PPLIGT121.G112,P01L, POZZ'GTOII'GDZZ.OlZ.KOlchOZZvKlZ!.KllZl
. RLoR24CT14C2oNLsMLsSL sN29M24S24P112,RESPL,ITERPL)
CALL PP1(GT112,G121,P022,P0114GT022,G011,021,K022, KOlL-KllZpKlZlo
* R2,R1eCT2,C1aN2+M2sS2eNLoML1ySLyPL21,RESP2,ITERP2)

CALL KK1{R1,x011,C1sCT2,C2,2112,2022,8T1,P0OL1,PL112,NL¢ML,S1,
. N2 ¢M2,52,Y1,C2C2,RINV L)
CALL KK1(R2,X022,C2,4CT1+C1,2121,2011,8T2,P022yP121sN24M2+52¢
. NloM1,S1,Y2,C2C1sRINV2)

FIND RESIDUE OF X1

BIGR=0.

DO 220 !=1,S1

D0 220 J=1,M2
RESKL(T,J)=K112(1sd)¢Y1(1eJ)
RKK=ABS(RESK1(143))

BIGR= ANAXL(BIGR,RKK)

DO 225 I=1.S2

DO 225 J=1,M1
RESK2(1,J0=K121(1ed)¢Y2( 14J)
RKK=ABSIRESK2([4J))
BIGk=AMAX1{BIGR 4RKK)

WRITE OUTPUT

WRITE(6,230) MMM,BIGRs ITERZLoITERZ2,ITERPL I TERP2
FORMAT (*1 ITERATION NUMBER®, 15¢//¢
* MAXIMUM RESIDUE OF Kl'.EZO.&.II.
* NUMBER OF ITERATION USED:*,10Xe*ITER2112 =°4f4,10Xe
CITERZL2L ='414,10X,* ITERP1L2 =*,14,10X,*ITERP12L -'.!Q.II.
¢ FIKSY DERIVATIVE OF FEEODBACK GAIN'4///,
3Xe 1% 4Xe " "eIX, 2112,
QX RESZL® 410X o*2L21° 49X, *RESZ2* 410X, PL12% 99Xy *RESPL® 49X 1Xe
*P121%,9X, 'RESP2')
DO 240 I=1,NN
WRITE(6,10)
00 240 J=1,NN

‘nnnn
g

240
245
260

265

oo

(3 Xa X2l

270

N
~
w

woOoNn
-
o

o0 oo

X2

WRITE(60245) 190Jo2l12(T0J)oRESZIIToJ)02ZI22¢ o) RESZ2(L,3),
®  PLI2(LeJ)oRESPLII 4 J) e PL22UI 4 J) JRESP2(I o)
FORMAT(1X ¢ [3015,2Xe8(2Xs E12.5))

WRITE(6,260)
FORMATKLHI./-BX.'l'-41-'J'-?X.'6011'p9x.'61022'010X"Glll'
- 10X+°Gl21% 9X,*K112(N),* .4x."KllZ(N‘l)'oéX.'KlZl(h}'-4!.
- =KL12L(N+1) ")

D0 265 I=1,NN

WRITE(6,10)

DO 265 J=1.NN

WRITE(6/245) 19JeGOLI(TsI)9GT022(T ¢J) sGl12(143)¢Gl21(1sd),

T KLILZ2(Tad Do YLULod ) eKL2LtE,0)0Y20 1032

TEST FOR TERMINATION

[F(MMM.GELLIMITL) GO TQ 300
IFIBIGR.LT.EPSL) GO TO 300

UPDATE K1

ALFAsl,

IF(BIGR.LT.la) ALFA=,S

IF(BIGR.LT.1e) BIGR=1.

00 270 I=1,S1

DO 270 J=1,M2
K11201,J)=K112(1,J)~ALFASRESKL(],J)/816R
DO 275 I=1,S2

DO 275 J=1,ML

K121 1sJ)=K121(1,J)~ALFA*RESK2(I,+J)/BIGR
GO 70 250

SECOND DEKIVATIVE OF FEEDBACK GAIN

MMM=0
ITERATION LOOP

MMM=4MM+ ]

CALL MULT(K211+4C1oS1oM1,NLyX1)
CALL MULT(BLoX1oNLoeSL1sNL,GG2112)
CALL TRANSP(GG211,NL+N1,GGT211}
CALL MULT(K2224C2+52+424 N2, X1)
CALL MULT(B2,X1¢N2yS524N2+6G222)
CALL TRANSP{GG222,N24N2,GGT222)

CALL ZZ2(K211,B1,C1,2011,2121,2112,6112+67112.,G0O11,GYO0L1,
. NLyMLoS1oN2¢M2,52,GG211,GGT211422L1RESZL,ITERZL)
CALL Z221K2224824C€242022+21124212146121,GT121,G022.GT022,
- N2yM2,S2+NLeMLyS14GG222,G6T222422224RES22,ITERZ2)

CALL PP2(GGT2114GG2114POLL,PL21,P112,R14R2,G122,6T122 GTOLL,

* GI1l4CLoCTLoKOLLs K121 ¢K211yNLsM1oSL,N2,M2,52,P211,RESPL,] TERPL)
CALL PP2(GGT222,G6222,P022,P112,P121,R2,R1,G112,6T112,GT022,

- G022, C2,CT2,K022,K1124K222 N2 4 M2+ 529 N1, M1451,P222,

- RESP2, ITERP2)

0¢T
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CALL KX2{RL,RINV1,8T1,C1,C2,CT1,P212,P112,P022,201202222,2211,
®  K112,K011,CZC1eNLoML,S1eN2sM2,52,Y1)

CALL KK2{R2,RINV2,8T72,C2,C1,CT2,P222,P1214P022,2022,2112,2222,
. K121 +X0224C2C2+N2+M2¢524R1eMLsS10Y2)

FIND RESIDUE OF K211, K222

8IGR=0.

0Q 320 I=1,5S1

DO 320 J=1l4ML
RESK1(14J1=K211(T4J24YL(1,J)
RKK=ABS(RESK1(1s3))
BIGR=AMAXL {BIGRRKK)

00 325 1=1,52

00 325 J=1.M2

RESK2(I 4J1=K222(10J}¢Y2( )
RKK=ABS(RESK2(14J})
BIGR=AMAX1(B3IGR,RXK}

WRITE(6+330) MMM,BIGRy ITERZL1VITERZ2ITERPL,ITERP2
FORMAT(* LI TZRATICN NUMBER®15:7/,
. ¢ MAXIMUM RESIDUE OF K2°'4€20.64//y
b4 * MMDER OF ITERATION USED:*y 10X, "ITERZ211 =®,14,10X,
s CITERZ222 ="' 414,10X,* ITERP2LL =°,14,10Xs* ITERP222 =t,14e//s
. ¢ SELLND DERIVATIVE JF FEEDBACK GAIN'y///,
. 3X et 1' 04Xe'J"e9Xe "221 1" 99Xy *RESZL® 910X *2222%99Xs *RESZ2%,
. 10Xe 'P2L1" y9Xo*RESPLY 49X 1Xs* P222% 49Xs *RESP2")

00 340 I=1,NN

WRITE(6,10)

D0 340 J=1.KNN

WRITE(60245) 10J0Z21 1014 J)0RESZLITJ)02222(14J)4RESZ2(L0Jd)0
. P2L1UTsJ)oRESPLUT »J)sP222(1,J)4RESP2(1,J)

WRITE(6,360)
FCRYAT(LHLs/+3Xs " 1%s 4Xo?0*09Xy *'GG211°,8Xs 'GG222% 48Xy

. "K2LLUND? 06Xy =K21LIN#L1}® 45X P RESKL" 99Xy " K222(N)"4 6Xo

- *-K222(N+1)'+5Xs *RESK 2"}

DO 365 I=1,NN

WRITE(6410!

D0 365 J=1NN

WRITEL64245) 19JsGG2R1(1+J)¢G6222(1,J)9K211L 10D oY1 0d)o

. RESKIUI 2J) 9K222(1 9020 Y201+ J)sRESK2tI4J)

TEST FOR TERMINATION

IF(M4M.GELLIMIT2) GO TO 400
IF(BIGR.LT.EPS2) GO TO 400

UPDATE X2

IF(BIGR.LT 1) ALFA=,S

IF(BIGR.LT.1.) BIGR=1,

00 372 I=1,S1

DQ 370 J=L.Ml
K211(1eJ)=K2120 L s J)=ALFA®RESK1(]¢J)/BIGR
DO 375 I=1,S2

00 375 J=1,M2
K222(1,J)1=K222(1 ¢ J)~ALFA®RESK2(1,J)/81GR
GO 10 310

sToP
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SUBROUT INE ZERCCAsBs CoDs Vo Qo RoDVDo BT 4 CToR INVNsMoS,T,K,P,2,ABKCs

. ABKCT)
THIS SUBROUTINE FINDS DECOJPLED FEEDBACK GAIN

INTEGE® S,T

REAL K(10,10)

COMPLEX 22Z.wW

DIMENSION W(10)9222(10,10),%K(120)

DIMENSION ABKCT{10,10}

DIMENSION B8T{10+410)+CT{10,10) yRINV(10410) 4A{10,10),8(10,103,

. C(104103,0(10,20),V(10,10)4Q(10,20)0,2(10,10J,P110,201,2(10,100,
. DVO(10410) sX1(10¢10)4X2(10,10)sX3(10¢10)¢X4(10,20),ABKC(LO,10),

*  RESP(10,10),RESK(10,10)4RESZ(10,10)
COMMION/OULFFQ/ LIMITO,EPSO,IPKTO
COMMON/SL/HL,EPS
COMMON/Z1S71SUB

MMM=Q
MMM=MMM +1

FIND Z

CALL MULT(K:CoSsMsNsX1)

CALL MULTUB X1 oNoS,N,X2)

CALL ADD(A,X2¢NyNsABKC)

CALL TRANSP(ABKC,NyN¢X3)

CALL TRANSP{ABKC ,N.N,ABKCT)

CALL SOLN{X3,ABKC,0VD,NsNeZ ¢RESZ,M2)

FIND P

CALL MULT(R.X14SsSeNsX2)

CALL TRANSP{XL +S +NeX4)

CALL MULT(X4yX24NsSeNyX1)

CALL ADD(Q,XLyNyN,X2)

cact SULN(ABKC.XJ.XZ.N.NoP.RESP.HPl

FIND K

CALL MULTUZ,CT N.NoM.X1)

CALL MULT(CoX1oMoNsM,X2)

CALL INVEPT(X2,M,X3)

CALL MULT(X1oX3,NeM,yM,Xs)

CALL MULT(P,X4¢NsNsM,XL)

CALL MULT(BT4X1,S,NyMsX2)

CALL MULTIRINV X245, SeM, X4)

NOTE  X&=RINVEBT*P*2&(Te((CHZ&CT)on=1)

FIND RESIDUE OF K

BIGR=0.

00 1 I=1,$

00 1 J=1,M
RESK(1Jl=K(loddex4ll,d)
RR3ABSIRESK(I,J4))
BIGR=AMAX1(BIGR,RR)

I¢T



400

1600

LK 3L 2K 2R K N )

F

-

NRITE(6,10) MMM, MP,MZ,BIGR, 1SU8
FORMAT( ' LOUTPUT OF SUBROUTINE LERO®e///,
* ITERATICN NUMRER®y 1547776
* NUMBER OF ITERATION USED TO FIND P*e 15,77/,
* NUM3IFR CF ITERATION USED TO FIND Z'« 15477/,
¢ MAXIMUM RESIOUE OF K'4E15.64777s
* DECJQUPLED FEELBACK GAIN OF SUBSYSTEM NUMBER®4154/7//.
THO92X o "1 08X e ' oTXs *ZU14J) " o 7X RESZIT o) 4BX0*'P(I0J)®,
TXo'RESPIIVII o TXo KZUE0d) 99Xy "KET9J)*oTXy*RESKLT$UI ")
00 3 I=1,.N
WRITE(64,20)
FORMAT (1HO)
00 3 J=1.N
WRITE(6430) 1odeZlUed) sRESZ(IoJ)oPUIoJIoRESPITVJ) X404y
KUL1sd) o RESK(TyJ)
FORMAT(LIH +13415+2Xy7(2X4E13.6))

IND THE PERFORMANCE INDEX

CALL MULT(DVDsPsNsNoN,X12

PFX=0.

DO 300 [=1,N

PFX=PFX¢X1(I,1)

WRITE(6,500) PFX
FORMAT(//410(1H®) «5X,* PERFORMANCE INDEX =°%,E14.6)

TEST FOR TERMINATION

IF(MMM . GE.LIMITO) GO YO 400
IFIBIGR.LT.EPSO) GO TO 400

UPDATE K

ALFA=],

1F(BIGR.LTals) ALFA=,S5

IF(BIGR.LT 1) BIGR=1,

DO 4 I=1,S

00 & J=1,M

K{led)=K{1osJ)-ALFA®RESK( 1oJ)/BIGR

GU T0 100

1A=10

12=10

1J08=2

CALL EIGRFIABKCoNyIAo1JOBoWe2ZZoIZoWKo1ERD

WRITE(6+1600) WK (11 TER, (LeW(1)yIn1oN)

FORMAT(®1WK(1) =® yEL5.6077+" IER='4I104//
Bl Wl®e120")="42E15.64//))

RETURN

END
SENDLIST

AN



APPENDIX B

PROGRAM TO EVALUATE THE MATRICES IN THE
SERIES OF THE SUBOPTIMAL FEEDBACK
GAIN MATRIX USING THE MINI-
MIZATION ALGORITHM
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CLLEILLIZIZELLIIIIPPLIIPIPIEIEPRP270 2022200000220 00000220202000002002 107
[+

4
4

THIS PROGRAM FINDS ThE SUBOPTIMAL FEEDSACK GAIN MATRIX
THE COMBINATION OF ALGORITHMS IS USED

4
CLIZPLPITI0EI2800720070000 08080820 00800000828800002080020008280020002172007

LX)

oo

Ny

An e st

"Nt ae

[INTEGER S1.52,T1,7T2

OEMENSIOY A1(10,10),A2{104102¢B1010410)¢4B2(10+10)sC1(10s10),
C2(10+10),D1(10+1C)4D2(13+s10}+Q1(104+20),02(10410)+RLE10,10),
R2(10,10)4V1(10,10),V2(10,10)+A12010+10)+A21(10410)40L2(104+10)¢
C21(12,10),P011(10+10),P012(10,10),P021(10,10),P022(10,410),
4011(10,10) +2012(¢10,10)42021(10,10)+2022(10,10},
RESPI{10410),RESP2(10+10) yRESZL1L104103 ¢RESZ2(10,10)
P211(10,131,P222(10,10),2211410,1200,2222(10,10)
GTIL1(10,10),5T022(10410)+GT121{10,410),6T112(10,10)
RINVI(10,10),RINV2{10410)¢X(100),E(100},w{130)

OIMENSICON C2CL110410),CZC2(10+410) RESKLI(10+10)+RESK2(10+10),
8T10(10,10) ,872(10,10),CTL(10,1D0,CT2(10,i0),
Z112(10.103,2121(10,10),P112(10,10),P121(10410},
GOLL(10410),G022(10420),G112(10410)4G121(20,100,
GG2Ll1(10,10)+56T2110(10410),6G222(10410)+G6T222(10+10)¢
X1(10,13),X2(10,10),Y1(10,10),Y2(10,10}

REAL KO11(10,10),K012(10,10),X021(10,10),K022(10,10}

REAL X112€1C,101,K121010410)

REAL X211410,19),K222(1C.10)

COMM4ON/AA/ NLoHM1,514TL1eN2,42,524T2
COMMON/BB/ Al ,A2,A12 ,A21 .B1,B2,C1sC2,019D2,Q1,Q2,Q12,Q21,

. RLeR2,V1,V2

COU“MIN/CC/ PT1,BT2,CTL.CT2,RINVI,RINV2,CZC1.C2C2
CCMMON/DI/ 201142022 ,P011,P522,6011,6022,GT011.,67022
CCMMIN/EE/ 211242121,P112,P120,6112,6121,6T112.67121
CCUMIN/FF/ 2211,22224P2114P222,G6211466222,66T2114G6T222
CCMMON/DD1/ KOLl14K022

COMMON/EEL/ K112.K121

COMMON/FFL/ K211,K222

COMuON/IS/ZTSuUB

COVMUON/BIT/ E. ESCALE MAXIT, IPRINT,NI,NO

COMMON/ INV/ TCHECK

COMMON/CALC/ IDER

EPSIL=.S
ICHECK=0
EP31=.001
EPS2=,001
NN=4&
IDER=0

DO 1 l=l,4&

00 1 J=1.8

JI=J-4

1F(J.LE.4) READ(S5,2) AlLI.J)
1F(J.GT.4) READ(542) Al2(14JJ)
CONTINUE

FORMAT (20X, £20.6)

DO 3 =14

[aXa X' )

10
10l

21

102

22

[aFaY2¥s)

00 3 J=1,8

JdnJ=4

[F(J.LE.4) READ(S,2) A21(l.J)
1F(J.GT.4) READ(5,2) A2t1,JJ)
CONTINUE

WRITE INPUT

WRITE(6420)}

FORMAT(*1SUSSYSTEM NUMBER 1%,///,

- 3X o 1" eaXe"J0eBXe ALY 10Xe"BL0920Xe*CL 620X, 0L" »20X,°Q1¢ 510X,
. PRI 10X+ *VL®¢10X+*K1")

00 101 I=1,N1

WRITE(6,10)

FORMAT(1HO)

DO 101 J=1,N1

WRITE(6430) ToJpALUT,J)eBlUTIed)eClITed)eOL(Tod)eQLlLod)oRILINI),
b VLI(I¢d),KOLL(L,J)

FORMAT (114 4135 15,2Xs8(2XF10.4))

WRITE(6,21) .

FORMATY(//7///+* SUBSYSTEM NUMBER2',///.

* 3Xe 10, 46XetJ®eBX,y *A2° 410X, °B2%¢ 10X *C2910Xs*D2°410X,°Q2° 410X,
. CR2% ¢ 10Xe*V2?,10X.*'K2")

00 102 I=1,N2

WRITE(6,10)

D0 102 J=1,N2

WRITEC6430) [oJeA2{14J)eB2ULeJ)eC2(1+J)eD2(14d)+021143),

- R2U1,J1eV201s3)sK0220103)

WRITE(6422)

FORMAT{///7/7+* COUPLING MATRICES® ///
A 3X et 1" e4Xo ' eBXs "ALZ s 9X,"A2L1"¢9Xe"Q12% IX, 'Q21°)

00 103 I=1.N1

WRITEL6,10)

DO 103 J=1,4N1

WRITE(6,40) 14J,AL2014J) 0A21(1,J0) Q2201030502101 ,J)

FORMATULH »1341542Xs4{2X,F10.4))

CALL TRANSP(Bl+N1,S1,8T1)
CALL TRANSP(CLl,M1,N1,CTL)
CALL INVERT(RL+SLyRINVL)
CALL TRANSP(DIl.N1,Tl.x1)
CALL MULT (VL6,X1,TL,T1sNLeX2)
CALL MULT(Dl,X2sMN14TLoNL Y1)
NOTE Y1=Dl*v1sDl

© CALL TRANSP(B2,N2,52,872)

CALL TRANSP(C2,M2,N2,0T72)
CALL INVERT(R2,S52.RINV2)
CALL TRANSP(D2,N2,T2,X1)
CALL MULT(V2,XLsT2,T2,N2¢X2}
CALL MULT(D2,X2,N2+T2,N2,Y2)
NOTE  Y2=D2*v2«N2

DELCOUPLED FEEDBACK GAIN

1sue=1

CALL 2ERO(ALsBL,CloD1oV1eQLoR1oY1eBTL,CTLoRINVIINLIMLSLoT1,
* KOl11.P011,2011,G011,GTOLLY
CALLZERO9(ALsB1lyCLeD1+V1IsQLlsRLeYLoBTLCTL oRINVIoNLoML oS1oTL,
* KO11,P011,2011,G011,GTOLL)

vel



150 1SUB=2
CALL ZERI(A2,82,C2s02:V24020R2:Y2¢BT2,CT2oRINV2oN24M2,524T2,
. K022,P022+2022+G022,6T022)
CALLZERDG(A2,82:C2:02,¥2+Q2)R29Y2+9BT24CT2oRINV2oN24M2 S22
. KJ22,P0224202246G022,GT022)

FIRST DERIVATIVE OF FEEDBACK GAIN

ono

1 DER=]
00 210 I=1,N1
03 21J J=1,N2
210 AL2(1,J)=A1201 ) /7EPSIL
0J 211 I=1.N2
DJ 211 J=1.MN1
211 A21(14J)=A21(1.J)/7EPSIL

C

[+
CALL MULT(Cl,Z2011.ML4NLoNLoX1)
CALL MULTUIX1,CTLeMLl4NL ML,oX2)
CALL INVERT(X2,M1,C2C1)}
CALL MULT(C2,20224M2N2¢N2oX1}
CALL MULT(X1,CT24M24N2,M2,X2)
CALL INVERT(X2,M2,C2C2)

c

(4

NNN= (M18S1)+(N2°52)
NwWaNNN® (NNNE3)
D0 261 I=1,S1
00 261 J=1,¥2
Il=tl=-1)oM2¢y
261 X(I1)=K112(1,3)
DJ 262 1=1.52
DO 262 J=1l.M1
I1=(S1e42)+([-1)oM1ey
262 X011)=K121(014d)
CALL BOTM(X,EoNNNEF ESCALEs IPRINT ¢MAXIT,WoNIyNOoNW)

SECOND DERIVATIVE OF -FEEDBACK GAIN

cn0

10ER=2
0J 361 I=1.51
DO 361 J=l.M2
Il=(1-1)oM2+3
361 X(I1)=K211( 1 J)
D0 362 121,52
00 362 J=1l.M1
HI=(S1sM2)e( (=1)0M1eJ
362 X(I1)=K222(1,J0
CALL BOTMUXsENNNJEFESCALE+IPRINT ¢MAXITo WoNIoNOoNW?
STCP -
END
SUBRJUTINE CALCFX(NNNeX,F)
CRESUAINUNSVERGAVERANNANRIRARCOARBRAANANRRNRRARERRARERNERARABARAVNRRNNIR
c THIS SUSROUTINE CALLS UTHER SUBROUTINE
c TO EVALUATE THE PERFCRMANCE INDEX
COOPRTBUTRARuNACER BNt ERNNR NN NIRANRIRALNURREREERCANRRNIRCUREN RO ENARES
DIMENSION X(100)
COMMON/CALC/ IDER
TF(IDERL.EQ.O) CALL ZEROSS(NNNsXsF)
IF(IDER.EQ.1) CALL FIRSTUINNNsX,F)

IF(IDER,EQe2) CALL S ECONOINNN.X.F)
RE TURN
END
SUBROUTINE ZERO(A,BeCoDeVeQoReDVDoBToCToAINVINMSeToKsPoZo
. ABXC+ABKCT)
CORBEDNANNNENRRARAUNRRIRER RN AR SRR SRR AR ECRAVRRUN OO OONESIPORErUtEResens
c THIS SUSROUYINE CALCULATES DECOUPLED FEEDBACLK GAIN BY B8CTM ROUTINE

CHRCREA AN NNGARNNNN AR NN RV EN AN AR AN R AUV BOUENDEIELIERIIBER

INTEGER S,oT,SS

REAL K(10,10)

DIMENSION A(10,10)+B{10+10),C(10+10)y0(1J,12),V(10,102,0Q(13,10},
* R(10+10),DVD(10s201+sBTL10420)+CT(10,10),RINVIIO10),P(10+10},
. Z(10,10),ABKC(10,10), ABKCT(10+10),X(100),m{ 130).E(100}

DIMENSION AA{L10,10),88(10+10),CCCLO+10)+PP(10,10)sGC3(10,10),

. RR(10,10),D0VDO(10,10),AACC(10,10),AAZCT(10,10}

[4
COMMON/CAL/ AA¢BB.CC PPy QURR,DDVDDsAACC, AACCT s MMeSS e NN
COMMON/BCT/ EoFSCALEWMAXIT,IPRINT NI «NO
c
Do 1 I=1,$
00 1 J=1,M

11=(1-1)%Mey
1 XC1L)=K(I.3)

CALL EQUAL{A/NsNsAA)
CALL EQUALIBIN,S,88)
CALL EQUAL(CyM(N,CC)
CALL EQUALIQ,N¢N,QQ)
CALL EQUAL(R,S¢S+RR)
CALL EQUAL (DVD,NsN,DOVDD )

MM=M
$s=S
MN=N
NHN=MS
NW=NNN* (NNNe¢3)
CALL BOTM(XsEsNNN,EF sESCALE o IPRINT (MAXITs WoNE o NOoNW)
D0 2 1=1,S .
00 2 J=l.M
[I=(I-1)eMey
2 K(leJdd=X{IT)
CALL FQUAL(AACCoN¢No ABKC)
CALL EQUAL{AACCT,N,N,ABKCT)
RETURN
END
SUBROUTINE ZEROS55(NNNe X F) N
CHRBURNUBNRRNRNNNNAENARENERARN RN ARARERAREENNFRERNERERARENONOERONOENSS
4 THIS SUSBROUTINE CALCULATES OBJECTIVE FUNCTIONS
CHBRNRENUNNAANARRRNNNRA RN NN NCANRRRR AR RN AU SRR NNRARIRRE SRR ER008008 00
INTEGER S,T
COMPLEX Z+WeZN
REAL X(10,10)
DIMENSICN A{10,1C),B(10,10),C(10,10),P(10,10),Q(10,10)4R( 10,103,
€«  DVO(10,10)4X1(10,10)sX2(10,10),X3{10,10),X4(10,10)
DIMENSION W{10),Z2010410),WK({120)+RW(10)
OIMENSION ABKC(10+10),ABXCT (10,10}
DIMENSION RESP(10,10)
DIMFNSION X(100)
COUMMON/CALZ A4BsCoPsQoRyOVDs ABKCs ABKCT oMo SoN

S¢l



00 1 1=1,S
00 1 J=1,%
[lu(l=1)eMey
K{led)=X(I1)

e

CALL MULTIK,CoSoeMoNoXL)
CALL TRANSP{X1,SsNeX2)
CALL MULT{R¢X1eS.5¢,NsX3)}
CALL MULTIX24X3oNeSeNeXS)
CALL ADD(Qe X% NyN,X3)

CALL MULT(BsX14sNeSeN»X2)
CALL ADD(A,X2,NyNABKC)
CALL TRANSP{ABKC,N.N,ABXCT}

CALL SOLN(ABKC,ABKCT ¢X39 NoNePoRESP,MP)
CALL MULT{DVO+PsNeNoNsX1)

£=20.0

00 2 I=sl.N

F=Fext(I, 1)

FIND EIGENVALUES

[aXa Xl "]

1A=10
12=10
1300=2
CALL EIGRF(ABKCoNsIATJOBeWeZo1ZsWKeIER)

EIGMAX=0 .
DO 53 I=1,N
Rall)=REALIWII))
50 IF(RW(1).GT .EIGMAX) EIGMAX=RW(I)

. FxF+(EIGMAX*10.E20)
100 RETURN
END -
SUSROUTINE ZERCI(A«ByCoDsVeQoRoOVO s BT ¢ CToRINVNeMeSeToKePoZoABKC,
* A3KCT)
COPOURPEN AT dRauRAONEAASRINRERNNR A RRRRNRENNNRRAENUNN AR RARNERERNONANN
c TA1S SUBRCUTINE FINDS DECOUPLED FEEDBACK GAIN BY ITERATION METHOD

CORNANREXNS AR ANNUNNERONARNIRBANANENRENRRRRNARNR IR RN AR RNARNRENRAN AR

INTEGER SoT

REAL {10,100

COMPLEX 2ZZW

DIMENSICN BT(10,10)+CT¢10,20)4RINV(10+10)¢AL20410),B(10+10},

* C(10,10),0(10,10),V(10,10)4Q(10,10)+RU10¢10}+P(10+s10),2(10+10)»
b4 DVO(10410)+X2(10s10)¢X2(210¢20)sX3(10,10)¢X4(10410) +ABKC(10,10),
. PESPL10,10) (RESK( 1041 0)4RESZ(10,10)

DIMENSIOV A8KCT(10.10)

DIMENSION W(10),222(10,10),WK(120}

COMMON/OLFFO/ LIMITOL.EPSO,IPRTO

COMMON/SL /H EPS

COMMON/ 1S/ TSUB
(4
M4M=0
100  MMM=MMM+L
[4
4 FIND Z
[4

CALL MULT(KoCsSsMiNoXL)

CALL MULT(BoX1leNeSoNeX2)

CALL ADD(AsX2+NeNoABKC)

CALL TRANSP(ABKCoNyN,X3)

CALL TRANSP(ABKC+NsN,ABXCT)

CALL SOULNI(X3,ABKC,OVC/NeNyZoRESZeMZ?

FIND P

[aXaNal

CALL MULT(R.X1¢SeSsN.X2)

CALL TRANSP(X1l+SeNeXo}

CALL MULT({X4yX2¢NsSeNsX1)

CALL ADD(QsXLoNyNoX2} .
CALL SOLN(ABKCsX3,X2:NoNsPoRESPMP)

FIND K

o000

CALL MULT(Z,CT,NosNoMeX1)

CALL MULTIC.X1oM,NiMeX2)

CALL INVERT(X2,M,X3)

CALL MULT(X19X3eNoMoM,Xé)

CALL MULT(PyX4oNyNoMoX1)

CALL MULT(BToX1sSeNoMX2)

CALL MULT(RINV.X2sSsSeM, X4}

NOTE  X4=RINVEBT#PaZ#CT# ((CH2#CT )ee=~1)

FIND RESIOUE OF K

[a XX s Xal

BIGR=0,

0O 1 i=1,$

DC 1 J=1l,M
RESK{I,J)=Kl1sJ)eXel 1,J)
RR=ABS(RESK(1sd1)
BIGR=AMAX1{BIGR,RR)

WRITE QUIPUT IF IPRT=}

[aXaNal ol

IF(IPRTO.NE. L1} GO TO 200
WRITE(6,10) MMM,MP,MZ,BIGR,ISUB
10 FORMAT(*10UTPUT OF SUBRUUTINE ZERQ®.///,
* ITERATION NUMBER'.15¢/7/,
* NUMBER OF ITERATION USED TO FIND P*. 15,77/
* NUMBER OF ITERATION USED TO FIND 2%, 15¢/7/s
' MAXIMUM RESIDUE OF K*yEL5.6¢7//¢
¢ DECOUPLED FEEDBACK GAIN OF SUBSYSTEM NUMBER®41S5,/7/,
IHO 2X o 1% 34X ot J* o TXe 20T oJ) 97X e RESZ(19J)*e8Xe*PlIoJ)%
TXo *RESPII I3 g TX e KZUTod)* 9Nt KL oJ) * 4T Xe *RESK(T0J)°)
00 3 I=1.N .
WRITE{6,20)
20 FORMAT ( LHO)
DO 3 J=1.N
WRITE (6,300 43,2010 3)sRESZII0J)oPlIoSI,RESPLISSIeXGl10d)y
» K{1,J3),RESKLT,d)
] FORMATILH 213415,2XeT(2X+EL3.6))

LR 2R IF 3L BF BF J

FIND THE PERFORMANCE INDEX

oW W

CALL MULT(DVD,P¢NyNoNoX1}
PFX=0. .
00 300 I=1,N

300 PFX=PFX+X1{1,1)

9¢1



WRITE(6.,500) PFX
200 FORMAT(/7,10(1H*}45X¢* PERFORMANCE INDEX =?,E14.8)

[4 TEST FOR TERMINATION

TF{MMM.GE.LIMITO) GO YO 400
IF(BIGR.LT.EPSO) GO TO 400

UPDATE K

00 ALFA=l,

OoONnNONO

IF(BIGR.LT.1.) ALFA=,05
IF{6IGR.LT.1.) BIGR=1.
DO 4 [=1,§
DO 4 J=1loM
4 Kl s3)=K(IsJ)~ALFARRESK(I4J}/B1IGR
50 10 100
400 14219
12=10
14CB=2
CALL EIGRFIABKCoN, IA,1JOBoWeZ2Ze1ZoWKIER]
WRITE(6,1600) WKL)y IERy (1oW (K)o I=1eN)
1600 FORMATU® IwK( L) =% EL5460//+* IER='41104//
b4 ALY W('el24°)=232E15.647/7))
RE TURN
END
SUBRJUTINE FIRSTINNN,X,F)
COBRBUERZUYRARIRRORRNBRRARRTUARNEUNNNERNANNENRRRERRARR RN ANRARERARANER
[4 TH1S SUSROUTINE FINDS THE FIRST DERIVATIVE TERM
CORBIRIRNUUNRAUAIUBUNT AR NUNTNENENNARRTNRRNRNRRNE IR ANNREIRARNERNONNR AN
IMTEGER S1e52,T14T2
REAL KO11(10+1004K022(10,10)K112(10,10),K121(10.,10}
OIMENSICNX(132),A1(10,10),42(10,10),A412(10,10),A21(10410),
Bl(10.,10)+82(10+10),C1(10,10),C2(10,10)+01(10,10),02(10+10),
QL(10+10)+22(10410)+sR1{10+1024R2(10410),v1(10,10)4V2(10,10),
BTL(10,10)48T2(10,10),CTL(10410)+CT2(20,10),
RINVIL10,10),RINV2(10,10),C2C1¢20,10},C2C2(10410),2011(10,10),
20221(10,10),P01(10,10),P022(10,10)+GO11L10,10)6022¢10,10)¢
GTOl11(10,101,G7022¢10,10)42112(10,10),2121(10,10)4P112(10.10)+
P121(10,10),G112(10,10),6121(10,10),6T122(10,10),GT121(10,10},
WEIGHT (104,100,¥Y1(10,102,Y2(10,10)
OIMENSION RESZ1(10,10),RESL2(10,10)RESPL{10,10},RESP2(10,10)
DIMENSION Q12110,10),021(10,10}
CCMMON/ AA/ N1 o41loS14T1oN2,M2,52,T2
COMMI~/BB/ Al+A2.,A12,A2},81,82,C1.C2,01,02,Q1,Q2+Q12,Q21,
. R1.R2,V1ev2
CCM¥4IN/CC/s BT1,BT2,CT1.CT2,RINVI,RINV2,02CL,C2C2
CCMMON/UD/ 2011+2022,P011,P022,6011+6022,6T011,67022
COMMON/EE/Z 2112,2121,P112,P121.6112,G12146T112,67121
CCMMON/DDL/ KOLL,KO22
COMMON/EEL/ K112.K121
COMMON/Ww/ WEIGHT
DO 10 I=1,51
00 10 J=1,M2
ITa(l-11%42+4J
to K11201,d)=x(11)
02 20 I=1,52
00 20 J=l,M1
FI=(SLlsM2) e (L--1)*ML1ey

LK 2 K B K B BN )

20 K121t l.d)eX0L])
c

CALL Z21(K112¢XK1210A12,A21,81482,C14C2,G011,G7022,201142022,
. NLoMLyS1oN2,M2¢5202112,RESZL4GLL2,GTL21,1TERZL)

CALL lll(KlZloKllZyAZlquZoBZoBloCZ.CIoGDZZ-GYOll-ZOZZolOll.
* N2,M20S2,N1sM1eS1eZ1211RESZ2,G1214GT122,1 TERZ2)

CALL PPLIGTL21+Gil2+POLLP0224GT0L11460220Q12,K0114K022,K2224K2120
* RLWR24CTLoC2oNLoeMLlySLl sN29M24524PLLI24RESPLGITEKPL)

CALL PPL(CT112.,6121,P022+P011.GT022,G911+0214K022+K01LeK1129K122y
* RZyRL4CT20C1sN29M2452 4 N1y MLoS1oPI21)RESP2,ITERPP2)

CALL KK1(R1,K011,C1,CT72,C2,2112,2022,8T1sPO0L1+PL124NLoMLoS1,
* N29M2452,Y1,C2C24RINV )

CALL KKL1(R2,K022,C2,CTLsCLs2121,20114BT2,P022,P1214N2+M2,52,
* NL1yM1,SLsY2,CZCLeRINV2)

Fl1=0.

F2=0.

00 220 I=1,S1

D0 220 J=1,M2

FFE=xX112(1,3)¢YLLL.d)

F1=FL+FFF*FFF*WEIGHT (1,3}

220 CCNTINUE

DO 230 1I=1,52

DO 230 J=1,M1

FFF=K121(1,J)eY2(1,J)

F2=F2+FFF*FFF*WEIGHT(1,J)

230 CONT [NUE

F=Fle¢F2

RETURN

END

SUEROUTINE SECOND(NNN, X, F)

Clll'ﬁlﬂﬁ#l#l##ll#d’ﬂﬂll!#‘ﬁllﬂ!ﬂ'!l#llﬂll'l'llllll'llll'llllll'llilllll

C THIS SUBRUUTINE FINDS THE SECOND DERIVATIVE TERM

CUNBRENHARRRUNNNRNANNGRNRE KENE NN U UAARGON NN ENRARNRNR AR SN EREsNERg RS

INTEGER S14524T10T2

REAL XO11(10, lO)oKOlZ(lO'XOD-KIIZ(10'10).K121(10010)

REAL K211(10,10),K222(10,10)

DIMENS [ONX(100),A1(10,10),A2010010),A12(210,1C),A2L(10610}¢
B1(10.10),82(10,10),C1(10+10),C2(10,12),01(10,104,02(10,10),
QI(10,10),Q02(10,10),R1(10,10),R2(10,10),V1(10,10),v2(10+10),
Br1(10,10),872(10,10),CT1(10,10),CT2(10,1C}.

RINVL(10,10) JRINV2(19,10),C2C1(10,10),C2C2110,10),2011(10,10),
2022(10,10),PO11(10,10),P022(10,10),6G011¢(10,10),6022(10,10)+
GTO11(10,10),GT022(10,10),2112(10,10042121110,10)4P112(10,10)
P121(10,10) ,G112(10,10),G121(10+,10},GT112(10,10),6T712L(10,20),
WEIGHT(10,10),Y1(10,10),Y2(10,10)

OIMENSION RESZ1(10+10),RESL2(10+10)+RESPLLL0,10),RESP2(10,10)

DIMENSIUON Q12(1C,10),321(10,10)

DIMENSIUN 2211(12,10),2222(10,10)4P211(10410),P222(10,10),

* 35211110,10)466222(12,10)+¢66T211(10+12),GGT222(10,10),X1820,10)

COMMON/AA/ N1oeML,S1,TE/N2/M24524T2

COMMUN/ BB/ Al,A2,A12,A21,B1.82.CL1,C2,01,D02,01,Q2,Q012,Q21,
. R14R2,V1,V2

COMMON/CC/ BTL,BT2,CT1,CT2,RINVLILRINV2,02C1,C2C2

COMMON/ DD/ 2011420224P0114P2224G0114G022,6T10114GT022
COMMON/EE/ 2112,2121,4P112,P1214G112,G121,6GT7112,6T121
COMMON/FF/ 2211422224P211,P222,66211+66222,66T211,6GT222
COMMUN/ODL/ KO11,K022

CUMMON/EE L/ K112,K121

COMMON/FF1/ K211,K222

*RRRR R

LET



10

20

oo

229

230

COMMON/WW/ WEIGHMT

00 10 I=1,S1

00 10 J=1,M2
I=tl=1)eM24y
K2L1t1eJ)=x(ID)

03 20 1=1,52

DO 23 J=1l,M1
11=tS1eM2) (11 )0MLey
K222t 1, J)=x(11}

CALL
CaLL
CALL
catt
cactt
CALL

CALL ZZ2(K211,81,C1¢2Z01142121+22112.62124GT112,6G021,GT012,
. NLoMloS1oN24M2,52+6G211¢GGT21142Z212,RESZLWITERZL)

CALL ZZ2(K2224B2,4C24202242112+2121+G121+GT1214G022.GT7022,

®  N2,M2.524N1vM1,51+6G222+66T22242222RESZ241TERZ2)

CALL PP2(GGT2114G6211,P)1L,P121,P112,R1¢22,6121,GT121+6T01L
» SOL11,CL,CT1eKOLLoKL2L sK21 1o NL oML oS1aN24#2,524P211,RESPL,ITERPL)
CALL PP2(G5T1222,66222,P022,PL12+P121.R24R1,6112,GT112,G7022,

. G222, C2+CT2yKQ22 yK1 12/ K2224N24M25 S24N1sM1y5S14P222,

MULT (K2114CleS1eMlo NIy X2}
MULT(BLsX1oNLeS1sNLsGG21L)
TRANSP{GG21LeN1oNL,GGT211)
MULT (K2224C2+52+M2)N2o X1)
MULT(B24XLeN24S2,N2,GG222)
TRANSP(GG222,N29N2,GGT222)

. RESP2, 1 TERP2)

CALL KK2{R1,RINV1+BT1,C1,C2,CT1,P211,PL12,P011+201L,2121,221L»
. KL124K0LLoCZCL oNL sMLoSLeN2eM2452,Y1)

CALL KK2{R2,KINV2,BT2,C2,C1sCT2,P222,P121,P022,202242112,2222¢
. K121eK022,C2C20N2+M2+ S2)N1sML1sS14Y2)

F1=0.
F2=0.

02 220 I=1,S51

DO 220 J=1,M2
FFFeX211{1,J)¢Y1ULWJ)
Fl=FL¢FFFeFFFe¢WEIGHT(L,d)
CONT [NUE

00 230 I=1,52

00 230 J=1,MlL
TFFF=X2220i,J)eY2(1,3)
F2aF2¢FFFSFFFaNEIGHT (1,J)
CUnT INUE

FxFL+F2

RETURN

END

SENDLISY

8¢l



APPENDIX C

PROGRAM TO EVALUATE THE PLANT MATRIX "A"
OF THE SYNCHRONOUS MACHINE
CONTROL SYSTEM
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CLITEPIIIEELEII 22000020202 0028802080020020002800880020200000020720200200217

[4
c

(4
CLIEZENIPIRIIIE202000080080008 8808080008008 20807000000222008000022070007

(X2l

THIS PROGRAM FINDS THE MATRIX A OF THE SYNCHRONOUS MACHINE SYSTEM

REAL J1(10s100,32(106103,J3(1200120)4J4(20,10)IMAT(4s4),

. KO oXO2 oKEL o KE241D1e1D20 1019 1Q2¢114120KA19KAZ,KBLoKB2

. oIMUL0) INILIOY

DIMENSION Al(10410).A010,1004B(20410)+C(10,10)4E(L0+10)+G(10,10),

. RI1J4101,5(10419)sJFL(1Is12),DF2{10+12),DFT1(20,10)sDFT2(10,10)

- oTULD,10) o TTIL10) TT2(10) 4X1(10+10)eX2(10,10)¢X3(10,101,

. FOLOWID)eFTLLO010)e YL 10010),VM(L0),VNIL10)4FYF(104103,

. Xe(10+10)+X5(10.+10)

DATA Y¥/.823,-60492+~222943.986,=0125,2.49,:4%*0.
60492+ 48239-3.9300-42391-2.49:-412544%0.¢
“e239+3.986,1.142,64339¢-212+1.99,4%0.,
~3.9860-0239¢6.339,1.1420-1.99¢-.12,4%0.0
=el25020494-012+1499¢ s245¢-%.48,4%0.,
~20490=a125¢=12994-012+9.484.265+44%0./

e

DATA KAL +KA2,KBL,KB2/4%,5/

DATA V1,V2,TETAL,TETA2/1.05,1.4.087266,.052367
DATA H1 KOl KELsTELsTHL/54+4003,15.0010055/
DATA H24KD2 ¢KE2yTE2,TM2/3.24400141000s 4080 435/
DATA VI14VT2,VT3/1.05¢1a0le/

DATA JleJd2+334J%99[MAT/400%0.,16%0./

DATA ALy24BsCeEsGoR/TIO®0./ N

DATA S,OF1,DF2,0FT1,0FT2/500¢0./

DATA XFLoXFOL,XD1,XULsRF1/1450e901alee85,4001/
DATA XF2eXFO24XD20XQ2+RF2/1447914339142+107+.0016/
DATA L1,L2,L3,L44L5,L64L10/142030445+648/

DATA WD/376.991/

DATA M(K/6417

DATA F/100%0./

VNU1)=V1#COSITETAL)

VN(2)1=V1*S INITETAL)

VN(3) =v26COS(TETA2)
VNU4)=y2*SIN(TETA2)

VN(5) =1,

VN(6)=0. .

CALL MULT (Y VNoMoM, Ko IN)

BETAL=ATAN2 (IN(2), INUL )Y
BETA2:ATAN2(IN(4),IN(3))
Zx(INTL)*22) ¢ INL 2)#%2)

11=SQRT(2)

Z=(IN(3)*e2) ¢ (INl&)®e2)

122SQRT(2)
21=(VI*COS(TETAL))-(XQ1*I2®SIN(BETAL))
21=-21
22=(V1*SIN(TETAL))+(XQ1*11*COS(BETAL))
DELL=ATAN2(2L+22)

21=(V2¢COSITETA2) )=(XQ2¢#[2¢SINIBETA2) )
I1=-21
Z2=(V2*SIN(TETA2) )+ (XQ2#12+COS(BETA2))
DEL2=ATAN2(Z1,22)

F(l,1)=COS(DELL)

15

0
20

23

26

c
c

Fl1.,2)=SIN(DELY)

Fl2+1)=~F(1,2)

F(2,2)=F{1,1)

F(3.,3)=COS(DEL2)

F(3,4)=SIN(DEL2)

Fléy3)==F(3,4)

Fla,4)=F(3,3)

F(5,5)=1.

Flos6)=1.

CALL TRANSP(F,M,MsFT)

CALL MULT(FoY M, MMy X1)

CALL MULTUXLoFT,UeMoMFYF)

CALL MULT(F VN,MoMoK,VH)

CALL MULT(FYF VMM, M,K, IM)}

WRITE( 6415}

FORMAY (1HLo10Xe* 109 IXs *VN" o 18XoIN®oL8Xe® VM® o18X,°IN®)
D0 10 I=l,M

WRITE(6.90)

FORMAT {1HO)

WRITE(6420) ToVNILDoINCID ,WMLLI),IM(Y)
FORMAT(110,4E20.6)

VDl=vM(1}

vVQl=VM( 2}

VD2=vM(3)

VQ2=VMi4)

1D01=1M(1)

1Q1=1M(2)

1U2=1M13)

10221 M(4)

PSIDL=vOl

PS1Q1=-VOL

PSID2=VQ2

PS1Q2=-vD2

WRITE (6425) T0le101e1D241Q2
FORMAT(///77/+* 101m%¢ ELl3060e/0/¢® 1Qlm®EL13.60//¢° 102=°,£13.64//0
* ' [Q2=',E13.6)

WRITE(6426) VDl,VQLeVD2,VQ2
FORMAT(////7¢% VOL=*4EL3.6//4° VQla®,E13,64//¢° VO2=* sE13.6.//
* ' VvQ2=',E13.6)

Al(ls2)=1.
AlL(242)=-WO*KDL/(2.%H1)
Al(3,3)=-1./TE]L

Al (4.3)=%0

AlL(5,6)=1,.
All6,6)=-WO*KD2/(2.%H2)
Al(T,27)=-1./TE2
Al(B,7)=v0
Bl1le3)=KEL/TEL
B(2,7T)=KE2/TE2
Cl2+2)=-W0/(2.%H1)
C(3,3)=-KEL/TEL
Clasl)=~HO*PF]
Cl6,5)=-W0/(2.%H2)
Cl7,6)=-KE2/TE2
C(8,4)==40%RF2
Ellel)=1./XF1
E{2+1)=101*XFOL1/XF]
E(3+1)=VQL*XFDL/(VTL1#*XFl)

ovl



E13,2)=C{VQL1*PSID1)=(VDL*PS1IQL) )/ VTLoNO)

El4e3)=l./XF2
E(5:,3)=1Q2*XFD2/XF2
El643)=(VQ2*XFD2)/{VT2eXF2)

E(6+4)=((VI2ePS1D2)-(VD2*PS1Q2) )/ LVYT2:0)

Gt le1)=XFD1/XF1

Gl2,1)=(1Q1*XFOL*XFDL/XF1)-{1QL*XD1)-PSIQL

G12+21=PSIOL+L10LexXCL)

GL3¢1)=((XFOL1*XFOL1/XFLl)=X01)*VQl/VT]

G(342)=VDleXILl/VT]
Glay3)=xFD2/XF2

Gi5+3)=(132*XxFD2¢XFD2/XF2)-{1J2%XD2)~PSIQ2

G(5,6)=PS1D2¢(102%xQ2)

Gl&643)=((XFD2*XFD2/XF2)-XD2)*VQ2/VT2

Glé,4)=VD2%XQ2/VT2
R{1e2)==PSICLl/40
R{2¢1)=XFD1/XF]
R(2,2)=PS1ID1/%D
R{3,4)x-P51C2/wW0
R{443)=XFD2/XF2
R{4¢4)=PS1D2/W0

S(1,2)=XxQ1 .
S(2,1)=( XFO1*XFD1/XF 1)=XD1
S(3,4)=Xx02
S(4,3)=(XFD2*XFD2/XF2)-XD2

OF1(1+1)==SIN(DELL)
DF1(1.,2)= COS(DELL}
DF1(2,1)=-COS(DELL)
DFL1(2,2)==-SIN(DELL)
OFTI{1,1)=-SIN(DELL)
OFT1(1,2)=-COS(DELL)
OFT112,1)=CIS(DELL)
OFT1(2,2)==SINIDELL)

DF2(3,3)==SIN(DEL2)
DF2(3,4)=CCSIDEL2)
DF2(4,3)=-COS(DEL2)
OF2(4,4)==-SINIDEL2)
OFT21(3,3)=-SIN(DEL2)
DFT2{3,4)=-COS(DEL2)
DFT2(4,3)= COS{DEL2)
DFT12(4,4)3-SINIDEL2)

Jllle,4)=1,
Jl(2.2)=1,
Jl(3,8)=1,
Jl(4sb)=l.
Ja(l.1)=1.
J2t2,5)=1.
J3(l,1)=1,
J3(242)=1.
4303,.3)=1.
EERETEDLD Y
Jallel)=1,
Jal2,2)=1,
J4(303)=1.

[aXs X3

[aXa¥2]

aon
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[aXeXs]

[a¥aNal

JAlA4) =2,
IMAT= IDENT ITY MATRIX

IMAT(1e1)=1,
IMAT(2,2) =1,
IMAT(3,3) =1,
IMAT(4,4)=1.

FURM MATRIX T

CALL MULT(F, Yol 6eLlBoL6sX1)
CALL MULT{YsFToL6sLE oL6sX2)

CALL MULT(DFloX2,L6eL6,L6,X3)
CALL MULTIXL,DFT1,L6+L6sL6IXA)
CALL ADOU(X3,X4sL64L6,4X5) .

CALL MULT{X5,VMsLE,LEILL,TTL)

CALL MULTI(DF2+X2,L6sL6¢L6sX3)

CALL MULT(X1,0FT2,L64L6sL6, X&)}
CALL ADD(X3+X4,L6,L64X5)

CALL MULTI(X5)VMsLOsLOsL1,TT2)

DO 100 I=1,tL6
TCLL)=TT (L)
T(l.2)=TT2(1)

CALCULATE JFYFJRI®ITY

CALL MULT(J3.FYF,L4,L6,L64X1)
CALL MULT(X1leJésL4sLbsL4,X2)
CALL MULT(X24RoL&sL&,yL4, X3}

CALL MULT(X3,Jl,L4eL4%sL10,X4)

CALL MULT(J34ToLesL6L24X1)
CALL MULTUX1sJ2,L4sL2,L10,X3)
CALL ADD(X4yX3,L4sL10,X5)

CALCULATE INVII-JFYFJS)

CALL MULT(J34FYFsL4,L6,L64X1)
CALL MULT(X1eJ4,L4sL6,L4sX2)
CALL MULT(X2+SsLesL4oL 4y X3)
DO 200 I=1.L4

DO 200 J=1l,L4
Xe(l,J)=IMAT{I,3)=-X3(1,0}
CALL INVERTI(X4,L4,X1)

CALL MULT(X1sX5.L4sL4sL10,X2)
CALL MULT(G+X2+L6+L& (L10,X3)
CALL MULT(CsX34L10.L64L10.X5)
CALCULATE CEJ

CALL MULT(C,E.L10,L6sL4s X1}
CALL MULTUIXLsJLsL104L4,L20,X4)

IvI



250

300

00 250 I=1,L10
00 250 J=1,L10
AlTo3)=AlLlJ)eXALT JIeXSIILI)

WRITE QUTPUT

WRITE(64300)

FORMAY (1H1o5X 0% 1%04Xa%J% 99X *AL ¢ 13X *B%¢ 14X °C ¢ 914X *Y® 413X, *FYFO
- s 13Xy "FP14Xe0A%)

00 310 I=1,L10

WRITE(6,90)

00 310 J=1.L10

310 WRITE(0s320) TodoALlT02) o8BI eClLedd eY(Lod)sFYFILI JIoFLIoI
- All.3)
320 FORMAT(I6,15,2Xe7{2XsE13.6))
WRITE(6,400)
400  FORMAT(IHLeSX o' I®ebX % 09X "E' 918X e G o LlaXe 'R ¢ 14Xe*S* 914X, T")
DC 410 I=1,L6
WRITE(6,90)
DO 410 J=l.L6
410  WRITE(6,420) 1oJeELTeJ)eGlTod) eRIT oI} oSUIoJ}eTUIS)
429 FORMAT(15,15+2Xe5(2XeE13.6))
(4
C PUNCH QUTPUT
[4
00 520 1J=1.3
DO 500 !=1,L10
00 532 J=1.,L10
500 WRITE(T,510) 1eJeAtled)sBLIeJ)
510 FORYAT(2110,2E20.6)
520 CCNT INJE
sTopP
END
SENDLIST

vt
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EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
(4 SUBRQUTINES
[

CLUIELEVIIIIZEIINILLPI000000800 2202000008200 02028 2080020000 20002080007022207
SUBRJUTINE ZZ1(X112,K121,A12,A21,81,82,C1,C2,60114G7022,201142022,
. N1oMLySLleN2oM245242112+RES24GL122,GT121,ITERZ)
COBOIR IR T ur TN NN SRR IR RO SUUARANENNNNERERO RSN RO ANRO NN BN RS
[4 THIS SUBRCUTINE CALCULATES Z112,6112,GT121 (AND 2121,67112,6121)
(3 L Y N R R R AR Tttt}
INTEGER S1.52
REAL K112(10,102.K121(12,10)
JUIMINSION A12(13,10)+A21110,10)481(20,10),82(10,10),C1(10,10),
. C21(10+10}+6G011(10,103,67022(10,10)+2112(10,10) RESZ(10,10),
. Gl12(10,10)4GT121(10+10)4X1(10+20),X2(20,100,X3(20,104,
. 2911110,101,2022(10,10)

CALL MULTIKL124C245L14M24N24X1)
CALL MULT(81,X1aNL.SLeN2,X2)
CALL ADD(AL24X24N1eN2,GL12}
CALL MULTIKLI214C1 452 M1oNLoX1)
CALL MULT(D24X14N2eS2,NLsX2)
CALL ADDtA21,X2,N2.N1sX1)

CALL TRANSP{XL,N24N1,5TL21)

CALL MULTIGI1242022,N14N2:N2,X1)
CALL MULT(ZOL1.,GT121 4N1sNLoN2,X2)
CALL ADO(X1,X2sN1eN2,X3)
CALL SOLN(GTO22+G0L1+X3,N2,N1s2112,RESZ.ITERZ)
RETURN
ENO .
SUBROUTINE PPL{GT121,G1124P0)1¢P022,GT011,G022,Q12,K012,K0224K121¢
®  KLL24RLsR24CTLoC2oNLsMLoSL o N2sM2+52,PL12,RESPLITERP)
CORBBARUINU AN N AR ARNENNNRANNRAREANRNRRANNRENENS R ERORR RO RNERARNNNEERS
[4 THIS SUSRCUTINE CALCULATES Pl12 ( AND P121 )
COBORU I IINOSAUNIUSINNIENAR IR NN AR RRNRNAR RN RN A RN SRR ERENUNANSRORNS
INTEGER S$1,52
REAL K1211{10,10),K112(10,10),K0L1(10,10),X022{10,10)
DIMENSION GT121(10+190)46112(10,10}0,POLL(L10,10),P022(10Q,20),
. GT011110,10)+G022(10,10},Q12(10,10),R1110,10),R2(10,10),
. CTL(LO41J),C2(10,10),PLL2(10,10}+RESP(10,10)4X1(20,10),
L X2({10410)¢X3{10,1C)»Y2{10,200,Y2{10,10)
DIMENSION Q21(10,10)
CALL MULTUIGTLI21,P022 +NLoN29N2,4X1)}
CALL MULTI(POL1+GL12,N1eN1,N2,X2)
CALL ADJ(X1,X2,N1eN2,Y1)

CALL MULTIKD22,C2452¢M20N24X1)
CALL MULT(R2,X1452+S2,N2,X21
CALL TRANSP(XK121,52,M1,X1)
CALL MULT (X1eX29M14S52,N2+X3)
CALL MULT(CTL X3 o NLoMLoN2,Y2)

CALL MULT(K112,C2,S1,M2,N2,X1)
CALL MULTIRL,XLsSLsSLeN24X2D
CALL TRANSPUKOLLl,S51¢Ml,X1)
CALL MULT (X14X2,41eS1sN24X3)
CALL MULTUCT1 X3 oNLoMLoN2,X1)

CALL ADDLYLl,Y24NL¢N2,X2)
CALL ADD(X2 X1 ¢NL N2 oX3)
CALL ADD(X3,Q12.N1.N2,Y1)
CALL SOLN{GO22+GTOLl1,Y1sN2¢N1ePL12+RESP,ITERP}
RETURN
END -
SUBROUTINE KK1(R1,KO11.C1+CT724C2,2112,2022+8T1sPOL2,P212,N1,
$ML,oSLN24M2,524K112,C2ZC2 ,RINVL)
CERBRNUUNKNRENNNNRNRKEAUNRAXERINERNNR RO BERRRL AL SONOERECECEEENSRIOESINI SR
4 THIS SUBROUTINE CALCULATES K112 { AND K121}
CONERNNERBUNNABN NN IARNNANN IRV I ANSENNR RSO USR 0RO CCNOR0EEORIPERENIEES
INTEGER S1.52
REAL KO111{10,10),K112(10,10)
DIMENSION RINVI(10.10)
DIMENSION C2C2(10,10)
DIMENSIONRL (10,10),C1(10,103¢C2{10,13)4CT2(20,10)+21122(10.10},
$2022(10,10),8T1(10,10),POLL{10,10),P112(10,10),
$X11123,10)4X2(10410),Y1(20,10),Y2¢10,10)

CALL MULT{RL,KOlLeSLsSleML,X1)
CALL MULT (X1,ClsSLloML,NL,X2)
CALL MULT{X2,211245S1 eNLoN24X1}
CALL MULT(X1,CT2+4S14N2,M2,Y1)

CALL MULTUIBTL,POLl¢S1sNLeNLoXL)
CALL MULTIX1sZ112+SLoNLyN2,X2)
CALL MULT(X24CT2,S14N2,42:X1)
CALL ADDt YLoX1S1eM2,Y2)

CALL MULT(BTL,PL124sSLsNL/N2,X1)
CALL MULT(X1+2022+51 sN24sN2¢X2)
CALL MULT(X2,CT2+SLyN2sM2,X1)
CALL ADD(Y2.X1sSLleM2,Y1)

CALL MULT(YL,CZC2,S1sM2,M2,Y2}

CALL MULTUIRINVI,Y2+51,51,M2,K112)

RETURN

END

SUBROUTINE 272(K211.B1,C1,2011,212142112,G222,67212,6011,GY011,

L] NLoMLoSL N2 M2,4524G6211+GGT21L 42211 ,RESLy ITERY
CHRRERNANRANNURONNANEENNNNN NN RARN AU NETFEAR GRS NS U SRR SO EETRR0RNS
c THIS SUBROUTINE CALCULATES 2211 { AND 2222)
CRENNENNNRERUBNANBRER RN AN AR NN AN ENNNERNERRAN N ENER SRS ECENRRAR NS0 ARERS

INTEGER S1 +S2

REAL K211(10,10)

OIMENSION GOL1(10,10),GTOLL(10.10)

DIMENSION B1(10410),C2(10,10),2012¢410,10),G112(10410),6G7112(10,10),

. 26G211(10,10),GGT211(10,10),2211¢10+103+2121(10,10),RESZLLC,10)

* eZ1120104100s X101CsL00¢X2(L0,100¢X3(10,10)sY1(10¢102,Y2(10,10)

CALL MULT(GG2Ll1420L1+NLsNLoNL,X1])

CALL MULT(ZOL114GGT211sNLoN1,NL1 X2}

CALL ADOIX1sX2¢NL1yNL,Y1)

CALL MULTC(GLL124+2121 #NLyN2oNLsX1)

CALL MULT(2112,GT112,NL,N2,N1¢X2)

CALL ADD(X1,X2,NL,N1,Y2)

ALFA =2,

CALL MULTL11{YZ2,ALFA,N1,N1sX1)

CALL ADO(YLeXLoNLsNL,Y2)

CALL SOLN(GTO11,GOL1,Y2,N1,N1,Z211+RESZ,I TER)

12A!



RETURN
END
SUBROUTINE PP2{GGT211+G6G211¢P021sP121,PL12+R1sR2¢G12L¢GTL214GTO0LL,
®  GO114C1eCT2oKOL1,X121 K211 eNL oML oS1oN2sM2¢S2,P2114RESP,ITER)
CREROERASIURVANARRSURAUREEINGA AN RSBV URNEANNETIRGTEREROISNI R RORRERENGINSS
C THIS SUBROUTINE CALCULATES P21l { AND P222 )
CRESAPLAACIARNENAUTATIRRRAD AN RERICRRENENRRNN RO R BN AR RA IR RARRERURR VRN
INTEGER S1,52
REAL KO11(10410)4XK121(10,10)+K211¢(10+20)
DIMENSIOY GG211(10,10)
DIMENSION GGT211110,10) »POL1C10,10),P121(10,100,
P112(10,101,6121(10,101,GT121(10,10).GTOL1{10,20),GOLL(10.10),
C1(10,10),CT1(10,10),P211(10,10) ¢RL(10,10),R2(10+10
)oX1010,10),X20(10+10)4X3(10,10),X4(10,10),Y1{10,10),Y2(10,100,
¥3(10,10) ,RESPi10,10)

*ea" e

Catt MULT(GGT211,PO114NkWNLsNLsXL)
CALL MULT(POL1,GG2114N1ysNLoNL,X2)
CALL ADD(X1eX2oNLleN1loY1)

CALL MULTUGT1214PL21 «NLoN2yNL,X1)
CALL MULT(PL112,GLl2LsNLosN2)N1¢X2)
CALL ADD(X1,X2,NLoN1,Y2)

ALFA=2.

CALL MULTIL(Y2,ALFA/N1sN1yX1)

CALL ADO{Y1l,X1sNIsNLleY2)

CALL MULT{KO11,Cl,sS1,41lsNLsY1)
CALL MULTU(RL1,Y1,S1eS1eN19X2}
CALL MULT(X211¢CleSLsMLoNL,Y3)
CALL TRANMSP(Y3,51,N1.X1)

CALL MULT (X1 4X2sN1sS1eNL X&)
CALL ADD{X4+Y2¢NLsNL,X1)

CALL MULT(RL,Y3,S1+S1,N1,X2}
CALL TRANSP{Yl,SL.NL,X3)
CALL MULT(X3,X24N1eS1oN1yX4)
CALL ADD(XITX4,NLsN1,Y1)

CaLl MULTIKL21.ClsS2,MLs N1y X1)
CALL TRANSPIX1e52¢N1 4X2)

CALL MULT(R2,X1e52¢S24N1¢X3)
CALL MULTIX2,X3¢N1sS2eN14X4)
CALL MULTLL(X4,ALFA,NLsN1,Y2)
CALL ADDUY1eY2,NLyNL1,Y3)

CALL SOULN(GOL1,GTOL1,Y3,NLsN1oP211oRESP.ITER)

RETURN

END

SUBROUTINE KKZ2(Rl,RINV1,BT1,C1,C2,CT1,P211,P112,POL1,201102121,

. 22119K112+K011,CZCLINL ML oSEIN24M2,S2,K211)
CEREOEUBUNUNENAURNNRANNRANNRRINUNARRANANARANARANNRARARIEARRNARAERN AR AR
[4 THIS SUBROUTINE CALCULATES =K211 ( AND -K222 )
CROVBFOPBUEVYBNUNANNUNANUNT AN INA AN RNRRRANNERARANENRRARAREINENOASRNERES

INTEGER S1,S2
REAL K211010,10)4K112(10,10),K011(10,10)
OIMENSION R1(10+10),RINVLI(10,10),8T1(10,10),C1(10+10)+CTL(10.20),

. C2010,10)4P211410,10),P112(10+10),P011(10,10),2011(10,20),

. 21210104101,2211(10,10),C2C1(10420) +XL(10,10)¢X2(10¢10),

. YLI10,10),Y2(10,10)

DIMENSION Y3(10.,10)

CALL MULT(BT1,P211,S1eNLsNLoXL)
CALL MULT(X1,Z011,SL,NL,Nl,X2)
CALL MULT(X2,CT1.S1eNlsM1cY1)

CALL MULTIBTL.P112,S1eNL  N2,X1)
CALL MULTI(X1,Z121,S1,N2.NL,X2) |
CALL MULT{X24,CT1oSLoNL o MLoxXL}
ALFA=2,

CALL MULTI11(X1,ALFA,S1,41,X2}
CALL ADDUY1,X24SLoML,Y2)

CALL MULT(BT1,P01l+S1sNLoNLsX1)
CALL MULTUZ2211+CT1,NEoNLoML,Y1)
CALL MULT(XiaY2sSLeN1sM1,X2)
CALL ADD(Y2,X2,S1/M1,Y3}

CALL MULTIRL,K112,4S1sS1sM24X1)
CALL MULT(X10C2+S1oM24N2oX2)
CALL MULT(X2,2121+S14N2sALoX1)
CALL MULT(XLoCTLoSloNLoML,X2)
CALL MULTLL(X2,ALFA,Sl,41,X1)
CALL ADD(Y3,XLySLeML,Y2)

CALL MULT(RL,KOLloSL+S1oML,yx1)
CALL MULTIX1,CLeSLoMLoNL X2}
CALL MULTIX24Y1,S1eN1oM1,X1)
CALL ADDIX14Y24S1,M10YL}

CALL MULTIY!,CZCL,SLoMLIsML,Y2)

CALL MULT{RINVLI Y2,S1o51 4ML K211}

RETURN

END

SUBROUT INE SOLN(B, Ay CoMeNsP,RES, IER)
COBRRLAUNNYRKBANNAN AR NN RN I RN NR SRR NISRERE SN RERITRRRRANERAREIIRENS
[ THIS SUBROUTINE FINDS THE SOLUTION OF 3 PBeAP+C=0
C AlMoM) qBININILCUMIN) JPIM,N)
gﬂlﬂlﬁ#kllﬂlxﬂl‘ﬂkdlklllll0‘#!Kl!ll#‘ll‘l‘lllll#!#"l!l#"!lllflll'lllll

OIMENSION A{10¢10)+8(10+10)+C(10+103,P(20,10),RESL10,10),
L X3(10,10),87(10,10),2C(100),PP{100)

DIMENSION X1025425)0X2025,251,AB(25426)4AABB(625)

THE ABOVE STATEMENT CAN BE USED FOR N=S5 3R LESS

FOR N=10 OR LESS, THE FOLLOWING STATEMENT MUST BE USED INSTEAD
DIMENSION X1(100,1001,X2(100,100),A8( 100, 101),AAB8(10000)
DOUBLE PRECISION AABB,CC

MM=MaN

00 25 I=1,MM

D0 25 J=1,MM

X1(l,4)=0.

X2(1.4)=0.

CONTINUE

[aXaX3a]

w

KRONECKER PRODUCT Xl=As]

cooonNn

00 10 I=1.M
DO 10 J=1,M
00 10 K=1,N
II=(I-1)*NeK
JJ=(Ja-1)*NeK

St1
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ocOo0N
o

18

15
16
30

Ke (J=1)Ne]
XINV{IsJ) Y (K)

CHECK THE ACCURACY OF THE RESULT
IF(ICMECK.NE.L) GO TC 30

WRITE(6,17)
FCRVAT(////+* THE RESULT OF MATRIX INVERSION®e//s

. OXo Tl e AXe It sL3X ot X W LT X XINVT 426X " XOXINV )

CALL MULT{XsXINVeNoNsNoXX}

DO 15 I=1eN

WRITE(6,18)

FORMAT( 14} .
00 15 J=leN

WRITE(6416) TodeX{led) o XINVIIod) o XX(T o)
FGR™AT(215,3E20.6)

RETURN

END

BLOCK DATA

Cl‘lllllﬁlll'l!!llllllllllll‘lllll'llll!lll‘llllil'lll'lliﬁﬁlll!ll,lll'l

4

T4IS SUBPROGRAM INITIALIZE VARIABLES

Clllllll!‘ilﬂlil!ﬁl!lll'llQllllll'llll!llllll!ll!llll‘llllfllll'lll'il#'

INTEGER S1¢T1452.72

REAL KOL11(10.10)+%X022(10¢10)

REAL K112(10,10),X121(10,10)

REAL K211(10,10).XK222(10410)

JIMENSICN A1(10,10),42(12,10)+81¢10,10),82¢(10,10),C1(10+20),
. Cz(lJ.ID).Dl(lo.10).02(10-101.01(10-10).02110.10).Rl(lo.lot-
* R2{10,10),VI{L0.10),V2(10,10),

* Q21110,10),012(10,10) »A12(10,10),A21(10,10)

DIMENSION EL20)

DIMENSIUN WEIGHT(10,10)

COMMON/AA/NLoMLyS1oT 1IN2,M2452,T2

COMMON/ 38/ Al ,A2,A12,A21 (BlsB2,C1+C2,01+02+Q1,Q2+Q12,Q21s
®  R1,R2,V1,V2

COMMIM/DOL/ KOL1,K022

COMMON/EEL/ K1124K121

CCuVIN/FFL/ K211,K222

COMMUN/GGLZ K312,K321

COMMIN/wWa/ WEIGHT

CCMMON/SL/HLEPS

CCuHMO'W/DIFFO/ LIMITO,EPSOQy IPRTO

COUMMUN/BOT/ EJESCALE JMAX Ty IPRINT ¢NIoNO

DATA LI%ITO/30/

DATA N1,41¢S1,T1oN2,M2,52eT2/4030L0494¢35104/

DATA KO11,K022,K121,K112,K211eK222/600%0s/

DATA E/20%*.01/

DATA 81/0440.4500.497%0./

DATA B2/0.404+437.5,97%0./

DATA MAXIT/20/

DATA ESCALE/S5./

DATA IPRINT/1/

DATA N1 NO/5.6/

DATA MEIGHT/120*1./

DATA EPSQ, IPRTO/1.E-541/

DATA V1/.0001+10%040¢¢0005+10200 940003¢10¢00¢20007420%00+36%0s/
DATA VZ/.OUOZ'10'0-'.0009010‘0.000005010'°no-°°°9-l°‘ﬁ-v56‘°n/
DATA QL/0+10%009¢leel0%0aelasl0%0asleerl0%0as las10%00y45%0.7

OO0 AOOONANNON000NOAOCAANON

s N oo R e NelaNoNaN oo NaNeN o aXe)

DATA 02/10¢10%00020s10%0091e910%0.01c ¢20%0Cevle9l10%0.,45%0./
DATA Q12,Q21/200%0./

DATA C1/10+10%0a91e910%000leel0%0,0ls910%00s10910%0,04580./
DATA C2/14¢20%0erler10%009lesl0%0. 01 o10%0av1ae2O®C.045¢0./
DATA 01/14410%0.010910%04912910%00slav10®0asles55%0.7

DATA 02/1¢+10%0es1e¢10%0c9ples10%0091e+10%0.01.455%0.7

DATA R1/1441C%0 4+ 1¢910%0 s les10%000le0l0%0.,1.42C%0.+45%0./
DATA R2/14¢10%04¢slesl0%)eslesl0%000lasl0%0.s10s10%04y45%0./
END

00800t 1ettortscreereteesesssetsittcisstisaciniececssenasececesnsnses

SUBROUT INE MINV

INVERT A MATRIX
PURPOSE

USAGE
CALL MINV(AGN,DsLs M)

DESCRIPTION OF PARAMETERS
A = INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY
RESULTANT INVERSE.

N - ORDER UF MATRIX A

D - RESULTANT DETERMINANT

L = WOKRK VECTOR OF LENGYH N

M - WORK VECTUR OF LENGTH N
REMARKS

MATRIX A MUST BE A GENERAL MATRIX

SUBRUUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD .
THE STANDARD GAUSS~JORDAN METHOD IS USED. THE OETERMINANT
IS ALSO CALCULATED. A DETERMINANY OF ZERO INDICATES THAT
THE MATRIX IS SINGULAR.

00000000 cett000000000000000000000000s00c000acccscscsanrencrsescsossne

SUBROUTINE MINVUIA,N+DoL oM}
OIMENSION A(Ll).L(L)oM(1)

DOUBLE PRECISION AsD,BIGA,HOLD.DABS

€00t eeetet00000000040000000000000000090000000000000ac0ascccess

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C IN COLUMN 1 S40ULD BE REMQVED FROM THE DOUBLE PRECISION
STATEMENT WHICH FCLLOWS.

DOUBLE PRECISION AsD+BIGA,HOLD

THE C MUST ALSO BE REMOVEOD FROM DOUBLE PRECISION STATEMENTS
APPEARING IN OTHER RIUTINES USED IN CONJUNCTION WITH THIS
RQUT INE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECIS ION FORTRAN FUNCTIONS. ABS IN STATEMENT
10 MUST BE CHANGED TO DABS.

Lyl
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SEARCH FOR LARGEST EL EMENT

D=1.0

NK==N

D0 80 K=1.N
NK=NK N
LK) =X

M) =K
KK=NK K
BIGA=A(KK)
00 20 J=K,oN
1Z=N*(J-1}
D3 20 I=KoN
13=12+1
1F(DASS (BIGA)=DABSLALLIJ))) 15,20,20
BIGA=A(1J)
L=t
MIK}=2J
CONTINUE

INTERCHANGE ROWS

J=L(K)

IFLJ-K) 35435.25
KI=K=N

00 32 I=l,N
KI=KTeN

HOLD =-A(KI)
JI=K1-K+J
AtKIY=ALJI)
A(JI) =HOLD

INTERCHANGE COLUMNS

1=M(K)

IF(I-X) 45.45,38
JP=Ne{l-1)

D0 40 J=1.N
JKaNK+J

Jl=JdPey
HOLD=-A(JK)
AlLJK)=ALIT)
A(JI) =HOLD

OIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOY ELEMENT IS

IF(BIGA) 48,46,48
0=0.0

RE TURN

D0 55 I=1,.N

IF(I=K) 50055450
IK=NK ¢
Allk)=A(IK)/(~-BIGA)
CUNTINUE

REDUCE MATRIX

[a¥215)

o0n 000

[a¥a N2l

o000

60
62

65

70
15

80

100
105
108

110
120

125

130
150

D0 65 1=1,N

I KsNKs!
HOLD=A(IK)}
Iy=1-N

DO 65 J=1.N
[d=1Je¢N

IF(I-K) 60¢6%5,60
IF(J-K) 62+65+62
KJ=1J=1¢K
AL1J)=HOLD*A(KJ J#ALLY)
CONTINUE

DIVIDE ROW B8Y PIVOT

KJ=K-N

DQ 75 J=l.N
KJ=KJ+N

LF(J=-K) T0.75.,70
A(KJ)=A(KJ)/BIGA
CONTINUE

PROLUCT OF PIVOTS
D=D*8 16A
REPLACE PIVOT BY RECIPROCAL

A(KK)=1.0/B1IGA
CONTINUE

FINAL ROW AND COLUMN INTERCHANGE

K=N

K=(K=-1)

IF(K) 150+150,205
I=L(K)

IF(1-K) 120,120,108
JO=N®(K=-1)
JR=N*(1~1)

DO 110 J=1.N
JK=JQ+J

HOLD=A(JK}

JI=JRey
AlJK)==A0JI)

A(JI) =HOLD

J=MI{K}

IF(J-K) 100,100,125
KI=K-N

00 130 I=1,N
KI=KI+N

HOLD=A(K I}
JI=KI[~-K+J
ALKI)==A(JI)

A(JI)} =HOLD

GO YU 100

RETURN

END

SUBROUT INE DGELG

© 8090 00000000000000000000000000000c000000CENCrE0EsleeEercenecesss
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PURPOSE
TO SOLVE A GENERAL SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS.

USAGE
CALL DGELGLR A sMsN+EPS,IER]

DESCRIPTION OF PARAMETERS
R - DOUBLE PRECISICN M BY N RIGHT HAND SIDE MATRIX
(DESTROYED). ON RETURN R CONTAINS THE SOLUTIONS
OF THE EQUATIONS.

A - DOUSLE PRECISION M BY M COEFFICIENT MATRIX
(OESTROYED).

] ~ THE NUMBER OF EQUATIONS IN THE SYSTEM,

N - THE NUMBER JF RIGHT HAND SIDE VECTORS.

EPS ~ SINGLE PRECISION INPUT COVSTANT WHICH IS USED AS

RELATIVE TOLEKANCE FOR TEST ON LOSS OF

SIGNIFICANCE o

RESULTING ERRDR PARAMETER CODED AS FOLLOWS

1ER=0 =~ NO ERROR.,

1ER==1 - NO RESULT BECAUSE OF M LESS THAN 1 OR
PIVOT ELEMENT AT ANY ELIMINATION STEP
EQUAL TO 0,

1ER=K = WARNING DUE TO PISSIBLE LOSS OF SIGNIFI~
CANCE INDICATED AT ELIMINATION STEP K¢l
WHERE PIVOT ELEMENT WAS LESS THAN OR
EQUAL TO THE INTERNAL TOLERANCE EPS TIMES
ABSOLUTELY "GREATEST ELEMENT OF MATRIX A.

1ER

REMARKS ~
INPUT MATRICES R AND A ARE ASSUMED TO BE STORED COLUMNWISE
IN MeN RESP. M* SUCCESSIVE STORAGE LOCATIONS. ON RETURN
SOLUT ION MATRIX R 1S STORED COLUMNWAISE TOO.
THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS
GPEATER THAN O AN) PIVOT ELEMENTS AT ALL ELIMINATION STEPS
ARE UIFFERENT FROM 0. HOAEVER WARNING [ERaK - IF GIVEN -
INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL
SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE
INTERPRETED THAT MATRIX A HAS THE RANK Ko NJ WARNING IS
GIVEN IN CASE M=1.

SUBRCUTINES AND FUNCTION SUBPROGRAMS REWUIRED
NONE

ME THOD
SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITHM
COMPLETE PIVOT ING.

0000000000000 000e0000000000000c00000000000000000ccrcc0cccnccsloce

SUBROUTINE DGELG(R ¢A,MyN,EPS.IER)

DIMENSION Al1l),R(1)

DOUBLE PRECISION R,A,PIV,TB.TOL,PIVI
DOUBLE PRECISION DABS

1F(M)23,23,1

SEARCH FOR GREATEST ELEMENT IN MATRIX A

aoon

[2 X X2} o0

o0 oo

oo

o0 oo

1 IER=O

PIV=0,D0

MMx M &N

NM=N*M

D0 3 L=l,MM

TB=DABS(A(L))

IF(TB-PIV)3,3,2

Plv=T8

I=L

CONT INUE

TOL=EPS*PlYV -
A1) IS PIVOT ELEMENT. PIV CONTAINS THME ABSOLUTE VALUE OF A(1).

w N

START ELIMINATION LOCP
LSTal
00 17 K=1,M

TEST ON SINGULARITY

IFIPIV)23.23,.4

IF{IER)T7,5,7

IF(PIV=TOL)6+6,7

TER=K=~1

PIVI=1.D07A(I)

J=ll-1)/M

I=1-J#M-K

J=del-K :

T+K IS ROW-INDEXs, J¢K COLUMN=INDEX OF PIVOT ELEMENTY

~owe

PIVOT ROW REDUCTION AND ROW INTERCHANGE IN RIGHT HAND SIDE R
D0 8 L=K,NM,M

Li=L¢l

TB=PIVI*R(LL)

RILLI=R(L)

RIL)=TB

IS ELIMINATION TERMINATED
IF(K-M)9,18,18

COLUMN INTERCHANGE IN MATRIX A
LEND=LST+M~-K
LF(J112,12,10

<

10 [1=yem

1

00 11 L=LST,LEND
TB8=A(L)

LL=L+11
AlL)=A(LL})
AlLL)=TB

~

ROW INTERCHANGE AND PIVOT ROW REDUCTION IN MATRIX A

12 DO 13 LaLST, MM, M

1

LL=L¢+]
TB=PIVI®A(LL)
AtLL)=A(L)

3 A(L)=TB

SAVE COLUMN INTERCHANGE INFORMAT [ON
ALLST)=J

ELEMENT REDUCTION AND NEXT PIVOT SEARCH

671



Plv=0,00
LST=LST+1
J=9
00 16 IlsLST,LEND
PIvI==~AlIID)
IST=lleM
J=gel
OC 15 L=ISToMMM
LtL=t-y
A(L)=A(L)ePIVI®ALLL)
TB=DABSLA(L))
IF(T3-PIVIL1S,15.14
14 Plv=T3
1=t
15 ConTINUE
00 16 L=KyNMs M
Li=Ley
16 RELL)=R(LLICPIVISRIL)
17 LST=LSTen
END OF ELIMINATION LCOP

aoon

BACK SUBSTITUTION AND BACK INYERCHANGE
18 IF(¥~1)23,22,19
19 IST=MdemM
LST=Mel
00 21 I=2,M
I1=LsT-1
IST=1ST-LST
L=1ST-M
L=A{L}¢.5D0
D3 21 J=IT.NM,M
Ta=zk(J)
L=y
DJ 20 K=1ST,MM,M
LL=LL+l
20 TB=TB-A(K}I®RILL)?
K=Jel
R(JI=RIK)
21 RiK)=T8
22 RETURN

La XXy

ERRJR RETURN
23 lER==~}

RETURN

END

SUBKOUTINE BOTM (XeEoNeEF¢ESCALE IPRINTMAXI Ty NoNI oNOoNW)
Cecevscccsccaccccccccacsccscncncnscssccnse

DIMENSION X{N)+ W(NW), E(N)
c

eeseccececscscescacncscecsnce

NUM3ER=0
«<[TE (NO,0Q01)

001 FURMAT (1H1,10X¢32HPOMELL~80TM OPTIMIZATION ROUTINE )
WRITE (NJ,002) No MAXIT, ESCALE, (I, X(I)s I=1sN)s {J» E(J)e U=},
1 n)

002 FURMAT (//+2X s 0HPARAMETERS¢//¢2Xe4HN = 12, 4X¢BHMAXIT = ,1444Xe
1 SHESCALE = oFS5.20//e2Xo1SHINITIAL GUESSES o/ /02(2Xs2HX 0 [12,4H) = o
2 1PEL6.8)e//e2Xs31HACCURACY REQUIRED FOR VARIABLES #//+202X+2HE(
3 [2.4H) = ,El6.8) )

w

70

58

14

16
17

18
19

ODMAG=0 .1 *ESCALE
SCER=0.05/ESCALE
JI=Ne{Ne 1)

JII=dJIeN

K=N+1

NFCC=1

IND=1

INN=1

DO 4 I=1,N
W(T1)=ESCALE

D0 4 J=1.N

WiK)=0.

IF(1=J)4:304

WIK)=ABS (E(I})

K=K+1

ITEPC=1

1 SGRAD=2

CALL CALCFX{Ne+XoF)
FKEEP=2 ,%ABS (F)

1 TONE =1

FP=F

SUM=0.

I1xP=JJ

DO & I=1,N

IXP=1XP+l

WEIXP)=X(1)

IDIRN=N+1

ILINE=]

DMAX=W{ ILINE)
DACC=DMAX *SCER .
DMAG=AMIN]1 (DDMAG+O.L®*DMAX)
DMAG=AMAX1{DMAG,20.*DACC)
DDMAX=10.%DMAG

GO TO (704704713 +ITONE

OL=0.

D=DMAG

FPREV=F

1525

FA=FPREV

DA=DL

00=D-0L

DL=D

K=1DIRN

DO 9 I=1,N
X{L)=X(1)+DD*W(K)
K=K+l

CALL CALCFX{NeXoF)
NFCC=NFCC+1}

GO TO (10+11012023024096001S
IF(F-FA)15+16424

IF (ABS (D)-DMAX) L17,17,18

D=D+D

GO 10 8

WRITE (ND,O019)

FORMAT{5X+38HMAXIMUM CHANGE DOES NOT ALTER FUNCT ION)
GO 10 20

0ST



15

24

21
23

83

25

26

27

13
28
29

12
31

11
32

71

10
30

33

34

43

EBeF

082D

GO 10 21

FBsFA

DB=DA

FA=F

0A=D

50 TO 183,231 01SGRAD
£=03+03-DA

15=1

GO Y3 8
0=0.5%{JA+08-(FA-F8) /(DA-08))
1524
TF((JA-D)*(D=DB)125,8.8
15=1

1F(A3S (D-DB)-DDMAX)8,8,26
J=08+SIGN (DDMAX.DB8-DA)
1s=1

DOMAX=DOMAX ¢+DDOMAX
DOMAG=DDMAG+DDMAG .
IF (JOMAG.GE.1.0E+60) DDMAG = 1.0E460
1F(DOMAX-DMAX) 848427
OOMAX=04AX

GC T0 8

IF(F-FA)28423,23

FC=F3

0C=03

FB=F

08=D

G2 10 30

1F(F-FB)28.,28431

FA=F

VA=D

G3 10 30

1F(F-F8)32,10,10

FA=F3

0A=08

GO 10 29

OL=1.

DDMAX=S,

FAzFP

DA=~1.

F3=FHOLD

Db=0.

D=1,

FC=F

DC=D

A={03-0C)*(FA-FC)

8= {DC~DA) *{FB-FC)
1F{(A+B)*(DA-DC)133,33,34
FA=FB

0a=C8

F8=FC

D3=0C

GO TO 26
J2=0.5%(As(D3+DC)+B*(DA+DCI)/ (A+B)
[PREL]

Fl=FB

TF{FB-FC)44 44,43

Di=OC

85
86

45
46

47
48

41

49

(4
50

52 FORMAT(/10H ITERATIONIS+I15+16H FUNCTION VALUES»10X¢3HF =,E15.8/

FlsfC

GO TO (86,86+85),1TONE

1TONE=2

GO TO 45

IF (ABS (D-DI)=DACC) 41,41,93

1F (A8S (D-DI}=0.03%A8S (D)) 41.41.45
IF {({DA-DC)*{DC=D)) 4T+46,46
FA=FY

0A=D8

FB=FC

08=DC

GO 10 25 -

1s=2 .

1€ ((D3-D)*(D-DC)) 48,8.8

15=3

GO TO0 8

F=F1

0=D1I-DL

DD=SQRT ((DC-DB)*(DC-DA)*{IA-CB)/(A+8})
DO 49 [=1.N .
X{I)=XU 1) +C*W( 10IRN)
W(TDIRN)=DD*W (IDIRN}
{DIRN=IDIRN+1
WlILINE)=wW(ILINE} /DD
TLINE=IULINE+]
IF(IPRINT-1)51,50,51

WRITE(NO,52) ITERC,NFCCeFo(X(1)oI=1,10)

*5(El6.8,2X))

1000
51
95
l94

92

59

96
112
91
87
60
62

97

NUMUBER=NUMBER¢1
IFINUMRER.GT.N) NUMBER=]
WRITE(641000) NUMBER

FURMAT(S5X+* SUB-ITERATION NUMBER®¢I15¢/4 100(LH®),//)

GO YO(S51453),IPRINT

GO TO (55+38), ITONE

IF (FPREV-F-SUM) 94,95,95
SUM=FPREV-F

JIL=1LINE

IF (ICIRN=3J) 7.,7.84

GO Y0 (92,72),IND

FHOLD=F

15=6

1XP=JJ

DO 59 I=1,N

IXP=1XP+]
WIXP)=X{1)-wWL IXP)

0D=1.

GO 10 58

GO TO (112+87)4IND
IF(FP-F) 37,37,91
Dx2.*(FP+F~2,%FHOLD) /IFP=F)*82
LF (D% (FP~FHOLD-SUM) #$2-5UM) 87,37,37
JEJILONG L

IF (J-3J) 60.60,61

DG 62 I=Jd.JJ

K=1-N

WiK)=w(l)

D0 97 [=JILWN

WiI-1)=w( 1)

IST



[ 23

66
67

3r

98
99

3s
72
109
76
80

88
35

108

a1
82

110

c
106
20

107

IDIRN=IDIAN=N

END
ITONE=3 SENDLIST

K=sIDIRN

1xP=J9

AAA=Q,

D0 67 I=l,N

IxP=] xPs]

W{K)=A(1XP}

IF {AAA-ABS (WIKJZE(1))) 68,67,687
AAA=ABS UWIK)/ZE(ID)
K=K+l

DOMAG=1.
WINI=ESCALE/AAA

ILINE=N

6C 10 7

Ixp=3J

AAA=Q o

F=FHOLD

DO 99 I=]1,N

IXPzIXP+]

X{D =X(1)=-wilxP}
IF(AAA*ABS (E(!))=-ABS {N(IXP})) 98,99,99
AAA=40S (W(IXP)ZELL})
CONTINUE

GO 13 72
AAA=AAAS(l.+DI)

GI T3 (T72,106).IND
IF(IPRINT=2)53,50.50

GO TO (109+88)4IND ~

IF (AAA - 0.1) 20,20,76

IF(F-FP135,78,78

WRITE (NO,80) -

FORMAT(5X y31HACCURACY LIMITED 8Y ERRORS IN F)
GO T0 20

IND=1

DOMAG=J.4*SRT{ABS(FP-F) )

IF (DOMAGJGE.1.0E+60) ODMAG = 1.0E+60
I SGRAC=1

ITERC=ITERC+]

IFEITERC~-MAXIT)I5 45,81

WRITE (NJ,82) MAXIT

FORMAT (15,29H ITERAT IONS COMPLETED BY B80TM)
IFIF~-FXEEP)20,20+110

F=FKEEP

D0 111 I=1,N

JId=JJdel

X(L)=wlJdd)

G0 10 20

IF{AAA-O0.1) 20,20,107

EFaF
RETURN

INN= L
GO TO 35

St
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