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PREFACE 

This report is part of a continuing effort to mathematically model, 

simulate, and qualitatively appraise fluid power systems. The study was 

aimed at developing techniques for time domain simulation and eigen-

analysis of large mobile hydraulic systems. By starting from the premise 

that mathematical models for components are available in the form of 

suitable equations, attention has been focused on the problem of 

synthesizing large system models in the time domain, from subsystem 

models, in a form suitable for digital simulation and eigenanalysis. 
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NOMENCLATURE 

Mathematical Variables 

x State Vector* 

y Output vector* 

u Input Vector* 

w Aggregate subsystem input-output vector 

X Aggregate of subsystem state vectors (large system pseudo-state 

vector) 

X Differential-Algebraic state vector 

Y Aggregate of subsystem output vectors (large system output vector) 

U Aggregate of subsystem input vectors 

W Aggregate of subsystem input-output vectors 

n Dimension of state vector* 

m Dimension of output vector* 

r Dimension of input vector* 

V External input to large system 

f Functional representation of differential equation* 

g Functional representation of algebraic equation* 

H Functional representation of interconnection between subsystems 

N Number of subsystems in large system 

T Matrix transpose operator 

*Subscripted when they refer to a subsystem. 
identified by a second subscript. 

ix 

Individual elements 



t Time 

a Stiffness ratio 

A. Eigenvalue 

Physical Variables* 

x Spool displacement 

a Metering orifice area 

p Pressure 

Q Flow 

c Capacitance 

I Inertance 

B Resistance 

w Actuator load 

r Through variable* 

!::. Across variable** 

Subscripts 

First Subscript 

S Supply port 

A Work Port •A• 

B Work Port 'B' 

T Tank Port 

*Subscripted-for identification. 

**Super~cript indicates subsystem and subscript identifies port. 

x 



Second Subscript 

1 Actuator Number 1 

2 Actuator Number 2 

Variables in Gear's Algorithm 

x_ Differential algebraic state vector 

y Scalar variable, element of x_ 

P Dimension of x_ 

k Order of integration 

f Functional representation of differential algebraic system 

Fn Discretizedcversion off, at the n'th time step 

t Time 

n Current step number 

t 0 Initial time 

tf Final time 

h Step size 

ai} Coefficients in multistep formula 
bi 

°'i} Coefficients in Gear's algorithm 

~i 

J Jacobian of Fn 

PW Computer representation of J. 
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CHAPTER I 

INTRODUCTION 

Fluid power systems in machinery can be classified broadly as 

"power" and "control" applications. The former category includes the 

majority of material handling equipment where hydraulics is used for 

"muscle" power--presses, compactors, hoists, cranes, and earthmoving 

equipment. The latter category includes mostly positioning and tracking 

equipment, where power levels, though high, are usually much less than 

in the first one. Examples of the second category abound in the aero­

space and machine-tool industries. Hydraulics finds use in control 

applications because of the advantageously large power/weight and 

power/volume ratios offered by it in comparison to other implementations. 

If the key word for the first category of applications is efficiency, 

that for the second is precision. The line of demarcation between the 

two is hazy and it is entirely possible that in the near future it will 

become artificial. 

In spite of the commonality of the basic mechanism of energy trans­

fer in the two categories, the above mentioned difference of emphasis 

has resulted in two different methodologies of design. Apart from 

meeting force and velocity requirements, power systems are expected to 

exhibit good overall energy conversion efficiency. They are usually 

allowed substantial latitude in transient behavior, provided no pre­

mature failure of parts or operator-incompatibility is experienced. In 

1 



the case of control systems, appraisal usually takes the form of 

tracking/positioning accuracy in the face of changing inputs, and 

disturbances. Historically, they have been treated as single-input 

single/multiple output linear systems (with the conventional extension 

to linearized nonlinear systems). Specifications for their appraisal 

almost always involve dynamic behavior first, with power/weight and 

power/volume ratios receiving secondary considerations, and efficiency, 

2 

tertiary~ at best. The variety of operations performed by control sys­

tems is somewhat less than power applications, so much so that a stan­

dard design procedure to cover a variety of applications can be laid 

out, as attested by the number of tutorial papers on the topic (1, 2, 3, 

~). Similar procedures for power applications appear to be nonexistent, 

one possible reason being the latitude in circuit design and component 

selection allowed to the system designer. 

Consequently, it is difficult to establish to what extent power 

systems, designed with the current state-of-the-art, deviate from the 

optimal. It would appear, however, that a systematization of the design 

procedure, based upon a thorough mathematical analysis of the operational 

tasks of a given machine would result, to some extent, in filling this 

void. Such a mathematical analysis would necessarily involve the devel­

opment of a mathematical model which could be used to examine the 

behavior of relevant physical variables, as the machine is subject to 

specified operational tasks. One of the reasons why such analysis has 

not been widely used in the power systems area is that it involves the 

solving of a large set of coupled algebraic or differential-algebraic 

equations which usually exhibit pronounced nonlinearities. However, due 

to rapid advances in computer technology, the solving of algebraic and 



differential-algebraic equations is no longer the severe hurdle it once 

was, and improvements in both hardware and software promise to make 

accurate mathematical analysis an economically feasible tool for the 

design and appraisal of large classes of systems. 

J 

Power hydraulic system designers have, generally speaking, lagged 

behind control system designers in using machine computation facilities, 

partly due to a lack of incentive for accurate analysis, and partly due 

to a lack of appreciation of computer capabilities. As a result of 

wider dissemination of state-space theory, the transient analysis of 

various components 1 e.g., relief valves, pressure reducing valves, etc., 

has been attempted by component designers with varying degrees of 

success (5, 6, 7, 8). Entire systems, notably hydrostatic drives have 

been simulated (9). (Such systems straddle the line of demarcation 

between power and control applications. ) 

To contrast with systems described by differential-algebraic equa­

tions, those described by purely algebraic equations are called static 

systems, and simulations using such models as static simulation. The 

simulation of complete duty cycles of power systems, in which transients 

occupy only a small fraction of the cycle time and are to be ignored, 

requires static simulation. Since the equations describing the system 

behavior are usually nonlinear and often implicit, their solution is 

less straightforward than that of differential-algebraic equations. 

Only a few examples of static simulation are documented in the 

literature (10, 11, 12, 13, 14). 

The main motivation for this research was that existing computer 

programs for dynamic systems simulation were considered inadequate for 

the class of systems under scrutiny, for one or more of the following 



reasons: 

1. They use the generalized network approach, which is not 

geared towards accepting models of components or sub­

systems in the form of mathematical equations. 

2. They cannot simulate systems described by purely alge­

braic equations. 

J. They place restrictions, not based on physical consider­

ations, on the manner in which subsystems can be 

interconnected. 

4. They are either inefficient or incapable of simulating 

stiff systems, which are characterized by the presence of 

widely differing eigenvalues. 

Objectives of Study 

This dissertation addresses itself to the formulation of computeriz­

able algorithms for analyzing mobile hydraulic systems, using lumped­

parameter time domain models of their components. The interconnections 

between subsystems, which is called the topological structure of the 

system is considered describable by a set of algebraic equations. In 

this dissertation, the word 'topology' is intended to be construed only 

in the above sense and carries no overtones of meanings assigned to the 

word in mathematics. Even though the analysis of mobile hydraulic sys­

tems was the motivation for this effort, the mathematical treatment 

presented herein is general enough to be applicable to the entire class 

of systems whose subsystems can be described by differential-algebraic 

equations and whose topological structure can be described by algebraic 

equations. 
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A fundamental premise of the research effort is that the manner in 

which the mathematical models for subsystems are arrived at is immaterial 

insofar as the behavior of the total system is concerned. Starting from 

this premise, the development of a form of mathematical representation 

for the total system, which can explicitly display the subsystem models, 

as well as the system topological structure, was the first objective of 

the research. A system represented in the above manner is called a 

large system in the context of this thesis. The formulation of algo­

rithms for time domain simulation and qualitative appraisal of large 

systems was the second objective. 

Results of Study 

One of the major conclusions of this research is that the order of 

a large system obtained by interconnecting subsystems may be less than 

the sum of the orders of the subsystems. An important consequence of 

this result is that explicit numerical integration methods are either 

incapable or inefficient in simulating large systems involving such 

order reduction. 

The implicit form of representation, which is developed in this 

thesis, is shown to be suitable not only for representing large systems, 

but also for- numerical integration without consideration of the order of 

the system. A computerized algorithm for qualitative appraisal of the 

dynamic behavior of large systems represented in the implicit form is 

also presented. 

As an example, a mobile hydraulic system model is formulated in the 

implicit form and results of dynamic simulation as well as qualitative 

appraisal are presented. It is shown that digital simulation, which 



uses Gear's method of numerical integration of differential-algebraic 

equations, can be accelerated by switching models of subsystems at 

appropriate times determined by the values of the state and algebraic 

output variables. 

Outline of Thesis 

Chapter II gives examples to illustrate how order reduction can 

arise in the synthesis of large system models using subsystem models. 

6 

It also discusses the limitations of explicit integration methods, which 

form the backbone of the vast majority of dynamic system simulation 

software. In Chapter III a new approach for modeling large systems is 

discussed in terms of a canonical representation for subsystems and the 

mathematical implications of physical interconnection between subsystems. 

In Chapter IV the implicit form of representing large systems is devel­

oped and shown to be suitable for digital simulation using Gear's 

algorithm, as well as for qualitative appraisal. As an example of a 

large system, an open center mobile hydraulic system is analyzed in 

Chapter V. The final chapter summarizes the important conclusions of 

the research and presents recommendations for further investigations. 

Appendix A postulates and proves the order reduction theorem, which 

asserts that in the type of systems under consideration, algebraic con­

straints on outputs of subsystems, arising due to their interconnection, 

leads to order reduction. Appendix B presents an algorithm for qualita­

tive appraisal of the dynamic behavior of large systems, based upon 

eigenanalysis in a prescribed operating region. Gear's method of 

implicit integration of differential-algebraic equations is briefly 

reviewed in Appendix c, while Appendix D explains the function of key 



subprograms in the large scale system simulation program using selected 

FORTRAN listings. Numerical values of parameters used in the example 

system simulation are documented in Appendix E. 

7 



CHAPTER II 

THE LIMITATIONS OF EXISTING SOFTWARE 

The establishment of systems methodology has served to decouple the 

modeling process from the mathematical analysis needed to obtain be-

havioral information of a system. Ever since the realization that the 

basic phenomena responsible for the dynamic behavior of many fluid power 

systems could be adequately described by exactly the same general set of 

ordinary differential and algebraic equations as are used to describe 

passive electrical networks and mechanical systemscome systems analysts 

have stressed that one need only develop the methodology for combining 

models of the basic elements (i.e., resistances, capacitances, 

inertances, gyrators, sources, etc.), in order to be able to describe 

the behavior ofa system of any complexity whatsoever (15, 16, 17~ 18):--i__ 

This philosophy of dissecting a system to its basic elements will be for 

lack of better terminology, referred to as the generalized network 

approach. 

Even though the general applicability of the state space approach 

to the modeling of general lumped parameter dynamic systems is recog-

nized, significant theorems on existence of solutions, order of systems, 

etc., are still formulated in terms of 'cut-sets', 'trees', and 'forests', 

or node analysis, concepts carried over from electrical network theory 

and not intuitively appealing to fluid power engineers (19, 20, 21, 22, 

2J). Computer programs written specifically for the analysis of fluid 
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power systems have eschewed the generalized network approach, but have 

imposed restrictions on the manner in which subsystem models may be 

interconnected (24, 25). An explanation of these restrictions, which 

can be traced to a fundamental premise of the analysis will be given 

in this chapter. 
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The fundamental premise of the current research, which was summar­

ized in the first chapter, will be elaborated upon in the following 

section, so as to form the background for a discussion, with appropriate 

examples, of 'order reduction', and an explanation of why current simu­

lation software is incapable of handling systems involving order reduc­

tion. The last part of this chapter includes a critical review of 

general purpose dynamic simulation software and software written 

specifically for hydraulic systems analysis. It is shown that the 

inadequacy of all presently known software is based on its reliance on 

the explicit state vector formulation for the system. 

Fundamental Premise and Goals 

The fundamental premise of this research is that mathematical 

models for individual subsystems or components, which describe their 

behavior in terms of energy port variables are available to the analyst. 

Once a mathematically adequate subsystem representation is available, 

details of the internal constructional features or other details of the 

hardware are irrelevant, insofar as the analysis of the static and 

dynamic behavior of the large system is concerned. Since the analysis 

is to be restricted to lumped parameter systems, the most important 

implication of this premise is that components or subsystems may be 

described completely and unambiguously by sets of differential-algebraic 



equations. The interconnection of two subsystems implies the equality 

of one or more physical variables corresponding to the energy ports 

which are connected. 

10 

The following goals were laid out for the formulation of the large 

system model: 

1. The mathematical model for the large system should 

explicitly exhibit not only the subsystem models but also 

the topological structure of the large system. 

2. No restrictions, apart from those arising due to physical 

considerations, are to be imposed on the interconnections 

between models of components. Equivalently, complete 

freedom is to be allowed in demarcating subsystem 

boundaries. 

J. The system model should be amenable, with only a minimum 

of algebraic manipulation, for digital simulation as well 

as qualitative appraisal. 

~. The models for individual subsystems should be completely 

independent of each other so that changes in or substitu­

tion of a subsystem model would have no impact on other 

subsystem models. 

Many computer simulation packages for dynamic systems, which exhibit 

the modularity concept outlined as goal 1, above, fail to meet goal 2. 

The next two sections explore the reasons for this failure by first 

giving examples of 'order reduction' and next outlining the inadequacies 

of explicit numerical integration in handling systems involving order 

reduction. 
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Order Reduction 

Two large systems will be used as examples to illustrate order 

reduction. The first one has been chosen primarily to indicate why 

order reduction is of little practical significance in using the 

generalized network approach to problem formulation. The second example 

system is formulated, first using linear subsystem models, and next 

using a nonlinear model for one subsystem. The objective in presenting 

these last two examples is to demonstrate that order reduction is not as 

evident when subsystem models are given as sets of differential-

algebraic equations, and topological constraints are described as 

algebraic equations, as when the generalized network approach is used. 

The linear model for the second system is used to demonstrate that rep-

resentation of the large system in the explicit vector differential 

form may require derivatives of the external inputs, while the nonlinear 

model is developed to show that explicit .. state ·.vector representation may 

sometimes be impossible. 

Example I 

Consider two RC networks as shown in Figure 1. Using the notation 

shown in the figure, and assuming that current sources are the inputs 

to the subsystems, the following models can be derived: 

[o]e12 + (2.1a) 

Subsystem #1 

(2.1b) 
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[o] (2.2a) 

Subsystem #2 

(2.2b) 

The above equations are written in the canonical form: 

x == Ax + Bu 

y Cx + Du 

Each of the subsystems is of the first order. 

If the subsystems are connected by the dotted lines as shown in the 

figure, so as to form the system, the topological constraints become as 

follows: 

(2.Ja) 

(2.Jb) 

The model for the large system can be shown to be as follows: 

[o] e12 + [ 1 c 1 -c- c 2 
(2.4a) 

(2.4b) 

Equation (2.4) indicates that the large system is of the first 

order, i.e., the order is not the sum of the orders of the two sub-

systems. It should be noted that the state space is reduced due to the 

constraints of the connection, and not due to any inherent characteris-

tics of the subsystems. In the context of this thesis, the phenomenon 

whereby the order of a large system synthesized from subsystem models is 



iu R1 i16: __ ~I 0 'VVV 

I 
IC2 e11 rel e12 ez, 

o---o 0 

SUBSYSTEM #I SUBSYSTEM #2 

Figure 1. Example of a Large System Comprised of 
Two Subsystems and Involving an 
Algebraic State Constraint 

13 
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less than the sum of the orders of the subsystems is termed order 

reduction. 

14 

In the above example, if order reduction were not evident from an 

inspection of the network, it could be inferred by algebraic manipula­

tion of Equations (2.1), (2.2), and (2.J) so as to write the large sys-

tern model in the canonical form for linear systems. Even though, in the 

case of linear systems, it is always possible to consolidate the sub­

system models and present the model for the large system in the canonical 

form for linear systems, such consolidation is not always desirable, 

since it destroys the modularity of the large system model, and has to 

be repeated afresh whenever any subsystem parameters are changed. 

If the model for the large system is retained in the form of 

Equations (2.1) through (2.J), it can be said that the large system has 

an algebraic state constraint due to the presence of Equation (2.Jb). 

In that case the aggregate of the subsystem state vectors, i.e., 

[e12 e 21 ] can be defined as the 'pseudo' state vector for the large 

system (26). Thus, the terms 'order reduction' and 'algebraic state 

constraint' refer to the same phenomenon but have slightly different 

connotations. 

Example 2 

Figure 2 presents the circuit schematic for a hydraulic system, for 

which a lumped-parameter dynamic thermal model is desired. The heat 

exchanger and reservoir are to be modeled as first order systems, and 

the effects of all other components included in an equivalent heat 

source. Linear subsystem models, developed by Miller (27) can be 

used to write the model for the large system as follows: 



r - . , 

'- - - I 

Figure 2 Hydra,.ulic Circuit Schematic 
of a System Whose Thermal 
Model Involves Algebraic 
State Constraint 
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. r J rT .. 
t,TH a11 liTH + 

, fiH I 
Lb11 b12 LT b J 

Heat Exchanger am H 
(2.5a) 

Subsystem 
Tf ::= 2.t,TH + 2T - Tf. 

OH ambH iH 
(2.5b) 

. 
+ [b21 

J [Tf. J 6TR a21 [;TR b22 T iR 

Reservoir ambR 

(2.6a) 

Subsystem 

T 26TR + 2T - TfiR foR ambR 
(2.6b) 

T Tf. 
Topological foH iR 

(2.7a) 

Constraints 
~ Tf. Tf + pQc iH OR p 

(2.7b) 

The notation used above, which is the same as that of Miller (27) 

is as follows: 

T Temperature (subscripted) 

6T Difference in temperature between bulk fluid inside a 

component and the relevant ambient temperature 

(subscripted) 

D-lg Rate of heat input to the system 

pQ Mass flow rate of fluid 

c Specific heat of fluid 
p 

Known paramters of system 
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fi Subscript denoting fluid inlet conditions 

fo Subscript denoting fluid outlet conditions 

amb Subscript denoting relevant ambient conditions 

H Subscript for identifying Heat exchanger 

R Subscript for identifying reservoir 

Equations (2.5) and (2.6) are first order explicit state vector 

representations of the two subsystems, and 6TH and 6TR are their state 

vectors, respectively. By combining the algebraic output and topologi-

cal constraint equations, it can be shown that 

(2.8) 

which is an algebraic constraint equation and, consequently, [6TH 6TR] 

cannot be the state vector for the large system, i.e., arbitrary initial 

values cannot be assigned to 6TH and 6TR for purposes of digital 

simulation. 

The consolidated explicit state vector first order model for the 

large system, which has been derived by Miller (27) has the form 

T Tf. + f(T b ' Tamb ' 
iH am R H 

. 
L:Hg l::Hg ) 
pQc ' pQc 

p p 
(2.9) 

where T is the effective time constant of the system, and is a function 

of the parameters a 11 through b 22 • The algebraic output equations can 

be written as follows: 

T Tf. -
l:Hg 

foR iH pQc 
p 

(2.10a) 

T g(Tf. ' T , TambH' 
l::Hg ) 

foH iH ambR pQc 
p 

(2.10b) 

Tf. = Tf 
iR OH 

(2.10c) 



In the above representation functions f and g are linear. Derivatives 

of the elements of the external input vector [Tamb~ TambH' ~~~PJ are 

18 

required if the system is to be represented in the explicit state vector 

form. 

By using the logarithmic mean temperature difference, instead of 

the arithmetic mean temperature difference, to define the bulk fluid 

temperature in the heat exchanger, Equation (2.5b) can be written as 

follows: 

0 -T - /:;;,TH 0n 
foH 

(2.11) 

Since Equation (2.11) is algebraic, it does not change the order of the 

subsystem. However, it is no longer possible to establish the algebraic 

constraint equation in a form analogous to Equation (2.8), i.e., 

involving only the state vector elemepts and inputs. 

The system can now be represented as follows: 

(2.12a) 

0 -T - /:;;,TH 0n 
foH 

(2.12b) 

(2.12c) 
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The significant feature of the above model is that it cannot be 

reduced to explicit vector differential equation form: 

. 
x f (_!., ~, t) (2.1Ja) 

0 (2.1Jb) 

where 

_!. .Q [6TH, 6TR] 

[ T l:Hg J 
-u _6 Tamb , , amb pQc 

H R p 

and 

The examples above demonstrate that order reduction arising as a 

result of interconnection of subsystem models is not always apparent 

from inspection of the system equations, and that it is not always 

possible to obtain the explicit state vector representation for the 

large system. Also, the process of consolidating the subsystem models 

to arrive at a state vector of the minimal order generally destroys the 

modularity of the model. 

Digital Simulation Considerations 

The time domain simulation of differential algebraic equation sets 

relies on numerical integration to propagate trajectories of the state 

vectors, starting from known initial conditions. All conventional 

numerical integration methods, e.g., Runge-Kutta, Adams-Bashforth, 

Adams-Moulton (28, 29, JO), etc., require that the system differential 

equation be written in the form 

x (2.14) 
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where x is the state vector. 

Single step methods, e.g. Runge-Kutta, use the state vector at time 

t 1 , to establish the value of the state at time t • Functionally, 
n- n 

x 
n t 1 i t ) n- n 

(2.5) 

where* is used to denote discretization. Multi-step methods, e.g., 

Adams-Bashforth, use the value of the state vector at multiple points 

in time for establishing the next value of the state, i.e., functionally 

(2.6) 

where k is the order of the method. 

In either case, the quantity x is not allowed to appear in the 
n 

right hand side and, therefore, no element of the state vector at time 

t is permitted to be a function of any other element of the state vec­
n 

tor at time t • 
n 

1 2 
Consequently, if two elements x and x of x are con-

n n 

strained by the equation: 

( 1 x2) 
0 = h x ' n n 

(2.17) 

explicit integration methods will not assure that the constraint will be 

satisfied. Consequently, an attempt to use explicit integration tech-

niques in the simulation of the thermal system modeled by Equations 

(2.5) through (2.7), will not guarantee that Equation (2.8) will be 

satisfied at each step in time. An additional difficulty in this 

example is that Tf. , Tf. which are needed for explicit numerical inte-
lH lR 

gration are not known at the beginning of the time step. Also, explicit 

integration methods cannot handle without iteration at each time step 

Equations (2.11a) and (2.11c) since these are of the form 
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(2.18) 

It is concluded that explicit numerical integration routines cannot 

in general handle systems of equations involving algebraic state 

constraints. 

The class of systems under consideration generally exhibit pro~ 

nounced nonlinear behavior. If a nonlinear system N is linearized 

around an operating point, the eigenvalues of the linear approximation L 

are called the eigenvalues of N at the specific operating point. The 

eigenvalues for a nonlinear system are generally speaking functions of 

the state and the input, and can consequently vary in an unpredictable 

manner. When the smallest and largest eigenvalues of a dynamic system 

are widely separated, the system is said to be stiff (2J). It has been 

shown that explicit integration methods are usually inefficient for, and 

often incapable of, simulating stiff systems. 

Review of Simulation Software 

The remainder of this chapter will briefly critique four user­

oriented digital simulation packages, which have been chosen to serve as 

paradigms of their respective classes. The discussion will be used to 

justify evolving a new approach, and is not meant to denigrate the use 

of the referenced software for their intended application. 

SCEPTRE (J1) is chosen as the representative of the generalized 

network approach. It is 1 in the words of its developers, 11 an automatic 

circuit analysis program capable of determining initial conditions 1 

transient and steady-state responses of large networks." Depending as 

it does, on network terminology, it suffers from all the drawbacks of 

the network approach, which have been briefly mentioned earlier and 
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discussed in more detail by Iyengar (32). The state variable concept is 

used by SCEPTRE; however, the reliance on explicit integration routines 

(trapezoidal rule and Runge-Kutta) requires, under certain conditions, 

which are described in terms of 'loops' and •cut-sets', derivatives of 

functions to be furnished. In essence, these situations involve alge-

braic constraints on component state variables. SUPER-SCEPTRE is a 

preprocessor developed for use with SCEPTRE, aimed at simulating multi-

degree of freedom mechanical systems (JJ). Subsystem models may be 

given in terms of generalized network parameters. Scalar nonlinear 

equations may be used to describe circuit elements. Since SUPER-SCEPTRE 

uses the same numerical techniques as SCEPTRE 1 it imposes the same 

restrictions on component interconnections and inputs. Even though 

SCEPTRE and SUPER-SCEPTRE are claimed to be written to analyze large 

systems, the model formulation does not display explicitly the topologi-

cal structure. Additionally, since SCEPTRE uses the network approach, 

it has no provisions to use empirical and semi-empirical models of 

components, expressed as sets of differential-algebraic equations. The 

process of developing an equivalent network from such models is a 

retrogressive step in system simulation. 

MARSYAS (J4) developed for simulating 'large' aerospace systems 

primarily in the frequency domain, uses two canonical forms: 

for linear components and 

for nonlinear components. 

x. = A. x. + B. u. 
1 1 1 l 1 

y. 
1 

y. 
1 

C. x. 
1 1 

Interconnection between components are described by a vector 

equation: 

(2.19) 

(2.20) 

(2.21) 
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u EY + FV + KY (2.22) 

where U and Y are the consolidated input and output vectors, respectively, 

and V the external input vector to the large system. 

Thus, all nonlinear components have to be dissected down to the 

level of nonlinear (and linear) elements described by scalar nonlinear 

equations. Explicit integration routines are used and, consequently, 

the state of the large system has to be the aggregate of the linear sub­

system states. Also, MARSYAS does not allow the imposition of algebraic 

constraints on state variables via the interconnection equations. 

Additionally, MARSYAS does not handle static simulation and nor is it 

geared to handle stiff systems. The use of a preprocessor does, however, 

permit the storage of skeleton models and the user is allowed to write 

FORTRAN models as well. Consequently, empirical and semi-empirical 

models can be adjoined to the simulation package. 

HYTRAN (24) is designed for aircraft hydraulic systems and is 

especially useful for systems having long transmission lines 1 since it 

uses the method of characteristics to model them. Prepackaged models of 

components like pumps, accumulators, etc., are used and the inclusion of 

empirical and semi-empirical state space models is difficult, if not 

impossible. The package is not suited for static simulation. HYTRAN 

also relies on explicit state vector representation for dynamic compo­

nents and, consequently, cannot handle algebraic state constraints. 

HYDSIM II (25) is a package written to simulate complex hydraulic 

systems using multiport component models. Components are modeled using 

the canonical form 

x::: f(x, y, u, t) 

0 g(x, y, u, t) 

( 2. 23) 

(2.24) 



Interconnections between components are modeled by: 

u h(x) or u h(y) (2.25) 

The aggregate of equations for the entire system is block-oriented, 

each block representing a component. The assumption that the dependent 

port variable at an energy port has to be the independent port variable 

for the component to which the port is connected, introduces a con-

straint on the manner in which component models can be connected, i.e., 

certain types of connections are forbidden. The originator of the soft-

ware package is cognizant of this restriction, since in the section 

entitled "Recommendations for Further Study" (25, pp. 59-60), he says: 

However, some of the areas in which improvements would 
be most beneficial are: 

1. Develop a simulation algorithm which does not 
require the matching of port-variable dependencies at the 
component connections. 

The matching of port variable dependencies in HYDSIM II ensures that the 

order of the large system is equal to the sum of the orders of the sub-

systems. The program package relies on explicit state vector represen-

tat ion and explicit integration (Runge-Kut ta and Adams-Moul ton) for 

propagation of state variables. Consequently, systems for which the 

state vector derivative cannot be written explicitly, e.g., the thermal 

system described by Equation (2.12), cannot be simulated by HYDSIM IL 

Additionally, the integration methods used in the package can become 

very inefficient and even unstable when simulating stiff systems. 

Another disadvantage of HYDSIM II is its reliance of prepackaged models 

which makes additions to the library of models difficult. 

In summary, it has been shown in this chapter that the process of 

synthesizing a large system model using subsystem models expressed in 



25 

the form of differential algebraic equations can result in order reduc­

tion, and that simulation software relying on explicit state vector 

representation are incapable of simulating systems with such order 

reduction. A second drawback of the present simulation programs which 

becomes apparent after a qualitative analysis of a system in the class 

under consideration is their inability to handle stiff systems 

efficiently. 

In the next two chapters a new approach to modeling and simulation 

of large systems is presented. The new approach is based on concepts 

drawn from large scale systems theory, which are discussed in Chapter 

III, and the use of implicit representation for numerical integration 

and qualitative appraisal, which is the topic of Chapter IV. 



CHAPTER III 

THE.LARGE SCALE SYSTEMS APPROACH 

The limitations of the generalized network approach to systems 

analysis can be traced back, for the most part, to insistence on dis-

section of a system to basic energy storage and dissipative elements, 

i.e., inertances, capacitances, resistances, etc. The order of the 

state vector for a 'large' system is equal to the number of energy stor-

age elements in the network; algebraic constraints on state variables 

are prohibited, since they violate the restrictions placed on topologi-

cal structure (31). HYDSIM II (25) invokes 'port-dependency' conditions 

to prevent the interconnection of two subsystems in a manner which would 

result in algebraic state constraints. The examples given in the pre-

vious chapter demonstrate that it is physically possible to interconnect 

subsystems in such a way as to impose algebraic state constraints. 

The objective of this chapter is to outline an approach which over-

comes the above drawbacks. A 'large' system model is one in the form of 

a set of differential-algebraic equations in which 

((i) the equations describing any individual subsystem are 

identifiable and not affected by changes in the model 

of other subsystems, 

(ii) the equations describing the topological structure of 

the system are distinct, and 

26 
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-~';~ 

(iii) no restrictions are placed on the demar~~tion of sub-

system boundaries. 

A fundamental premise of the large scale system modeling approach 

is that in analyzing certain types of large physical systems it is 

usually advantageous to stop the process of dissection at an intermedi-

ate point rather than at the lowermost level. When the dissection is 

stopped at an arbitrary level, the description of subsystems assumes 

special importance. ~~e_ a mathematically adequate subsystem rep~~;;.en­
ta:t;.t~E. __ _!las been obtained, details of its internal structur~_are irr_eJe-

~~~_t _:to _ _i;h~ __ d~_s_<;:!'~P_t~C>ll o~_ !_h.e Q..~hil:Y~~~ of --~!1e~ 1 at_g_~ __ _i:;_y§j;_em) 

(complete freedom in drawing boundaries around subsyste~s is desir­
\ 

able. Any diminution of this freedom, dictated by the need to meet the 

requirement of simulation techniques will detract from the usefulness of 

the modeling process itself. Also, it is desirable that subsystem 

models be complete and self-contained, and have few constraints on their 

applicability.) 

(~ The problem of describing the behavior of a large system repre-

sented in the above manner reduces to: 

1. Description of subsystems by suitable models; 

2. Description of interconnections between subsystems in 

suitable mathematical terminology; and 

J. Evolution of a procedure for generating output trajec-

tories using information about initial conditions and 

input trajectories. ) 
./ 

Each of these interrelated aspects will be considered in turn. 
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~~~"'a 
Subsystem Canonical Representation 

A subsystem canonical representation is defined as a standard func-

tional form in which the mathematical models for all subsystems are to 

be written. The reasons for evolving and scrutinizing canonical forms 

are to firstly examine the implications of connecting subsystems, in 

abstract terms, and secondly to examine the advantages of one form over 

another. Thus, for example, the effect of interconnecting two subsystems 

on the order of the large system can be examined in general terms, 

rather than considering each situation ab initio, as was done in Chapter 

II. Also, some forms may be more amenable for qualitative appraisal of 

system behavior than others, and other things being equal, such forms 

would be more attractive to the analyst. 

(In order for the analysis of large scale systems to be general, it 

is necessary to use a subsystem model form which can encompass all 

possible types of components and all possible methods of their inter-

connection.\ In the ensuing discussion, the explicit vector differential 
/ 

form, which has formed the basis of much of modern control theory (22, 

35, 36) will be used, even though later in the development, an even more 

general form will be used. 

The i 1 th subsystem will be represented by: 

x. f. (x , ui, t) 

{ 
1 1 i 

s. 
1 

g. ( x.' t) y, ui' 1 1 1 

(3.3a) 

(J.3b) 

Given th~ipschitz conditions, it can be shown that a unique solu-
,___.------·-- -...::;.._ ____ ,_....._.J._";"_ ... ---......_ _____ .~----·-- ---.~---~-···-- ·•·• ~-·-·----...... ___ ., •• , _____ • __ w_,~-

ti.on.--··to .. .Equat.io.n. (J!_12__~~~E_s. A vast majority of physical systems, 

modeled with lumped parameter elements, can be described using the above 

canonical form. 
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Equation (J.J) is also suitable for qualitative appraisal of the 

dynamic behavior of the subsystem, since, in general, the differential 

equation (J.Ja) can be expanded in a Taylor series in the neighborhood 

of an operating point, and the first term of the expansion used as an 

approximation of the plant matrix for eigenanalysis. The advantage of 

Equation (J.J) over 2.5 is that the differential and algebraic equations 

are decoupled and, consequantly, the latter may be ignored during 

adoption as the canonical representation for subsystem. 
'1 

Interconnection Between Subsystems 

If there is one feature which can be considered characteristic of 

large systems, it is the explicit portrayal of the interconnection be­
; 

tween the subsystems. In mathematical systems theory (J'?)~/three 
methods of interconnecting system models are discussed; namely, parallel, 

cascade, and feedback (see Figure J). Before accepting these methods as 

being sufficient for the types of systems under study, it is necessary 

to examine the physical implications of interconnections. 

The physical interconnection of fluid power systems is achieved 

through fluid conduits, mechanical linkages, or electrical wiring. 

These linking devices, if they are not treated as subsystems in their 

own right, generally impose equality constraints on certain physical 

variables associated with the energy or signal ports they link. The 

mathematical models used to depict the behavior of the subsystems must 

have, as inputs and outputs, these port variables. Consequently, in the 

case of most physical systems, the topological information describing 

the interconnection of subsystems, can be written in the form: 



INTERCONNECTION OF SUBSYSTEMS 

~SUBSYSTEM I I . :1 SUBSYSTEM 1I ~ 
CASCADE 

SUBSYSTEM I 

SUBSYSTEM II i---~ 

PARALLEL 

SUBSYSTEM I 

SUBSYSTEM :n: 
FEEDBACK 

Figure J. Possible Methods of ~nterconnecting 
Subsystems 

JO 



Ji 

0 (J.4) 

where: 

v ) is the r dimensioned external input 
r v 

v 

to the large system. 

The large system is now represented by an aggregate of the subsysten 

models and the topological information as follows: 

. 
X = f(X, U, t) (J.5a) 

Y g(X, U, t) (J. 5b) 

0 H(Y, U, V) ( J.6) 

where X, Y, and U are the aggregates of the subsystem state, output, and 

input vectors. 

Consider now the connection of the £ 1 th port of the j•th subsystem 

to the t 1 th port of the k'th subsystem. The physical connection will 

impose the constraints 

or 

y 
kc(t) 

(J. 7) 

(J. 8) 

where a(£), b(£), c(t), and d(t) are appropriate integers. Figure 4 

shows how the physical constraints due to component interconnection 

translate into equality constraints on mathematical variables. 
c 
~f three or more ports, each of a separate subsystem, are 
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SUBSYSTEM 
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SUBSYSTEM 
2 

ENERGY PORT INTERCoNNECTION 
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I 1-----
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-r;, 

PORT 
VAR. 

MATH 
VAR. 

MATHEMATICAL AND PORT VARIABLES 
Figure 4. Physical Origin of Equality Constraints in the Topologi­

cal Description of a Large System 

J2 
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interconnected, or if an external input is present at an energy port, 

or an external signal input is present, the generalized Kirchoff's laws 

can be used to write the constraint equations, which will still be 

algebraic~ It is important to emphasize that the physical interconnec-

tion is the basis of the topological constraint, and not vice versa. If 

two physical components can be physically connected it is natural to 

insist that they be portrayed in the mathematical description, rather 

than prohibit certain interconnections because they are mathematically 

inconvenient. 

If all interconnection equations can be written in the form of 

Equation (3.7), the constraint equation for the large system reduces to 

u (3.9) 

where H1 and H2 are appropriate matrices. Ikeda and Kodama (37) give 

the conditions under which Equations (3.5) and (3.8) will represent a 

large system whose state vector is the aggregate of the subsystem state 

vectors. 

It has been shown by Iyengar that it is possible to interconnect 

some subsystems so that the constraint equation for the large system is 

in the form 

G V (3.10) 

and it is .not possible to express U explicitly in the form of Equation 

(3.9) (38). In this case the order of the large system is less than the 

sum of the orders'of the subsystems. The previous chapter gave examples 

. " 

of large systems involving order reduction. The postulation and proof 

of a theorem concerning order reduction arising due to the 
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interconnection of two subsystems represented by sets of differential-

algebraic equations is contained in Appendix A. 

Simulation Procedure 

The large system described by Equations (3.5) and (3.6) is charac-

terized by the existence of an aggregate input, U, which is quite 

distinct from the external input to the large system. By suitably 

manipulating the interconnection equations, it is often possible, 

especially in the case of linear systems, to eliminate U entirely. 

The retention of the U vector poses a simulation problem when using 

explicit integration techniques since Equations (3.5) and (3.6) cannot 

be coded directly as FORTRAN (or equivalent) statements. There are 

three possible alternatives: 

(a) symbolic manipulation of equations, 

1~ 
( ) c:::;.'~ 1 . u y t b b use of staggered e ements in the and vec ors y 

introducing artificial delays, or 

(c) solving an implicit algebraic equation at each step in 

time. 

Alternative (a) lacks generality, even though its use for linear 

systems has been demonstrated (38, 39). Alternative (b) is used in some 

software packages (31), but the accuracy of simulation depends on the 

selection of the right vector elements to be delayed and the step size. 

Superficially (c) may appear attractive, but closer scrutiny will reveal 

that it is not since the implicit algebraic Equation (3.6), is coupled 

to the differential equation and, consequently, the latter will also 

have to go through the iterative solution procedure. Alternative (c) 

is not the same as that used in HYDSIM II (25) since in the latter, the 
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propagation of the state vector does not need iteration at one point in 

time. HYDSIM II uses the chain rule to develop a 'pseudo' first-order 

differential equation for the algebraic variables.) 

All of the three above alternatives fail when algebraic constraints 

on the state vector of tne la~ge system are present. There is another 

area of weakness in software depending on explicit integration methods 

which has been mentioned earlier. Explicit integration methods are 

unusable for stiff systems (2J, 40, 41). Stiff systems are character-

ized·by the existence of widely different real parts of the largest and 

smallest eigenvalues--typically of two orders of magnitude or more. As 

explained by Gear (41), Blostein (41), Orlandea et al. (4J) explicit 

integration methods either require very small step sizes and are, 

consequently, subject to round off errors in digital computation, apart 

from being inefficient, or go unstable. In the nonlinear systems of 

the type under consideration, the •stiffness' changes from region to 

region in state space and, hence, the importance of using a method which 

is robust and efficient under the widest range of stiffness. 

The need for an algorithm for qualitative appraisal of the dynamic 

behavior of large systems is also evident. Needless to say the coupling 

of subsystems implies that, in general, the eigenvalues of the large 

system will not be the eigenvalues of the subsystems themselves. 

This chapter has outlined the large scale systems approach by 

examining subsystem canonical representations, the implications of 

physical interconnections between subsystems and the problems of 

simulating systems involving implicit constraints on not only algebraic 

variables but possibly state variables as well. The next chapter 

develops and explains the philosophy of implicit representation, as 



applicable to dynamic physical systems, and demonstrates that it has 

the potential to overcome the drawbacks of explicit state vector 

representation. 

J6 



CHAPTER IV 

LARGE SCALE SYSTEM SIMULATION USING 

IMPLICIT REPRESENTATION 

The explicit vector differential form of representation for lumped 

parameter dynamic physical systems appears to arise so naturally that 

alternatives are rarely considered. However, the main reason for this 

formulation is that the use of the generalized network approach which 

almost always relies on explicit numerical integration techniques demand 

that form (42). In this chapter, a new form, which overcomes the draw-

backs of the explicit state vector representation is evolved. 

Consider the following canonical form for representing the i 1 th 

subsystem: 

0 f. ( :ic . , xi' w i, t) 

{ 
l l 

s. 
l 

0 g. (x.' w.) 
l l l 

where w. is defined as the aggregate input-output vector, i.e., 
l 

(4.1a) 

(4.1b) 

w. = (u.:y.). It is obvious that Equation (4.1) subsumes the earlier 
l l" l 

form, Equation (J.J). The introduction of w is given the following 

justification: When a system is being analyzed, the first requirement 

is to identify the input and outputs. A system model is expected to 

show explicitly these inputs and outputs. (However, in the case of a 

subsystem, it is conceivable that there is some degree of freedom in 

assigning inputs and outputs (44); i.e., the constitution of the input 

37 



and output vectors depends upon the other subsystems and possibly the 

external inputs to 

model whenever the 

the large system~ Rather than change 

interconnections,,,dhange, as advocated 

the subsystem 

by Rosenberg 

(44), it is easier to use a generalized input-output vector for a sub-

system. The use of an implicit algebraic equation needs no special 
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defense, since static components are often used in hydraulic systems and 

the implicit form is more general than the explicit form. 

The large system obtained by aggregating subsystems in the above 

canonical form can be represented by 

0 f(x, x, w, t) (4.2a) 

0 g(X, W) (4.2b) 

0 h(W, V) (4.2c) 

where 

W (U:Y) 

It is seen that Equation (4.2) subsumes the explicit representation 

for a large scale system; namely, Equations (3.5) and (3.6). Conse-

quently, any analysis or simulation performed by using Equation (4.2) 

can still use the explicit representation. 

It is well recognized that a qualitative understanding of the 

behavior of a dynamic system is,essential for the selection of digital 

simulation parameters--step sizes, error bounds, etc. Such an appraisal 

is relatively simple for systems represented by explicit differential 

equations. If the above canonical form is used, the first term of the 

Taylor's series expansion of the differential equation can be obtained 

only by using the implicit function theorem of differential calculus. 

Appendix B contains an algorithm, which has been developed and 
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computerized as part of this research 1 for establishing the eigenvalues 

of a large system expressed in the above canonical form. The algorithm 

will be used in appraising the qualitative behavior of example systems. 

Digital Simulation 

The development of trajectories in dynamic system simulation is an 

example of the initial value problem in differential equations. It is 

well known that explicit integration routines are incapable of handling 

efficiently stiff systems, characterized by widely divergent real eigen-

values (2J, 41, 4J). 

A number of implicit integration techniques, pioneered by Gear (2J, 

40~ 42, 45, /;fj, 47) have been recently developed to handle stiff systems. 

It should be mentioned that most of these techniques still require the 

model to be in explicit vector differential form (40, 41). Gear has 

extended the implicit integration method to handle differential alge-

braic systems expressed in the form 

0 (4.J) 

where X need not be the state vector (62). Appendix C gives a brief 

review of the method. It is easily seen that Equation (4.2) can be 

written in the form (4.J). 

Equation (4.J) by itself can be considered as the canonical form for 

representing not only subsystems, but also the large system. In the 

first case, it would contain the equations relating the sub-subsystem 

input to the subsystem state and output. In the second case, it would 

contain not only the models for all subsystems, but also the topological 

information. The vector X will be defined as the differential-algebraic 
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state vector in order to distinguish it from the genuine state vector 

for the large system. 

As an example of model formulation using implicit state representa-

tion the equations for the thermal system analyzed in Chapter II will be 

reconstituted to conform to Equation (4.J). The input vector to the 

system is 

The differential algebraic state vector for the system is defined as 

The equations describing the subsystems and topological constraints 

can.now be written as follows: 

0 (4.4a) 

E2 - vf'\ 
0 = -x - x !?in. ) + x 

3 1 J - v 1 2 
(4.4b) 

(4.4c) 

(4.4d) 

(4.4e) 

0 (4.4f) 

It may be noted that implicit representation is not only easy to 

use, but also exhibits individual subsystem models and topological con-

straints as partitions of the large system model. The external inputs 
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to the large system, i.e., the elements of y_ could have been specif­

ically excluded from appearing in the subsystem models by appending two 

additional elements of the differential algebraic state vector and 

adding two equations to the topological constraints. 

It may be noted that Gear's algorithm for differential algebraic 

systems does not require explicit identification of the state vector. 

Even though, in principle, it is possible to include in X all system 

variables except the inputs to the large system, it is advantageous 

from the point of view of simulation, to append to Equation (4.J), an 

explicit algebraic equation 

z g(!, y_, t) (4.4) 

where Z is termed the explicit algebraic variable vector. This vector 

could be constituted of all subsystem outputs which can be explicitly 

expressed in terms of the input vector y_ and the differential algebraic 

vector, !, and which do not influence any of the subsystem inputs. 

Equations (4.J) and (4.4) together constitute the canonical form 

for the large system. The next chapter illustrates the use of this 

canonical form for both qualitative analysis as well as digital 

simulation. 

Software Development 

The only documented digital simulation package which implements 

Gear's method for implicit differential algebraic systems in ECAP II 

(48). This package, written for static and dynamic analysis of elec­

tronic networks, could be used for simulating other sys,tems by casting 

them in the 'network' mold. The drawbacks of the network approach to 

analyzing large mobile hydraulic systems have already been discussed in 
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Chapter II and elsewhere (32). An additional drawback to the use of 
--------·-··----·----------·--·------~- --------- ... ~- ~ 

of its .. precompiler and bookkeeping technique. Needless to say, these _.--. --- ---~-· ........... _____ ·--· --~~ ...... _ ··- - -- -

features make it difficult, if not impossible, to extract intermediate 

variables, and interface other FORTRAN subprograms. Consequently, it 

was decided to build the large scale system simulation program using 

Gear's numerical integration program (49), DFASUB, for propagating the 

differential-algebraic state vector. 

Figure 5 exhibits the calling structure of the FORTRAN program 

evolved for simulating the type of systems under consideration. No 

attempt has been made to develop a user-oriented package corresponding 

to HYTRAN, HYDSIM II 1 or other similar software (24, 25). A brief 

description of the main program and key subroutines follows. 

MAIN Program 

This program is used to initialize all parameter, arrays, etc., and 

read information pertinent to individual componentsi e.g., actuator 

sizes, inertia, and drag coefficients, valve metering characteristics, 

etc. It is also used to read integration control parameters; namely, 

maximum, minimum, and starting step sizes, allowable error and final 

time, as well as initial values of elements of the differential-

algebraic state vector, and their first derivatives. It also reads the 

input trajectory. 

The program sets up the differential-algebraic state vector in the 

form needed for numerical integration by DFASUB. If in the course of a 

trajectory simulation~ it is found necessary to change from one repre-

sentation of a subsystem to another, the main program is used to 
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ascertain when a switch is needed, and reconstitute the elements of the 

Y vector, and transmit only the pertinent variables to DFASUB. MODL1 

and MODL2 are two representations between which switching is performed 

according to preselected criteria. Additional models can be added as 

necessary. Chapter V illustrates the program logic by means of an 

example simulation involving model switching. 

DFASUB 

This is the integration routine which develops the trajectories of 

the differential algebraic state vector, as constituted by MAIN. Since 

the program is documented elsewhere (48), only the modifications 

required to handle large systems will be described here. The values of 

the input vector at any prescribed time are obtained by calling INPUT, 

as many times as may be necessary for the Newton iteration which is part 

of implicit integration. Explicit algebraic variables, i.e., those 

which can be written as explicit functions of the differential­

algebraic state and the inputs to the large scale system, are obtained 

by calling ALGVAR. Print-out of trajectories after a prescribed number 

of steps is done by alling PRINT. To perform the implicit integration, 

DFASUB uses the error vector generated by DIFFUN, and a number of matrix 

manipulation routines enclosed in the shaded box in Figure 5. 

DI FF UN 

This subroutine furnishes DFASUB with the correction to the 

differential-algebraic state vector before the latter performs the 

Newton iteration. The equations describing all the subsystems as well 

as the topological constraints may be included in DIFFUN. However, in 



the present version, in order to facilitate switching of component 

representations it is used as a director subprogram which called the 

pertinent system model written in one or more subprograms. 

ALGVAR 

This subroutine is written specifically to evaluate explicit alge­

braic variables whose inclusion in the differential algebraic-state 

vector would have resulted in unnecessary matrix manipulation, core­

storage and computing time. ALGVAR is called just before the print-out 

step, so that no calculations need be made for steps which are not 

printed out. 

PRINT 

This subroutine performs a dual function. First, it is used to 

control the print-out of trajectories of the pertinent system variables. 

Secondly, it is used to check, at each step in time, if the criteria for 

switching from one representation another have been met, and if so, to 

return an appropriate message to the MAIN program. 

The main program and most of the subprograms, with the exception of 

DFASUB, were specifically written to simulate the example system pre­

sented in the next chapter. However, with changes in the quantities 

that are printed out at the beginning of a simulation, the program can 

be used to simulate any large system expressed in the canonical form 

evolved herein. 



CHAPTER V 

EXAMPLE SYSTEM ANALYSIS 

Even though the variety in circuitry exhibited by mobile hydraulic 

systems is much more than hydraulic and electro-hydraulic servo-systems, 

a vast majority of mobile hydraulic systems are characterized by the 

following features. 

1. Modularity: Each actuator, together with its control 

elements (directional control valve, relief and flow 

control valves) is a distinct subsystem. Two or more 

subsystems may be identical. 

2. Multiplicity of inputs: Two or more actuators may be in 

motion at the same time, as a result of human operator or 

other inputs. 

J. Task Oriented Duty Cycle: For a prescribed task, the 

inputs and the actuator motions form a well-defined 

cycle. A machine may be capable of a multitude of tasks. 

An example system has been chosen to explore the feasibility, 

efficacy and limitations of digital simulation based on implicit 

representation. The system, shown in Figure 6, which exhibits all the 

characteristics detailed above, is the simplified hydraulic circuit of a 

backhoe. A brief description of its operation will lead to a better 

appreciation of the modeling and simulation problems involved in 

describing its behavior. 

46 



BA.CKHOE SWINQ 

Figure 6. Simplified Hydraulic Circuit Schematic of a Backhoe 
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The system is open centered and is generally synthesized from off-

the-shelf components; namely, pump, directional control valves, pressure 

and flow control valves, cylinders or motors and fluid conditioners 

(filters, oil coolers, etc.). The directional control valves, which are 

usually manually operated, may be of the en bloc or stack design. In 

either case, using the 'pressure beyond' capability of the open center 

valve, it is possible to incorporate additional actuator subsystems by 

merely interposing them in the open center return path. 

For simplicity in presentation here only two actuators will be 

considered to be in operation. Extension to more actuators is straight-

forward. Figure 7 presents the circuit schematic for the two actuators, 

and explicitly identifies the pump subsystem., in addition to the actu-

ator subsystems. Figure 8 is a 'network' description of the actuator 

subsystems, intended firstly to demonstrate that each subsystem is a 

dynamic system in itself, and secondly to highlight the interconnections 

between the subsystems. Since the pump is considered to be the first 

subsystem, the actuator subsystems are labelled as '2' and '3', respec-

tively. From a hierarchical viewpoint, Figure 7 presents one level of 

dissection of the large system, i.e., into subsystems, while Figure 6 

presents the system at the lowermost level of dissection, i.e., at that 

of basic elements. Figure 8 also illustrates the identical nature of 

actuator subsystems, i.e., exactly the same equations are used to 

describe the dynamic behavior of both subsystems. It needs to be empha-

sized that the actuators can be modeled as identical subsystems only if 

the topology of the large system is explicitly described. Thus, in 

Figure 8 P and Q are the port variables at an energy port of actuator 
s2 s2 

number 2, in precisely the same manner as Psi and Qsi are the port 
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variables for actuator number 1. The fact that PT1 = Ps2 and Q15 = Qs 2 

arises as a result of the interconnection of the two subsystems, and is 

explicitly shown as such, even though at the cost of introducing 

additional variables. 

The selection of static and dynamic effects to be included in a 

mathematical description of a system is based on the information content 

desired to be incorporated in the model (50). The actuator subsystem 

models presented here incorporate the capacitance effects of the line 

and cylinder volumes on both sides of the piston, in addition to the 

actuator inertia and drag. The open center valve, which is treated as 

part of the actuator subsystem, is described by a numerical algebraic 

model based on the Wheatstone bridge analogy (12). Since the pump is to 

be treated as an ideal flow source, and there is no interest in estab-

lishing the pump input torque, the pump subsystem need not be modeled 

so as to account for the variables at all its energy ports. Consequent-

ly, the pump subsystem will be treated as an ideal flow source, and Q 
s 

will then be an element of the external input vector to the large system. 

The sixteen implicit differential algebraic equations used to 

describe the two actuator open center system can be obtained by modeling 

firstly the two actuator subsystems, and secondly the topological con-

straints. The relevant equations which are identified below as elements 

of a functional equation F are as follows: 

Subsystem #2 (Actuator System #1) 

. 
(Qs 1 - Q15) 

1 
F1: 0 PS1 + - Q11 c 

s1 

F 2= 0 =: -Q11 + ka11 (PS1 - p )~ 
A1 

!h F . 0 -Q15 + ka15(PS1 -
p ) '~ 

3· T1 
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1 

F4: 0 -PA1 + (Q11 - v1AA1) CA1 

F : 0 (PA1AA1 - PB1AB1 - w1 - B1v1) 
1 

-v1 + 
5 I1 

(v1AB1 -
1 

F6: 0 -P + Q14) c B1 
B1 

}2 
F . 0 -Q14 + ka14 (PB1 - PT) 7' 

Subsystem #J (Actuator System #2) 

. 
(QS2 - Q21 - Q25) 

1 
F8: 0 - PS2 + 

CS2 

F9: 0 - Q21 + ka21(PS2 - PA2) 
}2 

}2 

F10: 0 -Q25 + ka25(PS2 - PT) 

. 1 
F11: 0 ::: -P + (Q21 - v2AA2) A2 CA2 

F12: 0 -v2 + (PA2AA2 - p A - w - B2v2) I2 B2 B2 2 

. 1 
F1J: 0 -P + (v A - Q24) c B2 2 B2 

B2 
}2 

F14: 0 ::: -Q24 + ka24(PB2 - PT) 

Topological Constraints: 

where x1 and x2 are the spool displacements for the directional control 

valves in subsystems two and three, respectively. It is of interest to 

note that firstly, QSi and PT are invariant for a given system, and 



secondly, that x1 and x2 are indirect inputs, in the sense that they 

determine the metering orifice areas a 11 , a 14 , a 15 and a 21 , a 24 , a 25 , 

53 

respectively. In the course of a duty cycle, X1 and X2 and 1 consequently, 

the metering areas are changed by the human operator. 

Numerical values of parameters are presented in Appendix E. 

Figures 9 and 10 present the trajectories of selected system variables 

for two inputs intended primarily to demonstrate the success of model 

formulation and the advantages of variable step-size integration (which 

controls the density of the identification characters in the computer­

generated plots of output trajectories). Figure 9(a), for example, 

presents ramp inputs of spool displacements and load to both actuator 

subsystems, while Figures 9(b), 9(c), and 9(d) depict corresponding 

trajectories of cylinder pressures and velocities. The intercation 

between the two actuator subsystems is evidenced by the change in 

cylinder pressures and velocity for the first actuator, when the second 

is put in motion. A typical machine duty cycle would be composed of 

one or more trapezoidal inputs as depicted in Figure 10(a) and the 

corresponding outputs as in Figures 10(b), 10(c), and 10(d). These 

simulations reveal the efficacy of the implicit integration method in 

handling systems where dynamic and steady-state operation are 

interspersed. 

It should be remarked that the step size is limited to the maximum 

specified by the analyst, and this parameter may be changed by the 

analyst, in the course of a trajectory simulation, so as not to waste 

time in the calculation of unnecessary intermediate steps. However, the 

maximum step size should be chosen such that changes in the input are 

taken into consideration in addition to the dynamics of the system. 
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The successful calculation of trajectories based on specific inputs 

does not, however, give a good indication of the qualitative aspects of 

simulation, which are necessary for a general appraisal of a new 

technique. Application of specially designed benchmark problems to 

Gear's implicit integration method have revealed some of its strengths 

and weaknesses (41, 51). The main strength of Gear's method, as indi­

cated by the tests described in the above references, lies in its 

ability to handle stiff systems which are characterized by non­

oscillatory eigenvalues; its main weakness, which is not considered 

serious (51) was its inefficient simulation of highly oscillatory 

trajectories. However, these tests by Gear (41), and Enright, Hull, and 

Lindberg (51) were conducted on explicit differential equations rather 

than implicit differential-algebraic equations which form the basis of 

the new approach, i.e., they did not investigate the effect of nonlinear 

algebraic equations on simulation speed or efficiency. 

In order to exploit to the fullest extent the advantages offered 

by implicit integration for simulating large mobile hydraulic systems 

and also to compensate for its disadvantages, the following areas were 

considered worthy of investigation: 

1. qualitative stud~ through eigenanalysis, of the example system 

to examine its stiffness characteristics 

2. study of effect of hard constraints on simulation by 

implicit integration 

J. study of feasibility and utility of switching models in the 

middle of a trajectory 

In the ensuing sections the results of the investigation will be 

summarized. 



Qualitative Behavior of Two-Actuator 

Open-Center System 
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It is well known that the dynamic behavior of a linear time­

invariant system can be aualitatively appraised by a scrutiny of the 

eigenvalues of the plant matrix. The qualitative behavior of a non­

linear system in a prescribed region of state space can be obtained by 

linearization if the eQuations describing it are in the explicit vector 

differential form, i.e., Equation (J.J) and the functions are continuous 

and differentiable (52). Appendix B develops the expression for the 

local plant matrix of a nonlinear implicit differential algebraic system. 

A computer program written to perform the necessary matrix manipulations 

and solve the characteristic eouation was used to analyze both single 

and double actuator open center systems at various points on their 

operating region. Since the actual numerical values of the eigenvalues 

depends not only on the operating region in the state space, but also 

the system parameters, general conclusions regarding all open center 

systems cannot be drawn. Nevertheless the results obtained by analyzing 

specific systems are very instructive. For example, Iyengar (26) has 

shown that a single actuator system with 'small' inertia and drag can 

exhibit stiffness ratios of the order of 107 or more, and would conse­

auently be difficult, if not impossible, to simulate by explicit inte­

gration methods. It has also been shown by Iyengar (53) that 'small' 

inertia and drag do not necessarily lead to non-oscillatory eigenvalues. 

Conseauently, it is conceivable that simulation of open center systems 

by implicit integration may be slowed down, and even made inefficient, 

due to the presence of complex eigenvalues with large imaginary parts. 
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Since in the course of the simulation of a trajectory, the eigenvalues 

can vary continuously, implicit integration offers the advantage of 

being the only method which has the potential of simulating an entire 

trajectory with no human interference. It should also be noted that in 

order to portray oscillatory trajectories faithfully, any numerical 

integration scheme will have to use step sizes significantly smaller 

than the time period of oscillations. 

Table I summarizes the results of eigenanalysis performed at 

selected times of trajectories developed for the example system. 

of interest to note: 

1. the maximum allowable step size is used even when the 

system is fairly stiff 

the step size is not always curtailed by the presence of 

complex eigenvalues with large imaginary parts 

J. the mere inclusion of the second actuator subsystem, 

which may be inoperative at the time under consideration; 

can change the stiffness ratio of the system 

4. a very small or zero value for metering orifice a 15 

always resulted in a small step size, even though the 

stiffness ratio was not far different from other regions 

It is 

in state space for which a much larger step size was used. 

The general conclusion that can be drawn from the qualitative 

analysis are: 

1. Open center mobile hydraulic systems can exhibit wide range 

of stiffness ratios and can have eigenvalues with large and 

small imaginary parts. 
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TABLE I 

SUMMARY OF SIMULATION RUNS ON EXAMPLE SYSTEM 

Actuator #1 
Simulation Time Spool 

Metering 
Run No. Disp. 

x1 a11 

193 0.615 o.o650 0.0288 
760203 

283 0.000 0.0750 0.1092 
760202 

126 
0.21,3 O~o615 0.0209 

760129 

126 
0.243 0.0165 0.0209 

760129 

126 
0.721 O.o670 0.0333 

760129 

126 
1.240 0.0000 0.0000 

760129 

764 0.226 0.0077 0.0348 
760129 

764 0.291 0.0872 0.0796 
760129 

764 0.291 0.0872 0.0796 
760129 

764 0.291 0.0872 0.0796 
760129 

aMaximum allowed step size. 

hDefined as !Amaxlreal part 

I:>. . I 
min real part 

all, 

0.0288 

0.1092 

0.0209 

0.0209 

0.0333 

0.0000 

0.031,8 

0.0796 

0.0796 

0.0796 

Areas 

a15 

0.01570 

0.00000 

0.02664 

0.02664 

0.00940 

0.13240 

0.00720 

0.00000 

0.00001 

0.00000 

cEigenvalues for first actuator subsystem only. 

dSmallest non-zero eigenvalues. 

Load 

w1 

2000.0 

0000.0 

4866.5 

4866.5 

8000.0 

0000.0 

4513.0 

5812.0 

5812.0 

5812.0 

Actuator #2 i 
Spool 

Metering Areas 
Current 

Disp. Load Step 

x2 ag1 agi, a25 w2 Size 

0.060 0.0175 0.0175 0.0311, 1000.0 o.005oa 

0.000 0.0000 0.0000 0.1321, o.o 0.0001 

0.000 p.oooo 0.0000 0.1321, o.o o.005oa 

- - - - - -

0.064 0.0265 0.0265 0.0188 1000.0 o.005oa 

0.000 0.0000 0.0000 0.1321, o.o o.005oa 

o.ooo 0.0000 o.ooo 0.1324 0.0 o.005oa 

o.ooo 0.0000 0.0000 0.1324 o.o 1.9X10-I, 
' 

0.00010.0000 0.0000 0.1324 o.o 1.9 x 10-4 

- I - - - - -

Eigenvalues Stiffness 
Largest Smallest d Ratio 

Amax ~in cr 

- 783.2 - 31,.6 22.63 
+j1959 

- 10i.5.4 -179.0 5.84 
± 1999.2 

- 1232.0 - 43.0 28.65 

- 782.4c - 44.oc 17.78 
±j1958 

- 882 - 33.0 26.73 
C:j1984 

- 1985.3 289.6 6.86 

- 3460.5 - 43.2 80.10 

- 888.9 90.7 9.80 
j; 1985 

- 888.9 90.7 9.80 
.:!:j1985.3 

- 888.9c 
±j1985.3 

- 90.6C 9.80 
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2. Implicit integration will not fail for such systems, 

though it could necessitate unacceptably small step 

sizes. 

J. The step size is not exclusively dependent on the 

eigenvalues of the system. 

Effect of Hard Constraints 
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The implicit integration method depends on a Newton-like iteration 

to solve a set of nonlinear equations at each step in time (40, 48). 

Consequently, the imposition of hard constraints on any element of the 

differential algebraic state vector can be expected to result in non­

convergence under certain circumstances. However, for the dynamic 

systems under con$ideration, the discontinuity is arrived at only 

gradually in the generation of the trajectories and, consequently, it 

should be possible to stay within a prescribed tolerance band around the 

hard constraint, if step sizes are kept sufficiently small. This con­

jecture is borne out by the example trajectories shown in Figures 11 and 

12. The input was chosen so as to cause PB 2 to fall below zero if no 

hard constraint was imposed. Figure 10 presents some of the state vari­

ables for the above condition. The steady-state value of PB 2 ' reached 

at 0.813 seconds, was -55.2 psi. Figure 12 presents the same state 

variables with the imposition of hard constraints on all pressures, 

i.e., any pressure below zero was corrected to be zero in subroutine 

DIFFUN (or MODL1 or MODL2). In view of the finite error bound specified 

for the nonlinear equation solving routine, the final value of the con~ 

strained states can deviate from the hard constraints up to a maximum of 

the specified amount. In the simulation shown in Figure 12, the actual 
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value of PB2 ranged from -12.9 to 0.0004 psi, the deviation from zero 

becoming less as time progressed. It is interesting to note that 

firstly other pressures and actuator velocities are not significantly 

affected by PB 2 being zero, and secondly the step size for steady-state 

operation was 0.005 seconds, the maximum value specified with and 

without hard constraints. Hence, it is concluded that under proper 

circumstances, implicit integration can adequately handle hard con­

straints of the type encountered in large mobile hyd~aulic systems. 

Model Switching 

It is not uncommon for mathematical functions describing fluid 

power components to display discontinuities. The portrayal of 

hysteresis, stiction, coulomb friction, etc., is usually performed by 

changing the functions used to describe the phenomena as dictated by 

physical considerations. Similar changes in functional representation 

are also necessary at the subsystem level in order to exploit the hier­

archical structure of a large scale system. One of the compelling rea­

sons for exploring the use of Gear's algorithm for simulating large 

mobile hydraulic systems was its insensitivity to the relative numbers 

of algebraic and differential equations (41, 42, 43). This feature is 

exploited by ECAP II for obtaining steady-state solutions for electronic 

networks (48). 

If the equations used to describe the large system do not involve 

the derivative of the differential-algebraic state vector Y, the state 

vector of the system is of zero dimension, i.e., the system is purely 

static in nature. Since conventional explicit integration routines, 

e.g., Runge-Kutta, Adams~Bashforth, etc., cannot handle state vectors 
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of zero dimension, the advantages of Gear's method for differential 

algebraic systems is obvious. 

It has been mentioned in Chapter I that large mobile hydraulic 

systems are characterized by the interposition of static behavior between 

periods of dynamic operation. Figure 10 is an example of such operation. 

Since Gear's method is indifferent as to whether a specific variable is 

genuinely dynamic or otherwise, it would be reasonable to conjecture 

that one model, with a prescribed differential-algebraic state vector, 

would be adequate to simulate both static and dynamic phases of a tra-

jectory. Example trajectories presented earlier (Figures 9 and 1n) and 

reported by Iyengar elsewhere (32, 54) show that this is indeed true 

under certain circumstances. 

However, it was noted that whenever the spool position of the 

directional control valves reached values such that a 15 and/or a 
25 

-4 became very small (typically 2 x 10 sq. ins.), the simulation step 

size would become extremely small (see Figure 1J), or an abnormal termi-

nation flag would be returned by the integration subroutine DFASUB. 

Results of eigenanalysis of the system, at various points in the tra-

jectories, some of which are presented in Table II demonstrated that the 

system was not necessarily stiff under the above circumstances. Failure 

or inefficiency of the simulation was traced to ill-conditioning of the 

PW matrix for the differential-algebraic system ('19). The Gear method 

uses a Gaussian elimination algorithm for inversion of PW, which fails 

when the matrix is ill-conditioned. 

It is of interest to examine the PW matrix for the two actuator 

open center system. As indicated in Appendix C, the PW matrix is the 

Jacobian of the discretized version of the implicit differential 



!~ 
<f) 

" w 
er 
" 50 

"' z 
ir 
w 
I-

NE ~Q 
E x 

G5 
D 

0 
25 <[ 

0 
_J 

0 0 

(a) 

20 

eo 

60 

10 
40 

0 

3000 

0 en 2000 .o 
Q. 

.., 
a: 
::> 

"' "' .., 
~ 

1000 

(b) 

0 

Figure 13. 

0.1 

#203 / 760225 

a" 

0,5 

0.2 03 04 0.5 

TIME I SECONDS) 

I EIGENANALYSIS DONE HERE 

# 203 ; 160225 

RUN TIME 28 SECONDS 

46 POINTS 

0.1 0.2 0 3 0.4 0.5 
TIME (SECONDS) 

Trajectories to Selected Input, Showing 
the "Effect of a 15 Becoming Nearly Zero 

69 

w, 

, 0 14 

0.6 



70 

algebraic system and is given by 

PW 

where F is the implicit functional representation, h the current step 

size, and a and 13 coefficients in the algorithm (49). 
0 0 

The sixteen equations which comprise F for the example system, have 

been presented earlier as the mathematical models for the actuator sub-

systems and the topological constraints. Figure 14 presents the PW 

matrix and indicates thereon the sixteen elements of the differential 

algebraic state vector and correspond to the y 1 s in the matrix entries. 

It may be noted that PW is a sparse matrix with predominantly diagonal 

submatrices, which correspond to the subsystems. Non-zero entries in 

off-diagonal matrices indicate the coupling between subsystems. The 

lowest diagonal submatrix, which is the contribution of the topological 

constraints is seen to be invariant. 

Simulation of the example system, starting from different initial 

conditions, and using various input trajectories, invariably resulted in 

either extremely small step sizes or abnormal termination of simulation, 

when a 15 and/or a 25 became zero or very small (typically 0.001 sq. ins.). 

Abnormal termination messages suggested that the PW matrix was ill con-

ditioned. An inspection of the stiffness ratios for the PW matrix from 

runs which stalled, presented in Table II, confirms that the PW matrix 

may be ill conditioned even though the local plant matrix of the differ-

ential algebraic system is not extremely stiff. A scrutiny of the 

contents of the PW matrix for the example system, pres 

shows that if the step size, h, is sufficiently small, 

nted in Figure 14, 
a, 

0 
~ would become 

0 



TABLE II 

SUMMARY OF EIGENVALUES FOR EXAMPLE SYSTEM 

Run Time Step Eigenvalues of Stiffness Eigenvalues of Stiffness Remarks 
No. Size System Ratio ·. PW Mat 0** 

A A min ()"1 Amax Amin max 

801 
0.151 0.05 -7-7J x 10J -29.00 266.5 -791.68 o.97J 81J Normal simulation 

760209 
~j1.96 x 10J ±1.9 x 10J ±j259 

" 0.716 I 76 x 10-6 6.96 x 10J -27.00 257.67 -18. 1 x 10J O.J88 46.6 x 10J a15 = o.o 

I 
±j1. 9 x 10J 

76 x 10-6 6.96 x 10J 257.67 -18.1x10J 46.J x 10J 100 x 10-6 " 0.716 I -27.00 O.J90 a15 = 

±j1.9 x 10J 

" 0.728 9.4X10-6 50.66X 10J -27.29 1856.4 -18.1X10J O.J99 45.J6 x 10J a15 = 100 x 10-6 j Sim.ulation stalled 

±j1.9 x 10J 

20J 
0.0511 0.05 5.94 x 10J -34.96 170 -792 .91J 867 Normal simulation 

760225 
ij1.9 x 10J ±j0.246 

IT o.45J 0.05 2.8 x 10J -76.2 J6.75 -792 1.0 792 Normal simulatio 

-JO.J I 
±j1.9 x 10J ±jo.05 

" 0.5 .57x10-J 15.J x 10J 50J -4.4 x 10J 0.95 4.6J x 10J a15 = 100 x 10-6 j Simulation stalled 

I I ±j1.9 x 10J 

*Defined as (I' I / h I ) /\max "m· ' • 
real in real 

**Defined as ( l\maxl / J :\ · I ). 
real min real 
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extremely large, and could be expected to adversely affect the condition 

of the matrix. An important conclusion from the qualitative analysis 

presented above, is that the efficiency of simulation depends not only 

on the differential equations in the system, but the algebraic equations 

as well. The use of a Newton-like iteration dictates that the step size 

be small enough to permit convergence to the 'correct' solution, within 

the prescribed number of steps. 

The possibility of Gear's method becoming inefficient, when using a 

single mathematical representation, was foreseen in preliminary trials 

with DFASUB and, consequently, one of the areas proposed for investiga­

tion was that of model switching. Explicit integration methods normally 

permit models to be switched provided the order of the system is not 

altered. Since Gear's method is indifferent to the number of differ-

ential variables, i.e., the actual order of the system, it permits 

switching between dynamic and static models provided the criteria for 

switching are explicitly furnished. In fact, switching can be rela­

tively easily accomplished by repeated calls to DFASUB by the main 

program and using a flag to indicate that the last set of values of the 

differential algebraic state should be used as the initial values after 

a switch. 

An investigation of the two actuator open center system reveals, 

however, that when a 15 or a 25 is zero, the model for the relevant sub­

system becomes simpler and the length of the differential algebraic 

state vector can be reduced by excluding the bypass flow, Q15 or Q25 

as the case may be. On the conjecture that such a reduction in the 

unknown vector length could conceivably overcome the problem of an ill 

conditioned PW matrix, the main simulation program was modified to 
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perform model switching with reduction in length of the differential 

algebraic vector. Originally, the switching criterion was the value of 

a 15 (Subsystem #J was kept inactive for the trials), i.e., a small 

value of a 15 was used to signal the switch to the model in which Q15 

was absent. However, it was found that if Q15 was, in fact, appreciable 

at the time of switching, the simulation was unsuccessful due to lack of 

convergence of the Newton iteration. When the switching criterion was 

changed to a combination of small a 15 and Q151 simulation proceeded very 

satisfactorily, as attested by the sample run shown in Figure 15. 

Appendix D contains extracts from the FORTRAN listing of the main 

program to show the relative ease with which model switching can be 

performed. It is only necessary to: 

(i) furnish suitable switching criteria 

(ii) reconstitute the differential algebraic state vector for 

the large system if it is different from the old one 

(iii) furnish initial conditions for the new differential 

algebraic state vector. 

A subsequent call to DFASUB recommences trajectory simulation with a 

fresh set of integration parameters provided if necessary. 

The above functions can be performed by a suitably coded director 

program which would effectively function like the supervisor in a 

hierarchical system. 

This chapter has presented, as an example of model formulation and 

simulation of a large mobile hydraulic system, the digital simulation of 

a two actuator open-center system. The primary intention of the exercise 

was to demonstrate the feasibility and utility of the new approach, which 

relies on implicit representation of subsystems as well as the large 
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system, and uses Gear's method for trajectory generation. The chapter 

also presents results on the qualitative behavior of the example system 

arrived at by a process of eigenanalysis of the large system repre­

sented in the implicit differential-algebraic form. Even though such 

qualitative analysis cannot be performed without incorporating the 

numerical values of system parameters and inputs, the results demon­

strate that the class of systems under investigation can become stiff 

and, consequently, unamenable to simulation by explicit integration 

routines. The advantage of Gear's method, which relies on implicit 

integration, is in this respect obvious. Typical simulation runs have 

also been presented to show that hard constraints can be imposed on ele­

ments of the differential-algebraic state vector without necessarily 

disrupting the trajectory generation. Since the Gear method relies on a 

Newton-like iteration to solve a set of non-linear equations at each 

step in time, it is reasonable to expect problems when hard constraints 

on variables are imposed. 

Perhaps one of the most important findings of this chapter is that 

model switching is not only easily done, but can be judiciously used, 

for example, to overcome the problem of an ill-conditioned PW matrix. 

Since Gear's method does not differentiate between algebraic and differ­

ential variables, it is seen that the new approach permits switching 

between dynamic and static models under the control of a suitably coded 

director program. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The analysis of large mobile hydraulic systems has been done, until 

recently, in a rather perfunctory manner. Fluid power system designers, 

on one hand, have rested content with performing 'worst' case analysis 

using simplistic models of the man-machine system, primarily for sizing 

components and ascertaining energy conversion efficiency. Most systems 

analysts have almost completely ignored the 'real-world' aspects of such 

systems, firstly due to their preoccupation with dynamic analysis to the 

exclusion of static performance, and secondly due to their belief in the 

efficacy of the network approach; namely, the decomposition of all 

physical systems to their basic elements before developing the system 

model. Where models have been developed for multiport components 

restrictions have been imposed on the manner of their interconnection 

(24, 25). 

Much of the software written for the dynamic simulation of lumped 

parameter physical systems, relies on the network formulation of the 

system equations, whether it is done by the program user or generated by 

the computer. One of the main objectives of the research described 

herein was to indicate the limitations of the generalized network 

approach and, consequently, all the digital simulation software based 

thereon. These limitations necessitated the development of a new 

approach to the development of a unified scheme for simulating both 
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static and dynamic behavior of large systems, synthesized from models of 

their subsystems. 

The contributions of this research are as follows: 

1. Postulation and proof of the Order Reduction Theorem, which 

states that when two subsystems, each expressed in the explicit 

state differential-algebraic form, are interconnected to form a 

large system, so that outputs are linearly related, the order 

of the large system is less than the sum of the orders of the 

subsystems. 

2. Establishment of new canonical forms for representing sub­

systems and large system, which not only allow complete freedom 

in demarcating subsystem boundaries (and therefore arbitrary 

interconnection of subsystem models), but also explicitly 

depict the large system topology. 

J. Discovery that order reduction in large hydraulic systems, 

brought about by interconnection of subsystem models, is 

nontrivial. 

4. Formulation of a simulation algorithm for time-domain analysis 

of large mobile hydraulic systems. 

5. Demonstration that large mobile hydraulic systems can display 

stiff behavior. 

6. Discovery that the numerical integration method advanced by 

Gear for differential-algebraic equations is applicable even 

for systems having hard constraints on variables. 

7. Development of an algorithm for eigenanalysis of systems 

described in the new canonical form, and demonstration of its 

utility for: 



(i) qualitative appraisal of dynamic behavior, 

(ii) establishment of stiffness of system. 

8. Recognition, for the first time, that the step-size in 

implicit integration is dependent not only upon the dynamics 

of the system, but also the nature of the algebraic equations 

in the model. 

9. Establishment that simulation of large systems by implicit 

integration can be substantially accelerated by appropriate 

switching between models of different orders. 

Recommendations for Further Investigations 

There are two broad areas where further investigations can be 

expected to yield valuable payoffs: 

1. Mathematical Analysis: Exploration of the implicit 

differential-algebraic representation, in contrast to the 

explicit vector form which has formed the basis of most time­

domain control theory can result in algorithms useful for 

optimal control and parameter iden~ification. The concept 

of a differential-algebraic vector, which could possibly 

involve constraints on the differential algebraic state of 

the system would lead to more general theorems than those 

which presume the existence of an explicit state vector of 

known dimension. The concept of state constraints could 

be extended to the more general case of implicit inequality 

constraints. 

2. Computer Software Development: This could focus attention 

on exploiting sparse matrix techniques for handling the 
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Jacobian of the differential algebraic system, as also the 

development of programs for optimal ordering of the set of 

equations describing the large system. In particular, 

characteristic features of parts of the matrix, e.g., that 

due to linearity and invariance of the topological constraint 

equations could be exploited to result in more efficient 

simulation. 
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APPENDIX A 

ORDER REDUCTION THEOREM 

If two physical subsystems comprising a large system and repre-

sented by continuous and differentiable differential-algebraic equations 

are so connected that a scalar state-dependent output of one is linearly 

related to a scalar state-dependent output of the other, the order of 

the large system is less than the sum of the orders of the subsystems. 

Proof: 

Let the two subsystems be expressed in the following canonical 

form: 

I { x1 f1(x1' u1' t) (A-1.1) 

Y1 g1(x1' u1' t) (A-1.2) 

{ x2 • f2(x2, u2, t) (A-2.1) 

Y2 = g2(x2, u2' t) (A-2. 2) 
II 

Since all functions are continuous and differentiable, they can be 

expanded in a Taylor's series about an operative point x 1 (o)j u 1 (o) 

to obtain linearized models as follows: 

I 

6" f 16x I 26 I x1 = 1 1 x 1 (o),u1 (o) + f1 u1 x 1 (o),u1 (o) (A-3. 1) 

g~6x1\x1 (o),u 1 (o) + g~6u21x1 (o),u 1 (o) (A-3. 2) 
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f~6x21x2 (o),u2 (o) + f~6u2\x2 (o),u2 (o) 

g~6x21x2 (o),u2 (o) + g~6u2\x2 (o),u2 (o) 

(A-4.1) 
II 

(A-4.2) 

Let the two subsystems be connected so that the i 1 th element of 

6y1 is equal to the j 1 th element of 6y2 , and the k'th element of 6u1 

is equal to the 1 1 th element of 6u2 • The case when the topological 

constraints involve a linear combination of these variables is a trivial 

extension. 

Equating the two outputs gives 

which implies that 6x1 is not linearly independent of 6x2 • Conse­

quently (6x1 : 6x2 ) is not the state vector of the linearized large 

system. Therefore (x1 + 6x1 : x2 + 6x2 ) cannot be the state vector for 

the nonlinear differential algebraic system. 

It may be noted that by equating the two inputs and eliminating 

6y1i and 6y2 j it is possible to establish the exact order and the exact 

state vector for the large system. Such a proof by construction would 

be usable, however, only for linear systems (38). 



APPENDIX B 

EIGENANALYSIS OF IMPLICIT DIFFERENTIAL 

ALGEBRAIC SYSTEMS OF EQUATIONS 

The eigenvalues of the explicit differential algebraic system 

represented by 

. 
X = f(X,U,t) (B-1.1) 

Y f(X,U,t) (B-1.2) 

can be easily obtained by taking the first term in the Taylor's series 

expansion of f. It may be noted that Equation (B-1..2) is not needed for 

the eigenanalysis. 

When a system is represented by a set of implicit differential 

algebraic equations, however, the coupling between the differential and 

algebraic equations makes eigenanalysis a little more involved. 

Let the system be written in the following canonical form: 

0 f(X,X,Y,U) (B-2.1) 

0 = g(X,Y,U) (B-2.2) 

0 h(Y,U,V) (B-2.J) 

It is shown in Chapter IV that this is the form for a large scale 

system, when the individual subsystem models are incorporated in f and 

g, and all the interconnection information is contained in h. 

Since Equations (B-2.1), (B-2.2), and (B-2.J) are implicit, some 

algebraic manipulation is needed in order to establish the Jacobian of 
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of the system. (The eigenvalues of the Jacobian are the eigenvalues of 

the system.) The Jacobian can be established by using the implicit 

function theorem (54). 

Taking the differential of Equation (B-2.1) gives: 

o = of Ax + of Ax + ~Yf oY + ~uf 6u ox ox o o 

or 

Ax - (0:rt~~ AX + ~~ AY + ~~ 6uJ oX 
(B-J.1) 

Similarly from Equations (B-2.2) and (B-2.J) we get 

~ ~ oY AY + ou Au - ~ 6X (B-J.2) 

and 

~~ 6Y + ~e 6u = a (B-J.J) 

From Equations (B-J.2) and (B-J.J) we get 

s .£2. oh oh ( )
-1 

oY AY + oU - oU oY AY 

or 

(B-4) 

where 

(~) 6 i.22. _ (.22.)(oh)- 1 (oh)i 
oY - _oY ou ciu oY J 

Consequently 

Au - (oh)-1 (oh)(o'9)-1 (.9!) Ax 
- ou :dY oY ox (B-5) 

Using these values for AY and AU in Equation (B-2.1) gives 

where the additional terms are irrelevant for eigenanalysis. 
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~ 
The coefficient of 6X may be considered to be oX and is nothing 

but the desired Jacobian. 

Once the numerical values of all the matrices in Equations (B-5) 

and (B-6) are established, it is fairly easy to evaluate and perform 

eigenanalysis on the system. 



APPENDIX C 

IMPLICIT INTEGRATION OF DIFFERENTIAL-

ALGEBRAIC SYSTEMS 

Comprehensive discussions of implicit integration have been given 

by Gear (40, 41), Blostein (42), Branin et al. ( 48), and others. What 

follows is a brief review of the Gear method as applied to differential 

algebraic systems expressed in the implicit form. The main intention 

is to supplement the discussion of its application to large mobile 

hydraulic systems, as detailed in Chapters IV and V. The terminology 

used by Brown and Gear (49) will be retained except as otherwise noted. 

The differential algebraic equations used to describe the systems 

under consideration are considered to be written in the form 

f <x. ' .l. ' t) 0 ( C-1) 

where .l. will be referred to as the differential algebraic state vector. 

The actual order of the dynamic system under consideration, and the 

establishment of the state vector are unnecessary in the implementation 

of Gear's method, and will only enter in the initial remarks on 

explicit integration. 

The time domain simulation of systems represented in the form of 

Equation (C-1) can generally be posed as an initial value problem; i.e., 

considering a scalar variable y, given that y(t ) 
0 

establish y(t) for t S t S t 
o r· 
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y and Equation (C-1), 
0 



Explicit numerical integration routines attempt to establish the 

value of y at a given time t , i.e., y, in terms of previous values 
n n 

of y, i.e., yn_ 1 , yn_ 2 , ••• , yn-k-1 and yn_ 1 , ••• , yn-k- 1 • Symbolically, 

* 
yn = f (yn-1' yn-2' ••• , yn-k-1' yn-1' ••• , yn-k-1) (C- 2 ) 

where f* may be a composite function, and derivatives are obtained by 

using Equation (C-1). Consequently, y is explicitly determined by the 
n 

previous values of y and its derivatives. Explicit numerical integra-

tion requires that y be the state of the dynamic system, and if the 

eigenvalues of the Jacobian of f are far apart, say more than two orders 

of magnitude, simulation can become very inefficient or fail (43). 

The basic idea of implicit integration is to evaluate yn and Yn 

simultaneously, using the differential algebraic equation and a suitable 

multistep formula for predicting both of them from previous values in 

time. The most commonly used multistep formula is: 

(C-J) 

where a., b. are appropriate coefficients, k is the order and h the 
l l 

current step size. 

In Gear's method, b. = 0 except for i=O, and the above equation is 
l 

rewritten for the vector case as 

hy 
n 

+ ••• °kYn-k 
(C-4) 

It may be noted that y which appears on the right hand side in 
n 

Equation (C-4), has not yet been computed. Equations (C-1) and (C-4) 

are now combined to give 



F (y ) 6 f(y 
n n - n 

where 

is known. 

cx.o 
-- y + 
h~o n n 

t ) 
n 

Gear's method uses the k 1 th order predictor 

+ ••• 

0 

to solve Equation (D-5) with a Newton-like iteration written as 

y ( ) - y ( ) - J-1[F (y ( ))] 
_E.., m+ 1 - _E.., m. n _E.., m 

OF 
where J~ ~ n and m is the iteration number. - oz. 
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(D-5) 

(C-6) 

(C-7) 

In order to simplify the computer algorithms for error analysis and 

Zn 
variation of order, Gear uses the Nordseick vector "h"'' which for a 

scalar variable y is defined as 
n 

(C-8) 

(k) 
where yn is the k 1 th derivative of y at the n 1 th time step. It is 

shown by Gear that the Nordseick vector is uniquely determined by the 

quantities y , y , y . 1 , ••• , y k 1 • 
n n n- n~ + 

In the computer implementation of Gear's algorithm for differential 

algebraic systems U1.9), a double dimensioned array Y(J,I) holds the values 

of the differential algebraic state vector and its derivatives, exactly 

as shown in Equation (C-8). The subroutine DIFFUN contains the model 

for the system in the implicit form, and utilizes an array DY(I) to 

retain the correction to the values in Y(J,I) before the Newton 



iteration. The Jacobian, J, which is stored in a double dimensioned 

array PW, may be explicitly written as follows: 

J ( C-9) 

The Jacobian inversion is carried out by two subroutines DECOMP and 

SOLVE. These have been modified such that if any pivoting problems are 

faced and inversion is unsuccessful, an error message is returned and 

simulation stopped. 

The advantages of Gear's method over conventional methods for 

differential algebraic systems are: 

1. The form of the equations is more general, and no distinction 

need be made between differential and algebraic variables. 

2. Large scale system models can be written in DIFFUN (or be c 

called by it) to explicitly exhibit subsystem models as well 

as topological constraints. 

J. Algebraic constraints on state variables pose no special 

problems. 

4. Stiff systems are handled efficiently, with no need for user 

interruption. 

5. Step size and order of integration are changed automatically, 

as warranted by system dynamics and error criteria. 

6. An estimate of the error is available at all times. 

7. Derivatives of the differential and algebraic variables, up to 

the order of the current integration step, are available at 

all times. 

8. If necessary, interpolation can be done to obtain variables 

within a step, by using a Taylor series expansion, the terms 



of which have already been established during integration. 

9. Developments in sparse matrix handling procedures can be 

exploited, to simulate large systems very efficiently. 

10. Has the potential for model switching. 
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APPENDIX D 

SELECTED COMPUTER PROGRAM LISTINGS 

This appendix contains excerpts from the main program and key 

subprograms used to simulate the two actuator open center system. Since 

all of these modules were written primarily to verify the algorithms 

conceived for analyzing large mobile hydraulic systems, by using implicit 

representation and Gear's integration technique, they are only cursorily 

documented. A user-oriented package could be evolved from these 

programs by systematizing the input/output and interchange of information 

between the different modules. What follows is a brief explanation of 

the excerpts, which should be read along with the documentation for 

DFASUB (49) for a better appreciation of the program logic. 

MAIN 

The accompanying excerpt from the main program presents the signif­

icant variables. The comment statements are, for the most part, self­

explanatory. YL is a vector of linear differential algebraic variables, 

which can be evaluated by DFASUB without resorting to the Newton 

iteration. This feature is not utilized in the present version of the 

program. The static numerical model for the two directional control 

valves is stored in a multi-dimensional array DORF, while the input time­

histories (i.e., spool displacements and external loads) are stored in a 

common storage labeled INPTS. 
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f(kl~AN IV l.J L£V[L 21 o'fA IN UA TE 76221 21/3b/UI 

l I MPLIC I l RE .AL•B I A-H ,Q-ll 
2 DIMEl'lSION Y(7,201 ,YLl21,SAVEi7,201 ,YLSVl21,PWl3~01 
3 l, Gll6,21,Tl201,l)Yl20),ER~Vl20.),ERR0Rl2Jl,Fll20J,f"';~(20J, 

4 2 VAkl.2CI ,HAXl201,PTITLEl201 
5 UIMENSION ZI 101 
o COMMCN/JALU~/PPw13501 
7 COMMON/PARM/COlFF,uPr,ws,cs1,cAl,Cdl,C52,CAL,Co21Xll1Xl2 
d CGMMUN/CYLJT/AAl1Adl1AA2,Ad2,dl,ti2 
'7 CCl"'MCN/INPTS/EXTLCl2,5Jl,'.>PtllSPl2o50J,TINTPl5QJ,NINTP 

lll ClJMMUN/\/LVS/DORF(L,5,Z,201 ,IWLiH 
ll (Q.'1MCN/llliITvL/YY( 1.2u1.nu21 
lL CCMMCN/CRDR/NMAX,~,IPERMl201 
13 CUMMON/CPRINT /MPR,~T ,r!PlJN 
14 COMMON/DWRT/KKKK 
l~ C:QUIVALENCE (f>w(ll1 PP~(ll 

lb DATA v,rL,S~vE.YLSv,G,JY,T,Fl/31o•O.OD+O/ 
17 C**********~**********************************************************~* 
l 0 c 
19 c 
20 
21 
2L 
23 
24 
2S 
2o 
27 
2<> 
2'J 
30 
31 
jz 
~j 

34 
3:> 
3o 
.>I 
38 
39 
40 
41 
42 
43 
44 
45 
46 
.. 1 
4tl 
49 
5u 
51 
52 
53 
54 

c 
c 
(. 

c 
c 
c 
c 
c 
(. 

.; 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

G 
H 
N 
T 
y 

CSl 
CS2 
CAI 
CAZ 
Ctll 
CB2 
UY 
rl 
Rl 
K~ 

YL 
AAl 
AA2 
Atll 
Atl2 
OPT 
EPS 
ci.H• 
VAk 
uORF 
ERSV 
HMAX 
HMI Iii 
NUMT 
RCUl 
RUUZ 
SAVE 
H:ND 
YLSV 
YMAX 
CUE FF 

ARRAY OF 1>LiJtl1\L VARIAdLtS, lJSEU av 1.JFA Sutl 
STEP 5 I l t. U:>tu tlY ut-ASUtl 
NU,~dER G~ EHi,ATll~S li''ii ,; I FFUN 
Ao<RAY Qf TIME-.;t:PtNUt:'•T VAklAbLC.~ ( Tll I =T !Mc I ,FCR OF ASUtl 
A KRAY OF t.;UTFUT V ftR I AoL ES, PK !NTEU dY UrA SUo 
l;PSTREAM CAPAl. l T Al\Ci:, FOR SlJtlSYSTEM #1 . 
UP ST Rt A,~ CAPAC 1 TA f.Ct, f Llk SlJilSYSTEM #2· 
PORT A CAPACITAM.b t-UR SUBS VS TEM •l 
PURT A CAP Al I IANCE, Fclk SUtlSYSTtM Iii. 
PIJkT " CAP Al IT ANLE, FUk SUtJSYSTtM #1 
PUl<T b CAPAC. IT ANCE, fl~R SU BS VS T EM #2-
ARkAY OF E i<:<GR:>,, EVA LUA TEU IN UIFFUN, t-OR DFASUu 
DUMMY Al<kAY hJR CY, U~[Ll dY LlFASUt> 
AK tA OF PI srcr-.. KUC, CYLINDER IN SUdSYS T F.M #1 
AREA OF PISTC,, kGO, LYLl1,0l:k IN SUuSYSTEM #2 
At<KAY UF LINEAR VAtUAdLtS, USEiJ Ir' UFA SUI:! 
Akt:A OF HEA~ El'.O, CYLINJl:R It'; sueSYSTEM Ill 
Ai<EA Of HEAU ENU, CYLINuE:R IN Sui:lSYSTtM 1/.2 
AKEA Of ROC ENC, CYLINDER IN sues vs T 1:>1 #1 
AKEA Llf ROD E.\ill, CYLI NLJ~l{ IN SUBSYSTtM #2 
TllNK PuRT PRESSURE 
ERRCR CRITEtUGN ARRAY, USED IN OFASUtl 
AkRAY uSt:D BY OFA SJtl 
ARl<AY USED BY [;fASUd 
METERING ORIF!Ct CATA fC!R UPEN C l::NT ER VAL VE S 
Ao{RAY lJSEiJ BY OF A SUb 
l'AX. ALLOHC STEP SI Lb USELJ BY Df- ASU~ 
Ml Iii. ALLCwED STEP SIZE:, USED oY DFASUtl 
NUMoE:k UF INPUT TIMI: fUNCTIONS 
ROD Cl AMl::l ER, CYL INUc K FOR SU65YSTE'1 # l 
RUD DIAMETER, CYLINDER f-GI< SUBSYSTEM #2 
ARRAY USEC BY DFASUB 
FINAL Tll'E, us Ell cY OFASU B 
ARRAY USED dY OFA SlJ5 
AKRAY USED av DFASUtl 
ORIFICE FLOOll CCNVERSION I' ACTOR 
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~5 c ,0 c 
'> 1 c ,0 (. 

MAIN JATE 

DIAMETER Gf CYLINcrn. SUilSY'.)TEM u 
UIAMETER OF CYLINUEN, SUdSYSTl:M #2 
ARRAY USED By OFASUd 

76221 

ARRAY CONTAINING EXTERNAL LGADSo AS TIME FUNCTlnNS 
FLAG INOICATI•~ CCMPLtTICN CCUl:o OUTPUT Of OFASU~ 

.21/36/18 

~'J c 
60 c 
bl c 
62 c 

CYLUl 
CYLD2 
l:RROR 
l:X TLU 
Kl-LA(; 
NINTP 
i•VLDT 
TIN Tl' 
JSTAt<T 
•~PKN T 
;"\PUN 
!\KKK I;, 

NU~bl:R UF INTERPOLATION PJINTS IN INPUT TRAJl:CTCMl~S 

NUMdER Uf UAT~ POINTS FOR EACH MtTEklNL ORIFICE UF VALVES 
ARRAY CONTAINING TIM~ CORKESPGNOING TO INPUT PGl~rs 

o3 C FLAG, USEU clY UFASUo 
b4 c 
u~ C 
66 c 
b 7 c 
6d c 
o'J c 
l'J (.. 
fl c 
72 c 

PRINT-OUT INTcKVAl 
C~Ru PUNCH INTl::KVAL 

TH~ FLAG FCK STCkAGE ON UASU 

IPERM IS VtCTUk CGNTAINING SUoS~klPTS I-OR THE Y AND UY VECTORS 
OF OlFl-LN. ~HEN MCJEL IS CHANGED, !PERM WILL H~VE TO Bl: Ml:UEl-INEU 

n 
74 
I'> 
lb 
77 
7b 
1 .. 
dO 
di 
02 
v.3 
d4 
o~ 

J() 

o7 
dd 
IJ-1 
'>10 
·11 
'>12 
'73 
.;4 
'15 
9b 
'17 
'Ill 
'19 

lihl 
l•H 
102 
lJ.l 
104 
10~ 

LOb 
l i.l7 
1011 

C*~~****~*****************M*************¥***********~************4****** 
C INITIALILE: IPEl<M 

DC 300U l=l 120 
3'JCO IPL;{Mlll= I 

l\Ki\K= 25U 
i<.Ki<.K=l 
MPRNT=lO 
i~PRN T=5 
MPRlllT=2 
l'Pi<l\T=l 
READ(;,,[) PTITLE 
FOkMAT I ZUA'• l 
.;MI TU b ,2 l P Tl T LE 

Z FOKMAlllHl,/////,5X,2CA4,////l 
MtADi'19l NI/LOT 

C N\/LUT NUMdcR CF DATA POINTS FOK EACH METERING CklFICE 
co 3 1=112 
DC 3 J=le5 

C lf;llEX I l\EFERS TO VALVf: 
C INJEX J l<EFER5 Tll METERl"IG UklFICt: 

KE:.0(5,101 (DCRFII ,J,[,L) 1UURF(l,J,2,LJ, L=l•'•VLOTl 
3 CONTINUE 

DO 4 I= l .Z 
00 4 J=l1'> 

4 ~RITElo 1 999l (UUMFll1Jd1ll1 UORfllrJ1Z1Ll1 L=l,f\VLUTl 
'19'1 FORMATl//1' MtTcRING URIFICt DATA 1 o// r11Pocl3.3ll 
C CVLDl illAl'.ETER Ct- CYLINDEK #l 
C CYLD2 JIAMETER UF CILINOtK #2 
C KUOl RUU CIAMETEi{ FOR CYLINUtR #l 
C RGu2 ROD DIAMETER FGR CYLINDtR #2 

READl51lOI CYlDlo ROUl, CYL021 ROD2 
AAl= 3.l4159*CYLD1**2/4.0 
Rl= 3.l4159*RUD1**2/4.J 
ABl= AAl- R l . 
AAZ= 3.l4l5<J*CYLD2**2/4.0 
R2= 3.14l59*R002**2/4.0 

1,00 
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211 
212 
213 
2 l't 
2"1 '> 
.!.lb 
211 
no 
2 f') 
Zbu 
2o 1 

Till= 1.0 
MOl.JEL=l 
MAXUEK= !'> 
Ml= l'l'M 
(.ALL OrASUd(OY.EPS.~~~.tKR(K,tKSv. 

+ fl,<;,H,tlMAX,H:~IN, 

+ JSTA~T,KFLAG, M,~IXJE~,Ml,N, 

+ NL,P~,SAVt,T,l\LMT,TENU,~Ak,Y,YL, 

+ YLSVoYMAX,L,MOOELl 
lf(MlU~L.E~.JI GC TO 3JO 
GO TU 9900 

ld2 300 
Ld~ C 
21'14 (. 
21l~ c 
2.dt 

CUNT HJUE 

~TAii(. ~UU~L FOK SYSTE~ ~H~N Al5•i.J.J 

STORE= YI l ,Jl 
Y( 1, .:II= YI l ,41 
Yl2dl= Y(2,4l 
Yll,41= Yll.~l 
Y(2,4l= Yll, SJ 
Yll,':>l= YCl,ol 
Y(L,~l= Y(2,ol 
Y(l,ol= Yll.7J 
Yll,bl= Y(Z,7J 
YI 1.71 = STU KE 
JSTAKT=O 

2dl 
2.Jll 
L89 
2.'1i.J 

2':1 l 
2.'-J2 
2.'73 
2-.4 
L'J' 
2'1o 
2'11 
290 
2 l"J 
)JI) 

301 
JJ2 
.)J3 
304 
3LI~ 

3Jo 
Jll7 
JLlb 
Jl)':I 

310 
.Jll 
312 
jl3 

H't 
H!'> 
Jlb 
311 
31 o 
319 
32u 
321 
3a 
323 
32't 
325. 
32b 
321 
32<l 
32.9 
330 
331 

l\=o 
M=N 
f\;L=O 
Ml= N 
IPtRt-'.131= 
IPtkMl4l= 
IPEt<t.1151=4 
[PdH1 lol=5 
!PEKM( Tl= o 
H ll'IV= l .O/ H 
LALL ulfrU~!TiG.DY,Y,YL,hl~V.MOUtLI 

EPS=G.02 
CALL OrASUBIUY,EPS,EWf\;,ERk~K,tKS~t 

l fl,G,H,H~AX,HMlt\;, 

~ JSTART,KFLAG,M,MAXOEK .~l,N, 

~L.Pw,SAVE.T.~UMT,TtNu.VAR,Y, 

4 YL,YLSV,YMAX,Z,MCOELI 
99ihl CUNT !NUi: 

wR!1El6,9~ol KFLAG 
99d fuKMAlllHl, ////,• ****** ilfLAG='• 15) 

!FIKFLAG.EW.-ll wRIT~(6,':10Gll 
9001 FOKMAT(//,1ox, 1 ThE ERRCR TES! rAILED fOR r.GT.HMIN'I 

lfli<.FLAG.E:IJ.-21 WR! Tt:(o,9UJ2l 
9002 FCRMATl//,10x.•1oc MA~Y FLCAT!N~-POINT tXCEPTIUNS (C~~RRED LURl~G 

+THE LAST STEP'I 
IFIKFLAG.EW.-31 ~RITElo,'10C31 

9Ju3 FCRMAT(//,lOX.'THE CORRECTOR FAILED Tu CONVER~t rOR H.CT.HM!N'I 
lfli<.FLAG.E~.-'tl WRITE(6,90041 

9004 FCRMATl//,1ox.•ThE CCRRECTCR FAlLEU ThKtE TIMES k!T~ EVEN Tht FIRS 
+T ORDER METHOD' I ' 

"RITEl6,99991 
~999 FOKMAT(////////l 
Cl23't5o7ti9012345~7890123't5673~01234~o7890l2345o7tiJOll345o7690123't'67ti9012 

STOP 
END 
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Line 272 indicates that the first model, (stored in MODL1) is 

to be utilized for the first call to DFASUB, in line 275. If DFASUB 

indicates that model switching is required, the flag MODEL will be set 

to the appropriate number before control is returned to the main 

program. If model switching is to be done, it is necessary to rearrange 

the differential algebraic state vector, so that only pertinent vari­

ables are included in the next call to DFASUB. This rearrangement is 

done in lines 286 through 295. Equation in line 297 indicates that the 

length of the diffeeential algebraic state vector is now six and not 

sixteen as was used in the first call. Line 309 calls DFASUB after the 

model switching, and the flag JSTART has to be set to zero so that 

DFASUB recognizes that a fresh start is to be made. Lines 315 through 

325 present the error messages returned by DFASUB for abnormal termi­

nation of the simulation. 

DFASUB 

This subroutine is substantially the same as that presented by 

Brown and Gear (49). The changes made in order to tailor it for large 

scale systems is the extension of the argument list to include the 

explicit algebraic output variable vector Z and the model flag MODEL. 

The former is evaluated in ALGVAR, while subroutine PRINT returns a 

value in MFLAG, which is compared with the number furnished by the main. 

program in MODEL. If MFLAG is different from MODEL, it indicates that 

model switching is necessary, and the value of MFLAG is returned to the 

main program via MODEL. 



l 
2 
3 
4 
5 
b 
1 
d 
9 

10 
ll 
l£ 
13 
l'+ 
l 5 
lo 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
2tl 
29 
30 
ll 
32 
33 
34 
3 5 
3b 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4d 
4'i 
50 
51 
52 
~3 

54 

SUoRCUTl~E CFA~UB lCY,EPS,E~N,tKRGR,ERSV, 

+ Fl, G, H, II MAX, HM IN, 
+ JSTART,KFLAG,M,MAXOER,Ml,N, 
+ NL,P~,SAVt,T,NUMT,TE~O,VAR,Y, 
+ YL,YL~V,YMAX,L,MOOEll 

lJFASlClO 
Df-AS l 02 0 
LlFASl030 

(********************************************************************** lJFASlCIO 
C* uFASlOdu 
C* THE PARAMETERS TO THE SLdKG~rlNE lJIFSLd rlAVE DFASlU90 
C• THt: fULLO.:ING MEANINGS: DFASllOO 
C• OFASlllO 
C* N THE NUroltH:~ OF VARIAoLi:S. OFASll20 
C* t<L THE .~UMHl:R CF L INEAK VAi{IAt>U:S OFAS1l30 
C• li<Y 1.-l<L IS THE NLMBER 'Jr VAKIABU:S wlTrl Dl:i<IVAT IVtSl UFASll'<U 
C* Ml THI: '~UMGER llf t:IJUAfl,JNS TO TAKE PAf.-T IN THE ERl<Ok TE:ST. UfASll50 
C* TENO ENIJ CRITt:RIC~ uFASllbO 
C* T THE INUE:PENU~NT VAkl lldlE. :JFASll70 
C* L ALGtoRAIC VECTOR CALCULATEu bY SJdMJUTINE ALGVA~ 

C* G AN Al<kAY Cr _;LUtlAL VARIAdlt:S 
C* A 7 BY NY llRK•Y LUNTAINING THE IJEPtNJ~~T VARlllBLE:S 
C* ANll THEii< SCALEu :JERIVATIVE5. Y(J•l.ll CONTAINS 
C* THE J-TH CcKIVATlVE Jr YlIJ SCAL[D BY 
C• H**J/f,.CTO.<.IAL(J), rl THc CuKi<ENT SHP Silt:. 
C* UN ThE FIKST E"'TRY, T~E CALLE:i< SUPPLIES 
C* Y(l,!) A1\j[) Yl2.11. u.";SCALEIJ. (IF THE CALL TlJ 
C* JIFS,Ju .. As t'f.(ECELJEI; oU A l.ALL TO OIFMF3, THI: 
C* UStM l\tbJ NCT TOUCH Y AT ALLI, THE PkOGRAM 
C* will SCALt Yl2,IJ ~y H. Uf'. ANY SUBSECUENT 
C* ENTl<Y, THt l'KOGr;AM A~SUMfS THAT THE Y VALUES 
C* HAVE M;T t>EEI\ ~tiANGEU SINCE 1 HE LAST E:X IT 
C* ft<JM DIF5Uo, AND "ILL SCALI: THESE VALUES IF 
C* THI: CALLER H~S CHAi~GED H. 
C* IF IT IS uESIRtD TO INTERPOLATE TC "ON-MESH 
C• POINTS THcSE V•ILUES CAN tlc US[:[). If THE CUt{RE~T 
C* SHP SILE IS HANO Tt1t llALUt AT T+E IS NEEDED, 
C* FORM S = UH Al\IJ THE CUMPUTE 
C* :'<ll.J 
C* Y( lllT+El =SUM Y(J+l.Il*S**J 
C* J=O 
C* CALLER MUST ~UPPLY VALUES FOR THESE VARIAtlLES. 
C* SAVE AN AMRAY UF LENGTH AT·(EAST l*N. 
c• H THE STEP SILi: TO aE ATfEMPTEO ON THE: l\EXT STEP. 
C* H MAY tic ADJUSTElJ UP Otl. DOWN BY THE USER DOES 
C* I" CRDER Tu ACHEIVE AN ECONCMICAL INTEGRATION. 
C* HOWEVEtl., IF THE H PRUVIOtu tlY THE USER IJCE5 
C* NOT CAUSE A LARGER ERKOK THAN REIJUESTEO, THAt< 
C* will BE USEU. TU SAVE'COMPUTi:R TIME, THE USEK IS 
C* AUVISl:IJ TO USE A FAIKLY SMALL STE:P FOR THE FIRST 
C* LALL. It 1>lll dE AUfOMAT I CALLY 11'.Cf,EASUJ LATER. 
C* 111-11'< THE Mii'.Ii~UM STEP SILE THAT ~ILL BE USEU FOK Tl1E 
L* INTEGRATION. NUTt: THAT LlN ~TARTING THIS ~UST BE 
C* MuCH SMALLci{ THA~ TH~ AVERAGE H EXPtCTED SINCt 
C* A FIRST LlROER METHUD IS U5EO INITIALLY. 
C* HMAX TbE MAX!MU~ ALLOWAbLE STEP SILE 
C* EPS THl EMROR TEST CC~SiANT. SIGLE STEP ENKJR ESTIMATES 

llFASlldU 
UFASL190 
lJFASlZOO 
llFASlilU 
OFASl220 
iJrAS1230 
DFASl240 
DFASl2)J 
OFASl.:oO 
UFAS1270 
OF/IS 1£d0 
OFAS 1290 
LJFAS l 300 
Of-ASl3l 0 
IJFASl330 
lJFAS l 340 
uFAS1350 
DFAS1360 
DFASl370 
OFAS l3d0 
DFASl39U 
lJFASl4lO 
DFAS1'<20 
DFllS1430 
UFASl440 
DfAS14~0 
DFASl46U 
DFA Sl470 
UFASl4du 
DFASl49U 
uFASl?OO 
DFASl~lO 

LlFASl~ZO 

lJFASl!:dll 
lJFASl~40 

UFllSl~~O 
OFAS15o0 
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'" 57 

'd 
~. 

OJ 
al 
o2 
63 
.,4 
o5 
b(; 

of 
00 

o~ 

7u 
11 
12 
73 
74 
75 
76 
n 
7i3 
79 
':SC 
.;[ 

d2 
83 
d-. 
d5 
db 
<J 7 
otl 
d'il 
'10 
91 
'12 
93 
94 
i 'j 

96 
'17 
'IB 
99 

100 
lu l 
102 
liJ j 
104 
105 
106 
101 
108 

L* 
C* 
C* 
C." 
C* 
C* 
C* 
C* 
C.* 
C* 
C.* 
C* 
C* 
C* 
C'" 
C* 
C* 
C* 
C* 
C* 
C* 
C• 
C* 
c• 
C* 
C* 
C* 
C* 
C* 

[KIWR 
i<.FLi.v 

CIVIDtll tlY YMAX(I) ~UST Bt LE>S HAN HIS 
H; TltC tUCLIUEA'• :.uRM. Trlt STEP ANO/UR clt<i.JtR IS 
AUJUSTtO TC ACh~lVE THIS. 
A VECTUR J~ LE~GTH ~y WHICH CONTAINS THE MAXIMUM 
J~ EACrl Y SlE~ SO FAI<. UN THt ~IKST LALL, ThESE 
w I LL 13 t l 1' IT l All Lt U A~ Y '1 AX I 1U = MAX I l , I Y I l ,[ I I I 
A VECTO~ OF LE~GTH ~Y. 

~ CJMl'LtTICN CGJL wlT~ THt F2LLUWING MEANINGS: 
+l TH: INT ~GRAT ION wAS SUCCE:>SFUL. 

-1 THt c~~UR TEST fAILEO FLR f > rlMIN. 
-3 THl CJKKtLTOK ~AILED TU C.CNVEKG~ ~OK 

h > Hi'llN. 
-2 TuG •~.\NY FLUATI f'.(;-µQl;H EXCtPT l•lNS 

DCl.UR,{cu IJUK ING LAST STEP. 
-~ THE CJ~~~CTUR ~AILEC fHRtl TIME:S ~ITH 

EVtN ThE FIRST-OHLJcR ~ETHCll. 

JSTAKT AN 1-~l'UT l~CIC.\T.JK w ITrl THt: ftJLLOw ING MEANINvS: 
u Pt:KFCKM THE: 1-IRST STtP. ThE l<lJUTl;<E 

[,'JfTIALl~cs ITSEU-, S~i.LES Tht UtRIV­
ATIVE:S I"~ Yl2,ll ANLl THt:N l'ERfUk""S 
fHE INTt\;K.\TlclN ur-.TIL T > Tl:/\D. 
ANY SUDSlQUENT (.ALLS SHOULU Gt ~AUE 

,fTH JSTAl<T = l. 
l LDi'.Tli<uE FRUM THE L/.Sf STEP, l.'HtuRATING 

UNTIL T >TENO, 
JSTAr<T IS :;ET TG NQ, The CURRE;,1 uKL.ER OF 

THt METrlOJ, AT EXIT, 
MAXll[K THE HAXIMUM Dt:KIV·HIVt THAT SHOULIJ :;E JSt:,J If; THE 

~dllUIJ, IT M05T 'JOT t:XCEE:J o. 
C* PW A VtdJR Of- LtNGTll N**2+2J (ki.AL*4), 

G[N[KATED dY MATSET A~J ustu dY MATlNV,MATMUL. 
A VlCTD~ JF LE~GTH NL. 

C* 
C YL SV 
C* 
C* 
C* 
C* 
c 
c 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

UY 
E.R~V 

Fl 

A VE1..TdR Uf Lt1'GTH :-1, UuTPUT uf :Jl<-fUfll. 
A V~CTCR ~~ L~~GTH NY. 
A vt(,T.Ji< LlF LU;Gl11 ~. JJT~uT Llf ~ATMUL. 

twN,VAM V~LTJKS USEU aY MAT~ET. 

MULJEL IS 
MOU cl 

MFLAG 

THE u 
l~l'JT FkOM C~LLING PKUGMAM WHICH INDICATES THE 
~YSTEM "JDEL TU et: usrn 
fLAG FKC~ VA~IOUS ~UdRGUTlhES TC INOICATE whtN MUDEL~ 
NEEO Tl OE SnlTC~EU 
v<HC:N MJtJ~L.~E.MfLAG CC.1'TRuL I~ RETURNEL; TO CALLING 
P~OuRAM ~ITh VALuE 01- MfLAG IN MUJoL 

DfASL570 
lJFASl;do 
UFA SL ;'10 
UFAS loUO 
UFASL610 
U~AS1620 

DFASL630 
LIF AS l u4 0 
UfASlo;O 
IJFAS 1660 
DFASlb7Ll 
1JfASl6bU 
UFASl69Ll 
1JfAS1700 
lJFAS1710 
llFASl 720 
lJFASi 73'l 
OFASl 74() 
LJFASL750 
UFASL7b'l 
UFAS177u 
UFASlloO 
UFAS l790 
OFASloJO 
Uf-ASlolO 
UFAS lt>20 
UFAS l 83 iJ 
!Jf-AS ltl4'l 
LIFASL850 
DfASL86u 
LJFASlo70 
uFASlo80 
OFASlb'70 
UFA!>l 900 
Lll-ASl'Jlu 
UFA5l920 

OfASl93u 
L***************************************************************•*********** 

IMl'LILIT kEAL*S (A-h,1.1-Ll OFAS1060 
REAL*4 AMAX! 
0 IM ENS JUN LI l J J 
IJIME~SICN T1ll,Glll ,Y(7.ll1YLl.ll1SAVEl71ll1YMAXlll 
IJIMENSIUi. ERROR(L) ,Pw(l) ,YLSVI ll 1LlY (11,E:RSVlll 
UIME/\SIUN Fllll1EQN(l1,VAK(l1,Al71,PE:RTSTl6,3l 
DATA PERTST /4.o,9.o,10.o,25.o,3b.Q,49.0,9.u,Lo.o, 

0Ft.Sl070 
Of AS 108 0 
Df-ASLiJ<;U 
DFA5llJO 
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DIFFUN 

In the original version of DFASUB (49) this subroutine contained 

the model for the differential algebraic system. In the present version 

of the program, this subroutine functions as a director program, merely 

calling MODL1 and MODL2- subprograms which store the alternative models. 

This subroutine is called by DFASUB and depending on the value of MODEL 

calls the appropriate model subprogram. 

MODL1 

This subroutine contains the model for the two actuator open center 

system, in the form required by DFASUB, when a 15 is non-zero. The model 

corresponds to the equations presented in Chapter V. It is seen that 

the models for the two actuator subsystems and the topological con­

straints are explicitly presented so as to reflect the large scale 

structure of the system. 

MODL2 

This subroutine contains the model for the situation in which both 

a 15 and Q15 are nearly zero. The length of the differential algebraic 

vector Y is only six, as compared to sixteen in MODL1. This is because 

the closure of a 15 and the absence of any inputs to actuator number two 

degenerates the large system to a single actuator system, and conse­

quently no topological constraints need be explicitly shown. 
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0001 
(002 
0003 
0004 
coos 
0006 
0007 
coos 
0009 
COlC 
0011 
0012 
C013 

liJu 

ZOJ 

5Ul:lKGUT !Ne O!Ff'JNI T, G., lJY, Y, YL, H INV ,~iU1ltL l 
IMPLICIT KEAL*olA-H,~-LI 

ll!McNSJj« GIL. 11 tOYl lb) ,v17.le;) ,YL(l) .Tl2l ,L[ 10) 
COMMON/PARM/COEFF,OPT,QS,~Sl,CAl,~dl,CS2,CA2,CB2,XlltXl2 

CO~MCN/CYLlJT/AAl,Al:ll,AAZ,Al:l~,ol,62 

COMMGIJ/I NIT VL /¥¥ 17, 2 Cl , n LI 21 
CDMMON/0KUR/NMAX,N,IP~RMl201 

GO TU 1100,200,2 110,21"1'1) , .'lC1)EL 
CALL MOlJLllT,G,OV,Y,YL,HlNVI 
RE TUR~ 
CALL MOOLZ(T,G,ur,v,YL,Hl~~) 
RETUKN 
ENO 
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0025 
C026 
C027 
0028 
C02~ 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
003tl 
0039 
C040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 

0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
C010 
0071 
0072 
0073 
0074 

C075 
0076 
C077 
C078 
0019 
0080 

lll 
11 

20 
21 

30 
31 

c 

40 
41 

50 
51 

ABDPSA= UAbS( DPSAll 
SIG~ll= JPSAl/ABCPSA 
Ull= COEFr*Tlbl*USQRTIA~DPSAl*SIGNll 
GU TC 11 
Ull= 0.0 
CONT U.JUE 
DPS TI= Y ( 1.1 l - Y ( 1.1 b I 
!F(OPSTl.t~.0.01 GC TO ZO 
AUDPSI= OABS(DPSTll 
SIGN!;= DPSTl/AduPSI 
Ql5= COEFF*Tldl*DSQ~T(ABDPSll*S IGNl; 
GO TU 21 
Cl5= O.J 
CONTINUE 
DY ( 2 I= -(,) 11 + YI 1, 2l 
DY 13 I= -(,) 15 t YI 1.31 
LlY( 41= -YU,4l*HINV +(YI 1.Zl-YI 1,;1 *AA! l/CAl 
OYl51= -Y(2,51*HINV+IYll,4l*AAl-Y(l,6l*ABl-T(3)-dl*Yll,5ll/Xll 
OY(61= -Yl2•6l*HINV+l-Yil,7l+Y(l,5l*AB1J/CB1 
DPBTl= YI ltbl - OPT 
l~IDPBTl.E0.0.01 GO TO 30 
ABUP81= UABSIOPBTll 
SIGN14= DPBTl/ABUPBl 
014= COtFF*Tl7l•DSURT(ABDPBll*S IGNl~ 
GO Tu 31 
014=0.0 
CONTINUE 
DYi 1J= -014 + YI 1,71 
EQUATIONS FOR SUBSYSTEM •2 
US2 = Y ( l , 31 
DYi ill= -YI 2, 81 *HI NV+ ( QSZ-YI l ,'J) -YI 1 .10 I I /CS2 
DPSAZ= Y(l,Bl - Yll.111 
IF IDPSA2.EQ.O.OI GO TC 40 
ABOPS2= DABSIDPSA2l 
SIGN21= DPSA2/AJOPS2 
U2l= CCEFF*T 19l*0501HIABDPSZ)*S IGNZl 
GU TU 41 
C21= O.O 
CONTINUE 
DYl91= -021 + YI 1,9) 
OPST2= Y(l,Bl -DPT 
IFIUPSTZ.EQ.0.01 GO TO 50 
ABOPT2= DA6SIDPST2l 
SIGN25= DPST2/A6DPT2 
Q25= COEFF*T(lll*USQRTIABOPT2l*SIGN25 
GO TO 51 
025=0.0 
CONTINUE 
DYllOI= -025 t YU.lDI 
DY(lll= -Yl2tlll*HINV+(Ylldl-Yll,121*AA2l/CA2 
DYl12l= -Yl2,121*HINV+(Y(l,lll*AA2-Y11,13l*AB2-Tl51-B2*Yll,12ll/ 

1 x 12 
DPBTZ= Y(l,131 - DPT 
IFIUP6T2.EU.O.OI GO TO 60 
AdDPB2= DABSIDPBT21 
SIGN24= OPBT2/ABOPB2 
024= COEFF*TllOl*DSORTIABDPH21*SIGN24 
GO 'TC 61 

OIFF2040 
DIFF2050 
DIFF20o0 
OIFF2070 
DlfF2060 
DIFF2090 
OIFF2100 
OIFF2110 
DIFF2120 
DIFF2130 
DI FF 2 l'tO 
DIFF2150 
DIFF2160 
DI FF2170 
OIFF2180 
DIFF2190 

DI FF2230 
DIFF2240 
DIFF2250 
DIFF2260 
DI FF2270 
0 IFF 2280 
DIFF2290 
DIFF2300 

DIFF2310 
DIFF2320 

DIFF2340 
DIFF2350 
DIFFZ360 
DIFF2310 
DIFF2380 
DIFF2390 
DIFF2400 
DIFF2410 
DIFF2420 
DI FF2430 
O!FF2440 
OIFF2450 
DI FF 2460 
DIFF2470 
DI Ff2460 
DIFF2490 
DIFF2500 
OIFF2510 

OIFF2540 
DIFF2550 
DIFF2560 
DIFF2570 
DIFF2580 
DIFF2590 



612 
.:,13 
614 
ul ~ 
blo 
617 
61 t; 
bl'! 
620 
bLl 
bl.2 
62J 

bO 
I: 1 

c 

Q<t=J .J 
C:LJ\iflNUt: 
uYI l'tl= -1o1l4 + Yl l,14) 
IJY l 131 = -Y ( 2, Ll I *1-11 ,-.,v + ( -Y ( 11 14 I +Y ( l, 121 *At32 I /Cd 2 
EwuATlf-NS f-LK TCPOLGGltAL CC~STMAl~TS 

uY( 151= -lJ~t + YI l, l,I 
IJYllbl'= -Yll.lol + YIL,"I 
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lJ I rF L 5., J 
IJlrFl.uuO 
Ulf-1'.<ulu 
..; 11-fl.(;lJ 

tJI f-F iv'tu. 
Olrflo~·J 

tJ I ff 2601) 
C Olf-F2u70 
C u[fi2Ld0 
C2~4j67ti~0li3450fo9J12345u/~~OliJ4~67o9?123~567u~OllJ4567b~Ol23\~cf69Cl2UFASLCOO 

~fTJkN OIFF2G~J 

tNLl 



FOkTRA~ IV G leVEL 21 MCOL2 OAT E 76221 21136/18 

0001 
C002 
CIJl)3 
0004 
C005 
0006 
0007 
OOOo 

0009 
COlO 
OOll 

0012 
0013 
C014 
0015 
0016 
C017 
0018 
0019 
01)20 
0021 
0022 
0023 
0024 
C025 
002<: 
0027 
C028 
01)29 
0030 
C031 
0032 
0033 
C034 
0035 

C036 
0037 

su~~OUTlNE M~UL21T.G.uY,Y,Yl1HINVl 

IMPLICIT ~EAL*31A-H,~-ll 

OIME'-ISIUN GI loll o0Yll61,Yl7tlol oYLl2l ,flZJ oLllOl 
COMMON/OROR/NMAX,N,IPERMl2CI 
coM~CN/PARM/CDEfF,opr,os.cs11CA1,cd1,cs21cA2,cs2,x11,x12 
COMMuN/CYLUT/AAl,Adl,AA2,A821Bl.a2 
COMMON/INlTVL/YYl7,zoi.vvLIZI 

COMMON/MUOL/MFLAG 
C*********************************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

10 
11 

30 
31 

c 

EQUATl6NS OESCRl8I~G ToO ACTUATCR OPEN CENTER SYSTEM WITH 
VALVE SPUJL FULLY EXTENUEO 

YI l tl I 
Y(l,21 
Yllo3l 
YI 1,41 
YI 11 ~I 
YI l 10 I 

SUPPLY PR~SSURE 
ORIFICE #1 HUI< 
PORT A PRESSURE 
ACTUATCR VELOCITY 
PORT a PRESSUk.E 
ORIFICE h FLCW 

IPSll 
IQll I 
I PAll 
IV 11 
I PBl I 
( Q 14) 

ALL. VARIABLES FOR #2 ACTUATOR ARE INVARIANT 

HARD CONSTKAINTS ON STATE VAKlABLES 

IFIY(l,ll.LT.0.0U+OI 
IFIYll131.LT.O.OO+Ol 
lf(Y(l,~l.LT.0.0U+OI 

l./S l= QS 
(JS l= QS 
DYlll= QSl - Yll12l 
DPSAl= YI 1111 - YI l,3) 

YI 1.11= o.a 
Yll.3l= O.O 
Y( 1,5)= O.O 

IF (UPSAl.EQ.O.OD+OI GO TO 10 
AbOPSA= OA~SIOPSAll 
SIGNll= AaOPSA/DPSAl 
Qll = COEF F*T 16 I V<OS QR TI ABOP SA I *SIGN 11 
GO TO 11 
Qll= o.o 
CONTINUE 
OYl21= -Qll + Yll,21 
OYi 31= YI 1.21 - YI l,41*AA1 
OY(41= Yll13l*AA1 - Yll151•AB1- Tl31-Bl*Yll,41 
DY(5)= Yll,61- Yll,4l*ABl 
OPBTl= Yll15l -OPT 
IFIOPBTl.E(.1.0.0D+Ol GO TO 30 
A80PBl= DAdSIDPBTll 
SIGN[4= AHOPBl/OP~Tl 
014= COEFF*THl*DSQRTIABDPBll*S IGN14 
Gu TO 31 . 
014=0.0 
CONTI NUc 
DYl<>I= -Ql4 + YI 1161 

l<ETUKl'i 
ENO 

0 

109 



APPENDIX E 

NUMERICAL VALUES FOR PARAMETERS IN EXAMPLE 

SYSTEM 

This appendix tabulates all the physical variables and parameters 

of the open-center hydraulic system which was analyzed as an example 

system in Chapter V. Quantities which can vary in the course of a 

trajectory simulation, i.e., inputs and outputs, do not have any numeri­

cal value assigned to them in the table. 
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QUANTITY 

ORIFICE CONSTANT 

METERING AREA, ORIFICE 
NO. 1 VALVE, SUBSYSTEM 
NO. 2 

METERING AREA, ORIFICE 
NO. 4 VALVE, SUBSYSTEM 
NO. 2 

METERING AREA, ORIFICE 
NO. 5 VALVE~ SUBSYSTEM 
NO. 2 

ACTUATOR AREA, HEAD SIDE 
SUBSYSTEM NO. 2 

ACTUATOR AREA, ROD SIDE 
SUBSYSTEM NO. 2 

CAPACITANCE, SUPPLY LINE, 
SUBSYSTEM NO. 2 

CAPACITANCE, LINE FROM 
PORT 1 A 1 OF VALVE, 
SUBSYSTEM NO. 2 

CAPACITANCE, LINE FROM 
PORT 'B' OF VALVE, 
SUBSYSTEM NO. 2 

INERTIA OF MOVING PARTS 
IN ACTUATOR SUBSYSTEM 
NO. 2 

DRAG RESISTANCE OF 
ACTUATOR SUBSYSTEM 
NO. 2 

TANK PORT PRESSURE 

ACTUATOR VELOCITY, 
SUBSYSTEM NO. 2 

ACTUATOR VELOCITY, 
SUBSYSTEM No. 3 

SPOOL DISPLACEMENT, 
VALVE IN SUBSYSTEM 
NO. 2 

NAME 
ALGEBRAIC COMPUTER 

COEFF 

AA1 

AB1 

CS1 

CA1 

CB1 

X11 

DRAG 1 

DPT 

Vi 

V2 

SPOOL 1 

NUMERICAL 
VALUE 

104.284 

10. 26 x 10-3 

8. 839 x 10-3 

534.2 x 10- 15 

2.374 x 10- 15 

4. 75 x 10-15 

17.53 

5258.000 

3.45 
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UNITS 

2 
m 

kg 

NS/m 

bars 

m/S 

m/S 

m 



QUANTITY 

SPOOL DISPLACEMENT, 
VALVE IN SUBSYSTEM 
NO. 3 

SUPPLY FLOW FROM 
SUBSYSTEM NO. 1 

SUPPLY PRESSURE, 
SUBSYSTEM NO. 2 

PORT 'A' PRESSURE, 
SUBSYSTEM NO. 2 

PORT 'B' PRESSURE, 
SUBSYSTEM NO. 2 

BYPASS PORT PRESSURE, 
SUBSYSTEM NO. 2 

SUPPLY PRESSURE, 
SUBSYSTEM NO. 3 

PORT 1 A1 PRESSURE, 
SUBSYSTEM NO. 3 

PORT 1 B' PRESSURE, 
SUBSYSTEM NO. 3 

EXTERNAL LOAD, SUB­
SYSTEM NO. 3 

METERING AREA, ORIFICE 
NO. 1 VALVE, SUB­
SYSTEM NO. 3 

METERING AREA, ORIFICE 
NO. 4 VALVE, SUB­
SYSTEM NO. 3 

METERING AREA, ORIFICE 
NO. 5 VALVE, SUB­
SYSTEM NO. 3 

ACTUATOR AREA, HEAD SIDE 
SUBSYSTEM NO. 3 

ACTUATOR AREA, ROD SIDE 
SUBSYSTEM NO. 3 

NAME 
ALGEBRAIC COMPUTER 

SPOOL 2 

OS1 

DPS1 

DPA1 

DPB1 

DPT1 

DPS2 

DPA2 

DPB2 

W1 

A21 

A24 

A25 

AA2 

AB2 

NUMERICAL 
VALUE 

2.081x10-3 

8. 839 x 10-3 
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UNITS 

m 

bars 

bars 

bars 

bars 

bars 

bars 

bars 

N 

2 
m 



113 

QUANTITY NAME NUMERICAL UNITS 
ALGEBRAIC COMPUTER VALUE 

CAPACITANCE, SUPPLY 
23.74X 10-15 m5/N LINE SUBSYSTEM NO. 3 Cs2 CS2 

CAPACITANCE, LINE 
FROM PORT 'A' OF 

2.374 x 10-15 m5/N VALVE, SUBSYSTEM NO. 3 CA2 CA2 

CAPACITANCE, LINE 
FROM PORT I BI OF 

4. 75 x 10-15 m5/N VALVE, SUBSYSTEM NO. 3 CB2 CB2 

INERTIA OF MOVING PARTS 
IN ACTUATOR, SUBSYSTEM 
NO. 3 I2 X12 17.53 kg 

DRAG RESISTANCE OF 
ACTUATOR SUBSYSTEM 
NO. 3 B1 DRAG 1 5258.000 NS/m 
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