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PREFACE

This report is part of a continuing effort to mathematically model,
simulate, and qualitatively appraise fluid power systems. The study was
aimed at developing techniques for time domain simulation and eigen-
analysis of large mobile hydraulic systems. By starting from the premise
that mathematical models for components are available in the form of
suitable equations, attention has been focused on the problem of
synthesizing large system models in the time domain, from subsystem
models, in a form suitable for digital simulation and eigenanalysis.
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*Subscripted when they refer to a subsystem. Individual elements
identified by a second subscript.
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i
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CHAPTER I
INTRODUCTION

Fluid power systems in machinery can be classified broadly as
"power'" and '"control" applications. The former category includes the
majority of material handling equipment where hydraulics is used for
""muscle" power--presses, compactors, hoists, cranes, and earthmoving
equipment. The latter category includes mostly positioning and tracking
equipment, where power levels, though high, are usually much less than
in the first one. Examples of the second category abound in the aero-
space and machine-tool industries. Hydraulics finds use in control
applications because of the advantageously large power/weight and
power/volume ratios offered by it in comparison to other implementations.
If the key word for the first category of applications is efficiency,
that for the second is precision. The line of demarcation between the
two is hazy and it is entirely possible that in the near fﬁture it will
become artificial.

In spite of the commonality of the basic mechanism of energy trans-
fer in the two categories, the above mentioned difference of emphasis
has resulted in two different methodologies of design. Apart from
meeting force and velocity requirements, power systems are expected to
exhibit good overall energy conversion efficiency. They are usually
allowed substantial latitude in transient behavior, provided no pre-

mature failure of parts or operator-incompatibility is experienced. 1In



the case of control systems, appraisal usually takes the form of
tracking/positioning accuracy in the face of changing inputs, and
disturbances. Historically, they have been treate; as single-input
sinéle/mﬁltiple output linear systems (with the conventional extensibn
to linearized nonlinear systems). Specifications for their appraisal
almost always involve dynamic behavior first, with power/weight and
power/volume ratios receiving secondary considerations, and efficiency,
tertiary7 at best. The variety of opgrations performed by contrql‘syS-
tems is somewhat less than é;we; aépii;éﬁion;, so much so that a stan-
dard design procedure to cover a variety of applications can be laid
out, as attested by the number of tutorial papers on the topic (1, 2, 3,
4). Similar procedures for power applications appear to be nonexistent,
one possible reason being the latitude in circuit design and component
selection allowed to the system designer.

Consequently, it is difficult to establish to what extent power
systems, designed with the current state-of-the-art, deviate from the
optimal. It would appear, however, that a systematization of the design
procedure, based upon a thorough mathematical analysis of the operational
tasks of a given machine would result, to some extent, in filling this
void. Such a mathematical analysis would necessarily involve the devel-
opment of a mathematical model which could be used to examine the
behavior of relevant physical variables, as the machine is subject to
specified operational tasks. One of the reasons why such analysis has
not been widely used in the power systems area is that it involves the
solving of a large set of coupled algebraic or differential-algebraic
equations which usually exhibit pronounced nonlinearities. However, due

to rapid advances in computer technology, the solving of algebraic and



differential-algebraic equations is no longer the severe hurdle it once
was, and improvements in both hardware and software promise to make
accurate mathematical analysis an economically feasible tool for the
design and appraisal of large classes of systems.

Power hydraulic system designers have, generally speaking, lagged
behind control system designers in using machine computation facilities,
partly due to a lack of incentive for accurate analysis, and partly due
to a lack of appreciation of computer capabilities. As a result of
wider dissemination of state~space theory, the transient analysis of
various components, e.g., relief valves, pressure reducing valves, etc.,
has been attempted by component designers with varying degrees of
success (5, 6, 7, 8). Entire systems, notably hydrostatic drives have
been simulated (9). (Such systems straddle the line of demarcation
between power and control applications.)

To contrast with systems described by differential-algebraic equa-
tions, those described by purely algebraic equations are called static
systems, and simulations using such models as static simulation. The
simulation of complete duty cycles of power systems, in which transients
occupy only a small fraction of the cycle time and are to be ignored,
requires static simulation. Since the equations describing the system
behavior are usually nonlinear and often implicit, their solution is
less straightforward than that of differential-algebraic equations.

Only a few examples of static simulation are documented in the
literature (10, 11, 12, 13, 14).

The main motivation for this research was that existing computer

programs for dynamic systems simulation were considered inadequate for

the class of systems under scrutiny, for one or more of the following



reasons:

‘1. They use the generalized network approach, which is not
geared towards accepting models of components or sub-
systems in the form of mathematical equations.

2. They cannot simulate systems described by purely alge-
braic equations.

3. They place restrictions, not based on physical consider-
ations, on the manner in which subsystems can be
interconnected.

4, They are either inefficient or incapable of simulating
stiff systems, which are characterized by the presence of

widely differing eigenvalues.
Objectives of Study

This dissertation addresses itself to the formulation of computeriz-
able algorithms for analyzing mobile hydraulic systems, using lumped-
parameter time domain models of their components. The interconnections
between subsystems, which is called the topological structure of the
system is considered describable by a set of algebraic equations. In
this dissertation, the word 'topology' is intended to be construed only
in the above sense and carries no overtones of meanings assigned to the
word in mathematics. Even though the analysis of mobile hydraulic sys-
tems was the motivation for this effort, the mathematical treatment
presented herein is general enough to be applicable to the entire class
of systems whose subsystems can be described by differential-algebraic
equations and whose topological structure can be described by algebraic

equations.



A fundamental premise of the research effort is that the manner in
which the mathematical models for subsystems are arrived at is immaterial
insofar as the behavior of the total systeﬁ is concerned. Starting’from
this.ﬁremiéegxfhé development of a fbrm 6f mathemafiéal representation
fofnthe total éystem, which éan explicitly disblay the subsystem models,
as well as the system topqlogical structure, was the first objective of
the research. A system represented in the above manner is called a
large system in the context of this thesis. The formulation of algo-
rithms for time domain simulation and qualitative appraisal of large

systems was the second objective.
Results of Study

One of the major conclusions of this research is that the order of
a large system obtained by interconnecting subsystems may be less than
the sum of the orders of the subsySfems.~ An important consequence of
this result is that explicit numerical integration methods are either
incapable or inefficient in simulating large systems involving such
order reduction.

The implicit‘form of representation, which is developed in this
thesis, is shown to be suitable not only for representing large systems,
but also for numerical integration wiﬁhout consideration of the order of
the system. A computerized algorithm for qualitative appraisal of the
dynamic behavior of large systems represented in the implicit form is
also presented.

As an example, a mobile hydraulic system model is formulated in the
implicit form and results of dynamic simulation as well as qualitative

appraisal are presented. It is shown that digital simulation, which



uses Gear's method of numerical integration of differential-algebraic
equations, can be accelerated by switching models of subsystems at
appropriate times determined by the values of the state and algebraic

output variables.

Outline of Thesis

Chapter II gives examples to illustrate how order reduction can
arise in the synthesis of large system models using subsystem models.
It also discusses the limitations of explicit integration methods, which
form the backbone of the vast majority of dynamic system simulation
software. In Chapter III a new approach for modeling large systems is
discussed in terms of a canonical representation for subsystems and the
mathematical implications of physical interconnection between subsystems.
In Chapter IV the implicit form of representing large systems is devel-
oped and shown to be suitable for digital simulation using Gear's
algorithm, as well as for qualitative appraisal. As an example of a
large system, an open center mobile hydraulic system is analyzed in
Chapter V. The final chapter summarizes the important conclusions of
the research and presents recommendations for further investigations.

Appendix A postulates and proves the order reduction theorem, which
asserts that in the type of systems under consideration, algebraic con-
straints on outputs of subsystems, arising due to their interconnection,
leads to order reduction. Appendix B presents an algorithm for qualita-
tive appraisal of the dynamic behavior of large systems, based upon
eigenanalysis in a prescribed operating region. Gear's method of
implicit integration of differential-algebraic equations is briefly

reviewed in Appendix C, while Appendix D explains the function of key



subprograms in the large scale system simulation program using selected
FORTRAN listings. Numerical values of parameters used in the example

system simulation are documented in Appendix E.



CHAPTER 1II
THE LIMITATIONS OF EXISTING SOFTWARE

The establishment of systems methodology has served to decouple the
modeling process from the mathematical analysis needed to obtain be-
havioral:information of a system. Ever since the realization that the
basic phenomena reéponsible for the dynamic behavior of many fluid power
systems could be adequately described by exactly the same general set of
ordinary differential and algebraic equations as are used to describe
passive electrical networks and mechanical systems{:%ome systems analysts
have stressed that one need only develop the methodology for combining
models of the basic elements (i.e., resistances, capacitances,
inertances, gyrators, sources, etc.), in order to be able to describe
the behavior of a system of any complexity whatsoever (15, 16, 17, 18):\]/
This philosophy of dissecting a system to its basic elements will be for
lack of better terminology, referred to as the generalized network
approach.

Even though the general applicability of the state space approach
to the modeling of general lumped parameter dynamic systems is recog-
nized, significant theorems on existence of solutions, order of systems,
etc., are still formulated in terms of 'cut-sets', 'trees', and 'forests',
or node analysis, concepts carried over from electrical network theory
and not intuitively appealing to fluid power engineers (19, 20, 21, 22,

23). Computer programs written specifically for the analysis of fluid



power systems have eschewed the generalized network approach, but have
imposed restrictions on the manner in which subsystem models may be
interconnected (24, 25). An explanation of these restrictions, which
can be traced to a fundamental premise of the analysis will be given
in this chapter.

The fundamental premise of the current research, which was summar-
ized in the first chapter, will be elaborated upon in the following
section, so as to form the background for a discussion, with appropriate
examples, of 'order reduction', and an explanation of why current simu-
lation software is incapable of handling systems involving order reduc-
tion. The last part of this chapter includes a critical review of
general purpose dynamic simulation software and software written
specifically for hydraulic systems analysis. It is shown that the
inadequacy of all presently known software is based on its reliance on

the explicit state vector formulation for the system.
Fundamental Premise and Goals

The fundamental premise of this research is that mathematical
models for individual subsystems or components, which describe their
behavior in terms of energy port variables are available to the analyst.
Once a ﬁathematically adequate subsystem representation is available,
details of the internal constructional features or other details of the
hardware are irrelevant, insofar as the analysis of the static and
dynamic behavior of the large system is concerned. Since the analysis
is to be restricted to lumped parameter systems, the most important
implication of this premise is that components or subsystems may be

described completely and unambiguously by sets of differential-algebraic
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equations. The interconnection of two subsystems implies the equality
of one or more physical variables corresponding to the energy ports
which are connected.

The following goals were laid out for the formulation of the large

system model:

1. The mathematical model for the large system should
explicitly exhibit not only the subsystem models but also
the topological structure of the large syétem.

2. No restrictions, apart from those arising due to physical
considerations, are to be imposed on the interconnections
between models of components. Equivalently, complete
freedom is to be allowed in demarcating subsystem
boundaries.

3. The system model should be amenable, with only a minimum
of algebraic manipulation, for digital simulation as well
as qualitative appraisal.

4., The models for individual subsystems should be completely
independent of each other so that changes in or substitu-

. tion of a subsystem model would have no impact on other
subsystem models.

Many computer simulation packages for dynamic systems, which exhibit

the modularity concept outlined as goal 1, above, fail to meet goal 2.
The ﬁext two sections explore the reasons for this failure by first
giving examples of 'order reduction' and next outlining the inadequacies
of explicit numerical integration in handling systems involving order

reduction.
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Order Reduction

Two large systems will be used as examples to illustrate order
reduction. The first one has been chosen primarily to indicate why
order reduction is of little practical significance in using the
generalized network approach to problem formulation. The second example
system is formulated, first using linear subsystem models, and next
using a nonlinear model for one subsystem. The objective in presenting
these last two examples is to demonstrate that order reduction is not as
evident when subsystem models are given as sets of differential-
algebraic equations, and topological constraints are described as
algebraic equations, as when the generalized network approach is used.
The linear model for the second system is used to demonstrate that rep-
resentation of the large system in the explicit vector differential
form may require derivatives of the external inputs, while the nonlinear
model is developed to show that explicit.state.vector representation may

sometimes be impossible.
Example I

Consider two RC networks as shown in Figure 1. Using the notation
shown in the figure, and assuming that current sources are the inputs

to the subsystems, the following models can be derived:

i

1 1 11

&, = [O]e12 + [Z— - ETJ [. ] (2.1a)
1 17 “1hp

Subsystem #1

1
e,, = [1]e,., + [R, 0] .11 (2.1b)
11 12 1 [112]



i2

r . H
&,y = (o] e,y * L. JL] L121l (2.2a)
~Cg g7 “lop”
Subsystem #2
- i
21
e22 = [1] €51 + LO RZ] [ ] (2.2b)

The above equations are written in the canonical form:

x = Ax + Bu

H

Cx + Du

i

Yy

Each of the subsystems is of the first order.
If the subsystems are connected by the dotted lines as shown in the
figure, so as to form the system, the topological constraints become as

follows:

112 = 121 (2.3a)

el5 = €5y (2.3b)

The model for the large system can be shown to be as follows:

. 1 - i
€5 = [O] €5+ [ — = —3c ] L;ll] (2.4a)
€17 %% ©17 % 22

[211]=’[1] e12'*[§1 2 ] [111 ] (2.4b)

22 2 22

Equation (2.4) indicates that the large system is of the first
order, i.e., the order is not the sum of the orders of the two sub-
systems. It should be noted that the state space is reduced due to the
constraints of the connection, and not due to any inherent characteris-
tics of the subsystems. In the context of this thesis, the phenomenon

whereby the order of a large system synthesized from subsystem models is
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ol AAA— R ANA—?

4
e —C e & C €
- o I S N —o
SUBSYSTEM #1 SUBSYSTEM #2

Figure 1. 'Example of a Large System Comprised of
Two Subsystems and Involving an
Algebraic State Constraint
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less than the sum of the orders of the subsystems is termed order
reduction.

In the above example, if order reduction were not evident from an
inspection of the network, it could be inferred by algebraic manipula-
tion of Equations (2.1), (2.2), and (2.3) so as to write the large sys-
tem model in the canonical form for linear systems. Even though, in the
case of linear systems, it is always possible to consolidate the sub-
system models and present the model for the large system in the canonical
form for linear systems, such consolidation is not always desirable,
since it destroys the modularity of the large system model, and has to
be repeated afresh whenever any subsystem parameters are changed.

If the model for the large system is retained in the form of
Equations (2.1) through (2.3), it can be said that the large system has
an algebraic state constraint due to the presence of Equation (2.3b).

In that case the aggregate of the subsystem state vectors, i.e.,

[e12 e21] can be defined as the 'pseudo' state vector for the large
system (26). Thus, the terms 'order reduction' and 'algebraic state
constraint' refer to the same phenomenon but have slightly different

connotations.
Example 2

Figure 2 presents the circuit schematic for a hydraulic system, for
which a lumped-parameter dynamic thermal model is desired. The heat
exchanger and reservoir are to be modeled as first order systems, and
the effects of all other components included in an equivalent heat
source. Linear subsystem models, developed by Miller (27) can be

used to write the model for the large system as follows:



Figure 2 Hydraulic Circuit Schematic
of a System Whose Thermal
Model Involves Algebraic
State Constraint

15



T
. r i
- H
ATy = agy ATy + by b12] LTamb
Heat Exchanger H
Subsystem _
Tfo N 2ATH * 2Tamb - Tfl
H H
T
. fi 1
OTp = ayy ATp + [b21 bzzJ [T R
. amb
Reservoir ‘ R
Subsystem
T = 2AT_ + 2T - T
f
foR R ambR lR
T = T
Topological foH flR
Constraints SHg
Tei = Tro_ ™ pac
H R PR

The notation used above, which is the same as that of Miller

is as follows:

T Temperature (subscripted)

AT Difference in temperature between bﬁlk fluid inside a
component and the relevant ambient temperature
(subscripted)

YHg Rate of heat input to the system

pQ Mass flow rate of fluid

c Specific heat of fluid

Known paramters of system

16

(2.5a)

(2.5b)

(2.6a)

(2.6b)

(2.7a)

(2.7b)

(27)
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fi Subscript denoting fluid inlet conditions

fo Subscript denoting fluid outlet conditions

amb Subscript denoting relevant ambient conditions
H Subscript for identifying Heat exchanger

R Subscript for identifying reservoir

Equations (2.5) and (2.6) are first order explicit state vector
representations of the two subsystems, and ATH and ATR are their state
vectors, respectively. By combining the algebraic output and topologi-

cal constraint equations, it can be shown that

ATH - ATR * pQc i Tamb Tamb (2.8)
b R H

]

cannot be the state vector for the large system, i.e., arbitrary initial

which is an algebraic constraint equation and, consequently, [ATH ATR
values cannot be assigned to ATH and ATR for purposes of digital
simulation.

The consolidated explicit state vector first order model for the
large system, which has been derived by Miller (27) has the form

YHg ng )

T
] 1 9
H H ambR ambH pQC pQC

T =TT, £(T (2.9)

fi

where T is the effective time constant of the system, and is a function

of the parameters aqq through b The algebraic output equations can

22°

be written as follows:

T, = Tfi - 2%%_ (2.10a)
R H e P '
Y Hg
T = g(T . , Tamb_, ) (2.10b)
foH le ambR H chp
Ty = Tro (2.10c¢)
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In the above representation functions f and g are linear. Derivatives

H
of the elements of the external input vector [T , T ’ ZHg ] are
amb amb pPQc
R H p
required if the system is to be represented in the explicit state vector
form.
By using the logarithmic mean temperature difference, instead of
the arithmetic mean temperature difference, to define the bulk fluid

temperature in the heat exchanger, Equation (2.5b) can be written as

follows:

0=-T, - AT, 0n + T,. (2.11)
H fo amb H

Since Equation (2.11) is algebraic, it does not change the order of the

subsystem. However, it is no longer possible to establish the algebraic

constraint equation in a form analogous to Equation (2.8), i.e.,

involving only the state vector elements and inputs.

The system can now be represented as follows:

ZHg
2 AT + 2 T - T + ———
YO R amb fo PQc ]
ATy = ag, AT, + [b11 b12] [ . R H p
ambH
(2.12a)
YHg
2ATR * 2Tamb -Tfo " pQc - Tamb
R H o) H
0 =-T - AT, n
foH H Tf - T b
oy amb,
+ (2AT, + 2T - T + Z—Hg—) (2.12b)
R amb fo pQc
H
. Tfo '
ATp = a,, AT, + [b21 b22] [T H ] (2.12¢)
amb
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The significant feature of the above model is that it cannot be

reduced to explicit vector differential equation form:

é = £ (51 u, t) (2.13a)

0=g9 (y, x, u, t) (2.13b)
where

x A [aTy, ATQ]

YHg
l_‘l..é [T sy T ] '_'—]
ambH ambR chp
and
i ]
Z'A'LTfl ! Tfo ! Tfl ! Tfo

The examples above demonstrate that order reduction arising as a
result of interconnection of subsystem models is not always apparent
from inspection of the system equations, and that it is not always
possible to obtain the explicit state vector representation for the
large system. Also, the process of consolidating the subsystem models
to arrive at a state vector of the minimal order generally destroys the

modularity of the model.

Digital Simulation Considerations

The time domain simulation of differential algebraic equation sets
relies on numerical integration to propagate trajectories of the state
vectors, starting from known initial conditions. All conventional
numerical integration methods, e.g., Runge-Kutta, Adams-Bashforth,
Adams-Moulton (28, 29, 30), etc., require that the system differential
equation be written in the form

x = f(x, u, t) (2.14)
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where x is the state vector.
Single step methods, e.g. Runge-Kutta, use the state vector at time

t to establish the value of the state at time tn. Functionally,

n-1?

x = £ (x _g,u,t 4, t) (2.5)

where * is used to denote discretization. Multi-step methods, e.g.,
Adams-Bashforth, use the value of the state vector at multiple points

in time for establishing the next value of the state, i.e., functionally

u, t t ) (2.6)

X ..
n=1'-"n

et tees X

_ %
x, = L (fp “n-k’ "n

=n -1

where k is the order of the method.

In either case, the quantity X is not allowed to appear in the
right hand side and, therefore, no element of the state vector at time
tn is permitted to be a functionﬁof any other element of the state vec-

. . 1 2
tor at time tn. Consequently, if two elements X and X of X are con-

strained by the equation:

0 =nh (xl, x2) (2.17)
n’ “n

explicit integration methods will not assure that the constraint will be
satisfied. Consequently, an attempt to use explicit integration tech-
niques in the simulation of the thermal system modeled by Equations
(2.5) through (2.7), will not guarantee that Equation (2.8) will be
satisfied at each step in time. An additional difficulty in this

example is that T T.. which are needed for explicit numerical inte-

Lo T
le 1R

gration are not known at the beginning of the time step. Also, explicit
integration methods cannot handle without iteration at each time step

Equations (2.11a) and (2.11c) since these are of the form



x=£ (X, %, u, t) (2.18)

It is concluded that explicit numerical integration routines cannot
in general handle systems of equations involving algebraic state
constraints.

The class of systems under consideration generally exhibit pro-
nounced nonlinear behavior. If a nonlinear system N is linearized
around an operating point, the eigenvalues of the linear approximation L
are called the eigenvalues of N at the specific operating point. The
eigenvalues for a nonlinear system are generally speaking functions of
the state and the input, and can consequently vary in an unpredictable
manner. When the smallest and largest eigenvalues of a dynamic system
are widely separated, the system is said to be stiff (23). It has been
shown that explicit integration methods are usually inefficient for, and

often incapable of, simulating stiff systems.
Review of Simulation Software

The remainder of this chapter will briefly critique four user-
oriented digital simulation packages, which have been chosen to serve as
paradigms of their respective classes. The discussion will be used to
justify evolving a new approach, and is not meant to denigrate the use
of the referenced software for their intended application.

SCEPTRE (31) is chosen as the representative of the generalized
network approach. It is, in the words of its developers, "an automatic
circuit analysis program capable of determining initial conditions,
transient and steady-state responses of large netWorks.” Depending as
it does, on network terminology, it suffers from all the drawbacks of

the network approach, which have been briefly mentioned earlier and
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discussed in more detail by Iyengar (32). The state variable concept is
used by SCEPTRE; however, the reliance on explicit integration routines
(trapezoidal rule and Runge-Kutta) requires, under certain conditions,
which are described in terms of 'loops' and 'cut-sets', derivatives of
functions to be furnished. In essence, these situations involve alge~
braic constraints on component state variables. SUPER-SCEPTRE is a
preprocessor developed for use with SCEPTRE, aimed at simulating multi-
degree of freedom mechanical systems (33). Subsystem models may be
given in terms of generalized network parameters. Scalar nonlinear
equations may be used to describe circuit elements. Since SUPER-SCEPTRE
uses the same numerical techniques as SCEPTRE, it imposes the same
restrictions on component interconnections and inputs. Even though
SCEPTRE and SUPER-SCEPTRE are claimed to be written to analyze large
systems, the model formulation does not display explicitly the topologi-
cal structure. Additionally, since SCEPTRE uses the network approach,
it has no provisions to use empirical and semi-empirical models of
components, expressed as sets of differential-algebraic equations. The
process of developing an equivalent network from such models is a
retrogressive step in system simulation.

MARSYAS (34) developed for simulating 'large' aerospace systems

primarily in the frequency domain, uses two canonical forms:

X, = A, x. + B, u, (2.19)
i i 7 i i
y; = C; %y (2.20)
for linear components and
Y, =95 X (2.21)

for nonlinear components.
Interconnection between components are described by a vector

equation:
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U= EY + FV + KY (2.22)

where U and Y are the consolidated input and output vectors, respectively,
and V the external input vector to the large system.

Thus, all nonlinear components have to be dissected down to the
level of nonlinear (and linear) elements described by scalar nonlinear
equations. Explicit integration routines are used and, consequently,
the state of the large system has to be the aggregate of the linear sub-
system states. Also, MARSYAS does not allow the imposition of algebraic
constraints on state variables via the interconnection equations.
Additionally, MARSYAS does not handle static simulation and nor is it
geared to handle stiff systems. The use of a preprocessor does, however,
permit the storage of skeleton models and the user is allowed to write
FORTRAN models as well. Consequently, empirical and semi-empirical
models can be adjoined to the simulation package.

HYTRAN (24) is designed for aircraft hydraulic systems and is
especially useful for systems having long transmission lines, since it
uses the method of characteristics to model them. Prepackaged models of
components like pumps, accumulators, etc., are used and the inclusion of
empirical and semi-empirical state space models is difficult, if not
impossible. The package is not suited for static simulation. HYTRAN
also relies on explicit state vector representation for dynamic compo-
nents and, consequently, cannot handle algebraic state constraints.

HYDSIM II (25) is a package written to simulate complex hydraulic
systems using multiport component models. Components are modeled using

the canonical form

He
it

f(x, vy, u, t) (2.23)

(@]
I

= g(x, y, u, t) (2.24)
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Interconnections between components are modeled by:

u = h(x) or u = h(y) (2.25)

The aggregate of equations for the entire system is block-oriented,
each block representing a component. The assumption that the dependent
port variable at an energy port has to be the independent port variable
for the component to which the port is connected, introduces a con-
straint on the manner in which component models can be connected, i.e.,
certain tyﬁes of connections are forbidden. The originator of the soft-
ware package is cognizant of this restriction, since in the section
entitled "Recommendations for Further Study'" (25, pp. 59-60), he says:

However, some of the areas in which improvements would
be most beneficial are:
1. Develop a simulation algorithm which does not

require the matching of port-variable dependencies at the

component connections.

The matching of port variable dependencies in HYDSIM II ensures that the
order of the large system is equal to the sum of the orders of the sub-
systems. The program package relies on explicit state vector represen-
tation and explicit integration (Runge-Kutta and Adams-Moulton) for
propagation of state variables. Consequently, systems for which the
state vector derivative cannot be written explicitly, e.g., the thermal
system described by Equation (2.12), cannot be simulated by HYDSIM TI.
Additionally, the integration methods used in the package can become
very inefficient and even unstable when simulating stiff systems.
Another disadvantage of HYDSIM II is its reliance of prepadkaged models
which makes additions to the library of models difficult.

In summary, it has been shown in this chapter that the process of

synthesizing a large system model using subsystem models expressed in
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the form of differential algebraic equations can result in order reduc-~

tion, and that simulation software relying on explicit state vector

representation are incapable of simulating systems with such order

reduction. A second drawback of the present simulation programs which

becomes apparent

after a qualitative analysis of a system in the class

under consideration is their inability to handle stiff systems

efficiently.

In the next
of large systems
drawn from large

IIT, and the use

two chapters a new approach to modeling and simulation
is presented. The new approach is based on concepts
scale systems theory, which are discussed in Chapter

of implicit representation for numerical integration

and qualitative appraisal, which is the topic of Chapter IV.



CHAPTER III
THE LARGE SCALE SYSTEMS APPROACH

The limitations of the generalized network approach to systems
analysis can be traced back, for the most part, to insistence on dis-
section of a system to basic energy storage and dissipative elements,
i.e., inertances, capacitances, resistances, etc. The order of the
state vector for a 'large' system is equal to the number of energy stor-
age elements in the network; algebraic constraints on state variables
are prohibited, since they violate the restrictions placed on topologi-
cal structure (31). HYDSIM II (25) invokes 'port~dependency' conditions
to prevent the interconnection of two subsystems in a manner which would
result in algebraic state constraints. The examples given in the pre-
vious chapter demonstrate that it is physically possible to interconnect
subsystems in such a way as to impose algebraic state constraints.

The objective of this chapter is to outline an approach which over-
comes the above drawbacks. A 'large' system model is one in the form of
a set of differential-algebraic equations in which

(j(i) the equations describing any individual subsystem are

identifiable and not affected by changes in the model
of other subsystems,
(ii) the equations describing the topological structure of

the system are distinct, and

26
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7

(iii) no restrictions are placed on the demar%gtion of sub-

system boundaries. }

A fundamental premise of the large ;cale system modeling approach
is that in analyzing certain types of large physical systems it is
usually advantageous to stop the process of dissection at an intermedi-
ate point rather than at the lowermost level. When the dissection is
stopped at an arbitrary level, the description of subsystems assumes
special importance. <Q¥ggﬂg_mathematically adequate subsystem represen-

tation has been obtained, details of its internal structure are irrele-

vant to the description of the behavior of the large system.)
P

(Complete freedom in drawing boundaries around subsystems is desir-
able. Any diminution of this freedom, dictated by the need to meet the
requirement of simulation techniques will detract from the usefulness of
the modeling process itself. Also, it is desirable that subsystem

models be complete and self-contained, and have few constraints on their

applicability./)
<AThe problem of describing the behavior of a large system repre-
sented in the above manner‘reduces to:
1. Description of subsystems by suitable models;
2. Description of interconnections between subsystems in
suitable mathematical terminology; and
3. Evolution of a procedure for generating output trajec-
tories using information about initial conditions and

input trajectories.‘)

Each of these interrelated aspects will be considered in turn.
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Subsystem Canonical Representation

A subsystem canonical representation is defined as a standard func-
tional form in which the mathematical models for all subsystems are to
be written. The reasons for evolving and scrutinizing canonical forms
are to firstly examine the implications of connecting subsystems, in
abstract terms, and secondly to examine the advantages of one form over
another. Thus, for example, the effect of interconnecting two subsystems
on the order of the large system can be examined in general terms,
rather than considering each situation ab initio, as was done in Chapter
II. Also, some forms may be more amenable for qualitative appraisal of
system behavior than others, and other things being equal, such forms
would be more attractive to the analyst.

<In order for the analysis of large scale systems to be general, it
is necessary to use a subsystem model form which can encompass all
possible types of components and all possible methods of their inter-
connection.) In the ensuing discussion, the explicit vector differential
form, which has formed the basis of much of modern control theory (22,
35, 36) will be used, even though later in the development, an even more
general form will be used.

The i'th subsystem will be represented by:

e
il

fi(xi, u., t) (3.3a)

<
il

gi(xi, u. t) (3.3b)

Given the Lipschitz conditions, it can be shown that a unique solu-

T

e e e - -

tion-to.Equation..(3.3) exists. A vast majority of physical systems,
modeled with lumped parameter elements, can be described using the above

canonical form.
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Equation (3.3) is also suitable for qualitative appraisal of the
dynamic behavior of the subsystem, since, in general, the differential
equation (3.3a) can be expanded in a Taylor series in the neighborhood
of an operating point, and the first term of the expansion used as an
approximation of the plant matrix for eigenanalysis. The advantage of
Equation (3.3) over 2.5 is that the differential and algebraic equations
are decoupled and, consequantly, the latter may be ignored during
eigenanalysis. In summary, Equation (3.3) is a good candidate for—

adoption as the canonical representation for subsystem.

—— T T I T T Py

R, .

Interconnection Between Subsystems

If there is one feature which can be considered characteristic of

large systems, it is the explicit portrayal of the interconngction be-
Y.

tween the subsystems. In mathematical systems theory (37;}/three
methods of interconnecting system models are discussed; namely, parallel,
cascade, and feedback (see Figure 3). Before accepting these methods as
being sufficient for the types of systems under study, it is necessary
to examine the physical implications of interconnections.

The physical interconnection of fluid power systems is achieved
through fluid conduits, mechanical linkages, or electrical wiring.
These linking devices, if they aré not treated as subsystems in their
own right, generally impose equality constraints on certain physical
variables associated with the energy or signal ports they link. The
mathematical models used to depict the behavior of the subsystems must
have, as inputs and outputs, these port variables. Consequently, in the
case of most physical systems, the topological information describing

the interconnection of subsystems, can be written in the form:



INTERCONNECTION OF SUBSYSTEMS

SUBSYSTEM I

| SUBSYSTEM IT

CASCADE

SUBSYSTEM I

SUBSYSTEM II

PARALLEL

SUBSYSTEM T

| SUBSYSTEM IL

FEEDBACK

Figure 3. Possible Methods of -Interconnecting

Subsystems
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0 = h(yl, Vo1 ween Yop Uy Upy seey U, V) (3.4)

where:
vV A (vl, v ceey Vo ) is the r, dimensioned external input
v
to the large system.

2’

The large system is now represented by an aggregate of the subsystem

models and the topological information as follows:

X = f(X, U, t) (3.5a)
Y = g(X, U, t) (3.5b)
0 = H(Y, U, V) (3.6)

where X, Y, and U are the aggregates of the subsystem state, output, and
input vectors.

Consider now the connection of the £'th port of the j'th subsystem
to the t'th port of the k'th subsystem. The physical connection will

impose the constraints

Y5a(4) T Yke(t)

} | (3.7)

Yke(t) = Yjp(4)

or

Yia(L) = Yka(t)
} (3.8)

Y. =

ke(t) ~ Yib(4)
where a(4), b(£), c(t), and d(t) are appropriate integers. Figure &
shows how the physical constraints due to component interconnection
translate into equality constraints on mathematical variables.

{
g&gf three or more ports, each of a separate subsystem, are
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Figure 4. Physical Origin of Equality Constraints in the Topologi-
cal Description of a Large System
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interconnected, or if an external input is present at an energy port,
or an external signal input is present, the generalized Kirchoff's laws
can be used to write the constraint equations, which will still be
algebraic) It is important to emphasize that the physical interconnec-
tion is the basis. of the topological constraint, and not vice versa. If
two physical components can be physically connected it is natural to
insist that they be portrayed in the mathematical description, rather
than prohibit certain interconnections because they are mathematically
inconvenient.

If all interconnection equations can be written in the form of

Equation (3.7), the constraint equation for the large system reduces to

U

H Y +H V (3.9)

where H1 and H2 are appropriate matrices. Ikeda and Kodama (37) give
the conditions under which Equations (3.5) and (3.8) will represent a
large system whose state vector is the aggregate of the subsystem state
vectors.

It has been shown by Iyengar that it is possible to interconnect

some subsystems so that the constraint equation for the large system is

in the form

Fluiy] =G v | (3.10)

and it is not possible to express U explicitly in the form of Equation
(3.9) (38). 1In this case the order of the large system is less than the
sum of the orders ‘of thé subsystems. The previous chapter gave examples
of lérge systems involviné order reduction. The postulation and proof

of a theorem concerning order reduction arising due to the
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interconnection of two subsystems represented by sets of differential-

algebraic equations is contained in Appendix A.
Simulation Procedure

The large system described by Equations (3.5) and (3.6) is charac-
terized by the existence of an aggregate input, U, which is quite
distinct from the external input to the large system. By suitably
manipulating the interconnection equations, it is often possible,
especially in the case of linear systems, to eliminate U entirely.

The retention of the U vector poses a simulation problem when using
explicit integration techniques since Equations (3.5) and (3.6) cannot
be coded directly as FORTRAN (or equivalent) statements. There are
three possible alternatives:

(a) symbolic manipulation of equations,

<

(b) use of sfgggered elements in the U and Y vectors by

introducing artificial delays, or

(¢) solving an implicit algebraic equation at each step in

time.

Alternative (a) lacks generality, even though its use for linear
systems has been demonstrated (38, 39). Alternative (b) is used in some
software packages (31), but the accuracy of simulation depends on the
selection of the right vector elements to be delayed and the step size.
Superficially (c) may appear attractive, but closer scrutiny will reveal
that it is not since the implicit algebraic Equation (3.6), is coupled
to the differential equation and, consequently, the latter will also

have to go through the iterative solution procedure. Alternative (c)

is not the same as that used in HYDSIM II (25) since in the latter, the
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propagation of the state vector does not need iteration at one point in
time. HYDSIM II uses the chain rule to develop a 'pseudo' first-order
differential equation for the algebraic variables.)

All of the three above alternatives fail when algebraic constraints
on the state vector of the large system are present. There is another
area of weakness in software depending on explicit integration methods
which has been mentioned earlier. Explicit integration methods are
unusable for stiff systems (23, 40, k1), Stiff systems are character-
ized by the existence of widely different real parts of the largest and
smallest eigenvalues--typically of two orders of magnitude or more. As
explained by Gear (41), Blostein (L1), Orlandea et al. (43) explicit
integration methods either require very small step sizes and are,
consequently, subject to round off errors in digital computation, apart
from being inefficient, or go unstable. In the nonlinear systems of
the type under consideration, the 'stiffness' changes from region to
region in state space and, hence, the importance of using a method which
is robust and efficient under the widest range of stiffness.

The need for an algorithm for qualitative appraisal of the dynamic
behavior of large systems is also evident. Needless to say the coupling
of subsystems implies that, in general, the eigenvalues of the large
system will not be the eigenvalues of the subsystems themselves.

This chapter has outlined the large scale systems approach by
examining subsystem canonical representations, the implications of
physical interconnections between subsystems and the problems of
simulating systems involving implicit constraints on not only algebraic
variables but possibly state variables as well. The next chapter

develops and explains the philosophy of implicit representation, as



applicable to dynamic physical systems, and demonstrates that it has
the potential to overcome the drawbacks of explicit state vector

representation.
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CHAPTER 1V

LARGE SCALE SYSTEM SIMULATION USING

IMPLICIT REPRESENTATION

The explicit vector differential form of representation for lumped
parameter dynamic physical systems appears to arise so naturally that
alternatives are rarely considered. However, the main reason for this
formulation is that the use of the generalized network approach which
almost always relies on explicit numerical integration techniques demand
that form (42). 1In this chapter, a new form, which overcomes the draw-
backs of the explicit state vector representation is evolved.

Consider the following canonical form for representing the i'th

subsystem:

, t) (h.1a)

5

o

gi(xi9 wi) (L.1b)

where W, is defined as the aggregate input-output vector, i.e.,

w, = (uifyi). It is obvious that Equation (L4.1) subsumes the earlier
form, Equation (3.3). The introduction of w is given the following
justification: When a system is béing analyzed, the first requirement
is to identify the input and outputs. A system model is expected to
show explicitly these inputs and outputs. (ﬁowever, in the case of a
subsystem, it is conceivable that there is some degree of freedom in

assigning inputs and outputs (44&); i.e., the constitution of the input

37
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and output vectors depends upon the other subsystems and possibly the
external inputs to the large system. )\ Rather than change the subsystem
model whenever the interconnections.”change, as advocated by Rosenberg
(L), it is easier to use a generalized input-output vector for a sub-
system. The use of an implicit algebraic equation needs no special
defense, since static components are often used in hydraulic systems and
the implicit form is more general than the explicit form.

The large system obtained by aggregating subsystems in the above

canonical form can be represented by

0=f(X, X, W, t) (k.2a)

0=g(Xx, W (&.2b)

0 = h(w, V) (k.2¢)
where

W= (UY)

It is seen that Equation (4.2) subsumes the explicit representation
for a large scale system; namely, Equations (3.5) and (3.6). Conse-
gquently, any analysis or simulatign performed by using Equation (4.2)
can still use the explicit representation.

It is well recognized thét a qualitative understanding of the
behavior of a dynamic system is essential for the selection of digital
simulation parameters--step sizes, error bounds, etc. Such an appraisal
is relatively simple for systems represented by explicit differential
equations. If the above canonical form is used, the first term of the
Taylor's series expansion of the differential equation can be obtained
only by using the implicit function theorem of differential calculus.

Appendix B contains an algorithm, which has been developed and
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computerized as part of this research, for establishing the eigenvalues
of a large system expressed in the above canonical form. The algorithm

will be used in appraising the qualitative behavior of example systems.
Digital Simulation

The development of trajectories in dynamic system simulation is an
example of the initial value problem in differential equations. It is
well known that explicit integration routines are incapable of handling
efficiently stiff systems, characterized by widely divergent real eigen-
values (23, 41, 43).

A number of implicit integration techniques, pioneered by Gear (23,
4o, 42, 45, 46, 47) have been recently developed to handle stiff systems.
It should be mentioned that most of these techniques still require the
model to be in explicit vector differential form (40, 41). Gear has
extended the implicit integration method to handle differential alge-

braic systems expressed in the form

0=£(X, X, V, t) (L.3)

where X need not be the state vector (62). Appendix C gives a brief
review of the method. It is easily seen that Equation (4.2) can be
written in the form (4.3).

Equation (4.3) by itself can be considered as the canonical form for
representing not only subsystems, but also the large system. In the
first case, it would contain the equations relating the sub-subsystem
input to the subsystem state and output. In the second case, it would
contain not only the models for all subsystems, but also the topological

information. The vector X will be defined as the differential-algebraic
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state vector in order to distinguish it from the genuine state vector
for the large system.

As an example of model formulation using implicit state representa-
tion the equations for the thermal system analyzed in Chapter II will be
reconstituted to conform to Equation (4.3). The input vector to the

system is

YHg

X_é[TambH T
The differential algebraic state vector for the system is defined as

X = [aTy Teyy Troy ATy Trip Trop)

The equations describing the subsystems and topological constraints

can now be written as follows:

. X2
0 = —X, tagy X, [b11 blzj[vl] (L.ba)
X, -V
0 = —x3 - X on <ési————£> * X, (k.4b)
g - vy _
x
) 5
0= -%, +ay x +Lby bzzj[v2] (4.4c)
0 = —Xg + le1 + 2V2 - x5 (&.La)
0 = fx3 + x5 (k.be)
0 = X, * Xg + v3 (k.bf)

It may be noted that implicit representation is not only easy to
use, but also exhibits individual subsystem models and topological con-

straints as partitions of the large system model. The external inputs
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to the large system, i.e., the elements of V could have been specif-
ically excluded from appearing in the subsystem models by appending two
additional elements of the differential algebraic state vector and
adding two equations to the topological constraints.

It may be noted that Gear's algorithm for differential algebraic
systems does not require explicit identification of the state vector.
Even though, in principle, it is possible to include in X all system
variables except the inputs to the large system, it is advantageous
from the point of view of simulation, to append to Equation (4.3), an

explicit algebraic equation
E = g(_}gg_v_, t) (L]:oll:)

where Z is termed the explicit algebraic variable vector. This vector
could be constituted of all subsystem outputs which can be explicitly
expressed in terms of the input vector V and the differential algebraic
vector, X, and which do not influence any of the subsystem inputs.
Equations (4.3) and (4.4) together constitute the canonical form
for the large system. The next chapter illustrates the use of this
canonical form for both qualitative analysis as well as digital

simulation.
Software Development

The only documented digital simulation package which implements
Gear's method for implicit differential algebraic systems in ECAP II
(48). This package, written for static and dynamic analysis of elec-
tronic networks, could be used for simulating other systems by casting
them in the 'network' mold. The drawbacks of the network approach to

analyzing large mobile hydraulic systems have already been discussed in
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Chapter II and elsewhere (32). An additional drawback to the use of

--------- e e T ey e T NS

ECAP II is its huge requirement of computer memory, primarily because

of its precompiler and bookkeeping technique. Needless to say, these

- " - .
- e 5 S

features make it difficult, if not impossible, to extract intermediate
variables, and interface other FORTRAN subprograms. Consequently, it
was decided to build the large scale system simulation program using
Gear's numerical integration program (49), DFASUB, for propagating the
differential-algebraic state vector.

Figure 5 exhibits the calling structure of the FORTRAN program
evolved for simulating the type of systems under consideration. No
attempt has been made to develop a user-oriented package corresponding
to HYTRAN, HYDSIM II, or other similar software (24, 25). A brief

description of the main program and key subroutines follows.

MAIN Program

This program is used to initialize all parameter, arrays, etc., and
read information pertinent to individual components, e.g., actuator
sizes, inertia, and drag coefficients, valve metering characteristics,
etc. It is also used to read integration control parameters; namely,
maximum, minimum, and starting step sizes, allowable error and final
time, as well as initial values of elements of the differential-
algebraic state vector, and their first derivatives. It also reads the
input trajectory.

The program sets up the differential-algebraic state vector in the
form needed for numerical integration by DFASUB. ' If in the course of a
trajectory simulation, it is found necessary to change from one repre-

sentation of a subsystem to another, the main program is used to
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COPY
COPYZ1
MATIN1
MATIN2
MATIN3
MATMUL
SOLVE
DECOMP
KNTSP|

MAIN

1

DIFFUN

*

~ - DFASUB
L

— ¥
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l .l INPUT Hﬁ VLINTR ]

PRINT
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Figure 5.

SUBROUTINES INCLUDED IN DFASUB
PACKAGE '

ANY NUMBER OF SUBROUTINES MAY
BE USED TO DESCRIBE THE SYSTEM

OPTIONAL SUBROUTINE, INCLUDED
ONLY IF REQUIRED BY INPUT

Calling Structure of a Large System
Simulation Program Involving Model
Swiiching
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ascertain when a switch is needed, and reconstitute the elements of the
Y vector, and transmit only the pertinent variables to DFASUB. MODL1
and MODL2 are two representations between which switching is performed
-according to preselected criteria. Additional models can be added as
necessary. Chapter V illustrates the program logic by means of an

example simulation involving model switching.
DFASUB

This is the integration routine which develops the trajectories of
the differential algebraic state vector, as constituted by MAIN. Since
the program is documented elsewhere (48), only the modifications
required to handle large systems will be described here. The values of
the input vector at any prescribed time are obtained by calling INPUT,
as many times as may be necessary for the Newton iteration which is part
of implicit integration. Explicit algebraic variables, i.e., those
which can be written as explicit functions of the differential-
algebraic state and the inputs to the large scale system, are obtained
by calling ALGVAR. Print-out of trajectories after a prescribed number
of steps is done by alling PRINT. To perform the implicit integration,
DFASUB uses the error vector generated by DIFFUN, and a number of matrix

manipulation routines enclosed in the shaded box in Figure 5.
DIFFUN

This subroutine furnishes DFASUB with the correction to the
differential-algebraic state vector before the latter performs the
Newton iteration. The equations describing all the subsystems as well

as the topological constraints may be included in DIFFUN. However, in
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the present version, in order to facilitate switching of component
representations it is used as a director subprogram which called the

pertinent system model written in one or more subprograms.

ALGVAR

This subroutine is written specifically to evaluate explicit alge-
braic variables whose inclusion in the differential algebraic-state
vector would have resulted in unnecessary matrix manipulation, core-
storage and computing time. ALGVAR is called just before the print-out
step, so that no calculations need be made for steps which are not

printed out.

PRINT

This subroutine performs a dual function. First, it is used to
control the print-out of trajectories of the pertinent system variables.
Secondly, it is used to check, at each step in time, if the criteria for
switching from one representation another have been met, and if so, to
return an appropriate message to the MAIN program.

The main program and most of the subprograms, with the exception of
DFASUB, were specifically written to simulate the example system pre-
sented in the next chapter. However, with changes in the quantities
that are printed out at the beginning of a simulation, ‘the program can
be used to simulate any large system expressed in the canonical form

evolved herein.



CHAPTER V

EXAMPLE SYSTEM ANALYSIS

Even though the variety in circuitry exhibited by mobile hydraulic
systems is much more than hydraulic and electro-hydraulic servo-systems,
a vast majority of mobile hydraulic systems are characterized by the
following features.

1. Modularity: Each actuator, together with its control

elements (directional control valve, relief and flow
control valves) is a distinct subsystem. Two or more
subsystems may be identical.

2, Multiplicity of inputs: Two or more actuators may be in
motion at the same time, as a result of human operator or
other inputs.

3. Task Oriented Duty Cycle: For a prescribed task, the
inputs and the actuator motions form a well-defined
cycle. A machine may be capable of a multitude of tasks.

An example system has been chosen to explore the feasibility,
efficacy and limitations of digital simulation based on implicit
representation. The system, shown in Figure 6, which exhibits all the
characteristics detailed above, is the simplified hydraulic circuit of a
backhoe. A brief description of its operation will lead to a better
appreciation of the modeling and simulation problems involved in

describing its behavior.
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The system is open centered and is generally synthesized from off-
the-shelf components; namely, pump, directional control valves, pressure
and flow control valves, cylinders or motors and fluid conditioners
(filters, oil coolers, etc.). The directional control valves, which are
usually manually operated, may be of the en bloc or stack design. In
either case, using the 'pressure beyond' capability of the open center
valve, it is possible to incorporate additional actuator subsystems by
merely interposing them in the open center return path.

For simplicity in presentation here only two actuators will be
considered to be in operation. Extension to more actuators is straight-
forward. Figure 7 presents the circuit schematic for the two actuators,
and explicitly identifies the pump subsystem, in addition to the actu-
ator subsystems. Figure 8 is a 'network' description of the actuator
subsystems, intended firstly to demonstrate that each subsystem is a
dynamic system in itself, and secondly to highlight the interconnections
between the subsystems. Since the pump is considered to be the first
subsystem, the actuator subsystems are labelled as '2' and '3', respec-
tively. From a hierarchical viewpoint, Figure 7 presents one level of
dissection of the large system, i.e., into subsystems, while Figure 6
presents the system at the lowermost level of dissection, i.e., at that
of basic elements. Figure 8 also illustrates the identical nature of
actuator subsystems, i.e., exactly the same equations are used to
describe the dynamic behavior of both subsystems. It needs to be empha-
sized that the actuators can be modeled as identical subsystems only if
the topology of the large system is explicitly described. Thus, in

Figure 8 PS and Qs2 are the port variables at an energy port of actuator

2

number 2, in precisely the same manner as Ps and Qsl are the port

1
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variables for actuator number 1. The fact that PT1 =P and Q15 = Q

s2 s2

arises as a result of the interconnection of the two subsystems, and is

explicitly shown as such, even though at the cost of introducing
additional variables.

The selection of static and dynamic effects to be included in a
mathematical description of a éystembis based on the information content
desired to be incorporated in the model (50). The actuator subsystem
models presented here incorporate the capacitance effects of the line
and cylinder volumes on both sides of the piston, in addition to the
actuator inertia and drag. The open center valve, which is treated as
part of the actuator subsystem, is described by a numerical algebraic
model based on the Wheatstone bridge analogy (12). Since the pump is to
be treated as an ideal flow source, and there is no interest in estab-
lishing the pump input torque, the pump subsystem need not be modeled
so as to account for the variables at Eil_its energy ports. Consequent-
ly, the pump subsystem will be treated as an ideal flow source, and Qs
will then be an element of the external input vector to the large system.

The sixteen implicit differential algebraic equations used to
describe the two actuator open center system can be obtained by modeling
firstly the two actuator subsystems, and secondly the topological con-
straints. The relevant equations which are identified below as elements
of a functional equation F are as follows:

Subsystem #2 (Actuator System #1)

. 1
Fi2 0=Pg + (Q51 - Q) - Q15) C
s1
1%
Fz: 0=-Q, + ka11(P51 - PAl)
( 12
F3- 0 -Q15 +ka15 P, PTl)
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1
Fppo 0= -Pyy o+ (Qy - vih ) €y
F_: O0=-v, + (P, A,  -P A  -W, - B,v,) L
5 1 A17A1 B1"B1 T "1 171’ T,
F.: O0=-P__ + (v.A_ -Q.,) ——
6 B1 1 B1 14’ C
B1
( )%
Foi 0= -Q, +kay,(Py, - Py
Subsystem #3 (Actuator System #2)
F,: O:—]..D +(Q - Q _Q)—l—'
8 S2 S2 21 25’ C
S2
F ( )1/2
gt 0 =-Qy +kay (P - P\,
P 1
100 0= —Q25 + ka25(PSz PT)
F.: 0=-P _+ (Q v A ) =2
11 A2 21 2%a2’ T
A2
F_ = =V P A - - - T
12 0= Yyt (PyA, - PpoAp, - Wy - Byv)) I,
F _: O=-P_ + (VA -Q,)——
13 B2 2"B2 oLk’ C
B2
1
| D = - - P
1t 0= ~Qy, * kay, (Po, - P

Topological Constraints:

F15: 0 = —Qs2 + Q15

F 0O = ~-P + P

16° s2 T1

The external input vector to the system is [QSlPT 171"y 2]
where X1 and Xz are the spool displacements for the directional control
valves in subsystems two and three, respectively. It is of interest to

note that firstly, QSi and PT are invariant for a given system, and
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secondly, that X_  and X2 are indirect inputs, in the sense that they

1

determine the metering orifice areas a and a

11' 214 245 21’ %o4° %950

respectively. In the course of a duty cycle, X

1 and X2 and, consequently,

the metering areas are changed by the human operator.

Numerical values of parameters are presented in Appendix E.
Figures 9 and 10 present the trajectories of selected system variables
for two inputs intended primarily to demonstrate the success of model
formulation and the advantages of variable step-size integration (which
controls the density of the identification characters in the computer-
generated plots of output trajectories). Figure 9(a), for example,
prese;ts ramp inputs of spool displacements and load to both actuator
subsystems, while Figures 9(b), 9(c), and 9(d) depict corresponding
trajectories of cylinder pressures and velocities. The intercation
between the two actuator subsystems is evidenced by the change in
cylinder pressures and velocity for the first actuator, when the second
is put in motion. A typical machine duty cycle would be composed of
one or more trapezoidal inputs as depicted in Figure 10(a) and the
corresponding outputs as in Figures 10(b), 10(c), and 10(d). These
simulations reveal the efficacy of the implicit integration method in
handling systems where dynamic and steady-state operation are
interspersed.

It should be remarked that the step size is limited to the maximum
specified by the analyst, and this parameter may be changed by the
analyst, in the course of a trajectory simulation, so as not to waste
time in the calculation of unnecessary intermediate steps. However, the
maximum step size should be chosen such that changes in the input are

taken into consideration in addition to the dynamics of the system.



o

00645 3000+

SPOOL DISPLACEMENT (in}

54

o8 4000~
T“’ #370,476/760209

X W, N

*

Xz

§
I
5
{mm)
LOAD (jbf)
(kN)

e

0021-05 1000

-4

0--0 T —y T T T T T T T
4 008 o6 024 032 040 048 056 064 072 080
TIME (SECONDS)

SUBSYSTEM #1
# 370/ 760209

180000

Fio

160000

140000
L

90

120000

PSI
L aSAAANAL UK ALARS AN R AR RA SR A g A
.

70

{(PSn

800.00 100000

(Bars )
.

n

PRESSURE

50 Fa

600.00
[T

t 30 vt

»
x
x
x

s bansanes”

20000 40000
f
~

rio

Ko,

x M
o xRN
b >

Sooo0 008 ol 024 032 040

00

- . . . , ' .
0.48 0.56 064
TIME (SECONDS) 072 080 088 096

(b)

Simulated Trajecto&ies of Two-Actuator System

Figure 9.
Variables for Ramp Inputs



32]0.00 36000 40000
) ) > h

24000 28000

PRESSURE (PSI)
16000 20000

12000

80.00

Psa SUBSYSTEM#2
# 370/760209

40.00

000

(c)

3.20

VELOCITY (INS/SEC)
200 2.80

1.20

040

Q.00

0.40

240
@
S

1.60

1

H

o
{mm /sec}

0.80
it
o

008

T80

Qﬁ’k’t‘k’!’l!»"ti’i’i’i’i!&m

ole

024 032 040 048 056 64 072 080 088 096

TIME (SECONDS)

SUBSYSTEM #|
# 370/760209

\7

LA ARATTRARAS A RN AR AA R AT RA ARSI A ks A
s

»
1
s e
pans
awtt

Nevar e,

%)
3

(d)

008

016

024 o032 040 064 072 080 088 096

048 056
TIME (SECONDS)

Figure 9. (Continued)

55



56

;% #490/760119

24
b

6000 006+ &

.5 ‘\x'

(mm}

4000

T
&»
o
g
1
T
=3

LOAD (ibt)
(kN)
DISPLACEMENT (in}

20004 00245
e

g T T T T T T 1
o ol 02 03 04 0.5 a6 o7 08 09 10 vt
TIME (SECONDS)

(a)

#6267/ 760120
#490/76019

(¢]o] 100000 1200.00 140000 1600.00

800,

PRESSURE (PSI)
[e0]

600

400.00

R,

200.00

0.00
L

T v

T T T
0.60 070 .80 Q.30 1.00 110 1.20
TIME (SECONDS)

-200.00

T T T- T
0.00 0l0 0.20 0.30 0.40 0.50

(b)

Figure 10. Simulated Trajectories for Two-Actuator System
Variables for Trapezoidal Inputs



57

o #626/760120
§ 1 #490/7€0119
<
[=]

8
g |
8 Feo
8
S |
[=]
©
8
o
o
@«

8

L3

e w

%3

g 3
g
[=}
s
o
=]
o~}
(=]
o
° ]
[=}
o
o 4
o
]
y
3
§ [ 0.20 0.50 040 050 60 o : X 7 i

0.00 10 } 0. o 090 .00 1o 120

' TIME  (SECONDS)

(c)

450776010
o -
-2
-0s1
-4
-10 . . : — .~ , , . . , — : .
ol 12 13 04 05 06 a7 [o):] 09 (Ko} (A} 12 13 14

TIME (SECONDS)

(a)

Figure 10. (Continued)



58

The successful calculation of trajectories based on specific inputs
does not, however, give a good indication of the qualitative aspects of
simulation, which are necessary for a genheral appraisal of a new
technique. Application of specially designed benchmark problems to
Gear's implicit integration method have revealed some of its strengths
and weaknesses (41, 51). The main strength of Gear's method, as indi-
cated by the tests described in the above references, lies in its
ability to handle stiff systems which are characterized by non-
oscillatory eigenvalues; its main weakness, which is not considered
serious (51) was its inefficient simulation of highly oscillatory
trajectories. However, these tests by Gear (41), and Enright, Hull, and
Lindberg (51) were conducted on explicit differential equations rather
than implicit differential-algebraic equations which form the basis of
the new approach, i.e., they did not investigate the effect of nonlinear
algebraic equations on simulation speed or efficiency.

In order to exploit to the fullest extent the advantages offered
by implicit integration for simulating large mobile hydraulic systems
and also to compensate for its disadvantages, the following areas were
considered worthy of investigation:

1. qualitative study, through eigenanalysis, of the example system

to examine its stiffness characteristics

2., study of effect of hard constraints on simulation by

implicit integration

3. study of feasibility and utility of switching models in the

middle of a trajectory

In the ensuing sections the results of the investigation will be

summatrized.
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Qualitative Behavior of Two-Actuator

Open-Center System

It is well known that the dynamic behavior of a linear time-
invariant system can be cualitatively appraised by a scrutiny of the
eigenvalues of the plant matrix. The qualitative behavior of a non-
linear system in a prescribed region of state space can be obtained by
linearization if the ecuations describing it are in the explicit vector
differential form, i.e., Equation (3.3) and the functions are continuous
and differentiable (52). Appendix B develops the expression for the
local plant matrix of a nonlinear implicit differential algebraic system.
A computer program written to perform the necessary matrix manipulations
and solve the characteristic eouation was used to analyze both single
and double actuator open center systems at various points on their
operating region. Since the actual numerical values of the eigenvalues
depends not only on the operating region in the state space, but also
the system parameters, general conclusions regarding all open center
systems cannot be drawn. Nevertheless the results obtained by analyzing
specific systems are very instructive. For example, Iyengar (26) has
shown that a single actuator system with 'small' inertia and drag can
exhibit stiffness ratios of the order of 107 or more, and would conse-
auently be difficult, if not impossible, to simulate by explicit inte-
gration methods. It has also been shown by Iyengar (53) that 'small'
inertia and drag do not necessarily lead to non-oscillatory eigenvalues.
Conseaquently, it is conceivable that simulation of open center systems
by implicit integration may be slowed down, and even made inefficient,

due to the presence of complex eigenvalues with large imaginary parts.
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Since in the course of the simulation of a trajectory, the eigenvalues
can vary continuously, implicit integration offers the advantage of
being the only method which has the potential of simulating an entire
trajectory with no human interference. It should also be noted that in
order to portray oscillatory trajectories faithfully, any numerical
integration scheme will have to use step sizes significantly smaller
than the time period of oscillations.

Table I summarizes the results of eigenanalysis performed at
selected times of trajectories developed for the example system. It is
of interest to note:

1. the maximum allowable step size is used even when the

system is fairly stiff

2, the step size is not always curtailed by the presence of

complex eigenvalues with large imaginary parts

3. the mere inclusion of the second actuator subsystem,

which may be inoperative at the time under consideration;
can change the stiffness ratio of the system

L4, a very small or zero value for metering orifice a15

always resulted in a small step size, even though the
stiffness ratio was not far different from other regions
in state space for which a much larger step size was used.

The general conclusion that can be drawn from the qualitative
analysis are: |

1. Open center mobile hydraulic systems can exhibit wide range

of stiffness ratios and can have eigenvalues with large and

small imaginary parts.



TABLE I

SUMMARY OF SIMULATION RUNS ON EXAMPLE SYSTEM

Actuator #1 Actuator #2
. Simulation Time Spool : Spool . Current Eigenvalues Stiffness
é Run No. Disp. Metering Areas Load Disp. Metering Areas Step Largest Smallestd} Ratio
v *q 211 214 %15 LEY X2 91 2g 225 Size Anax Amin o
1 763233 0.615 | 0.0650 | 0.0288 0.0288 0.01570] 2000.0} 0.060 [0.0175 0.0175 0.0314 0.0050% |- 783.2 - 34.6 22.63
: +J1959
2 283 0.000 | 0.0750 {0.1092 0.1092 0.00000} 0000.0} 0.000 {0.0000 = 0.0000 0.1324 0.0001 - 1045.4 -179.0 5.84
760202 - . ) 4
: + 1999.2
3 ?E%%SE 0.243 ] 0.0615 | 0.0209 0.0209 0.02664 4866.5§ 0.000 [0.0000 0.0000 0.1324 0.0050% |- 1232.0 - 43.0 28.65
4 126 0.243] 0.0165 [ 0.0209 0.0209 0.02664| 4866.5| -~ - - - - 782.4¢ - 44 0°¢ 17.78
760129 4
£j1958
5 ?3%%23 0.721| 0.0670 | 0.0333 0.0333 0.00940[ 8000.0| 0.064 [0.0265 0.0265 0.0188 0.0050% |- 882 - 33.0 26.73
+ .
~j1984
6 73%%23 1.240} 0.0000 {0.0000 0.0000. 0.13240] 0000.0| 0.000 {[0.0000 0.0000 0.1324 0.00502 |- 1985.3 289.6 6.86
7 %%% 0.226 | 0.0677 | 0.0348 0.0348 0.00720] 4513.0} 0.000 [0.0000 0.000 0.1324 0.00502 | ~ 3460.5 - 43,2 80.10
8 L 0.291} 0.0872 {0.0796 0.0796 0.00000{ 5812.0| 0.000 {0.0000 0.0000 0.1324 1.9%X10 ° |- 888.9 90.7 9.80
760129 : : I 1985
9 ?E%%%; 0.291} 0.0872 | 0.0796 0.0796 0.00001 5812.0| 0.000 |0.0000 0.0000 O0.1324 1.9 x10'4 - 888.9 90.7 9.80
i . 131985.3
7
10 —_— 0.291{ 0.0872 | 0.0796 0.0796 0.00000f 5812.0( - - - - - .9¢ - 90.6¢ .80
760129 9 7 79 79 5 zj13§§.§ 9 9

a, -
‘Maximum allowed step size.

Mpac|
bDefined as Jﬂmr_‘i

min'real part

CEigenvalues for first actuator subsystem only.

d
Smallest non-zero eigenvalues.
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2. Implicit integration will not fail for such systems,
though it could necessitate unacceptably small step
sizes.

3. The step size is not exclusively dependent on the

eigenvalues of the system.
Effect of Hard Constraints

The implicit integration method depends on a Newton-like iteration
to solve a set of nonlinear equations at each step in time (40, 48).
Consequently, the imposition of hard constraints on any element of the
differential algebraic state vector can be expected to result in non-
convergence under certain circumstances. However, for the dynamic
systems under consideration, the discontinuity is arrived at only
gradually in the generation of the trajectories and, consequently, it
should be possible to stay within a prescribed tolerance band around the
hard constraint, if step sizes are kept sufficiently small. This con-
jecture is borne out by the example trajectories shown in Figures 11 and
12, The input was chosen so as to cause PB2 to fall below zero if no
hard constraint was imposed. Figure 10 presents some of the state vari-

ables for the above condition. The steady-state value of P reached

B2'
at 0.813 seconds, was -55.2 psi. Figure 12 presents the same state
variables with the imposition of hard constraints on all pressures,
i.e., any pressure below zZero was corrected to be zero in subroutine
DIFFUN (or MODL1 or MODL2). 1In view of the finite error bound specified
for the nonlinear equation solving routine, the final value of the con-

strained states can deviate from the hard constraints up to a maximum of

the specified amount. In the simulation shown in Figure 12, the actual
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value of PB2 ranged from -12.9 to 0.0004 psi, the deviation from zero
becoming less as time progressed. It is interesting to note that
firstly other pressures and actuator velocities are not significantly

affected by P being zero, and secondly the step size for steady-state

B2
operation was 0,005 seconds, the maximum value specified with and
without hard constraints. Hence, it is concluded that under proper

circumstances, implicit integration can adequately handle hard con-

straints of the type encountered in large mobile hydxaulic systems.
Model Switching

It is not uncommon for mathematical functions describing fluid
power components to display discontinuities. The portrayal of
hysteresis, stiction, coulomb friction, etc., is usually performed by
changing the functions used to describe the phenomena as dictated by
physical considerations. Similar changes in functional representation
are also necessary at the subsystem level in order to exploit the hier-
archical structure of a large scale system. One of the compelling rea-
sons for exploring the use of Gear's algorithm for simulating large
mobile hydraulic systems was its insensitivity to the relative numbers
of algebraic and differential equations (41, 42, 43). This feature is
exploited by ECAP II for obtaining steady-state solutions for electronic
networks (48).

If the equations used to describe the large system do not involve
the derivative of the differential-algebraic state vector Y, the state
vector of the system is of zero dimension, i.e., the system is purely
static in nature. Since conventional explicit integration routines,

e.g., Runge-Kutta, Adams-Bashforth, etc., cannot handle state vectors
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of zero dimension, the advantages of Gear's method for differential
algebraic systems is obvious.

It has been mentioned in Chapter I that large mobile hydraulic
systems are characterized by the interposition of static behavior between
periods of dynamic operation. Figure 10 is an example of such operation.
Since Gear's method is indifferent as to whether a specific variable is
genuinely dynamic or otherwise, it would be reasonable to conjecture
that one model, with a prescribed differential-algebraic state vector,
would be adequate to simulate both static and dynamic phases of a tra-
jectory. Example trajectories presented earlier (Figures 9 and 10) and
reported by Iyengar elsewhere (32, 54) show that this is indeed true
under certain circumstances,

However, it was noted that whenever the spool position of the

directional control valves reached values such that a15 and/or a25

became very small (typically 2 x 10 = sq. ins.), the simulation step
size would become extremely small (see Figure 13), or an abnormal termi-
nation flag would be returned by the integration subroutine DFASUB.
Results of eigenanalysis of the system, at various points in the tra-
Jjectories, some of which are presented in Table II demonstrated that the
system was not necessarily stiff under the above circumstances. Failure
or inefficiency of the simulation was traced to ill-conditioning of the
PW matrix for the differential-algebraic system (49). The Gear method
uses a Gaussian elimination algorithm for inversion of PW, which fails
when the matrix is ill-conditioned.

It is of interest to examine the PW matrix for the two actuator
open center system. As indicated in Appendix C, the PW matrix is the

Jacobian of the discretized version of the implicit differential
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algebraic system and is given by

mar % "

PW =J - _— = e
Oy  hB_ 9y

where F is the implicit functional representation, h the current step
size, and Gb and Bo coefficients in the algorithm (49),

The sixteen equations which comprise F for the example system, have
been presented earlier as the mathematical models for the actuator sub-
systems and the topological constraints. Figure 14 presents the PW
matrix and indicates thereon the sixteen elements of the differential
algebraic state vector and correspond to the y's in the matrix entries.
It may be noted that PW is a sparse matrix with predominantly diagonal
submatrices, which correspond to the subsystems. Non-zero entries in
off-diagonal matrices indicate the coupling between subsystems. The
lowest diagonal submatrix, which is the contribution of the topological
constraints is seen to be invariant.

Simulation of the example system, starting from different initial
conditions, and using various input trajectories, invariably resulted in
either extremely small step sizes or abnormal termination of simulation,

when a and/or a became zero or very small (typically 0.001 sg. ins.).

15 25

Abnormal termination messages suggested that the PW matrix was ill con-
ditioned. An inspéction of the stiffness ratios for the PW matrix from
runs which stalled, presented in Table II, confirms that the PW matrix
may be ill conditioned even though the local plant matrix of the differ-
ential algebraic system is not extremely stiff. A scrutiny of the
contents of the PW matrix for the example system, pres nted in Figure 14,

a
shows that if the step size, h, is sufficiently small, EéL would become



TABLE II

SUMMARY OF EIGENVALUES FOR EXAMPLE SYSTEM

Run Time Step Eigenvalues of Stiffness Eigenvalues of Stiffness Remarks
No. Size System Ratio PW Mat T**
)‘max Km in %4 ‘Xmax Kmin
___765(2)39 0.151 0.05 -7.73x10°  -29.00| 266.5 |-791.68 0.973 813 Normal simulation
£31.96 x 10° $1.9% 10° 3259
" 0.716 | 76 x 1070 6.96x 10°  -27.00| 257.67 | -18.1X 10°  0.388 | 46.6X 10° a5 = 0.0
' tj1.9% 107

" 0.716 | 76 X 10_6 6.96 X 10° -27.00| 257.67 | -18.1X 103 0.390 | 46.3 X 10° a5 = 100 X 10'6
+j1.9x 10°

" 0.728 | 9.4X 107° 50.66 X 107 -27.29| 1856.4 -18.1x% 10° 0.399 | 45.36 X 10> a;5 = 100X 10'6; Simulation stalled
£3j1.9 X 10°

765(2);5 0.0511 0.05 5.94X 103 -34.96 170 =792 .913 867 Normal simulation

tj1.9 X 1o3 1 3j0.246

" 0.453 0.05 2.8 X ZlO3 -76.2 36.75 =792 1.0 792 Normal simulatio
*31.9 X 10° £j0.05

" 0.5 57%x10°0 | 15.3 % 10° -30.3 503 kb X 100 0.95 4,63 X 10° a5 = 100X 10'6; Simulation stalled
+j1.9 X 10°

*Defined as (‘)\ I / | ).
max real )‘m1n real
**Defined as ( IT ‘ / l)‘minl ).
max rea real
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extremely large, and could be expected to adversely affect the condition
of the matrix. An important conclusion from the qualitative analysis
presented above, is that the efficiency of simulation depends not only
on the differential equations in the system, but the algebraic equations
as well. The use of a Newton-like iteration dictates that the step size
be small enough to permit convergence to the 'correct' solution, within
the prescribed number of steps.

The possibility of Gear's method becoming inefficient, when using a
single mathematical representation, was foreseen in preliminary trials
with DFASUB and, consequently, one of the areas proposed for investiga-
tion was that of model switching. Explicit integration methods normally
permit models to be switched provided the order of the system is not
altered. Since Gear's method is indifferent to the number of differ-
ential variables, i.e., the actual order of the system, it permits
switching between dynamic and static models provided the criteria for
switching are explicitly furnished. In fact, switching can be rela-
tively easily accomplished by repeated calls to DFASUB by the main
program and using a flag to indicate that the last set of values of the
differential algebraic state should be used as the initial values after
a switch.

An investigation of the two actuator open center system reveals,
however, that when a15 or a25 is zero, the model for the relevant sub-
sysfem becomes simpler and the length of the differential algebraic
state vector can be reduced by excluding the bypass flow, Q15 or st
as the case may be. On the conjecture that such a reduction in the

unknown vector length could conceivably overcome the problem of an ill

conditioned PW matrix, the main simulation program was modified to
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perform model switching with reduction in length of the differential

algebraic vector. Originally, the switching criterion was the value of
a15 (Subsystem #3 was kept inactive for the trials), i.e., a small
value of a15 was used to signal the switch to the model in which Q1

was absent. However, it was found that if Q1

5

5 was, in fact, appreciable
at the time of switching, the simulation was unsuccessful due to lack of
convergence of the Newton iteration. When the switching criterion was

changed to a combination of small a

and Q simulation proceeded very

15 15°
satisfactorily, as attested by the Sample run shown in Figure 15.

Appendix D contains extracts from the FORTRAN listing of the main
program to show the relative ease with which model switching can be
performed. It is only necessary to:

(i) furnish suitable switching criteria
(ii) reconstitute the differential algebraic state vector for
the large system if it is different from the old one

(iii) furnish initial conditions for the new differential

algebraic state vector.

A subsequent call to DFASUB recommences trajectory simulation with a
fresh set of integration parameters provided if necessary.

The above functions can be performed by a suitably coded director
program which would effectively function like the supervisor in a
hierarchical system.

This chapter has presented, as an example of model formulation and
simulation of a large mobile hydraulic system, the digital simulation of
a two actuator open-center system. The primary intention of the exercise
was to demonstrate the feasibility and utility of the new approach, which

relies on implicit representation of subsystems as well as the large



76

70001
B864/760315
6000+
l-ea W,
5000- o -
o
@ zZ
O81a0 deooo{ = X
F 9 e :
2 .
o € 3
£oed  E -~ 30004
-
] : ,%0
FOR ALL TIME
E_l 04410 zooo—.e Xa=0
Q
g
5
2 024 1000
od
3
& olo o - T T T T =)
10 Ix 1.2 13 15 1.6
TIME (SECONDS)
(a)
e T
E 70 POWTS . SUBSYSTEM #1
g ,,/IL 861/ 760315
° % \
of 2 ’/._))/ -,
R
H | B
o L
° .
o i ‘ '
8 /
§‘ f —— MODEL ONE
A s =
o 9% i I
S ;!
8 ‘ ] |
~
=0 ; }4~——— MODEL TWO ———-{
®olg g
5¢§ !
L'o ) !
SR i R '
é -: //.M’ﬁ/ Par
gfe . e
“8] £ " | i, e :
® x ‘ : ;
.
o { h ¢
o X !
g { | |
@ H
H .
3 by ! :
af® A |
o ; H
g . ]
o X !
=) S i
g H
Q ¥ ,
g R V-J .
v v r T T - v v v -
100 105 1 :0 115 I'ZO 125 12 1.35 140 145 1.50 1.5% 160
- TIME: {SECONDS)

(b)

Figure 15.

Simulation, With Same Inputs as Shown in

Figure 13, But With Model Switching



74\{",5 'GQOC‘ 1850C

2000

i000C

PRESSURE (PSI!

8?00

———

SUBSYSTEM# 2
861/ 760315

1

125 139 135
TIME (SECONDS)

140 Va5 1’50 155

9.00

700

6
]
S

VELOCITY ‘IN /3EC)
5.00

400

300

1.00

(mm/SEC)

VELOCITIES
861/ 760315

105 10 115 120 125 130 - ».'?5
MTIME_(SECONDS

Figure 15.

140 145 1.50 1.55

(Continued)

77



78

system, and uses Gear's method for trajectory generation. The chapter
also presents results on the qualitative behavior of the example system
arrived at by a process of eigenanalysis of the large system repre-
sented in the implicit differential-algebraic form. Even though such
qualitative analysis cannot be performed without incorporating the
numerical values of system parameters and inputs, the results demon-
strate that the class of systems under investigation can become stiff
and, consequently, unamenable to simulation by explicit integration
routines. The advantage of Gear's method, which relies on implicit
integration, is in this respect obvious. Typical simulation runs have
also been presented to show that hard constraints can be imposed on ele-
ments of the differential-algebraic state vector without necessarily
disrupting the trajectory generation. Since the Gear method relies on a
Newton-like iteration to solve a set of non-linear equations at each
step in time, it is reasonable to expect problems when hard constraints
on variables are imposed.

Perhaps one of the most important findings of this chapter is that
model switching is not only easily done, but can be judiciously used,
for example, to overcome the problem of an ill-conditioned PW matrix.
Since Gear's method does not differentiate between algebraic and differ-
ential variables, it is seen that the new approach permits switching
between dynamic and static models under the control of a suitably coded

director program.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The analysis of large mobile hydraulic systems has been done, until
recently, in a rather perfunctory manner. Fluid power system designers,
on one hand, have rested content with performing 'worst' case analysis
using simplistic models of the man-machine system, primarily for sizing
components and ascertaining energy conversion efficiency. Most systems
analysts have almost completely ignored the 'real-world' aspects of such
systems, firstly due to their preoccupation with dynamic analysis to the
exclusion of static performance, and secondly due to their belief in the
efficacy of the network approach; namely, the decomposition of all
physical systems to their basic elements before developing the system
model. Where models have been developed for multiport components
restrictions have been imposed on the manner of their interconnection
(24, 25).

Much of the software written for the dynamic simulation of lumped
parameter physical systems, relies on the network formulation of the
system equations, whether it is done by the program user or generated by
the computer. One of the main objectives of the research described
herein was to indicate the limitations of the generalized network
approach and, consequently, all the digital simulation software based
thereon. These limitations necessitated the development of a new

approach to the development of a unified scheme for simulating both
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static and dynamic behavior of large systems, synthesized from models of

their subsystems.

The contributions of this research are as follows:

1.

Postulation and proof of the Order Reduction Theorem, which
states that when two subsystems, each expressed in the explicit
state differential-algebraic form, are interconnected to form a
large system, so that outputs are linearly related, the order
of the large system is less than the sum of the orders of the
subsystems.

Establishment of new canonical forms for representing sub-
systems and large system, which not only allow complete freedom
in demarcating subsystem boundaries (and therefore arbitrary
interconnection of subsystem models), but also explicitly
depict the large system topology.

Discovery that order reduction in large hydraulic systems,
brought about by interconnection of subsystem models, is
nontrivial.

Formulation of a simulation algorithm for time-domain analysis
of large mobile hydraulic systems.

Demonstration that large mobile hydraulic systems can display
stiff behavior.

Discovery that the numerical integration method advanced by
Gear for differential-algebraic equations is applicable even
for systems having hard constraints on variables.,

Development of an algorithm for eigenanalysis of systems
described in the new canonical form, and demonstration of its

utility for:
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(i) qualitative appraisal of dynamic behavior,

(ii) establishment of stiffness of system.
Recognition, for the first time, that the step-size in
implicit integration is dependent not only upon the dynamics
of the system, but also the nature of the algebraic equations
in the model.
Establishment that simulation of large systems by implicit
integration can be substantially accelerated by appropriate

switching between models of different orders.

Recommendations for Further Investigations

There are two broad areas where further investigations can be

expected to yield valuable payoffs:

1.

Mathematical Analysis: Exploration of the implicit
differential-algebraic representation, in contrast to the
explicit vector form which has formed the basis of most time-
domain control theory can result in algorithms ﬁseful for
optimal control and parameter identification. The concept
of a differential-algebraic vector, which could possibly
involve constraints on the differential algebraic state of
the system would lead to more general theorems than those
which presume the existence of an explicit state vector of
known dimension. The concept of state constraints could

be extended to the more general case of implicit inequality
constraints.

Computer Software Development: This could focus attention

on exploiting sparse matrix techniques for handling the
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Jacobian of the differential algebraic system, as also the
development of programs for optimal ordering of the set of
equations describing the large system. In particular,
characteristic features of parts of the matrix, e.g., that
due to linearity and invariance of the topological constraint
equations could be exploited to result in more efficient

simulation.
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APPENDIX A
ORDER REDUCTION THEOREM

If two physical subsystems comprising a large system and repre-
sented by continuous and differentiable differential-algebraic equations
are so connected that a scalar state-dependent output of one is linearly
related to a scalar state-dependent output of the other, the order of

the large system ié less than the sum of the orders of the subsystems.

Proof:
Let the two subsystems be expressed in the following canonical

form:

. X, = fi(xl’ uy, t) (A-1.1)
¥y, = gl(xl, uy, t) (A-1.2)
X = A— .1
X, f2(x2, Ugs t) (A-2.1)
II
Y, = gz(xz, Uy, t) (A-2.2)

Since all functions are continuous and differentiable, they can be
expanded in a Taylor's series about an operative point x1(0), u1(0)

to obtain linearized models as follows:

. 1 2
A%, = fle1|x1(O),u1(O) * flAu1|x1(O),u1(O) (A-3.1)
I N
1 2
by, = gle1|x1(O),u1(O) + 91A“z|x1(o),u1(o) (A-3.2)
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1 2
% = £ 4 f
ey = £,8x, 1, (0),u_(0) * 26“2|x (0),u,(0) (A-k,1)
2 2 2 2
II
1 2
=g A A
by, = 9 lex (0),u, (0) T 92 uy Ly (0),u,(0) (A-L.2)
2 2 2 -]
Let the two subsystems be connected so that the i'th element of
Ayl is equal to the j'th element of Ayz, and the k'th element of Au1

is equal to the 1'th element of Auz. The case when the topological
constraints involve a linear combination of these variables is a trivial
extension.

Equating the two outputs gives

La

2
* gliAu1|x1(O),u1(O) = 955 x2lx2(o),u2(o)

1
g11AX1‘x1(o),u1(0)
2
* g2jAu2|x2(o),u2(o)

which implies that Ax1 is not linearly independent of sz. Conse-

quently (AXI: sz) is not the state vector of the linearized large

system. Therefore (x, + &x E X

1 4 + sz) cannot be the state vector for

2

the nonlinear differential algebraic system.
It may be noted that by equating the two inputs and eliminating

by

1i and Ayzj it is possible to establish the exact order and the exact

state vector for the large system. Such a proof by construction would

be usable, however, only for linear systems (38).



APPENDIX B

EIGENANALYSIS OF IMPLICIT DIFFERENTIAL

ALGEBRAIC SYSTEMS OF EQUATIONS

The eigenvalues of the explicit differential algebraic system

represented by

b e
|

= £(X,U,t) (B-1.1)

Y = £(X,U,t) (B-1.2)

can be easily obtained by taking the first term in the Taylor's series
expansion of f. It may be noted that Equation (B-1.2) is not needed for
the eigenanalysis.

When a system is represented by a set of implicit differential
algebraic equations, however, the coupling between the differential and
algebraic equations makes eigenanalysis a little more involved.

Let the system be written in the following canonical form:

0 = £(X,X,Y,U) (B-2.1)
0 = g(X,Y,U) (B-2.2)
0 = h(Y,u,V) (B~2.3)

It is shown in Chapter IV that this is the form for a large scale
system, when the individual subsystem models are incorporated in f and
g, and all the interconnection information is contained in h.

Since Equations (B-2.1), (B-2.2), and (B-2.3) are implicit, some

algebraic manipulation is needed in order to establish the Jacobian of
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of the system. (The eigenvalues of the Jacobian are the eigenvalues of

the system.) The Jacobian can be established by using the implicit

function theorem (5%4).

Taking the differential of Equation (B-2.1) gives:

df ,:  Of df of
O=-§AX BXAX+-§Y-3Y+_3-ITAU
or
AX = (af) AX + Bf AY + ——-AUJ
Similarly from Equations (B-2.2) and (B-2.3) we get
2 9. .8
Y Ay + 5 AU = - X AX
and
dh dh ‘
3? AY + sﬁ AU = 0
From Equations (B-3.2) and (B-3.3) we get
S S ﬂﬁ._ﬂﬁ. ]
AR ] (‘ au) by = - 5 &
or
-1
__ (%) (2
&Y = (BY (ax) X
where
) =
_a_g_ ;_ag_ _Bg_Bh oh
<a)A % (au><au> (ay>}
Consequently

-1 ~ -1
w- (3 @) )
Using these values for AY and AU in Equation (B-2.1) gives
-1

— -1 ~ =1
s-- &) F-&F-®F GG Gle

where the additional terms are irrelevant for eigenanalysis.

(B-3.1)

(B-3.2)

(B-B-B)

(B-4)

(B-5)

(B-6)



The coefficient of AX may be considered to be %£

X and is nothing

but the desired Jacobian.
Once the numerical values of all the matrices in Equations (B-5)
and (B-6) are established, it is fairly easy to evaluate and perform

eigenanalysis on the system.
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APPENDIX C

IMPLICIT INTEGRATION OF DIFFERENTIAL~

ALGEBRAIC SYSTEMS

Comprehensive discussions of implicit integration have been given
by Gear (40, 41), Blostein (42), Branin et al. (48), and others. What
follows is a brief review of the Gear method as applied to differential
algebraic systems expressed in the implicit form. The main intention
is to supplement the discussion of its application to large mobile
hydraulic systems, as detailed in Chapters IV and V. The terminology
used by Brown and Gear (49) will be retained except as otherwise noted.

The differential algebraic equations used to describe the systems

under consideration are considered to be written in the form
f(y,y,t)=0 (c-1)

where y will be referred to as the differential algebraic state vector.
The actual order of the dynamic system under consideration, and the
establishment of the state vector are unnecessary in the implementation
of Gear's method, and will only enter in the initial remarks on
explicit integration.

The time domain simulation of systems represented in the form of
Equation (C-1) can generally be posed as an initial value problem; i.e.,
considering a scalar variable y, given that y(to) =y, and Equation (C-1),

establish y(t) for to S ¢ < e
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Explicit numerical integration routines attempt to establish the

value of y at a given time tn, i.e., Y, in terms of previous values

of y, i.e., Yoo1t Yoo erer Yy q @nd &n—1’ ceey §n—k-1' Symbolically,
" ; y )
In = £ Yn-17 Ip-2r ***7 Ynk-1* Yn_17 o0 Ypka (c-2)

where f* may be a composite function, and derivatives are obtained by
using Equation (C—1). Consequently, Y, is explicitly determined by the
previous values of y and its derivatives. Explicit numerical integra-
tion requires that y be the state of the dynamic system, and if the
eigenvalues of the Jacobian of f are far apart, say more than two orders
of magnitude, simulation can become very inefficient or fail (43),

The basic idea of implicit integration is to evaluate yn and Y,

simultaneously, using the differential algebraic equation and a suitable
multistep formula for predicting both of them from previous values in

time. The most commonly used multistep formula is:

). )
In =~ .Za 8i¥h-1 ~ h . biyn—i (€-3)
1:1 1=0

where a, bi are appropriate coefficients, k is the order and h the
current step size.
In Gear's method, bi = 0 except for i=0, and the above equation is

rewritten for the vector case as

1
= - = (a C-L
M B, (@¥n + ®Yn_g * W )

It may be noted that Y, which appears on the right hand side in

Equation (C-4), has not yet been computed. Equations (C-1) and (C-4)

are now combined to give



A cb
Fn(Zp) —-f(Zp ! _EEE Zb * E; ! tn) =0 (D-5)

where

is known.

Gear's method uses the k'th order predictor

Z,rl,(o) = hB, Ypoq * O Yq t e akyn—k (C-6)

to solve Equation (D-5) with a Newton-like iteration written as

-1
Va,tme1)  Ya,m) "7 FaOh, ()] (c=7)

;F

where Jé_js? and m is the iteration number.
In order to simplify the computer algorithms for error analysis and
. . . Zn .
variation of order, Gear uses the Nordseick vector at which for a

scalar variable Yo is defined as
1 T
E_l:l__é_[yn, hy:l ), hzyr(];& cee hkyflk)/kl] (C-8)

where yik) is the k'th derivative of y at the n'th time step. It is
shown by Gear that the Nordseick vector is uniquely determined by the
gquantities Y, in’ Yoot o0 Yot

In the computer implementation of Gear's algorithm for differential
algebraic systems (49), a double dimensioned array Y(J,I) holds the values
of the differential algebraic state vector and its derivatives, exactly
as shown in Equation (C-8). The subroutine DIFFUN contains the model

for the system in the implicit form, and utilizes an array DY(I) to

retain the correction to the values in Y(J,I) before the Newton
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iteration. The Jacobian, J, which is stored in a double dimensioned

array PW, may be explicitly written as follows:

r a .
go1E__0 Ej (c-9)
uﬁx h 5 a&

The Jacobian inversion is carried out by two subroutines DECOMP and

SOLVE.

These have been modified such that if any pivoting problems are

faced and inversion is unsuccessful, an error message is returned and

simulation stopped.

The advantages of Gear's method over conventional methods for

differential algebraic systems are:

1.

The form of the equations is more general, and no distinction
need be made between differential and algebraic variables.
Large scale system models can be written in DIFFUN (or be c
called by it) to explicitly exhibit subsystem models as well
as topological constraints.

Algebraic constraints on state variables pose no special
problems.

Stiff systems are handled efficiently, with no need for user
interruption.

Step size and order of integration are changed automatically,
as warranted by system dynamics and error criteria.

An estimate of the error is available at all times.
Derivatives of the differential and algebraic variables, up to
the order of the current integration step, are available at
all times.

If necessary, interpolation can be done to obtain variables

within a step, by using a Taylor series expansion, the terms
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of which have already been established during integration.
Developments in sparse matrix handling procedures can be
exploited, to simulate large systems very efficiently.

Has the potential for model switching.



APPENDIX D
SELECTED COMPUTER PROGRAM LISTINGS

This appendix contains excerpts from the main program and key
subprograms used to simulate the two actuator open center system. Since
all of these modules were written primarily to verify the algorithms
conceived for aﬂalyzing large mobile hydraulic systems, by using implicit
representation and Gear's integration technique, they are only cursorily
documented. A user-oriented package could be evolved from these
programs by systematizing the input/output and interchange of information
between the different modules. What follows is a brief explanation of
the excerpts, which should be read along with the documentation for

DFASUB (49) for a better appreciation of the program logic.

MAIN

The accompanying excerpt from the main program presents the signif-
icant variables. The comment statements are, for the most part, self-
explanatory. YL is a vector of linear differential algebraic variables,
which can be evaluated by DFASUB without resorting to the Newton
iteration. This feature is not utilized in the present version of the
program. The static numerical model for the two directional control
valves is stored in a multi-dimensional array DORF, while the input time-
histories (i.e., spool displacements and external loads) are stored in a

common storage labeled INPTS.
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FORTKAN

Lo~NC s wNnr-

Iv 6 LEvEL 21 MAIN VATE = 76221 21/36/718

IMPLICET REAL*S (A=H,0~¢)
DIMENSION Y{7,20),YLU2) ySAVE(7,20)4YLSV(2), P (350)
1. G{16421,T(20),0Y(20),ERSV(20)sERROR(23)4F1{20) sEuN(20),
2 VAR(2C) YFAX(201,PTITLE(20)
DIMENSION 2(10)
COMMCN/ JACUB/ PPH (350)
CUOMMON/PARM/COEFF sDPT yuS 4 CSLoCAL 4 CBLoCS29CAZ,CB24X 11,212
CUAMON/CYLOT/AA L AGL,AA2,A82,81 452
CCMMCR/ INPT S/EXTLL(2,50)¢5POISP (24501, TINTP (50} JNINTP
CUMMUN/VLVS /DORF (25542 420) sNVLDT
COMMON/ INITVL/YY (142004 ¥YL(2)
CCMMCN/CRDR/NMAX s N, IPERM (20)
COMMON/CPRINT /MPRNT s MPUN
COMMON/ DWRT /KKK K
EQUIVALENCE (Pwilds PPW(L) )
DATA Yy YLsSAVE,YLSVGUY,T,F1/370%0.00+07
(A3 ge 3 o e e e % 3ok ok F R 0 3 o ok ok e koo ok o sk Bk o e e oo ook e ok ke sl SR K R e ok SR X ok % g ak ok koo ok o vk ok ko K

o

C G ARRAY OF GLGBAL VARIASLES, USEU 3Y UFASULB

c H STEP SIZE, UStU BY DFASUB

[+ N NUMBER GF EHULATICAS IN OIFFUN

[ T ARRAY OF TIME-UEPENDENT VARIABLES (T(l1)=TIME),FCR DFASUB
c Y ARRAY GF GUTFUT VARIASBLES, PRINTEL 8Y DFASUY
[ cSs1 UPSTREAM CAPACITANCE, FOR SUBSYSTEM #1

C Ccs2’ UPSTRLAM CaPACITANCE, FOK SUBSYSTEM #2-.

[+ CAl PORT A CAPACITANCE, FOR SUBSYSTEM &l

C ca2 PURT A CAPACITANCE, FIR SUBSYSTEM #2

C LBl PORT » CAPALITANCE, FUK SUBSYSTEM #1

< 82 PURT & CAPACITANCE, FUR SUBSYSTEM #2

o VY ARRAY GF ERRGRSsy EVALUATED IN UIFFUN, FOK DFASUB
C Fl DUMMY ARRAY FUR LY, USED 3Y UFASUb

[ R1 AREA OF PISTCN KGCy CYLINDER IN SUSSYSTEM #1
C Re AREA OF PISTCN RCDy CYLINDER IN SUBSYSTEM #2
[% YL ARRAY UF LINEAR VARIA3LES, USED ‘IN UFASUB

[+ AAL AREA OF HEAU ENDy CYLINDER IN SUBSYSTEM #1

o AA2 AREA OF HEAU ENDy CYLINUER IN SUBSYSTEM #2

C ABl AREA OF ROC ENLCs CYLINDER IN SUBSYSTEM #1

C AB2 AREA UF ROD ENDy CYLINOER IN SUBSYSTEM #2.

C oPT TANK PORT PRESSURE

C EPS ERRCR CRITERIGN ARRAY, USEDC IN CFaSudb

C EJN ARRAY USED BY DFASJUB

[+ VAK ARRAY USED BY CFASUB

[ UORF METERING ORIFICE CATA FCR GPEN CENTER VALVES
[« ERSV ARRAY USED BY DFASUB ‘
C HMAX MAXe ALLCWEC STEP SILZEs USED BY DFASUS

c HMIN MINs ALLCWED STEP SIZE, USED gY DFASUB

[+ NUMT NUM3ER OF INPUT TIME FUNCTIONS

o RCOL ROC CIAMETER, CYL INDER FOR SUBSYSTEM #1

o RUD2 KOD DIAMETER, CYLINDER FGR SUBSYSTEM #¢

C SAVE ARRAY USEC BY DFASUB

C TEND | FINAL TIME, USED BY DFASUB

C YLSV ARRAY USED BY DFASUB

[+ YMAX ARRAY USED 8Y DFASUB

[% CUEFF ORIFICE FLOw CCNVERSION FACTOR
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FCRTRAN IV o LzVEL 21 MAIN JATE = 76221 z1/36/18

55 ¢ cYLul DIAMETER GF CYLINLER, SUBSYSTEM #1

Yo C cYLD2 UIAMETER OF CYLINUEK, SUBSYSTEM #2

51 C ERROR ARRAY USED BY DFASUS

vs L EXTLU ARRAY CONTAINING EXTERNAL LGADS, AS TIME FUNCTINNS
59 C KFLAG FLAG INDICATING CCMPLETICN CCDEs OUTPUT OF DFASUB

60 C NINTP NUMEER GF INTERPOLATION PJINTS IN INPUT TRAJECTCRIES
ol C WVLDT NUMBER UF DATA POINTS FOR EACH METERING ORIFICE OF VALVES
62 C TINTE ARRAY CONTAINING TIME CORRESPGNDING TO INPUT PGINIS
03 ¢ JSTART  FLAGs USEL BY UFASUB

04 MPKNT PRINT-OULT INTERVAL

05 C MPUN CARU PUNCH INTERVAL

66 C KKKK 1S THE FLAG FCK STCKAGE ON LASD

ol C

68 C

29 € [PERM IS VECTOUK CONTAINING SUBSCKIPTS FOR  THE Y AND DY VECTORS
. OF UIFFUN. WHEN MCUEL IS CHANGEU, I[PERM WILL HAVE TO Bt REDEFINED
11 C

72 ¢ .

T3 o dohggon oo o de dote ool 36 oo e v e e T SRl A 3k O NN e AR A Qo Rk ok o o o ok ok )
74 ¢ INITIALIZE IPEKM :

75 CT 3000 [=1,20

16 37C0 IPLRM(I)= I '

77 KKkk= 250

76 KKKK=1

19 MPRNT=10

40 MPRNT=5

3l MPRNT=2

02 MPRNT=1

o3 READ(Sy 1) PTITLE

se 1 FOKMAT(20A4 )

0% ARITELG42) PTITLE

so 2 FORMATCLHL. /7777 45X02CA4s/ 11 1)

o7 REAC{S+9) NVLOT

s8 C NVLDT NUMBER CF DATA PUINTS FOR EACH METERING CRIFICE
) L0 3 E=1,2

90 DC 3 J=1,5

31 C INDEX | REFERS TO VALVE

92 ¢ INOEX J KREFERS T METERING OKIFICE

93 KEAD(5+10) (DORFUI ¢Jelsl) sUORFUL4Js2eLl)y L=1,NVLDT)

94 3 CUNT INUE

95 L0 4 I=1.2

56 DO 4 J=1.5

47 4 WRITE(0+999) (DURF(TsJelel)y DORFULsde2eL)y L=L4NVLLUT)

98 99y  FORMAT(//.' METERING ORIFICE DATA',// +(1PcELl3.3))

99 € CYLDL OLAMETER CF CYLINDER #1

100 ¢ cYLD2 ODIAMETER oF CYLINDER #2
191 C KOD1 ROD CIAMETER FOR CYL INDER #1

102 ¢ RGu2 RJD CIAMETER FGR CYL INDER #2

103 READ(5010) CYLDL, ROD1, CYLDZ, RUD2

104 AALl= 3.14159%CYLDL*%2/4.0

105 Rl= 3.14159%ROD1%*%2/4.0

106 ABl= AAl- R1 .
107 AA2= 3.14159%CYLD2%%2/440

108 R2= 3.14159%ROD2*%2/4.0
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FCRTKAN IV G LEVeL 21 MAIN DATE = 76221 21/30/18
211 T(l)= 1.0
212 MUDEL=1
273 MAXDER=5
2174 Ml= MMM
215 CALL DFASUB(DY EPSsEWLNERRCRyERSV,
2706 + FleGoHoHMAX HAIN,
211 + JSTART yKFLAGy My MAXDER ML yiNy
218 + NLsPWoeSAVE s ToNLMT o TEND e VAK Y h YL,
219 + YLSVeYMAX,ZoMODEL)
280 IFIMCDEL.EGe3) GC . TO 310
201l GO TC 9900
242 300 COUNT INUE
28> C
284  ( STATIC MUvel FUR SYSTEM WHEN Al5=0.0
28y C
23¢€ STORE= Y(1l,3)
281 Yile3)= Y(l,4)
2338 YI2430= Y(2,44])
289 Y{le4)= Y(1l,5)
29U ’ Y(2+¢4)= Y(2+5)
291 YUlle5)= Y101}
2492 Y(2e5)= Y(240)
293 Y{lvo)d= ¥Y(1,7)
294 Y(2061= Y(2,7)
299 Y(1l,7)= STURE
296 JSTART=0
241 N=6
298 M=N
239 NL=0
390 Ml= N
301 IPERNM(Z)= T
392 IPEKML4)= 3
303 IPERM(5)=4
304 IPERM{0) =5
3un IPERM(T)= o
300 HINV= 1.0/ H
3n? LALL UIFFUNI(T +GoOYoY YLoRINV,MOUEL)
398 EPS=0.02
309 CALL DFASUB(LUYoEPSyEQNsERRIRYERSYy
310 1 FLlaGoHoHNAX HMIN,
311 2 JSTART W KFLAG oM yMAXUER o MLeiNy
312 3 NLsPWoSAVET o NUMT s TENC VAR Y
313 4 YL YLSV,YMAX Z yMCOEL)
314 9900 CONTINUE
315 wRITE(6+,998) KFLAG
316 Y9¢ FURMAT(LHL e /777" #¥%kxx KFLAG=',y 15)
317 IF(KFLAGSEQW=1) wWRITE(6,9001)
3lo 9901 FURMAT(//+10X+*THE ERRCR TEST FAILED FOUR FoGToHMINT')
319 [IFIKFLAG.EJ+=2) WRITE(0,90u2)
320 9002 FCRMAT(//+10X,'TOC MANY FLCATING-PCINT EXCEPTIONS CCCUFRRED LURING
321 +THE LAST STEP')
322 IF(KFLAG«EWJe—3) wWRITE(0,90C3)
323 9203 FCRMAT(//4+10Xxe'THE CORRECTGR FAILED TO CCNVEROE FOR HeGTaHMIN')
324 IFIKFLAGeEwde=4) WRITE(5,490024) . .
325 9004 FCRMAT(//+10X4'THE CCRRECTCR FAILEU ThKREE TIMES wWITH EVEN ThE FIRS
326 +T URDER METHOD!) '
3c7 ARITE(649599)

328 9999 FORMATA///77777)
329 Cl23450789012345678901234567390123450789012345678301234567890123456789012
330 sToP .

Mm—-—
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Line 272 indicates that the first model, (stored in MODL1) is
to be utilized for the first call to DFASUB, in line 275. If DFASUB
indicates that model switching is required, the flag MODEL will be set
to the appropriate number before control is returned to the main
program. If model switching is to be done, it is necessary to rearrange
the differential algebraic state vector, so that only pertinent vari-
ables are included in the next call to DFASUB, This rearrangement is
done in lines 286 through 295. Equation in line 297 indicates that the
length of the diffeeential algebraic state vector is now six and not
sixteen as was used in the first call. Line 309 calls DFASUB after the
model switching, and the flag JSTART has to be set to zero so that
DFASUB recognizes that a fresh start is to be made. Lines 315 through
325 present the error messages returned by DFASUB for abnormal termi-

nation of the simulation.

DFASUB

This subroutine is substantially the same as that presented by
Brown and Gear (49). The changes made in order to tailor it for large
scale systems is the extension of the argument list to include the
explicit algebraic output variable vector Z and the model flag MODEL.
The former is evaluated in ALGVAR, while subroutine PRINT returns a
value in MFLAG, which is compared with the number furnished by the main.
program in MODEL. If MFLAG is different from MODEL, it indicates that
model switching is necessary, and the value of MFLAG is returned to the

main program via MODEL.
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C*
C*
C*
cCH*
C*
Cx*x
Cx®
C*
C*
C*
Cx*
Cx*
Cx*x
C*
C*
C*
Cx
C*
C*
C*
Cx
Cx%x
Cx*
C*
C*
C*
Cx*
Cx*
C*
C*
C*
C*
C*
C(*x
Cx*
C*
C*
Cx*
Cx*
C*
C*
Cx
C*
[
C*
Cx*
C*
C*

SUBRCUTINE CFASUB (LY EPS,EQNy ERRGRy ERSVy
FLeGoHoHMAX HMIN,

JSTART +KFLAG+MyMAXDERIM LNy

+ NLoPWoSAVEWToNUMT yTEND WVAR,Y,
YLoYLOVyYMAX o2 yMODEL)

+
+

+

THE PARAMETERS TO THE SULBRCGUTINE DIFSL3 AAVE
THe FOLLOWING MEANINGS:

(

N

NL
NY =
Ml
TENU
T

i
G
\]

’

HMAX
EPS

SAVE

HH L

THE NUMBER OF VARIAGLES.
THE NUMEER GF LINEAR VARIABLES
N-fWL IS THE NUMBER OF VARIABLES wITd DERIVATIVES)
THE NUMGER UF eQUATIONS TO TAKE PART IN THE ERROK TEST.
END CRITERICA
THE INUEPENUENT VARIASLE.
ALGEBRAIC VECTOR CALCULATED bY SJBROUTINE ALGVAR
AN ARKAY CF GLUBAL VARLABLES
A 7 8Y NY ARRAY CONTAINING THE DEPENOENT VARIABLES
AND THEIR SCALEU UERIVATIVES. Y{J#l,1) CUNTAINS
THE J-TH CERIVATIVE OF Y(I) SCALEC 8Y
H#%J/FACTORIAL(J)y H THE CURRENT STEP SlZt.
GN ThHE FIRST ENTRY, ThE CALLER SUPPLIES -
YU{Llsl) AND Y(241)s UNSCALED. (IF THE CALL TU
UIFSUL WAS PRECEDEL oU A CALL TO DIFMF3, THE
USER NEED NCT TOUCH Y AT ALL). THE PKOGRAM
wILL SCALE Y(2,1) 8Y H. UN ANY SUBSEQUENT
ENTRY, THE PROGRAM ASSUMES THAT THE Y VALUES
HAVE NGT BEEN CHANGED SINCE THE LAST EXIT
FRIM DIFSUsy AND wILL SCALE THESE VALUES IF
THE CALLER HAS CHANGED H.
IF IT IS UVESIRED TO INTERPULATE TC NON-MESH
POINTS THESE VALUES CAN BE USED. IF THE CURRENT
STEP SILE IS H ANO THt VALUE AT T+E IS NEEDED,
FORM § = E/H AND THE CUMPUTE
NQ
YOI)(T+E) = SUM Y(J+1l, [)%S5%y
J=0
CALLER MUST. SUPPLY VALUES FOR THESE VARIABLES.
AN ARRAY GF LENGTH AT LEAST 7%*N.
THE STEP SIZE TO BE ATTEMPTED GN THE NEXT STEP.
H MAY Bt ADJUSTEUL UP DR DOWN BY THE USER DOES
IN CRDER TQO ACHEIVE AN ECONCMICAL INTEGRATION.
HOWEVER, IF THE h PRUVIDED BY THE USER DCES
NOT CAUSE A LARGER ERROR THAN REQUESTED, THAN
wiLL BE USEU. TU SAVE COMPUTER TIME, THE USER IS
AUVISED TO USE A FAIRLY SMALL STEP FOR THE FIRST
CALL. IT WILL GE AUTOMATICALLY INCREASED LATER.
THE MINIMUM STEP STZE THAT wILL BE USED FUR THE
INTEGRATION. NUTE THAT UN STARTING THIS MUST BE
MUCH SMALLER THAN THE AVERAGE H EXPECTED SINCE
A FIKST URDER METHUD IS USED INITIALLY.
THE MAXIMUM ALLOWABLE STEP SIZE ,
THE ERROR TEST CCNSTANT. SIGLE STEP ERRJIR ESTIMATES
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DFASICLO
DFAS1020
VFAS1030

DFAS1C/O
UFAS1080
DFAS1090
DFAS1100

. DFASL110

DFAS11290
OFASL130
UFAS1140
VFAS1150
VFASL160
OFAS1170

JUFASL180
DFAS1190
DFAS1200
UFAS1Z10
DFASL1220
DFAS1230
DFAS1240
DFAS1250
DFAS1460
VFAS1270
DFAS12z80
DFASL1290
OFAS1300
DFASL310
DFAS1330
DFAS1340
ULFAS1350
DFAS1360
DFAS1370
DFASL1380
DFAS1390
DFAS1410
DFAS 1420
DFAS1430
DFAS1440
DFAS1450
DFAS1460
DFAS1470
VFAS 1440
DFAS1490
VFAS1500
DFASL1510
UFAS1520
DFAS1530
UFAS1540
UFAS1550
UFAS1500



C*
Cx
Cx
Cx
C*
C*
C*
C*
C*x
C*
C*
Cx*
C*
Cx*
C*
C*
C*
C=*
C*
C*
C*
C*
C*
C*
C*
Cx
C*
Cx
C*
C*
C*

C vLSV

c*
Cx
[
Cc*
C

C

Cx
cx*
C*
C*
Cx
C»
C*
Cx*

YMa x

ERRUR
KFLAL

JSTART

MAXDER

Pu

CIVICED BY YMAX(I) MUST Bt LESS THAN TFRIS

IN THT BEUCLIUEAN NORM. THE STEP AND/UR URDER IS

ALJUSTED TC AChcElVE THIS.

A VECTOR JF LENSTH NY WHICH CONTAINS THE MAXIMUM

OF EACH Y SEEN 50 FAR. UN THE FIRST CALL, THESE

WwILL Bt INITIALIZED A3 YMAX(K) = MAX(L,lY(l,1)1)

A VECTOR GOF LENGTH RY.

A CUMPLETIGN CGUL wITH THe FCLLUOWING MEANINGS:
+1  TrHE INTEGRATION WAS SUCCESSFUL.

=1 THE cRRUR TEST FAILED FCR F > HMIN.
=3 THE CURRECTOR FAILED TO CCNVERGE FOR

h > HMIN.

=2 TuG MaNY FLOATING=POINT EXCEPTIINS

OCCURREU DURING LAST STEP.

=4 THE CURRECTUR FAILEC THREE TIMES wliTH

EVEN THE FIRST-CRuUck METHCD.

AN INPUT INCICATJIR WITH THE FOLLOWING MEANINGS:
U  PERFCRM THE FIRST STePe ThE RUUTINE
INITIALLIieS ITSELFs SCALES ThE UERIV-
ATIVES IN Y(2,1) AND THEN PERFURMS

THE INTEGRATION UNTIL T > TEND.

ANY SUbSEQUENT CALLS SHOULDL bk Maot

wlTH JSTART = 1.

L CONTIWUE FRUM THE LAST STEP, INTEGRATING

UNTIL T > TEND.
JSTART IS SET TU NQy The CURRENT URLER OF
THE METHOD, AT EXIT.

THE MAXIMUM DERIVATIVE THAT SHOULD SE JStw IN THE

MeTHGDS IT MUST NIOT EXCEED 6.

A VELTOR OF LENGTH N*%2+420 (ki AL*4),

GENERATED 3Y MATSET ANU USEV B8Y MATINV,MATMUL .

EwNe VAR

A VECTOR JF LENGTH Ni.
A VECTUR OF LENGTH M, UUTPUT UF OIrFUN.
A VECTCR OF LENGTH NY.
A VvECTJIR UF LENGTH Ny JuTPuT uUF MATMUL.

VECTUORS USED 5Y MATSET.

MOUEL IS THE U

MOueL

MFLAG

INPUT FROM CALLING PRUGRAM WHICH INDICATES THE
SYSTEM MUDEL TU BE USED

FLAG FRCM VARIOUS SUSBRGUTINES TG INDICATE whHEN MUDELS

NEED TC BE Sw#ITCHED

WHEN MUJDEL.NELMFLAG CbNTﬁuL IS RETURNEL TO CALLING

PRUGRAM WITh VALUE OF MFLAG IN MOOEL

DFASL570
DFAS 1530
VDFAS1590
UFAS1leu0
UFAS1610
DFAS1620
DFASL630
UFAS1040
DFAS1650
DFAS1660
DFASL6TO
OFASl6bU
UFAS1690
VFAS1700
DFAS1710
DFAS1720
DFAS1730
DFASL1 740
DFASL1I750
UFAS1760
VFASLTT70
UFAS1760
DFASLT90
DFAS1000
DFAS1810
DFAS1B20
DFAS1830
DFAS13d49
LFASL850
DFASL1860
UFAS1670
VFAS1080
DFAS1890
LDFAS1900
VFAS1910
UFAS1920

DFAS1930

%%t e 3 ook ek g ok e o g o e e o ok e e e ok gl o e Beoje o e e 33 Rk 0ok 3Rl e e 3 ol 3 e % o o e X R o e ek e X kA X R R
IMPLICIT REAL*6 (A—=h,G=2)

REAL*4 AMAXL

DIMENSION £4(10)

DIMENSICN TU(L)oGUL) oY (7T 9Ll)oYLUL)sSAVE(T, 1)y YMAX(1)
DIMENSIUN ERRGR(L)PW{L)sYLSVIL) DY (L) ERSV{L)
UIMENSIUON FLU1) EQNCL)eVAR(LIVALT)yPERTST(6,3)
DATA PERTST /44049¢0910¢0925.0136e09492099¢091040y

DFAS1060

DFASL070
DFAS1080
DFAS1090
DFASL1100
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DIFFUN

In the original version of DFASUB (49) this subroutine contained
the model for the differential algebraic system. In the present version
of the program, this subroutine functions as a director program, merely
calling MODL1 and MODL2- subprograms which store the alternative models.
This subroutine is called by DFASUB and depending on the value of MODEL

calls the appropriate model subprogram.
MODL1

This subroutine contains the model for the two actuator open center
system, in the form required by DFASUB, when a15 is non-zero. The model
corresponds to the equations presented in Chapter V. It is seen that
the models for the two actuator subsystems and the topological con-

straints are explicitly presented so as to reflect the large scale

structure of the system.
MODL2

This subroutine contains the model for the situation in which both

a15 and Q15

vector Y is only six, as compared to sixteen in MODL1, This is because

are nearly zero. The length of the differential algebraic

the closure of a and the absence of any inputs to actuator number two

15

degenerates the large system to a single actuator system, and conse-

quently no topological constraints need be explicitly shown.



FORTRAN 1V

0001
cog2
0003
0004
€005
0006
0007
coos
0009
coic
0011
0012
co13

G

LEVEL

100

209

21 DIFFUN DATE = Te221

SUBRGUTENE DIFFUN(TyGyDYsYsYLoHINVyMIDEL)
IMPLICIT REAL*b(A-Hs(C-L)

DIMENSION GULy L) oDY(16) 9 Y(Tylo) +YLIZ) 4 TI2)42(10)
COMMON/PARM/ COEFFsDPTQS+LS14CALyLBLyCS2,CA24CB2yXILWXI2
COMMCN/CYLUT/AAL yABL +AA2 yAB2 431982
COMMUN/INITVL/ZYY(7,2C)¥YL(2)
COMMON/ORUR/NMAX ¢y Ny [IPERM( 20)

GO TO {1004200+2004270) o+ MCDEL

CALL MODLLIL{T ,GsDY Yo YL HINV)

RETURN

CALL MODL2{ToGsDYeYsYLHINV)

RETURN

END
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FCRTRAN IV & LEVEL

0025
C026
coz7
0028
cc2s
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
co4cC
C041
0042
0043
0044
0045
C046
0047
0048
0049
0050
0051
0052

0053
0054
0055
6056
0057
0058
0059
0066
0061
0062
0063
0064
0065
0066
co67
0068
0069

- c070
0071
0072
0073
0074

c075
0076
Co77
co78
0079
0080

19
11

20
21

30
31

40
41

50
51

21 . MGOLL

ABDPSA= DABS( DPSAL)

SICGN11= JPSALl/ABLPSA

W1ll= COEFH*T(6)*USQRT{ABDPSA)*SIGNL1
GO TG 11

all= 0.0

CONTINUE

DPST1l= Y{iel) = Y(l,s16)
IF(OPS5T1.EC.D.0) GC TG 29

ABOPS1= DABS(DPSTL1)

SIGNLlb= DPST1/A8uUPS1

Wi5= COEFF®T(5)*¥DSQIT{ABDPSL1 %S IGNLY
G0 TO 21

Cl5= 0.9

CONTINUE

DY(2)= =011 + Y{(1,2)

DY(3)= ~-Q15 + Y(1.,3)

VATE

DY(4)= =Y{244)*HINV +(Y(1,2)-Y(1,5)*AALl)/CAL
DY (5)= -Y{2¢5)*¥HINVHIY(1,4)%AN1-Y{Ls6)}*ABL-T{3)~81%Y{1,5))/XI1]
DY(6)= =YL2,6)=HINV+ (=Y (L T)etY{1l:s5)%aB1)/CB1

DPBT1= Y{1leb) - OPT

I+ (CPBT1.EQ.0.0) GO TO 30
ABUPBl= DLABS(DPBTL)
SIGN14= OPBT1/AB0PB1

Ql4= COEFF*T(7)*DSURT(ABDOPB1)*S IGN14
GO TO 31

Ql4=0.0

CONTINUE

OY(7)= -Ql4 + Y(1+7)

EQUAT IONS FOR SUBSYSTEM A2
QS82= Y(1,3)

DY(B)= —Y(2,8)%HINV#(QS2-Y(1,9)-YI1,10))/CS2

DPSA2= Y(1,8) = Y(L,11)
IF (DPSA2.EQ.0.0) GO TC 40

ABDPS2= DABSIDPSAZ)

SIGN2l= DPSA2/A30PS2 .

Q21= CCEFF*T(9)*0SQRT{ABDPS2)%S IGN21
G0 TO 41

G21= 0.0

CONTINUE

DY(9)= Q21 + Y(1,9)

OPST2= Y(1,8) =DPT

[F(UPST2.EQ.0.0) GO TO 50

ABDPT2= DAAS(DPST2)

SIGN25= DPST2/A3DPT2

025= COEFF*T(11)*0SQRT (ABDPT2) ®*SIGN2Z5
60 TO 51

025=0.0

CONTINUE

DY(10)= -Q25 + Y(1,10)

76221

DY(11)= =Y{(2,11)%HINV+{Y {1 ,9)-Y (1412)%AA2)/CA2
DY{12)= =Y(2,12)*HINVH(Y{1,11)*AA2-Y{1,13)%AB2-T(5)-B2%Y(L1,12})/

X2
OPBT2= ¥{1l+13) - DPT
IF(OPBTZ.EQ.0.0) GO TO 60
ABOPB2= DABSIDPBT2)
SIGN24= DPBT2/ABDPB2
Q24= COEFF#T(10)*DSQRT(ABDPB2)*SIGN24
GO TC 61 :
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DIFF2040
DIFF2050
DIFF2000
DIFF2070
DIFF2080
DIFF2090
DIFF2100
DIFF2110
DIFF2120
DIFF2130
DIFF2140
DIFF2150
DIFF2160
DIFF2170
DIFF2180
DIFF2190

DIFF2230
DIFF2240
DIFF2250
DIFF2260
DIFF2270
DIFF2280
DIFF2290
DIFF2300

DIFF2310
DIFF2320

DIFF2340
DIFF2350
DIFF2360
DIFF2370
DIFF 2380
DIFF2390
DI FF2400
DIFF2410
DIFF2420
DIFF2430
DIFF2440
DIFF2450
DIFF 2460
DIFF2470
DIFF2480
DIFF 2490
DIFF2500
DIFF2510

DIFF2540
DIFF2550
DIFF2560
DIFF2570
DIFF2580
DIFF2590



6l2
0l3
6l4a
ols
6lu
6117
6le
bly
620
bdl
622
623
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DIFF25%0

60 L24=0 .9 DIrF20u0

€l CuNnTlInuE DIFFCOLU
uY(lad= =w24 + Y(1,y14) SIEFZ2u20
DY(L13)= =Y (2413 )%nINVH(=Y(1lela)tY(Ls12)%a82)/C82 :

C EWUuATIFNS FLR TCPUOLGGICAL CCNSTRAINTS DIFFéuau
UYLLS)= =wSé + Y(1,15) DIrfF2o50
bY(lod= =Y(lslo) + Yilsa) ) . vlkFFzéun

C ' OIFF2ol

C VIFFr2uo0

C2545676901283450709312545013701234267097123456T09012345678+5012345c/69CL20FASLICOC
KETUKN . D1IFF20y0
ENO



FCRTRAN IV G

0001
cog2
con3
Q004
C005
Q0006
0007
0004

0005
colo
0011

0012
0013
COl4
0015
0016
co17
Q018
0019
0020
0021
0022
0023
0024
€025
c02¢
0027
Co28
Ccn23
030
€031
0032
0033
€034
V035

€036
0037

LEVEL

21 MCDLZ2 DATE = 76221 21/36/18

SUBROUTINE MODL2{T+GeUYsYsYLsHINV)

IMPLICIT REAL*3(A-H,G-4)

DIMENSION G(1s1)sDYTLO) o Y(To10) 4YLE2),T(2),4(10)

COMMUN/ORDR/NMAX N, IPERM(2C)} !
COMNCN/PARM/COEFFDPT,CS+CS1+CALW(BLsCS2,CA2,CB2,XI1yXI2 D
COMMUN/CYLUT/AAL ABL vAAZ,AB2481 432

COMMON/ INITVL/YY (7,20),YYL(2)

COMMON/MUDL /MFLAG

Chu rr ke Rk ek R AR R R E AR HRRE KRR TR AR AR RN KRR KR ek ko kR Rk R &R

eXalaksisEalsEsEesislaNaNaNaN el

oo

10
11

30
31

EQUATI6NS OESCRIBING TwO ACTUATCR UPEN CENTER SYSTEM WITH
VALVE SPUIL FULLY EXTENUED

Y(l,1) SUPPLY PRZISSURE (Ps1)
Y(1,2) ORIFICE Hl FLOwW {Qi1)
Y(1+3) PGRT A PRESSURE {Pal)
Y(1ls4) ACTUATCR VELOCITY (vl}

Y{1.:5) . PORT B8 PRESSURE (PBl1)
Y{lsol ORIFICE #4 FLCW (QL4)

ALL VARIABLES FOR #2 ACTUATOR ARE INVARIANT

HARD CONSTRAINTS ON STATE VARIABLES

IF(Y(l41)eLT0.0040) Yilel)= 0.0
IF(Y(143).LT.0.00+0) Y{1l,3)= 0.0
TFLY(1s5)elTL0.00+0) Y(1,8)= 0.0
WS1l= QS
QSl= QS

DY{1)= QS1 - Y(1.2)

DPSAL= Y(1,1) - Y(1,3)

If (OPSA1.EQ.0.0D+0) GO TG 10
ABDPSA= DABSIDPSAL)

SIGN1l= ABDPSA/DPSAL

Qll= COEFF*T(6)}%DSQRT(ABOPSA)*SIGNLL
GO TO 11

Qll= Q.u

CONT INUE

DY{2)= -Qll + Y(142}

DY{3)= Y(1l.2) = Y(Ll,4)%AA1

DY(4)= Y(Ly3)%AAL - Y(1,5)%ABl- T(3)-B1l®xY(1,y4)
DY(5)= Y{ls6)= Y(1,4)%*ABL .
OPBTLl= Y{1,5) -DPT
IF(UPBT1.EQ.0.00+0) GO TO 30

ABOPBl= DABS(DPBTL)

SIGN14= ABDPBL/OPBTL

Ql4= COEFF*T{7)*DSQRT{ABCPBLI*S IGN14
G0 TQ 31

Q14=0.0

CONT INUE

DY(6)= —QLl4 + Y{(1l.6)

RETURN
END
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APPENDIX E

NUMERICAL VALUES FOR PARAMETERS IN EXAMPLE

SYSTEM

This appendix tabulates all the physical variables and parameters
of the open-center hydraulic system which was analyzed as an example
system in Chapter V. Quantities which can vary in the course of a
trajectory simulation, i.e., inputs and outputs, do not have any numeri-

cal value assigned to them in the table.
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QUANTITY NAME NUMERICAL UNITS
ALGEBRAIC  COMPUTER VALUE
ORIFICE CONSTANT ko COEFF 104,284

METERING AREA, ORIFICE
NO. 1 VALVE, SUBSYSTEM
NO. 2 ajqq Aqq m

METERING AREA, ORIFICE
NO. 4 VALVE, SUBSYSTEM

NO. 2 aqy Ay

METERING AREA, ORIFICE
NO. 5 VALVE, SUBSYSTEM
NO. 2 a1s Ay m2

ACTUATOR AREA, HEAD SIDE _3
SUBSYSTEM NO. 2 Apq AA1 10.26 X 10 m>

ACTUATOR AREA, ROD SIDE 3 o
SUBSYSTEM NO. 2 Apq AB1 8.839 X 10 m

CAPACITANCE, SUPPLY LINE, 15
SUBSYSTEM NO. 2 Cg1 cs1 534.2 X 10 m> /N

CAPACITANCE, LINE FROM
PORT 'A' OF VALVE, 15 5
SUBSYSTEM NO. 2 Ca1 CA1l 2.374 X 10 m” /N

CAPACITANCE, LINE FROM
PORT 'B' OF VALVE, _15 5
SUBSYSTEM NO. 2 Cp1 CB1 4,75 X 10 m” /N

INERTIA OF MOVING PARTS
IN ACTUATOR SUBSYSTEM
NO. 2 I, X11 17.53 kg

DRAG RESISTANCE OF
ACTUATOR SUBSYSTEM
NO. 2 By DRAG1  5258.000 NS/m

TANK PORT PRESSURE Pp DPT 3.45 bars

ACTUATOR VELOCITY,
SUBSYSTEM NO. 2 vy vi m/S

ACTUATOR VELOCITY,
SUBSYSTEM No. 3 Vo V2 m/S

SPOOL DISPLACEMENT,
VALVE IN SUBSYSTEM
NO. 2 xq SPOOL 1 m
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QUANTITY NUMERICAL UNITS
ALGEBRAIC  COMPUTER VALUE

SPOOL DISPLACEMENT,

VALVE IN SUBSYSTEM

NO. 3 Xo SPOOL 2 m
SUPPLY FLOW FROM _ 3

SUBSYSTEM NO. 1 Ogq 0S1 2.081 X 10 m’/sec
SUPPLY PRESSURE,

SUBSYSTEM NO. 2 P.q DPS1 bars
PORT 'A' PRESSURE,

SUBSYSTEM NO. 2 Pp1 DPA1 bars
PORT 'B' PRESSURE,

SUBSYSTEM NO. 2 Pg1 DPB1 bars
BYPASS PORT PRESSURE,

SUBSYSTEM NO. 2 Ppq DPT1 bars
SUPPLY PRESSURE,

SUBSYSTEM NO. 3 Pso DPS2 bars
PORT 'A' PRESSURE,

SUBSYSTEM NO. 3 Ppo DPA2 bars
PORT 'B' PRESSURE,

SUBSYSTEM NO. 3 Ppp DPB2 bars
EXTERNAL LOAD, SUB-

SYSTEM NO. 3 Wy W1 N
METERING AREA, ORIFICE

NO. 1 VALVE, SUB-

SYSTEM NO. 3 anq A21 m2
METERING AREA, ORIFICE

NO. & VALVE, SUB-

SYSTEM NO. 3 aoy, Ak m?
METERING AREA, ORIFICE

NO. 5 VALVE, SUB-

SYSTEM NO. 3 ags A25 m2
ACTUATOR AREA, HEAD SIDE 3

SUBSYSTEM NO. 3 Apo AA2 10.26 X 10 m2
ACTUATOR AREA, ROD SIDE _ )

SUBSYSTEM NO. 3 Bpo AB2 8.839 X 10 m
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QUANTITY NAME NUMERICAL UNITS
ALGEBRAIC COMPUTER VALUE

CAPACITANCE, SUPPLY 15
LINE SUBSYSTEM NO. 3 Cso cs2 23.74X 10
CAPACITANCE, LINE
FROM PORT 'A' OF 15 5
VALVE, SUBSYSTEM NO. 3 Cao CA2 2.374 X 10 m” /N

CAPACITANCE, LINE
FROM PORT 'B' OF -15 5
VALVE, SUBSYSTEM NO. 3 Cpo cB2 4,75 X 10 m~ /N

INERTIA OF MOVING PARTS
IN ACTUATOR, SUBSYSTEM
NO. 3 I, X12 17.53 kg

DRAG RESISTANCE OF -
ACTUATOR SUBSYSTEM
NO. 3 B4 DRAG 1 5258.000 NS/m
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