THE ROLE OF INCOME IN THE PERCEIVED QUALITY OF
LIFE OF THE RURAL POPULACE

By
WILMER MILTON HARPER
Bachelor of Arts
Duke University Durham, North Carolina 1965
Master of Science in Agricultural Economics Montana State University
Bozeman, Montana 1969

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of DOCTOR OF PHILOSOPHY

May, 1977

$$
\begin{aligned}
& \text { Thesis } \\
& 1977 \mathrm{D} \\
& H 295 \pi \\
& \text { cop. } 2
\end{aligned}
$$

THE ROLE OF INCOME IN THE PERCEIVED QUALITY OF
LIFE OF THE RURAL POPULACE

Thesis Approved:

PLEASE NOTE:

Pages 127-136 are computer printouts. These have very small and indistinct print. Filmed in the best possible way.

UNIVERSITY MICROFILMS.

ACKNOWLEDGMENTS

The organization and preparation of this study has been cultivated from the contributions of a number of persons. To Dr. Luther G. Tweeten, my major advisor, I want to extend special appreciation for his generous response, assistance, and guidance which were crucial to the final outcome of my efforts. Gratitude is also extended to Drs. Richard D. Leftwich, Gerald A. Doeksen, and Edgar L. Webster, members of my advisory committee.

I am equally grateful to Dr. James S. Plaxico, Head, and the Department of Agricultural Economics at Oklahoma State University for financial assistance. Recognition is also due Mr. Elton Li for his assistance in the computer programming necessary for the data processing and Mrs. Linda Howard for the typing of the manuscript.

I would like to extend special recognition and appreciation to Dr. Robert G. Dunbar, Montana State University, whose support permitted my initial entry into agricultural economics.

Finally, I wish to acknowledge my family. The confidence of my parents, Mr. and Mrs. Milton B. Harper, throughout my academic undertakings made this final result possible. Special accolades and recognition must be extended to my wife, Sally, for her understanding and patience in dealing with my bad days and to my daughter, Laura Shannon, the sunshine of the day. Without them the hurdies of my current graduate program would have been insurmountable.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Introduction 1
The Problem 2
Objectives 4
II. SOCIAL INDICATORS OF WELL-BEING 6
Prior Research 7
Self-Esteem 7
Anomie 8
Life Satisfaction 10
Current Status of Social Indicators of Well-Being 11
Theoretical Framework for the Analysis of the
Relationship Between Quality of Life and Level of Income 12
Quality of Life 12
Subindices of the QLI 13
Alienation 14
Worry 16
Self-Esteem 17
Derivation of the QLI 18
III. STATISTICAL FRAMEWORK FOR SOCIAL INDICATOR ANALYSIS 19
Origins of Factor Analysis 19
Basic Statistics of Factor Analysis 20
The Factor Analysis Model 21
QLI Component Index Construction 22
The Alienation Index 25
Anomie Scale 25
Negative Affect Scale 26
Powerlessness Scale 27
The Worry Index 28
The Self-Esteem Index 29
Self-Satisfaction Scale 30
Positive Affect Scale 30
Life Satisfaction Scale 31
The Quality of Life Index 32
Chapter Page
IV. MODEL FOR ANALYTIC EVALUATIONS AND HYPOTHESES TO BE TESTED 33
The Model 34
Theoretical Model Components 34
Age 34
Education 35
Number of Individuals in the Family Unit 35
Location 36
Race 37
Farm Income-Total Income Ratio 37
Net Worth 38
Time 38
Income 39
Earned Income (Ye) 40
Transfer Income (Ytr) 42
Program Payment Income (Ypp) 43
Error 44
Hypotheses to be Tested 44
General Model Hypotheses 47
Income Relevance Hypothesis 48
Temporary Phenomenon Hypothesis 49
Income Specific Hypotheses 49
Age-Income Hypothesis 49
Relative Versus Absolute Hypothesis 50
Irreversibility Hypothesis 50
Earned Income Hypothesis 51
Farm Income Hypothesis 52
Net Worth Hypothesis 53
V. EMPIRICAL VALIDATION OF THE MODEL AND ASSOCIATED HYPOTHESES 54
Model Selection 54
Functional Forms Considered 54
Power Function 54
Quadratic Function 56
Square Root Function 56
Cubic Function 57
Interaction Terms 57
Evaluation Criteria 57
General Model Hypotheses 65
Age 65
Education 66
Number in Family 67
Location 67
Race 68
Farm Income-Total Income Ratio 68
Income 68
Time 70
Chapter Page
Income Specific Hypothesis 72
Age-Income Hypothesis 72
Relative Versus Absolute Hypothesis 74
Irreversibility Hypothesis 76
Earned Income Hypothesis 80
Farm Income Hypothesis 83
Net Worth Hypothesis 86
VI. SUMMARY, APPLICATIONS AND CONCLUSIONS 88
Summary 88
Variables 88
Functional Form 89
Income in the Final Model 89
Quantitative Results 90
Qualitative Results 90
Areas of Further Research and Model Development 92
Data Base 92
Variables 93
Model Expansion 94
Model Applications 95
A Specific Application: Income Tax 96
General Areas of Application 98
Conclusions 99
SELECTED BIBLIOGRAPHY 101
APPENDIX A - SUBINDEX SCALES 105
APPENDIX B - RESULTS OF FACTOR ANALYSIS OF SUBINDEX SCALES 114
APPENDIX C - QLI ANALYSIS OF FEDERAL INCOME TAX SCHEDULE:
MEDIAN INCOME TAXPAYER ILLUSTRATION 125

LIST OF TABLES

Table Page

1. Full Guarantee Levels 45
2. Alternate Tax Rate--Guarantee Combinations 46
3. Final Regression Equation for the Power Function Form of the General QLI Model--Dependent Variable: QLI; Data Set = ALL 59
4. Initial Regression Equation for the Quadratic Form of the General QLI Model--Dependent Variable: QLI; Data Set = ALL 60
5. Intermediate Regression Equation for the Quadratic Form of the General QLI Model--Dependent Variable: QLI; Data Set $=$ ALL 61
6. Final Regression Equation for the Quadratic Form of the General QLI Model--Dependent Variable: QLI;
Data Set = ALL 62
7. Final Regression Equation for the Square Root Form of the General QLI Model--Dependent Variable: QLI; Data Set $=$ ALL 63
8. Final Regression Equation for the Cubic Form of the General QLI Model--Dependent Variable: QLI; Data Set $=$ ALL 64
9. Revised Form of the Final Regression Equation for the Quadratic Form of the General QLI Model--Dependent Variable: QLI; Data Set = ALL 84
10. Anomie (An) Scale 106
11. Negative Affect (NA) Scale 107
12. Powerlessness (P) Scale 108
13. Worry (W) Scale 110
14. Self-Satisfaction (SS) Scale 111
15. Positive Affect (PA) Scale 112
16. Life Satisfaction (LS) Scale 113
Table Page
17. Anomie (An) Scale Factor Weights 115
18. Negative Affect (NA) Scale Factor Weights 116
19. Powerlessness (P) Scale Factor Weights 117
20. Worry (W) Scale Factor Weights 119
21. Self-Satisfaction (SS) Scale Factor Weights 120
22. Positive Affect (PA) Scale Factor Weights 122
23. Life Satisfaction (LS) Scale Factor Weights 123

Figure

Figure
Page

1. Relationship of Marginal QLI to Types of Income 86

CHAPTER I

INTRODUCTION

Economics has been defined as

- . . the study of how men and society end up choosing, with or without the use of money, to employ scarce productive resources which could have alternative uses, to produce various commodities and distribute them for consumption, now or in the future, among various people and groups in society (27, p. 3).

Since commodities--goods and services--are produced to meet the demands of the society, economics is ultimately concerned with the satisfaction, well-being, or utility which is derived from the consumption of these commodities. At least since the time of Bentham, the concept of utility and diminishing marginal utility has been present in the body of economic thought (24, p. 150). Cardinal measurement of utility is beyond the scope of economic analysis because like beauty it is in the eye of the beholder. However, a need exists for a proxy measure. An index of perceived quality of life could serve as such a measure. The acquisition and maintenance of some minimum standard of living or quality of life is central to the social welfare goals of society in the United States. This proposition is illustrated by actions of the Federal government, state governments in, for example, alternative plans to reduce unemployment and/or to raise income of low income individuals. Income maintenance programs, food stamps, and welfare payments are put forth as methods of improving the economic situation of the individual. These programs are based upon the observation that quality
of life varies across the economy and the implicit or explicit assumption that the level of consumption, income, or economic opportunity plays a role in the individual quality of life. There is strong theoretical and empirical evidence that income plays a role in individual quality of life. There is also strong theoretical evidence that, at least after the attainment of some level of income or consumption, additional factors enter into individual appraisal of quality of life and additional increments in income add less to quality of life. Progressive income taxes may be one official expression of such evidence. As indicated by Stuby (35), there has long been an interest in research into the quality of life of the rural population. Much of the early work focused upon farmers, but more recent work includes rural nonfarm people as well.

The Problem

A large number of public policies entail redistribution of income and other equity issues, and many policies are also designed to deal with economic efficiency. The implicit assumption of many of these public policies and economic theory is that a dollar provides the same satisfaction to whomever gains it and provides the same sacrifice to whomever loses a dollar. Such assumptions seem untenable--the challenge is to derive an alternative that provides a means of evaluating public policies proposed as a means of promoting changes in the socioeconomic environment.

Central to the question of individual quality of 1 ife is the issue of what to measure. There are two basic approaches to the measurement of quality of life. First, quality of life may be viewed as the
product of the economic growth and development within a given area. The quality of life for a given region then becomes a function of the income and institutional infrastructure of the region. Personal income, the number of classrooms, hospitals, fire engines, etc., become the social indicators of quality of life. This approach relies upon secondary data which are readily available. The criteria and factors included are derived from the researcher's value judgments and available data. There is no input from the individuals who may or may not experience the "quality of life" measured, particularly if costs are included. Second, quality of life may be approached through the individual's interaction with his socio-economic environment. Since the individual's perception of reality is the "reality" upon which he organizes his behavior, perceived quality of life should provide a useful datum for public policy. Use of individual quality of life requires detailed primary demographic and attitudinal data. Given the availability of the required data, this approach potentially yields a basic measure for the application of public policy and for the departure point of future research. To efficiently achieve the goal of improving the quality of life which the individual perceives, policy makers may use this measure in the implementation of the relevant policies.

The concept of social or psychological well-being has in the past been used in conjunction with subjective measures of socio-psychological adjustment or dysfunction. Prior research has investigated the relationship between measures of socio-economic status and social indicators, but the precise relationship of income to the measures considered is not reported. The income-social indicator linkage is shown in some cases, but the cross-sectional nature of the data used and the results
presented precluded an adequate evaluation of the effects of a change in income upon the socio-psychological variab1e under investigation.

The Rural Income Maintenance Experiment collected a broad range of attitudinal and demographic data from the control and experimental participants in the program. These data will be used to derive a measure of individual quality of life based upon individual perceptions of quality of life. The measure of quality of life may then be used to test the presumption of economics that income contributes to quality of life. This will provide basic research into the issue of how level and distribution of income contribute to quality of life, and the results will have application to public policy.

Objectives

The primary objectives of this study are to construct a measure of individual perceived quality of life and to explore some of the relationships within the derived framework. Specifically, the objectives of the study are:

1. To identify, within previously developed scales of social well-being, factors which may be used to derive indices of we11-being.
2. To aggregate the indices of well-being into an index of perceived quality of life (QLI).
3. To develop and quantify a model in which the quality of life index is the dependent variable and theoretically appropriate independent variables are examined for their ability to explain the observed variation in the QLI.
4. To use the QLI model to examine the role of income and income composition in the individual quality of life of the rural population, with emphasis on low income households.

CHAPTER II

SOCIAL INDICATORS OF WELL-BEING

Since the development of a social indicator scale for anomie by Srole (32) which evinced a relationship between the indicator and socioeconomic level, social scientists have attempted to measure the differences in response values which are associated with income and individual well-being. This research has focused upon certain socio-psychological measures which have been taken as indicative of the individual's perception of his well being.

The existence of a relationship between attitudinal scales and income has been established, but the individual measures have not been combined to determine if they may be utilized as an aggregate measure of the quality of life which the individual perceives that he experiences. Utilizing factor analysis, this study will analyze some components of previously developed scales to determine if factors may be identified which account for the variation in the observed values of the responses. The formulation of the factor analysis will be discussed in Chapter III. The resulting factors will be used to develop a quality of life index (QLI), and the QLI will be integrated into a regression model. If the analysis fails to reject the hypothesis that there is a relationship between income and QLI, the model and its relationships will be utilized to derive quantitative relationships between income and QLI and to test various hypotheses pertaining to
the interaction between quality of life and selected independent variables.

Prior Research

Some measures of well being developed by previous research appear relevant to an evaluation of individual quality of life. These measures are self-esteem, anomie, and life satisfaction.

Self-esteem

Crain and Weisman (10) reported a positive relationship between self-esteem and income. Their measure of self-esteem required that the individual feel that there was nothing wrong with himself, and in addition that he feel that he is better than the average person. This type of measure potentially includes a degree of competitiveness. Since it seems reasonable to assume that more competitive persons will seek out and compete for the best jobs available to them, the empirical relationship found by Crain and Weisman may be due in part or totally to the relationship between competitiveness and income. Although the structure of the survey instrument used by Crain and Weisman includes more than a concept of self-esteem or a favorable opinion of himself by the individual, it does establish a significant relationship between income and what the individual respondents in the study regarded as se1f-esteem.

Heiss and Owens (15) investigated self-esteem by relating individual self-evaluations to socio-economic groups. Their index of socio-economic status was based upon education, occupation, and total income, but they report their responses only for differences between
high and low socio-economic groups. They found a significant difference between income groups, but little difference among racial groups. A1though Heiss and Owens have concluded that a lack of self-esteem declines as income increases, the use of only two qualitative categories of income prevents a determination of rate of change in self-esteem relative to the change in income.

In an investigation of the effect of social position on selfesteem, Yancy, Rigsby, and McCarthy (40) reported that 16 percent of the variance observed in self-esteem could be associated with their variables. Although income per se was not one of their variables, work force participation and education were included. It seems reasonable to assume that these latter variables at least partially determine the level of individual and family income.

Although prior research supports the hypothesis that self-esteem is positively related to income, the studies have failed to consider various levels of income and the corresponding estimated value of the respondent's self-esteem. Such data would allow estimation of the rate of change in self-esteem as income is allowed to vary and other exogenous determinants of se1f-esteem are held constant or controlled within the analysis.

Anomie

Defined as the sense of self-to-others alienation which the individual feels, anomie has also been investigated to determine its correlation to the level of individual income.

Using an income range of less than $\$ 1,000$ to greater than $\$ 9,999$, McDill (20) reported a correlation of -0.49 between level of income and
anomie. The results are not, however, presented in a form permitting calculation of the change in anomie as the level of income is varied. Mier and Bell (21) concluded that "anomie results when individuals lack access to the means for the achievement of life goals." They found level of income to be one of the determinants of individual anomie scores. Their results indicate that the correlation is negative--lower levels of income tend to be associated with higher levels of personal anomie for the respondent. Aggregation of all respondents into only two groups in the final representation of results precluded an examination of the marginal trade-offs between anomie and income.

Holding educational level constant, Mizruchi (22) measured the relationship between anomie and income. He found that for educational levels below college there was no significant difference in the anomie scores for persons with income below $\$ 5,000$ and persons with income above $\$ 5,000$.

Additional research by Bell (2), Simpson and Miller (30), and Bullough (5) supported the hypothesis that there is a negative relationship between anomie and socio-economic indicators. Again, aggregation of the socio-economic groups precluded a detailed quantification of the relationship.

Bullough presented a mean powerlessness and anomie score as a function of income, but all income levels were aggregated into three ranges. Bullough's results revealed a problem occurring with sociopsychological indicators: the mean powerlessness and anomie score for each income level varied with place of residence. Although income may significantly determine perceived powerlessness and anomie, Bullough's results show that the relationship is more complex than a simple incomequality of life linkage.

Life Satisfaction

Studies have also established a positive relationship between income and the level of happiness or "1ife satisfaction" which the individual experiences.

Easterlin (12) reported that in all societies more money for the individual typically means more individual satisfaction, but that raising the incomes of all does not increase the happiness of all. Of the individuals surveyed only 25 percent of those with incomes under \$3,000 indicated that they were happy and approximately 50 percent of those with incomes over $\$ 5,000$ indicated that they were very happy. Easterlin concluded that welfare judgments by the individual may prevent rising national income from resulting in a rising level of national satisfaction. After his income has risen, rising expections may cause the individual to feel that he is not better off.

Bradburn and Caplovitz (4) reported the percentage of persons who said they were "very happy," "pretty happy," and "not too happy" as a function of the individual's level of income. For all income levels, more than 50 percent of the respondents are in the "pretty happy" category. Between the income ranges of $\$ 3,000-\$ 3,900$ and $\$ 7,000-\$ 7,900$, the "pretty happy" category varies within a range of only 5 percent and the "not too happy" category within a range of 6 percent. Bradburn and Caplovitz's results provided support for the supposition that small changes in the income level of low income people will not produce significant changes in the individual's reported level of happiness.

Current Status of Social Indicators
 of Well-Being

Prior studies have not generated information necessary to detail the relationship of income to socio-psychological indicators. The shortcomings of the previous studies fall into one or more of three categories. The first category consists of studies which fail to separate income from other variables which may contribute to socio-economic status. The second, related category is made up of studies which designate income as a determinant of socio-economic status, but fail to control for its possible correlation with such independent variables as education and age. The third category comprises studies which lose most of their applicability due to aggregation of their findings in the final analysis.

Studies in categories one and two measure a general level of socio-economic status and socio-psychological indicators, but they fail to isolate the individual components of socio-economic status which contribute to changes in indicators under consideration. Studies in category three have collected and analyzed data which would have potentially allowed for a detailed consideration of the influence of income on the socio-psychological indicators to be studied, but after collection of the data, aggregation of the data into "high" and "low" income groups virtually eliminates their quantitative value.

All of the studies reviewed have found a positive correlation between indicators of socio-economic status and psychological wellbeing. Since this relationship has been established, this study will attempt to develop the analytic procedure and empirical framework
necessary to measure the individual's perceived quality of life and to quantify its relationship to income.

Theoretical Framework for the Analysis of the Relationship Between Quality of Life and Leve1 of Income

Quality of Life

Prior research indicates that the economic actions of the individual at a given level of income depend on the individual's sociopsychological profile (19). Assuming that the personality make-up of the individual interacts with the reality of his economic constraints and that the individual's economic constraints are inseparable from his personal disposition, one expects the pursuit of economic activities, goals, and desires, as restrained by the limits of income to lead to a succession of intrapersonal conflicts. A second thrust of this approach is that consideration of the social welfare of the population must include the relationship of personal well-being to income.

Based upon the results of prior research, it seems reasonable to assume that the intensity of personal difficulties as measured by the social indicators of well-being are not randomly distributed over the entire population (10, 12, $15,20,21,40)$. Difficulties include failure to accomplish goals, feelings of failure, unhappiness, worry, alienation from others, alienation from society, etc. Although everyone may experience these difficulties, the duration and intensity of the difficulties encountered may be expected to vary for subsets of the population of the economy.

Given that the individual or family consumption unit has a reasonable knowledge of the income flow which it will command over a period of time, economic theory indicates that, during a given period of time, a rational consumption unit will consume that combination of goods and services which maximizes the satisfaction which may be derived from its income stream. The assumption that more is preferred to less is one of the basic assumptions of the theory of consumer choice, and since the income of the individual or consumption unit is limited over any time period, the perceived quality of life should be constrained by the individual's or consumption unit's income. Well-being is assumed to be enhanced by having more options--greater income increases the options for purchasing goods and services or accumulating wealth that contributes to power and prestige. It would follow that at least in part the quality of life which the individual perceives is a function of his income.

Subindices of the QLI

This study assumes that the quality of life which the individual perceives may be measured by selected socio-pschological indicators of individual well-being. The questionnaires administered to the participants in the Rural Income Maintenance Experiment contained items which were the modifications of socio-psychological scales developed in prior investigations by social science researchers. Each of the individual measurement scales and their component items had been previously developed and tested as specific measures of their respective sociopsychological variable. For this study, various of the specific scales have been grouped into three subindices of the QLI. Since this analysis
will focus upon the overall quality of life and its relationship to income, the specific scales have been amalgamated into subindices. These subindices should provide a more representative measure of total quality of life as perceived by the individual than would any of the individual component scales. The subindices will then be used to construct the QLI.

The specific items which comprise each subindex are presented in Tables 10-16. The quantitative integration of these items into a measure of quality of life is discussed in the next chapter.

Alienation

Various scales measured respondent alienation from others and alienation of control over the outcome of his future. This latter concept is included to capture negative socio-psychological reactions which might not be measured by simple self-to-others alienation.

The first component in this category is the traditional anomie scale as modified from McClosky and Scharr (19). While investigating the relationship of anomie to mental disturbances, Srole (32) found that anomie is inversely related to social and economic status independent of a mental disturbance factor. The study and resulting questionnaire by McClosky and Scharr was directed toward a broadening of the then existing sociological explanations of anomie. Their results indicate that anomie responses are powerfully governed by cognitive and personality factors. They found that anomie, defined as a sense of normlessness, results from impediments to interaction, communication, and learning, and it is a sign of impaired socialization.

Measured by a scale modified from Bradburn (3), the second component of this subindex is negative affect. The work from which the items were modified was an extension of the supposition that psychological well-being is a function of two independent dimensions: positive and negative affect (4). To measure the positive and negative affect in life satisfaction, people were asked how often they had had pleasant and unpleasant feelings or experiences. Bradburn assumed that individuals code all experiences in terms of positive or negative content, and he established the independence of positive and negative affect and that the individual's overall sense of well-being is dependent upon the balance of the two sets of forces. The scale items developed by Bradburn reflect a wide range of positive and negative experiences which would be common to a heterogenous population, but they do not include a complete set of all positive and negative states. The respondents can relate their coding of experiences in terms of the general positive and negative affect items presented to them. Table 11 contains the negative affect items integrated into the Alienation Subindex.

The third component of the Alienation Subindex is the powerlessness scale. Powerlessness was measured by items which had been modified from Stodtbeck (33), Coleman (8), and Rotter (26). Stodtbeck's work addressed the determination of the motivational aspects of achievement. Being an over-achiever was determined to be positively related to higher socio-economic status (33, p. 160). The questions taken from Stodtbeck's study measure the degree to which the individual feels that he has control over the outcome of his actions. A sense of control was found to be positively related to socio-economic status.

As part of an evaluation of the equality of educational opportunities for minority groups in public schools, Coleman (8) employed previously developed psychological measures of powerlessness. The Rural Income Maintenance Experiment incorporated a portion of the survey items which had been utilized by Coleman.

Rotter (26) developed a scale to measure the degree of internal versus external control which the individual perceives as influencing the outcome of events. The scale reflected the degree of control which the individual felt he had over his life--a measure of his powerlessness. Higher socio-economic groups were found to perceive more power over the outcome of their lives than were lower socio-economic groups. Based upon a national stratified sample of 1000 cases, Rotter indicated that there is a significant relationship between socio-economic class and internality.

The questions utilized for the powerlessness scale are given in Table 12.

Worry

The second subindex of the QLI consists of a psychological scale designed to measure worry. Worry in the survey was measured by items which had been modified from Bradburn and Caplovitz (4). They found that in terms of content, worry may be divided into two distinct areas: areas in which the individual has very little control over the outcome and areas in which the individual has a considerable degree of control over the outcome. These they termed "uncontrollable" and "controllable" worries respectively. It was found that uncontrollable worries were associated with higher socio-economic status, and controllable worries

Abstract

were associated with lower socio-economic status. Uncontrollable worries were those in the areas of "growing old," "death," and "health." Controllable worries were those in the areas of "getting ahead," "money," "work," "marriage," and "bringing up children." This analysis inc1uded questions for both areas of worry. This allows the worry index to function across all ranges of income. The worry scale is given in Table 13.

Self-Esteem

The third subindex of the QLI is self-esteem. The Self-Esteem Index is composed of three scales: self-satisfaction, positive affect, and life satisfaction.

Self-satisfaction was measured by a scale modified from a study by Rosenburg (25). As measured by the scale developed by Rosenburg, self-satisfaction indicates that the individual has a positive or negative attitude toward himself. As indicated by Rosenburg, this attitude has two quite distinct connotations: the connotation of the "lookingglass self" ${ }^{1 /}$ (18, p. 753) and the connotation of the self-concept ${ }^{2 /}$ (18, p. 755). Thus the "looking-glass self" could consider itself superior to others while the individual's self-concept could be inadequate when measured by the standards which the individual has set for himself. The individual could also consider the "looking-glass se1f" as average and be quite content with his self-concept. The

1/A person's conception of himself based on the apparent attitudes of others toward him which he infers from their behavior.

2/A person's awareness and appraisal of his own interconnected attitudes and personal worth.
self-satisfaction measured by the Rosenburg scale is a measure of the individual's self-concept. High self-satisfaction indicates that the individual respects himself; and, while he may not consider himself better, he does not consider himself worse than others. Low self-satisfaction would indicate self-dissatisfaction and a lack of respect for the self-concept. The items of the self-satisfaction scale are presented in Table 14.

The second scale of the Self-Esteem Index measured positive affect. This scale consistes of positive items from the Bradburn study discussed in conjunction with the Alienation Index. The items in the positive affect scale are presented in Table 15.

The third scale of the Self-Esteem Index measured life satisfaction using items modified from Bradburn (3). Components of the life satisfaction scale are presented in Table 16.

Derivation of the QLI

Based upon the results of prior research, the individual scale components of the Subindices enumerated in this chapter have been selected as theoretically relevant to the QLI. They will be refined by the use of factor analysis and integrated into the QLI as an aggregate measure of individual quality of life. The statistical analysis framework and the empirical development of the QLI are presented in the following chapter.

CHAPTER III

STATISTICAL FRAMEWORK FOR SOCIAL INDICATOR ANALYSIS

The initial step in the development of the quality of life index (QLI) is the analysis of the social indicator scales enumerated in Chapter II. The method of principal axis factor analysis is employed using the Statistical Analysis System (SAS) developed by the Statistics Department of North Carolina State University at Raleigh (28). The analysis is undertaken in two stages. First, the items of all scales are considered as one group of responses to evaluate the a priori grouping of the specific scales into the general Subindices of the QLI. Second, factor loadings for the specific items within the scales are derived and analyzed. Analysis of the factor loadings is undertaken to insure that the specific questions in this experiment load in a logical and consistent manner upon the factors which were selected as components for the analytical framework.

> Origins of Factor Analysis

Factor Analysis has been used as a statistical tool by psychologists for many years. The method of principal axis was set forth by Karl Pearson in 1901 (14). In 1904 Charles Spearman published "General Intelligence, Objectively Determined and Measured" in the American Journal of Psychology. Spearman's two-factor theory was not
always adequate for situations where batteries of measurement devices were used and as a result multiple factor analysis was developed (14).

The principal objective of factor analysis is to attain parisomy in the description of the observed data. In this application factor analysis may be viewed as an algorithm for finding subsets of a set of variables. The subsets derived are linear combinations of the set which maximize the the variance accounted for within the subsets and minimize the variance among the subsets. Any factors obtained through the use of factor analysis are not the complete fundamental set of factors due to the potential existence of other relevant measures not yet devised. Although a complete description of the data may not in theory be reached, it may be approached, and factor analysis does provide a simplification of a given data set. Viewed in this manner, factor analysis represents a straightforward manner of description in several dimensions of a number of observed variables.

Basic Statistics of Factor Analysis

The value of the X variables observed for the individuals in the sample may be represented by $X_{j i}$ where $j=1,2, \ldots, n$ variables and $i=1,2, \ldots, N$ (observations) individuals. Any particular $X_{j i}$ may be referred to as an observed value which is measured by an arbitrary unit from an arbitrary origin. For convenience, factor analysis fixes the arbitrary origin at the mean by defining $X_{j i}$ as $X_{j i}-\bar{X}_{j}$. The sample variance $e^{1 /}$ may be defined as
$\underline{1 /}$ This is a biased estimate of sample variance, but multiplication by $\mathrm{N} /(\mathrm{N}-1)$ would yield an unbiased estimate.

$$
s_{j}^{2}=\frac{1}{N} \sum_{i=k}^{N} x_{j i}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(X_{j i}-\bar{X}_{j}\right)^{2}
$$

Taking the sample standard deviation $\mathbf{s}_{\mathbf{j}}$ as the arbitrary unit of measurement, the standardized value of the j-th variable for the i-th individual is given by

$$
z_{j i}=x_{j i} / s_{j}=\frac{1}{s_{j}}\left(x_{j i}-\bar{x}_{j}\right)
$$

where the variance of z_{j} is unity.
The sample covariance for any two variables j and k is defined by

$$
s_{j k}=\frac{1}{N} \sum_{i=1}^{N} x_{j i} x_{k i}
$$

and the correlation coefficient is defined as

$$
r_{j k}=\frac{s_{j i}}{s_{j} s_{k}}=\frac{1}{N} \sum_{i=1}^{N} z_{j i} z_{k i}=\sum_{i=1}^{N} x_{j i} x_{k i}\left(\sum_{i=1}^{N} x_{j i}^{2} \sum_{i=1}^{N} x_{k i}^{2}\right)^{\frac{1}{2}}
$$

The calculation of the correlations among the variables which are to undergo analysis is usually the initial step in factor analysis.

The Factor Analysis Model

Operating within a simple linear framework, factor analysis represents the variable, z_{j}, the standardized variable in terms of hypothetical constructs or factors. Factor analysis may have two distinct objectives within the linear framework: (1) to extract the maximum variance and (2) to best reproduce the observed correlations. This analysis will utilize the method of principal axis which has as its
objective the extraction of the maximum variance by each successive factor considered in the analysis (14).

The model is
$z_{j}=a_{j 1} F_{1}+\ldots+a_{j p} F_{p}+\ldots+a_{j m} F_{m}$ where $j=1,2, \ldots, n$ and where each of the n observed values is linearly described by n uncorrelated components $F_{1}, F_{2}, \ldots, F_{n}$. To reproduce the correlation among the variables, the number of components equals the number of variables (14). Since the principal axis method of analysis is utilized by this analysis, each factor results in the extraction of successively smaller amounts of variance. The extraction of one hundred percent of the variance would, in general, require the inclusion of more factors than this analysis utilized, and it would in some cases result in as many factors as there were variables (items) in the scale. Practical considerations limit, therefore, the number of factors to less than n because addition of successive factors usually accounts for only nominal variance long before the n-th factor is added.

The sum of squares of the factor coefficients yields the communality of a particular variable. The principal axis method involves the selection of the first-factor coefficient $a_{j i}$ such that the contribution of that factor to the total communality is a maximum. This sum is given by

$$
v_{1}=a_{11}^{2}+a_{21}^{2}+\ldots+a_{n 1}^{2}
$$

where the coefficients a_{ji} are chosen such that V_{1} is a maximum subject to the condition that

$$
r_{j k}=\sum_{p=1}^{m} a_{j p} a_{k p}
$$

where $j, k=1,2, \ldots, n$ and $r_{j k}, r_{j j}$ is the communality h_{j}^{2} of the variable z.

QLI Component Index Construction

Based upon the results of the factor analysis of the full set of all of the items of all the scales, the a priori index structure grouping the specific scales into the three sub-indices of the quality of life index is retained. Three individual data sets were identified and used to drive the factor loadings necessary to calculate the quality of life index. This method of index construction is employed so that the analytic model can be tested upon subsets of the experimental population in addition to the entire data set. The three data sets utilized are: heads of household, spouse of head of household, and the combined set of heads of household and spouse referred to as data set ALL. The use of a large number of factors for each scale would produce little additional information, and as the number retained approaches the number of variables the value of the analysis itself would become trivial. For this reason the analysis uses the following criteria to determine the maximum number of factors retained: the eigenvalues associated with the retained factors are greater than or equal to one, or the addition of another factor would result in a grouping of the scale items into a less plausible configuration. Due to the second criteria, some factors with eigenvalues greater than one are excluded from the analysis. The results of the factor analysis are presented in Tables 17-23.

The component indices of the QLI are constructed in the following manner. The numerical scale of possible responses is arranged so that disagreement with the item is given a low value. As disagreement ()
becomes less, the value received by the response becomes greater. The median score on the scale is given for "don't know," "no opinion," etc., and the highest score possible given for complete agreement with the item. The values assigned to each response, the mean response for each item, the standard error of the mean, and the standard deviation of the item response are shown in Tables 10-16. This assignment of values is followed for all items regardless of their positive or negative attitude content. This method is followed for two reasons. First, it allows consistent numbering throughout, thus minimizing errors in the comparison of items; and second, it is compatible with the construction of a QLI which increases or decreases as the individual's perception of his quality of life increases or decreases. After assigning response score values in the above manner, the individual's raw scores or responses to each item are standardized in the following manner.

$$
R_{j i}=\frac{x_{j i}-\bar{x}_{j}}{s_{j}}
$$

where $R_{j i}=$ the standardized response,
$X_{j i}=$ the actual observed response,
$\bar{X}_{j}=$ the mean response for the j-th item,
$s_{j}=$ the standard deviation of the j-th item.
In the results of the factor analysis, items measuring negative attitudes load positively upon factors representing negative constructs. Internal consistency and clarity of interpretation require that scale components representing negative aspects of quality of life enter the QLI as negative quantities. Since all responses to the scale items are represented by positive values, the factor loadings for the negative
factors are "reflected." Reflection is accomplished by changing the sign of the relevant factors. The resulting factor loadings then correspond to the original loadings measured from the opposite direction (9, p. 108-113). Thus, higher positive feelings result in higher values of the QLI.

The Alienation Index

The Alienation Index consists of three separate components. These components contain the items which are to estimate the estrangement of the individual from society and the control of his present and future. The Alienation Index $\left(A_{i}\right)$ is given by

$$
A_{i}=A n_{i}+N A_{i}+P_{i}
$$

where $A n_{i}=$ anomie scale value for the $i-t h$ individual,
$N_{i}=$ negative affect scale value for the $i-t h$ individual,
$P_{i}=$ powerlessness scale value for the $i-t h$ individual.

Anomie Scale

As may be seen in Table 10 the anomie scale consists of items designed to measure the degree of self-to-others alienation experienced by the individual. The scaling of the responses is such that disagreement with the items (low levels of anomie) results in a low score and agreement with the items (high levels of anomie) results in a high score. The value of the anomie scale is given by

$$
A n_{i}=E_{1}\left(\sum_{j=1}^{n} a_{1 j} R_{i j}\right)
$$

$R_{i j}$ is the standardized response of the $i-t h$ individual to the $j-t h$ item on the scale, $a_{1 j}$ represents the factor loadings from the factor
analysis of the anomie scale items, and E_{1} is the eigenvalue for the factor associated with the loadings $a_{1 j}$.

Since anomie is a negative socio-psychological concept and the items were structured to measure anomie, the factor loadings (see Table 17) are reflected. Higher levels of anomie will then result in larger negative scores on the anomie scale. Constructed in this manner, the scale shows a lower QLI for higher levels of anomie perceived by the individual.

Negative Affect Scale

As may be seen in Table 11 the negative affect scale consists of items designed to measure negative feelings resulting from individual coding of unpleasant feelings or experiences. The scaling of the responses and the wording of the items are such that the reporting of frequent negative affect experiences results' in a more negative scale value. The value of the scale is given by

$$
N A_{i}=E_{1}\left(\sum_{j=1}^{n} n a_{1 j} R_{i j}\right)
$$

$R_{i j}$ is the standardized response of the i-th individual to the j-th item on the scale, $n{ }_{1 j}$ represents the factor loading from the factor analysis of the negative affect scale items, and E_{1} is the eigenvalue for the factor associated with the loadings na ${ }_{1 j}$.

Since the negative affect is a negative socio-psychological concept, the factor loadings (see Table 18) are reflected so that a greater manifestation of negative affect will result in a lower QLI for the individual.

Powerlessness Scale

As the result of the analysis, the conceptual framework of the powerlessness scale is divided into two factors. Factor 1 consists of the items which delineate a lack of control and Factor 2 consists of items which depict a sense of control over one's life. Based upon the content of the items, Factor 1 and Factor 2 of the powerlessness scale may be thought of as negative and positive personal effectuation respectively. Given the method of principal axis, the results indicate that initially more variation in the responses is accounted for by negative effectuation than by positive effectuation, but as may be seen in Table 19, this relationship is not stable over time. The grouping of the items upon specific factors remains constant, but the relationship of the factors in quarter 2 has reversed itself in quarter 10. In quarter 10 the positive effectuation factor extracts more variation than does the negative effectuation factor. The value of the powerlessness scale is given by

$$
P_{i}=E_{1}\left(\sum_{j=1}^{n} p_{1 j} R_{i j}\right)+E_{2}\left(\sum_{j=1}^{n} p_{2 j} R_{i j}\right)
$$

$R_{i j}$ is the standardized response of the $i-t h$ individual to the $j-$ th item on the scale, $p_{1 j}$ and $p_{2 j}$ are the factor loadings for Factor 1 and Factor 2 respectively from the factor analysis of the powerlessness scale, and E_{1} and E_{2} are the eigenvalues for the factors associated with the loadings $p_{1 j}$ and $p_{2 j}$ respectively.

Since the analysis results in a negative and a positive factor for the powerlessness scale, the factor loadings for negative
effectuation (F1 for Q02 and F2 for Q10) are reflected to allow the integration of the two components into one score for the scale. Thus, agreement with the negative items will result in a lower score while disagreement will result in a higher score. Agreement with the positive items will result in a higher score while disagreement will result in a lower score. Higher scores on the powerlessness scale will show a perceived ability to control the outcome of one's life and will result in a higher QLI $_{i}$.

The Worry Index

Based upon the initial factor analysis which contained all items from all scales, the worry scale is included as a separate index. The worry items tended to load on a separate factor for all three data sets. The result is in keeping with the previous findings that worry does not vanish or diminish as one changes socio-economic groups, but the composition of the worry experienced does vary among socio-economic groups.

The worry scale is comprised of items structured to determine how frequently an individual worries about given areas of life. Frequent worries result in low scores and low levels of worry result in high scores as may be seen in the scaling of responses in Table 13. Given this type of scale, it is not necessary to reflect the factor loadings. The value of the worry scale is given by

$$
W_{i}=E_{1}\left(\sum_{j=1}^{n} w_{1 j} R_{i j}\right)
$$

$R_{i j}$ is the standardized response of the $i-t h$ individual to the $j-t h$ item on the scale, $w_{1 j}$ is the factor loading from the factor analysis of the worry scale items, and E_{1} is the eigenvalue for the factor associated with the loadings $\mathrm{w}_{1 \mathrm{j}}$.

Lower levels of worry are assumed to be associated with a higher quality of life, and the scale construction is such that QLI is higher when the level of worry is lower.

The Self-Esteem Index

The Self-Esteem Index consists of three separate components. These components consist of items which estimate the positive feelings and personal regard which the individual has for himself and his life situation. The value of the Self-Esteem Index is given by

$$
S E_{i}=S S_{i}+P A_{i}+L S_{i}
$$

where $S E_{i}=s e l f-e s t e e m$ scale for the $i-t h$ individual,

$$
S_{i}=s e l f-s a t i s f a c t i o n ~ s c a l e \text { for the } i-t h \text { individual, }
$$

$P_{i}=$ positive affect scale for the $i-t h$ individual,
$L S_{i}=$ life satisfaction scale for the $i-t h$ individual.
The grouping of the individual components into a separate index is assumed to be a measure of positive components of the socio-psychological quality of life. The initial, simultaneous analysis of all items used in the construction of the QLI substantiated the composition of this index.

$\underline{\text { Self-Satisfaction Scale }}$

The self-satisfaction scale is comprised of two components: a lack of or negative self respect (Factor 1) and a positive self respect (Factor 2). The value of the self-satisfaction scale is given by

$$
S S_{i}=E_{1}\left(\sum_{j=1}^{n} s s_{1 j} R_{i j}\right)+E_{2}\left(\sum_{j=1}^{n} s s_{2 j} R_{i j}\right) .
$$

$R_{i j}$ is the standardized response of the i-th individual to the j-th item on the scale, $s s_{1 j}$ and $s_{2 j}$ represent the factor loadings for Factor 1 and Factor 2 respectively from the factor analysis of the self-satisfaction scale, and E_{1} and E_{2} are the eigenvalues for the factors associated with the loadings $s s_{1 j}$ and $s s_{2 j}$ respectively.

Self-satisfaction is assumed by this analysis to be a positive component of an individual's perceived quality of life. The factor loadings of Factor 1 are, therefore, reflected to allow the integration of Factor 1 and Factor 2 into a single measure of self-satisfaction. Agreement with the items that loaded heavily on Factor 1 will lower the QLI of the individual, and agreement with items that loaded heavily on Factor 2 will raise the QLI of the individual.

Positive Affect Scale

The positive affect scale is comprised entirely of items measuring positive aspects of the individual's life, so it is not necessary to reflect the factor loadings derived for this scale. The value of the positive affect scale is given by

$$
P A_{i}=E_{1}\left(\sum_{j=1}^{n} p a_{1 j} R_{i j}\right) .
$$

$R_{i j}$ is the standardized response of the $i-t h$ individual to the j-th item on the scale, $\mathrm{pa}_{1 j}$ is the factor loading from the factor analysis of the positive affect scale, and E_{1} is the eigenvalue for the factor associated with the loadings ${ }^{\mathrm{pa}}{ }_{1 j}$.

The analysis assumes that more frequent occurrences of the events covered in the positive affect scale are associated with a higher personal quality of life. Thus, higher scores on the positive affect scale result in a larger value for the QLI.

Life Satisfaction Scale

Unlike the other scales, the items in the life satisfaction scale are not comprised of positive or negative type items; rather, they allow the individual to rank his response along a discrete continuum. The value of the life satisfaction scale is given by

$$
L S_{i}=E_{1}\left(\sum_{j=1}^{n} \ell s_{1 j} R_{i j}\right)+E_{2}\left(\sum_{j=1}^{n} \ell s_{2 j} R_{i j}\right)
$$

$R_{i j}$ is the standardized response of the $i-$ th individual to the j-th item on the scale, $\ell s_{1 j}$ and $\ell s_{2 j}$ represent the factor loadings for Factor 1 and Factor 2 respectively from the factor analysis of the life satisfaction scale, and E_{1} and E_{2} are the eigenvalues for the factors associated with the loadings $\ell s_{1 j}$ and $\ell s_{2 j}$ respectively.

Factor 1 consists of life quality rank items indicating the individual's ranking of his past, present, and future life step. Factor 2 consists of current life situation items which indicate whether the individual would change his life or continue it as it currently is. Higher scores on the life satisfaction scale indicate that the
individual feels he has, is, and will continue to experience a life condition which he ranks as high and which he would not change. A low score on the scale indicates that the individual feels that he has, is, and will continue to experience a life condition which he ranks as low and which he prefers to change.

Since satisfaction with one's life is assumed to be a positive aspect of perceived quality of life, it is not necessary to reflect the factor loadings of either Factor 1 or Factor 2. Higher scores on the life satisfaction scale result in higher scores on the QLI for the individual.

The Quality of Life Index

The quality of life perceived by the individual as represented by the QLI is assumed to be a linear function of the alienation, worry, and self-esteem which the individual experiences.

The quality of life index (QLI) is

$$
\mathrm{QLI}_{i}=\mathrm{A}_{i}+\mathrm{W}_{i}+\mathrm{SE}_{i}
$$

where

$$
i=1,2,3, \ldots, N \text { (individuals) }
$$

$$
A_{i}=\text { the alienation index for the i-th individual, }
$$

$$
W_{i}=\text { the worry index for the } i-t h \text { individual, }
$$

$$
S E_{i}=\text { the self-esteem index for the } i-t h \text { individual. }
$$

MODEL FOR ANALYTIC EVALUATIONS AND
HYPOTHESES TO BE TESTED

The quality of life index (QLI) developed in Chapter III is the dependent variable in the analytic model used herein. The interrelationship between income and a sense of well-being is viewed by the analysis as a hypothesis rather than as an established relationship. "The extent to which income level affects the individual's sense of well-being depends upon his social environment, values, aspirations, and ideas about fairness and equity" (32, p. 3). The QLI is constructed to measure and integrate these variables into one aggregate index. Having developed the framework necessary to derive a potential measure of the individual's perceived quality of life, the analysis focuses upon a hypothetical framework for elements in the individual's socioeconomic environment which may serve as determinants of the perceived individual quality of life. The analysis will proceed in two stages. The first stage will determine the "best" functional relationship for the variables which have been selected as theoretically relevant to the model. The best functional relationship will be selected upon the basis of three criteria: R^{2}, significance of the coefficients, and the theoretical acceptability of the signs of the coefficients of the income variables. Having chosen a functional form, the second stage of the analysis will test hypotheses related to the variables in the model.

The Model

The theoretical, nuclear model used to analyze the relationship between the quality of life index and the proposed determinants of the QLI is judged to contain the following variables:

$$
Q L I_{i}=f\left(Y_{i}, E D_{i}, \operatorname{AGE}_{i}, N_{i}, L_{i}, R_{i}, \operatorname{PERFARMY}_{i}, N W_{i}, Q T R, E_{i}\right)
$$

where

```
    QLI }\mp@subsup{i}{i}{= the quality of life index for the i-th individual,
            Yi
            ED i = educational level of the i-th individual,
        AGE i
    N
    L}\mp@subsup{i}{i}{=}\mathrm{ geographical location of the residence of the i-th family
        unit,
    R = race of the i-th individual,
PERFARMY i = farm income total income composition term for the i-th
        family unit,
    NW
    QTR = time variable,
    E = error term for the i-th individual.
```

Theoretical Model Components

Economic theory and the results of prior research suggest the independent variables of the nuclear model.

Age

Katona (17) found that when compared with middle age and older people, a higher proportion of younger people in the United States feel
they are better off than they were five years ago, and they expected to be better off in five years. For this reason the analysis includes age as one of the potential determinants of the QLI. Katona's findings also indicate that the frequency of expected gains was higher in younger than middle age respondents. The a priori judgment is, therefore, that the perceived quality of life will be inversely related to age, and the sign of the coefficient for this component in the model will be negative.

Education

Based upon the work of Heiss and Owens (15), one would expect the level of respondent educational attainment to influence the QLI. Yuchtman (41) also indicated that education is one of the variables most frequently used to determine socio-economic status. Although the QLI is not an alternative measure of socio-economic status, the analysis assumes that education could affect QLI in much the same manner, and it is a priori expected that education will have a positive coefficient in the QLI function. Education is, therefore, considered as a potentially appropriate independent variable for inclusion in the general QLI model.

Number of Individuals in the Family Unit

The size of the individual family unit appears to have theoretical validity for incorporation into the model on at least three premises. First, the size of the family may result in an actual physical crowding which may result in a decline in the perceived quality of life (31). Secondly, the size of family may interact with family income. Although
personal tastes and preferences will ultimately determine the role of family size in the QLI, two distinct income-family size interactions are immediately discernable. For a given level of income a larger number in the family unit results in a lower dollar per family member with which to purchase goods and services which contribute to quality of life. In this way family size could be inversely related to QLI. For a given quality of life per family, adding one more person to the family requires additional income, but successive additions to the family require smaller additions to income because of economies of family size. For a given income per person, large families may, therefore, sometime be "happier" families. Third, the size of family may itself make a positive contribution to QLI. Particularly among farm families, additional children contribute to the family labor supply. Since the study sample was taken entirely from a rural population, the possibility exists for family size to exhibit this positive relationship to QLI. Sufficient justification exists for including family size as a variable in the QLI model, but no a priori judgment is made concerning the expected sign of the coefficient. By allowing nonlinear forms and interactions with income and other variables, the analysis allows considerable flexibility in the functional relationship between QLI and number in family.

Location

Since the study sample consists of individuals from Iowa and North Carolina, it appears a priori consistent to include a location variable. Iowa and North Carolina are geographically and culturally distinct from one another, and the influence of these differences would not
potentially be measured by the other variables in the model. A location variable could also pick up differences in the cost of living between the two study areas and could possibly capture a relative poverty affect. This would occur when the low income individuals are significantly differentiated from the average of their economic environment and/or perceive their situation to differ significantly from their economic environmental mean.

Race

Yancy, Rigsby, and McCarthy (40) found that there were racial differences on self-evaluations, but that there was no systematic pattern for the affect of race. Heiss and Owens (15) found that selfevaluations by blacks and whites varied depending upon the trait involved, but differences were found. Tweeten and Lu (36) found race to be significant at the 0.10 level or better in the determination of political involvement, political anomie, racial progressiveness, and personal effectiveness. Based upon these findings, a race variable is initially judged to be appropriate for the model, but no a priori judgment is made concerning a positive or negative relationship with QLI.

Farm Income-Tota1 Income Ratio

The analysis assumes that the possibility exists for income source to influence the QLI. Since the study sample was entirely rural, the variable PERFARMY is included as a potential measure of any variation in QLI which could be explained by the ratio of farm income to total income. Tweeten and Lu (36) found occupation to be a significant
determinant of personal effectiveness. Since the data set used for the analysis is largely composed of blue-collar workers and farmers, the occupational effect is not expected to be of major importance except for farm and nonfarm differences which would be reflected in PERFARMY.

PERFARMY may also adjust for differences which may exist in the measures of farm and nonfarm income. This variable would capture the effects of systematic underreporting of income. Since underreporting is of potentially greater significance for self-employed individuals, the presence of farmers in the data sample requires that the analysis measure the differences which exist between farm and nonfarm income.

Net Worth

Economic theory postulates wealth as one of the determinants of consumer utility or satisfaction (2, p. 249-251). The mere possession of wealth as a source of security, prestige, and a fund for heirs is taken as a contributing factor in the individual's theoretical utility function. If the QLI is to be a proxy for individual utility then net worth (NW) must initially be considered a component of the general QLI model.

Time

A time variable is included to measure variation in QLI when all proposed variables are held constant and time is allowed to vary. Since no preprogram observations are available for the social indicator scales, this type of evaluation is of particular interest. Holding all variables constant except time (QTR), the analysis will be able to detect long run adjustments in QLI which are not explained by the
other independent variables. Two sources of QLI adjustment which would be measured by QTR are changes associated with the initiation of the program and/or the program payments and trends or attitude fluctuations reflecting changes in the general mood of the nation.

Quarter 2 and quarter 10 are the same season, hence seasonal compounding does not occur; therefore, any variation explained by QTR would not represent a seasonal adjustment.

Income

If each consumption unit with the economy had access to unlimited income, the relevance of income to the proposed quality of life index would evanesce. The theory of consumer behavior assumes and reality demonstrates, however, that each consumption unit has some maximum amount of income that can be spent on goods and services per unit of time. Given this assumption, the family unit's problem becomes how to allocate the limited money income subject to the restriction that satisfaction is maximized.

Prior research on indicators has included income as a contributor to social well-being. Since this study focuses primarily upon the relationship between income and the QLI, a detailed examination of income will be undertaken. Alternative definitions of income will be considered within the structure of the general QLI model. Alternative definitions are considered to more precisely identify the influence of income upon QLI. Hypotheses have been formulated to evaluate the role of income in the QLI relationship, and the definition of income are put forth with their respective hypotheses.

The analysis assumes that QLI is most strongly influenced by recent income. The components of total income (Y) are, therefore, lagged one quarter. Given economic theory, the study initially assumes that the influence of income upon QLI will have a diminishing marginal affect.

This analysis assumes that the household income is the appropriate unit of analysis for income in the QLI model. Household income in this analysis is taken to be the income of the primary wage earners of the family unit--head of household and spouse--and will hereafter be referred to as income or family unit income. Total income (Y) is defined as the aggregation of three classes of income:

$$
Y=Y_{e}+\left(Y_{t r}+Y_{p p}\right)
$$

where

$$
\begin{aligned}
& \quad \mathrm{Y}=\text { total income for the family unit, } \\
& \mathrm{Y}_{\mathrm{e}}=\text { income of the family unit earned from labor or assets, } \\
& \mathrm{Y}_{\mathrm{tr}}=\text { transfer payments to the family unit not associated with the } \\
& \text { Rural Income Maintenance Experiment, } \\
& \mathrm{Y}_{\mathrm{pp}}=\text { transfer payments by the experimental family units in the } \\
& \quad \text { Rural Income Maintenance Experiment. } \\
& \text { Each of the three income classes is described in more detail in the } \\
& \text { following pages. }
\end{aligned}
$$

Earned Income (Y_{e}). For the purposes of this study, earned income was defined as all income received for goods and services produced by the individual family unit of income from resources controlled by the family where

$$
\mathrm{Y}_{\mathrm{e}}=\mathrm{TP}+\mathrm{NFI}+\mathrm{NBI}+\mathrm{R} .
$$

The variables on the right side are defined below.
Total pay for the past quarter (TP) consists of all wages which the individual received during the past quarter. Defined in this manner, TP includes not only wages from the individual's primary employment, but it also includes wages for any part time or seasonal work which occurred during the previous quarter. This insures that short term but potentially significant amounts of income are measured. Since the study sample was drawn from the rural population, the seasonal nature of agricultural employment dictates that wage income from seasonal employment be included in the definition of $T P$. When income is segmented into increasing and decreasing income, this comprehensive calculation of earned income will facilitate the detection of differences should they exist. TP is zero for individuals who had no period of employment during the previous quarter.

Net farm income (NFI) includes all reported net returns to farming activities conducted by the family unit during the previous quarter. For individuals who were not engaged in agricultural activities this component is zero. For individuals engaged in agricultural enterprises, the value of this component could be positive, negative, or zero depending upon the outcome of the activity.

Net business income (NBI) includes all returns to nonagricultural enterprises undertaken by the family unit during the previous quarter. For individuals with no business enterprise, this component is zero. For individuals engaged in business activities, this component of income is positive, negative, or zero depending upon the outcome of the activity during the past quarter.

Rent (R) consists of all income received by the family unit resulting from the rental of property during the past quarter.

Transfer Income (Y_{tr}). For the purpose of this study, Y_{tr} was defined as income not included in Y_{e} but exclusive of payments received due to participation in the Rural Income Maintenance Experiment. Y tr is made up of income transfers to the family unit from public agencies, private agencies, or individuals not currently members of the family unit. Transfer payments is calculated in the following manner:
$\mathrm{Y}_{\mathrm{tr}}=\mathrm{SSRI}+\mathrm{VB}+\mathrm{P}+\mathrm{FS}+\mathrm{FC}+\mathrm{SP}$.
Social security and retirement income (SSRI) is all benefits accruing to the family unit under the provisions of the Federal Social Security program and income from any retirement program received by the respondent or other member of the family unit.

Veterans benefits income (VB) is all benefits received by the respondent or other family member and which are disbursed by the Veterans Administration.

Pension income (P) consists of all pension and annuity income received by the family unit during the past quarter which is not included in SSRI.

Food stamp income (FS) is the addition to total income resulting from the purchase and use of food stamps by the family unit. The value of $F S$ is determined for the Iowa subset by subtracting the purchase price of food stamps purchased during the past quarter from the value of the groceries purchased with the stamps. This prevents the double counting which would occur if the value of the groceries purchased were added directly to income. For the North Carolina subset
the value of FS is the value of free food received under the Federal commodity program.

Family care income (FC) consists of all money received by the family unit to be used for the care of some member of the family and which is furnished by a person not currently residing with the family unit.

Special payments income (SP) includes any of the following types of income--government assistance programs such as ADC, job training, life insurance death benefits, trust fund payments, scholarship or fellowship for attending school, prizes or awards over $\$ 100$, and gifts from outside the family--received by the respondent or other member of the family unit.

Program Payment Income (Y_{pp}). Program payment income is the payment received by the experimental family units of the Rural Income Experiment as their income supplement from the program. This component was based upon income and varied according to the payment plan to which the individual family unit had been assigned, and the number of individuals in the family unit eligible to participate. The payments were also adjusted during the program to compensate for increases in the cost of living. $Y_{p p}$ is calculated in the following manner:

$$
Y_{p p}=g(P L)-T x\left(Y_{e}\right)
$$

where
$g=$ the guarantee level as a percentage of the full guarantee, PL = poverty level, full guarantee level,
$T x=$ the program tax rate on earned income.

The full guarantee levels (PL) are given in Table 1 and the combinations of guarantee level (g) and tax rate (Tx) with the distribution of participants for this study in each category are given in Table 2.

Guarantee level (g) is the precommencement, administratively determined percentage of the full guarantee level or poverty level which the experimental family units would receive if their earned income (Y_{e}) were zero. Due to the adjustment of the poverty level for family size, the payments received by individual family units within a guarantee level also varied. The tax rate (Tx) for the individual family unit was also administratively determined prior to the commencement of the program. Tax rate determines the rate at which earned income $\left(Y_{e}\right)$ is deducted from the individual's guaranteed level of income.

Error

The error term includes the influence of differences which exist among the individuals in the study sample, sampling error, and random disturbances caused by the experimental process itself. This error is unaccounted for by the independent variables included in the analysis. The regression model used in this analysis assumes that the error is randomly distributed within the sample.

Hypotheses to be Tested

The analytic model allows an investigation of the relationship between QLI and various demographic characteristics of the sample population. Nonincome components of the model will be evaluated by significance level and size of their respective coefficients.

Table 1. Full Guarantee Levels. ${ }^{\text {// }}$

Payment Status	8/69-8/70		8/70-8/71	
	Margina1 Payment	Total Payment	Marginal Payment	Total Payment
	(Dollars	year)	(Dollars	year)
Household Head	1,319	1,319	1,398	1,398
Spouse	844	2,163	895	2,293
First Dependent	739	2,902	783	3,076
Second Dependent	580	3,482	615	3,691
Third Dependent	422	3,904	447	4,138
Fourth Dependent	369	4,273	391	4,529
Fifth Dependent	317	4,590	336	4,865
Sixth Dependent	264	4,854	280	5,145
Seventh Dependent	211	5,065	224	5,369
Eighth Dependent	158	5,223	167	5,536
Additional Dependents	0	5,223	0	5,536
Other Adults	844	--	895	--
Detached Dependents	--	--	--	--

${ }^{1 /}$ Rural Income Maintenance Experiment Final Report, Vol. I: Objectives, Design and Administration, Chapter 5, "Rules of Operation," p. 22.

Table 2. Alternate Tax Rate--Guarantee Combinations.

$\begin{gathered} \text { Plan } \\ \text { No. } \end{gathered}$	Tax Rate	Guarantee Leve1	Iowa Sample Size			North Carolina Sample Size			Tota1 Sample Size		
			Data Set			Data Set			Data Set		
			H	S		H	S	A	H	S	A
1	. 50	. 50	11	9	20	23	14	37	34	23	57
2	. 70	. 75	8	8	16	14	11	25	22	19	41
3	. 50	. 75	26	28	54	47	34	81	73	62	135
4	. 30	. 75	23	24	47	39	31	70	62	64	117
5	. 50	1.00	. 26	23	49	38	33	71	64	36	120
6	. 50	1.25	2	0	2	0	0	0	2	0	2
7	. 70	1.25	0	0	0	0	0	0	0	0	0
8	. 30	1.00	2	0	2	0	0	0	2	0	2
9	0.00	0.00	106	98	204	183	146	329	$\underline{289}$	244	533
			204	190	394	344	269	613	548	459	1007

Unanticipated signs for the nonincome coefficients will not be, however, a sufficient reason for removal of a variable from the model.

The investigation of income is more comprehensive than that of the other variables, and it focuses upon a consideration of a1ternative hypotheses concerning the role and composition of the consumption units' income which may contribute to the level of QLI for the household head and spouse.

As noted in the discussion of prior studies, cross-sectional analysis (within societies) demonstrates a positive association between income and happiness. Although other components of socio-economic status such as education are mentioned, economic considerations have been found to be the most frequently mentioned reason for being happy or unhappy (13, pp. 215-223). Stumpel (34) in a more recent study has also found a strong relationship between satisfaction with income and a sense of well-being.

Thus, economic theory and prior research into the area of happiness and indicators of well-being appear to justify the somewhat detailed consideration of the relationship between income and the QLI undertaken in this analysis.

General Mode1 Hypotheses

Selection of a functional form for the general QLI model will be accompanied by the first test of hypotheses. The first hypotheses involve the selection of the variables to be retained in the mode1. These tests will provide an empirical evaluation of the independent variables selected as theoretically appropriate for the model. The tests consist of the determination of the significance of the regression coefficients
of the variables to be retained in the model. These tests will be conducted using all three data sets: head of household, spouse of head of household, and data set ALL.

Two hypotheses of specific economic orientation will be evaluated with the general model.

Income Relevance Hypothesis

This hypothesis will test the justification for the inclusion of income in the QLI model. The null hypothesis to be tested is that income is not a significant variable in the determination of the perceived quality of life as reflected by QLI $_{i}$. Two levels of evaluation will be used to establish the role of income in QLI. First, an unrestricted and restricted model will be run. These models will be respectively the general QLI model with and without income as an independent variable. The null hypothesis will then be evaluated using the restricted and unrestricted models to perform an F test. Second, the significance of the respective regression coefficients for income variables relevant to the functional form selected will be tested using a t-test. Rejection of the null hypotheses that income is not significant in the regression model and that the regression coefficients are not significantly different from zero would support the conclusion that income does play a role in the determination of the individual QLI and would form the basis for a more comprehensive consideration of the exact relationship of income in the QLI model.

If income is retained as a variable in the QLI functional relationship, it will provide the departure point for the testing of various alternative hypotheses to ascertain more precisely the exact relationship between income and the QLI.

Temporary Phenomenon Hypothesis

This hypothesis will test for the effect of time upon QLI when all other variables are held constant. The evaluation of time will be undertaken in two parts. Given values of the independent variables, the first hypothesis to be tested is that the QLI does not change over time. QTR will not indicate the source of variation, but the significance of QTR will indicate a systematic variation in QLI which is not explained by the other variables in the model. The significance of the coefficient of QTR will demonstrate potential refinement of QLI which can be made with improvement in the data and/or an expanded and improved mode1.

Income Specific Hypotheses

Given that income is found to significantly influence QLI, the analysis will proceed to evaluate alternative hypotheses concerning the role of income in the determination of QLI.

Age-Income Hypothesis

The impact of income on QLI may differ by age groups within the population. The interaction terms considered in the formulation of the general model will test for changes in the slope of the function resulting from an age-income interaction, but they will not test for linear shifts in the function resulting from an age-income interaction. The age-income hypothesis will test for this type of linear shift.

Relative versus Absolute Hypothesis

QLI may be affected by the relative rather than the absolute level of income. A demonstration affect has been observed in the formation of individual attitudes and individual perception of reality. With any given level of income, the possibility exists that there is an independent influence upon QLI resulting from the individual's income level relative to that of other persons in the area. The relative versus absolute hypothesis will be tested first through an evaluation of a linear shift variable. These variables will be constructed to indicate income level relative to the sample mean of the respective areas. If the linear shift is found to exist, the structural stability of the system will also be tested.

Irreversibility Hypothesis

It is possible that irreversibility is present in the relationship between income and QLI. Once a level of QLI has been reached by the individual, irreversibility means that the coefficients of the income variables are different for rising and falling income. The presence of one or more irreversible variables in a function may affect the analysis in two ways: (1) the partial influence of each independent variable cannot be determined exactly, (2) the coefficients of all other independent variables can be distorted--even changes in signs may occur (37).

The variable change hypothesis will examine the question of irreversibility in the QLI-income relationship. This hypothesis will be evaluated by two methods. First, the entire sample will be considered and income will be segmented into two components. The procedure for
segmenting the variable is outlined in an article by Tweeten and Quance (37) and supplemented in a subsequent comment by Wolffram (36). Houck (16) has pointed out that the Tweeten-Quance and Wolffram framework had not dealt with the critical problem of the starting point or initial observation. In this study, the Houck method is used, employing income observations from the time period prior to the first QLI observations. The test of irreversibility will take place in two stages. The first stage is to test the significance of the individual components of the income variable. If the individual components are found significant, the second stage test will be to test whether the coefficients of the individual components are different from each other. The marginal response of QLI to income is expected to be greater for falling income than for rising income.

The second method of evaluation of the variable change hypothesis will be to divide the sample into two subsets: observations for an increase in income and those for a decrease in income. The structural stability of the system with respect to a rising-falling income classification will be evaluated by comparing the regression results of the pooled and segmented data sets.

Earned Income Hypothesis

Two alternative positions have been put forth in the economic literature which make it imperative to separate the response of QLI to earned and unearned income. The first position holds that there is a social status and psychological lift imported to the individual engaged in gainful employment (6). The receipt of transfer payments is considered to be demeaning and a stigma is attached to those on welfare.

Given this position, one expects a discounting of Y_{tr} when compared to Y_{e} in the QLI. The second position holds that governmental transfer income to low income individuals results in less work and more leisure for recipients (23), and it implies that $Y_{t r}$ and the accompanying leisure contribute more to individual QLI than Y_{e}. Given that a rational individual will not voluntarily lower his QLI, position one implies that for a given total income, QLI will be higher the larger Y_{e} and the smaller Y_{tr}. Position two implies the reverse. Since the second position is attributed in particular to low income individuals, the study sample should display this characteristic if it is indeed prevalent within the economy. The relationship among QLI, Y_{e}, and $Y_{t r}$ is tested in two stages. The first stage consists of the determination of the significance of Y_{e} and $Y_{t r}$ in the QLI model. If Y_{e} and $Y_{t r}$ are found to be significant components when entered separately into the QLI, the analysis will turn to a comparison of the regression coefficients of the respective variables. If they do not differ significantly from each other, they will be combined into the single income component Y .

Farm Income Hypothesis

The variable PERFARMY allows the analysis to measure the potential effect of the farm income as a proportion of total income on QLI. It does not, however, allow the analysis to consider farm income as a separate type of income. The farm income hypothesis is included as a test of the admissibility of farm income as a separate income component into the QLI framework.

Net Worth Hypothesis

The existence of a wealth effect and the potential influence of this effect upon consumers has been discussed in the economic literature since Pigou put forth a formulation of this proposition in 1941. A net worth hypothesis is included in the analysis as a potential measure of the impact of wealth upon QLI.

CHAPTER V

EMPIRICAL VALIDATION OF THE MODEL AND ASSOCIATED HYPOTHESES

Empirical evaluation of the general form of the model and hypotheses will be undertaken in two phases. The first phase will evaluate alternative functional forms and the variables appropriate to the respective forms. This phase will test the noneconomic hypotheses discussed in Chapter IV and the economic hypothesis that income should be included in the model. Given the general form for the QLI model selected in the first phase of the empirical evaluation, the second phase will assess the precise role of income in the determination of the QLI.

Model Selection

Model selection consists of choosing appropriate functional forms and the variables relevant to each respective model.

Functional Forms Considered

Four general forms for the model are considered as consistent with economic theory.

Power Function

The power or Cobb- Douglas functional relationship is considered as potentially appropriate for the general form of the model. Since
negative coefficients for the income variable of the model would result in interpretations inconsistent with economic theory, only a positive coefficient is considered acceptable for inclusion in the final model. This functional form would allow the QLI to increase at an increasing rate or to decrease at a decreasing rate with respect to the independent variables. A declining marginal response of QLI to income would be expected. Although the influence upon QLI of any variable in this functional form may diminish and approach zero, the form also assumes that QLI never reaches a maximum or minimum. While the marginal response of QLI is infinite for the first unit of income and cannot be negative, these shortcomings of the power function may be ignored in the range of income data considered.

The function
$Q L I_{i}=a \underset{j=1}{k} x_{i j}^{b} \cdot e^{c_{1} D_{i 1}+x_{1} D_{i 2}}$
i $=1,2, \ldots, n$ (observations)
j $=1,2, \ldots, k$ (variables)
$\mathrm{X}_{\mathrm{ij}}^{\mathrm{b}}=$ the respective independent variables introduced in Chapter IV
$\mathrm{D}_{1}=$ location dummy
$\mathrm{D}_{2}=$ time dummy
was estimated using ordinary least squares as follows:

$$
\log Q L I_{i}=\log a+\sum_{j=1}^{k} b_{j} \log X_{i j}+c_{1} D_{i 1}+c_{2} D_{i 2}
$$

While conserving degress of freedom by use of a minimum number of variables, this form of the model has the additional appeal of allowing curvilinear responses and interaction among explanatory variables. It
has, however, the computational problem of not easily accommodating variables which have some observations with a value of zero.

Quadratic Function

Given the expectation of a declining marginal response of QLI to income, the quadratic functional relationship is also considered as potentially appropriate for the basic model. It allows the response of QLI to the respective independent variable to reach a maximum and to decline. Mathematically the possibility exists for a positive or negative coefficient to be associated with any of the squared terms, but a positive coefficient for the squared income term would not be consistent with the theory of declining satisfaction resulting from continued consumption of additional units of any good or service beyond some point. Thus, a negative coefficient for the squared income term and the accompanying declining marginal relationship between the economic variables and the QLI is expected. The quadratic form does, however, force a linear marginal response of QLI to the independent variables.

The function to be estimated includes linear and squared terms as well as terms for the interaction among variables. No more than two-way interactions are considered for the quadratic and other functional forms discussed below.

Square Root Function

The square root functional relationship is considered as an alternative to the quadratic functional form. It allows the QLI to reach a maximum and decline as does the quadratic, and a curvilinear
marginal relationship may decrease at a decreasing rate. Positive coefficients for the square root terms of the income variables are consistent with economic theory, and a declining marginal relationship between the QLI and the economic variables was expected. The function to be estimated includes the noneconomic variables discussed in Chapter IV, aggregate income, and the variables representing the potential interactions among the various independent variables.

Cubic Function

The analysis also considers the possibility that the QLI-income relationship could be more complex than suggested by a second order polynomial. To explore this possibility, a cubic functional relationship is considered as potentially appropriate for the income variable in the general QLI model.

Interaction Terms

Due to the large number of potential interaction terms, the Stepwise MAXR procedure (28, pp. 127-131) of the SAS system is used to select interaction terms for the square root, quadratic, and cubic models. The MAXR procedure is initially applied to the models containing all linear interaction terms judged to be relevant to the model. Addition of theoretically relevant squared and cubic interaction terms does not result in additional significant coefficients for variables.

Evaluation Criteria

Variables included in the general form of the model are evaluated on the basis of coefficient size and statistical significance. Income
variables will be rejected if signs of coefficients do not conform with economic theory. Because theory is less precise for the noneconomic variables, these variables will be evaluated only on the basis of the statistical significance of the coefficients.

The economic orientation of the analysis makes the significance and signs of the income coefficients the first evaluation criteria. As may be seen in Tables $3,6,7$, and 8 the signs of the income coefficients are consistent with economic theory for all functional forms, but the significance levels for some of the coefficients of the income variables in the square root and cubic forms of the general QLI model make them less desirable as tools for the analysis of income within the QLI. The final forms of the quadratic and power functions were, therefore, compared for their ability to explain the variation observed in the QLI. A comparison of the R^{2} for the respective functions shows that the quadratic form explains 15 percent more QLI variation than does the power function. Based upon these evaluations the quadratic functional form is selected as the most appropriate basic model for the QLI relationship. Since the quadratic form is selected as the basic model, an initial and intermediate form of this function are presented in Tables 4 and 5.

Certain of the interaction terms selected by the MAXR procedure were removed from the model to ascertain the behavior of the model when they were not present. This was done with the variables YN, EDPERFARMY, and EDN. The interaction term for income and number in family (YN) enters the model as significant at the 0.03 probability level, but Y enters the model only if the admissible significance level is set much lower than .10. Removal of the term YN results in a significance

Table 3. Final Regression Equation for the Power Function Form of the General QLI Model--Dependent Variable: QLI; Data Set = ALL.

Variable	Coefficient	Prob $>\|T\|$	T for H_{0} : $\mathrm{B}=0$	Standard Coefficient
Intercept	4.84362082	0.0001	25.98322	--
$\log Y$	0.01685491	0.0670	1.83300	0.03225
$\log E D$	0.08229415	0.0016	3.15720	0.06359
log PERFARMY ${ }^{\text {a }}$	0.01261101	0.0001	4.98557	0.08794
10 g AGE	-0.07176591	0.0498	-1.96274	-0.03672
STATE	0.10111901	0.0001	4.43480	0.08530
QTR	-0.73772791	0.0001	-37.87394	-0.63737
$N=1995{ }^{\text {b }}$	$R^{2}=0.447 \quad$ F Statistic $=267.43$			
$S=0.4312$	Sig. of $\mathrm{F}=0.0001$			
a Individuals with PERFARMY $=0$ were assigned a value of 0.0001 toprevent a significant reduction in sample size.				
zero. ${ }^{\mathrm{b}}$ Nineteen observations were lost due to variables whose value was				

Table 4. Initial Regression Equation for the Quadratic Form of the General QLI Model--Dependent Variable: QLI; Data Set = ALL.

Variable	Coefficient	Prob $>\|\mathrm{T}\|$	T for H_{0} : $\mathrm{B}=0$	Standard Coefficient
Intercept	100.42401844	0.0001	14.97129	--
Y	0.00302804	0.0001	4.59346	0.14350
Y^{2}	-0.00000011	0.0084	-2.63724	-0.07766
$E D^{2}$	0.09944735	0.0001	6.43813	0.11757
STATE	5.69888587	0.0014	3.20101	0.06542
AGE	0.72902036	0.0098	2.58702	0.21297
AGE ${ }^{2}$	-0.00835319	0.0067	-2.71546	-0.22639
R	0.36625849	0.8204	0.22704	0.00412
N	-0.43683561	0.1841	-1.32876	-0.02220
QTR	-63.37719429	0.0001	-51.63233	-0.74532
$N=2014$	$\mathrm{R}^{2}=0.589$	$F=320.212$		
$s=27.297$		Sig. of $\mathrm{F}=$. 0001	

Table 5. Intermediate Regression Equation for the Quadratic Form of the General QLI Model--Dependent Variable: QLI; Data Set $=$ ALL.

Variable	Coefficient	Prob $>\|T\|$	T for $H_{0}: B=0$	Standard Coefficient
Intercept	99.58092426	0.0001	15.11090	--
Y	0.00284304	0.0001	4.42834	0.13474
Y 2	-0.00000010	0.0140	-2.45845	-0.07128
ED 2	0.10028774	0.0001	6.51020	0.11856
STATE	5.89522212	0.0001	3.93343	0.06767
AGE	0.66398729	0.0169	2.38979	0.19397
AGE				
QTR	-0.00736001	0.0139	-2.46239	-0.19948
N $=2014$	$\mathrm{R}^{2}=0.589$	$\mathrm{~F}=411.413$	-51.65903	-0.74553
S = 27.297		Sig. of $\mathrm{F}=0.0001$		

Table 6. Final Regression Equation for the Quadratic Form of the General QLI Model--Dependent Variable: QLI; Data Set $=$ ALL.

Variable	Coefficient	Prob $>\|\mathrm{T}\|$	T for $H_{0}: ~ B=0$	Standard Coefficient
Intercept	89.80638857	0.0001	11.66334	--
Y	0.00285160	0.0001	4.47336	0.13514
Y^{2}	-0.00000012	0.0032	-2.94706	-0.08506
ED ${ }^{2}$	0.20842045	0.0001	6.00953	0.24640
PERFARMY	8.80197191	0.0001	4.42121	0.06939
StATE	4.00214190	0.0094	2.60059	0.04594
AGE	0.99629061	0.0017	3.13554	0.29104
AGE ${ }^{2}$	-0.00707992	0.0201	-2.32545	-0.19188
AGEED	-0.04265370	0.0003	-3.65903	-0.14434
QTR	-63.17335131	0.0001	-51.83931	-0.74293
$\mathrm{N}=2014$	$\mathrm{R}^{2}=0.596$	F Statistic $=328.94$		
$s=27.0802$		Sig. of $F=$	0001	

Table 7. Final Regression Equation for the Square Root Form of the General QLI Mode1--Dependent Variable: QLI; Data Set = ALL.

Variable	Coefficient	Prob $>\|T\|$	T for H_{0} : $\mathrm{B}=0$	Standard Coefficient
Intercept	32.84997834	0.3063	1.02321	--
Y	-0.00008720	0.9194	0.10118	0.00413
Y. ${ }^{5}$	0.16724609	0.0908	1.69181	0.06996
ED ${ }^{5}$	13.72717077	0.0055	2.77969	0.18304
PERFARMY	9.62936294	0.0001	4.74543	0.07592
STATE	5.84380114	0.0001	3.83986	0.06708
AGE	-0.91090888	0.1022	-1.63487	-0.26610
AGE ${ }^{5}$	14.81785053	0.0513	1.94983	0.33045
AGEED	-0.03124301	0.1051	-1.62151	-0.10572
QTR	-63.11474946	0.0001	-51.34507	-0.74224
$\mathrm{N}=2014$	$\mathrm{R}^{2}=0.590$	F Statistic	319.85	
$s=27.3062$		Sig. of $\mathrm{F}=$. 0001	

Table 8. Final Regression Equation for the Cubic Form of the General QLI Model--Dependent Variable: QLI; Data Set = ALL.

Variable	Coefficient	Prob $>\|\mathrm{T}\|$	T for $\mathrm{H}_{0}: \mathrm{B}=0$	Standard Coefficient
Intercept	89.08857788	0.0001	11.49792	--
Y	0.00361756	0.0012	3.23998	0.17144
Y^{2}	-0.00000027	0.1417	-1.46988	-0.19082
$\mathrm{Y}^{3 \mathrm{a}}$	0.00000551	0.4035	0.83561	0.07743
ED 2	0.20953449	0.0001	6.03674	0.24771
PERFARMY	9.03333738	0.0001	4.49383	0.07122
STATE	3.95072609	0.0104	2.56494	0.04535
AGE	0.99040198	0.0019	3.11601	0.28932
AGE ${ }^{2}$	-0.00691592	0.0235	-2.26670	-0.18744
AGEED	-0.04319234	0.0002	-3.69930	-0.14616
QTR	-63.19974449	0.0001	-51.83965	-0.74324
N $=2014$	$\mathrm{R}^{2}=0.596$	F Statistic $=296.070$		
S $=27.082$		Sig. of $\mathrm{F}=0.0001$		

$a_{\text {Due to }}$ to the larger number resulting from Y^{3}, the value used in the regression model was $\mathrm{Y}^{3} / 1000000$.
level of .0001 for the coefficient of the Y variable. The interaction terms EDPERFARMY and EDN enter the MAXR procedure results at the 0.0060 and 0.0160 levels of significance respectively, and PERFARMY enters at the 0.6868 level. Removal of EDPERFARMY and EDN results in the entry of PERFARMY into the model at the 0.0001 level of significance. The model resulting from the removal of these interaction terms has the appeal of simplicity and ease of interpretation.

General Model Hypotheses

Three data sets were identified for utilization in model development, but the data sets household head and spouse do not result in significant coefficients for many of the variables which enter into the final model selected. Data set ALL is, therefore, selected as the appropriate data set, and the tests of hypotheses are performed only upon data set ALL.

The evaluation criteria used for the selection of the basic model results in the simultaneous testing of the general hypothesis
$H_{0}: \quad B_{x}=0$
$H_{1}: \quad B_{x} \neq 0$
where B_{x} is respectively each of the coefficients associated with the variables in the model. The variables considered are those enumerated in the theoretical function presented in Chapter IV.

Age

Age enters the model in three components: a linear term, a squared term, and a linear interaction term with education (Table 6). Based upon these results, the null hypotheses that the coefficients for AGE,
$A G E^{2}$, and AGEED are respectively zero is rejected. Given the rejection of the null hypothesis for these variables, the specific relationship between AGE and QLI will be considered. The results show that QLI does increase with respect to AGE, but will reach a maximum at some point and decline. Due, however, to the interaction with education, the maximum QLI with respect to age will vary with the individual's educational level.

The relationship between AGE and QLI may be seen in the following:

$$
\begin{aligned}
& \frac{\partial Q L I}{\partial \mathrm{AGE}}=.99629061-0.01415984 \mathrm{AGE}-0.04265370 \mathrm{ED} \\
& \frac{\partial^{2} \mathrm{QLI}}{\partial \mathrm{AGE}^{2}}=-0.1415984
\end{aligned}
$$

These results indicate that as education increases the maximum QLI with respect to age declines. Fully, 69.0 percent of the sample had less than 12 years of education and only 3.0 percent had more than 12 years of education. It is apparent, therefore, that the results must be interpreted cautiously for higher levels of education.

Education

The coefficients for the squared term for ED and the linear interaction with age were significantly different from zero (Table 6). A linear term for education (ED) was significant only at the 0.32 level and the variable is not retained in the model. The results indicate that as education increases QLI increases, but increasing age at any level of education will lower the contribution of education to QLI. This is shown by the marginal relationship of education to the QLI

$$
\frac{\partial Q L I}{\partial \mathrm{ED}}=.41906898 \mathrm{ED}-0.04265370 \mathrm{AGE} .
$$

The marginal contribution of education indicates that so long as the educational process continues it will make a positive contribution to the level of QLI. Once the educational process terminates and only age increases, time will, however, lower the positive contribution to QLI made by education.

Number in Family

The number of persons in the household (N) was found to be a significant variable. The coefficient of N was significant at only the 0.97 probability level. This result provides no basis for the rejection of the null hypothesis for this variable.

Location

The variable for state of residence (STATE) was found to be statistically significant (Table 6), and the null hypothesis for the coefficient is rejected. The relationship of STATE to QLI is given by

$$
\frac{\partial Q L I}{\partial S T A T E}=4.00214190
$$

which indicates that STATE makes a positive contribution to QLI. The variable is STATE $=1$ when the individual resided in Iowa and STATE $=0$ when the individual resided in North Carolina. The analysis finds that individuals residing in Iowa have a higher perceived quality of life than those residing in North Carolina, other things being equal. The result could arise because of superior public services and other "environmental" influences in Iowa. Interpretation of STATE will be discussed more fully under the relative income hypothesis test.

Race

The coefficient for race (R) is significant only at the 0.60 probability level. This provides no basis to reject the null hypothesis that, other things equal, QLI was the same between races.

Farm Income-Total Income Ratio

The coefficient of the farm income-total income ratio variable (PERFARMY) differs significantly from zero (Table 6). PERFARMY was calculated in the following manner

$$
\text { PERFARMY }=\frac{\text { Farm derived income }}{\text { Total income }}
$$

which gives PERFARMY a potential range of $0-1$. The rejection of the null hypothesis demonstrates that for the rural population income from farm related sources makes a positive contribution to the QLI. Two possible sources of this positive relationship are immediately apparent. First, individuals may consider farming a consumption good and enhance QLI by the consumption of an agrarian life style. Second, there is the potential for the underreporting of farm income. In the case of underreporting, the reported farm income represents a larger actual income. It is possible that if farm income were as fully reported as is nonfarm income, the coefficient of PERFARMY would be zero.

Income

The income variables meet both the sign and significance level criteria for retention in the model (Tab1e 6), and the null hypothesis is rejected for both Y and Y^{2}. Using the functional relationship established, the analysis turns to an examination of the effect of income
upon QLI.
The marginal function
$\frac{\partial Q L I}{\partial Y}=0.00285160-0.00000024 \mathrm{Y}$
for the basic QLI model suggests that the incremental affect of income upon the QLI declines in linear fashion, becomes zero at some point, and is negative thereafter. The marginal contribution of income to QLI decreases and becomes zero at $\$ 11,882$ per quarter or $\$ 47,527$ per year. The latter result may have little or no meaning because only 3 percent of the sample had quarterly incomes that exceeded \$5940.84--one-half of the income required for the contribution of income to QLI to become zero.

The income relevance hypothesis discussed in Chapter IV is evaluated with the basic QLI model taken as the unrestricted model and the model with income terms removed taken as the restricted model. The test used evaluates the significance of the additional variation in QLI which is explained by the presence of the income terms in the model. The F statistic for the test is

$$
F=\frac{(1486526.51-1469612.42) / 2}{1469612.42 /(2014-10)}=11.53 .
$$

Based upon the F statistic, the analysis rejects, at the 0.0001 level of significance, the null hypothesis that the income terms do not increase the amount of variation in QLI explained by the model. This result indicates that the individual's level of income does influence quality of life perceived by the individual.

APPENDIXES

When all other variables are held constant, the test indicates that the passage of time results in a significant reduction in the QLI. Although QTR has been established as a significant variable in the model, the data are not adequate for an identification of the source of the variation accounted for by time. The significance of QTR demonstrates the need to pursue the source of the QTR variation. Three sources appear to justify further analysis.

The first source of variation is associated with payments to experimentals. Initiation of program payments could produce a transitory increase in QLI which "washes out" as the new income is integrated into the individual's socio-economic reference system and becomes part of his expected income. The decline in QLI from quarter two to quarter ten would then represent a return to some "permanent" QLI level. QLI would in this case appear to be influenced by a factor or set of factors which are not currently in the model. A second related explanation accounting for the decline in QLI which is associated with the variable QTR is the existence of an experimental effect whereby participation in the program and its interview process results in an increase in QLI. As the quarterly questionnaire interview becomes an established component of the individuals' environment this experimental effect might decline and produce the result observed in the variable QTR. Third, with the model components held constant other parts of the individual's socio-economic environment such as the general mood of the country could potentially account for the observed variation in QLI over time.

Income Specific Hypotheses

The analysis now shifts to the evaluation of hypotheses put forth in Chapter IV concerning the precise role and composition of income within the QLI framework.

Age-Income Hypothesis

The Age-Income Hypothesis is constructed to further ascertain the effect of potential age-income interactions upon QLI. Linear ageincome interaction terms do not enter the general model, and the affect of age upon the slope of the functional relationship is not found to be significant. The possibility exists, however, for age and income to interact within segmented age groups and for the resulting interactions to produce a linear shift in the QLI for one age group which does not occur for other age groups.

The Age-Income Hypothesis is tested using dummy variables for the age groups--30-39 (A2), 40-49 (A3), and 50+ (A4)--with the age group of less than 30 years falling in the intercept term. The general model is run with the variables Y and Y^{2} along with the income-age dummy variable interaction variables. The first test of the affect of the interaction variables upon the general model is an evaluation of the coefficients for the interaction terms within the general framework

$$
\begin{aligned}
& H_{0}: B_{x}=0 \\
& H_{1}: B_{x} \neq 0
\end{aligned}
$$

where B_{x} is respectively the coefficient for each of the interaction terms and the relevant test statistics are:

Variable	Coefficient	Prob $>\|T\|$	T for $H_{0}: B=0$	Standard Coefficient
YA2	-0.00248259	0.1450	-1.45807	-0.10435
YA3	-0.00263695	0.2018	-1.27683	-0.08982
YA4	-0.00512537	0.0987	-1.65200	-0.10433
Y 2 A2	0.00000020	0.3748	0.88776	0.12666
Y^{2} A3	0.00000014	0.5616	0.58050	0.04708
$\mathrm{Y}^{2} \mathrm{~A}^{2}$	0.00000063	0.2941	1.04941	0.04548

Based upon the test statistic, the analysis rejects the null hypothesis only in the case of the variable YA4 at the 0.10 probability level.

The second evaluation considers the combined influence of the ageincome interaction variables. The general QLI model is taken as the restricted model and the general model plus the interaction terms is taken as the unrestricted model. An F statistic is calculated to determine the significance of the additional variation in the QLI explained by the addition of the interaction variables. The hypothesis tested is

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{B}_{\mathrm{YA} 2}=\mathrm{B}_{\mathrm{YA} 3}=\mathrm{B}_{\mathrm{Y}^{2}{ }_{\mathrm{A} 2}}=\mathrm{B}_{\mathrm{Y}}{ }^{2} \mathrm{~A} 3=\mathrm{B}_{\mathrm{Y}}{ }^{2} \mathrm{~A} 4=0 \\
& \mathrm{H}_{1}: \text { Not } \mathrm{H}_{0} \\
& \mathrm{~F}=\frac{(1469612.42-1465496.13) / 6}{1465496.13 /(2014-16)}=0.93534
\end{aligned}
$$

Based upon the F statistic, the analysis fails to reject the null hypothesis at the 0.01 level of significance. Age-income interaction does not produce linear shifts in the QLI function.

Relative Versus Absolute Hypothesis

The relative versus absolute hypothesis tests the proposition that QLI depends upon the relative as well as the absolute level of income. The first evaluation of this hypothesis uses a dummy variable (PI) constructed to separate the set of all observations into two subsets: individuals whose income was greater than the mean of the sample from the respective location and individuals whose income was less than or equal to the mean of the sample from the respective location. The dummy variable is equal to one for those above the mean with all other individuals falling into the intercept term. The variable PI represents a potential linear shift in the level of QLI which would accompany the fact that the individual's income exceeds the mean of his respective group. Given that the individual's income exceeds the relevant mean, the linear shift is presumed to be the same for all income levels. The hypothesis tested is

$$
\begin{aligned}
& \mathrm{H}_{0}:{ }^{\mathrm{B}_{\mathrm{PI}}}=0 \\
& \mathrm{H}_{1}: \mathrm{B}_{\mathrm{PI}} \neq 0
\end{aligned}
$$

where the relevant test statistics are:

Variable	Coefficient	Prob $>\|T\|$	T for $H_{0}: B=0$	Standard Coefficient
PI	4.09566744	0.041	2.04348	0.04687

Based on these results, the analysis rejects the null hypothesis at the 0.05 level of significance. The variable STATE may also measure a part
of the variation in QLI which arises from the relative income phenomenon. If each individual from one of the study areas feels that his income is lower than that in the surrounding area, then STATE would measure this variation and leave only within-state variation to be picked up by the relative income tests.

Since the variable PI tests only a linear shift in the functional relationship, a second test of structural stability is used to further evaluate the relative versus absolute hypothesis. This test is performed to evaluate the possibility that the entire structural relationship of the QLI function is affected by the individual's level of income relative to the relevant mean income. The study sample is segmented into two subsets: individuals with incomes less than or equal to the mean of their respective location and individuals with incomes greater than the mean of their respective location. The Chow Test (6; 10, pp. 173-97) is used to evaluate whether the regression coefficients estimated by assigning subsets of the study set of observations to two different structures do, in fact, belong to the same structure.

The Chow Test requires that the model be run on each subset and the pooled or entire data set. The hypothesis tested is of the following form:

$$
\begin{aligned}
& H_{0}:\left(B_{i t=1}\right)=\left(B_{i t=2}\right) \\
& H_{1}:\left(B_{i t=1}\right) \neq\left(B_{i t=2}\right) \\
& i=1,2, \ldots, k \\
& \mathrm{t}_{1}=1,2, \ldots, \mathrm{~T} 1 \\
& \mathrm{t}_{2}=1,2, \ldots, \mathrm{~T} 2 \\
& \mathrm{~T}=\mathrm{T} 1+\mathrm{T} 2
\end{aligned}
$$

where
$\mathrm{k}=$ independent variable in the regression model,
$\mathrm{T} 1=$ number of observations in the first subset,

T2 = number of observations in the second subset, $\mathrm{T}=$ number of observations in the entire or pooled data set. The F statistic for the test is

$$
\begin{aligned}
& F=\frac{U_{t}^{* 2} / K}{\left(U_{t_{1}}^{2}+U_{t_{2}}^{2}\right) /(T-2 K)} \\
& K=\text { number of parameters } \\
& \text { estimated, } \\
& \mathrm{U}_{\mathrm{t}}^{* 2}=\mathrm{ESS}_{\mathrm{T}}-\left(\mathrm{ESS}_{\mathrm{T} 1}+\mathrm{ESS}_{\mathrm{T} 2}\right) \\
& U_{t_{1}}^{2}=E S S_{T 1} \\
& \mathrm{U}_{\mathrm{t}_{2}}^{2}=\mathrm{ESS}_{\mathrm{T} 2} \\
& F=\frac{1469612.42-(520260.57+935178.34) / 10}{(520260.57+935178.34) /(2012-20)}=1.9399 .
\end{aligned}
$$

The tabled value for $\mathrm{F}_{\mathrm{T}-2 \mathrm{~K}}^{\mathrm{K}}$ is 1.83 for a 0.05 level of significance. Based upon the results of the Chow Test, the analysis rejects at the 0.05 level the null hypothesis that the two structures are the same.

Although the test results support the relative versus absolute hypothesis, the pooled data set is retained as the data base for the subsequent analysis. This is done because the relative versus absolute hypothesis is not fully developed and because use of the concept would unduly complicate succeeding tests.

Irreversibility Hypothesis

The variable change hypothesis is tested to evaluate potential differences in the effect of rising and falling income upon QLI. As indicated in Chapter IV, income was segmented according to the Wolffram method. This evaluation technique requires the segmentation of income in the following manner. The individual variables Y and Y^{2} are
calculated for quarters one, two, and ten, and the following transformations are made. The variable θ is calculated where

$$
\begin{array}{ll}
\theta=1 \text { if }\left(Y_{i t}-Y_{i t-1}\right)>0 & \text { where } \\
\theta=0 \text { if }\left(Y_{i t}-Y_{i t-1}\right)<0 & i=1,2, \ldots, n \text { (individuals) }
\end{array}
$$

then

$$
\begin{aligned}
& Y_{i t=1}^{\prime}=Y_{i t=1} \\
& Y_{i t=2}^{\prime}=Y_{i t=1}^{\prime}+\theta\left(Y_{i t=2}-Y_{i t=1}\right) \\
& Y_{i t=10}^{\prime}=Y_{i t=2}+\theta\left(Y_{i t=10}-Y_{i t=2}\right) \\
& Y_{i t=1}^{\prime \prime}=Y_{i t=1} \\
& Y_{i t=2}^{\prime \prime}=Y_{i t=1}^{\prime \prime}+(1-\theta)\left(Y_{i t=2}-Y_{i t=1}\right) \\
& Y_{i t}^{\prime \prime}=10=Y_{i t=2}^{\prime \prime}+(1-\theta)\left(Y_{i t=10}-Y_{i t=2}\right) .
\end{aligned}
$$

The segmented values for the Y^{2} terms are calculated in the same manner. The income variables for the unrestricted model thus become Y^{\prime}, $Y^{\prime \prime}, Y^{2 \prime}$, and $Y^{2 \prime \prime}$ where Y^{\prime} and $Y^{2 \prime}$ are the rising income components and $Y^{\prime \prime}$ and $Y^{2 \prime \prime}$ are the falling income components. The income variables for the restricted model are Y and Y^{2}.

The first test performed on the segmented income variable is a test of the significance of the coefficients of the individual variables. This test takes the general form

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{B}_{\mathrm{y}}=0 \\
& \mathrm{H}_{1}: \mathrm{B}_{\mathrm{y}} \neq 0
\end{aligned}
$$

where y is respectively each of the segmented income variables, and the relevant statistics are:

Variab1e Coefficient	Prob $>\|T\|$	T for $H_{0}: B=0$	Standard Coefficient	
Y^{\prime}	0.00217719	0.0242	2.25574	0.10785
$\mathrm{Y}^{\prime \prime}$	0.00113045	0.1903	1.31017	0.05347
Y^{2}	-0.00000008	0.0973	-1.64909	-0.06398
$\mathrm{Y}^{2 \prime}$	-0.00000005	0.3340	-0.96635	-0.03138

Based upon these results, the analysis rejects the null hypothesis for Y^{\prime} and $Y^{2 \prime}$, and it fails to reject the null hypothesis for $Y^{\prime \prime}$ and $Y^{2 \prime \prime}$. Since the time periods between the income observations are not equally spaced, the results of this test must be interpreted with caution.

The second test performed under the segmented income approach is the F test for the restricted and unrestricted models. The segmented income form constitutes the unrestricted model and the general model form constitutes the restricted model. The F statistic is

$$
F=\frac{(1469612.42-1464928.07) / 2}{1464928.07 /(2014-12)}=3.2022 .
$$

The tabled value for $\mathrm{F}_{\mathrm{T}-2}^{\mathrm{K}-\mathrm{H}}$ is 3.00 for a 0.05 significance level. Based upon the calculated F statistic, the analysis rejects at the 0.05 level the null hypothesis that the segmented income model does not significantly increase the amount of explained variation in the dependent variable.

Although the test of significance for the individual coefficients causes some doubt concerning the appropriateness of this model form, the signs and relative sizes of the coefficients do conform to economic theory. The results indicate that a given increase in income raises QLI
less than the same decrease in income lowers QLI. Taking the relevant derivatives of the functional relationship with respect to income:

$$
\begin{aligned}
& \frac{\partial Q L I}{\partial Y^{\prime}}=0.00217719-0.00000016 \mathrm{Y}^{\prime} \\
& \frac{\partial^{2} \mathrm{QLI}}{\partial Y^{\prime}}=-0.00000016 \\
& \frac{\partial Q L I}{\partial Y^{\prime \prime}}=0.00113045-0.00000010 \mathrm{Y}^{\prime \prime} \\
& \frac{\partial^{2} Q L I}{\partial Y^{\prime \prime}}=-0.00000010
\end{aligned}
$$

The results suggest that a small change in income has 1.6 times as much influence on QLI for an individual whose income is falling than for an individual whose income is rising.

Due to the mixed results of the first evaluation of the variable changed hypothesis, a second test is performed to evaluate the hypothesis. The second approach consists of segmenting the study group into two subsets: observations with rising income and observations with falling income. The Chow Test is then used to evaluate whether the regression coefficients estimated, by assigning subsets of the set of observations to two different structures, do in fact belong to the same structure. The F statistic for the test is

$$
F=\frac{146912.42-(923814.44+531136.36) / 10}{(923814.44+531136.36) /(2012-20)}=1.940
$$

The tabled value for $\mathrm{F}_{\mathrm{T}-2 \mathrm{~K}}^{\mathrm{K}}$ is 1.83 for a 0.05 level of significance. The result of the Chow Test rejects, at the 0.05 level of significance, the null hypothesis that the regression coefficients estimated by assigning subsets of the study set of observations to two different structures belong to the same structure.

The coefficients of the rising and falling data sets used in the Chow Test are used to derive the marginal relationships presented in Figure 1, page 85. The results suggest that for any income redistribution program the individual giving up income must have considerably larger income than the individual receiving income if the incremental changes in the QLI are to be equated.

Due to the mixed results of the tests of the Variable Change Hypothesis, a differentiation between rising and falling groups based upon the data base of this analysis does not appear to be appropriate.

Earned Income Hypothesis

As indicated in Chapter IV, two opposing views of the earnedunearned income relationship are found in the economic literature. Therefore, statistical analysis is performed to test the hypothesis that earned income and unearned income should enter the QLI framework as separate variables.

The first hypothesis to be tested is of the general form
$H_{0}: B_{y}=0 \quad y_{e}=$ earned income
$\mathrm{H}_{1}: \mathrm{B}_{\mathrm{y}} \neq 0 \quad \mathrm{y}_{\mathrm{tr}}=$ unearned income ${ }^{\frac{1 /}{}}$
where y is respectively $Y_{e}, Y_{e}^{2}, Y_{t r}, Y_{t r}^{2}$ and the relevant statistics are:

[^0]| Variable | Coefficient | Prob $>\|T\|$ | T for $H_{0}: B=0$ | Standard
 Coefficient |
| :---: | :---: | :---: | :---: | :---: |
| Y_{e} | 0.00247470 | 0.0020 | 3.09306 | 0.09661 |
| $\mathrm{Y}_{\mathrm{e}}^{2}$ | -0.00000011 | 0.0282 | -2.19564 | -0.05997 |
| Y_{tr} | 0.00437377 | 0.0020 | 3.09132 | 0.08498 |
| $\mathrm{Y}_{\mathrm{tr}}^{2}$ | -0.00000074 | 0.0715 | -1.80342 | -0.05184 |

Based upon these results, the analysis rejects the null hypothesis that the coefficients for the earned and unearned income variable are zero. Having found the coefficients of the earned and unearned income variables to be significant, the second evaluation of the earned income hypothesis is to test whether the coefficients for the paired linear and squared terms are not equal. The hypothesis tested is:

$$
\begin{aligned}
& H_{0}: B_{e}=B_{t r} \\
& H_{1}: B_{e} \neq B_{t r}
\end{aligned}
$$

where B_{e} and $B_{t r}$ are respectively the paired linear terms and the paired squared terms. The test statistics for the linear and squared terms are respectively ${ }^{2 /}$

2/ The hypothesis tested is that the true coefficients obey the condition $c^{\prime} B=r$ where c is a vector of constants and r is a known constant, in this case zero. The test statistic is

$$
t=\frac{\hat{r}-r}{s_{\hat{r}}}
$$

In this case c is a column vector with k elements all of which are zero except the elements which correspond to Y_{e} and $Y_{t r}$. The elements corresponding to Y_{e} and $Y_{t r}$ are 1 and -1 respectiveIy. $\hat{r}=c^{\prime} \hat{B}$ where the \hat{B} are the regression coefficient for the model and

$$
s_{\hat{r}}=\left[s^{2} c^{\prime}\left(X^{\prime} X\right)^{-1} c\right]^{.5}
$$

For a detailed explanation of the procedure for testing a linear combination of regression coefficients see J. Johnson, Econometric Methods, 2nd, McGraw-Hill Book Co., New York, 1972, pp. 155-59.

$$
\begin{aligned}
& t=\frac{\hat{r}-0}{s_{\hat{r}}}=\frac{0.006848470-0}{0.0003247326}=21.0896 \\
& t=\frac{\hat{r}-0}{s_{\hat{r}}}=\frac{0.000000850-0}{0.00000008073074}=9.736
\end{aligned}
$$

The null hypothesis for both tests is rejected at the 0.001 level.

The coefficients for both the earned and unearned income variables have signs conforming with economic theory, but the magnitudes of the influences are quite different as is apparent below:

$$
\begin{aligned}
& \frac{\partial Q L I}{\partial Y_{e}}=0.00247470-0.00000022 \mathrm{Y} \\
& \frac{\partial^{2} Q_{\mathrm{QLI}}}{\partial Y_{\mathrm{e}}^{2}}=-0.00000022 \\
& \frac{\partial Q L I}{\partial Y_{\mathrm{tr}}}=0.00437377-0.00000148 \mathrm{Y} \\
& \frac{\partial_{\mathrm{tr}}^{2} \mathrm{QLI}}{\partial \mathrm{Y}_{\mathrm{tr}}^{2}}=-0.00000148
\end{aligned}
$$

QLI with respect to both Y_{e} and $Y_{t r}$ increases at a decreasing rate, reaches a maximum, and declines thereafter. However, the maximum with respect to earned income occurs at a level of income 3.81 times greater than the maximum for unearned income. The marginal change in QLI with respect to unearned income decreases at 6.73 times the rate of decrease for earned income.

The final evaluation of the earned income hypothesis is to calculate the F statistic for the restricted and unrestricted models. The model containing the segmented earned and unearned income variables comprises the unrestricted model, and the basic model with aggregated income constitutes the restricted model. The F statistic was

$$
F=\frac{(1459612.42-1468294.42) / 2}{1468294.43 /(2014-12)}=0.8985
$$

Based upon this test the analysis fails to reject at the 0.10 level the null hypothesis that the unrestricted model explains no more of the observed variation in the QLI than does the restricted model.

Although the test of restricted and unrestricted models fails to reject the null hypothesis, the results of the first two tests and economic theory support the segmenting of income into earned and unearned income. The revised general model is presented in Table 9. As may be seen in Figure 1, the regression results show that for moderate levels of income equal dollar amounts of income contribute more to QLI if the income is unearned. For higher levels of income a dollar of earned income contributes more to QLI than would an equal amount of unearned income, and the marginal contribution of $Y_{t r}$ to QLI reaches zero at a much lower level of income than does Y_{e}.

Farm Income Hypothesis

The farm income hypothesis is considered to determine if farm income should enter the QLI function as a separate income variable. The variable PERFARMY demonstrates that changing the proportions of the farm and nonfarm components of total income results in a shift in the QLI, but this does not test whether farm income and nonfarm income have separate nonlinear affects upon QLI.

The farm income hypothesis was tested by separateing farm income $\left(Y_{f}\right)$ from the other income components and entering farm income as a separate variable. The hypothesis to be tested is of the general form

Table 9. Revised Form of the Final Regression Equation for the Quadratic Form of the General QLI Model--Dependent Variable: QLI; Data Set = ALL.

Variable	Coefficient	Prob $>\|T\|$	T for H_{0} : $B=0$	Standard Coefficient
Intercept	89.49111788	0.0001	11.60528	--
Ye	0.00247470	0.0020	3.09306	0.09661
$\mathrm{Y}_{\mathrm{e}}^{2}$	-0.00000011	0.0282	-2.19564	-0.05997
Y_{tr}	0.00437377	0.0200	3.09132	0.08498
$\mathrm{Y}_{\mathrm{tr}}^{2}$	-0.00000074	0.0715	-1.80342	-0.05184
ED ${ }^{2}$	0.20822139	0.0001	6.00116	0.24616
PERFARMY	9.53997138	0.0001	4.47541	0.07521
State	3.96639199	0.0100	2.57754	0.04553
AGE	1.00627724	0.0016	3.16544	0.29396
AGE ${ }^{2}$	-0.00725959	0.0173	-2.38271	-0.19675
AGEED	-0.04283825	0.0002	-3.67346	-0.14496
QTR	-63.15322538	0.0001	-51.80989	-0.74269
$\mathrm{N}=2014$	$\mathrm{R}^{2}=0.597$	F Statistic $=269.27$		
$\mathrm{s}=27.081$		Sig. of $\mathrm{F}=0.0001$		

Figure 1. Relationship of Marginal QLI to Types of Income

$$
\begin{aligned}
& H_{0}: B_{y}=0 \\
& H_{1}: B_{y} \neq 0
\end{aligned}
$$

where y is respectively Y_{f} and Y_{f}^{2} and the relevant statistics are:

Variable Coefficient	Prob $>\|T\|$	T for $H_{0}: B=0$	Standard Coefficient	
Y_{f}	0.00151974	0.1586	1.41028	0.05991
$\mathrm{Y}_{\mathrm{f}}^{2}$	-0.00000006	0.3324	-0.96954	-0.03202

Based upon these results, the analysis fails to reject at the 0.10
level the null hypothesis that the coefficients of the farm income variables are zero, and the farm income-nonfarm income segmentation is not retained as a variation of the general form of the QLI model. Accompanying Y_{f} and $\mathrm{Y}_{\mathrm{f}}^{2}$ in the model, PERFARMY continues to have a significance level of better than 0.10 . This result supports the proposition that, as submitted earlier, PERFARMY measures more than the effect of income level per se. To wit, farming may also be a consumption good and/or farmers significantly underreport income with the contribution of the unreported income to QLI accounted for by PERFARMY.

Net Worth Hypothesis

As indicated in Chapter IV, the net worth hypothesis is to evaluate family wealth effects on the QLI. This hypothesis is tested by entering net worth (NW) as a separate linear variable in the basic QLI model.

The hypothesis tested is of the form:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{B}_{\mathrm{nw}}=0 \\
& \mathrm{H}_{1}: \mathrm{B}_{\mathrm{nw}} \neq 0
\end{aligned}
$$

where $B_{n w}$ is the coefficient of the net worth variable and the relevant statistics are

Variable Coefficient	Prob $>\|T\|$	T for $H_{0}: B=0$	Standard Coefficient	
$N W$	0.00021360	0.1459	1.45467	0.02139

Based upon these results, the analysis fails to reject at the 0.10 level the null hypothesis that the coefficient for NW is zero. Caution should, however, be exercised in the interpretation of the test results. The data available on wealth were incomplete and represent only an approximation of net worth. The fact that a large portion of the sample was from low income households with little wealth may also reduce the possibility that net worth will enter the personal evaluation of individual quality of life. Therefore, characteristics of the sample and inadequacies of the $N W$ variable may account for the failure of wealth to influence QLI in this study. Due to the strong conceptual reasons to expect wealth to influence the quality of life, the wealthQLI relationship should be analyzed more completely in subsequent studies.

CHAPTER VI

SUMMARY, APPLICATIONS AND CONCLUSIONS

The emphasis of the analysis has been to develop an index for individual perceived quality of life and to use that index to examine the role of income and income composition in the determination of the level of the quality of life index (QLI). A functional form for the general model is established and used to test hypotheses pertaining to the role of income and income composition in determining the QLI. The analysis and its resulting model will provide a starting point for further research into the area of individual quality of life.

Summary

The analysis undertaken results in the selection of a set of variables for the general QLI model, a functional form for the general model, and an evaluation of the role of income within the QLI model.

Variables

Statistical evaluation of the theoretically appropriate variables and proposed hypotheses results in the selection of the following variables for the general QLI model: earned income (Y_{e}), unearned income (Y_{tr}), educational level (ED), farm income-total income ratio (PERFARMY), location or state of residence (STATE), age (AGE), and time (QTR). The coefficients for these variables were all significant at least at the 0.10 probability level.

Functional Form

The analysis selects the quadratic form of the general QLI model. The general form is

$$
\begin{aligned}
\text { QLI }_{i}= & f\left(Y_{e_{i}}, Y_{e_{i}}^{2}, Y_{t r}, Y_{t r_{i}}^{2}, E D_{i}^{2}, \operatorname{PERFARMY}_{i}, \operatorname{STATE}_{i}, A G E_{i}, \operatorname{AGE}_{i}^{2},\right. \\
& \left.A G E E D_{i}, Q T R\right) .
\end{aligned}
$$

The power function also yields statistically significant coefficients, but it explains less of the observed variation in the QLI.

The square root and cubic forms of the general model were rejected due to statistically insignificant variables including some of the income variables in each case. The revised form of the quadratic function (Table 9) suggests that the differentiation of income into earned and unearned income provides additional information into the total and marginal responses of QLI to changes in income. The response of QLI to an income change depends not only upon the initial level but also upon the income classification undergoing the change. The marginal responses of QLI to the alternative classifications of income considered in the analysis are shown in Figure 1. The marginal response of QLI is declining in each case, but the rate of decline for a given change in income differs among types of income. Until a more representative data base is analyzed, the relationship between QLI and any of the income types must be regarded as tentative when applied to the population of the economy in general.

Income in the Final Model

Pursuant to the development of the QLI, the analysis evaluates the role of income and income composition with the general QLI model.

The amplified consideration of income yields results pertaining to the quantitative and qualitative aspects of individual income.

Quantitative Results

The income coefficients resulting from the regression analysis are significant, and within the range of the income data, additional units of income increase the QLI (see Table 9). Income accounts, however, for only a small percentage of the variation in QLI, and the declining marginal relationship suggests that, all other variables constant, at some level the contribution of additional income to the QLI reaches zero and becomes negative thereafter.

Qualitative Results

The qualitative results of the analysis pertain to the composition of income. These results suggest that for a given level of total income the composition, source, or form of income received is also significant in the variation of QLI explained by the model.

The analysis of PERFARMY and the Farm Income Hypothesis suggests that for the study group the realization of income from farm activities produces a positive effect upon QLI in addition to the effect associated with income as income. When farm income is entered as a separate income component, the analysis fails to reject the null hypothesis that the variable coefficients are equal to zero. Although the analysis does not corroborate a distinction between farm and nonfarm classifications of income, the t-value for the coefficient of PERFARMY remains statistically significant. This suggests that income generated from farming may also function as a consumption good so that farm income need not be
as high as nonfarm income to achieve the same level of QLI. It is also possible that PERFARMY demonstrates a preference for farm income and its accompanying potential for underreporting. Given this result, policy measures to equalize nominal income between farm and nonfarm sectors would result in a higher QLI for farm residents and disequilibrium in terms of QLI per dollar of income. Policies providing alternative employment and stimulating labor movement out of farming must address the issue of buying power among sectors.

The Earned Income Hypothesis indicates that for the study group in general and the low income individuals in particular, level of income does not account for the full income-QLI relationship. Earned Y e and unearned $Y_{t r}$ do not affect QLI in the same manner (Chapter V and Figure 1). The positive marginal contribution of Y_{tr} to QLI does not exist for as large a range of income as does the positive marginal contribution of Y_{e}. For an annual transfer income below $\$ 6,029$, the total and marginal contribution of Y_{tr} to $Q L I$ are positive and greater than the contribution from an equal amount of Y_{e}. At an annual transfer income of $\$ 11,821$ the marginal contribution of $Y_{t r}$ is negative, but the marginal contribution of Y_{e} does not become negative until an annual income of $\$ 44,995$ which is outside the range of the sample data. This result suggests that transfer payments to individuals with high incomes may be of little value for increasing the perceived quality of life.

Analysis of the Relative Income Hypothesis indicates that individuals whose income exceeds the mean of the sample from each area experience an increase in QLI which is not accounted for by absolute income level. This suggests that the socio-psychological feeling that
influence QLI are, in part, a function of relative deprivation and affluence. Some part of the lower QLI associated with low income would not, therefore, be eliminated by an across the board increase in all incomes in society.

The Rising-Falling Hypothesis also provides qualitative insight into individual QLI when income rises or falls. For incrementally equal changes in income from the same base, a fall in income appears to reduce QLI more than the increase in income raises QLI. Given this finding, the declining marginal response of QLI to income could not be used as the sole justification of a redistribution of income to raise the overall QLI of the economy. Persons with higher incomes could incur greater loss of well-being from a given decrease in income than the lower income persons gain in well-being from the receipt of the redistributed income.

Areas for Further Research and Model Development

Further research on and development of the QLI model derived by this analysis is required in three areas: data base, variables, and model amplification.

Data Base

The data base used by this analysis is adequate for an initial development of a QLI model. But prior to a general application of the model to specific problems, certain inadequacies in the data base must be corrected.

The first deficiency of the data is suggested by the time variable in the model. QTR indicates a decline in QLI between two periods of
time. There is not, however, a preprogram measurement of the variables used to derive the QLI. Lacking this preprogram information, it is not possible to determine whether the decline is a continuation of an established trend, or whether it is a movement back toward a preprogram level. Identification of reasons for the change in QLI which occurs between the time periods is of importance for policies initiated to change QLI through the manipulation of the independent variables.

Three potential deficiencies exist in the income data base used to construct the QLI. The study sample consists largely of a low income, rural population taken from only two areas of the United States. To be applicable to the rural population in general, results need to be obtained with a data base expanded to include a representative sample of individuals from higher income levels and individuals from other geographic regions of the United States. Application of the QLI model to the urban population would also require the integration of the urban population sample into the data base. The extent and seriousness of these deficiencies depend upon the manner in which the results of the current analysis are to be used.

Variables

Expansion of the data base to correct the data deficiencies existing in the current analysis requires that the variables which were selected on theoretical grounds but rejected by the statistical analysis be reconsidered. Failure to consider these variables with the expanded data base could result in the misspecification of the final model derived with the larger sample and in biased estimates for the coefficients of the included variables. Reconsideration is particularly
valid for the net worth component of income which is not adequately measured in the current analysis.

Mode1 Expansion

The model developed by the analysis has included only personal measures of individual perceived quality of life in the QLI. There is, however, another aspect of quality of life within the economy: the environmental aspects of the economic region. The externalities resulting from regional environmental factors presumably influence perceived quality of life and are in the QLI; however, environmental measures such as community services need to be included as independent variables. This could provide estimates of the role of each variable rather than an aggregated measure such as that which may currently enter the model. Shabman (29) discusses the results of an attempt to integrate economic well-being, housing, employment, education, health, and population into a measure of the quality of life. These measures are more readily accessible and are available for all regions of the United States, but they neglect any personal evaluation of quality of life by the individuals who actually experience the conditions of the relevant area. Shabman suggests that it may be desirable to weight components of a QLI when comparing regions, but without a consideration of individual perceptions, there can be no meaningful assignment of weights to any measure to reflect its importance in the demarcation of one region from another. The use of individual perceptions of quality of life by this study eliminates the need to rely upon the researcher's personal value judgments when weights are assigned.

The QLI developed by the current analysis reflects the environment only as it influences individual responses. It would appear that a more adequate measure of quality of life would result from a model that supplements the general QLI model developed with variables that reflect the institutional structure of the environment. Aggregation of the personal measures of quality of life developed in this analysis and criterion such as those discussed by Shabman into a broader model should result in a QLI model which reflects both the personal and environmental aspects of perceived quality of life. QLI would be a function of both personal considerations and the economic environmental parameters of the relevant region. As noted by Shabman (29, pp. 10-11), the use of the QLI to make equalizing policy measures may run contrary to the concept of a free functioning, competitive human resource market, but the concept of a competitive human resource market assumes the absence of market imperfections. A comprehensive QLI model would allow policymakers to evaluate potential policy actions directed toward the reduction of inequalities produced by market imperfections.

Model Applications

The QLI model developed by this analysis may be used to evaluate the impact upon the individual of an economic policy or activity which affects any of the independent variables exogenous to the individual. The only information required is the change in the value of the affected variable. The QLI may also be utilized in analyses which require an estimate of the satisfaction derived by the individual from the determinants of QLI.

A Specific Application: The Income Tax

Analysis of the Federal Income Tax Schedule within the context of the QLI yields results which illustrate potential uses of the QLI: (1) based upon some criteria, the sacrifice in QLI from the income tax could be equalized; (2) given an amount of tax to be collected, the income tax could be adjusted to maximize the QLI or to minimize the loss of QLI for all taxpayers; (3) given that other forms of taxation are not progressive, the income tax could be adjusted to result in an equal marginal sacrifice for all taxpayers from all taxes.

The Federal Income Tax may be considered an example of a progressive tax based upon the level of income or the ability to pay. The proposition that the tax collected should vary with the individual's ability to pay may be accompanied by assumptions concerning the distribution of individual sacrifice, but it does not provide specific insight into the level and distribution of the actual sacrifice associated with a given tax schedule. The functional relationship established by the QLI may be used to evaluate the decreases in QLI produced by the tax collected.

The 1975 Federal Income Tax Schedule, Table 4 (38, pp. 19-20) is used to demonstrate the type of analysis which may be accomplished with the QLI. Using the functional form given in Table 6, the analysis assumes: (1) a married taxpayer, (2) four exemptions, (3) a joint return, (4) 25 years of age, (5) 12 years of education, (6) residence in Iowa, (7) 100 percent farm income, and (8) QTR $=0$. The analysis will consider the tax schedule in terms of the marginal QLI reduction (A ADJ D-QLI) experienced by the median taxpayer to Table 4 of the tax
schedule. The quantitative results of the tax analysis are presented in Appendix C. Application of the QLI model to the tax schedule reveals two points of interest. First, the tax schedule (TABLED TX) exhibits an almost constant marginal tax rate (MAR TAX) in terms of dollars of tax. The marginal reduction in QLI associated with the tax schedule (B ADJ D-QLI) shows that as a result of the scheduled tax rate, the QLI for each level of income after taxes (QLI A TAB-TX) is undergoing an increasing marginal QLI reduction. Second, adjustment of the tax schedule to incorporate the constant marginal reduction in QLI (A ADJ D-QLI) requires that the marginal dollar tax rate vary across the range of total tax paid. ADJ'D MAR $T X$ is the marginal dollar tax rate required to produce the A ADJ D-QLI used in the example. Use of median taxpayer QLI reduction to adjust the tax schedule for equal marginal QLI reduction results in an after adjustment QLI (QLI AA-TAX) for each income level. QLI AA-TAX is less than the QLI resulting from the median and QLI AA-TAX is greater than QLI A TAB-TX for those above the median. The adjusted tax (ADJ'D TAX) is greater than TABLED TX for taxpayers below the median, and ADJ'D TAX is less than TABLED TX for taxpayers above the median.

Depending upon the value judgment used to define equity within the tax structure, the QLI may be employed to arrive at the proper tax schedule. If one assumes that all taxpayers share equally in the benefits derived from the use of tax dollars and that a given amount of tax must be collected, the tax load may be distributed to result in an equal marginal sacrifice in QLI by all taxpayers. If one assumes that individuals with different levels of income benefit differently from the use of tax dollars, the sacrifice in terms of QLI could be
weighted to make the sacrifice proportional to the benefits received. General Areas of Application

The QLI model developed by this analysis may also be used to evaluate the cost of risk. It has been shown that whether a certain income provides more satisfaction than the same average income received stochastically depends on the marginal utility of income. The cost of risk depends upon the marginal utility assigned to money by the individual. Past studies attempting to estimate the marginal utility assigned to money have relied upon the unwieldly "standard-gamble" technique in which each individual respondent attempts to assign some preference ranking to a group of incomes which have probabilities of their occurance preassigned by the researcher. The QLI provides a measure of the value of income to the individual, and it does not rely upon a contrived risk situation to determine the role of money in the individual's socio-economic reference system. Thus, QLI should provide a comprehensive alternative to the "standard-gamble" measure of satisfaction derived from money, and it should be applicable to analyses requiring a measure of the marginal utility of money.

The QLI could also be used to extend the results of benefit-cost analysis. The esțimates of benefits and costs could be used to derive the effect of a proposed project upon QLI. Given that public projects have the purpose of making improvements in the socio-economic environment and individual quality of life, a QLI evaluation of benefit-cost would allow a weighting of benefits and costs among income groups within the area affected. Evaluation of the projected changes in income and income composition for various groups, with and without the proposed
project, can be accomplished by comparing the QLI for the respective groups with and without the project. The expanded model discussed earlier as an extension of the current analysis would be particularly well suited to benefit-cost evaluations. It would allow both personal and economic environment considerations to be incorporated into the evaluation of the changes in QLI resulting from a given project.

An example of QLI application to benefit-cost analysis could be an evaluation of an irrigation project for a region. In the simplest case it would allow a comparison of the net change in QLI. Some incomes would increase, some would fall or be eliminated, some would change in composition, and some groups would have to pay the taxes necessary to build the project, but QLI evaluation would provide an estimate of the net change in quality of life produced by the project.

The QLI developed will serve also as an instrument for an appraisal of changes in the income and income composition of low income farm families. Given the goal of higher income for these families, the objective may be approached through increased farm income, adding or increasing nonfarm income in the total income stream, or a combination of the two. The QLI function provides the framework necessary to determine the extent to which nonfarm income substitutes for farm income in attaining a given quality of life. This relationship is also basic to the setting of poverty income thresholds among different sectors within the economy.

Conclusions

The empirical analysis of this study provides the basis for some tentative conclusions concerning individual quality of life. A measure
of perceived quality of life, the QLI, has been constructed, and the analysis has defined, within the limits imposed by the data, a relationship between observed variation in the QLI and certain parameters of individuality. Given the QLI function, the analysis concludes that income, age, education, state of residence, and the ratio of farm income to total income are personal characteristics which influence the individual quality of life perceived by the rural population. The passage of time also influences the QLI within the econometric model developed. Race, number in the family unit, and many of the expected interactions do not enter into the final QLI model.

Comprehensive analysis of the income component of the general QLI model yields the following conclusions: (1) income influences QLI; (2) income displays a declining marginal relationship with the QLI; (3) earned and unearned income display the declining marginal relationship, but the marginal contribution of unearned income declines faster and reaches zero at a much lower income level; (4) the response to incrementally equally increases and decreases to the same income do not result in a symmetric QLI response to income; (5) a given dollar value of income provides a greater quality of life if derived from farm than nonfarm occupations; and (6) the relative position of individual income above or below the mean income of the respective area as well as absolute income influences individual perceived quality of life.
(1) Ackley, Gardner, Macroeconomic Theory, New York: The Macmillan Company, 1961.
(2) Bell, Wende11, "Anomie, Social Isolation, and the Class Structure," Sociometry, 20, pp. 105-116, June 1957.
(3) Bradburn, Norman M., The Structure of Psychological Wel1-Being, Chicago: Aldine, 1969.
(4) Bradburn, Norman M. and David Caplovitz, Reports on Happiness, Chicago: Aldine, 1965.
(5) Bullough, Bonnie, "Alienation in the Ghetto," American Journal of Sociology, 72, pp. 469-478, March 1967.
(6) Burns, Evelene M., Social Security and Public Policy, New York: McGraw-Hill Book Company, 1956.
(7) Chow, Gregory C., "Tests of Equality Between Sets of Coefficients in Two Linear Regressions," Econometrica, 28:3, pp. 591-605, July 1960.
(8) Coleman, James S., et al., Equality of Educational Opportunity, Washington, D. C.: U. S. Government Printing Office, 1966.
(9) Comrey, Andrew L., A First Course in Factor Analysis, New York: Academic Press, 1973.
(10) Crain, Robert L. and Carol Sachs Weisman, Discrimination, Personality and Achievement: A Survey of Northern Blacks, New York: Seminar Press, 1972.
(11) Dutta, M., Econometric Methods, Cincinnati, Ohio: Southwestern Publishing Co., 1975.
(12) Easterlin, R. A., "Does Money Buy Happiness?" The Public Interest, 30, pp. 3-10, Winter 1973.
(13) Gurin, Gerald, Joseph Veroff and Sheila Field, Americans View Their Mental Health, New York: Basic Books, Inc., 1960.
(14) Harman, Harry H., Modern Factor Analysis, Second Edition, Revised, Chicago: The University of Chicago Press, 1967.
(15) Heiss, Jerold and Susan Owens, "Self-Evaluation of Blacks and Whites," American Journal of Sociology, 78, pp. 360-370, September 1972.
(16) Houck, James P., "Estimating Non-Revisable Functions: A Comment," Mimeographed, Department of Agricultural and Applied Economics, Institute of Agriculture, St. Pau1, Minnesota: University of Minnesota, June 1960.
(17) Katona, George, "Persistence of Belief in Personal Financial Progress," Economic Means for Human Needs: Social Indicators of Well-Being and Discontent, Burkhard Strumpe1, ed., Ann Arbor, Michigan: Institute for Social Research, University of Michigan, 1976.
(18) Lundberg, Georga A., Clarence C. Schrag, O. N. Larsen and William R. Catton, Jr., Sociology, 4th Ed., New York: Harper and Row, 1968.
(19) McClosky, Hubert and John H. Schaar, "Psychological Dimensions of Anomy," American Sociological Review, 30, pp. 14-40, February 1965.
(20) McDil1, Edward L., "Anomie, Authoritarianism, Prejudice, and Socio-Economic Status: An Attempt at Clarification," Social Forces, 39, pp. 239-245, March 1961.
(21) Mier, Dorothy L. and Wendell Bell, "Anomie and Different Access to the Achievement of Life Goals," American Sociological Review, 21, pp. 189-202, Apri1 1959.
(22) Mizruchi, Ephriam Harold, "Social Structure and Anomie in a Small City," American Sociological Review, 25, pp. 644-654, October 1960.
(23) Pigou, A. C., The Economics of Welfare, 2nd Ed., London: MacMillan and Co., Ltd., 1953.
(24) Rima, I. H., Development of Economic Analysis, Revised Edition, Homewood, Illinois: Richard D. Irwin, Inc., 1972.
(25) Rosenberg, Morris, Society and the Adolescent Self-Image, Princeton: Princeton University Press, 1965.
(26) Rotter, J. B., "Generalized Expectancies for Internal Versus External Control of Reinforcement," Psychological Monograph, 80, No. 609, 1966.
(27) Samue1son, Paul A., Economics, 9th Ed., New York: McGraw-Hill Book Co., p. 3, 1973.
(28) Service, Jolayne, A User's Guide to the Statistical Analysis System, Raleigh, North Carolina: Student Supply Stores, North Carolina State University, August 1972.
(29) Shabman, Leonard A., "Some Considerations in Social Indicator Analysis: Reflections on a Case Study," Staff Paper SP-76-2, Department of Agricultural Economics, Virginia Polytechnic Institute and State University, April 1976.
(30) Simpson, Richard L. and H. Max Miller, "Social Status and Anomie," Social Problems, 10, pp. 256-264, Winter 1963.
(31) Smith, S. and W. Haythorn, "Effects of Compatibility, Crowding, Group Size and Leadership Seniority on Stress, Anxiety, Hostility and Annoyance in Isolated Groups," Journal of Personality and Social Psychology, 22, pp. 67-79, 1972.
(32) Srole, Leo, "Social Integration and Certain Corollarian: An Explanatory Study," American Sociological Review, 21, pp. 709-716, December 1956.
(33) Strodtberk, Fred L., "Family Interaction, Values and Achievement," Talent and Society, Daniel E. McClelland, et al., eds., Princeton: Princeton University Press, pp. 135-194, 1958.
(34) Strumpe1, Burkhard, "Introduction and Mode1," Economic Means for Human Needs: Social Indicators of Well-Being and Discontent, Burkhard Strumpel, ed., Ann Arbor, Michigan: Institute for Social Research, University of Michigan, 1976.
(35) Stuby, Richard G., "New Directions for Quality of Life Research," Mimeographed, Issue paper prepared for the Forward Look Committee, Economic Research Service, USDA, September 1976.
(36) Tweeten, Luther and Yao-chi Lu, "Attitudes as a Measure of Optimal Place of Residence," Social Science Journal, 13:2, pp. 9-26, Apri1 1976.
(37) Tweeten, Luther and C. Leroy Quance, "Positivistic Measures of Aggregate Supply Elasticities: Some New Approaches," American Journal of Agricultural Economics, 51, pp. 342-352, May 1969.
(38) U. S. Department of the Treasury-Internal Revenue Service, "1975 Federal Income Tax Forms," U. S. Government Printing Office, Washington, D. C., 1975.
(39) Wolffram, Rudolf, "Positivistic Measures of Aggregate Supply Elasticities: Some New Approaches--Some Critical Notes," American Journal of Agricultural Economics, 52:1, February 1970.
(40) Yancy, William L., Leo Rigsby and John D. McCarthy, "Social Position and Self-Evaluation: The Relative Importance of Race," American Journal of Sociology, 78, pp. 330-359, September 1972.
(41) Yuchtman, Ephraim, "Effects of Social-Psychological Factors on Subjective Economic Welfare," Economic Means for Human Needs: Social Indicators of Well-Being and Discontent, Burkhard Strumpel, ed., Ann Arbor, Michigan: Institute for Social Research, University of Michigan, 1976.

APPENDIX A

SUBINDEX SCALES

Table 10. Anomie (An) Scale.

Table 11. Negative Affect (NA) Scale.

Table 12. Powerlessness (P) Scale.

Table 12. (Continued)

Table 13. Worry (W) Scale.

Table 14. Self-Satisfaction (SS) Scale.

DEI		Data Set								
		Head			Spouse			A11		
		\bar{X}	s.e. \bar{X}	S	$\bar{\chi}$	s.e. \bar{X}	S	$\bar{\chi}$	s.e. $\bar{\chi}$	S
3078 On the whole, I am satisfied with myself	Q02	3.82	0.05	1.24	3.75	0.06	1.28	3.78	0.04	1.26
	Q10	3.97	0.05	1.20	3.88	0.06	1.28	3.93	0.04	1.24
3079 At times I think I am no good at all	Q02	2.53	0.06	1.45	2.90	0.07	1.44	2.69	0.05	1.46
	Q10	2.37	0.06	1.45	2.63	0.07	1.45	2.49	0.05	1.46
3080 I feel that I have a number of good qualities	Q02	4.18	0.04	0.98	4.12	0.04	0.95	4.15	0.03	0.96
	Q10	4.30	0.04	0.83	4.34	0.03	0.75	4.32	0.02	0.79
3081 I am able to do things as well as most people	Q02	4.08	0.05	1.25	3.99	0.06	1.24	4.04	0.04	1.25
	Q10	4.06	0.05	1.24	3.97	0.06	1.22	4.02	0.04	1.23
3082 I feel that I do not have much to be proud of	Q02	2.33	0.07	1.55	1.90	0.06	1.39	2.14	0.05	1.49
	Q10	1.83	0.05	1.26	1.75	0.06	1.19	1.80	0.04	1.23
3083 I certainly feel useless at time	Q02	2.89	0.06	1.48	3.06	0.07	1.43	2.97	0.05	1.46
	Q10	2.69	0.06	1.45	3.08	0.06	1.39	2.87	0.05	1.43
3084 I feel that I am a person of worth, at least equal to others	Q02	4.29	0.04	1.02	4.26	0.05	1.08	4.28	0.03	1.04
	Q10	4.33	0.04	0.95	4.35	0.04	0.95	4.34	0.03	0.95
3085 I wish I could have more respect for myself	Q02	3.21	0.06	1.53	2.84	0.07	1.54	3.04	0.05	1.54
	Q10	2.85	0.06	1.52	2.55	0.07	1.51	2.71	0.05	1.52
3086 All in all, I feel I am a failure	Q02	1.81	0.05	1.23	1.62	0.05	1.04	1.72	0.04	1.15
	Q10	1.63	0.05	1.09	1.54	0.05	1.01	1.59	0.03	1.06
3087 When I try to do something I usually think I can do it	Q02	4.54	0.04	0.85	4.40	0.05	1.06	4.48	0.03	0.95
	Q10	4.52	0.04	0.85	4.43	0.04	0.91	4.48	0.03	0.88
Responses: 1 Disagree a lot 2 Disagree a little 3 Don't know 4 Agree a little 5 Agree a lot										

Table 15. Positive Affect (PA) Scale.

Table 16. Life Satisfaction (LS) Scale.

DEI			Data Set								
			Head			Spouse			All		
			$\bar{\chi}$	s.e. \bar{X}	s	$\bar{\chi}$	s.e. \bar{X}	s	$\bar{\chi}$	s.e. \bar{X}	
	Keening in mind that step 10	Q02	5.80	0.08	1.96	6.22	0.09	1.96	5.99	0.06	1.97
	redresents the best way of	010	5.92	0.08	1.80	6.08	0.08	1.82	5.99	0.06	1.81
	life, and step 1 the worst										
	way of life, will you look at										
	the picture and tell me the										
	step number that best describes where you are now										
	Will you please tell me the	002	9. 30	0.06	1.33	9.41	0.05	1.12	9. 35	0.04	1.24
	step number that best describes	Q10	9.04	0.06	1.37	9.18	0.05	1.14	9.10	0.04	1.27
	where you would like to be five years from now										
3093	Will you please tell me the	Q02	7.31	0.09	2.03	7:72	0.08	1.73	7.50	0.06	1.91
	sten number that best describes	010	7.24	0.08	1.87	7.55	0.08	1.65	7.38	0.06	1.78
	where you think you really will be five years from now										
Responses: Scores range from 1-10 with high scores indicating a better life situation											
3058	All things taken together	002	1.85	0.02	0.59	2.00	0.03	0.64	1.92	0.02	
	how hanpy are you these days	010	2.05	0.03	0.60	2.16	0.03	0.59	2.11	0.02	0.60
Responses: 1 Not too happy 2 Pretty happy 3 Very hapny											
3060	Would you like your life to continue as it is, or would you change it	$n 02$	2.12	0.03	0.73	2.20	0.03	0.70	2.16	0.02	0.71
		010	2.12	0.03	0.66	2.15	0.03	0.64	2.13	0.02	0.65
Responses:1 Change many parts 2 Chanqe some parts 3 Continue as it is											

APPENDIX B

RESULTS OF FACTOR ANALYSIS OF SUBINDEX SCALES

Table 17. Anomie (An) Scale Factor Weights.

[^1]Table 18. Negative Affect (NA) Scale Factor Weights.

Data Set Quarter 02						Data Set Quarter 10					
Head		Spouse		Al1		Head		Spouse		All	
DEI	Factor 1	1 DEI	Factor 1	DEI	Factor 1	DEI	Factor 1	1 DEI	Factor 1	DEI	Factor 1
3070	0.75250	03066	0.75998	3070	0.75602	3070	0.74584	43066	0.75163	3070	0.74207
3066	0.71482	23070	0.75976	3066	0.73991	3066	0.70254	43070	0.73435	3066	0.72783
3068	0.68324	$4 \quad 3072$	0.63776	3068	0.63187	3068	0.68224	43068	0.68075	3068	0.67071
3064	0.56773	$3 \quad 3068$	0.58520	3072	0.58292	3072	0.58992	23064	0.58857	3072	0.59458
3072	0.52196	63064	0.53044	3064	0.55480	3064	0.53764	43072	0.58579	3064	0.56177
		Eigenvalue	Portion		Cum Portion			Eigenvalue	Portion		Cum Portion
Head						Head					
Factor		2.1388	0.428		0.428	Factor 1		2.1524	0.430		0.430
Factor		0.8716	0.174		0.602	Factor 2		0.8626	0.173		0.603
Spouse						Spouse					
Factor		2.1854	0.437		0.437	Factor 1		2.2572	0.451		0.451
Factor		0.9121	0.182		0.619	Factor 2		0.8355	0.167		0.619
Al1					,	Al1					
Factor	1	2.1659	0.433		0.433	Factor 1		2.1994	0.440		0.440
Factor	2	0.8710	0.174		0.607	Factor 2		0.8387	0.168		0.608

Table 19. Powerlessness (P) Scale Factor Weights.

Data Set Quarter 02								
Head			Spouse			Al1		
DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2
3095	0.69343	0.06265	3131	0.71704	-0.16477	3131	0.69912	-0.09210
3131	0.67959	-0.04129	3095	0.67158	0.03262	3095	0.67720	0.05256
3128	0.61412	0.15461	3096	0.63089	0.14005	3128	0.62749	0.16166
3134	0.60926	-0.03212	3128	0.62441	0.15583	3096	0.60481	0.10130
3096	0.59323	0.08017	3134	0.44420	-0.13409	3134	0.55422	-0.07769
3129	0.58576	-0.19877	3129	0.42639	0.03399	3129	0.52493	-0.10022
3132	0.09046	0.67549	3132	0.00303	0.72683	3132	0.04570	0.70595
3133	-0.01981	0.67359	3135	-0.13892	0.67556	3133	-0.00698	0.62790
3094	-0.17695	0.57310	3133	-0.00935	0.57816	3135	-0.06307	0.59569
3135	-0.02400	0.51507	3094	0.02465	0.48035	3094	-0.09208	0.53474
3130	0.04613	0.13636	3130	0.09113	0.30897	3130	0.05829	0.21917
			Eigenvalue		Portion	Cum Portion		
Head								
		Factor 1	2.4304		0.221	0.221		
		Factor 2	1.5971		0.145	0.366		
		Factor 3	1.0632		0.097	0.463		
Spouse								
		Factor 1	2.1609		0.196	0.196		
		Factor 2	1.7360		0.158	0.354		
		Factor 3	1.0542		0.096	0.450		
All								
		Factor 1	2.3077		0.210	0.210		
		Factor 2	1.6451		0.150	0.359		
		Factor 3	1.0244		0.093	0.452		

Table 19. (Continued)

Data Set Quarter 10								
Head			Spouse			All		
DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2
3130	0.86539	0.13289	3132	0.89601	0.07040	3132	0.87046	0.08743
3132	0.86008	0.10028	3130	0.88863	0.12430	3130	0.86932	0.12868
3133	0.57773	-0.02337	3133	0.52916	0.02748	3133	0.56246	-0.00094
3135	0.56448	-0.06739	3094	0.36286	-0.16666	3135	0.46801	-0.08313
3094	0.51609	-0.13470	3135	0.29889	-0.11704	3094	0.46024	-0.13800
3131	-0:06526	0.71406	3095	-0.02835	0.74201	3095	-0.04657	0.70413
3095	-0.06196	0.67676	3131	-0.17764	0.66360	3131	-0.11139	0.69451
3128	0.09469	0.61070	3096	0.18327	0.56118	3128	0.01890	0.58784
3096	0.09110	0.60811	3128	-0.10755	0.55043	3096	0.12868	0.58484
3134	-0.21827	0.56845	3134	-0.17877	0.54598	3134	-0.20541	0.55984
3128	0.00118	0.45127	3129	0.04589	0.37707	3129	0.01820	0.42080
			Eigenvalue		Portion	Cum Portion		
Head								
		Factor 1	2.4822		0.226	0.226		
		Factor 2	2.2866		0.208	0.434		
		Factor 3	1.0543		0.096	0.529		
Spouse								
		Factor 1	2.2536		0.205	0.205		
		Factor 2	2.0632		0.188	0.392		
		Factor 3	1.2445		0.113	0.506		
		All						
		Factor 1	2.3495		0.214	0.214		
		Factor 2	2.1915		0.199	0.413		
		Factor 3	1.1101		0.101	0.514		

Table 20. Worry (W) Scale Factor Weights.

Data Set Quarter 04						Data Set Quarter 10					
Head		Spouse ${ }^{\text {a }}$		All		Head		Spouse		Al1	
DEI	Factor 1	1 DEI	Factor 1	DEI	Factor 1	DEI	Factor 1	1 DEI	Factor 1	DEI	Factor 1
3143	0.67359	93141	1.00000	3143	0.70230	3143	0.75407	73143	0.73566	3143	0.74615
3141	0.65794	43142	1.00000	3142	0.67097	3142	0.66598	$8 \quad 3142$	0.70682	3142	0.68078
3142	0.64487	73143	1.00000	3141	0.65486	3141	0.65872	23141	0.63525	3141	0.64606
3144	0.60110	0.3144	1.00000	3144	0.62528	3144	0.63843	$3 \quad 3144$	0.56968	3144	0.61695
3145	0.54808	8. 3145	1.00000	3145	0.54508	3145	0.45661	13145	0.39064	3145	0.43796
		Eigenvalue	Portion		Cum Portion			Eigenvalue	Portion		Cum Portion
Head						Head					
Factor 1		1.9642	0.393		0.393	Factor 1		2.0621	0.412		0.412
Factor 2		0.9321	0.186		0.579	Factor 2		0.9255	0.185		0.598
Spouse						Spouse					
Factor 1		5.0000	1.000		1.000	Factor 1		1.9215	0.384		0.384
Factor 2		0.0000	0.000		0.000	Factor 2		0.9830	0.197		0.581
All						All					
Factor 1		2.0604	0.412		0.412	Factor 1		2.0100	0.402		0.402
Factor 2		0.9065	0.181		0.593	Factor 2		0.9274	0.185		0.587

[^2]Table 21. Self-Satisfaction (SS) Scale Factor Weights.

Data Set Quarter 02									
Head			Spouse			Al1			
DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2	
3086	0.71211	-0.15472	3083	0.66994	-0.10810	3086	0.69477	-0.12243	
3083	0.70006	-0.10260	3086	0.64758	-0.09467	3083	0.67298	-0.12601	
3085	0.64410	0.02901	3085	0.62276	0.01467	3085	0.63872	0.03416	
3079	0.63426	-0.24250	3079	0.58083	-0.17113	3082	0.59036	0.00414	
3082	0.61067	-0.01595	3082	0.52734	-0.02439	3079	0.58357	-0.24138	
3084	0.03632	0.70374	3081	-0.16361	0.67746	3081	-0.16064	0.66889	
3081	-0.16569	0.66237	3087	-0.01609	0.60736	3084	0.02572	0.64591	
3080	-0.09640	0.65801	3080	-0.06572	0.58455	3087	0.00294	0.62299	
3087	-0.00176	0.64417	3084	0.00443	0.57514	3080	-0.08501	0.61595	
3078	-0.16984	0.41842	3078	-0.10793	0.43340	3078	-0.14238	0.42533	
			Eigenvalue	Portion		Cum Portion			
Head									
Factor 1			2.7025	0.270			0.270		
		Factor 2	1.5899	0.159		0.429			
		Factor 3	0.9155	0.092		0.521			
Spouse									
Factor 1.			2.2755	0.228		0.228			
Factor 2			1.3779	0.138		0.365			
Factor 3			1.1479	0.115		0.480			
All									
Factor 1			2.4919	0.249		0.249			
Factor 2			1.4981	0.150		0.399			
		Factor 3	1.0215	0.102		0.501			

Table 21. (Continued)

Data Set Quarter 10								
Head			Spouse			All		
DEI	Factor 1	Factor 2	DEI	Factor 1	1 Factor 2	DEI	Factor 1	Factor 2
3079	0.70006	-0.19505	3086	0.68223	$3-0.07870$	3086	0.68967	-0.14108
3086	0.69862	-0.19576	3083	0.65520	$0-0.07296$	3083	0.67252	-0.08246
3083	0.68019	-0.10846	3079	0.62474	$4-0.20396$	3079	0.67237	-0.18688
3082	0.64590	-0.11213	3082	0.58496	$6 \quad 0.02451$	3082	0.61899	-0.05477
3085	0.54592	-0.03701	3085	0.50636	-0.26163	3085	0.52147	-0.12299
3084	-0.09295	0.75973	3084	0.07435	$5 \quad 0.73416$	3084	-0.03041	0.74953
3087	-0.06114	0.72869	3080	-0.05032	2. 0.65892	3087	-0.07904	0.68501
3080	-0.09530	0.67205	3087	-0.10582	20.60667	3080	-0.08669	0.65787
3081	-0.20285	0.62682	3081	-0.26568	$8 \quad 0.59203$	3081	-0.23126	0.61417
3078	-0.27709	0.35860	3078	-0.23613	$3 \quad 0.42998$	3078	-0.26560	0.38560
			Eigenvalue		Portion	Cum Portion		
Head \quad - Cu								
Factor 1			3.0867		0.309	0.309		
Factor 2			1.3921		0.139	0.448		
Factor 3			0.9155		0.092	0.539		
Spouse								
Factor 1			2.6625		0.266	0.266		
Factor 2			1.3656		0.137	0.403		
Factor 3			1.0547		0.105	0.408		
A17								
Factor 1			2.8783		0.288	0.288		
Factor 2			1.3650		0.136	0.424		
Factor 3			0.9688		0.097	0.521		

Table 22. Positive Affect (PA) Scale Factor Weights.

Data Set Quarter 02						Data Set Quarter 10					
Head		Spouse		Al1		Head		Spouse		A17	
DEI	Factor 1	1 DEI	Factor 1	DEI	Factor 1	DEI	Factor 1	1 DEI	Factor 1	DEI	Factor 1
3067	0.66904	43067	0.66495	3067	0.65965	3067	0.68794	43067	0.68778	3067	0.68270
3069	0.66482	23071	0.65591	3071	0.65365	3065	0.64301	13063	0.66870	3065	0.63553
3071	0.65979	93069	0.62737	3069	0.64766	3071	0.55300	- 3071	0.66860	3071	0.60645
3065	0.53760	- 3065	0.61084	3065	0.57927	3069	0.52452	23065	0.62927	3063	0.59592
3063	0.39392	23063	0.52205	3063	0.46601	3063	0.52334	- 3069	0.59693	3069	0.56481
		Eigenvalue	Portion		Cum Portion			Eigenvalue	Portion		Cum Portion
Head						Head					
Factor 1		1.7691	0.354		0.354	Factor	1	1.7415	0.348		0.348
Factor 2		1.0541	0.211		0.565	Factor	2	0.9703	0.194		0.542
Factor 3		0.7926	0.159		0.723						
Spouse						Spouse					
Factor 1		1.9176	0.382		0.382	Factor	1	2.1195	0.424		0.424
Factor 2		0.8882	0.178		0.560	Factor	2	0.8791	0.176		0.600
All						A11					
Factor 1		1.8346	0.367		0.367	Factor	1	1.9119	0.382		0.382
Factor 2		0.9752	0.195		0.562	Factor	2	0.9166	0.183		0.566

Table 23. Life Satisfaction (LS) Scale Factor Weights.

Data Set Quarter 02								
Head			Spouse			All		
DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2
3093	0.85181	0.15424	3093	0.86193	0.12412	3093	0.85381	0.14877
3089	0.77938	0.29878	3089	0.73460	0.34220	3089	0.75918	0.32408
3092	0.69264	-0.31299	3092	0.71138	- -0.29378	3092	0.70577	-0.29935
3060	-0.01395	0.79449	3060	0.01954	0.80294	3060	-0.00333	0.80050
3058	0.13251	0175911	3058	0.06778	- 0.74688	3058	0.11277	0.75358
			Eigenvalue		Portion	Cum Portion		
		Head						
		Factor 1	1.9385		0.388	0.388		
		Factor 2	1.3105		0.262	0.650		
		Factor 3	0.6911		0.138	0.788		
		Spouse						
		Factor 1	1.8924		0.438	0.378		
		Factor 2	1.3226		0.265	0.643		
		Factor 3	0.7472		0.149	0.792		
		A11						
		Factor 1	1.9335		0.387	0.387		
		Factor 2	1.3082		0.262	0.648		
		Factor 3	0.7081		0.142	0.790		

Table 23. (Continued)

Data Set Quarter 10								
Head			Spouse			A11		
DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2	DEI	Factor 1	Factor 2
3093	0.83111	0.17806	3093	0.84527	0.23213	3093	0.83760	0.20297
3092	0.77590	-0.24920	3092	0.77620	-0.23350	3092	0.77854	-0.23946
3089	0.75917	0.33860	3089	0.73566	0.41402	3060	0.74725	0.37403
3060	-0.03629	0.80718	3060	0.00337	0.83955	3060	-0.01944	0.82339
3058	0.17542	0.75744	3058	0.14837	0.76601	3058	0.16761	0.76036
			Eigenvalue		Portion	Cum Portion		
		Head						
		Factor 1	2.0599		0.412	0.412		
- -		Factor 2	1.2750		0.255	0.667		
		Factor 3	0.6766		0.135	0.802		
		Spouse						
		Factor 1	2.1884		0.424	0.438		
		Factor 2	1.2633		0.253	0.690		
		Factor 3	0.6568		0.131	0.822		
		A11						
		Factor 1	2.1191		0.424	0.424		
		Factor 2	1.2700		0.254	0.678		
		Factor 3	0.6428		0.129	0.806		

APPENDIX C

QLI ANALYSIS OF FEDERAL INCOME TAX SCHEDULE: MEDIAN INCOME TAXPAYER ILLUSTRATION

Nomenclature

INCOME	Taxable income levels from Federal Income Tax Schedule
TABLED TX	Tax from the Federal Income Tax Schedule

TMVITAB TAX AUJJSTAENT SCHEJULES
GOJUSTMENT OF STANOARU TAX TACLE 1975 TAX YEAR，RETURNS AUJUSTGEATS EASED UPON QLI REDUCTICN TF

1．		TASLEO TX		ADJ•0		B－TAX ETR	Y
4.9000900		\bigcirc		0.0		1.2250 .30	3
4.9500900	03	4．nivjau）	Ju	7.2977040	02	1.2375000	03
5．0005000	03	1.1000000	01	7.3059850	02	1．2000000	03
505 ¢n？ 0	33	1．3．0．0．j	01	$7.31+284$	J2	1．2029000	03
5．10¢uJun	$\checkmark 3$	2.5000000	01	7．3226．30	02	1．2750000	03
5.150000	03	3.2000003	01	1.3309400	02	1.2375000	33
5.2000900	3	3.9050000	$\bigcirc 1$	7.3392960	J2	1.3000000	3
.2500300	03	4.0 .300000	01	7.3476701	02	1．3125000	03
5.3000000	03	5.3000000	01	7.3560640	02	$1.32500=$	3
5.3500000	03	6.0000000	01	7．3644770	02	1.3375000	03
5.4000000	03	0.7900000	01	7.3729090	02	1.3500000	3
3.4500000	03	7.4500000	01	7.3813600	02	1.3625000	13
5.5000 Jod	03	8.1000000	01	7.3898301	02	1.3750000	03
5.5500000	33	8.8000000	Cl	7.3983200		1.3675000	${ }^{3}$
5.0000000	03	9．530000	01	7.4068290	02	1.4000000	3
5.6500000	U3	1．07）0100	02	7．4153570	32	1.412500	3
5.7 ¢nnond	ก3		02	7．4239050	72	1.4250200	3
5.7500000	03	1.1000000	02	7.4324730	02	1.4375000	03
5.8003000	03	1．23000．51	02	7.4410500	02	1.450030	33
$5.3500 n 00$	C^{3}	1.3009 ？	$\bigcirc 2$	7.4476670	32	$1.40<500$	33
5.9000000	03	1．370000）	02	7．458 2930	02	1.4750000	3
5.9500000	$n 3$	1．440n！${ }^{\text {a }}$	02	7.46694 ก	32	1．437．5000	3
0.3000030	－ 3	1．5100．201		7．47．5606）	02	1.5000000	33
6.0500000	03	1．5．9：3000	0 ？	1.4842920	02	1．9125000	3
6.1005000	03	1．0600J00	02	7.4929980	32	1.5250000	33
6.1500000	03	1.7400050	02	7.5017250	32	1． 5375000	33
6.2000000	03	1．312．）こ00	C_{2}	7.5174710	32	1.55007000	33
－． 25000000	\checkmark^{3}	1．34．）3000	02	7．51＋2330		1.502500	3
6.3000300	03	1．9600000	02	7.5230257	02	1.5750000	
G．35rnnou	？ 3	2．＊4～ncว	72	7.53683319		1.5075020	3
$6.4030000)$	33	2．11000．11	02	7.5450610		1.6500000	3
5.4500000	73	2．190こうこ	02	7.55457 （1）		1．612500	03
6.5000000	03	2.260300 ，	02	7.5633701		1.6250000	
6.5500001	03	2.3400000	32	7.5722630	32	1.0375000	33
6．Scorir ou	－3	2.41 nnjon	$\bigcirc 2$	7.5811780	${ }^{2}$	1.05030 Jo	13
6.0500000	03	2.4700000	02	7．593109：		1.0625000	33
0.700000	03	2．501000）		7．j990610	J	1．67b000	03
$6.750 \cdot \mathrm{r} 700$	33	2．04．5000		7．003035	J	1.0315000	33
6.8000000	03	2.7100000	02	7.617 J290	02	1．700coud	3
6．e．j00cor	03	2．79ヶวのา	？2	$7.620 \cap 440$	02	1.7125000	
9.9003000	03	2．00300）	02	7.0350800		1.7250000	03
6.9500000	13	2.9400 OLC	02	7.64413011	22	1.737500	3
7．300000	03	3.02000 ก	02	7.6532170	32	1．1500003	03
7.0500300	03	3.1000001	02	$7.06 ? 3170$	U2	1.7025000	03
$7.100 n \cap 00$	$2 ?$	3.180000	C2	T．6714390	－2	1.7750900	03
7.1500300	$\checkmark 3$	3.2000000	02	7.6805820	02	1.7875000	03
7.2000000	03	3.34000 .00		7.6897470	$\checkmark 2$	1.8000000	03
1.2509000	53	3.4200200		7．tyoyz		1.8125070	03
$7.300000 \pm$	03	3 －500002		7.1061420		1.3250000	03
7.3500005	03	3.5050000	02	7.7173730	32	1.8315300	，

Marriej filifing joint claiming four exemptions not itemizing median iveome taxparer
A－TAX UTR Y AOJ＇D QTRY ADJ YEARLY Y
1.2365001 u3 1．2255057003 1.2472500031 .067350003 1.2000000331 .079643003 $1.268750003 \quad 1.091935003$ 1.2795000031 .104227003 $1.2902500 J 3 \quad 1.116518003$ 1.128808003 .311750031 .141998003 1.153388003
1.165677003
1.177966003 1.177966003

1.190254003 1.1902540 | 1.202542003 |
| :--- |
| 1.2148290 | 1.214829003

1.227116003 1.227116003
1.239402003 1.239402003
1.251688003 1.251688003 1.276258003
1.288543003 1.300827003 1.313110003 1.325393003 1.337675003 1．349957D 03 1.362238003 1.374519003 1.380799003 1.399079003
1.411350003 1.423637003 1.435910003 1.448193003 1.4604710 J3 1.485023003 1.485023003 1.509574003 1.509574003
1.521849003
1.534123003 1.546397003 1.558670003 1．5709420 03 1.583214003 1.595485003 1.607750003 1.620027 D .03 1.632296003 1． 644560003
4.900000003 4.220230093 4.269402003 4.318572003 4.367740003 4.410936003 4.466070003 4.515233003 $4.5643940 \quad 03$
4.662709003 4.711864003 4.761017003 4.8101630 ？ 4.9004640 .03 4.9004640 .03
4.957609003 4.957609003 5.006753003
5.055894003 5.105033003
5.154171003 $5.2033060 \quad 03$ 5.2524390 J3 5.30157100 5.350700003 5.399828003 5.448953003 5.4980700 J 3 5.547197003 5.5963170 .03
$5.6454340 \quad 03$ $5.6945490 \quad 03$ 5.7430620 .03
5.7927730 .03 5.74183003 5.841882003 5.890989003 5.940094003 5.989197003
6.036297003 6.0382970 .037396003 $6.1364920 \quad 03$ 6.105536003 6.23407800 6.283708003 6.332856003 6.381942003 6.4310250 .03 6.480107003 6.529186003 E． 5782630.03

ADJUSTAEさT SASEn U							
jACrm＝				acy＇u Tax			Y
7．400uj）	23	3．iovors	ji	7.720026	$j 2$	1.3500000	13
7.4500 .30 ？	33	3．740．7000	？？	7．73ちゃ゙ッコ	02	1.3025000	03
7．5nmon	－	3．とこうこの	${ }^{2}$	7.7451950	02	1．8750900	j；
7.5500000	33	3．ヶう）	32	7.7545143	02	1.8875000	33
7.0000000	0 ？	$3 . 马$ 0）	2？	7．7630550	02.	1.900000	${ }^{3}$
7.6509230	－3	4. rficanor	O2	$7.773210 j$	0.	1．9125コ0）	33
7.70000 J	03	4.1400000	02	7．7626．3）	32	1． 3 250．joj	33
1.7500000	03	4.2200000	02	7.1920117	02	1.9575300	C3
7.8030000	U3	4.3303000	02	7.8014410	U2	1.95000000	03
7.8500000	03	4.3800000	02	7.0108940	02	1.9025000	03
7.90 annon	03	4.40 .00000	32	7.8233700	J2	1.9750000	3
7.9500000	03	4.5400005	C 2	7.8290699	02	1.9875035	03
3.000030.$)$	03	$4.6399) 30$	r，2	7.6353900	02	2.0900000	03
3.0500000	03	4.7103000	J2	7.0487357	U2	2.0125000	03
E．100 900	03	4 －© Joujo	U2	7.0535020	02	2．3250000	03
3．150conu	23	4．dje：re）	32	7．863）93\％：	02	$2.0 こ 7$ 万000	C3
8.2000000	03	4.9700000	32	7.8717070	02	2.0500000	03
3． 250000 ）	03	5.9500000	22	$7.3873441)$	02	？． 2025000	03
0.3300200	¢ 3	5.140 ¢0n	？ 2	7.8970045	$\bigcirc 2$	2．ci7b 0000	03
2.3500300	33	5.2200000	02	7．5060880	02	2．© \％ 5000	03
3．40ronjo	33	5.3100000	${ }_{2}$	$7.9163 \geqslant 6 n$	02	2.1000300	33
8.4500300	03	5.3903000	02	7.9261270	02	2．11250．00	03
8.5000007 ．	03	5.4000030	02	7.535832 D	02	2.1250000	03
$8.5500 \cap \mathrm{ch}$	03	5.5600000	02	7.9455610	02	2.137 9000	03
8.6000000	03	5.6500000	02	7.9554630	02	2.1500000	03
8.6500000	03	5.7300000	02	7.9652900	ก2	2.1025000	03
3.7000300	03	5．8200000	02	7.9751410	02	2.17500 O	03
8.7500000	13	5.9000070	C？	7.9350150	02	2．137，${ }^{\text {a }}$	J3
8.80 crian	r_{3}	5．cyenn ${ }^{\text {a }}$	Oi	7.95491410	$? 2$	2．2＾0n¢	03
む．もら00J0	03	6．07Juevo	32	0.0048380	02	2．2125000	03
¿．9Cccoon	O3	6．16 0000	C2	と． 3147850	n2	2.2250000	33
8.9500000	j3	－．250j00n	02	3.024750%	32	2.2375001	03
7.0000 .300	33	6.3430000	ग	S．03＇7551	02	2．2．50．500	03
	S 3	－．44rerm	C？	\％．044776	32	$2.2025: 20$	03
9.1000000	03	$6.5 \geq 0 \cup 030$	02	c．054823i	02	2．275こうOリ	33
－150ncou	03	6．03．0030	$0 ?$	E．06489400	J2	2．2375000	03
\％．ancomni：	？ 3	6.72 －5cos	02	3．074\％9 \％	02	2．30．ن．ju	33
9.250030 ！	03	－－230000	02	$3.08=1110$	32	2.3125000	33
5． 3 cceoj	03	6．41）	02	8.0952587	C．	2．3230020	3
9.3500000	33	7.2100000	02	3.105429 .5	02	2.33750 .30	03
9．40cricou	03	7.1000000	02	8.1156 ？ 60	02	2.350920	03
9.4500030	D3	7.2030000	02	8.1250490	22	2.3025 Jio	33
9.5003000	$\checkmark 3$	7.2900000	02	8.1300960	32	2.375000	03
	73	7．3ッロのาの	02	$8.14637^{\circ} 0$	02	2．3．3750n9	93
$9.600 J 0 J 0$	J3	7.4800030	02	8.1506690	02	2．+ ） 0	3
7.6500900	03	7．30000コ0	02	0.1609940	$0 ?$	2.4125030	03
	－3	7．6700c：0	32	0.1773450	02	2．4250300	03
¢．7500000	33	7.7700000	02	8.1877220	32	2.4375000	13
¢．000000）	03	7.3600000	02	d．1931250	0 ？	2．45juJou	13
y．es＾cron	？ 3	7.9602000	02	8.2095547	02	2．402	33

MARFIEO FILING JSINT CLAIMING FUJV EXEMPTIONS NOT ITEMIZING MEDIAV INCOME TAXPAYER A－TAX QTR Y AUJOUQTRY
$1.753500003 \quad 1.056834003$ $1.769000003 \quad 1.669103003$ 1.7745030031 .681370003 1.693637003 $\begin{array}{llll}1.8005030 & 03 & 1.1059040 & 03\end{array}$ $1.81100003 \quad 1.718170003$ 1.730435003 1.742700093 $1.842500003 \quad 1.754904003$
.853000003
1.363500003
1.874003003
$1.87400 J 003$
1.884250003
1.884250003
1.894750003
1.894750003
1.905000003

1．9155000 03
1． 925750033
1.936250003
1.940500033

1．957J000 03
1．9672500 03
$1.9777500 \mathrm{C3}$
1.98 －9の00 03
1.958500003

2．00875：00 03
$<.0192570 .33$
$2.02 .950 J 003$
2.040000503
2．040000r； 03

2.071007003

2．08125Jj 03
2．001250j 03
2.0750003
2．101boun 33
2．111750： 03
2．1117500 03
2.121750003
2.132000003
$2.132 J 00003$
2.142000103
$2.1+2 J 030$
$2.15225 ? 0$
2.152250
2.1622500 J 3
2.17259 .0003

2．1́2ううしロ つ3
$2.1527500 \quad 03$
2．2527う） 73
2.213000003
2.223000003
2.233250003
2.243253003
2.253500003
$2.2535000 ~$
2.20350003

ADJ YEARLY Y
6.627338003 6.676410003 6.725480003 6.774549003 6.323615003 6.872678003 6.970799003 7.019856003 7.068911003
7.117963003
7.117963003
7.167013003 7.216061033 7.216061003
7.265107003 7.314150003 $7.3631910 \quad 03$ 7.412229003 7.461266003 $7.5103000 \quad 03$ 7.559331003

7.608360003 7.657387003 $7.7064120 \quad 03$ $7.7554340 \quad 03$ 7.804454003 $7.8534710 \quad 03$ 7.902486003 7.951498003 $8.0005090 \quad 33$
 8.0985210 .03 8.147524003 0.147524003 8.245522003 8.245522003 8.294518003 8.294518003 3.3435110 3.3925010 $8.3435110 ~ J 3$ $8.3925010 J 3$ 8.441409003 8.441489003 8.490474003 $5.5394570 \quad 03$ $8.5884370 \quad 03$ $8.6374150 \quad 03$ 3.086390003 8.731303003 8.784333003 8.833301003 8.882265003 －． 931228 D 03 8.980187003
 $9.0291450 \quad 33$

QJJJSTAEN it STAITAS TAX AOJUSTMENT SCHEEULES TAK TABLF 1975 TAX YEAR，RETUO：OS

a－TAX ET\＆Y
9.903030103
 1．00jco． 2 1．005CoJe 2 1.015050004 1.01503050 $1.020 C J J 0$
$1.250 n 0 r$ 1． 2 25neor 04 1.03000000
1.0350000
1.04
1.04
1.05
d．0コロ00．j2？
$5 \cdot 15=-12$ E．？＋Juvir 02
 8.53000002 .620000020 8.62000030,
2.72000010 .02 .720000 .02 ． .10000002
1.0400030 1.05000000 1.055000004 1．060rj00 1.0050030 － 1.070000004 1．075？nco ？ 1.080000004 1．08500．JD 04
1.0900000 1.0950000 1.09500004 $1.1 \mathrm{Cc} 0 \mathrm{nj0} 04$ 1.105000004 1.110000004 1.115000004 1.120000 D 1.130000034 1.13000000_{4}
1.135000004
$1.14 \cup 000004$ 1.145030004 1.145030004 1．150nnrod 04 1.1550000
1.1600000
1.1650000 1.1600 Nod 1.1650000 1.17500003 1.1830000 1.185000004
$1.190 n c 3004$ 1.195000004 1．？000300 0 1.2050300 1.210000004 1.2157000 1.2200000 1.22500000 1．23nn7n） 0 $1 .<3500000$
．100300．） 02 － 19009502 －290000 02 －30フここと 22 4.480000002 .760000002 ． 8.60000002
．9500000 U 2 .005030003 ．001400c 03 1.01490 CD 03 .024000003
.033000003 1.033000003
1.043000003 $1.0430000 \quad 03$.052000103 ．6620n～0 23 1.071000003
． 090000023 ． 100000003 $1.1 ヶ 9000005$.1 Y0000 03 1190000 ט3 1．12sumad 03 .1470219 .1570100003 1.160000003 1.176000003
1.185000003 .193300003 $.2010000 \quad 33$ ． 209300003 .217030003 $1.2170 J 0003$
1.225000003 ． 225000003 1.233000003 1.241000003 1.249000063 1.24900003
1.2570000
0.219010032 8.2294320 02 $\therefore .2+4000032$ 0.257335012 3.26179722 3.2716350
3.2323000
3.25294302 3.2023000
$3.2 c 29430$ 8.303612002

5．325033！ 2 3．5357340 2 3．3465630 02 3.357369002 $3.3632^{n} 3002$ －．37．ju050 02 ع． 387955002 $8.40 \wedge 3730$ こ 2 8.411319002
8.422793002 8.444827002 $8.4558670 \quad 02$ 8.466975022 3.4780920 n？ 3.4892390 8.500 .414002 3.511618022 8.522851002
8.534114002
8.545407002 3.55572000 $5.5630800 \mathrm{C2}$ 6．5794610 02 $8.5933730 \quad 02$ i．cu23140 U2 ッ． 013780002 $\because 0.52070$ 8.636820002 3.648382002
8.654970002 3.671630002 $8.6832550-2$ 8.094941002 8．706658．） 02 0.7184070
8.7301060 $8.7301860 \quad 32$ 8.741998002 8.753841002 8.765715002
2.4750000 2.437530003 2.500000003
2.512500003 2.512500003 2.537500203 2.53750000 2.302500033 $2.20<300 \mathrm{O}$ 2.575 CJOU 03

2．60うこのJu 03 2.6125 ）n D 3 2.625000003 2.537500003 2.650 กกロ 03 2.062500003 2.675000003 2.007570003
2.700 .112500
2.11250003

2．7250000 03 2.73750000 2.75000000 2.762500003 2.775000003^{-} 2．7875000 03 2.800000003 2.812500003
2.8250000 2．825050 03
2.850000003 20 2.062500003 2．0625000 03 2.6750000
2.8875000
2.93 2.8875000
2.9000000
03 2．SLこちううO 03

 2． 950000003 2．95250v0 03

2．97うcovu 03 $2.9875000 \quad 03$ 3．こうつつ0こ0 03 $3.2125000 \quad 33$ 3.025000003 3.0575070 03 3.050000003 3.002500003 $3.0750,00003$
3.0875030 3． 08750.31 J

MARRIED FILING JCINT CLAIMING FQUR EXE PAGE 3 MEOIAN INCOME TAXPAYER

2.173250003
1.147343034

-~MITAK TAX LJJUSTMENT SCHEOMES

$\begin{array}{llllllll}1.4900 .000 & 04 & 1.795000 & 33 & 3.4165300 & 02 & 3.725=003 & 0 \\ 1.4950000 & 64 & 1.710000 & 03 & 5.4303050 & 32 & 3.7375000 & 03\end{array}$

VRAİJ EILIG, JOINT CLAIMING FOUR EXEMPTIONS NOT ITEMILING WeGirl I N ME TAXPAYER

A-TAXQTE Y ADJ'D QTR Y ADJ YEARLYY
$3.29775 \mathrm{~J} 33 \quad 3.489535003 \quad 1.395334034$ $3.30009023 \quad 3.5017425031 .400097004$ 3.3182500 j3 $\quad 3.513898003 \quad 1.405559004$

 IAC．NE A＊

WLI y－Tix
1.4305240 J 1.43515000 ？ $1.437+750 ?_{c}$ $1.45 \div 00002$ 1.440124 C J？ 1．4＋0＋43j0 1.440772 CJ 1．4’12．3うい $1 .+4 i+1: 1032$ 1.441741032
1.442063032 1.442305332 $1 \cdot+427$ そう） 2 $1 .+43<27932$
$1.4+3745032$ 1．4ヶ374y 0？ 1.443060022 1.443588002
1.444300002 1.4443000
$1.444027) \mathrm{Ji}$ $\begin{array}{ll}1.444027) & J i \\ 1.444440) & 02\end{array}$
$1.4+52040$ J？
$1.445,2825 \mathrm{JL}$
 1.44621702 $1.146534, j$ ？ 1．4＋45ラン）〇2 1.4471670 32 $1.447463)$ ？ $1.44175 .51 ?$ 1.4491130 j？

$1.4+5+2.50-2$

 $1 .++c 742032$ 1．4＋5056j $3 ?$ $\begin{array}{ll}1.4+\% 3700 & 02 \\ 1.4+46 j 00 & 32\end{array}$ $1.4+66_{3} 3022$ $\begin{array}{ll}1 .+5, j u 3 J & J ? \\ 1.4 & 4 \\ 1.42 v & 32\end{array}$ 1．tise 32032

 －4．5． i．，，2lytury 1．1531J3u J2 1．+5341 （n） 2 1.453720 aj 32 $1 .+5+3-007$
$1 .+3+230$

AA＝RIE CILIVG JOINT CLAIMLING FJUR EXEMPTIONS NOT ITEMIZING AEDIAAV iVCTME TAXPAYER

QLI A TAE－TX	2LI $\triangle A$－TAX	y diJ D－qLI	A ADJ D－DLI
$1.43532+10{ }^{0}$	$1.4380244^{\circ} \mathrm{U}$	0.0	0.0
$1.43+12+0$ ？	1.434361002	2．6031230－03	4.7889230001
1．43ヶ＊＊ジ； 22	1.4340860 U 2	1．1509070－J3	4．7889230－01
1．43Sbe30 02	1.435011002	$1.1688930-02$	$4.7805230-01$
$1.434+62002$	1.435335002	$1.6217190-32$	$4.7889230-01$
1.440241 j 3	$1.435059[02$	2.073360002	4．780923）－01
1．44352） 02	1.4359830 J	$2.5244410-02$	$4.78892310-01$
1．4407530 32	1.436306002	$2.9743370-02$	$4.7889230-01$
1．441J7s！ 32	1.436029002	$3.4232570-02$	4．7889230－01
1．4413540 0？	1.436952002	3．8712000－02	$4.788923 \mathrm{D}-01$
1.441531002	1.437274002	$4.3101670-02$	4．7889230－01
1.441503002	1.437596002	$4.7641570-02$	4．7089230－01
1．442185！？2	1．437917 32	5．2051710－32	$4.788923 \mathrm{~J}-\mathrm{C}$
1．4424031 32	1.438238002	$5.0532080-02$	4．7887230－01
1.4427300 v	1.438559002	$5.0962690-32$	4．7889230－01
1．4431140 2	1．4388790 02	6：538 $3530-02$	$4.7835230-01$
1.44329 J J 2	1.439199002	$6.9794610-02$	$4.788923 \mathrm{D}-01$
1.443566502	1.439519002	7．4195920－02	4.788923 D－01
1．4433417 32	1.439830002	7．8507470－02	4．788923J－01
1．444116） 02	1.440157002	$0.2969250-02$	4．7889230－01
1．444301502	1．4404750 02	8．7341270－02	4．7885230－01
1.444665032	1.440793002	$9.1703520-02$	$4.7089230-01$
1．4449390）ここ	1.441111032	9．6056010－02	$4.7884230-01$
1．44＇）2゙7，J2	1.441428002	$1.0103540-01$	4．7884230－01
1．4454015 02	1.441745002	$1.0536770-01$	$4.7889230-01$
1．4457400 22	1.442062002	$1.1032560-01$	$4.7885230-01$
1.440021002	1.442370002	1．1463770－01	$4.7889230-01$
1．446？ $1: 3$	1.442694002	1.19574 20－31	$4.783923 \mathrm{J-01}$
$1.4405000 \mathrm{J2}$	1.443005002	1．2300610－01	4．7885230－01
1.44002003 L	1．443324D 02	1．2378110－11	4．7889230－01
1.4470970 こ2	1.443039002	1．3305290－01	4．7885230－01
1.447363.$) 32$	1．4439530 ${ }^{\text {2 }}$	$1.3704050-01$	$4.7889230-61$
1．44103．0） 22	1.444267502	1．42iseio－01	$4.7889230-01$
1．447コ）${ }^{\text {a }}$	1.444531002	1．4707020－01	4．7889233－01
1．44317） 0 ？	1.444894002	$1.5130160-01$	$4.7089230-01$
1.443 ＋34．	1.4452070 .02	$1.5615230-31$	4．1809230－01
1．44870）	1.445519002	1．6036350－01	$4.7889230-01$
	1.4450310 ？	1.051 －270－01	4．7089230－01
	1.446143072	1．6530380－01	$4.7885230-01$
1．＋4S3j10）	1.446454002	$1.7419160-01$	4．788923J－C1
1．44977．， 2	1.440705002	$1.7836250-01$	4.788 ¢2ンu－n
1－950」33）J2	1．4470767 02	1．－314880－01	4．7899230－01
	1．4473860 02	1．0752400－01	$4.706>23 \mathrm{u}-01$
1．4うッらうje ？	1．4476960 02	1．－2¢ \％－ $20-0.1$	4．7889230－01
1．45．3820） 3	1.443005002	$1.9744140-01$	4．788923i－01
1．451351．）22	1.448314 ） 02	2．32i8360－01	$4.7889230-01$
1.4513430 J	1.445023002	$2.0691470-01$	$4.788 \times 130-01$
1．4516040） 22	1.440931002	$2.1163+70-31$	$4.7889230-01$
1．45！（20．う）32	1.44023900 ？	2．1634380－01	$4.7809230-01$
J？	$1 .+43247502$	c．2iv4170－	4．7389230－01

TMNITAS TAX AJUUSTMEVT SCHFDULES ADJUSTAENT－F JFANDAR TAX TAELE $1 S 75$ TKX YEAZ，RETUROS

> GLI B-TAX
．252？17：3－31
7．2742220－0 $9.2503050-0$ $9.315406:-11$ $9.3437050-0$ $0.3630240-0$ ． 3054220 －？ 1
9．4C79000－j1
． 4334570 －31 $9.4539960-11$
． $4758150-01$ $9.4930150-01$ $9.5214970-01$ $9.5444610-0$ －．5675010－01 9．5938480－0 $9.6138480-0$ 9．6675230－9 $9.6839870-0$

9．7075360－01
$9.7311700-01$ $9.754339 n-01$ $9.7786950-01$ 9．0025860－71 7．8265650－01 9．850ヶ310－0 9．87＋704）－91 $9.39902 .60-0$
$8.9233500-j$
．0．477140－31 $9.972 .2330-01$ ． $90600111-01$ 1.002157000 .00453500 1.0071220 J 1.0090180 U － 1212300 1.017102000
1.019695030
1.0222375 1.022237000 .0247 と号 1.02735100 1.02992200 1． 325220 ， 0
．03769？J J
1.03769203
1.04232103
.454043002 .454950022 1.455 zjou 02 1.455562002 ． 45 E 1730.02 .450478002 .4567830 u2 .45708100 ？ .437391002
.4576440
.4579970 ก2
.450300002
.458602102
.450904002 .459200002 .459507002 .459000002 1.460100002
1.460708002 .461031022 1.4613060 JZ 1.4016050 .02 ．401 173072 1.462201032 1.402490002

1．4せ27おら102
1.453092032
.4033030 32
． 46360402
.+04275002
． 464570002
1.454064002
.4051200 Je
.465452002
1.465745902
$1.460 C 38002$
$.460 C 38002$

$1 .+06023902$ $1.400 \cdot 153$ ． 22 .450700 .407497002 .4074970 .02 | .4077800 |
| :--- |
| .+03 | 1.4683580 .02 $.465050 \% 02$

$1+65471$
$1+62300$

ARRIEO FILING JOINT CLAIMING FOUR EXEMPTIGE 7 －EJIAN INCJME TAXPAYER
QLI A TAB－TX QLI AA－TAX
QLI $A A-T A X$
1.45230002 $1 .+52640002$ 1.452906032 1.453105002 1.453424002 1.4536430 J？ 1.453442002 1.4542 v 1002 1.454454002 1．4547：71 0
1.454974032 1.455232072 1.455483002
1.455140002
1.455940002 1.456247002 1.456752002 － 457002002 1.4572570 1.450161002 1.450467002 1.450773002 1.451079002 1.451384002 1.451689002 1.451994002 1.452290002 1.452602002
1.452905002 1.453208 D 02 1.453511002 1.453313002 .45411500 .454417002 1.454718002 1.455319002 1.455319002
－2572870－01
2．2572870－01 2．3040460－01 $2.350694 \mathrm{D}-01$ 2．3472330－31 2．4436500－01 $.489978 \mathrm{D}-01$ 2．5301850－01 2．5822810－01 $.6282580-01$ $2.6741430-01$

2．7199090－01

2．7055640－01

$2.7055640-01$ 2．3172280－01 $2.8626560-01$
$2.9140800-01$ 2．9140800－01 2．9542810－01 3．0554390－01 3．0．554390－01 $3.1063850-01$
$3.1511310-01$
2010370－01
$3.2463570-01$ $3.2463570-01$
$3.2968230-01$ $3.3411150-01$ $3.3913420-01$ $3.4354070-01$ 3．485394D－01 3．529：320－31 $3.6225910-01$

3．6720990－01
$3.7214845-01$ $3.7707470-01$ $3.8250750-01$ $3.8748860-01$ 3．9247500－01 3．9785090－01 ．．7331090－01 $.0816160-01$
－359530－01
$4.1842070-01$ $4.2302800-01$ $4.2802830-01$ $4.3400920-01$ $4.3678430-01$ $4.4413870-01$
$4.4883870-01$ $4.4883870-01$ $4.5844150-01$ $4.6424310-01$
$4.7889230-01$
4．7869230－01 $4.788923 \mathrm{v}-0$ $4.7884230-0$ 4．7889230－01 $4.7889230-01$ $4.7889230-0$ 4．7889230－0 $4.7889230-0$ $4.7889230-0$

4．7389230－0 $4.7889230-01$ $4.7889230-0$ $4.7889230-01$ $4.7889230-01$ $4.7089230-0$ $4.7889230-0$ $4.7889230-01$ $4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
4．7889230－0
$4.7889230-0$
$4.788 \mathrm{G230}-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
4．7889230－0
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
4．788923）－01
$4.788923 \mathrm{~J}-0$
$4.788923 \mathrm{D}-01$
$4.788923 \mathrm{D}-0$
$4.788 \mathrm{~S} 23 \mathrm{D}-0$
$4.7885230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-0$
$4.7889230-01$

OAIIIAB IAX ADJUSTAFNT SCHEOULE
AOJUSTMENT OF STAACAF，TAX TABLE 1975 TAX YEAR，RETURQS ADJUSTMENTS JSSET UPV QEI REJUCTICN JF

INCOME 9.953000003 $1.0 r 50700-4$ 1.010030004 1．01三1000 04 1.020003034 2．025030 34 1.0300 OCD 74 1.0350 JOD 44
1.0420000 .04 1.34500070_{4} 1.050000004 1.0550 .0007
1.06000004 1.060000004
1.065030004 1.065030004
1.070090084 1.075000004

1． $\mathrm{C8OC} .300$
1．0850：300 04

1.090000004	9.000000000
1.09500000_{4}	1.000000001
1.100000 C 04	G．v00J0ud 00
$1.1 \sim 5000074$	
1.110000004	9．0Jうj007 J0
1.115000004	1.000300001
1.120000084	$9.002 n 000$ en
1.125000034	1.900000001
1.1370 गOD 04	¢．JoJuoni bu
$1.1350 \mathrm{n} 0 \mathrm{C}_{4}$	1．0003000 01
1.140003004	צ．J000000 00
1.1450 ？${ }^{\text {a }}$－4	1．nาoาec\％ 1
1.150000034	9．30000．10 0）
1.155000704	1.000000001
1．ltjujun 04	9．90u）${ }^{\text {g }}$
	1．0ラ刀Juju 1
1．17¢？ $0^{\text {a }} 94$	y．n？njord or
1．17כuJud u4	1．300J000 01
1.180000034	＇．00300．900
1．18．5「つJ） 74	
1.1900000 04	9．000000： 00
1.19500^{104}	B．：amanas re．
1.200030004	3．0J）．jodu 0
1．2050900 04	－．700．30）（3
1．21000～n ${ }^{\text {a }}$	a．jわuレうこ 00
1.215003704	
1.270000064	8.003090
1.225000004	3．0JJu00 J J
1.230003034	8．3J0フ0．30 00
	？ C

$\begin{array}{llll}1.0950000 & 1.000000001\end{array}$ 1．100000 G．v00JJu 00
 1.115000004 1.12000000_{4} 1.125000034
$1.1370 \% 0004$ $1.1350 \mathrm{n} 7 \mathrm{C}_{4}$
1.140003004 y．0000000000
 1.155070704 1．16jujun 04 1.165 गNOU 144 $1.17,0300$－ 4 1.180000034

 1.046189 Jo 1.050838030 1.053497000 1.056165000 1．C530440 ？ 1.061533050 1.064232700 1.0659410 no 1.069661000
1.469524032 1.459812002 1.47010 Ji 0 ？ 1.4703370 J 1.4706740 J 0 1.473901002 1.471247002 1.411533032 1.471013002 1.472103002

1．0．723910？ 1.075131000 1.077881000 1.082642000 1.083414000 1.086196300 1.088900000 1.091792000 1.094606020
1.1 102060 00
$1.10 \leq 113030$ 1.1059730 1.105973900
1.108839000 $\begin{array}{ll}1.1117180 & 00 \\ 1.114009 & 00\end{array}$ 1.114609000 1.117510020 $1.129423: 0$ 1.123348000 1.120283000

1．125？30n 00
1.132189000
1.135159070
1.1301430 ？
1.14113303 J
1.14412 si J 0
1.1471556 ？
1.157183 .30
1.153223000

1．15322．3こ00
1.157339100
$1.1604: 6 ; 90$
 $\begin{array}{ll}1.1055040 & 0 \\ 1.1036040 & 00\end{array}$ 1.1036040
1.1717177
1.17434200

1．171717？ј
$1.174342,00$ 1.181127%
$1.18+292$ ？
1.127467°
1.472383092 1.472672002 1.47 ग5500 02 1.473240002 1.473523 J U 1.473306102 1.47408300
1.47437000 1.474370002
1.474552002 1.4746520 .0
1.47443300

1． $7752 \mathrm{i4j} 02$
$1 .+75495032$
$\begin{array}{ll}1.4754950 \\ 1.4757750 & 02\end{array}$
1.475775002
1.476055002
1.476055002
1.47633410
1.4763340
1.476613102
1.476892002
1.477170002
1.477443002
1.477726002
$1.470 J 33002$
$1.47 \ell 230002$ 1.478550002 1.470332022 1.4791 .00002 1.47532007
1.479630002 1.419600092
1.479330 1.4759330302
1.400207002 1.40020700
 1．4＋0172700 $1 .+13001$ －．t－15720 3 $1.4510+4002$ $1.4510+4002$
$1.48211030 ?$ 1.4323070
1.4232 1.4323070
$1.48<45010$ 1．9 +2 2535 02 ！．4031930？

MARRIt FILING JoINT CLAIMING FQUR EXEMPTIONS GEOILI IVGOME TAXPAYER OLI i TAETX OLI AA－TAX

QLI AA－TAX B ADJ D－QLI
ADJ D－OL
1.465073052
1.464135002
1.465023002 1.405023002 1.465590002 1.465885002 1.466172002 1.466453002 1.466744002 1.467029002 1.407314002
$4.5854270-01$ $4.7421790-01$ $4.7309230-01$ $4.0414120-01$ $4.0879040-01$ $4.9401280-01$ $4.9863680-01$ $5.0383290-01$ $5.0843170-01$ $5.1300140-01$
$5.1817500-01$ $5.2331820-01$ $5.2786670-01$ $5.3298360-31$ $5.3750680-01$ 5.4704540001 $5.5215940-01$ $5.5215940-01$
$5.5663230-01$ $5.6167000-01$

5．6611770－01
$5.7112890-01$ $5.755890-01$ $5.7555150-01$ $5.8493370-01$ $5.8989210-01$ 5．4426430－01 5．4919630－01 6．0．354330－0 $6.0844900-31$

6．1277070－01 －．176500D－01 $0.2194660-01$ $0.2679550-01$ $6.3107090-01$ $0.3504130-01$ $6.40143 .60-01$ $0 \cdot+494360-01$ $6.5353430-01$
$6.5013420-01$ ． $5013420-01$ $.6175410-01$ $6.0536300-01$
$5.0546090-01$ $5.0646090-0.1$ $6.7254770-01$ $.1612340-11$ ． $7508820-31$ $6.3678450-01$ $0.9031010-01$

4．7889230－01
$4.7889230-01$ $4.7889230-01$ 4．788923D－01 4．7089230－01 $4.7889230-11$ $4.7889230-01$ $4.7889230-01$ $4.7889230-01$ $4.7889230-01$
$4.788923 D-01$

4．7889230－01 $4.7889230-01$ $4.788923 \mathrm{D}-01$ $4.7889230-01$ $4.7889230-01$ 4．7889230－01 $4.7889230-01$ $4.7889230-01$ ．7889230－01
$4.7889230-01$ $4.7889230-01$ $4.7889230-01$
$4.7889230-01$ $4.7889230-01$ $4.7889230-01$ $4.7889230-01$ 4．7889230－01 $4.788923 \mathrm{D}-01$ 4.78 ©9230－01 4．7889230－01

4．7889230－01 4．7889230－01 $4.7889230-01$ $4.7889230-01$ 4．7889230－01 $4.7869230-01$ 4．7885230－01 4．7889230－01 $4.788923 \mathrm{D}-\mathrm{Cl}$
4．7889230－01
$4.7889230-ก 1$ 4．7885231－01 $4.7889230-01$ $4.7089230-01$ $4.7689230-01$
$4.7889230-01$ $4.7889230-01$
$4.7889230-01$ $4.7889230-01$
$4.7889230-01$ $4.7889230-01$
$4.7889230-01$
$4.788923 \mathrm{D}-01$
4．7889230－01

＂vitaj TAx f JJJJTMEAT SCHEDJLES								ALRRIEO FILING JOINT CLAIMING				Page	9	
												FQUR EXEMPTIONS	Not	t Itemizing
ABJUSTME：TS		\％ $0^{\circ-\mathrm{ar}} \mathrm{x}$ LI		CTIC， 3 F				MEJIAN I＇viJut		tAXPAYER				
1－2．cm				AこJ＇ワ MAP．	TX	QLI 3－TAX		ULI 4 TAB		QLI AA－TAX		3 ADJ D－QLI		ADJ D－QLI
1.2400300		－．こうう）0．）	$0)$	1．1936540	00	1.4334630	32	1.475530 n	02	1.4786790	02	$6.9383670-01$		．7889230－01
1．34500\％	J4	3．0こうこうJu	03	1.1933540	00	1.4037370	32	1.4767640	32	1.4789400	02	6．9734620－01		7889230－01
1．250ヶう）u	04	¢．0ココuvar	－	1．1970゙て	30	1.4840000	32	1．4764530	J2	1.4792170		7．0084470－01		．7889230－01
1．255） 000	U_{4}	8．000うこ）	0	1.2002930	0	1.4842750	02	1.4772510	J 2	1.4794860	02	$7.0433220-31$		．7889230－01
1.7600000	04	－．9nnこ0	n－	1．2033320	กo	1.4845430	22	1．4774651）	32	1.4797540	02	7．0780860－01		788923D－01
1.2650330		¢．JuJJuja	03	1．20．7340	00	1．9542110	j2	1．477i980	32	1.4800220	02	7．1127390－01		．7889230－01
1.2700300	34	8．3030 כ－	00	1.2100400	30	1.405 .5700	02	1.4779310	02	1.4802890	02	7．1472830－01		．7889230－01
1.275050	54	8.000900	00	1.2133200	oc	1.4853450	02	1.4781640	22	1.4805560	02	7．1817160－01		7889230－01
1.2803000	J_{4}	3．00．3030．7	ง	1.2156170	30	1.4556120	02	1.4783960	02	1.480823 D	02	7．2160380－0．1		．788923D－01
1.2850000	04	3．0030000	נ	$1.21 \rightarrow 9210$	00	1.4853750	02	1.4786280	02	1.4810890	02	7．2502500－91		．7889230－01
1．2900．00		8.3000000	ن）	1.2232390	00	1.4061445	32	1.4788000	02	1.481355 D	02	7．2843520－01		．7889230－01
1.2950300	04	8．0．J00ง	－	1.2255700	00	1.4864100	02	1.4790910	02	1.4816210	02	$7.3183430-01$		．7889230－01
1.3000000	C4	8．ar～nの	20	1.2299140	30	1.4066750	02	1．4793230	02	1.4818860	02	$7.3522240-01$		．7889230－01
1.3050000	04	8．000．0030	00	1.2332720	00	1.4869409	02	1.4195545	J2	1.4821510	02	$7.3859950-01$		．7889230－01
1.3100000	04	8.0000000	00	1.2366440	30	1.4072040	02	1.4797850	22	1.4824150	02	7．4196550－01		7889230－01
1.3150000	04	9.9000000	00	1.2400290	uo	1．437454D	02	1.40001 .30	32	1.462679 D	02	$7.4586900-01$		．7889230－01
1.3200000	04	9.0000010	0	1.2434237	00	1.4377320	$0 ?$	1.4802340	32	1.4829430	02	7．4976020－01		．788923u－01
1.3250000	${ }^{2} 4$	9．0nnocur	00	1.2403410	79	1.4879750	02	1.4804590	$\bigcirc 2$	1.4832060	02	$7.5363910-J 1$		7889230－01
1.3300000	04	9．00usuj	00	1.2502675	00	1.4382580	02	1.4806330	02	1.483469 D	02	$7.5750580-01$		．7889230－01
1．3350030	0.4	G．0njuou	00	1.2537080	00	1.4885210	U2	1.4309070	02	1.483732 D	02	$7.6136010-01$		．7889230－01
1.3400000	04	1．0030000	01	1.2571620	00	1.4887330	02	1.4811260	02	1.4839940	02	7．6574770－01		．7889230－01
1．3450000	04	$9 . .3000000$	00	1.2606310	00	1.4890450	02	$1.48134>0$	02	1.4842560	02	$7.695769 \mathrm{D}-01$		7889230－01
1.3500000	04	9．cnnno 0	02	1.2641140	20	1．409306）	02	1.4815720	02	1.4845170	02	7．7339380－01		7889230－01
1.3550000	04	9.0000000	00	1.2676110	00	1.48956 FD	02	1.4817950	02	1.4847780	02	$7.7719840-01$		．7889230－01
1.3600000	04	1．0030000	01	1.2711230	00	1.4898280	02	1.4820130	02	1.4850390	02	$7.8153370-01$		．7889230－01．
1.3650000	04	－．	00	1.2746490	J0	1.490088 D	02	1.482235 D	j2	1.4852990	02	7．3531310－01		．7889230－01
1.3700000	34	9.0000000	00	1.2781890	00	1.4903480	02	1.4824570	02	1.4855590	02	$7.8908030-01$		．7889230－01
1.3750000	04	9.0000010	20	1.2311440	？	1.490608 D	32	1．4826790	92	1.4858190	02	7．9283510－01		7089230－01
1.3800000	34	1．$\cdot 003000$	01	1.2853140	Oc	1.4308670	02.	1.4828960	02	1.4860780	02	$7.9711830-01$		．7889230－01
1.38500 J	04	¢．0．J000．00	00	$1.288899{ }^{\text {i }}$	J0	1.4911260	02，	1.4831170	02	1.4863370	02	8．0084790－01		．1889230－01
1.3930 のnd	04	9.0003000	00	1.2924980	OC	1.4913840	02	1.4833390	02	1.4865950	02	3．0456530－01		．7889230－01
1.3950 .300	04	9.0000000	$0 \cdot 1$	1.296112 J	J0	1.4916420	02	1.403560 .5	02	1.4868530	02	$3.0027040-01$		．7889230－01
1.4000 con	04	1．coneneu	01	1.2997410	00	1．49190つ0	12	1.4037750	32	1.4871110	02	0.125 C140－01		7889230－01
1.4053000	34	9．－uJcuvón	OU	$1.303385{ }^{\circ}$	00	1．4921570	02	1.4839950	32	$1.4573600^{\text {d }}$	02	$3.1618130-01$		．7889230－01
1.4100000	04	9．0000000	00	1.3075450	30	1.4724140	02	1.4842160	02	1.4076250	02	3．1954090－31		．78592， 3 － 1
1．4150000	こ4	y．こ＾～「00	CO	1.310119	30	1．4Fく6710	22	1.4844300	？ 2	1.4878820	$0<$	$8.2350420-01$		7889230－01
1．42vouju	04	1．00300jo	01	$1.3144 \% 9$ ？	30	1．4325270	02	1.43405 v0	02	1.4881380	02	$8.2760300-01$		．7889230－01
1.4250000	04	9.00010 .3	3	1．31．51151．	10	1．4431030	02	1.4048700	02	1.4883940	02	8．3121320－01		．7889230－01
1.4300000	${ }^{2} 4$	9．0．0）0000	00	1．3213539	00	1.4734380	02	1.4850890	32	1.4886490	02	$0.3493100-01$		．7889230－01
1.4350300	04	9．00300J0	ט	1．325572？	00	1.4936930	02	1.4353080	02	1.4889040	02	8.3853600 －01		．7889230－01
$1.44090 n \mathrm{D}$		1．rววnอข	$\bigcirc 1$	1.3293240	$?$	1．493：480	02	1.4855210	02	1.4891590	02	$8.4266320-01$		．7889230－01
1．44う），	34	¢．0000000	00	1.3330910	$0)$	1．1974020	02	1.4857400	02	1.4894130	02	$8.4624360-01$		．7889230－01
1.4500003	04	9.0030020	0.$)$	1.3363750	00	1．49＋4300	32	1．＋657500	02	1.4896670	02	$8.4981170-01$		．7889230－01
1.4550000	04	9.0000000	00	1.340674 ）	00	1．4947100	נ＜	1.4801760	$\bigcirc 2$	1.4899210	02	$8.5336750-01$		．7889230－01
1.4600000	04	5.0000000	00	1.3444503	． 30	1．1994530	02	1．4663940	32	1.490174 D	02	$8.5691110-01$		．7889230－01
1.4650300	04	1．0000000	ก 1	1.3433210	00	1．4952160	02	1.4006063	32	1.4904270	02	8．6＾97250－01		7889230－01
1.4700000	04	9.0000000	00	1.3521690	00	1.4954680	02	1.4868230	02	1.4906790	02	$8.6449090-01$		．7889230－01
1.4750000	04	9.0000090	00	1.3563330	00	1.4595720 ）	02	1.4810400	02	1.4905310		$8.6799700-01$		．788923D－01
	－4	ソ．ヘフnこの	02	1.3593140	0.0	1.4959720	32	1．＇＋372ヶ70	32	1.491183 D		$3.7149070-01$		7885230－01
1．＋850：300	014	1．000003：	01	1.30331%	30	1.490230	32	1．4＇47408	02	1.4914340		$8.7550000-01$		．7889230－01

 I ICENE BASED UPRA ALI REUUCTILY SF TX WLI E-TAX
 .4950001 34 9.0000000 00 -5000000.04 乌.0000000 00
.371654000
.375600000

WLI EーTAX
1.4564745 96 1.49672502 1.496 .75002

ARPIEO FILING JרINT CLAIMING FOUR EXEMPTIONS NOT ITEMIZING SEDIAG ITCOUE TAXPAYER
QLI a TAB-TX QLI AA-TAX E ADJ D-QLI A ADS D-QLI
1.4876050 ~2
1.491936002
1.4001160021 .492186002
0.7895800001 $8.3242490-01$. $3586900-01$
$4.7889230-01$ $4.7889230-0$ $4.7889230-01$
$\stackrel{N}{N}$
VITA
Wilmer Milton Harper
Candidate for the Degree of
Doctor of Philosophy
Thesis: THE ROLE OF INCOME IN THE PERCEIVED QUALITY OF LIFE OF THE RURAL POPULACE
Major Field: Agricultural Economics
Biographical:Personal Data: Born in Kopperston, West Virginia, April 9, 1943,the son of Mr. and Mrs. Milton B. Harper.
Education: Graduated from Logan Senior High School, Logan, WestVirginia, in May, 1961; received Bachelor of Arts degree inPsychology from Duke University in 1965; received Master ofScience in Agricultural Economics from Montana State Universityin 1969; completed requirements for the Doctor of Philosophydegree at Oklahoma State University in May 1977.
Professional Experience: Peace Corps Volunteer/agriculturalextension agent, Ecuador, 1965-67; graduate fellowship,Center for Intercultural Programs, Montana State University,1967-69; Peace Corps Training Staff, Montana State University,1968; Instructor of Economics, Atlantic Christian College,1972-73; graduate assistant, Department of Economics, OklahomaState University, 1973-74; research assistant, Department ofAgricultural Economics, Oklahoma State University, 1974-77.

[^0]: $1 /$ For this test Y is the income term Y_{e} and $Y_{t r}$ is the term $\left(\mathrm{Y}_{\mathrm{tr}}+\mathrm{Y}_{\mathrm{pp}}\right)$ discussed in Chapter IV, p. 40.

[^1]: ${ }^{a}$ Due to the absence of observations for the An scale in quarter 10 , values were estimated using regression analysis, and the use of these estimated values in the factor analysis resulted in factor loadings of 1.0. This results in some bias, but prevents the elimination of the anomie scale from the analysis.

[^2]: ${ }^{\text {a }}$ Due to the absence of observations for Data Set Spouse in quarter 2, values were estimated using regression analysis, and the use of these estimated values in the factor analysis resulted in factor loadings of 1.0. This results in some bias, but prevents the elimination of the worry scale from the analysis.

