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CHAPTER 1 

INTRODUCTION 

Because of an increased emphasis placed upon the efficient pro

duction of red meat from the bovine, animal scientists have exhaus

tively investigated gross live animal and carcass parameters. The 

central idea of such investigations has been to achieve the capacity 

to control growth patterns for optimum production. Factors such as 

sire and dam performance have been very effective in estimating pro

geny performance. Other factors such as birth weight, rate cf gain, 

adjusted weaning weight, and adjusted yearling weight have also been 

used to estimate the growth potential of an animal and the potential 

utility value of certain animals in the breeding herd. Certain 

carcass data such as cutability and quality grade have also been 

collected on the bovine to describe major changes in tissue (muscle, 

bone and fat) growth patterns. Chemical composition has also been 

established in bovine muscle tissue at different chronological ages, 

allowing an estimate of tissue compositional changes with ageo 

Considering, however, the vast quantity of work accomplished on 

the bovine previously, one still cannot find comprehensive data des

cribing changes in certain biochemical entities during growth in 

bovine muscle tissue. It is of paramount importance that cellular and 

subcellular changes due to growth be defined in the bovine, because 

changes at the ultrastructural level dictate changes observed at the 
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gross structural level. 

Data are available which describe growth-associated skeletal 

muscle tissue biochemical changes in the pig and in certain laboratory 

mammals and birds. These data are valuable to establish models of 

growth curves, yet direct inferences are hazardous when made between 

species. 

Due to the above, this investigation was initiated to observe 

cellular and subcellular changes in bovine skeletal muscle tissue at 

various ages post-weaning in order to more closely define patterns of 

biochemical change in that tissue. 



CHAPTER II 

REVIEW OF LITERATURE 

The objective of this review is to outline the metabolic and com,

positional growth changes at the cellular and subcellular levels in 

bovine muscle tissue, In many instances, information obtained from 

laboratory or other domestic animals will be cited due to the limited 

amount of information available at this time on the bovine 

Metabolism 

General 

It has long been known that muscle tissue is not homogeneous and 

that two primary muscle cell or fiber types exist (Lorenzini, 1678 as 

cited by Cassens and Cooper, 1971). The work of Needham (1926) and 

Denny-Brown (1929) indicated that these two muscle fiber types, the 

red type and the white type, may be described according to their 

degree of redness, their movement in contraction and their genesis of 

tetanus, Szent-Gyorgi (1953) also stated that metabolic and fun· tion&l 

differences exist between red and white muscle fiber types, with the 

white type generating energy primarily by glycolysis and the red type 

generating energy primarily by oxidative metabolism. Microscopic and 

histological investigations have shown that most mammalian muscle 

tissue contains at least three types of fibers (Stein and Padyku1a~ 

3 



1962; Ogata and Mori, 1964; Moody and Cassens, 1968), the white, red 

and intermediate fiber. 

Gauthier (1970b) has described these fiber types ultrastructur

ally, emphasizing that the red fiber exhibits extensive subsarcolemrrtei.1 

aggregates of large, closely packed mitochondria containing abundant 

cristae and located in longitudinal rows among the myofibrils, 

4 

Gauthier (1970b) also indicated that the white fiber has pairs of 

filamentous mitochondria, with cristae sparsely evident, located at the 

I band. Gauthier (1970b) explained that the Z line was approximately 

one half the width in white fibers as compared to that of the red 

fiberso Goldspink (1970) and Gauthier and Padykula (1966) further 

indicated that size differences exist between the fibers, with the red 

being smA.llest in diameter, the white being largest in diameter and the 

intermediate being midway between the two. The intermediate type has 

also been shown to reflect ultrastructural architecture midway between 

that described for the red and the white fiber types. 

Metabolically, red fibers have a high mitochondria content, &re 

rich in oxidative enzymes (Dubowitz and Pearse, 1960), contain quanti

tatively greater amounts of myoglobin (Lawrie, 1950; Chinoy, 1963; 

James, 1968), greater lipase activity (Piantelli and Rebello, 1967) 

and greater amounts of lipids and triglycerides (George and Jyoti, 

1965; George and Naik, 1958; Adams et al., 1962; Lawrie, et a.L, 1964; 

Beecher et al., 1965) than white fibers. White fibers have a higher 

glycogen content (George and Naik, 1958; Ogata, 1960) and higher myo

fibrillar adenosine triphosphatase, phosphorylase, and glycolytic 

enzyme activity (Engle, 1962; Dubowitz and Pearse, 1960; Opie and 

Newsholme, 1967; Bar et al., 1965) than red fiberso Generally, 



intermediate fibers exhibit a metabolic state midway between the red 

and white muscle fibers (Ogata and Mori, 1964; Stein and Padykulci, 

1962; Romanul, 1964; Dawson and Romanul, 1964). 

5 

Thus, as indicated above, skeletal muscle tissue of the mammal is 

not homogeneous in fiber type. Functional, metabolic and compos.itlonal 

characteristics exist between individual muscles within the same 

muscle of differing species and in muscles at various maturity le.ve::..s 

within a specie. These characteristics are a reflection of the major 

fiber types present in the muscle. It is the objE:ctive. of this 

review, not to outline differences in fiber types but to outline 

changes 2n composite muscle tissue during growth and development in 

the mammal, assuming the parameter observed reflects the predominate 

fiber type(s) contained within. 

Enzyme Activity 

Glycolysiso The glycogen catabolic pathway is the principal 

means by which carbohydrates enter the cell's metabolic pool, Two 

enzymes, lactate dehydrogenase and glyceraldehyde phosphate dehydt:c

genase, were selected in the present metabolic study to be representa

tive of glycolytic metabolism; consequently, they will be reviewtcdo 

Lactate dehydrogenase (LDH), (L-lactate; NAD oxidoreductase, 

E.C. 1,1.27) catalyzes the following reaction: 

L - (or D-) Lactate + NAD+ ~ Pyruvate + NADH+ir-

It should be noted that in muscle tissue from higher order anima1s 

(Xenopus vs Bovine), the L - isomer of lactate is produced by the 

reduction of pyruvate, 



Thunberg (1920, as cited by Schwert and Winer, 1963) recognizE::d 

an enzyme in heart muscle which oxidized lactate and which depended on 

a water soluble cofactor for its activity. After much work with cell 

free extracts showing LDH activity, LDH was successfully crystallized 

from bovine heart muscle" This initial isolation opened the door to 

the preparation of pure LDH in subsequent years from skeletal muscle 

tissue from the rat, rabbit and pig, from human and pig heart and from 

rat liver, 
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Crystalline preparations have allowed workers to define molecular 

properties such as molecular weight of LDH, Miester (1950) and Long 

and Kaplan (1968) have reported molecular weight information on LDH; 

their data indicated that the molecular weight of LDH was approximately 

140,000, or 35,000 per subunit indicating that LDH is a tetramer:lc 

enzyme, 

Neilands (1952) discovered that tissue LDH had more than one 

component. Markert and Moller (1959) termed these components iso

enzymes, for they appeared to be proteins showing different molecular 

forms yet catalyzing the same biological reaction, Weiland and 

Pfleiderer (1957) as cited by Schwert and Winer (1963) first demon

strated that from one to six components exhibiting lactate dehydro

genase activity could be separated by high-voltage electrophoresis 

from extracts of liver, heart, spleen, skeletal muscle, kidney, brain 

and erythrocytes derived from a single specieo They noted that the 

same number of components were not always found when the same organs 

from different species were examined. Many other workers agreed 

with Weiland and Pfleiderer's conclusions that heterogeneity existed 

in LDH components in various organs between species, Markert and 



Moller (1959) also indicated that LDH component differernt<cs E:xis i ed 

in various organs between the embryonic and the adult pig. 

When most vertebrate tissue extracts are subjected to electro

phoresis on starch gel, polyacrylamide gel, or any othe:t suitable 

medium and the elee:trophoresed gel subsequently stained as ind1catt?cd 

by VanBogaert et al. (1967), a total of five active bands are usually 

observed. The nature of these bands has proved to be due to two 

parent types and three hybrids, all of which are tetramenc (Cahn et 

al., 1962). The two parent types have been referred to as the muscle 

or M type and the heart of the H type; the M type having been isolated 

from skeletal muscle and the H type isolated from the heart muscle. 

The homotetra.mers would thus be H4, H3M1 , H2M2, HM 3 and M~, Clausen 

(1970) further indicated that the H type is also referred to as 

LDH-A and the M type as LDH-B" Dietz and Lubrano (1972) emphas1zf:d 

that a characteristic pattern is evident after electrophoresis of 

LDH with the five bands distributed along the electrophoresed medium, 

In their work the isoenzyme or "isozyme" migrating most rapidly, 

anodically, was referred to as LDH-1, and the one migrating the: least 

rapidly was referred tc as LDH-5. Table I reflect:s a summary of the 

LDH nomenclature used thus far in the literature. 

Although five elec:trophoretically separable bands are evident 

in vitro, various physical and/or chemical factors affect the numbe1, 

quantity and migration of the LDH isoenzymes. It has been shown by 

Chilson et aL (1965a and b) that "hybrids" of the two parent bands 

can occur after freezing and thawing. Everse and Kaplan (1973) 

pointed out that hybrid formation is a consequence of dissociation ot 

homotetramE,rs into subunits followed by reassociation int.u tetrametic 

7 



hybrids. They also indicated that various factors affect the rate of 

hybridization during freezing and thawing. Some of these factors in

clude: temperature, pH, the presence of halides, ions, coenzymes or 

certain denaturing agents. Chilson et al. (1965a) stated that when a 

mixture of chicken H4 and M4 LDH is frozen and thawed in potassium 

phosphate buffer, no hybridization occurs. Yet when the enzymes were 

frozen and thawed in sodium phosphate buffer, hybridization oce:ured, 

This was attributed to the fact that at the eutectic point, the pH of 

the sodium phosphate buffer decreased upon freezing, whereas the pH of 

the potassium phosphate buffer increased upon freezing, These 

results suggested that a lowering of the pH is essential for hybridi

zationo Chilson et al. (1965b) also indicated that high salt concen

trations apparently induce the dissociation of the tetramers when the 

solutes are concentrated during freezing. Levi and Kaplan (1971), 

Markert and Massaro (1968) and Clausen and Hustrulid (1968) reported 

that coenzyme presence such as NAD+ and NADH inhibited the formation 

of hybrids by preventing dissociation. Hybridization is also a result 

of the addition of halide ions or thiocyanate during freezing and 

thawing. The order of reaction is SCN-, r- > Br- > Cl- >-,> F-, 

Many studies have been made on hybridization of LDR, and as a 

result of these, some speculation has been made as to the nature of 

the forces that hold the subunits together in the native enzyme state. 

Results indicate that a number of interactions are possible, involving 

various types of intermolecular forces. The effects of urea and 

guanidine on LDH tend to show that ion-pair bonding is present to 

some extent. The dissociation of the tetramer in low concentrations 

of sodium dodecylsulfate (SDS), indicates the presence of hydrogen 

8 



TABLE I 

NUMBERING AND MONOMERIC COMPOSITION OF LDH ISOENZYMES8 

Isoenzyme 
Number 

LDH-la,c 

LDH-2 

LDH-3 

LDH-4 

LDH-5b,d 

I so enzyme 
Letter 

a Pyruvate specific isoenzyme 

b Lactate specific isoenzyme 

Most rapidly migrating band 

d Slowest migrating band 

Monomers 
Present 

HHHH 

HHHM 

HEMM 

HMMM 

MMMM 

e Obta::;.ned from Dietz, A, A, and H, M, Rubinstein,. l972, LDH I so enzymes, 

Clinical Chemistry Vol. 7, pp 49-61 

LDH-M 
% 

0 

25 

50 

75 

100 

In S:andard Methods of 

LDH-H 
% 

100 

75 

50 

25 

0 



bonding. Jaenick et al. (1971) emphasized that hydrophobic bonding 

may not be of prime importance in the maintaining of subunit integri

ty; yet, that coulombic attractions enforced stabilization in the 

tetrameric form. 

It has been questioned whether or not the tetrameric form of 

LDH is the sole active form. The work of Millar (1962), as well as 

Reithel (1963), has investigated this and indicated that dimers and 

monomers were the most active units. On the other hand Griffin and 

Griddle (1970) concluded that the tetrameric form must be the active 

species. It is noted that Griffin and Griddle (1970) used much more 

sophisticated techniques of isozyme separation in their studies and 

the author tends to identify with this more recent and quantitative 

work. 

As far as the overall catalytic reaction is concerned, it has 

been shown that skeletal muscle tissue LDH is specific for the L form 

of lactate and that no detectable activity was noted with the D

isomer. It should be mentioned, however, that Meister (1950), 

Nisselbaum and Bodansky (1961), Markert and Moller (1959), Winer and 

Schwert (1958), Neilands (1954), Sakawi and Yamada (1966), Romano 

10 

and Cerra (1969), Warren (1970), Schatz and Segal (1969) and Lane and 

Dekker (1969) have found other substrates that are utilized by LDH, 

The simple fact is that the maximum velocities achieved with sub

strate analogs are much lower (about one tenth to one hundreth as 

rapid) than those of lactate or pyruvate. Thus, in crude prepara

tions, the artifacts produced by the presence of these analogs would 

be very insignificant. As is well known, NAD+ is the required co

factor for the reduction of lactate to pyruvate and is about 170 times 
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as effective as the NADP+ ntblecule (Mehler et al., 1948). Also it 

has been shown by Meister (1950) that if substrate analogs are present 

NAD+ is approximately 100 to 380 times as effective as NADP+. Conse

quently, these investigators have suggested that in assessing LDH 

activity in crude extracts, the lactate or pyruvate should be con

sidered to be the specific substrate and NAD+ the most effective 

coenzyme. 

According to results reported in the literature it is apparent 

that the function of LDH in glycolysis of skeletal muscle is to pro

vide for reoxidation of NADH originating from the oxidation of gly

ceraldehyde phosphate. This reoxidation of NADH in muscle tissue 

appears to be a cyclic phenomenon for the LDH enzyme and is needed 

only when a sudden demand of energy or ATP production is required. It 

appears that skeletal muscle has evolved a potent glycolytic system ~o 

accomplish this function. The lactate produced in such a cycle cannot 

be efficiently reoxidized in muscle tissue because of the overriding 

quantity of the pyruvate specific M4 isozyme. Lactate can, however, 

be reoxidized in aerobic tissues such as the heart, kidneys, and liver. 

These tissues contain a high percentage of the H-type isozyme and 

allows lactate to be reoxidized to pyruvate, with the generation of 

NADH. These aerobic tissues may function as scavengers for lactate 

produced during glycolysis either for resynthesis to glucose as occurs 

in the liver or to be further degraded via the TCA cycle to produce 

ATP energy as in the heart. Since most of the energy in aerobic 

tissues, such as the heart, is generated by oxidative phosphorylation, 

a constant requirement of NADH is present in the mitochondria. There

fore, it can be assumed that (Everse and Kaplan 1973) a significant 



part of the NADH generated in heart muscle is oxidized by the mito

chondria to yield ATP and thus NADH is obtained from the oxidation of 

lactate to pyruvate. Hence, a threefold role of LDH is observed: 

(1) LDH generates the NAD coenzyme for glyceraldehyde phosphate 

oxidation in glycolysis, (2) LDH allows the oxidation of lactate to 

pyruvate with pyruvate used in ATP production or gluconeogenesis in 

aerobic tissue and finally, (3) LDH produces the reduced coenzymes 

for use in oxidative phosphorylation in the mitochondria of aerobic 

tissue" 

Glyceraldehyde phosphate dehydrogenase (D-Glyceraldehyde-3-Phos

pha te: NAD+ oxidoreductase, phosphorylating), EC L 2, L 12, was first 

crystallized from yeast by Warburg and Christian (1939). Prior to 

the purification of glyceraldehyde phosphate dehydrogenase (GPD), it 

was noted by Needham and Pillai (1937) that the oxidation of glycer

aldehyde-3-phosphate in crude systems was associated with a coupled 

phosphorylation of adenine nucleotides. Warburg and Christian (1939) 

indicated that the clue to the phosphorylation mechanism was that 

orthophosphate ions were stiochiometric participants in the oxidation 

system. Cori et al. (1948) were of the first investigators to cry

stallize the enzyme from mammalian sources, It was noted also by 

these authors that GPD from mammalian sources could be prepared 

easily and in abundant quantities. 

Harris and Perham (1965) showed decisively that native GPD, with 

a molecular weight of 144,000, was composed of four similar and prob

ably identical polypeptide chains, with a molecular weight of about 

36,000 each, Allison and Kaplan (1964) characterized GPD according 

to the following criteria: Molecular weight, 144,000; extinction 

12 
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coefficient (0.1%, lcm, 280 mµ), 1.00 ± 0.05; absorbance 280:260 mw, 

1.07 ± Oo03; specific activity of 115 ± 5 µm NADH formed per minute 

per mg protein; 20 cysteine residues per mole L-GPD, and four moles of 

bound NAD+ per mole L-GPD, Davidson et al. (196 7) found that L-GPD 

is composed of four identical polypeptide chains, each containing a 

cysteine residue at position 148. They also mentioned that it was 

this cysteine residue that was acylated by the substrate during cataly

sis. Watson and Banaszak (1964) stated that native L-GPD forms cry

stals approximately 1 mm in diameter and are orthorhombic in shape0 

According to Velick and Furfine (1963) the oxidative phosphory

lation of glyceraldehyde occurs in two reaction steps in which the 

enzyme is a stiochiometric participant. The first reaction occurs as: 

R - CHO + NDA+ + Enz ~ R-CO-Enz + H+ 

When an orthophosphate ion is added, there is another NAD+ reduction, 

acyl phosphate is formed by acyl transfer from the enzyme acceptor 

site to the orthophosphate ion and the overall oxidative phosphoryla

tion reaction is established, 

Velick and Furfine (1963) also emphasized that the experiments, 

summarized above, on GPD provided the first direct evidence for a 

covalent compound to exist between enzyme and substrate. 

Velick, Hayes and Harting (1953) indicated that high affinity 

NAD+ binding sites are also the catalytic sites. This was based on 

the observation that the rate of oxidation of D-glyceraldehyde in

creased linearly in the presence of the GPD enzyme, the arsenate ion 
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and varying levels of NAD+. They demonstrated that the rate of oxida

tion reached a constant maxima when the NAD+ conc.entrations equalled 

the NAD+ binding capacity. Recent studies have strengthened these 

conclusions. 

Velick (1958) indicated that NADH binding constants and the 

kinetic parameters of NADH are in close agreement and the NADH binding 

is strictly competetive with the strongly bound NAD+, Hilvers and 

Weenen (1962) observed that one apparent requirement for NAD+ :is the 

catalysis by GPD of the acetylphosphate. It was observed by Dagher 

and Hultin (1973) that GPD is a "loosley" bound enzyme in the muscle 

tissue particulate fraction. Melnick and Hultin (1973), realizing the 

location of the enzyme, became involved with muscle tissue GPD kinetic 

studieso They pointed out that inhibitor constants showed that the 

soluble enzyme was considerably more subject to inhibition by NADH 

than the bound formo Melnick and Hultin (1973) further stated that a 

portion of GPD of some muscle tissues is bound in the intact muscleo 

Hultin et aL (1972) suggested that both recent studies and his 

work showed that modifications of the kinetic properties of GPD can 

occur by changing the enzyme from the soluble to the bound state and 

vice versa. They indicated that the lower Michaelis Constant of the 

bound enzyme for the substrate compared to the soluble form enables 

the bound enzyme to operate near its maximal performance at low sub

strate concentrations, Hultin et al. (1972) further suggested that in 

resting muscle, low glycolytic activity exists, but in the working 

state it increases. This increase in glycolysis leads to higher con

centrations of glycolytic intermediates including glyceraldehyde-3-

phosphate. If this compound is involved in the solubilization of GPD, 
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the enzyme would thus become more soluble. In this form it would have 

a higher velocity maxima and would be more efficiently utilized in 

high substrate concentrations. The soluble enzyme is also more sensi

tive to NADH, thus allowing greater control of the "forward only" 

energy generating system. 

Krebs Cycle, The Krebs Cycle is an extremely important metabolic 

pathway in skeletal muscle tissue. Most all ATP energy is derived as 

a result of Krebs Cycle coupling with oxidative phosphorylation, This 

pathway is solely oxidative and can exist only in periods of aerobiosis, 

If a state of decreased oxygen or anoxia exists, this pathway is in

hibited until oxygen once again enters the systemo Many investigators 

have worked with various enzymes, as well as metabolites of this cycle, 

to assess qualitative and quantitative activity indices of aerobic 

metabolism, 

It is not the objective of the manuscript to review all aerobic 

enzymes, yet to review those which were felt to be of key importance,. 

Succinate dehydrogenase (succinate: (acceptor) oxidoreductase, 

E,C,l,3.99.1) has been isolated from animal tissues as a soluble, 

essentially homogenous f lavoprotein, the prosthetic group of which is 

FAD bound to the protein via the isoalloxazine ring (Kearney 1960), 

The nonprotein constituents of succinate dehydrogenase (SDR) are non

heme iron, labile ~ulfide, and flavin; the latter covalently bound to 

the peptide chain (Kearney 1960). Also, according to Singer et al. 

(1956), SDH contains four iron atoms per molecule of 20,000 Daltons, 

Singer et al. (1962) indicated that the covalently bound flavin is of 

particular importance in measuring the concentration of the enzyme 

since it provides an unambiguous chemical measurement for SDH. 



Because of this fact, the use of various dyes, ferricyanide or N

acetylphenozonium salts, such as phenazine methosulfate, as acceptors 

in assays, allow convenient methods of quantitating SDH activityo 
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Subunit composition of SDH has been studied extensively. SDH 

resolution into two catalytically inactive, nonidentical subunits by 

SDS-polyacrylamide gel electrophoresis has been obtained by Davis and 

Hatefi (1971). One component has a molecular weight of 70,000 and a 

flavin-iron-labile sulfide molar ratio of 1:1:4, The second component 

contains iron-sulfur, but not flavin, and has a molecular weight of 

27,000-30,000. Since the flavin is covalently linked to the 70,000 

molecular weight subunit, it was suggested by Davis and Hatefi (1971) 

that this component of the enzyme is essential for catalytic activity, 

although there is no assurance that the catalytic binding site. is also 

located on this subunit, 

It has been suggested (Davis and Hatefi, 1971 and Righetti and 

Cerletti, 1971) that SDH has a molecular weight of approximately 

100,000, Molecular weights other than this, as recorded in the litera

ture, may be a result of dimering during preparation, producing arti

facts and promoting varying conclusions (Singer et al,, 1973). Some 

research has shown however that SDH does not exist in solution as a 

monomer but undergoes dimerization (Bennett and Scott, 1971 and Cox 

1969). Evidence for dimerization was obtained from measurements of 

temperature dependence on the sedimentation coefficient in the ultra

centrifuge (Coles et al., 1972). Results from this and similar studies 

indicate the apparent molecular weight to be approximately 200,000. 

Considering SDH to be in the dimered state, this is in very c~ose 

agreement with the data of Davis and Hatefi (1971) and Righetti and 
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Cerletti (1971). 

Activation and deactivation of SDH by various reagents has been 

studied most extensively. The tendency of this enzyme to undergo 

activation-deactivation under the influence of a variety of reagents 

and experimental conditions has posed problems in routine assays, 

Results have shown that activation is not an all-or-none phenomenon, 

but that partially activated forms of the enzyme may exist (Zeylemaker 

et al,, 1970)0 Some of the reagents that have been shown to promote 

activation include: the substrates succinate and fumarate; the com

petitive inhibitor malonate (Kearney 1957); reduced coenzyme Q1o 

(Gutman et al., 197la); NADH (Gutman et al., 1971b); ATP (Gregolin and 

Scallela 1965); ITP and !DP (Gutman et al., 197la); pH decreases 

(Kearney et al,; 1972); and various anions in the order of Cl04-, 

HC0 2-, No 3-, 1- > Br-> Cl-> so4= (Zeylemaker et al., 1970), Deacti

vation of SDH has been shown to occur in a number of ways. It can 

result from the removal of the activator, from elevated pH with low 

concentrations of substrate (Singer et al., 1973) or from dicarbo

xylic acids and oxalacetate (DerVartanion and Veeger 1965). 

In aerobic cells, SDH has been found to be membrane bound and 

associated with the respiratory chain. Its primary function is to 

catalyze the oxidation of succinate to fumarate, which proceeds much 

more rapidly than the reverse reaction. The kinetic properties are 

such that fumarate accumulation does not inhibit the oxidation of 

succinate, because the inhibition constant for fumarate is not low, 

Moreover, the affinity of the enzyme for succinate is high, that is, 

the affinity is high enough to result in the efficient oxidation of 

succinate at in situ concentrations (Walker et al., 1971), As 
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mentioned earlier, FAD+ is covalently bound to the enzyme. FAD+ serve& 

to raise the redox potential of the flavin couple to a level above that 

of the relatively high potential succinate/fumarate couple, and in so 

doing favors the oxidation (Singer et al., 1973). 

Citrate Synthetase (Citrate oxalacetate-lyase (CoA-acetylating)), 

E.C.4.1,3.7, was first described by Stern and Ochoa, (1951), This 

enzyme catalyzes the first reaction of the Krebs cycle, and le.ads a 

prominent role in cellular aerobic metabolism, The reaction 

Oxalacetate + Acetyl CoA + H~O ~ Citrate + CoA + R+ 
L 

is reversible in vitro; yet in vivo, the reaction appears to be 

catalyzed in one direction only, toward citrate synthesiso 

Citrate synthetase (CS) occurs naturally in two molecular forms, 

a large and a small, The large form is found primarily in lower 

order animals such as the gram negative bacteria; whereas the small 

size is found in eukaryotes and higher animals (Weitzman 1969). Wu 

and Yang (1970) have shown that pig heart CS, a very representative 

small enzyme, has a molecular weight of 100,000 and is dissociable 

into two inactive, physically indistinguishable subunits in six molar 

guanidine hydrochloride. Also, according to Wu and Yang (1970), a 

pig heart: CS consists only of amino acids, Stern (1961) has indicated 

that CS has no prosthetic group in its structure and no divalent 

metal ion is required for activity. Amino acid analysis of CS (pig 

heart) by Sreie et al. (1965) indicated that a molecule of the enzyme 

possessed six to eight sulfhydryl groups. It has been concluded by 

Sreie et al. (1965) that the sulfhydryls of the enzyme are occupied 

internally to maintain proper conformation of the active site and that 



the active site is devoid of sulfhydryls, His conclusions were based 

on his work, as well as work of others, on sulfhydryl activators and 

chelators. Iodoacetamide and N-ethlymaleimide do not inhibit, just 

as ferricyanide fails to inhibit (Srere 1965). No activation was ob

served in the presence of glutathione, cysteine or mercaptoethanolo 

It should be mentioned that CS is inhibited by monovalent cations in 

the order, Li+ > K+ > Na+ > Cs+, Thiocyanate has been found to be a 

very potent anionic inhibitor (Wu and Yang 1970), just as magnesium 

ions are powerfully inhibitory (Kosicki and Lee 1966). 

With CS being the "gate" to the Krebs cycle, it might be expected 

to be a regulatory type of enzyme (Garland et al,, 1969), If this i<> 

true, CS is subject to inhibition by the products of the TCA cycle; 

NADH, ATP and a ketoglutarate (Weitzman and Jones 1968), It should be 

noted that the CS from lower order organisms is sensitive to allostt:rii: 

control by NAD, whereas, the CS from higher animal systems is sensitive 

to NADH, Mammalian CS is extremely sensitive to ATP via the Pasteur 

Effect (Flechtner and Hanson 1969). Also citrate synthetase of 

animals is insensitive to a ketoglutarate due to the directionality 

of the pathway (Taylor 1970). 

Ma late dehydrogenase (L-malate: NAD oxidoreductase E, C, LL L 37) 

is found in both the cytoplasm and the mitochondria of many animal 

tissues. Malate dehydrogenase (MDH) of the mitochondria (M-MDH) 

differs from that found in the cytoplasm (C-MDH). Differences have 

been reported in catalytic (Grimm and Doherty, 1961), physiochemical 

(Thorne and Cooper, 1964) and chromatographic (Thorne and Cooper, 1964) 

behavior. Thorne and Kaplan (1963) indicated in their electrcphoreti~ 

studies that M-MDH is often a "family" of catalytically-active 



components, It should also be noted that Davidson and Cortner (1967) 

have shown that M-MDH and C-MDH are under different genetic control 

which determines their specific molecular properties. 

This family of enzymes catalyzes the reaction: 

L-malate + NAD+ ~ Oxalacetate + NADH + H+ 
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Studies dealing with the specificity of NAD+ linked MDH have indicated 

that L-malate was the only substrate. However, work by Davies and 

Kun (1957) demonstrated that MDH can catalyze six different reactions, 

each containing a different substrate. Davies and Kun (1957) 

emphasized that all catalyses were accomplished by the same protein as 

evidenced by sedimentation properties and electrophoresis of MDH, 

Davies and Kun (1957) pointed out kinetically, only two substrates 

were of any significance, L-malate and oxalacetate (OAA), Coenzyme 

specificity studies by Mehler et al. (1948) suggested that the rate of 

oxidation of NADH by OAA was 17 to 34 times as efficient as NADPH at 

physiological pH, 

Molecular properties of MDH have been studied by several workers 

since the enzyme was first purified. The first enzyme preparation of 

acceptable molecular purity was obtained by Wolfe and Neilands (1956) 

from pig heart and had a molecular weight of approximately 40,000, 

However, this was whole heart MDH; for Thorne and Kaplan (1963) 

isolated MDH from pig heart mitochondria which exhibited a molecular 

weight of 70,000. Devenyi et al. (1966) indicated that pig heart 

mitochondria MDH is composed of similar subunits of 35,000 Daltons 

each. Also noteworthy is that for each mole of MDH there exists two 

moles of coenzyme bound to it and 14 sulfhydryls contained within it, 



As indicated by Seguin and Kosicki (1967), two sulfhydryls are in

volved per mole of MDH in substrate binding. Since these sulfhydryl 

groups are exposed, sulfhydryl inhibition of MDH is quite strong 

(Wolfe and Neilands, 1956). 

21 

Various other inhibitory agents or physical conditions are cap

able of decreasing or stopping MDH catalytic activity. The agents 

include various chelating reagents, urea, guanidine hydrochloride, 

lithium chloride and acid (Chilson et al., 1966). Physical effects 

such as freezing and thawing caused loss of MDH activity at various 

rates, depending on the chemical environment of the solution and the 

rates of freezing (Joyce and Grisolia, 1961; Blonde et al., 1967), In 

general, it seems to be more appropriate to study MDH activity on fresh 

rather than on frozen tissue. 

Pentose Phosphate Pathway. The metabolism of glucose, in 

mammalian tissues, through glycolysis is not the only means of hexose 

oxidation. Hexose monophosphate oxidation can occur with the genera

tion of two moles of NADPH and one mole of ribulose 5-phosphate and 

co 2 per mole of hexose phosphate utilized, Ribulose 5-phosphate can, 

after isomerization to ribose-5-phosphate, be utilized for the re.

synthesis of nucleic acids or recycled to synthesize fructose 6-phos

phate, an intermediate in glycolysis. Also, noteworthy is that the 

reduced NADP's are available for use in fatty acid synthesis, thereby 

establishing a second very important function of the pentose phosphate 

pathway. Probably the most important and certainly one of the 

regulating enzymes of the pentose phosphate pathway is glucose-6-

phosphate dehydrogenase. 
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Glucose-6-phosphate dehydrogenase (G6PD) (D-glucose-6-phosphate: 

NADP oxidoreductase, 1.1.1.49) catalyzes the first step of the pentose 

phosphate pathway: 

D-glucose-6-phosphate + NADP -e- D-glucono-&-lactone-6-phosphate + 

NADPH:-, 

This enzyme was noted as early as 1931 when Warburg and Christian (as 

cited by Bruns and Werners, 1962) referred to an enzyme which catalyzed 

the reduction of NADP by glucose-6-phosphate as "Zwischenferment 11 o 

Later, Ogston and Green (1935) proposed the name glucose-6-phosphate 

dehydrogenase to identify it according to its hexosemonophosphate 

dehydrogenase activity. Many workers isolated the enzyme from various 

sources and in 1959 Noltmann and Kuby prepared the classical enzyme 

from brewers yeast. Also at about this time, G6PD was prepared from 

bovine mammary gland by Julian et al. (1961). 

Studies of the physical properties of mammary G6PD in a 10,000 

fold purification has shown a specific activity of 420 units per milli

gram protein. This enzyme contained no bound NADP+. Levy et al, 

(1966) have indicated that the enzyme exists as a dimer, with a 

molecular weight of 241,000 at protein concentrations above 0.4 milli

grams per milliliter. In these studies, Levy et al. (1966) indicated 

that its formation was pH dependent. There are two monomers each 

having an apparent molecular weight of approximately 130,000, The 

monomers exist in two forms, X and Y and are in rapid, mobile equili

brium (Levy et al,, 1966). According to Levy et al. (1966), the 

catalytic activity of the dimer is still undefined; yet current data 

indicate that either the X or Y form can be reversibly dissociated 
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into inactive subunits and either X or Y form can be redimerized at 

high protein concentrations. The formation of Y from X is promoted by 

the addition of NADP+ or NADPH; whereas, glycerol associated NAD+ 

promotes the formation of X from Y. The NADP-linked activity of Y 

appears to be greater than that of X, but X possesses greater NAD

linked activity than Yo 

It has been suggested (Pontremorli and Gruzi, 1969) that slight 

variations in NADP+ and NADPH concentrations provide a very sensitive 

regulation of G6PD activity, Adenosine triphosphate (ATP) has also 

been shown (Avigad, 1966) to have a potent regulatory effect on G6PD; 

for data indicate that inhibition of its activity is evidenced with 

increasing quantities of ATP. In addition Levy et aL (1966) have 

shown AMP to have an effect on the enzyme, apparently promoting the 

conversion of the dehydrogenase from the low affinity NADP+ to the 

high affinity NADP+ linked enzyme. Long chain acyl-CoA derivatives 

also inhibit G6PD activity at very low concentrations (below one 

millimolar) (Neufeldt et al., 1965). Although the above factors all 

affect G6PD activity, the principal factor influencing its activity 

seems to be the availability of NADP+. It has been shown repeatedly 

(Cahill et al, 1958) that the addition of systems which generate NADP+ 

in vitro increF i the utilization of glucose through the hexose mono

phosphate oxidar.:ion pathway. Therefore, it becomes clear that the 

rate of this oxidative pathway is linked to the rate of all of the 

processes which utilize NADPH. 

Various cellular reactions require NADPH including fatty acid bio

synthesis (Langdon, 1957), amino acid synthesis through the reductive 

amination of a-ketoglutarate to glutamate (Pontremorli and Gruzi, 1969), 
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praline synthesis (Yuza and Vogel, 1959), hydroxylation of aromatic 

compounds such as phenylalanine to tyrosine (Kaufman, 1958) and 

hydroxylation of steroids (Grant 1956). Pontremorli and Gruzi (1969) 

noted that ribose-5-phosphate was the most important structural 

material of this cycle, as it is one of the primary building blocks 

for nucleic acids synthesis. 

Fatty Acid Oxidation. S-hydroxyacyl CoA dehydrogenase ( S-HACoAD) 

(L-3-hydroxyacyl-CoA:NAD oxidoreductase, ECL LL 35) catalyzes the 

reversible oxidation of L(+) - S hydroxyacylCoA by NAD+ to the corres-

ponding S-ketoacyl CoA as indicated in the following reaction: 

L(+)RCHOHCH2 COSCoA+NAD+ ~ RCCH;iCOSCoA + NADH + H+ 
II 

0 

The BHACpD, has a strict specificity for the L isomer, but can utilize 

hydroxyacyl derivatives of a variety of chain lengths (Stern, 1957), 

The enzyme is relatively specific for NAD+, since NADP+ is utilized at 

much lower rates than NAD+ (Wakil, 1963). 

The properties of the enzyme appear to be quite similar, regard-

less of the source of its preparation, Stern in 1957 has shown that 

BHACoAD had a specific activity of 420 micromoles of acetoacetyl CoA 

reduced per minute per milligram of enzyme at pH 7.0 at 2s0 c. Also, 

it has been shown that enzyme preparations are colorless and have a 

typical protein absorption spectrum. 

The ability of fatty acids to induce the 13-oxidation systems is 

dependent on the chain length of the fatty acid. Long chain fatty 

acids are capable of supporting normal growth while short chain (C 4 to 



c12 ) fail to support growth. Shorter length fatty acids are oxidized 

by the resting cell. 

Muscle Tissue Development 

Myogenesis and Muscle Growth 
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The primitive embryonic cell type that gives rise to most muscle 

cells is the myoblast (Boyd, 1960). The myoblasts that give rise to 

skeletal muscle apparently originate from the progenitor mesenchymal 

cells as indicated by Holtzer and Bischoff (1970), Stromer et aL 

(1974) outlined a sequence of events accepted by most muscle biologists 

describing the differentiation of primitive germ cells to the mature 

muscle cell, The mesoderm or middle germ layer is the first stage in 

the events of myogenesis, The second stage involves a mononucleated 

cell committed to becoming a muscle cell, but incapable of fusion or 

of synthesizing contractible proteins, This is the presumptive 

myoblastic phase and it is very difficult to distinguish this cell 

type at this point by ultrastructural examination alone. The third 

stage or myoblastic stage describes a mononucleated cell capable of 

fusion and of synthesizing contractible protein. The myoblasts are 

thought to elongate and eventually fuse to form cylinder-like 

structures, During the fourth stage, nuclei do not divide mitotically 

and are centrally located. These fused myoblasts are referred to as 

myotubes; having the capability to synthesize myosin and actin at the 

periphery of the cell, In the final phase, the mature skeletal muscle 

cell exists and is referred to as a myofiber. The cell is filled with 

myofibrils and the nuclei are located just inside the sarcolennna, At 



this point neither the myofibers, nor the nuclei within them, divide 

mitotically. 

Assuming that the myofiber stage has been attained or is in the 

process of maturation, muscle development can be studied or assessed 

prenatally and postnatally. Prenatal development in mammalian muscle 

follows the general pattern as described above. The myoblasts and 

myotubes cluster and fuse (Fisclnnan 1967), each being mononucleated, 
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to form a multinucleated myofiber; the number of nuclei in the myofiber 

being indicative of the number of myoblasts which fused. The myo

fiber then increases in size by synthesis of myof ibrillar protein 

(Goldspink 1972), thereby establishing two methods for which skeletal 

muscle tissue may increase in quantity prenatally; by an increase in 

the number of myofibers (hyperplasia) through fusion of committed 

muscle cell precursors, and by increases in size of the myofiber 

(hypertrophy) through contractile protein synthesis. 

Mammals are born at a relatively late stage in their development 

in comparison to other animals such as marsupials. The number of 

muscle cells in mammals either do not increase after birth or 

increase only slightly up to a few weeks of age. In a variety of 

species including man, rabbits, sheep, pigs, rats and chickens the 

number of cells in a muscle bundle is premanently established by 

several weeks after birth (Moss 1968) and subsequent growth is a result 

of increases in cellular size (hypertrophy). The work of Goldspink 

(1972) also indicated that postnatal increases in skeletal muscle size 

is primarily a result of hypertrophy. Goldspink (1972) also poinred 

out that hypertrophy is due almost entirely to an increase in the 

number of individual myofibrils within the cell and that hypertrophy 
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due to accretions in actual cytoplasm or sarcoplasm was very minor, 

It has become obvious through investigations by workers such as 

Winick and Noble (1965), MacConnachie et al. (1964), Marchok and 

Herrmann (1967), Cheek et al. (1971), and Williams and Goldspink (1971) 

that just as the skeletal muscle cell increases in size, so do the 

nuclei contained within that cell increase in number. Cheek et al, 

(1971) and Goldspink (1972) alluded to the limitations existing on 

the quantity of cytoplasm that can be maintained by a nucleus, They 

suggested that an increase in the number of nuclei is necessary for a 

continual increase in the size of the fiber. The actual mechanism of 

increment in nuclear number will not be discussed. Suffice to say 

that whether it be due to a result of nuclear mitosis (MacConnachie 

et al., 1964) or a result of satellite cell incorporation (Moss and 

Leblond, 1971), there is an increase in nuclear number per increment of 

increase in total cell mass. 

Another factor to consider is how the myofibrillar proteins in

crease in number and length within the myofiber. Denovo synthesis of 

fibrillar proteins and their subsequent organization into sarcomeres is 

the accepted method of prenatal myofibrillar growth (Stromer et al., 

1974), Nevertheless, convincing evidence for myofibrillar growth 

postnatally has been advanced by Goldspink (1970, 1971, 1972), He 

indicated that longitudinal splitting of one or more of the existing 

myofibrils form two daughter myofibrils. The method as summarized by 

Stromer et al. (1974) has never been actually observed by electron 

microscopy, yet the hypothesis of Goldspink has been demonstrated in 

electronmicrographs. Goldspink (1971) offered a mechanistic approach 

for this splitting and indicated that oblique or diagonal stress of 
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the thick and thin filaments during contracture on the Z disc material 

caused this type of fibrillar separation. 

Increases in length of muscles have been observed as an animal 

matures. The basis for this increase in muscle length is an increase 

in number and length of the functional unit of the muscle cell, the 

sarcomere. Goldspink (1968) has shown that existing sarcomers increase 

in length as much as 0.5 microns. He indicated that this increase is 

due to a decrease in the overlap of the interdigitating thick and thin 

filaments. In addition, Goldspink (1972) and Griffin et al. (1971) 

and Muhl and Grimm (1974) have shown that a dramatic increase in 

length of muscle cells was a result of the addition of new sarcomers, 

usually at the ends of the myofibril. Legato, (1970) advocated a 

similar theory which she termed "sarcomerogenesis". This author 

demonstrated, by repetetive electronmicrographs of growing muscle 

cells, that Z disc material cleaves centrally and transversely and that 

new fibrillar proteins could be deposited between each successive 

"half" Z disc. This would result in the creation of new sarcomeres, 

These theories, although experimentally documented, need further work 

before definite conclusions can be drawn. 

Biochemical Growth 

Nucleic Acids. As indicated above, skeletal muscle nuclei have 

been shown to increase in quantity during growth in mammals. Cheek 

(1968) as well as others have offered an estimate of the ratio exist

ing between the nuclear number and the quantity of fibrillar and 

cytoplasmic proteins. 



At this time, a brief review will be made concerning how RNA and 

protein content in the muscle cell change relative to nuclear number 

as measured by DNA quantities. 
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Devi et al. (1963) investigated muscle growth in ratso They 

found that the RNA concentration declined with increasing body weights 

and age. They reported that the largest percentage of decrease in RNA 

occurred at a young age. At weaning age, an almost consistant RNA 

level was attained. Srivastava and Chaudhary (1969) presented similar 

results, but indicated that although total RNA declined with growth, 

the protein: RNA ratio increased at a rapid rate in early life and 

tended to plateau with increased maturity. A discussion of the kinds 

of RNA and their distribution during growth is not within the limits 

of this review; only quantitating changes of total RNA, 

As indicated earlier, muscle nuclei increase with maturity 

inutero and exutero until the declining increase in cellular area 

requires no further nuclear addition. As pointed out, nuclei are 

usually quantitated, via DNA measurements. Therefore, it may be 

generally sununarized that DNA quantity increases with age per total 

muscle, decreases with age per unit of muscle weight, and is very con

stant with age per unit of fiber area. 

Metabolism. Sink and Judge (1971) indicated that biochemical 

development of skeletal muscle involved the growth of the contractile 

system, the storage of various metabolic fuels and the development of 

enzyme systems adequate to convert these fuels into ATP energy at the 

required rate demanded by the contractile system. In terms of metabol

ic pathways, some fibers demonstrate a distinct dependence upon either 

the aerobic or anaerobic metabolic pathways. Some fibers show a 
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substantial capacity to generate ATP by either of the pathways depend

ing upon the metabolic environment at the time. However, when investi

gating a tissue system such as muscle, the sum of the metabolic pro

cesses must be taken into consideration, for as outlined earlier, 

muscle tissue is a heterogeneous mixture of red, white and intermediate 

fibers, each with differing metabolic capacities. 

Many advances in biochemical investigations in developing skeletal 

muscle tissue have been made in the last decade, Investigators have 

utilized changes in enzyme activity or isoenzyme patterns as tools to 

ascertain finite developmental changes. It was noted in many of the 

research articles reviewed that enzymic and isoenzymic patterns of 

skeletal muscle tissue reflected opposing, although nonproportionally 

opposing, trends in aerobic and anaerobic enzyme activity. 

The enzyme probably most studied in work concerned with develop

mental changes is lactate dehydrogenase (Cassens et al., 1969), As 

indicated earlier, there are five electrophoretic forms of LDH repre

senting two distinct types and three hybrids. Fine et al, (1963) 

demonstrated in their growth studies on human skeletal muscle that the 

H subunits (representing the aerobic specific isoenzyme) decreased in 

percent of the total isoenzymic quantity from 99 percent in the six 

week fetus to 26 percent in the adult. Clausen and Hustrulid (1969) 

studied several enzymes including LDH in human skeletal muscle, and 

their results reflected a continued increase in the synthesis of M 

subunits during growth. In 1962 Cahn et al. in their chick embryo 

studies reported data similar to the above and concluded that immature 

muscle tissue relies more on aerobic than on anaerobic metabolism, 

This also emphasizes that less mature muscle contains larger quantities 
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of aerobic enzymes than anaerobic enzymes and that the aerobic enzym.!'::i 

are more active than the anaerobic enzymes. This apparently re.verses 

with age. 

Reiterating Clausen and Hustrulid's (1969) work on human skeletal 

muscle, there was a steady, linear increase in total LDH activity and 

similar decreases in the H:M type subunit ratio during fetal develop

ment. They mentioned that their findings were consistant with the 

accepted hypothesis that in skeletal muscle development of the fetus, 

white fibers which are primarily glycolytic cells, reflect the pri

mary growth impetus. Singh and Kanungo (1968) reported similar results 

in rat muscle and emphasized that in general, LDH activity increa8ed 

up to 30 weeks of age and then decreased during senescence. They 

also indicated that the ratio of H:M type subunits was higher in the 

aged (96 weeks) than in the adult (30 weeks), or in the young rato 

Ramponi et al. (1968) studied the activity of several glycolytic 

enzymes including glyceraldehyde phosphate dehydrogenase (GPD) in pre

and post-natal rat skeletal muscle tissue. They noted that in gene . .t\1l 1 

GPD and other glycolytic enzyme levels were low in fetal muscle, but 

increased throughout growth. As pointed out in the review by 

Mersmann et al. (1972), the enzymes involved in glycolysis are general

ly developed during late fetal life and increase after birth, The8e 

results are in line with conclusions reached by Goldspink and Rowe 

(1968) and Goldspink (1970b). They concluded that less oxidative 

enzyme activity was reflected in mature than in immature skelet::;:l 

muscle. They also mentioned that the decrease in oxidative activity 

was accompained by a concomitant increase in glycolytic activity, 
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Oxidative activity has often been indexed in skeletal muscle 

tissue by determination of succinate dehydrogenase (SDH) as well as 

several other key Krebs cycle enzymes. Succinate dehydrogenase 

activity in developing chick muscle was investigated by Cosmos and 

Butler (1966). They emphasized that during the first week exovo, SDH 

activity showed a rapid increase. However, further development was 

characterized by a continuous decline in SDH activity. Nystrom (1968) 

studied skeletal muscle of the cat from the embryo to the adult, He 

suggested a decrease in activity of the oxidative muscle cell type 

with maturation. Results such as these were also reported by Germino 

et al" (1965) in chick muscle. They concluded that SDH activity de

creased with development. Greenfield and Baell (1968), experimenting 

with skeletal muscle in the chick during development by monitoring 

two oxidative enzymes, SDH and cytochrome oxidase, concluded that the 

specific activity of both enzymes were similar during development and 

that the ratio of these enzymes remained constant. They advocated, 

based on their data, that the enzyme activity did not decrease, only 

the quantity of the mitochondria that was present to support them, 

Other workers (Sacktor and Shrimada, 1972) explained that in develop

mental changes of the oxidative capacity in the aging blowfly skeletal 

muscle, a loss in functionality of the mitochondria resulted in a 

decrease in oxidative metabolic activity. Whatever the mechanism, it 

appears that with advanced postnatal age, oxidative capacity decreases 

and glycolytic capacity increases. 

Chemical Composition. According to Helander (1966) certain age 

periods seem to be easily discernible in the life span of an animal 



with those periods being prenatal, neonatal, adolescence, adult and 

senescence. He alluded to the fact that the first two age periods 

have definite physical factors associated with them and are therefore 

easily defined. He stressed, however, that the last three age groups 

were not so easily defined and are also very difficult to compare 

between the species. 

33 

It has been known for quite some time that the percentage of 

water in muscle tissue falls during development (Needham, 1926). 

Horvath (1945) indicated this in rat growth studies in which he showed 

decreases of moisture in skeletal muscle from three days of age to 768 

days of age with most of the decreases having occurred by the 18th 

day. Dickerson and Widdowson (1960) noted in their work that the per

centage of water in skeletal muscle decreased from 94 percent in the 

early stages of fetal life to 74 percent in the adult animal. Norris 

et al. (1963) have indicated in their work with human skeletal muscle 

that decreased muscle tissue water was evidenced during development. 

More recent results of Zinn (1967) and Carr (1975) also emphasized 

that decreases in moisture content of skeletal muscle paralleled in

creasing age. It should be noted also that development is associated 

with an increase in the proportion of intercellular water (Briskey, 

1969). Dickerson and Widdowson (1960) indicated that in the 46 day 

pig fetus, 80 percent of the water was extracellular. In the 90th 

day of gestation, extracellular water accounted for about 50 percent 

of the total, and by parturition, only 40 percent. At three weeks 

postpartum, extracellular water had fallen to approximately 33 percent, 

and by the adult state only 23 percent. This, of course, assumes 

intercellular water comprises the remainder of the tissue moisture 



34 

thereby indicating an increase in intercellular water with developmento 

Compositionally, lipids reflect opposing trends to moisture 

quantities in muscle tissue during growth and development in animals. 

Helander (1966) noted in human skeletal muscle tissue that fat in

creased with age just as moisture decreased with age. Briskey (1969) 

stated that there was more intramuscular lipid in muscles of older 

barrows than in younger barrows. Lee and Kaufman (1974) emphasized 

in their work that lipid synthesis enzyme activities of intramuscular 

lipids showed increases through 24 weeks in the pig. Anderson (1972) 

in his review of composition research, indicated that in all cases 

skeletal muscle-associated lipids showed increasing quantities during 

growth in laboratory animals, domestic animals, and humans. Briskey 

(1969) explained that generally a decrease in lipid catabolism enzyme 

activity resulted in an increasing quantity of lipid to be deposited 

in muscle tissue. He explained that deposition of lipids into muscle 

tissue occurs through the circulatory system. As oxidative metabolic 

capacity decreased with age (became less efficient), lipid quantities 

increased because the expanding anaerobic system cannot catabolize 

the lipids as a fuel for ATP synthesis as efficiently as the aerobic 

system. Thus marbling increased with age. 

According to Widdowson (1970) it is well known that the concentra

tion of extracellular electrolytes such as sodium (Na) and Chloride 

(Cl) declines with development. Conversely, concentrations of the 

intracellular electrolytes potassium (K) and phosphorous (P) increase 

with development. Of course, the concentrations of these ions 

fluctuate with the distribution of intracellular and extracellular 

water. This was well illustrated by the work of Dickerson and 
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Widdowson (1960) with pig skeletal muscle sampled at five different 

stages of development from the 46 day fetus to the mature hog. These 

conclusions were also documented by the work of Forbes (1962) with 

human skeletal muscle. Forbes not only illustrated the same trends at 

three different stages of development (500 gram fetus, neonate, adult), 

but also that calcium (Ca), a major divalent cait,~QP:., reflected in

creases during growth. Similar conclusions were reached by Widdowson, 

Dickerson and Mccance (1960) in their work with pig muscle. 

In general, increases in the concentration of myoglobin are 

evident during development in skeletal muscle (Whipple 1926), Morita 

et alo (1970) investigated pig growth via histochemical procedures, 

They found that there was essentially a very small quantity of myo

globin in the one day old pig, but this quantity increased through 

three weeks of age, at which time near adult levels were attained. 

Lawrie (1952) demonstrated that as skeletal muscle increased in its 

capacity to undergo oxidative metabolism, the concentration of myo

globin increased. This corresponds with statements of Dubowitz 

(1970) that a positive correlation existed between activity of mito

chondrial enzymes and myoglobin concentration, Lawrie has made many 

studies (Lawrie, 1950; Lawrie, 1952; Lawrie, 1961, Lawrie et al., 

1963) on myoglobin concentrations in skeletal muscle during animal 

development yet no mention was made concerning the efficiency of the 

myoglobin nuc~eus and its relationship to oxygen transport. In later 

work, however, Lawrie (1950) pointed out that there might be a "break 

down" in the capacity for oxygen exchange as an animal increased in age. 

Briskey (1969) indicated that an increase in fat deposition with age 

may also interfere with blood distribution and thus require a need for 
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greater quantities of myoglobin. 

It has been the conclusion of most workers that skeletal muscle 

protein increases in quantity from early fetal life to maturity, 

Helander (1957) and Lawrie (1961) concluded that muscle tissue obtained 

from the bovine depicted increments in total protein during growth 

and development. Dickerson and Widdowson (1960) and Sink and Judge 

(1971) also advocated similar results of protein increases during 

growth in the pig, Many other workers have reflected similar conclu

sions in protein studies on skeletal muscle in various laboratory 

animals and humans, Goldspink (1962a) pointed out that there were 

increases in total protein in skeletal muscle during development, 

however, he indicated that muscle protein could be broken down into an 

intracellular and an extracellular fraction; the former increasing 

during development and the latter showing slight decreases. The pri

mary constituents of the intracellular fraction are the sarcoplasmic 

and myofibrillar proteins, both reflecting increments during growth 

and both being vitally important in growth and hypertrophy of the cell. 

The extracellular fraction is composed almost entirely of connective 

tissue type proteins which lend a supportive role to the cell and as a 

percentage of total quantity either remains the same or decreases 

during growth, 



CHAPTER III 

MATERIALS AND METHODS 

General 

Twenty-four Hereford and Charolais crossbred steer calves were 

used to investigate biochemical growth patterns in bovine muscle 

tissue. The Hereford and the Charolais crossbred calves were selected 

for the study according to their genetic background and similar body 

types, 

The calves were obtained inunediately after weaning and placed on 

a standard growing and finishing ration at the OSU beef centero The 

calves were randomly allotted to three slaughter weight groups desig

nated as 227, 318, and 409 kilogramso As the individual calves 

reached their respective slaughter weights, they were taken off feed 

for 24 hours and were slaughtered and dressed according to standard 

procedures at the OSU Meat Laboratoryo 

Procedures 

Sample Procurement 

Muscle tissue was removed from the left Longissimus dorsi at the 

13th thoracic region within 10 minutes of exsanguination, The tissue 

was placed inunediately on ice and separated into two portions, the 

first of which was frozen inunediately in an acetone-dry ice bath 

37 
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(-55° C) and then stored at -20° C, in plastic, moisture proof, 

Whirl-Pak freezer bags obtained from Nasco, This portion was used for 

fiber diameter studies. The second and largest portion was minced 

through the small (1,6 millimeter) plate of a prechilled laboratory 

grinder. Approximately 20 grams of thoroughly mixed tissue were used 

for extraction and the remainder (approximately 100 grams) was frozen 

in an acetone~dry ice bath, placed in plastic, moisture proof, Whirl

Pak freezer bags and stored at -20° C for future analysiso 

Care was taken during sampling to insure that the tissue remained 

on ice. After freezing, the tissue samples remained frozen at -20° C 

until the desired biochemical analysis was performed, At such time, 

the tissue was "chipped off" and assayed with the remainder of the 

tissue,resealed and replaced in the -20° C storage freezer. 

Analytical Procedures 

Moistureo Tissue moisture was determined by weight loss of 

homogenized, duplicate two gram tissue samples after drying for 24 

hours at llOc C, 

Total Muscle Nitrogeno Tissue nitrogen was determined by 

modified macrokjeldahl procedures (Escoubas, 1973) on homogenized, 

duplicate one gram muscle tissue samples. 

Asha Muscle tissue ash was ascertained by weight of residue 

obtained after a 12-hour, 625° C muffle furnace incineration, 

Ether Extractable Lipids, Ether extract was determined via. 

Goldfinch (AOAC, 1965) on duplicate two-gram, homogenized tissue 

samples, 
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Mineral Analysis, Duplicate one-gram muscle tissue samples were 

placed in 50 milliliter beakers. Ten milliliters of concentrated, 

analytical grade nitric acid were added to these beakers. This mixture 

was allowed to stand for 12 hours. Five milliliters of analytical 

grade 72% perchloric acid (PCA) were added to the nitric acid-muscle 

tissue mixture and was mixed well. The samples were then placed on 

medium heat (90° C hot plate) and evaporated to near dryness in an 

approved hood system, The residue was resuspended and made to 50 

milliliters with deionized, glass distilled water. Aliquots were 

taken for potassium, calcium, magnesium, phosphorous and sodium 

determinations via the Perkin Elmer 403 Atomic Absorption Spectrometer. 

The results were expressed as parts per million and converted to milli

grams per 100 grams tissue. 

Soluble Protein. Protein determinations were made by the Lowery 

method (Lowery et al., 1951). When necessary the protein aliquots 

were diluted to appropriate concentrations within the range of the 

standard curve and these dilutions were made with 0.25 molar sucroseo 

The optical density of the aliquots was determined at 750 mµ \red 

filter) on a Gilford 240 Spectrophotometer. Bovine serum albumen was 

used as the protein source for the standard curve. 

Enzyme Activity. Fresh tissue samples were extracted in ice cold, 

buffered sucrose (containing 250 mM sucrose), pH 7.4, 100 mM EDTA, 42 

mM Tris-HCl, 8 mM Tris-Base, and 50 units of heparin (sodium salt) per 

milliliter of media. The muscle tissue was accurately weighed, immersed 

in five volumes of the ice cold media and extracted. Extraction was 

accomplished in the Potter-Elvehjem glass homogenizer which was fitted 
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with a serrated teflon pestle. Extraction was made at a medium speed 

utilizing six strokes of the pestle. Clearance between the pestle and 

vessel was approximately one millimeter. The homogenate was decanted 

into prechilled plastic tubes and centrifuged in a Sorvall RC2-B 

refrigerated centrifuge for seven minutes at 500 X G. The resulting 

supernatant was decanted and retained and the precipitate re-extracted 

in five volumes of media using the same extraction and centrifugation 

procedures as outlined above. The two supernatants were combined and 

filtered through glass wool into prechilled centrifuge tubes. The 

supernatants were centrifuged at 14,500 X G for 10 minutes to sediment 

the mitochondria. The supernatant was decanted and retained while the 

mitochondrial pellet was resuspended in 10 milliliters of media. The 

suspension was centrifuged at 2500 X G for seven minutes and the 

supernatant decanted and discarded. The mitochondrial pellet was re-

suspended in six milliliters of media using a prechilled, glass, hand 

homogenizer. Thus, from the overall extraction, a supernatant and a 

mitochondrial suspension were obtained. The supernatant was filtered, 

for enzyme analysis, through five micrometer diameter pore size 

Millipore filters. 

Enzyme activities were determined as indicated in Tables II, III 

and IV, via the Gilford 240 Spectrophotometer at a constant temperature 

of 37° C using the Haake constant temperature circulation system. 

Succinate oxidase activity was determined by the YSI Model 53 

Biological Oxygen Monitor System using the Clarke electrode and 

measuring micromoles oxygen consumed per minute per milligram of 

protein. 
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All assays were performed on fresh muscle extracts0 The tim<: 

interval between exsanguination and the initiation of the assays was 

approximately one hour and forty minutes. Where appropriate~ oxidation 

and reduction of substrates by enzymes were monitored by Niacin 

Adenine Nucleotides, with units of enzyme activity based en the 

micromolar extinction coefficient of 6a22 cm 2•µm-l for NADH and NADPH2 

(Long, 1961). In the estimation of succinate dehydrogenase, a modiff~ 

cation of the procedure of King (1963) was implemented uaing L5 

millimolar ferricyanide (as indicated in Table III) and the activity 

was expressed as µM of succinate oxidized per minute per milligram of 

enzyme protein, 

Lactate Dehydrogenase Electrophoresis. Filtered muscle supe1r

natant was diluted in chilled, freshly prepared, 250 millimolar 

sucrose (1:9, supernatant:sucrose). The diluted supernatant was then 

mixed in a 1:1 ratio with 40 percent, freshly prepared, chilled suc

rose and layered atop five-day polymerized, five percent, polyacrylamidc, 

p:re-electrophoresE.d gels, The gels were electrophoresed for 70 minutes 

in a 0° C envi.ronment with a current per tube of four millampe.reso A 

total of three gels were electrophoresed for each extraction, two of 

which were stained according to modified procedures of reduction of 

tetrazolium salts as explained by Van Bogaert et al. (1967) and Die-tz 

and Lubrano (1972). The incubation system of the gels contained 27a5 

millimolar trishydroxymethylaminomethane buffer, pH 8,6, 10L7 milli

molar sodium lactate, 0,25 milligram per milliliter nicotinamide 

adenine dinucleotide (NAD), 0,85 milligram per milliliter Nitro Blue 

Tetrazolium (Sigma Chemical Company) and 0,13 milligram per milliliter 

phenasine methosulfate (PMS). The incubation time for the gels was 
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five minutes at a temperature of 37° C and the reaction was stopped by 

washing the gels in five milliliters of seven percent acetic acid, 

The gels were rinsed and stored in deionized glass distilled water, 

The unstained of the electrophoresed gels was aligned with the 

stained gels and sectioned with a scalpel according to the LDH iso-

zyme pattern exhibited on the stained gels. The sections were appro-

priately labeled and were then extracted in 2.5 milliliters of ice 

cold 250 millimolar sucrose for 15 minutes at a low speed in the 

Sorvall Omni-mixer, micro attachment, apparatus. The resulting sus-

pension was filtered through five micrometer pore size Millipore 

Filters. The resulting solution was assayed for LDH enzyme activity 

as noted in Table II. Protein concentrations were estimated as in-

dicated above by the Lowery procedure (Lowery et al., 1951), 

Total RNA and DNA, Nucleic acids were isolated and quantitated 

by modified procedures of Schneider (1945), Ceriotti (1955), and 

Burton (1956). Duplicate muscle tissue samples (0.4 to 0.6 grams) 

were sectioned from frozen muscle homogenates, weighed and immersed 

immediately into five volumes (two to three milliliters) of ice cold 

deionized, glass distilled water. The samples were homogenized at o0 

C for 15 minutes at a low speed in the Sorvall Omni-mixer, micro 

attachment, apparatus. The resulting suspension was acidified with 

appropriate quantities of 0.6 N perchloric acid (PCA) to a final con-

centration of 0.2 N PCA. The acidified suspension was mixed thorough-

ly on the Vortex mixer and centrifuged for 15 minutes in a clinical 

centrifuge at a Variad setting of 75. The supernatant was discarded 

and the precipitate re-extracted in 0.2 N PCA and centrifuged as above 



TABLE II 

CONDITIONS FOR GLYCOLYTIC ENZYME ASSAYS 

Enzymea,b,c 

Lactate 
Dehydrogenase 

Glyceraldehyde 
Phosphate 
Dehydrogenase 

Protein 
Dilution 

3000X 

300X 

Assay 
pH 

7.0 

7.5 

Assay Component Concentrations 

4.3 mM Potassium Phosphate Buffer, 0.77 mM Sodium 
Pyruvate, 0.1 mM NADH, Muscle Extract.d 

90.8 mM Triethanolamine Hydrochloride Buffer, 
1.5 mM ATP, 2.3 mM Phosphoglyceric acid, 50 mM 
NADH, 2.5 mM EDTA, 2.0 mM Magnesium Sulfate, 
33o3 µg/ml 3-Phosphoglycerophosphokinase, 
Muscle Extract.d 

a Enzymes were assayed using the supernatant as the protein source. 

b Incubation time was five minutes. 

c Activity was determined at wavelength of 340 mµ, 

d Quantity of muscle extract varied with concentration of protein, 



Enzymea,b 

Succinatec 
Dehydrogenase 

Malated 
Dehydrogenase 

Citrated 
Synthetase 

Protein 
Dilution 

60X 

30X 

30X 

TABLE III 

CONDITIONS FOR TCA ENZYME ASSAYS 

Assay 
pH 

7.8 

7.5 

7.9 

Assay Component Concentrations 

100 mM Potassium Phosphate Buffer, 40 mM Sodium 
Succinate, 0.1 percent Bovine Serum Albumen, 1.5 mM 
Potassium. Ferricyanide, Muscle Extract.e 

86.7 mM Potassium Phosphate Buffer, 0.3 mM NAD, 
0.5 mM Malic Acid, Muscle Extract.e 

102.7 mM Tris-hydrochloride Buffer, 2.5 mM EDta, 
5.0 mM NAD, 60 mM Malate, 0.22 mM Acetyl CoA, 
Muscle Extract.e 

a Enzymes were assayed using the mitochondrial extract as the protein source, 

b Incubation time was five minutes. 

c Activity was determined at wavelength of 420 mµ. 

d Activity determined at wavelength of 340 mp, was 

e Quantity of muscle extract varied with concentration of protein, 



Enzyme Protein 

a c d B-HydroxyAcyl ' ' 

Dilution 

CoA Dehydrogenase 15X 

Glucose-6-
Phosphate b, c, d 
Dehydrogenase 3X 

Succinatea,e 
Oxidase 5.6X 

TABLE IV 

CONDITIONS FOR OTHER PATHWAY ENZYME ASSAYS 

Assay 
pH 

7.2 

7,5 

Assay Component Concentrations 

110 mM Triethanolamine Hydrochloride Buffer, 8.3 mM 
EDTA, 0.25 mM NADH, 0.13 mM AcetoacetylCoA, Muscle 
Extract.£ 

31.7 mM Triethanolamine Hydrochloride Buffer, 0.5 
mM NADP, 0.67 mM Glucose-6-Phosphate, Muscle 
Extract.f 

170 mM Sucrose, 15 mM Potassium Chloride, 15 mM 
Dipotassium Monohydrogen Phosphate, 3.8 mM Magne
sium Dichloride, 0.038 percent Bovine Serum Albu
men, 17.9 mM Sodium Succinate, 0.14-0,29 mM ADP, 
Muscle Extract.£ 

a 
b 
c 
d 
e 
f 

Enzymes were assayed using the mitochondrial extract as protein source. 
Enzyme was assayed using the supernatant as a protein source. 
Incubation time was 10 minutes, 
Activity was determined at wavelength of 340 mv. 
Activity was determined polargraphically using the Clark Elecnode,. 
Quantity of muscle. ext;cact varied with concentration of protein, 



for 10 minutes. This procedure was performed twice. The resulting 

precipitate was extracted in the following solvents, in the indicated 

order and centrifuged in the clinical centrifuge at a Variad setting 

of 75 after each extraction. 

1. 95 Percent Ethanol: Extracted 10 minutes, Centrifuged 15 

minutes 

2. Ethanol:Chloroform (3:1): Extracted 10 minutes, Centrifuged 

10 minutes 

3. Ethanol:Ether (3:1): Extracted 10 minutes, Centrifuged 10 

minutes 

4. Ether: Extracted 10 minutes, centrifuged 10 minutes 
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The resulting precipitate from the ether extraction and centrifugation 

was extracted in 0.2 N PCA and centrifuged, after the extraction* fo-c 

10 minutes as noted above, This procedure was performed twice, The 

final precipitate was air dried under convection in the laboratory 

hood for 20 minutes. Note should be made that all extractions, 

mixings and centrifugations were accomplished in a 1.1° C environment, 

The air dried precipitate was incubated at 90° C for 46 minutts in 

seven milliliters of 0.2 N PCA with constant mixing, After incubaticn, 

the tubes and contents were chilled in icewater for 10 minutes and 

centrifuged at 1,1° C in a clinical centrifuge at a Variad setting of 

75. The supernatants obtained were decanted through glass wool into 

10 milliliter acid washed volumetric flasks. The residues were washed 

with 1.5 milliliters, each, of 0.2 N PCA and the suspensions centri

fuged according to the above indicated method for 10 minutes, The 

supernatants were decanted through glass wool into the appropriate 

volumetric flasks and the glass wool washed with several drops, each, 



of 0.2 N PCA, The combined supernatants and washes were finally made 

to 10 milliliters. 
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RNA concentrations were determined on the solutions by a modified 

procedure of Ceriotti (1955) at a wavelength of 660 millimicrons 

using the orcinol system (Table V). DNA was also quantitated from 

these solutions by modified procedures of Burton (1956) using a wave

length of 600 millimicrons and utilizing the diphenylamine system 

(Table VI). Standard stock solutions were prepared at a concentration 

of 1.0 milligram DNA and RNA per milliliter in 0.01 N potassium 

hydroxide. 

Working standards of 100 microgram per milliliter DNA and RNA 

were prepared from the stock solutions using 0.01 N potassium hydro

xide. The DNA was obtained from Sigma Chemical Company as the highly 

polymerized sodium salt from calf thymus and the RNA was also obtained 

from Sigma Chemical Company as baker's yeast core RNA, Type II C. 

Calculations for the quantification of RNA and DNA were made based on 

an assay curve of the standard stock solutions described in Tables V 

and VI. It was determined that at the stock solution concentrations 

used, the linear, repeatable portion of the curve was maintained. 

Calculations were made as follows, based on a three milliliter nucleic 

acid system (Tables V and VI): 
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Optical Density Volume of lOOg/ml Dilution Adjusted 
Nucleic Acid factor Optical Density 

O.D. 3.0 1 O.D. 

O.D. 2.5 1.2 O.D. 

O.D. 2.0 1.5 O.D. 

O.D. LS 2.0 O.D. 

O.D. 1.0 3.0 O.D. 

O.D. 0.5 6.0 O.D. 

x 

where X Summed adjusted O.D.'s x y = 6= 

y Average adjusted O.D.'s 
y O.D. of unknown 

= z 100 

z = Concentration in µg/ml of tissue extract. 

Fiber Diameters. Intact tissue sections were immersed while 

frozen in ice cold 10 percent formalin fixative. The tissue was held 

in this fixative at 0° C for 48 hours and then placed in fresh, ice 

cold, fixative for another 48 hours. Approximately three to six 

fasciculae were removed and placed in a Waring blender equipped with 

reversed blades and mixed at a low speed for two minutes. The fibers 

were then stored at 1.1° C for 24 hours. Following this period, 50 

fibers were measured for their diameters after a one hour acclimation 

period at room temperature via ocular micrometer using light micro-

scopy. A standard reading pattern of horizontal and vertical sweeps 

was implemented. 



TABLE V 

PROTOCOL FOR DETERMINATION OF RNA BY ORCINOL PROCEDURE 

Tube Volume Volume Volume Volume Mixing Autoclave Tap H2 0 
Number RNA H,0 Acid Orcinol Time Incubation Bathe 

(ml) ci1) Reagentc Reagentd (mine) (100°c) (min,) 
(ml) (ml) (min.) 

1 3.0a o.o 6.0 0.4 2 20 10 
2 2.5a 0.5 6.0 0.4 2 20 10 
3 2.oa LO 600 0.4 2 20 10 
4 L5a 1.5 6.0 0.4 2 20 10 
5 LOa 2.0 6,0 0.4 2 20 10 
6 0.5a 2.5 6.0 0.4 2 20 10 
7 0.0 3.0 6.0 0.4 2 20 10 
8 3.0b o.o 6.0 0.4 2 20 10 

a The RNA contained in these tubes was pipetted, quantitatively, from the working standard solution. 

b The RNA contained in these tubes pipetted, quantitatively, from the tissue extract, was 

c The assay concentration of this reagent contained 0.032 percent FeC1 3 '6H20 in hydrochloric acid, 

d The assay concentration of this reagent contained 0.26 percent orcinol, 

e After cooling in running tap water, the optical density was recorded at 660 m;..; (red filter), 



TABLE VI 

PROTOCOL FOR DETERMINATION OF DNA BY DIPHENYLAMINE PROCEDURE 

Tube Volume Volume Volume Mixing Autoclave 
Number DNA H20 Diphenylamine c Time Incubation 

(ml) (ml) (ml) (min,) (l00°C) 
(min.) 

1 3.0a 0.0 6.0 2.0 20 
2 2.5a 0.5 6.0 2.0 20 
3 2.oa 1. 0 6.0 2,0 20 
4 1.5a 1.5 6.0 2.0 20 
5 1.0a 2.0 6.0 2.0 20 
6 o.5a 2.5 6.0 2.0 20 
7 0.0 3.0 6.0 2,0 • 20 
8 3.ob o.o 6.0 2.0 20 

a The DNA in these tubes were pipetted quantitatively from the working standard solution. 

b The DNA in these tubes were pipetted quantitatively from the tissue extract, 

Tap H20 
Bathd 
(min.) 

10 
10 
10 
10 
10 
10 
10 
10 

c The assay concentration of this reagent contained one percent diphenylamine (W/V) l,83 percent sulfuric 

acid (V/V) in glacial acetic acid, 

d After cooling in running tap water, the optical density was recorded at 600 mµ, 

Ln 
0 
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Total Muscle Pigments. Quantification of total muscle pigments 

was performed according to modified procedures of Drabkin and Ali:,cin 

(1932) and Rickansrund (1966). Tissue samples were sectioned (4"5 -

5.5 grams) in duplicate from frozen muscle homogenates and immersed in 

five volumes of ice cold, deionized, glass distilled water. This 

mixture was extracted for five minutes at low speed on the Sorvall 

Omni-mixer apparatus. Care was taken to insure that the extract.ion 

temperature remained at zero to one degree Centigrade. The homogc.M,t:e 

was centrifuged at 2500 X G for 15 minutes in the RC2-B refrigerated 

centrifuge and the supernatant filtered via Buchner funnels through 

Whatmann number 41 filter paper. The precipitate was re-extracted and 

re-centrifuged three times as indicated above and following each E:,x

traction the supernatants were filtered. The filter paper was rinsed 

with a few milliliters of deionized, glass distilled water and the 

supernatants combined and made to 100 milliliters with deionized, 

glass distilled water. Potassium ferricyanide (0.025 grams) and 

potassium cyanide (0.005 grams) were quantitatively weighed and placed 

in a 100 milliliter volumetric and made to volume with the combined 

supernatant. This solution was gently but thoroughly mixed and an 

aliquot was centrifuged at 2500 X G for 15 minutes, This centrifugEd 

aliquot was examined spectrophotometrically and the optical density 

measured at 540 millimicrons against a deionized distilled water blank 

prepared just as the sample. 

The calculations made assumed a molar extinction coefficient of 

myoglobin of 11.3 mM per liter and a myoglobin molecular weight of 

17,000. Thus, the equations 



17000 • 0.2 
11.3 = K 
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_o_._D_.~·~K~~~ = Concentration of pigments in milligrams 
sample weight per gram of tissue. 

were used in pigment quantitation. 

Statistical Analysis. Data analysis were made in accordance 

with appropriate procedures outlined by Steele and Torrie (1960), 



CHAPTER IV 

RESULTS AND DISCUSSION 

Tissue Preparation 

The muscle tissue obtained from the cattle in this study was 

utilized in both the fresh and frozen states. Results of Escoubas et 

al. (1974) emphasized that certain isoenzyme electrophoretic patterns 

were altered due to freezing and thawing stresses, thus enzymatic 

analysis required the use of fresh muscle tissue, whereas nucleic acid 

and mineral analysis, fiber diameter measurements, muscle pigment 

quantitation and chemical composition analysis permitted the use of 

frozen muscle tissue. Therefore, the tissue to be frozen for future 

analyses as stated above was immersed rapidly in a dry ice-acetone 

bath, frozen solid, and stored at -20° centigrade. 

Tissue Enzyme Preparation 

Various proteins in muscle tissue differ in their capacity to 

withstand the effects of freezing and thawing stresses. Many enzymes 

are rather unstable and exhibit a tendency to denature upon storage, 

even at low temperature (Chilson et al., 1965a). Blonde et al. (1967) 

studied the effects of freezing and thawing on mitochondrial and super

natant associated malate dehydrogenase in pig heart and found that 

these stresses had detrimental effects on the in vivo activity as 
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observed in fresh extracts. Chilson et al. (1965a, 1965b and 1966) 

identified similar results in their work with lactate dehydrogenase 

(LDH) in both chicken and beef muscle tissue. Markert et al, (1963) 

suggested that the freezing and thawing of two electrophoretically 

distinct forms of LDH caused formation of multiple forms to appear. 

This was brought about by a complete dissociation and random recombin

ation of the multiple subunits which appeared to form in a binominal 

distribution, Similar results were obtained by Escoubas et alo (1974), 

suggesting that freezing and thawing were detrimental to electrophore

tic properties as well as the resulting enzyme activity. Therefore 

fresh tissue removed immediately post exsanguination was utilized in 

all enzyme analysis. 

According to Colowick and Kaplan (1955) isotonic sucrose (0,25M) 

has been shown to be an excellent medium for tissue extractions. How

ever, Ernster and Nordenbrand (1967) emphasized that sucrose and other 

nonelectrolytes alone make poor homogenizing mediums by themselves in 

skeletal muscle tissue because of quality and quantity factors. They 

mentioned that high concentrations of calcium in muscle tissue adsorbs 

to the mitochondria during homogenization. This can be eliminated, as 

indicated by Slater and Cleland (1952), by addition of calcium chelat

ing substances to the medium. Yield problems arise in nonelectrolyte 

mediums because muscle tissue assumes a gelatinous consistancy creating 

difficulty in obtaining a sufficient disintegration of the myofibrils 

(Chappell and Perry, 1954). Chappell and Perry (1954) thus devised a 

medium to extract muscle tissue to obtain quantitative, quality yields 

of mitochondrial and supernatant fractions. This medium has been used 

rather widely in muscle tissue extractions to date. 
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The Chappell-Perry medium would have been used in this study were 

it not that electrophoretic separation of aliquots of the supernatant 

fraction was to be accomplished. Electrophoretic separation of pro

teins, including enzymes, suspended in salt solutions, produce incon

sistant results and/or artifacts. Therefore, an extraction procedure 

was developed to obtain maximum yields of quality mitochondria that 

would allow inunediate resuspension for electrophoretic analysis which 

would preclude lengthy dialysis procedures. 

A modified procedure for tissue extraction was developed from the 

procedures of Max et al. (1972) and Dow (1967). The procedure of the 

present study contained a media of 250 millimolar succrose, 100 milli

molar EDTA (tetrasodium salt), 42 millimolar tris-HCL, 8 millimolar 

tris-base and 50 units of Heparin per milliliter media, pH 7.4. This 

tris-buffered sucrose acted as an excellent medium for mitochondrial 

extraction without resulting in variances due to ionic or pH shifts. 

The excess EDTA chelated the calcium liberated from the skeletal 

muscle tissue during homogenization and eliminated the adsorbing of 

calcium to the mitochondria. The heparin added in the above quantities 

prevented the agglutination of the myofibrils as described by Ernster 

and Nordenbrand (1967) and resulted in an acceptable yield of mito

chondria. 

Tissue Nucleic Acid Preparation 

The ubiquitous presence of enzymes capable of degrading nucleic 

acids into smaller molecules in animal tissues makes it imperative to 

protect the nucleic acid while the tissue is being excised, stored, and 

prepared for nucleic acid analysis (Hutchison and Munro, 1961). To 
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prevent significant enzymatic degradation of nucleic acids in the 

present study, the tissue was removed within 10 minutes post-exsangu-

ination. The tissue was placed immediately on ice and transported to 

the analytical lab. The tissue was minced through the fine plate 

(0.063 millimeter) in an ice-chilled head of a laboratory grinder. 

This was done as rapidly as possible and the tissue placed in Whirl-

Pak (Nasca) plastic freezer bags and frozen quickly in an acetone-

dry ice mixture. The tissue was stored below -20° centigrade and ex-

tracted immediately upon removal from the freezer. 

Enzyme Analysis 

The data obtained from enzyme analysis were determined as indica-

ted in Tables II, III, IV and VII. Units of enzyme activity were ex-

pressed as specific activity (SA) or International Units (IU) of the 

enzymes, per gram of protein, per gram of extracted tissue. Protein 

was determined by the Lowery method as indicated earlier. The activity 

of the enzymes is reflected in Tables VIII, XIX, X, XI, and XII 

according to their respective slaughter weight classifications. The 

number of cattle sampled and assayed for metabolic growth patterns is 

shown in parenthesis beside the indicated activity in the respective 

slaughter weight. 

Average ages should be noted here to project a better idea of the 

cattle utilized. The average ages were seven, twelve and sixteen 

months for the 227, 318 and 409 kilogram slaughter weights, respecti-

vely. The first weight group contained weaned calves whereas the last 

weight group contained typical market age, A maturity cattle. 



It should also be noted that an analysis of variance has been 

accomplished on the data collected during each enzyme analysis. The 

source of variation used to test the null hypothesis was among steers 

within weight groups, thus this was referred to as the error term. 

Due to small numbers of animals in this experiment, the major benefit 

of the analysis of variance was the estimation of variation between 

animals within slaughter weight groups. 

Anaerobic Metabolism 
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As reflected in Figure 1 and Table VIII, lactate dehydrogenase 

(LDH) enzyme activity made variable changes during growth of the steers. 

The change in activity from the first to the second slaughter weight 

group was 130,8 IU of activity, indicating an apparent decrease in 

glycolytic capacity. However, an increase of 52.5 IU was noted from 

the second to last slaughter weight group presenting a total decrease 

from the first to the last slaughter weight group of 18.0 percent, It 

would be unreasonable to estimate activity and changes in activity of 

LDH prior to or after this study. However, it appears that data 

obtained in this study do not follow patterns suggested in previous 

literature. 

Cosmos and Butler (1966) reported that phosphorylase activity in 

chicken breast muscle in early ~ ~ life was low and increased during 

growth. They reported similar trends for all glycolytic enzymes and 

indicated that there appeared to be an approximate 50 fold increase in 

total glycolytic activity during growth. Cosmos and Butler (1966) 

suggested that the increase in anaerobic metabolic activity was a 

result of anaerobic, or white, fiber differentiation. Other workers 



TABLE VII 

CALCULATIONS FOR DETERMINATION OF EN2YME 
ACTIVITY FROM BOVINE MUSCLE TISSUE 

Enzymes Assayed Calculation.of Activity 
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Lactate Dehydrogenase, Glyceraldehyde 3.0a ·~ODf/minute 
Phosphate Dehydrogenase, Glucose-6- 6. 22~· 1. ob • Volumeg 
Phosphate Dehydrogenase, Malate Dehydro- Grams Protein 

~~~~~~~~~~~ 

genase, Citrate Synthetase, S-Hydroxy Grams Tissue 
Acyl CoA Dehydrogenase 

Succinate Dehydrogenase 

Succinate Oxidase 

aVolume of assay in milliliters. 

3 .Oa · ~ODf /minute 
0 .485d • l. ob ·Volumeg 

Grams Protein 
Grams Tissue 

e mµM Oxygen Consumed 
Minute 

Milligrams Protein 
Grams Tissue 

bLength of light path (cuvette) in centimeters. 

cMolar extinction coefficient for NADH and NADPH (6.22 cm2 • 
µmoles- 1). 

dMaximum velocity units for the electron acceptor ferricyanide 
expressed as micromoles oxidized per minute. 

eoxygen consumption determined polarigraphically. 

£Enzyme activities determined spectrophotometrically. 

gVolume of protein aliquot. 



TABLE VIII 

GLYCOLYTIC METABOLIC ENZYME ACTIVITY IN LONGISSIMUS 
DORSI MUSCLE OF 227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS 

Slaughter Weight Lactate Dehydrogenase 
Group Activitya 
(kg) 

227 

318 

409 

Mean Square Among Steers 
Within Slaughter Weight 

(IU) 

434.880 

304.050 

356.500 

(Error Mean Square) 19439.528 

D.F. (Error Mean Square) 11 

Observed Significance 
Level p = 0.40 

Coefficient of Variation 39.3 % 

(5) b 

(4) 

(5) 

Glyceraldehyde 
Dehydrogenase 

(IU) 

2.080 

0.685 

0.275 

0.214 

4 

p = 0.06 

42.5 % 
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Phosphate 
Activitya 

(1) 

(2) 

(4) 

aEnzyme activity expressed in International Units as the activity 
resulting in an initial rate of oxidation or reduction of one micromole 
of nicotinamide adenine dinucleotide per minute per gram protein per 
gram of tissue at 25° C. 

hNumber of cattle assayed per slaughter weight group is noted in 
parenthesis. 
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Figure 1. Lactate Dehydrogenase Enzyme Activity in Longissimus Darsi 
Muscle in 227, 318 and 409 Kilogram Slaughter Weight 
Steers. Number of Animals Assayed per Weight Group is 
Noted in Parenthesis. 
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Figure 2. Glyceraldehyde Phosphate Dehydrogenase Enzyme Activity in 
Longissimus Darsi Muscle in 227, 318 and 409 Kilogram 
Slaughter Weight Steers. Number of Animals Assayed Per 
Slaughter Weight Group is Noted in Parenthesis. 
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(Dawson and Kaplan, 1965 and Gresham, 1973) have also presented data 

which suggested increases in glycolytic capacity during growth. 

Glyceraldehyde phosphate dehydrogenase (GPD), as reflected in 

Figure 2 and Table VIII, also decreased in activity during growth. 

Moreover, the decreases noted were continuous throughout growth. 
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The percent decrease from the first to the last slaughter weight groups 

was 86.8 percent, a much stronger decrease than was noted in LDH 

activity. 

The overall anaerobic (glycolytic) activity, as suggested by the 

general patterns of LDH and GPD, appeared to have decreased with growth 

(with increasing age), This is not at all consistant with other work 

as referenced above. However, as presented by Dalrymple et al. (1973), 

there are undulating patterns of glycolytic metabolic enzyme activity 

during the mannnalian growth process. The glycolytic enzyme activity 

changes noted in this study appear to be, however, more than a de

creasing undulation of an overall increasing pattern, The glycolytic 

metabolic enzyme activity patterns observed here reflect low observed 

significance levels (Table VIII). Also, according to Table VIII, there 

are moderately high coefficients of variation between the observations 

made. These results yield inconclusive data on glycolytic metabolic 

enzyme activity in muscle tissue during bovine growth. 

Aerobic Metabolism 

Previous work has shown that decreases in oxidative enzyme 

activity exist in mammalian skeletal muscle during growth from the 

neonate to the adult. Goldspink (1972) indicated that oxidative 

enzyme activity in mature, adult muscle tissue was less than that in 
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immature, young muscle tissue. Kistler and Weber (1974) presented 

similar results in their work in skeletal muscle tissue of Xenopus 

during larval development but the changes that were evident were 

small. Greenfield and Boell (1968) worked with chick skeletal muscle 

tissue and reported that oxidative enzyme activity (succinate dehydro

genase and cytochrome oxidase) showed slight increases during the 

growth period. Moreover, Beatty et al. (1967) in their growth studies 

advocated that increases were noted in oxidative enzyme activity from 

the fetal stage to the adult in mammalian skeletal muscle, Thus, it 

can be seen that some variation exists in the literature as to the 

direction and rate of change of oxidative enzyme activity during 

growth in skeletal muscle tissue. 

Results of the aerobic (oxidative) enzyme analyses in the pre

sent study are presented in Figure 3 and 4 and in Table IX. Succinate 

dehydrogenase (SDH) and malate dehydrogenase (MDH) enzyme activity 

depicted statistically significant (P < .05) increasing trends from the 

first through the last slaughter weight groups. These trends repre

sented a 5.1 and 2.7 fold increase in SDH and MDH activity, respecti

vely. Similarities of oxidative enzymic trends between the present 

work and Beatty et al. (1967) results are noted, however their data 

were derived from muscle tissue of different species than those used in 

the present study. Legitimate comparisons may be made, however, 

because obvious differences between these species are a result of 

differing points of inflections in growth curves of the soft and hard 

tissues. 

Citrate synthetase (CS) and succinate oxidase (SO) activity, are 

noted in Figure 4 and in Table IX. The activity of these enzymes 



TABLE IX 

OXIDATIVE METABOLIC ENZYME ACTIVITY IN LONGISSIMUS 
DORSI MUSCLE OF 227, 318 AND 409 
KILOGRAM SLAUGHTER WEIGHT STEERS 

Slaughter Weight Succinate Citrate Malate 
Group Dehydro genase Synthetase Dehydrogenase 
(kg) Activitya Activityb Activityb 
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Succinate 
Oxidase 

Activity 
(SA) (IU) (IU) (mµM o2 consumed) 

227 6.268 (5) 2.550 (2) 0.633 (3) 1. 880 (2) 

318 27.795 (4) 1.277 (3) 1.123 (4) 1.420 (3) 

409 38.424 (5) 2.217 (3) 2.363 (4) 2.158 (4) 

Mean Square Among Steers 
Within Slaughter Weight 
(Error Mean Square) 93.006 1.164 0.471 0.564 

D.F. (Error Mean 
Square) 11 5 8 6 

Observed Significance 
Level p = 0.001 p 0.56 p = 0.02 p 0.52 

Coefficient of 
Variation 43.3% 65.1% 43.0% 21. 6% 

aSpecific activity expressed as micromoles of succinate oxidized 
per minute per milligram protein per gram of tissue. 

bEnzyme activity expressed in International Units as the activity 
resulting in an initial rate of oxidation or reduction of one micromole 
of nicotinamide adenine dinucleotide per minute per gram protein per 
gram tissue. 

CActivity expressed as millimicromoles of oxygen consumed per 
minute per milligram protein per gram tissue using succinate as sub
strate. 

Number of cattle assayed per slaughter weight group is indicated in 
parenthesis. 
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Figure 3. Succinate Dehydrogenase (-) and Malate Dehydrogenase (--) 
Activity in Longissimus Dorsi Muscle in 227, 318 and 409 
Kilogram Slaughter Weight Steers. Number of Animals 
Assayed Per Slaughter Weight Group is Noted in Parenthesis. 
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Figure 4. Citrate Synthetase (-) and Succinate Oxidase (--) Activity 
in Longissimus Dorsi Muscle in 227, 318 and 409 Kilogram 
Slaughter Weight Steers. Number of Animals Assayed Per 
Slaughter Weight Group is Noted in Parenthesis. 
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displayed varying changes during growth. A decrease in activity was 

noted for both enzymes from the first to second slaughter weight group 

and was followed by increases from the second to the third slaughter 

weight group. The activities of CS, a vital krebs cycle enzyme, and 

SO, an indicator of mitochondrial functionality, were not expected to 

display such variable changes. Moreover, the patterns of change noted 

in SO and CS activity represent low observed significance levels 

(Table IX), Also, the coefficient of variation of CS activity read

ings was very high (Table IX) which suggested that experimental error 

may have adversely affected the data obtained. 

Hexose Monophosphate Oxidation 

Results for glucose 6-phosphate dehydrogenase (G6PD), as descri

bed in Figure 5 and in Table X showed a decreasing trend during this 

growth study. As noted in Table X, the activity of G6PD was low as has 

been shown in past work. Muscle tissue has very low quantities of 

G6PD relative to other tissues such as liver. However, G6PD performs a 

vital role in muscle metabolism in the fact that it is the branch point 

enzyme of the pentose phosphate pathway, This pathway is utilized to 

generate reduced nicotinamide adenine dinucleotide phosphate cofactors 

for fatty acid synthesis as well as pentose phosphate moieties (phos

phoribosylpyrophosphate) for nucleic acid biosynthesis. Bruns and 

Werners (l962) have shown that G6PD activity increases with age from 

the fetal stage to the neonate in liver tissue slices. Also Dawson and 

Romanul (1964) presented data that suggested an increase in G6PD 

activity during growth in rat skeletal muscle tissue. Thus, data 

obtained from liver and rat skeletal muscle studies have shown that 



G6PD activity increased during growth. The abatement in bovine 

skeletal muscle G6PD activity in this study did not resemble patterns 

established for other tissues and species. No statistically signifi

cant changes were noted (Table X) in G6PD activity from the first to 

the last slaughter groups probably as a result of the amount of 

variation observed in the data. 

Fatty Acid Oxidation 
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Fatty acid oxidation enzyme activity has been shown to increase 

with increasing pigmentation in skeletal muscle of the rabbit and 

chicken (Bass et al., 1969). Increasing pigmentation in skeletal 

muscle has been identified with increasing age (Sink and Judge, 1971). 

Very little data other than that of Bass et al. (1969) have been pre

sented on fatty acid oxidation enzyme activity changes during growth. 

Thus, this author is unable to make specific comparisons between the 

data of this study and pertinent literature values. 

As can be observed in Figure 6 and in Table X, beta hydroxyacyl 

coA dehydrogenase activity increased during the entire course of this 

study although the observed significance level for these changes was 

low. This trend suggests that there was an increased lipid oxidation 

capacity in the muscle tissue with growth. 

Lactate Dehydrogenase Electrophoresis 

Lactate dehydrogenase (LDH) is composed of five molecular forms 

(Chapter II), two of which are homogeneous tetramers and three of which 

are heterogeneous mixtures of the two pure forms. The five LDH 

isozymes are very similar in physical properties in that they catalyze 



TABLE X 

AUXILLARY METABOLIC ENZYME ACTIVITY IN LONGISSIMUS 
DORSI MUSCLE OF 227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS. 
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Slaughter Weight 
Group 
(kg) 

Glucose 6-Phosphate 
Dehydrogenase 

Activitya 

B-Hydroxy Acy! CoA 
Dehydrogenase 

Activitya 

227 

318 

409 

Mean Square Among Steers 
Within Slaughter Weight 
(Error Mean Square) 

D.F. (Error Mean Square) 

Observed Significance 
Level 

Coefficient of 
Variation 

(IU) 

0.044 (3) 

0.025 (4) 

0.015 (5) 

0.001 

9 

p = 0.09 

99.5 % 

(IU) 

o. 607 (3) 

1. 283 (4) 

1. 852 (5) 

0.450 

9 

p = 0.09 

51.6 % 

aEnzyme activity is expressed in International Units as the 
activity resulting in an initial rate of oxidation or reduction of one 
micromole of nicotinamide adenine dinucleotide per minute per gram 
protein per gram tissue. 

Number of cattle assayed per slaughter weight group is noted in 
parenthesis. 
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Figure 5. Glucose 6-Phosphate Dehydrogenase Activity in Longissimus 
Dorsi Muscle in 227, 318 and 409 Kilogram Slaughter Weight 
Steers. Number of Animals Assayed Per Slaughter Weight 
Group is Noted in Parenthesis. 
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Figure 6. Beta Hydroxy Acyl CoA Dehydrogenase Activity in Longissimus 
Dorsi Muscle in 227, 318 and 409 Kilogram Slaughter Weight 
Steers. Number of Animals Assayed Per Slaughter Weight 
Group is Noted in Parenthesis. 
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the same general reaction, but have different specificities for 

lactate and pyruvate. The M or muscle form is highly specific for 

pyruvate, whereas the H or heart form is highly specific for lactate; 

the three hybrids showing differential specificities depending upon the 

tetramer makeup. 

According to Blanchaer and Van Wijke (1962), Fritz and 

Jacobson (1965) and Dietz and Lubrano (1967), the various isoenzymes 

can be separated by gel electrophoresis. In the present study, a 

total LDH activity assay was accomplished using the crude tissue pre

paration, however the distribution and activity of the various iso

zymes were determined by assaying each of the electrophoresed enzymic 

bands. 

As indicated by Brody and Engel (1964), slow moving LDH iso

enzymes predominate in the aqueous sarcoplasm of anaerobic fiber types. 

They also indicated that the fast moving LDH isoenzymes predominate in 

the aqueous sarcoplasm, mitochondria and lipid complexes of aerobic 

fiber types. Thus, the slow moving, or muscle type, band would be ex

pected to exhibit greater activity in an anaerobic muscle system than 

would the fast moving, or heart type, band. Data of Fine et al. (1963) 

have verified this LDH isoenzyme and metabolic activity relationship, 

The results of the present study are presented in Tables XI and 

XII. Total LDH activity, representative of total glycolytic capacity, 

showed a decrease (though not statistically significant) from the first 

to the last slaughter weight group in this study (Table VIII). As 

observed in Table XI, the LDH isoenzyme activity patterns (isoenzyme 

bands 1, 2, 3 and 5) appeared to reflect an increase in activity at the 

second slaughter weight period and decreased at the last slaughter 



TABLE XI 

LACTATE DEHYDROGENASE ISOENZYME ACTIVITYa IN LONGISSIMUS 
DORSI MUSCLE OF 227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS. 

Slaughter Weight Isoenzyme Band 

Group sh 4 3 2 
(kg) (IU) (IU) (IU) (IU) 

227 (3) 83.333 1.850 20.223 12.843 

318 (2) 215.750 9.310 69.700 56.450 

409 (5) 77.100 14.258 17.060 41.642 

Mean Square Among Steers 
Within Slaughter Weight 
(Error Mean Square) 1613.090 215.814 393.288 534.880 

D.F. (Error Mean 
Square) 7 7 7 7 

Observed Signifi-
cance Level p = 0.01 p = 0.55 p = 0.04 p 0.16 p 

Coefficient of 
Variation 40.4 % 144.1 % 63.0 % 51.2 % 
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le 
(IU) 

30.287 

46.250 

39.402 

374.810 

7 

0.67 

40.6 % 

aEnzyme activity expressed in International Units as the activity 
resulting in an initial rate of oxidation or reduction of one micromole 
of nicotinamide adenine dinucleotide per minute per gram protein. 

bisoenzymic band migrating least rapidly anodically has been re
ferred to as the muscle specific subunit. 

cisoenzymic band migrating most rapidly anodically has been re
ferred to as the heart specific subunit. 

Number of cattle assayed per weight group are noted in parenthesis. 



TABLE XII 

LACTATE DEHYDROGENASE ISOENZYME ACTIVITYa IN LONGISSIMUS 
DORSI MUSCLE OF 227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS. 

Slaughter Isoenzyme Band 

Weight Group 5b 4 3 2 
(kg) (%) (%) (%) (%) 

227 (3) 56.2 1. 2 13.6 8.6 

318 (2) 54.4 2.3 17.5 14.2 

409 (5) 40.7 7.5 9.0 22.0 
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le 
(%) 

20.4 

11. 6 

20.8 

aEnzyme activities denoted are expressed as a percent of the total 
isoenzyme activity determined by oxidation of nicotinamide adenine 
dinuclE:·otides. 

bisoenzymic band migrating least rapidly anodically has been 
referred to as the muscle specific subunit. 

Cisoenzymic band migrating most rapidly anodically has been 
referred to as the heart specific subunit. 

Number of cattle assayed per weight group is noted in 
parenthesis. 
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weight. This pattern of change proved to be statistically significant 

in the third and fifth isoenzymic bands only. Lactate dehydrogenase 

isoenzyme five, the muscle specific and anaerobic band, decreased as a 

percent of the total isoenzyme activity (Table XII). These results 

are similar to, but do not agree completely with, data in the litera

ture as indicated above. It should also be noted that two of the oxi

dative enzymes investigated in this bovine growth study, CS and SO, 

Table IX, reflected similar trends as presented by the fast moving, 

aerobic or heart specific band (Table XII). Therefore the electro

phoretic enzyme investigation complimented, in general, the data ob

tained in individual enzyme analysis in this study. 

Muscle Pigments 

Past work has shown that skeletal muscle tissue not only in

creases in pigmentation with age (Morita et al., 1970) but also increas

es in pigmentation as mitochondrial activity increases (Dubowitz, 1970), 

In the present study, it was shown (Table XIII) that total muscle 

pigments, of which myoglobin is in greatest concentration, increased 

(though not significantly) during growth. This increase is very 

similar to increases of muscle pigments in skeletal muscle during 

growth (Sink and Judge, 1971). When these pigment data are compared to 

the enzyme activity data in this study, two aerobic enzymes, SDH and 

MDH, are found to display similar trends (Table IX). 

Anaerobic enzyme activity reflect opposite trends as were noted by 

SDH and MDH. Thus, increases in pigment concentration tended to 

parallel increases in SDH and MDH activity and opposed decreases in 

glycolytic activity. These results suggest an increasing aerobic 



TABLE XIII 

MUSCLE PIGMENT CONCENTRATION IN LONGISSIMUS DORSI 
MUSCLE OF 227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS 

Slaughter Weight 
Group 
(kg) 

227 

318 

409 

Mean Square Among Steers 
Within Slaughter Weight 
(Error Mean Square) 

D.F. (Error Mean 
Square) 

Observed Significance Level 

Coefficient of Variation 

P . C . a 1gment oncentration 
(mg/g) 

1.134 

1.393 

1.614 

0.150 

21 

p = 0.07 

21.5 % 

aPigment concentration expressed as milligrams of total muscle 
pigments per gram of tissue. 
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Number of cattle assayed per weight group is noted in parenthesis. 



skeletal muscle system in the experimental steers with increases in 

postweaning age or suggests that there was a compensation for a de

creased total aerobic capacity by increased pigment concentration and 

increased specific activities of the aerobic enzymes so as to support 

hypertrophy. 

Fiber Growth 
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Guenther (1974) has shown that fiber diameter increased with 

increasing age in bovine muscle tissue. Guenther (1974) also indicat

ed that the greatest impetus of muscle growth occurred between seven 

and 12 months of age. After 12 months of age, the rate of muscle fiber 

hypertrophy appeared to diminish. Muscle fiber diameter in the present 

study depicted increasing trends (P < .05) throughout growth (Table 

XIV) with the greatest impetus of hypertrophy noted at the second 

slaughter weight group. This weight group represented an average age 

of 12 months, thus, the present data are very similar to muscle fiber 

growth data as described in the literature. 

Nucleic Acid Analysis 

Winick and Noble (1965) have shown that the total quantity of 

deoxyribonucleic acid (DNA) increased with age. When expressed on a 

unit of tissue basis, Robinson and Lambourne (1970) pointed out that 

the quantity of DNA either became static in its changes during growth 

or declined relative to increasing age. This suggested that although 

DNA increased in quantity with age, it did not increase at the same 

rate as skeletal muscle tissue deposition. Further evidence for a 

muscle tissue: DNA differential rate of increase was offered by 



Hubbard et al. (1974). 

According to Winick and Noble (1965) and Enesco and Leblond 

(1962), there was a definite numerical relationship between the 

quantity of DNA and the number of nuclei in muscle tissue. These 

investigators presented the following relationships. 

Number of Nuclei (millions) = Total Organ DNA (mg) X 10 3 

6.2 x 10-12 

where 6.2 is the quantity of DNA in picograms in a single diploid rat 

nucleus. Also: 

Weight per Nucleus (mg) = Total Organ Weight (gm) X 10 

Number of Nuclei (millions) 
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According to Hubbard et al. (1974) there was an increase in the number 

of nuclei per muscle and in the weight supported per nucleus with in-

creased age in rat skeletal muscle tissue. 

As can be observed in Table XV, there was a decline (P < .05) in 

DNA concentration per 100 milligrams of wet tissue weight. However, 

the data in Table XVII suggests that there was an increase in total 

longissimus dorsi (LD) section DNA during growth. Total LD section 

DNA was estimated from the LD section weight, Table XVI. These data 

are very consistant with data in the literature on skeletal muscle 

tissue in other manunalian species. 

Based on LD section weight (Table XVI), muscle tissue growth 

increased (P < .01) with age in the experimental steers. Also, total 

section DNA (Table XVII), total LD section nuclei, quantity of tissue 

supported per nucleus and quantity of protein supported per nucleus 

(Table VIII) increased in similar, rapid rates during growth. These 



76 

TABLE XIV 

MUSCLE FIBER DIAMETER AND AREA FROM THE LONGISSIMUS DORSI 
OF 227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS. 

Slaughter Weight 
Group 
(kg) 

227 (8) 

318 (8) 

409 (8) 

Mean Square Among Steers 
Within Slaughter Weight 
. (Error Mean Square) 

D.F. (Error Mean Square) 

Observed Significance 
Level 

Coefficient of 
Variation 

Fiber Diametera 
(µM) 

62.93 

67.89 

70.16 

19.743 

21 

p = 0.01 

6.9 % 

aFiber diameter expressed in micrometers. 

Fiber Areab 
(µM 2 x 102) 

31.104 

36.201 

38.662 

bFiber area expressed as 1 X 102 micrometers and assumes circular 
fiber shape, thus implementing the formula, rrr 2 • 

Number of animals assayed per weight group is noted in 
parenthesis. 



TABLE XV 

NUCLEIC ACID CONCENTRATIONS IN LONGISSIMUS DORSI 
MUSCLE OF 227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS 

Slaughter Weight 
Group 
(kg) 

227 (8) 

318 (8) 

409 (8) 

DNAa 
(µg/100 mg) 

57.57 

55.66 

48.56 

Mean Square Among Steers 
Within Slaughter Weight 
(Error Mean Square) 43.87 

D.F. (Error Mean 
Square) 21 

Observed Significance 
Level 

Coefficient of 
Variation 

p 0.03 

12.5 % 

RNAa 
(µg/100 mg) 

101.63 

108.31 

106.01 

154.28 

21 

p 0.56 

12.7 % 

p 

RNA 
DNA 

1. 77 

1.96 

2.20 

0.053 

21 

0.005 p 

12.0 % 

aNucleic acid content expressed as DNA or RNA in micrograms 
nucleic acid per 100 milligrams muscle tissue weight. 
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DNA 
RNA 

0.57 

0.51 

0.46 

0.004 

21 

0.007 

12.9 % 

Number of cattle assayed per slaughter weight group is noted in 
parenthesis. 
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Figure 7. Deoxyribonucleic Acid Concentration in Longissimus Darsi 
Muscle in 227, 318 and 409 Kilogram Slaughter Weight 
Steers. Each Point is an Average of the Analysis of 
Eight Animals. 
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Figure 8. Ribonucleic Acid Concentration in Longissimus Darsi Muscle in 
227, 318 and 409 Kilogram Slaughter Weight Steers. Each 
Point is an Average of the Analysis of Eight Animals. 
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results suggest that the muscle tissue of the cattle in this study was 

still in a phase of rapid, efficient muscle growth at 409 kilograms 

slaughter weight. As indicated earlier, the animals in this slaughter 

weight group averaged approximately 16 months of age, an age at which 

the rate of muscle growth usually starts to diminish. Although the 

study did not encompass sufficient periods of time to ascertain if 

this increase in tissue to nuclei ratio would continue to increase or 

achieve a plateau, it would seem logical to predict that a maximum 

number of nuclei per fiber would be attained, thereby limiting the 

potential growth of the fiber. A prediction of nuclear regulation of 

fiber growth would be acceptable because Cheek et al. (1971) and 

Goldspink (1972) have indicated that there was a maximum quantity of 

tissue or cytoplasmic area which could be supported by an individual 

nucleus in muscle tissue and that limiting nuclear number resulted in 

the arresting of muscle hypertrophy. 

Ribonucleic acid (RNA) has been shown to decrease in skeletal 

muscle tissue with age when expressed on a unit of tissue basis 

(Robinson and Lambourne, 1970). Winick and Noble (1965) indicated 

that, like DNA, RNA increased with age when expressed relative to 

total muscle mass. They also pointed out that RNA attained its 

ultimate cellular concentration during early growth although the cell 

continued to grow. It has also been shown that muscle tissue has 

high RNA_DNA ratios especially in early life suggesting high levels of 

protein synthesis were occurring at this point. 

Ribonucleic acid analysis in the present study (Table XV) showed 

evident increases in concentration from the first to the second slaugh

ter weight group but appeared to remain at constant levels from the 



TABLE XVI 

LONGISSIMUS DORSI SECTION WEIGHT FROM 
227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS 

Slaughter Weight 
Group 
(kg) 

227 (8) 

318 (8) 

409 (8) 

Mean Square Among Steers 
Within Slaughter Weight 
(Error Mean Square) 

D.F. (Error Mean Square) 

Observed Significance Level 

Coefficient of Variation 

Longissimus Darsi Section 
Weight a 

(kg) 

1.2 

1.5 

2.0 

0.18 

21 

p 0.0001 

8.8 % 
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aLongissimus dorsi weight is expressed in kilograms and represents 
the weight of a closely trinuned transverse section excised anterior to 
the sixth thoracic vertebra and posterior to the twelfth thoracic 
vertebra. 

Number of cattle from which the longissimus section was removed is 
noted in parenthesis. 



TABLE XVII 

TOTAL CELL AND TOTAL MUSCLE SECTION NUCLEIC ACID FROM 
THE LONGISSIMUS DORSI OF 227, 318 AND 409 

KILOGRAM SLAUGHTER WEIGHT STEERS 

81 

Slaughter Weight 
Group 

Total Nucleic 
Acid a 

Total Muscle Total Muscle 

(kg) 

227 (8) 

318 (8) 

409 (8) 

(µg/100 mg) 

159.20 

163.97 

154.57 

Section 
RNAb 
(g2) 

1.219 

1.625 

2.120 

Section 
DNAb 
(g2) 

.691 

.835 

.971 

aTotal nucleic acid content is expressed as micrograms of the sum 
of ribonucleic and deoxyribonucleic acid per 100 milligrams of fresh 
tissue. 

bTotal muscle section RNA and DNA is expressed in grams and 
calculated based on total longissimus dorsi section weight. 

Number of animals assayed per slaughter weight group is noted 
in parenthesis. 



TABLE XVIII 

TOTAL MUSCLE SECTION NUCLEI, GRAMS OF TISSUE SUPPORTED PER 
NUCLEUS, AND GRAMS OF PROTEIN SUPPORTED PER 

NUCLEUS IN LONGISSIMUS DORSI OF 227, 
318 AND 409 KILOGRAM SLAUGHTER 

WEIGHT STEERS 
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Slaughter Weight 
Group 
(kg) 

Total Muscle 
Section 
Nuclei a 

(10 12 million) 

Quantity of 
Tissue 

Supported 
Per Nucleus 

(10-S µg) 

Quantity of 
Protein 

Supported 
Per Nucleusc 

(10-6 µg) 

227 (8) 

318 (8) 

409 (8) 

111.5 

134.7 

156.6 

1.08 2.34 

1.11 2.54 

1.23 2.81 

aTotal muscle section nuclei is expressed in 1012 millions. 

bGrams of tissue supported per nucleus is expressed in 10-s 
micrograms based on the longissimus dorsi section weight. 

cGrams of protein supported per nucleus is expressed in 10-6 
micrograms based on the longissimus dorsi section weight. 

Number of animals assayed per slaughter weight group is noted in 
parenthesis. 
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second to last slaughter weight group analysis. Total RNA concentra

tions, Table XVII, showed almost linear increases with age. These 

data suggest that although RNA concentration, on a unit of tissue 

basis, appeared to plateau at the second slaughter weight group, total 

muscle tissue synthesis capacity had not reached its maximum point at 

any time during the study. These data are substantiated when RNA is 

expressed relative to DNA (Table XV). A significant increase (P < .01) 

is noted when the RNA:DNA ratio was determined indicating a continued, 

elevated, protein synthetic capacity in the muscle tissue during 

growth. 

Mineral Analysis 

The literature has shown that several methods exist for the deter

mination of intra- and extracellular areas in muscle tissue. Burr and 

McLennan (1960) and Boyle et al. (1941) described several methods for 

doing this, including inulin space analysis and muscle tissue electro

lyte analysis. Generally, it appears that tissue electrolyte analysis 

has been the most reliable and convenient. 

It has been generally thought that there was an increase in the 

intracellular space and a decrease in the extracellular space with 

growth in muscle tissue (Widdowson, 1970). This has also been indicat

ed by the fiber hypertrophy data of Goldspink (1962a). 

In the present study, mineral analysis were accomplished on potass

ium (K), sodium (Na), phosphorus (P), magnesium (Mg), and calcium (Ca), 

The data of these various electrolytes are presented in Table XIX. 

Muscle tissue potassium concentration in this study showed 

variable, decreasing trends which refelcted a low observed significance 



84 

level (Table XIX). It should be emphasized that althoueh the pattern 

of change during bovine growth was irregular, the actual variation 

(Table XIX) in the collected data was very small not only in the K 

results but in all electrolyte results. Potassium has been shown to be 

one of the major intracellular ions in muscle tissue (Dickerson and 

Widdowson, 1960). The concentration of K has been shown to increase 

during growtho The trend in this study did not follow the pattern 

suggested in the literature. 

Sodium, one of the predominant extracellular ions, depicted 

slight nonsignificant decreasing trends during growth. These results 

are very similar to previous results. When Na and K were expressed in 

relation to each other (Table XX), the K:Na ratio appears to increase 

slightly and the Na:K ratio appears to decrease slip,htly. 

Phosphorus, a predominant intracellular ion, depicted slightly 

decreasing trends during this study which proved to yield no 

statistical significance (Table XIX). When the ratio of the two inter

cellular ions were calculated, no changes were noted during growth 

(Table XX). Moreover, when P was expressed relative to Na, constant 

values were maintained as slaughter weight increased. With the data 

obtained from K, Na, and P quantification, it may be reasonable to con

clude that adult levels of electrolytes had been attained by the first 

slaughter weight group. Dickerson and Widdowson (1960) have indicated 

that electrolytes positively or negatively fluctuate during early 

growth in skeletal muscle. At a point of chemical maturity, very 

static levels are maintained. 

A point of diminishing of the rate of cellular hypertrophy in the 

last slaughter weight group was suggested considering the muscle fiber 



TABLE XIX 

ELECTROLYTE CONCENTRATION IN LONGISSI1'1US DORSI MUSCLE 
OF 227, 318 AND 409 KILOGRAM SLAUGHTER 

WEIGHT STEERS 

Slaughter Weight Potassiuma 
Group (mg/g) 
(kg) 

227 (8) 3.493 

318 (8) 3.320 

409 (8) 3.379 

Mean Square Among 
Steers Within 
Slaughter Weight 
(Error Mean 
Square) 27.06 

D.F. (Error Mean 
Square) 21 

Observed Significance 

Sodiuma 
(mg/ g) 

.413 

.408 

.376 

1.819 

21 

Level P = 0.12 P = 0.19 

Coefficient of 
Variation 4.8% 11.2% 

p 

Phosphorusa 
(mg/ g) 

2.158 

2.031 

2.026 

25.09 

21 

0.19 

8.1% 

p 

Magnesium a 
(mg/g) 

0.248 

0.243 

0.245 

0.4925 

21 

0.91 

7.7% 

p 
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Calciumb 
(µg/g) 

38.73 

62.50 

55 .92 

265.8 

21 

0.02 

25.0% 

aconcentration of electrolytes expressed as milligrams per gram 
wet tissue weight. 

bconcentration of electrolyte expressed as micrograms per gram wet 
tissue weight. 

Number of animals assayed per slaughter weight group is noted in 
parenthesis. 
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growth data and the nucleic acid analysis data. Cellular hypertrophy 

directly affects the amount of intra- and extracellular space; increases 

in cell size results in increases in intracellular space and decreases 

in extracellular space. The assumption that an increased K:Na ratio, 

or, a decreased Na:K ratio, inferred greater intracellular space and 

decreased extracellular space, allows a positive relationship to be 

made between electrolyte, protein synthesis and fiber diameter data in 

this study. 

The concentration of magnesium has been shown to increase through 

the fourth posthatching week in avian muscle and then decrease 

slightly through the adult ages (Dickerson and Widdowson, 1960). 

Similar trends were noted by the same authors in hum.an skeletal muscle 
' ' ' ' ',.' ... 

and opposite trends in pig skeletal muscle. The results in the pre-

sent study (Table XIX) suggest that mature levels had been attained 

prior to the onset of the study due to obvious static values. 

Dickerson and Widdowson (1960) and Dickerson and Mccance (1964) 

have shown that the concentration of calcium decreased slightly with 

increasing age up to a point of chemical maturity. At this point, 

constant levels were maintained. In the present study, Ca made 

variable but significant (P < .05) changes during growth (Table XIX), 

The trends noted here are not consistant with trends depicted in the 

literature. According to Marsh (1966), Ca is required in the tissue 

for muscle contraction to occur. Considering this requirement, increas-

ed deposition of contractile proteins would necessitate increasing 

concentrations of calcium ions. Such relationships, although suggested 

in the literature, have not been defined from previous work. Trends, 

considering this hypothesis, were evident in this study. More work 



TABLE XX 

RATIOS OF CONCENTRATIONS OF VARIOUS ELECTROLYTES 
IN LONGISSIMUS DORSI MUSCLE OF 227, 

318 AND 409 KILOGRAM SLAUGHTER 
WEIGHT STEERS 

Slaughter Potassium Sodium PhosEhorus Sodium 
Weight Sodium Potassium Sodium Phosphorus 
Group 
(kg) 

227 (8) 8.4 0.12 5.2 0.19 

318 (8) 8.2 0.12 4.9 0.20 

409 (8) 9.0 0.11 5.3 0.18 

Number of animals assayed per slaughter weight group 
parenthesis. 
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Potassium 
Phosphorus 

1. 6 

1. 6 

1. 6 

is noted in 
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in this area is required before conclusions can be ma.de. 

Chemical Composition 

Chemical compositional studies were determined, Table XXI, on 

the muscle tissue utilized in this study. It was observed that total 

moisture decreased (P < .01), ether-extractable lipids increased, and 

tissue protein and ash (minerals) changed very little during growth 

when expressed as a percent of muscle weight. These data, along with 

the electrolyte data, suggest that muscle tissue chemical maturity had 

been attained prior to the onset of the study. 



TABLE XXI 

CHEMICAL COMPOSITIONa OF THE LONGISSIMUS DORSI 
SECTION OF 227, 318 AND 409 KILOGRAM 

SLAUGHTER WEIGHT STEERS 

Slaughter Weight Tissue Tissue Tissue Ether 
Group Moisture Protein Extractable Lipids 
(kg) (%) (%) (%) 

227 (8) 75.37 21. 7 1.83 

318 (8) 71.61 22.8 3.19 

409 (8) 71.53 22.0 4.32 

Mean Square Among Steers 
Within Slaughter Weights 
(Error Mean Square) 3.237 0.695 4.023 

D.F. (Error Mean 
Square) 21 21 21 

Observed Significance 
Level p = 0.001 p = 0.06 p 0.07 

Coefficient of 
Variation 1.6 % 3.7 % 59.9 % 
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Tissue 
Ash 
(%) 

0.86 

1.03 

0.91 

0.029 

21 

p 0.14 

17.8 % 

aChemical composition expressed as a percent of the total fresh 
muscle tissue mass. 

Number of animals assayed per slaughter weight group is noted in 
parenthesis. 

Failure for the addition of the components to sum to 100 percent 
is assumed to be a result of a failure of proximate analysis procedures 
to quantitate all tissue chemical components. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Twenty-four Hereford and Charolais crossbred steers were used to 

investigate biochemical growth patterns in bovine muscle tissue. The 

steers were obtained immediately after weaning and fed a standard grow

ing and finishing ration. The steers were allotted randomly to three 

slaughter groups of 227, 318 and 409 kilograms live weight. Eight 

steers, four of each breed, comprised a slaughter weight group. As the 

individual steers attained their respective slaughter weight, they were 

taken off feed for 24 hours and subsequently slaughtered according to 

standard slaughter and dressing procedures. Samples were removed from 

the left longissimus dorsi at the thirteenth thoracic region within ten 

minutes of exsanguination and handled as necessary for specific biochem

ical analyses. 

Metabolic enzyme analyses reflected decreasing trends in glycoly

tic enzyme activity (lactate dehydrogenase and glyceraldehyde phosphate 

dehydrogenase). Succinate dehydrogenase and malate dehydrogenase 

activity, increased (P < ,OS) during growth however citrate synthetase 

and succinate oxidase reflected variable trends and low observed signi

ficance levels. Glucose 6-phosphate dehydrogenase activity decreased 

during growth and beta hydroxyacyl CoA dehydrogenase activity increased 

during growth yet the changes noted were not statistically significant. 

Thus the data suggests that aerobic capacity increased, anaerobic 

90 
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capacity decreased, pentose phosphate pathway activity decreased and 

fatty acid oxidation enzyme activity increased. These results are not 

entirely consistant with previous work reported on muscle tissue growth 

data from other species. It should be emphasized however that not 

only might technique errors be responsible for unexpected trends but 

also deviations in points of physiological and metabolic maturity 

between species reported in the literature and the species utilized in 

this study, Another significant fact which could certainly have 

affected the experimental variation between animals was the lack of 

uniformity in ages of the cattle within each slaughter weight group. 

Further work under more controlled circumstances must be accomplished 

to elucidate these data. 

Muscle tissue fiber (cell) diameter increased (P < .05) with 

growth in the steers. The pattern of fiber hypertrophy noted in this 

study was consistant with patterns of fiber growth noted in the 

literature. 

Muscle tissue pigment analysis yielded data which reflected con

stant, increasing trends throughout growth. These data are also very 

consistant with previous work yet do not correlate well with the 

enzyme activity results 

Deoxyribonucleic acid concentration decreased (P < ,05) during the 

entire growth study and ribonucleic acid concentration increased and 

plateaued as slaughter weight increased. Also reflecting increases 

were total muscle section RNA, DNA, and nuclear number, quantity of 

tissue supported per nucleus and quantity of protein supported per 

nucleus. These data support the conclusion that the muscle tissue in 

this section of the longissimus dorsi continued to show hypertrophy at 
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rapid rates during the entire course of the study. 

Electrolyte concentrations showed static, consistant patterns 

during growth. The ratios of intra- to extracellular ions were also 

constant during growth. These results suggest, along with the results 

of muscle tissue chemical composition that chemical maturity had been 

attained prior to the onset of this growth study. 

In considering the results presented from this growth and develop

ment study, it is obvious that these data are preliminary, Future 

studies must be initiated including not only investigations of cellular 

and subcellular growth parameters, but also live animal and carcass 

growth studies. Yet, methodology and data presented here will allow a 

more proper tailoring of future projects so as to yield complete data 

on the growth and development processes of the muscle tissue of the 

bovine. In order to obtain experimental animals necessary for such 

studies, foundation stock must be established to yield cattle of proper 

uniformity in age and physiological and metabolic maturity. Meat 

scientists and muscle biologists can no longer accept "left over" 

products from animal breeding and feeding research if significant 

advances are to be made. 



LITERATURE CITED 

Adams, R., D. Denny-Brown and C. M. Pearson. 1962. Diseases of Muscle 
(2nd ed.) p. 42. Paul B. Haeber, New York. 

Allison, W. S. and N, 0. Kaplan, 1964. The comparative enzymology of 
triosephosphate dehydrogenases. Jo Biol. Chem. 239:2140, 

Anderson, L. 1972. Muscle histochemistry, organoleptic analysis, and 
tenderness in muscle post-mortem. Reciprocal Meat Conference 
Proceedings. 25:176. 

AOAC, Association of Official Analytical Chemists. 1965. Official 
Methods of Analysis. Washington, D.C. p. 346. 

Avigad, Go 1966. Inhibition of glucose-6-phosphate dehydrogenase by 
ATP. Proco Nat. Acad. Sci. 56:1543. 

Bar, U. and M. C. Blanchaer. 1965. Glycogen and co 2 production from 
glucose and lactate by red and white skeletal muscle. Amer. Jo 
Physiol. 209:905. 

Bass, A., D, Brdiczka, P. Eyer, S. Hofer, and D. Pette. 1969. 
Metabolic differentiation of distinct muscle types at the level 
of enzymatic organization. Europ. J. Biochem. 10:198. 

Beatty, C. H., G. M. Basinger, C. C. Dully, and R. M. Bocek, 1966. 
Comparison of red and white voluntary skeletal muscles of several 
species of primateso J, Histochem. Cytochem. 14:590, 

Beatty, C. H., G. M. Basinger and R. M. Bocek. 1967. Differentiation 
of red and white fibers in muscle from fetal, neonatal and in
fant rhesus monkeys. J, Histochem. Cytochem. 15:93. 

Beecher, G. R., R. G. Cassens, W. G. Hoekstra and E. J. Briskey. 1965. 
Red and white fiber content and associated postmortem properties 
of seven porcine muscles. J, Food Sci. 30:969. 

Bennett, J. and K. J. Scott. 1971. Quantitative staining of fraction 
1 protein in polyacrylamide gels using coumassi brilliant blue. 
Anal, Biochem. 43:173. 

Blanchaer, M. C. and M. Van Wijhe. 1962. Isozymes of lactic dehydro
genase in skeletal muscle. Amer. J. Physiol. 202:827. 

93 



Blonde, D. J., E, J, Kresack and G, W, KosickL 1967, The effects of 
ions and freeze-thawing on supernatant and mitochondrial ma1ate 
dehydrogenase, Canad, J, Biol. Chem, 45:641. 

Boyd, J, D, 1960, Development of striated muscle. In Structure and 
Function of Muscle, (Edited by G, H, Bourne), Academic Press, 
Inc,, New York, Vol c L 

94 

Boyle, P, J., E, J. Conway, .L Kane, and H. L, O'Reilly. 1941. Volume 
of interfibre spaces in frog muscle and the calculation of con
centrations in the fibre water, J, PhysioL 99: 401. 

Briskey, E. J. 1969. 
(Edited by E, S , 
Philadelphia, 

Muse.le. In Animal Growth and Nutrition, 
E. Hafez and I, A, Dyer), Lea and Febiger, 

Brody, L A, and W, K, Engle, 1964. Isozyme histochemistry: The 
display of selective lactate dehydrogenase isoenzymes in sections 
of skeletal muscle. J, Histochem, Cytochem, 12:687, 

Bruns, J, H. and P. H, Wernera. 1962. Dehydrop,enases. Glucose-6-
phosphate dehydrogenase. Adv, Cline Chem. 5:243. 

Burr, H. L. and H. McLennan. 1960. 
of mammalian skeletal muscle. 

The apparent extracellular space 
Canad, J, Biochem. Physiol. 38:829. 

Burton, Ko 1956. A study of the conditions and mechanisms of the 
diphenylamine reacc:Ln1 fer the colorimetric estimation of deoxy
ribonucleic acid. Biochem. J, 62:315. 

Cahill, G. F°' A, B. Hastings, J. Ashmore and S. Zottu, 1958. Studies 
on carbohydrate metabolism in rat liver slices, J, Biol. Chem. 
230:125, 

Cahn, R, D., N, 0, Kaplan., L Levine and E. Zwilling, 1962. Nature 
and development of lactic dehydrogenase. Science 136:962. 

Carr, T. R. 1975. The relationship of K40 net count and probe to 
body compositic"11 changes in growing and finishing swine, Ph .. D, 
Dissertation, Oklahoma Sta.ta University, Stillwater, Oklahoma, 

Cassens, R, G., Ro Mo Bucek and Co H, Beatty, 1969. Effect af 
octanoate on carbohydrate metabolism in red and white muscle of 
the rhesus monkey, Amer, Jo PhysioL 217:715, 

Cassens, R. G, and C, C, Cooper, 1971. Red and white muscle. Adv, 
in Fd. Res. 19:1, 

Ceriotti, G, 1952, A microchsmical determination of deoxyribonucleic 
acid, J, Biol, Chemo 198:297, 

Ceriotti, G, 1955, Determination of nucleic acids in animal tissues. 
J, Biol. Chem, 214: 59, 



Chappell, J, B. and S. V. Perry. 1954. Biochemical and osmotic 
properties of skeletal muscle mitochondria. Nature. 173:1094. 

Cheek, D. B. 1968. Human Growth. Lea and Febiger, Philadelphia. 

Cheek, D. B., A. B. Halt, D. E. Hill and J. L. Talbert. 1971. 
Skeletal muscle cell mass and growth. The concept of the deo
xyribonucleic acid unit. Pediat. Res. 5:312. 

Chilson, O. P., L, A. Costello and N. 0. Kaplan. 1965a. Effects of 
freezing on enzymes. Fed. Proc. 24:555. 

Chilson, 0. P., L. A. Costello and N. 0, Kaplan. 1965b. Studies on 
the mechanism of hybridization of lactic dehydrogenase in vitro. 
Biochem. 4: 271. 

Chilson, O. P., G. B. Kitto, J. Pudles and N. O. Kaplan. 1966. 
Reversible inactivation of dehydrogenases. J. Biol. Chem. 
241:2431. 

95 

Chinoy, N. J. 1963. 
breast muscle. 

Histochemical localization of myoglobin in pigeon 
J. Anim. Morphol. Physiol. 10:74. 

Clausen, J. 1970. Factors affecting the electrophoretic pattern of 
lactate dehydrogenase isoenzymes. FEBS Symposium Proceedings. 
18:133. 

Clausen, J. and R. Hustrulid. 1968. Factors affecting recombination 
of lactate dehydrogenase isoenzyme subunits, Biochem. et. 
Biophys. Acta. 169:221. 

Clausen, J. and R. Hustrulid. 1969. The fetal development of lactate 
dehydrogenase isoenzymes, glucose-6-phosphate dehydrogenase and 
6-phosphogluconate dehydrogenase from human striated muscle. 
Biochem. J. 111:219. 

Coles, c. J,, H. D. Tisdale, W. C. Kearney and T. P. Singer. 1972. 
The resolution of some discrepancies concerning the molecular 
weight and subunit structure of succinate dehydrogenase. 
Biochem. Biophys. Res. Comm. 46:1843. 

Colowick, S. and N. O. Kaplan. 1955. Tissue homogenates. Meth. 
Enzymol. 1:13. 

Cori, G. T., M. Stein and C. F. Cori. 1948. Crystalline D-glyceralde
hyde 3-phosphate dehydrogenase from rabbit muscle. 

Cosmos, E. and J. Butler. 1966. Differentiation of fiber types of 
muscle of normal and dystrophic chickens. Exerpts Med. Founda
tion Int. Cong., Series 147. 



Cox, D. J, 1969, Computer simulation of sedimentation in the ultra
centrifuge. IV. Velocity sedimentation of self-associated 
solutes. Arch. Biochem. Biophys. 129:106. 

96 

Dagher, S. M. and H. O. Hultin. 1973. Effect of binding to muscle 
particulate fractions on glyceraldehyde-3-phosphate dehydrogenase 
activity. J, Food Sci. 38:424. 

Dalrymple, R.H., L. L. K.astenschmidt and R. G. Cassens. 1973. 
Glycogen and phosphorylase in developing red and white muscle. 
Growth.37:19. 

Davidson, B. J., M. Sajgo, H. F. Noller and J. I. Harris. 1967. 
Amino acid sequence of glyceraldehyde-3-phosphate dehydrogenase 
from lobster muscle. Nature. 216: 1181. 

Davidson, R. G. and J. A. Cortner. 1967. Mitochondrial malate dehy
drogenase: A new genetic polymorphism. Science. 157:1569. 

Davies, D. D. and K. Kun. 1957. Isolation and properties of malic 
dehydrogenase from ox-heart mitochondria. Biochem. J. 66:307. 

Davis, K. A. and Y. Hatefi. 1971. Succinate dehydrogenase I. 
Purification, molecular properties and substructure. Biochem. 
10:2509. 

Dawson, D. M. and N. O. Kaplan. 1965. Factors influencing the con
centration of enzymes in various muscles. J. Biol. Chem. 
240:3215. 

Dawson, D. M. and F. C. A. Romanul. 1964. Enzymes in muscle. II. 
Histochemical and quantitative studies. Arch. Neural. 11:369. 

Degato, M. 1970, Sarcomeregenesis in human myocardium. J. Mol. Cell. 
Card. 1:425. 

Denny-Brown, D. E. 1929. The histological features of striped muscle 
in relation to its functional activity. Proc. Roy. Soc. Ser. B. 
104: 371. 

Der Vartanian, D. V. and c. Veeger. 1965. Studies on succinate 
dehydrogenase II. On the nature of the reaction of competitive 
inhibition and substrates with succinate dehydrogenase. Biochemo 
et. Biophys. Acta. 105:424. 

Devenyi, T., S. J. Rogers, R. G. Wolfe. 1966. Structural studies of 
pig heart malate dehydrogenase. Nature 210:489. 

Devi, A., M. A. Mulcunda, U. Srivastava and N. K, Sarkar. 1963. The 
effect of age on the variations of deoxyribonucleic acid, 
ribonucleic acid and total nucleotides in liver, brain and muscle 
of rat, Exp. Cell. Res. 32:242. 



Dickerson, J. W, T. and E. M, Widdowson, 1960c Chemical changes in 
skeletal muscle during development. Biochem. J. 74:247, 

Dickerson, J. W. T. and R. A. Mccance. 1964. The early effects of 
rehabilitation on the chemical structure of the organs and 
whole bodies of undernourished pigs and cockerels. Clin, Sci, 
27:123. 

Dietz, A, A, and T. Lubrano. 1967. Separation and quantitation cf 
lactic dehydrogenase isoenzymes by disc electrophoresis. 
Analyt, Biochem. 20:246. 

Dietz, A. A. and T. Lubrano. 1972. Lactate dehydrogenase isoenzymes. 
Stand. Meth. Clin. Chem. 7:30. 

Dietz, A A. and H. M. Rubinstein, 1972, LDH isoenzymes, Stand. 
Meth. Clin. Chem. 7:49. 

97 

Dow, D. S. 1967, The isolation of skeletal muscle mitochondria 
showing tight coupling, high respiratory indices and differential 
adenosine triphosphatase activities. Biochem. 6:2915. 

Drabkin, D. Le and J, H. Austin, 1932. Spectrophotometric studies. I. 
Spectrophotometric constants for common hemoglobin derivatives 
in human, dog, and rabbit blood. J. Biol. Chem, 98:719, 

Dubowitz, V. and A. G, E. Pearse. 1960. A comparative histochemical 
study of oxidative enzyme and phosphorylase activity in 
skeletal muscle. Histochemie. 2:105. 

Dubowitz, V. 1970. Differences of fiber types in skeletal muscle, In 
Physiology and Biochemistry of Muscle as a Food. (Edited by E. 
J. Briskey, R. G. Cassens and B. B, Marsh). University of 
Wisconsin Press, Madison. 2:87. 

Enesco, M. and C, P. LeBlond, 1962, Increase in cell number as a 
factor in the growth of the organs and tissues of the young male 
rat. J. EmbryoL and Exp. MorphoL 10:530, 

Engle, W. K. 1962, The essentiality of histochemical and cytochemical 
studies of skeletal muscle in the investigation of neuromuscular 
disease. Neurology. 12:778. 

Ernster, L. and K. Nordenbrand. 1967, Skeletal muscle mitochondriao 
Meth. Enzymol. 10:86. 

Escoubas, J. R. 1973. Quantitative changes in total nitrogen and its 
components in bovine longissimus muscle during growth and 
development. Masters Thesis, Oklahoma State University, 
Stillwater, Oklahoma, 



Escoubas, J, R°' J, J. Guenther and K, K. Novotny. 1975, The 
effects of freezing and thawing on lactate dehydrogenase iso
enzymes from bovine muscle. Okla. Agr, Exp. Sta" Misc. Pub. 
94:207, 

Everse, J, and N, 0, Kaplan, 1973. Lactate dehydrogenase. Structure 
and function. Adv, EnzymoL 37:61. 

Fine, I. H., N, 0, Kaplan and D. Kuftinec. 1963. 
changes of mammalian lactic dehydrogenase. 

Developmental 
Biochem, 2:116. 

Fischman, D. A, 1967, An electron microscope study of myofibril 
formation in embryonic chick skeletal muscle. J, Cell. Biol. 
32:557, 

Flechtner, V. R. and R, S. Hanson. 1969. Course and fine control of 
citrate synthase from bacillus subtilis, Biochem et, Biophys, 
Acta. 184:252. 

Forbes, G. B. 1963, Nutritional implications of the whole body 
counter. Nutr. Rev. 21:32L 

Fritz, P. J. and K, B. Jacobson. 1965. Multiple molecular forms of 
lactate dehydrogenase. Biochem. 4:282. 

Garland, P, B,, D. Shepherd, D, G, Nicholls, D, W. Yates and D. A. 
Light. 1969. Interaction between fatty acid oxidation and the 
TCA cycle. In Citric Acid Cycle, (Edited by J. M. Lowenstein). 
Dekker, New York, P. 163. 

Gauthier, G, F. and H. A. Padykula. 1966. Cytological studies of 
fiber types in skeletal muscleo A comparative study of the 
mammalian diaphragm. J, Cell. Biol. 28:333. 

Gauthier, G, F, 1970ao On the localization of sarcotubular ATPase 
activity in mammalian skeletal muscle. Histochemie. 11:97, 

Gauthier, G, F, 1970b. The ultrastructure of three fiber types in 
mammalian skeletal muscle. In Physiology and Biochemistry of 
Muscle as a Foodo (Edited by E. J. Briskey, R. G, Cassens, and 
B. B, Marsh). University of Wisconsin Press, Madison. 2:103, 

98 

George, J, C. and D. Jyoti, 1965. Histological features of the breast 
and leg muscles of bird and bat and their physiological evolution
ary significance o J. Anim. Morphol. PhysioL 2: 31. 

George, J, C, and R. M. Naik, 1958, Relative distribution and 
chemical nature of the fuel store of the two types of fibers in 
the pectoralis major muscle of the pigeon, Nature 181:709. 

Germino, N, L, H. D. Albora and J, P. Wahrmann, 19650 Succinic dehy
drogenase in the development of skeletal muscles of chicks, Acta. 
Anat. 62:4340 



Goldspink 9 G. 1962ao Studies on postembryonic growth and development 
of skeletal muscle" Proc, Rayo Irish Acado 62B:l35, 

99 

Goldspink, G. 1962b. Biochemical and physiological changes associated 
with the postnatal development of the biceps brachiio Comp. 
Bio chem, PhysioL 7: 157, 

Goldspink, Go 1968. Sarcomere length during post-natal growth of 
mammalian muscle fibers, J, Cello Sci. 3:539. 

Goldspink, G, 1970a, The proliferation of myofibrils during muscle 
fiber growthv J, Cell, Sci. 6:591. 

Goldspink, G. 1970b, Morphological adaptation due to growth and 
activityv In Physiology and Biochemistry of Muscle as a Food, 
(Edited by E, J, Briskey, R, Go Cassens, and B, Bo Marsh), 
University of Wisconsin Press, Madison, 2:521, 

Goldspink, G. 1971. Changes in striated muscle fibers during con
traction and growth with particular reference to myofibril 
splitting, J, Cell, Sci, 9:123, 

Goldspink, G, 1972, Postembryonic growth and differentiation of 
skeletal muscle, In The Structure and Function of Muscle, 
(Edited by Go H. Bourne). 2nd ed, Academic Press, Inc, 
New York. 1: 179. 

Goldspink, G, and R, We B. Rowe, 1968. Studies on postembryonic 
growth and development of skeletal muscle. II, Some physiological 
and structural changes that are associated with the growth and 
development of skeletaJ muscle fibers. Proc. Royo Irish Acad,, 
Sect. B. 66:85. 

Grant, J, Ko 1956" The invitro enzymic hydroxylation of steroids. 
Biochemo J, 64:559. 

Green, D, E, 1936. The malic dehydrogenase of animal tissues. 
Biochemo J, 30:2095, 

Greenfield, P, C, and E. J, Boell. 1968, Succinate dehydrogenase and 
cytochrome oxidase of mitochondria of chick liver, heart and 
skeletal muscle during embryological development. J, Exp, 
ZooL 168:49L 

Gregolin, C. and P. Scallela. 1965. Activation of the oxidation of 
succinate by ATP in respiratory particles of yeast, Biochem, 
et. Biophys, Acta. 99:1850 

Gresham, J. D. 1973. Biochemical and physical estimates of growth and 
development in large and small scale bovine, Ph.D. Thesis. 
Oklahoma State University, Stillwater, Oklahoma, 



Griffin, G. E., P. E, Williams and G, Goldspink. 1971. Region of 
longitudinal growth in striated muscle fibers. Nature, 232:28. 

100 

Griffin. J. H. and R. S. Griddle. 1970. Substrate inhibitory lactate 
dehydrogenase. Reaction mechanism and essential role of dissocia
ted subunits, Biochem. 9:1195. 

Grimm, F. C, and D. H. Doherty. 1961. Properties of the two forms of 
malic dehydrogenase. J, Biol. Chem. 236:1980. 

Guenther, J. J. 1974. Physiological maturity evaluation of cattle 
differing in mature size. Reciprocal Meat Conference 
Proceedings. 27:28. 

Gutman, M., E. B, Kearney and T. B. Singer. 197la, Control of 
succinate dehydrogenase in mitochondria. Biochem" 10:4763. 

Gutman, M., E, B. Kearney and T. B. Singer. 197lb, Activation of 
succinate dehydrogenase by electron flux from NADH and its 
possible regulatory function. Biochem. Biophys. Res. Comm, 
42:1016. 

Harrington, W. F, and G. M. Karr. 1965. Subunit structure of a 
glyceraldehyde-3-phosphate dehydrogenase. J. Malec. Biol. 
13:885, 

Harris, J. I. and R. N. Perham. 1965. Glyceraldehyde-3-phosphate 
dehydrogenase. I. The Protein chains in glyceraldehyde-3-phos
phate dehydrogenase from pig muscle. J. Malec. Biol. 13:876. 

Helander, E. 1957. On quantitative muscle protein determination. 
Acta. Physiol. Scand. (Suppl.). 141:41. 

Helander, E, 1966. General consideration of muscle development. In 
Physiology and Biochemistry of Muscle as a Food. (Edited by E. 
J. Briskey, R. G. Cassens, and J. C. Trautman), University of 
Wisconsin Press, Madison, 1:19. 

Hilvers, A. G. and J. H. M. Weenen. 1962. Role of diphosphopyridine 
nucleotide, reduced form in the mechanism of action of glyceral
dehyde-3-phosphate dehydrogenase. Biochem. et. Biophys. Acta, 
58:380. 

Holtzer, H. and R. Bischoff. 1970. Mitosis and myogenesis. In 
Physiology and Biochemistry of Muscle as a Food. (Edited by 
E. J. Briskey, R. G. Cassens, and B. B, Marsh), The University 
of Wisconsin Press, Madison. 2:29. 

Horvath, S. M, 1945. The distribution of phosphorous compounds in the 
gastrocnemius muscle as influenced by the aging process. Amer. 
J. Physiol. 145:77. 



101 

Hubbard, R. W., J. A, Smoake, W. T. Matthew, J, D, Linduska and W. D, 
Bowers. 1974, The effects of growth and endurance training on 
the protein and DNA content of rat soleus, plantaris and gastro
cnemius muscles. Growth. 38:171. 

Hultin, H. D., J. D. Ehmann and R. L. Melnick. 1972. Modification of 
kinetic properties of muscle lactate dehydrogenase by subcellular 
associations and possible role in control of glycolysis, J, 
Food, Sci. 37:269, 

Hutchison, W. C. and H. N. Munro. 1961, The determination of nucleic 
acids in biological materials. Analyst. 86:768. 

Jaenicke, R., R. Koberstein and B. Furcher. 1971. The enzymatically 
active unit of lactic dehydrogenase. Europ, J, Biochem. 
23:150. 

James, N. T. 1968. Histochemical demonstration of myoglobin in 
skeletal muscle fibers and muscle spindles, Nature 219:1174, 

Joyce, B. K. and S. Grisolia. 1961. Variation in malic dehydrogenase 
activity with lyophilization, dialysis, and conditions of incu
bation. J. Biol. Chem. 236:725. 

Julian, G. R., R. G. Wolfe and F. J. Reithel, 1961. The enzymes of 
the mammary gland, II. The preparation of glucose-6-phosphate 
dehydrogenase. J. Biol. Chem. 236:754. 

Kaufman, S. 1958. The participation of tetrahydrafolic acid in the 
enzymic conversion of phenylalanine to tyrosine. Biochem, et. 
Biophys. Acta. 27:428. 

Kearney, E, B. 1957. Studies on succinate dehydrogenase. IV. 
Activity of the beef heart enzyme, J, Biol. Chem, 229:36. 

Kearney, E. B. 1960. Studies on succinate dehydrogenase. XII. 
Flavin component of the mammalian enzymes. J. Biol. Chem. 
235:865. 

Kearney, E. B., M. May and T. P. Singer. 1972. Regulatory properties 
of succinate dehydrogenase. Activation by succinyl CoA, pH and 
anions. Biochem. Biophys. Res. Comm. 41:531. 

King, T. E. 1963. Reconstitution of respiratory chain enzyme systems. 
XI. Use of artificial electron acceptors in the assay of 
succinate-dehydrogenase enzymes. J. Biol. Chem. 238:4032, 

Kistler, A. and R. Weber. 1974. Enzyme patterns in mitochondria of 
eggs, liver, and skeletal muscle during larval development of 
Xenopus. Devel. Biolo 37:2360 



102 

Kosicki, G. W. and L. P. K. Lee. 1966. Effect of divalent metal ions 
on nucleotide inhibition of pig heart citrate synthetase. J, 
Biol. Chem. 241:3571. 

Lane, R. S. and E. E. Dekker. 1969. 2-keto-4-hydroxybutyrate. 
Synthesis and chemical properties as a substrate for lactate de
hydrogenase of rabbit muscle. Biochem. 8:2958. 

Langdon, R. G. 1957. The biosynthesis of fatty acids in rat liver. 
J. Biol. Chem. 226:615. 

Lawrie, R. A. 1950. Some observations on factors effecting myoglobin 
concentrations in muscle. J. Agr. Sci. 40:356. 

Lawrie, R. A. 1952. Biochemical differences between red and white 
muscles. Nature. 170:122. 

Lawrie, R. A. 1958. 
cutting beef. 

Physiological stress in relationship to dark 
J. Sci. Fd. Agr. 9:721. 

Lawrie, R. A. 1961. Studies on the muscles of meat animals. I. 
Differences in composition of beef longissimus dorsi muscles 
determined by age and anatomical location. J. Agr. Sci. 
56:249. 

Lawrie, R. A., R, W. Pomeroy and A. Cuthbertson. 1963. Studies on the 
muscles of meat animals. III. Comparative composition of 
various muscles in pigs of three weight groups. J. Agr. Sci. 
60:195. 

Lawrie, R. A., R. W. Pomeroy and A. Cuthbertson. 1964. Studies on 
meat animals. VI. Comparative composition of various muscles in 
boars of two weight groups in relation to hogs. J, Agr. Sci. 
63:385. 

Lee, Y. B. and R. G. Kaufman. 1974. Cellularity and lipogenic enzyme 
activities of porcine intramuscular adipose tissue. J. Anim. 
Sci. 38:538. 

Legato, M. 1970. Sarcomerogenesis in human myocardium. J, Mol. Cell, 
Card. 1:425. 

Levi, A. S. and N. O. Kaplan. 1971. Physical and chemical properties 
of reversibly inactivated lactate dehydrogenase, J, Biol, Chemo 
246:6409. 

Levy, H. R., R. R. Rainieri and B. H. Nevaldine. 1966. On the 
structure and catalytic function of the mammary gland glucose-6-
phosphate dehydrogenase. J. Biol. Chem. 241:2181. 

Long, C. 1961. Biochemists Handbook. D. Van Nostrand Company, Inc., 
Princeton, New Jersey. 



Long, G, and N. 0, Kaplan. 1968. D-Lactate specific pyridine 
nucleotide lactate dehydrogenase in animals. Science 162:685. 

Lowery, O. H., N. J. Rosebrough, H. L. Farr and R. J. Randle. 1951. 
Protein measurements with the folin phenol reagent. J. Biol. 
Chem. 193:265. 

MacConnachie, H. F., M. Enesco and C. P. Leblond. 1964. The mode of 
increase in the number of skeletal muscle nuclei in postnatal 
rat. Amer. J. Anat. 114:245. 

103 

Marchak, A. C. and H. Herrmann. 1967. 
1. Changes in cell proliferation. 

Studies of muscle development. 
Develop. Biol. 5:129. 

Markert, C. L. and F, Moller. 1959. Multiple forms of enzymes, 
Tissue ontogentic and species specific patterns. Proc. Nat. 
Acad. Sci. 45:753. 

Markert, C. L. 1963. Lactate dehydrogenase isoenzymes: Dissociation 
and recombination of subunits. Sciertce. 140:1329. 

Markert, C. L. and E. J. Massaro. 1968. Lactate dehydrogenase iso
enzymes: Dissociation and denaturation by dilution. Science. 
162:695. 

Marsh, B. B. 1966. Relaxing factor in muscle. In P!zysiology and 
Biochemistry of Muscle as a Food. (Edited by E. J. Briskey, 
R. G. Cassens and J, C. Trautman). University of Wisconsin 
Press, Madison. 1:225. 

Max, S. R., J. Garbus and H. J. Wehman. 1972. Simple procedure for 
rapid isolation of functionally intact mitochondria from human 
and rat skeletal muscle. Analyt. Biochem. 46:576, 

Mehler, A. H., A. Kornberg, S. Grisolia and S. Ochoa. 1948. The 
enzymatic mechanism of oxidation-reduction between malate or 
ioscitrate and pyruvate. J. Biol. Chem, 174:961. 

Meister, A. 1950. Reduction of a, y-diketo and a keto acids catalyzed 
by muscle preparations and by crystalline lactic dehydrogenase. 
J. Biol. Chem. 184:117. 

Melnick, R. L. and H. Q, Hultin. 1973. Studies on the nature of the 
subcellular localization of lactate dehydrogenase and glyceralde
hyde-3-phosphate dehydrogenase in chicken skeletal muscle, J, 
Cell. Physiol. 81:139. 

Mersmann, H. J., J. Goodman, J.M. Houk and S. Anderson. 1972. 
Studies on the biochemistry of mitochondria and cell morphology 
in the neonatal swine hepatocyte. J. Cell. Biol. 53:335. 

Millar, D. B. S. 1962. Physico-chemical properties of lactic dehydro
genase. J. Biol. Chem. 237:2135. 



104 

Moody, W. G. and R. G. Cassens. 1968. Histochemical differentiation of 
red and white muscle fibers. J. Anim. Sci. 27:961. 

Morita, S., R. G. Cassens and E. J, Briskey. 1970. Histochemical 
changes of myoglobin in skeletal muscle of rabbit, pig, and ox. 
J. Histochem. Cytochem. 15:37. 

Moss, T. D. 1968. The relationship between the dimension of the 
fibers and the number of nuclei during normal growth in 
skeletal muscle in the domestic fowl. Amer. J, Anat. 122:555. 

Moss, T. P. and C. P. Leblond. 1971. Satellite cells as the source 
of nuclei in muscles of growing rats. Anat. Res. 170:421. 

Muhl, z. T. and A. T. Grimm. 1974. 
muscle: A radiographic study. 

Longitudinal growth of striated 
Growth. 38:389. 

Needham, D. M. 1926. Red and white muscle. Physiol. Rev. 6:1. 

Needham, D. M. and P. Pillai. 1937. Coupling of dismutations with 
esterification of phosphates in muscle. Nature. 140:64. 

Neilands, J. B. 1952. Lactate dehydrogenase of heart. I. Purity, 
kinetics and equilibrium. J, Biol. Chem. 199:373. 

Neilands, J. B. 1954. Studies on lactate dehydrogenase of heart. Ill, 
Actions of inhibitors. J, Biol. Chem. 208:225. 

Newfeldt, I. E., A. Tenizer, L. Weiss and O. Weiland. 1965. Inhibition 
of glucose-6-phosphate dehydrogenase by long chain acyl CoA. 
Biochem. Biophys. Res. Comm. 19:43. 

Nisselbaum, J. S. and C. Bodansky. 1961. Purification and properties 
of heart lactic dehydrogenase. J. Biol. Chem. 236:323. 

Noltmann, E. A. and S. A. Kuby. 1959. 
phosphogluconate dehydrogenases. 

D-Glucose-6-phosphate and 6-
The Enzymes. 7:223. 

Norris, A. H., F. Lundy and N. W. Shock. 1963. Trends in selected 
indices of body composition in man between the ages of 30 and 80 
years. Ann. N. Y. Acad. Sci. 110:623. 

Nystrom, B. 1968. Histochemistry of the development of cat muscle. 
Acta. Neurol. Scand. 44:405. 

Ogata, T. 1960. The differences in some labile constituents and some 
enzymatic activities between the red and the white muscle. J, 
Biochem. (Tokyo) 47:726. 

Ogata, T. and M. Mori. 1964. Histochemical study of oxidative enzymes 
in vertebrate muscle. J. Histochem. Cytochem. 12:171. 



Ogston, F. Jo and D. E, Green. 1935. The mechanism of the reaction 
of substrates with molecular oxygeno Biochemo J, 29:1983, 

105 

Opie, L, H, and E. A. Newsholme. 1967. Activities of fructose, 1, 6-
diphosphatase, phosphofructokinase and phosphoenolpyruvate 
carboxykinase in white muscle and red muscle. Biochemo Jo 
103:39L 

Piantelli, Ao and M, A, Rebello. 1967. The lipase in the adult 
skeletal muscular tissue and during developmento Acta Histochemo 
26:L 

Pontremorli, So and E. GruzL 1969. Hexosemonophosphate oxidation, 
Comp, Biochem, 17:163. 

Potter, V, R, 1955, Tissue homogenateso Meth, EnzymoL 1:10, 

Ramponi, F,, P, Nassi and C. Treves. 1968. The effect of growth on 
the levels of acyl phosphatase and some glycolytic enzymes in 
rat muscle, Life Sci. 7:443. 

Reithel, F, To 1963, The dissociation and association of protein 
structures. Adv. Prot. Chem. 18:124. 

Rickansrud, D, A, 1966, The quantitative determination of myoglobin 
in four bovine muscles. Masters Thesis, Oklahoma State 
University, Stillwater, Oklahoma. 

Righetti, P. and P, Cerletti, 1971. 
heart succinate dehydrogenase. 

Molecular properties of beef 
FEBS Lett. 13:181, 

Romano, M, and M. Cera. 1969. The action of crystalline lactate 
dehydrogenase from rabbit muscle on glyoxylate. Biochem, et, 
Biophys. Acta. 177:421. 

Robinson, D. W. and L. J. Lambourne. 1970, The influence of growth 
rate and retardation on the nucleic acid and nitrogen concentra
tion in skeletal muscles and whole body composition of the mouse, 
Growth. 34:235. 

Romanul, F. C. A. 1964. Enzymes in muscle. I. 
of enzymes in individual muscle fibers. 

Histochemical studies 
Arch. Neural, 11:355, 

Sacktor, B. and Yo Shrimada. 1972. Degenerative changes in the mito
chondria of flight muscle from aging blowflies, Jo Cell, 
Biol. 52:465, 

Sakawi, S. and K, Yamada, 1966. Glyoxylate reductase activity of 
lactate dehydrogenase, Nature. 210.91, 

Schatz, L. and H. L. Segal. 1969. Reduction of a-ketoglutarate by 
homogeneous lactate dehydrogenase of testicular tissue, J, 
Biol. Chem. 244:4393, 



Schneider, W, C. 19450 Phosphorous compounds in animal tissues:o L 
Extraction and estimation of deoxyribonucleic acid and ribo
nucleic acid. J. Biol. Chem. 161:293, 

106 

Schneider, W. c. 1946, A comparison of methods for the estimation of 
nucleic acids, J, Biol. Chem. 164:747. 

Schwert, G, W. and Ao D. Winer. 1963, Lactate dehydrogenase, The 
Enzymes. 7:127. 

Seguin, Ro J, and G, W. Kosicki, 1967, Studies on the conformational 
changes of mitochondrial malate dehydrogenase in urea~phosphate 
solutionso Biochem, J. 73:264. 

Singer, T. Po, Jo Hauber and E. B. Kearney. 1962. Fluorometric 
determination of the succinate dehydrogenase content of respira
tory chain preparations. Biochem. Biophyso Res, Commo 9:146, 

Singer, T. P., Ea B. Kearney and Ba J, Bernatho 1956, Studies on 
succinate dehydrogenase, Ila Isolation and properties of the 
dehydrogenase from beef heart. J. Biol, Chemo 223:599. 

Singer, To P,, E, B. Kearney and W. C. Kennedy. 1973, Succinate 
dehydrogenase. Adv. Enzymol. 37:189, 

Singh, S, N, and M, S, Kanungo. 1968. Alterations in lactate dehy
drogenase of the brain, heart, skeletal muscle, and liver of rats 
of various ages, J. Biol. Chem. 243:4526. 

Sink, J, D. and M. D. Judge. 19710 Age and breed effects on the bio
chemistry of porcine muscle growth. Growth. 35:349, 

Srere, P. A, 1965. The sulfhydryl groups of citrate condensing 
enzyme. Biochem. Biophys, Res. Comm. 18:87: 

Srivastava, U. and K, D, Chaudhary. 1969. Effect of age on protein 
and ribonucleic acid metabolism in mouse skeletal muscle. Can, 
Jo Biochem, 47:231. 

Steele, P, G. D. and J. H. Torrie. 1960. Principles and Procedures of 
Statistics. McGraw Hill Book Co,, Inc., New York, 

Stein, J, M. and H. A, Padykula. 1962. Histochemical classification 
of individual skeletal muscle fibers of the rat, Amer, J, 
Anat. 110:103, 

Stern, J, Ra 1957. Crystalline beta hydroxybutyrl dehydrogenase from 
pig hearto Biochem, et. Biophys. Acta. 26:448. 

Stern, J. R. 19610 Oxalacetate transaminase. The Enzymeso 5:369, 

Stern, J. R. and S, Ochoa. 1951, Enzymatic synthesis of citric acid, 
I. Synthesis with soluble enzymes, J. Biol. Chem, 191:161, 



Stromer, M. Ho, Do E. Goll, R, B. Young, R. M, Robson and F, C~ 

Parrish. 1974. Ultrastructural features of skeletal muscle 
differentiation and development. J. Anim. Sci. 38:1111. 

Szent-Gyorgyi, Ao 1953. 
and Heart Muscle. 

Chemical Physiology E!_ Contraction in Body 
Academic Press, New York. p. 105, 

Taylor, Bo F. 1970, Regulation of citrate synthetase activity in 
strict facultatively autotropic thiobacillis. Biochem, 
Biophys. Res, Comm, 40:957. 

Thorne, C. Jo R. and P, M, Cooper. 1964. Preparation of pig heart 
supernatant malate dehydrogenase. Biochem. et. Biophys. 
Acta. 81:397. 

107 

Thorne, Co J, R, and N. O. Kaplan. 1963, Physical chemical properties 
of pig and horse heart mitochondrial malate dehydrogenase. J, 
Biol, Chem. 238:1861. 

Van Bogaert, E. C., E. DePeretti and C. A. Villee. 1967. 
phoretic studies of human placental dehydrogenase, 
Obst, and Gynec. 98:919. 

Electro
Am. J, 

Velick, J. F. 1958. Fluorescent spectra and purification of 
glyceraldehyde-3-phosphate dehydrogenase and lactic dehydrogenase 
coenzyme complexes. J. Biol. Chem, 233:1455, 

Velick, J. F. and C, Furfine. 1963. Glyceraldehyde-3-phosphate 
dehydrogenase. The Enzymes. 7:243. 

Velick, J. F., J. E. Hayes, Jr. and J, Harting, 1953. The binding of 
diphosphopyridine nucleotide by glyceraldehyde-3-phosphate 
dehydrogenase. J. Biol. Chem. 203:527, 

Wakil, S. J, 1963. Beta-hydroxyacyl CoA dehydrogenase, The 
Enzymes, 7:97, 

Walker, W. H., E. B. Kearney, R. Sing and T. B. Singer. 1971, 
Sequence and structure of a cysteinyl flavin peptide from 
monamine oxidase. Biochem. Biophys, Res. Comm. 44:287, 

Warburg, O. and W. Christian. 1939. Isolierung und kristallisation 
des proteins dis oxydierenden garungsferments. Biochem, Z, 
303:406. 

Warren, W. A. 1970. Stereochemistry of glyoxylate oxidation by NAD 
and mammalian lactate dehydrogenase. Biochem. et, Biophys, 
Acta. 177:421. 

Watson, H. C. and L, J. Banaszak. 1964. Structure of glyceraldehyde-
3-phosphate dehydrogenase. Structural symmetry with the 
molecule. Nature, 204:918. 



Weitzmann, P. D. J, 1969. Polarographic assay for malate. synthetase 
and citrate synthetase. Meth. Enzymol. 13:365. 

Weitzmann, P. D. J, and D. Jones. 1968. 
synthetase and microbial taxonomy. 

Regulation of citrate 
Nature. 219:270. 

Whipple, G. H. 1926. The hemoglobin of striated muscle. I. 
Variations due to age and exercise. Am. J. Physiol. 76:673, 

108 

Widdowson, E. M., J, W. T. Dickerson and R. A. Mccance. 1960, Severe 
undernutrition in growing and adult animals, IV. The impact of 
severe undernutrition on the chemical composition of the soft 
tissues of the pig, Brit. J, Nut. 14:457. 

Widdowson, E. M. and J, W. T. Dickerson. 1964. Chemical c.ompositi:m 
of the body. In Mineral Metaboli.sm. (Edited by C Lo Comar and 
F. Bronner). Academic Press, New York. 2A: L 

Williams, P. E. and G. Goldspink. 1971. Longitudinal growth of 
striated muscle fibers. J. Cell. Sci, 9:751. 

Winer, A. D. and G. W. Schwert, 1958. Lactic dehydrogenase. IV. 
The influence of pH on the kinetics of the reaction. J, 
Biol. Chem. 231:1065. 

Winick, M. and A. Noble. 1965. Qualitative changes in deoxyribo
nucleic acid, ribonucleic acid and protein during prenatal and 
postnatal growth in rats. Develop. Biol. 12:451, 

Wolfe, R. G. and J, B. Neilands. 1956. Some molecular and kinetic 
properties of heart malic dehydrogenase. J. Biol. Chem, 
221:6L 

Wu, J. Y. and J. T. Yang. 1970. Physiochemical characteristics of 
citrate synthetase and its subunits. J. Biol, Chem. 245:2120 

Yuza, T. and H. J. Vogel. 1959. Pyrroline-5-carboxylate reductase 
of ne.urospora crassa, partial purification, and some properties. 
J. Biol. Chem. 234: 235 and 33 9. 

Zeylemaker, W. P., A. D. M. Kilaase, E. C. Slater and Co Veeger, 1970,. 
Studies on succinate dehydrogenase. VI. Inhibition by mono
carboxylic acids. Bio chem. et. Biophys. Ac ta, 198: 415, 

Zinn, D, W. 1967. Quantitative and qualitative beef carcass 
characteristics as influenced by time on feed. Ph,D. 
Dissertation, University of Missouri, Columbia, Missouri, 



VITA 

Joseph Roy Escoubas 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: A METABOLIC STUDY OF THE GROWTH AND DEVELOPMENT OF BOVINE 
SKELETAL MUSCLE 

Major Field: Food Science 

Biographical: 

Personal Data: Born in Lake Charles, Louisiana, 6 August 1948, 
the son of Lo U. Escoubas. Married Judith Ann Rohrman, 
18 January 1969 and the father of three children, 

Education: Graduated from Sulphur High School, Sulphur, 
Louisiana, in May 1966. Received the Bachelor of Science 
degree from McNeese State University in May 1970, Received 
the Master of Science degree from Oklahoma State 
University in May 1973. 

Professional Experience: Employed by the U.SoD.A. as a 
Livestock Inspector, McNeese State University on work-study 
program, Micelle Meat Packers, Lake Charles, Louisiana as a 
laborer, and Oklahoma State University as a graduate assis
tant, Presently an officer in the U.S. Army Reserve and an 
Assistant Professor in the Division of Animal and Veterin
ary Sciences, West Virginia Universityo A member of the 
American Society of Animal Science, American Meat Science 
Association, Institute of Food Technologists, and Sigma 
Xi. 


