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What a scientist does is compounded of two interests: the interest 
of his time and his own interest. In this his behavior is no different 
from any other man's. The need of the age gives its shape to scientific 
progress as a whole. But it is not the need of the age which gives the 
individual scientist his sense of pleasure and of adventure, and that ex
citement which keeps him working late into the night when all the useful 
typists have gone home at five o'clock. He is personally involved in his 
work, as the poet is in his, and as the artist is in .the painting. 
Paints and painting too must have been made for u$eful ends; and language 
was developed, from whatever beginnings, for practical connnunication. 
Yet you cannot have a man handle paints or language or the symbolic con
cepts of physics, you cannot even have him stain a microscope slide, 
without instantly waking in him a pleasure in the very language, a sense 
of exploring his own activity. This sense lies at the heart of creation. 

Jacob Bronowski 
Science and Human Values 
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CHAPTER I 

INTRODUCTION 

Ascaris suum and Ascaris lumbricoides are p~rasitic nematodes which 

inhabit the upper.small intestine of swine and man, respectively. The 

adult female worm is approximately 25 cm long and its intestine is 

essentially a straight tube which runs the length of the organism. This 

intestine can be dissected easily from the worm. Using light microscopic 

techniques, the intestine is found to contain tall columnar cells resting 

on a thick basal lamella, i.e., basement membrane. The membrane can be 

freed from the epithelial cells by ultrasonic treatment and is found to 

be relatively tough and easy to manipulate. 

Basement membranes, in general, are extracellular which function as 

ubiquitous support structure.$ for all epithelial and endothelial cells 

(54). Recently, they have been thought to function as barriers to the 

passive diffusion of electrolytes and non-electrolytes. The intestinal 

basement membrane of Ascaris suum is considered as a supportive structure 

for the columnar epithelial cells which rest upon it (43). In the nutri

tion of the worm the foodstuffs which are absorbed by these same epithe

lial cells find the basement membrane as a barrier to their passage into 

the pseudocoelomic fluid of the worm. 

Previous investigators (Beames (3), Merz (35), Castro (7), and 

von Brand (62)] have been involved with the elucidation of the mechanisms 

by which carbohydrates and fatty acids ~re a~sor~ed by the intestine of 

1 
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Ascaris. The movem~nt of carbohyqrates and fatty acids from the luminal 

to the pseudocoelomic side of the intestine has been investigated with in 

vitro sac preparations and radioactively labelled substrates (3) and by 

short circuit current techniques (35), Since it is known that the food-

stuffs are absorbed by the intestine of Ascaris and.that these same food-

stuffs are found in the pseudocoeloT(J.ic cavity, it is obvious that these 

materials pass through the basement memQrane. 

The biochemical nature of this basement membrane has been investi-

gated. Chemically it is a glycoprotein containing 91% amino acids and 

4.9% carbohydrate (43). · It was further discovered that this basement 

membrane is dissimilar from those basement membranes of vertebrates in 

that it contained no identifiable strands of collagen fibrils, no de-. 

tectable sialic acid and no phosphorus containing compounds~ Callee-

tively, this biochemical evidence a"Q.d the ultrast:r;uctural work of Peczon; 

et al. ( 43) indicates that the basement membrane is . a fine felt work with ....,,_._ . 

no collagen fibrils; it may have a net positive charge because of.the 

lack of detectable sialic acid; and finally, movement through this base-

ment membrane most prqbably is by passive diffusion since no adenosine 

triphosphate (ATP) was detected for an active transport process to occur. 

To gain more. insight into other possible ,means of transport of 

solutes through the membrane i~ was.thought that a more.complete.under-

standing of.· the physical character~stics of the basement membrane was 

needed. Physical characteristics such as, the average pore radius of the 

membrane, the .filtration coefficient, the reflection cqefficient, the 

apparent solute permeability coefficient, and the net ionic charge in the 

pores of the membrane would allow cha:r;act~rization of the basement 

membrane as a diffusion and ion selective barrier. The elucidation of 
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these permeability characteristics of the intestinal basement membrane of 

Ascaris is the concern of this thesis. 



CHAPTER II 

LITERATURE REVIEW 

Background 

Ascaris suum is a relatively large nematode. Th~ adult males range 

from 10 to 31 cm and the adult females range from 22 to 35 cm. They have 

a smooth, relatively perfect cylindrical shape of the body, finely 

striated cutical, and, conical anterior and posterior extremities. 

Ventrally these are curved papillated posterior extremities in the male 

with two. spicules. Both males and females 1'ave a te:r;-minal mouth with 

three oval lips. There are paired reproductive o:r;-gans in the posterior 

two-thirds of the fe~ale and a single long tube in.the male (5). · 

The species is essentially a tube within a tube. The outer tube, 

the cutical, consists of an outer keratinized cortex. Beneath the cortex 

is a thick matrix layer, the outer part of which contains branching 

canals that extend into the cortex. The basal layer is composed of three 

strata of collagen fibers that cross each other obliquely (1). The inner 

tube is essentially a straight intes.tine running the length of the ani

mal. These two 11 tubes 11 . are separated by the pseudocoelomic cavity. It . 

is derived from the .blastocoel of the embryo (1). 

The intestinal wall of Ascaris consists of a single layer.of 

palisade-l:i.ke high columnar cells.. The luminal surface of these cells is 

crowned by microvilli (43) and the cells extend from the. thick basal 

lamina on the pseudocoelomic. side to the lumen of the intestine. 

4 
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The basal lamella, basement membrane, is a ubiquitous support struc

ture of all epithelial and endothelial cells (4, 43, 54). Recently, it 

has been thought to function as a physiological barrier to the passage of 

electrolytes and nonelectrolytes, thus acting as a selective ultrafilter 

(54). Biochemical characterization, i.e., amino acid and carbohydrate 

composition of the basement membrane, has been determined for several 

vertebrate glomeruli (52), Bowman's membl;'ane of the kidney (30), the lens 

capsule of the eye (30), Descement's membrane·of the cornea (24, 30), the 

choroic plexus membrane of the brain (30), the alveolar membrane of the 

lung (30) and the intestinal basement membrane of Ascaris (43). These 

membranes are all glycoproteins in nature (52). 

The cutical of Ascaris is essentiahly impermeabl~ to sugars (7, 8). 

The intestinal wall however, is permeable to sugars and the microvilli 

increase the absorptive surface·of the intestine 75-90 times in Ascaris 

(62). Castro and Fairbairn (7) have shown that glucose can be absorbed 

against a concentration gradient, Beames (2) showed the same for 

3-0-methylglucose, a non-metapolizable sugar, and fructose. He.reports 

very limited movement of galactose. 

The most apparent function of the basement membrane is a supportive 

one in which it serves as a micro-skeleton upon wh~ch the cells rest. As 

indicated earlier, however, they also play a vital physiological role as 

selective filters. An example of such a membrane is the renal glomerular 

basement membrane which anatomically is the only complete barrier between 

the plasma and its filtrate. It is composed of three layers: a) the 

lamina rara interna, b) the lamina densa, and c) the lamina rara externa. 

The absolute and relative thickness of these.three layers varies with the 

species and with age (66, 67). The lamina densa appears to be the 
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effective barrier in the filtration process (26, 49), •. 

The alveolar basement membrane probably plays a role in regulating 

gas exchange in the lung (32), and the basement membrane of the choroid 

plexus appear$ to be an important component of the blood-brain barrier 

(11, 12, 47). The lens capsule of the eye is another good example of a 

basement membrane whic;h serves .a role both as a supportive structure and 

as a filter, It obviously contributes to the shape of the lens and 

probably influences the flux of material through the lens capsule, that 

is, from the aqueous to the vitreous humors (23, 52), The blood-testis 

barrier is yet.another physiological barrier that has as its functioning 

component the basement membrane (25). In the mammalian testis, the germ 

and Sertoli cells are surround by the boundary tissue which s.eparates 

them from the intertubular medium. The boundary tissue, i.e., blood

testis barrier, may be subdivided into four layers in the adult: a) the 

internal non-cellular layer, b) the internal cellular layer, c) the 

external non-cellular layer, and d) the external cellular layer. The 

internal non-cellular layer, i.e., the. bas~ment membrane, ensures fluid 

regulation from the intertubular medium towards the lumen of the seminif

erous tubules. The difference in the composition of the testicular fluid 

and the blood plasma (5) suggests that the boundary tissue, most 

probably the basement membrane, plays a major role as the. filtering 

barrier (25). 

Pappenheimer (40, 41, 42) had earlier been concerned with the dif

fusion through peripheral .capillary membranes, the lamina densa of the 

renal glomerulus, the. blood-brain barrier, and inert artificial mem

branes. He reported t~at the penetration of capillary walls by water and 

dissolved substances appears to take place solely by.processes which 
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require no energy transformation .on the part of the capillary endothelial 

cells. 'Ihe rates.of net fluid movement across the capillary wall has 

been shown.to be simply proportional to the differences between the 

.hydrostatic and osmotic forces acting across the capillary membrane (39). 

Pappenheimer (41) developed methods.for the determination of the 

average pore radii of membranes and to describe restricted diffusion and 

molecular sieving through the walls of membranes~ Pappenheimer's method 

of determining the average pore.radius of a membrane takes two factors 

restricting the diffusion of spherial molecules through cylindrical pores 

into consideration. The first condition was that the permeating molecule 

must pass through the opening of the pore without striking its edges, and 

secondly, viscous resistance inside the pore should be as if no pore·were 

present. In Pappenheimer's method the pore radius measurements are 

dependent upon the ·.filtration coefficient (Lp) which is determined by es .... 

tablishing a pressure gradient across·the membrane. 

Renkin { 48) corroborated Pappenheimer 's method by determining the 

relative geometric pore area per unit path length (A/fix) for various 

molecules of graded molecular size. He graphically determined the actual 

geometric pore area per unit path length (A0 / fix) and used this value to 

calculate the pore radius of an artificial membrane.· Subsequent authors 

have 4etermined the pore radius of cellulose membranes (14) and Vargas 

(S8) calculated filtration coefficients by using hydrostatic and osmotic 

pressure gradient methods to determine the pore radius of giant squid 

axons. 

Goldstein and.Solomon have developed a method for determining the 

average pore radius of a membrane which plots (l .... cr) one minus the 

Staverman coefficient (SS) as a function of the radius of the permeating 
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molecule for various equivalent pore, radii. Goldstein and Solomon making 

use of Renkin's (48) .equation for filtration and Durbin's (14) correlation 

of the Staverman coefficient with osmotic pressure, plotted a family of. 

theoretical curves with the.equivalent pore radius as the parameter. The 

experimentally determined 1-cr values of the ,radii of the test molecule 

was plotted and the best fit curve of those values determined the equiva

lent pore radius of the membrane. 

Goldstein and Solomon (18) determined the pore radius of human.red 

blood cells by osmotic pressure measurements to be 4. 2. $... Villegas (61) 

using radioactive ethylene glycol, glycerol and water determined the A/~x 

for both. the axolernrna and Schwann layer in the squid nerve fiber, He 

fotmd these structures to function as diffusion barriers and to have an 

effective pore radius of 4. 25 .ll in the axolernrna (59, 60).. Vargas (57) 

using the approach of Durbin and Solomon (13) estimated the equivalent 

pore radii of rabbit heart capillaries to be.about 35 }\~ Vargas also 

determined the filtration coefficient (L ) and the reflection factor (o) 
p 

for these isolated perfused rabbit hearts. Phillips (44) determined the 

pore radius in the rectal intima of the desert locust to be 6.5-8.0 A. 
Much more recently Owen (38) has calculated the cr, L , and w (the product p 

of the permeability coefficient, the gas constant and the absolute 

temperature) for the dog, cat, beef and human red cells using permeant 

molecules. 

Thermodynamics 

Kedem and Katchalsky (28, 29) present arguments for the need for 

three cqefficients to fully characterize the permeability of a membrane 

to a particular solute-solvent system. These coefficients are: a) omega 
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(w), which describes the solu~e membrane interaction, b) the filtration 

coefficient (L ) which describes the permeability of the membrane to the p . . 

solvent and c) the reflection coefficient or Staverman coefficient (a) 

which describes the relative rate of flux of s.olute and solvent across 

the .membrane. 

Thedeve+opment of these coefficients as a quantitative description 

of the transport phenomena rests ultimately on basic principles of 

thermodynamics. A brief review of thermodynamics and the derivation of 

these coefficients follows (14, 27, 28, 29, 56). 

The first law of thermodynamics is the law of conservation of 

energy. Mathematically and in the differential form it is: 

dU = dQ - dW (1) 

where dU is the internal energy of tne system under consideration, dQ is 

the heat gained by the system, and dW is the work done by the system on 

the surroundings. 

The work term in the equation can take on different forms .. If the 

volume of a system at a pressure P changes .by an amount dV, the work.per-

formed is then, equal to PdV. If an amount, de, of electrical. charge is 

transferred into a system at an electrical potential '¥, work is then 

equal to -'¥de. The transfer into a system of dn. moles of substance i at . 1 

a total chemical potential µi' yields work that is equal to -µidni. Thus 

dW in Equation 1 above can be expressed: 

dW = PdV - '¥de - µ.dn. 
1 1. 

(2) 

The second law of thermodynamics states that reactions go spontane-

ously in the direction that will lead to an increase in the randomness of 
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the system or entropy (S). For a,system undergoing a reversible change, 

the change in entropy.is defined by the heat gained (dQ) divided by the 

absolute temperature T and 

dS = ~ 
T 

Introducing Equations 2 and 3 into Equ~tion 1, yields: 

dU = TdS - PdV + ~de + Iiµ.dn. 
1 1 

'lie Ii denotes summation over all components of a system and this 

expression is the Gibbs·equation, 

Classical thermodynamics provides only a set of inequalities that 

(3) 

(4) 

indicate the direction of irreversible processes. To develop a quantita-

tive description of s:rontaneous processes we must look to.nonequilibrium 

thermodynamics. The first concept in this the~ry is that the total 

entropy chi:µige of a system (dS) can be,divided into t~o parts, an ex~ 

change of entropy ,between the system .and its surroundings· (deS) and an 

internal production of entropy (diS) due to irreversible processes taking 

place within the system. Thus: 

dS = des + DiS (5) 

For a, clos.ed system Equation 5 is equivalent to 

deS =~ 
T 

and diS = 0 (6) 

The assumption is then mad.e that the· totai change in entropy. of a 

system can,bedescribed by the.Gibbs equation (Equation 4) even though 

the system is not at equilibrium. This assumption has limited range in 

its validity and cannot be used if the system is not near equilibrium. 



Thus: 

TdS = dU + PdV - ~de - Eiµ.dn. 
1 1 

and if~ is zero, then: 

u 

TdS = dU + PdV - Eiµ.dn. 
1 1 

(7) 

The total entropy change (dS) for any system can be evaluat~d from 

Equation 7 and the quantities des and diS can be determined. In all 

cases, the time derivative of diS (the rate of internal entropy pro-

duct ion) ·is composed of a sum of products which has the form: 

where Ji equals flows and Xi equals the thermodynamic forces, i.e., 

conjugate forces. 

In the case of a two component system in which two solutions of the. 

same solvent and solute are separated by a membrane, the entropy pro-

duction per unit time diS/dt can be written: 

. dN i d.Ni 
diS 1 1 w 1 i i w 
dt = T (µ~ - JJw) dt + T (µs - µs) dt (9) 

where µ denotes the chemical potential (of the .solvent, subscript w, and 

solute subscript s and. superscript o and i denoting the system on the 

i i outside and inside of the membrane), dN /dt and dN /dt represents the. w s· 

number of moles of solvent and solute, respectively, entering the inner 

compartment per unit time. 

The dissipation function (<!>) is a measure of the rate of change of 

iS of an irreversible process and is given by TdiS/dt. Using <I> per unit 
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area, Equation 9 becomes: 

,. 

and when 

dNi dNi . 1 w and . 1 s n = 
A dt n = A'Tt w s 

then the expression simplifies to: 

~ = (µ~ µ!) 
. (µo i . - n + µs) n w s s (10) 

The dissipation function, Equation 10, is the sum of products of 

flows per unit area (n and n ) and their corresponding forces J the w s 

differences in chemical potential. 

The dissipation function, Equation 10, constitutes a special case of 

the general expression: 

~ = EiJ. X. 
1 1 

where ~ is the local entropy.production, J. is again flow and X. the-con-
1 1 

jugated forces. The choice of flows and forces is arbitrary so long as 

the sum of their products is the same dissipation function •. 

For a system where the chemical potentials approximate those.for 

ideal solutions, the following relationship applies: 

'O 
µ 

i 
µ = v~p + RT~lnycs (11) 

Here.vis the partial molar volume, ~p is the difference in pressure be-

tween the outer and inner compartment, y is the activity coefficient of 

the solute, and cs is the concentration of the solute. In the case of 

dilute solutions, where the activity coefficient goes to one, we may 
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rewrite Equation 11 for the solute to read: 

!J.c 
v lip + RTlilnc 

s s 
= v lip + RT ~ 

s cs 
(12) 

i where lies = c; - cs and cs is a mean of the concentrations of the solute 

in the two compartments given by: 

If, 

then 

lie s --= 
co 

s ln -. 
1 c s 

c = 
S. 

cs 

i + co cs s 
2 

The corresponding equation for the solvent is: 

µo 
w 

i lie 
µw = v lip - . RT -2-

w cw 

Introducing Equations 12 and 13 into the dissipation Equation 10, and 

rearranging we get: 

. . 
n n 

~ = (n v + n v ) lip + ( ~ - ..!!..) RTlic w w 5 s c c s s w 

(13) 

(14) 

Note that in Equation 14 the dissipation is represented by a new set 

of forces and flows. The new forces x1 = llp and x2 = RTllc5 are the 

forces usually employed in permeability studies, lip is the hydrostatic 

pressure, while RTllc5 is the driving force of Fick's Law. The conjugate 

flows are the total volume flow per unit area, 
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and the relative velocity of the .solute versus solvent which is a measure 

for exchange flow, . 

. . 
n n 

JD 
s w 

= ·-· -c c s· w 

The general theory of irreversible thermodynamics is based on the 

assumption that the flows, J, are fwictions of all forces operative in 

the system and that if the forces are sufficiently small, the dependence 

is linear. Thus, in .the case of two. flows, J 1 and J 2 , dependent on two 

forc~s, x1 and x2, the relation between the·J's and X's is given by: 

(15) 

where the L's are called the phenomenological coefficients. 

The phenomenological coefficients are correlated by the law of 

Onsager which requires the equality of the.· cross-coefficients• 

(16) 

Writing Equation 15 in the. notation of our system where L , the filtra
p 

tion coefficient, equals L11 and Ap is x1 and RT~cs is the osmotic pres-

sure gradient 1 etc., the following hold~ true.· 

J = ·L Ap + L 0RT~c v p p s 
and (17) 

JD = LDpAp + L0RTAc5 

with 

LDp = L pD 
(18) 



and since 

7f = RTt.c s 

we may.rewrite Eq-uation 17 to read: 

15 

(19) 

Membrane Properties 

I will now correlate the significance of each of these phenomeno-

logical coefficients with the ability of the basement membrane to fl.me-

tion as a barrier to diffusion. 

Consider.an experiment in which the concentration of the solute is 

the same on both sides of the membrane; and the osmotic-pressure _is zero. 

If a pressure difference is maintained, there will be a volume flow J, 

which is· a linear fl.lllction of Ap. The proportionality coefficient re-

lating J to Ap is L , whi_ch is the filtration coefficient of the mem-v . p 

brane. · A hydrostatic pressure at :an osmotic pressure of zero can prod,uce 

not only. a volume flow, but also a. diffusional flow. 

where 

ATI = 0 

then 

J =·L t.p D Dp 
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So, with ATI = O, we get a Jv and J 0• The J 0 , the movement of the 

solute relative to the solvent, is induced by a hydrostatic pressure and 

is called ul trafil tration. The cotipling coefficient Lop is called the 

ultrafiltration coefficient and is a measure of the ultrafiltration 

properties of the membrane. 

An alternative experiment is one in,which different solute concen-

trations exist in two compartments (ATI .f 0) and the hydrostatic pressure 

Ap = O. The difference in osmotic pressure causes a diffusional flow 

characterized by the coefficient L0 , which represents a diffusional 

mobility per unit osmotic pressure~ Thus 

but at Ap = O; so 

There is also a volume flow caused by an osmotic pressure difference· at 

Ap = O. So that, 

so 

J = L Ap + L DATI v p p 

J = L DATI v p 

This is the .osmotic flow and LpD is the osmotic coefficient. 

Another case is one in which the membrane is completely impermeable 

to the given solute, that is, for the case of the ideal semipermeable 

membrane. Here fewer coefficients are required to characterize the mem-

brane and only one phenomenological coefficient is necessary. In this 



case the flow of volume Jv is given, exactly by,the flow of solvent 

alone.. There is no flow of solute. The relative flow of solute versus 
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solvent,is also given by the flow of water alone. However, J0 now has a 

negative sign, for if the fl,ow of water is positive the relative flow of 

solute versus solvent is in the opposite direction. Thus: 

and substituting into Equation 19 and rearranging; gives: 

(20) 

Equation 20 can be satisfied for all values of 4p and 4TI only if the 

tenns within the parentheses are always zero. Therefore: 

L = -L p Dp and. L = -L D pD 

and since LpD = LDp (Equation 18, Onsager's Law) , we have 

(21) 

A single phenomenoiogical coefficient suffices then to characterize 

an ideal semipenneable membrane., Flow across such a .membrane will be 

either hydrostatic, given by the pressure gradient 4p and the phenomeno-

logical coefficient L (-L0 ), or osmotic, given by the osmotic gradient 
p p 

4TI and the i~entical coefficient L0(-Lp0). Thus the rates of hydrostatic 

flow and osmotic.flow are equal. 

For "leaky" membranes Equation 21 will not hold and the movemen~ of 

the solute must be taken into account. In order to describe the relative 

rates of solvent and solute penneabilities, Staverman (55) has defined 

the reflection cc;>efficient, <J; which is the ratio -L to L , that is, pD p 
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the ratio of the osmotic coefficient to the pressure-filtration 

coefficient, 

-L 
cr = __E.Q. 

L 
p 

(22) 

For an ideal semipermeable membrane cr from Equation 22 is equal to 

unity. In a coarse, non-selective membrane, there can be no ul trafil tra-

tion and cr is zero, The Staverman factor is thus a measure of the semi-

permeability of the membrane to a given,solute. 

The following experiment is an example of how one may determine cr. 

A pressure difference lip is exerted across a permeable membrane that 

separates two very large and well stirred compartments containing the 

same solution. The solvent under pressure passes through faster.than the 

solute (sievingJ. However at time zero (see Equation 17), 

J -n v . L Lip (23) = + n v = v s s w w p 

:n :n 
JD 

s w . (24) = c c s· w 

Equations 23 and 24 may be added and the results divided by Equation 23 

to give 

. 
LDp n 

- 1 s 1 + (25) J (v + -) = s c L v s p 

As before, LDp = L D' The ratio LDp/Lp is -cr. For dilute solutions v ·p s 

is negligible in comparison to 1/cs and Equation 25 becomes 

(26) 

The quotient ii /J c is equal to the moles of solute passing through s v s 

the membrane per unit time, divided by the moles of solute arriving at 

the membrane during that time, This ratio may be equated to the ratio 



As/ Awf' where Asf is the effective pore area available to solute mole

cules and fwf to solvent molecules. Substituting into Equation 26, it 

becomes. 

The· ratio As/ Awf for any given solute molecule is given by the 

ratio (A/A) solute/CA/A ) water. 
0 0 

(A/A ) solute can be calculated from Renkin's (48) equation: 
0 
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where r is the pore.radius and a the radius of the penetrating molecule. 

A is the effective area of the· opening and. A0 the cross-section opening 

of the pore. 

Now the coefficient L0 must be translated into a more conventional 

form because as ·it stands• it describes the exchange flow of solute 

versus solvent, a quantity that cannot be directly measured. What is 

most easily measured is the rate of flow of solute across the membrane, 

which can be symbolized as Js' the flux of solu~es. In terms of our pre

vious fluxes Jv and JD' Js is 

(27) 

Since (Jv + JD) gives the total flow of the part of the volume of the 

solution that is occupied by the solute, and the product of this volume 

and c , the volume concentration, it then gives the total number of moles s ' 

of sq lute that. crosses .the membrane. Using Equations 17, 18 and 22 and 

substituting into Equation 27 and rearranging yields 

J = (1 - cr) J c + (L - cr2L ) cs RTAcs s v s D · p 
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In the particular case of zero volume flow (Jv = 

proportional to Ac • 

0), J is directly s 

s 

The coefficient .of proportionality is (L0 - .a2L )c RT, which is of p s 

the same form as a conventional permeability constant and hence is 

directly measurable. 2 The term (L0 - a L )c can be replaced by the p s 

symbol w. The coefficient w then is the membrane permeability to solute 

under conditions of zero volume flow. Since ATI = RTAc, w is related to 

the classical permeability coefficient P as follows: 
s. 

P = wRT 
s .. 

Thus w, a; and L are three independent parameters· all of which are p 

obtained experimentally and. from which LP, L0 , and LpD can be derived; 

w, a'· and L thus may be. used to characterize the basement membrane. of p 

Ascaris suum as a barrier to diffusion. 

Osmotic Pressure 

The osmotic pressure depends on the activity of the solvent: 

RT TI = - - lna v s (28) 
s 

An approximate equation developed by van't Hoff (19) gives the 

osmotic pressure remarkably well, in terms of the molar concentration of 

the solute. It has the form: 

TI =. RT(A) (29) 

I will develop this equation here to demonstrate mathematically that 

the activity of a solute becomes almost identical to its concentration at 

low concentrations. Similarly, the male fraction of the solvent has been. 
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found to be a suitable approximation of its activity for dilute solu-

tions, the standard state of the solvent in this case being pure solvent. 

The male fraction of solvent, X , is given by: s 

x s 

where the terms n , etc. , refer to the total number of moles of a, b, a 

etc. 

An equation similar to that for the mole fraction of the solvent can 

also be written for the mole fraction of each component of a solution; 

for example, 

The mole fraction of.all the component parts must.add up to one. 

Hence: 

Furthermore, for dilute solutions far larger numbers of solvent molecules 

than solute molecules are present. For example, for a liter of O.l M 

sucrose solution, ns = 55.4, na = O.l, 

Therefore we can introduce the approximation 

and also the approximation 

x a 

n 
a =-

ns 

V = n v s s 

neglecting the contribution of the solutes to the volume. Hence: 



x a 

n 
a =.- = n 

ns a 

v 
(2-) = v (A) v s 

This .equation ,pennits us to say that the mole fraction of any 

solute is approximately the product of the partial molar volume of the 

solvent and the concentration of the solute for very dilute solutions. 

Writing a similar expression for each solute, and when these ex-

pressions are all summated, we can state the activity of the solvent in 

tenns of the-conc~ntrations of the solutes: 

Substituting into Equation 28, one gets: 
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7T = - ¥- ln[l - vs((a) + (b) + (c) + •••)] 

vs 
(30) 

In the expression -ln(l - x}, whe.n x is small, then: 

if x = 0.1, then -ln(l - x) = -ln 0.9 = 0.105 

if x = 0.01, then -ln(l - x) = -ln 0.99 = 0.0101 

if x = 0.001, then -ln(l - x) = -ln 0.999 = 0.00100 

As x becomes smaller, -ln(l - x) is approximately equal to x. If 

one makes the corresponding substitution of 

for 

vs((a} + (b) + (c) + ···) 

-ln(l - v (a) + (b) + (c) + • ••) s 

into Equation 2, we then get 
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TI' == RT((a) + (b) + (c) + ... ) , . 

and for a single solute we get 

TI'.== RT(a) 

In calculating the filtration coefficient in my experiment on the 

basement membrane I will use only·dilute solutions of sucrose to obtain 

an osmotic pressure gradient. I will use the van't Hoff (19) equation as 

an easy approximation for the ac~ivity of the solvent. 

Diffusion and Pore Area 

Simple diffusion is the migrati©n of a solute from an area of higher 

concentration to an ,area of lower concentration, and is a result of the 

random motion of the solute molecules. According to the theoretical 

treatment of Fick (16), the amount of substance diffusing through a. 

cross-section of area, A, is directly proportional ·to the concentration 

across this section; expressed mathematically, Fick's first law states: 

(31) 

The differential ds/dt expresses the ·.rate of transport of the· substance 

in moles, crossing in time dt; the differential dc/dx is the concentra-

tion gradient at the point considered and D is the diffusion coefficient 

. 2; in .cm· sec. 

The diffusion component of flux can be.evaluated by applying the 

general relationship 

since 

ds ~~ 
dt ::: - RT b.x 



Liµ = vlip 

and 

CV = 1 

The factor DA/Lix can be evaluated after observing the diffusion of 

tritiated water across the membrane from the relationship 

ds DA dC 
dt = ax-
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An integrated form of Fick's Law for a system where the volume of 

the two compartments is not equal is the following: 

(32) 

Here, A/fix is the apparent diffusion area per unit path length for 

each diffusing solute, v1 and v2 are the volumes of the chambers, t is 

time in seconds, and c0 and c1 are the initial and final solute concen

tration in the chambers. One can estimate the pore radius of a membrane 

from this information but using Pappenheimer's (26) equation, 

(33) 

Here L is the filtration coefficient and n the viscosity of water p 

for estimating pore size. 

Goldstei.n anci Solomon· (18) developed a method for determination of 

the average pore radius which is not dependent upon determinations of the 

filtration coefficient (L ). The~ coefficient is calculated for the 
p 
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individual permeating substances. Using Renkin's (48) equation for fil-

tration, . Goldstein and Solomon (18) express the ratio of the apparent 

area for filtration of the solute (A5 f) to the apparent area for fil tra

tion of water (Awf) . 

Asf (2 (l a 2 a 4 2.104 .! + 2.09 Ca)3 - o.gs (a) SJ - -) - (l - -) ][l -r r r r . r -= 
Awf aw 2 a a a a 

(2 (1 (1 - ~)4]11 w 2.09 (~)3 - 0~95 (2:..)5] - -) - - 2 .104 - + r r r r r 

where, a is the molecular radius of the permeating molecule, r is the 

equivalent pore radius, and a is the molecular radius of water. w 

Durban (14) shows further that 

1 - cr 

~oldstein and Solomon plot (1 - cr) as a function of the .radius of 

the permeating molecule for various equivalent pore rad.ii. A family of. 

theoretical test curves are then dete:rmined with the equivalent por~ 

radii as the parameter. The best fit curve for the .test molecule is then. 

determined. 



CHAPTER III 

MATERIALS AND METHODS 

Collection and Preparation of the Tissue 

Adult female .Ascaris su.um are collected at .the packing house and. 

transported to the laboratory.in a basal saline (21) maintained between 

32 and 39° C. The worms are used experimentally within six hours. The 

intestine is removed from the individual worms, placed in a dish of warm 

saline and sliced open. Ribbons of the intestine are then isolated that 

are 0. 5 cm wide and 1. 0 cm or more in length. The layer of epithelial 

cells can be separated from the basement membrane either by sonication, 

by incre~sing the .sodium chloride concentration in the holding medium, or 

by shaking the.intestine in a suspension of glass beads. The isolated 

basement membrru:ie is.then clamped into the diffusing chamber. 

Diffusion Chamber 

The diffusion chamber is a modified Ussing chamber (see Figure 1) 

and the .membrane.is positioned between the two compartments of the 

chamber. The opening between the two compartments of the chamber is 

0.5 cm wide and 1..0 cm long. The appa:r;atus is equipped with a gas lift 

circulating system which provides adequate perfusion, i.e., reduction of 

the unstirred layer to a minimum, for each surface of the tissue. 
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Non-Electrolytes 

A/Ax Measurements 

Standardization of the Apparatus. Tri tiated water, or 14c labelled 

urea, glucose, sucrose, or inulin are added to one side of the diffusion 

chamber. Diffusion through Visking cellulose (dialysis tubing) is de-. 

ternined. by taking a sample aliquote from the opposite chamber and de-

ternining total radioactivity. A/Ax, the relative geometric pore area 

per unit path length is determined by the formula 

(for derivation and symbol meanings see Literature Review, Equation 32). 

These A/Ax values are compared with those in the literature for 

water, urea, glucose, sucrose, and inulin to establish that the diffusion 

chamber gives comparable results for diffusion through cellulose as has 

been previously reported. 

A/Ax Measurements for the Basement Membranes of Ascaris. The - . ~ - ---- -----
intest:i,nal basement membrane of Ascaris can be isolated from the. epi-

thelial cells by three different methods: first by sonication, using 

ultrasonic sound to dismembrate the cells, secondly by increasing the 

sodium chloride concentration in the holding medium and then taking a 

camel hair brush and brushing off the.epithelial cells, and thirdly by 

shaking ribbons of the intestine in a suspension of glass beads. Base-

ment membranes that are prepared by one.of these techniques can be 

clamped individually into the diffusing chamber and the diffusion of 
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water or urea, glucose, sucrose, or inulin determined as described pre-

viously for visking cellulose. 

Filtration Coefficient Determinations Measured 

Using Hydrostatic and Osmotic Pressures 

Standardization of the Apparatus--Osmotic Pressure. Following the 

method that is described by Vargas (58), the osmotic pressure on one side 

of the diffusing chamber is increased by increasing the sucrose concen-

tration in the bathing medium. 6 2 At pressures below 6 x 10 dyne/cm (58), 

the relationship between volume flux and pressure is linear. Measure-

ments of the volume flux of the tritiated water through visking cellulose 

is linear and the slope of the line is defined as the filtration coeffi-

cient (L ) of the membrane. This filtration coefficient compares p 

favorably with previously published results of the filtration coefficient 

of visking cellulose. 

Standardization of the Apparatus--Hydrostatic Pressure. The dif

fusing chamber can be modified by the addition of a water column with a 

capillary manometer to establish and measure the hydrostatic pressure 

gradient. Again the volume flux of tritiated water through visking eel-

lulose is determined. It can be compared with the filtration coefficient 

determined previously using a hydrostatic pressure gradient to determine 

a filtration coefficient for visking cellulose. 

Basement Membrane. The basement membrane of Ascaris suum prepared 

by sonication is clamped into the diffusing chamber and the volume flux 

of tritiated water is measured under first an osmotic and then a hydro-

static gradient, 
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Reflection Coefficient 

The reflection coefficient is measured by comparing the A/ax values 

of penetrating molecules of increasing molecular radius with the A/D.x 

values for water. 

or 

Equivalent ~Radius Determinations 

Pappenheimer•s Method. Pappenheimer estimates the aver~ge pore 

radius of membranes by direct measurement of the A0/D.x of the membrane; 

given .the following equation, 

r = 
p 

where L is the filtration coefficient, n the viscosity of water, and p 

A0/D.x the actual gemoetric pore area per unit path length. 

Goldstein and Solomon Method. Goldstein and Solomon (18) plotted 

one minus the reflection coefficient (1 - a) as a function of the radius 

of the test molecule for various.equivalent pore radii. A family of 

theoretical curves is obtained (see Figure VI) with the equivalent pore 

radius as the parameter. The experimental values of the reflection coef-

ficient (a) are then subtracted from one and plotted against the in-

creasing molecular radius of the permeating molecules. The best fit 



curve for the experimental values of the reflection coefficient is the 

pore.radius. 

Permeability Coefficient Determinations 

Solute permeability coefficients are determined for a series of 

non-ionic molecules of graded molecular size. Tritiated water or 14c 

labelled urea, glucose, sucTose, or inulin are added to one side of the 

chamber and at various time intervals sample aliquotes are take~ from 

the opposite chamber. The volume flux of the permeating molecule is 

plotted against time to determine the permeability coefficients (Ps). 

Electrolytes 

Solute Permeability Coefficients 

Solute permeability coefficients are determined for sodium, potas

sium and chloride ions. The radioactive ions are added to one side of 
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the diffusing chamber and at various time intervals sample aliquotes are 

taken from the opposite chamber. The volume flux of the permeating 

molecule are plotted against time to determine the permeability coeffi

cient (Ps). 

Ion Selectivity 

E.!:!. Changes. Solute permeability coefficients are determined for 

sodium, potassium, and chloride ions in basal saline (21) at a physio

logical pH of 7.2. To determine the .net charge on the basement membrane, 

the pH of the bathing medium is lowered to 2.3 using a 1.6 mM potassium 

biphtahalate and hydrochloric acid (HCl) buffer. At this lower pH the 

permeability coefficient for the. various ions is again determined. 
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The pH of the bathing medilllil is raised to 10, 5 using 1. 6 mM glycine 

and soditUn hydroxide (NaOH) buffer solution and the permeability coeffi

cients for the ions is determined and compared with the permeability 

coefficients that are obtained at neutral and low pH's. 

Blocking Positive.£!. Negative Sites in the Membrane~ Solutions. 

containing 1,5 difluro-2,4 dinitrobenzene (FFDNB) are prepared by dis

solving 100 mg of FFDNB in one ml of absolute methanol, The methanol 

solution is added drop-wise to 160 ml of the basal saline with vigorous 

stirring. Since FFDNB undergoes slow hydrolysis in water with the liber

ation of hydrogen ions, solutions·of it are prepared immediately prior to 

there use in experiment, The pH of the bathing meditUn containing FFDNB 

is measured immediately before and after the experiment, and the pH drop 

is never found to be below pH 6.5, The solution contain~ng the FFDNB 

dissolved in the bas.al saline is used as a bathing medium for the base

ment membrane.· The FFDNB solution should block the positive sites in the 

membrane. The radioactively labelled ions are again added and the per

meability coefficient is again determined, 

A 5.25 mM solution of calcium ions is added to the basal saline. 

This solution then blocks the negative sites on the membrane. The radio

active ions .are again added and the permeability coefficients are deter

mined and compared with those measured earlier. 

Radioac~ive Counting 

1. All of the radioactive material used in these.experiments were 

purchased from New England Nuclear Company in-Boston; Mass. 

2, All radioactive counting was done with a Packard Tri~Carb 

scintillation counter Model 3993, Standard techniques were followed. 



3. The scintillation fluid used was as follows: 

a, in the experiments using non-electrolytes, Bray's solution 

was used; 

33 

b. in the experiments using electrolytes, scintiverse was used. 



CHAPTER IV 

RESULTS 

Standardization of the Apparatus 

In the characterization of the intestinal basement membrane of 

Ascaris as a diffusion barrier, measurements of the average pore radius 

were first made. A modified Ussing chambe:i;-, Figure 1, had been designed 

for this purposeo Before determining the average pore radius for the 

intestinal basement membrane however, the equivalent pore radius ·for 

visking cellulose was measured in.order to demonstrate that the results 

from this chamber are comparable to the pore radii for cellulose previ

ously determined and reported in the literatureo This allowed for 

standardization of the ,chamber o 

The cellulose tubing, after having been soaked in distilled water 

for several minutes, was clamped into the diffusing cell and sequentially, 

radioactive molecules of graded molecula~ size were addedo The A/~x, the 

relative geometric pore area per unit path length, was determined for 

each molecule and compared with those.values determined by Renkin (48); 

the results are given in Table I. 

To determine the average pore radius of the cellulose using the 

Pappenheimer method, measurement of the filtration coefficient is also 

necessary. The filtration coefficient for visking cellulose was deter

mined by measuring the radioactive volume flux of water through the mem

brane, This volume flux was measured at varying sucrose osmotic pressure 
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TABLE I 

STANDARDIZATION OF THE APPARATUS-VISKING CELLULOSE 

Substance 

Water 

Urea 

Glucose 

Sucrose 

Inulin 

Molecularl Radius 
Used 

0 

A 

1.97 

2,70 

3,57 

4,40 

12.00 

1Principle of polography (22), 

2Renkin (48), 

3Experimental determined values, 

Renkins 2 

Results 

19.0 

17.2 

9.6 

.6. 6 
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Visking 3 

Cellulose 
A/b:.x CM 

15.00 

13.60 

8.08 

6.90 

2,09 
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concentrations in the membraneo Table II gives the values of the sucrose 

osmotic gradient and the radioactive volwp.e flux they created. Figure 2 

is a graphic presentation of this volume flux of water versus increasing 

sucrose osmotic pressure for the cellulose membrane, A linear regression 

of the graph renders analysis of the slope ,of the line which represents, 

by definition, the filtration coefficient, 

This information allows for calculation of the average pore radius 

of visking cellulose determined by the modified Ussing chamber in this 

experiment and substituted into the equation derived by Pappenheimer 

(for derivation see Chapter II). The results of this substitution 
0 

measure the average pore radius of the visking cellulose as 16.3 A. The 

results of previous dete~minations of pore radii for visking cellulose. 
0 

are 18.9 A (48). 

The apparatus gave results with cellulose that are comparable with 

those previously published in the literature, and suggested that one 

could use the method to calculate the average pore radius of the intes-

tinal basement membrane of Ascaris ~ using this modified Ussing 

chamber. 

Non-Electrolytes 

A/~x Determinations 

Preparation of the intestinal basement membrane of Asacris suum was 

done by three different methods, as described in previous paragraphs. 

Plates 1, 2, and 3 are electron photomicrographs of the various prepara-

tions of the basement membrane. Plate .4 is an enlargement of Plate 3 

showing the remains of part of the epithelial cells which were not re-

moved by the process. The typical bimolecular leaflet is apparent, 



Molarity 

0 

0,05 

0.10 

0.15 

0.20 

1All 

TABLE II 

DETERMINATION OF FILTRATION COEFFICIENT OF CELLULOSE 
MEASURED USING OSMOTIC PRESSURE 1 

2 x 106 CM/Sec 7T Dyne/CM Vol. Flux. 

0 0 0 

L22 L22 0.93 + 0.03 

2.44 L44 1 90 + 0.07 

3,66 3.66 2.70 + 0.10 

4.88 4.88 3.67 + 0.10 

figures are for 1.0 2 CM membranes at 25° C. 
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Plate l , Sonication Preparation of the Basement Membrane 
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, 

Plate 2 Sodiwn Chloc1de Pteparat - on Jf he Basement Membrane 
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Pla e 3 G.G~- Bead Prepara ion )f .he Basement Membrane 



Plate 4 Bimolecular Leaflet 
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These isolated basement membranes were subsequently clamped into the 

diffusing cell, and sequentially, radioactive molecules of graded 

molecular size were added, The A/Ax values were determined for each 

series of permeating molecules, Le,, water, urea, glucose, sucrose, and 

inulin through.the basement membrane prepared by the three methods. 

These results are shown in Table III. 

A0/~x Determinations 

Measurements of the diffusion of radioactive molecules through the 

basement membrane allows for experimental calculation of the· A/ Ax values. 

the relative geometric pore area per unit path length. In Pappenhiemer's 

equation for calculation of the average pore radius the measurement used 

is the A0/Ax, the actual geometric pore area per unit path length, The 

A0/Ax value is determined graphically by plotting the.A/Ax values experi

mentally determined against the increasing molecular radii of the probing 

molecules, Extrapolation of the points to a zero molecular radius mole

cule gives an A/~x value, This A/Ax value for a molecule of zero molec

ular radius and no net electrical charge is the A0/~x value, Figure 3 is 

a graphic representation of the experimentally determined A/Ax values of 

the diffusion in the basal lamella against molecules of increasing molec

ular radii, Since the basement membrane can be isolated by three differ

ent methods, three graphs of NAx values versus molecular radii are 

represented, The A0/Ax values for the basement membrane are 22, 21 and 

26 cm for the sonication, sodium chloride j and glass bead preparations, 

respectively (see Table IV), 
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TABLE III 

A/l:::.x MEASUREMENTS OF SONICATION, SODIUM CHLORIDE AND GLASS 
BEADS PREPARATION OF THE BASEMENT MEMBRANE 

Sonication Sodium Glass 
Substance Chloride Beads· A/l:::.x CM A/l:::.x CM A/ 1:::.x CM 

Water 12,6 + 0,70 16,0 + o.so 18.36 + 0.90 

Urea 10,8 + 0.60 15,2 + 0,10 12,90.+ 0.50 

Glucose 4,9 + 0.65 13.67 + 0.23 1L71 + 0.17 

Sucrose. 3.4 + 0.76 12.80 + 0.16 12.17 + 0.50 

Inulin 2.3 + 0.90 8.20 + 0.80 3.12 + 0.70 



28 RESTRICTED DIFFUSION IN BASAL LAMELLA 

24 

20 

E 16 u 
-x 

<I 
......... 

<{ 12 

8 

4 

' ' 

' ' 

' ' ' ' ' ' ' ' 
' "-, 

' ' 
' ' ' ' ' ' ' ' ' ... , 

' ' ' ' ' ' ' ' \ 
' ' ' \ 

2 

o SONICATOR 

£ SODIUM CHLORIDE 

D GLASS BEADS 

4 6 8 10 
0 

MOLECULAR RADIUS (A) 

Figure 3. A/t:,x Versus the Molecular Radius for the 
Basement Membrane 

45 

20 



46 

TABLE IV 

Ao/6x VALUES-DIFFUSION COEFFICIENTS AND REFLECTION 
· COEFFICIENT MEASUREMENTS 

Method Sonicator Sodium Glass 
Chloride Beads 

.Ar/6x CM 22 21 26 

Calculated Pore 
24.3 24.8 22.3 0 

Radius-A 

Substance D1 cr2 1-cr ()' 1-cr ()' 1-cr 

Water 2. 36 

Urea 1.45 0.15 0.85 0.05 0.95 0.29 o. 71 

Glucose 0.68 0.61 o. 39 0.14 0.86 0.36 0.64 

Sucrose 0.55 0.73 0.27 0.20 0.80 0.33 0.67 

Inulin 0.16 0.81 0.19 0.48 0.52 0.83 0.17 

1Dif:fusion coefficient 2 5 CM /Secx 10 . 

2Reflextion factor. 



Filtration Coefficient Determinations 

Osmotic Pressure Gradient. The.filtration coefficient (LP) was 

measured by increasing the osmotic press~re on the intestinal basement 

membrane. The relationship between volume flux and. osmotic pressure is 

6 2 linear below pressures of 6 x 10 dynes/cm (48) and the slope of the 
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line is defined as the filtration coefficient. Table V gives the values 

of the sucrose osmotic gradient and the radioactive volume flux they 

created through the basement membrane of Ascaris ~· The filtration 

coefficient as determined for the basement membrane of Ascaris is 

-12 5 18.l x 10 cm /dyne-sec (see Figure 4). 

Hyqrostatic Pressure Gradient, The diffusion chamber was modified 

by the addition of a water colunm with a capillary mamometer to establish 

a hydrostatic pressure gradient. Again, the radioactive volume flux of 

tri tiated water through the basement membrane of Ascaris prepared by 

sonication .was determined. Table VI gives the values of the hydrostatic 

pressµre created and the radioactive volume flux through the membrane. 

The filtration coefficient for the basement membrane is 22.2 x 10-lO 

cm5/dyne~sec (see Figure 5). 

Reflection Coefficient.Determin~tions 

The reflection coefficient or Stavennan coefficient, a, is a measure 

of the leakiness of a membrane. A reflection coefficient of one indi-

cates that the membrane is impermeable to the solute while a reflection 

coefficient of zero indicates that the solute.is freely permeable in the 

membrane. Table IV lists the reflection coefficients for the basement 

membrane prepared by the three different methods, as discussed previously. 



TABLE V 

DETERMINATION OF FILTRATION COEFFICIENT OF THE BASEMENT MEMBRANE 
OF ASCARIS MEASURED USING OSMOTIC PRESSURE 1 

Molarity 2 x 102 Vol. FllJX, CM/Sec 'IT Dyne/CM 

0 :-· 0 0 0 

0,05 1.22 1.22 2.26 + 0.24 -
0.10 2.44 2.44 5.05 + 0.23 

0.15 3.66 3.66 7.00 + 0.26 

0.70 4.88 4,88 8.75 + o. 39 

1All figures are for 1.0 CM2 membranes at 25° C. 
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TABLE VI 

FILTRATION COEFFICIENT DETERMINATIONS USING HYDROSTATIC 
PRESSURE GRADIENT ON THE BASEMENT MEMBRANE 

' ' 

Hydrostatic Pressure Vol. 5 Hydrostatic Pressure 
CM of H2o Flux x 10 in Dyne/CM2 x io-3 

3.5 1..6 3.4 

3.8 2.1 3.7 

4.1 2.2 4.0 

s.o 2.4 4.9 

5.8 2.5 5.6 

9.2 3.1 9.0 
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Equiyalent Pore ~ Determinations 

Pappenheimer's Method. Determinations of the average pore size of 

the intestinal basement membrane of Ascaris using Pappenheimer 1 s equa-. 

tion, 

allows for calculation of the pore radius and the results are given in 

Table IV. 
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Pappenheimer 1 s method used the filtration coefficient in estimating 

the average pore radius. As has been previously established the fil tra

tion coefficient can be determined by creating either an osmotic or a 

hydrostatic pressure gradient across .the membrane. For an osmotic pres

sure gradient, a filtration coefficient of 18.1 x 10-12 cm5/dyne-sec is 

measured. If a hyc;lrostatic pressure gradient is established, a filtra

tion coefficient two orders of magnitude higher, 22.2 x 10-lO 

cmS./ dyne,..,sec, is measured. When these fil tr at ion coefficients are sub

sequently used in the Pappenheimer equEJ.tion for calculation of the 

average pore radius, drastic differences in the pore size are seen. Table 

VII is a comparison of the average pore size of the intestinal basement 

membrane of Ascaris ·~.as measured by. using hydrostatic .and osmotic 

pressure gradients to determine the filtration coefficient.· With the 

hydrostatic pressure measurements for determinations of the filtration 

coefficient, the average pore radius is ten times that of the previous. 

method. 

Goldstein.and Solomon Method. Using Renkin's.equation for 
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TABLE VII 

COMPARISON OF THE AVERAGE PORE SIZE OF THE BASEMENT MEMBRANE OF ASCARIS 
AS MEASURED USING HYDROSTATIC AND OSMOTIC PRESSURES 

Osmotic Pressure 

Hydrostatic Pressure 

Soni ca tor 

24.3 X 

26s.o X 

Sodium Chlorid.e 

24.s X 
275.o X 

Glass Beads · 

22.3 .A 

247.o X 
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filtration, Goldstein and Solomol'). (18) expressed the. ratio of the 

apparent area for filtration of the solute (Asf) to the apparent are for 

filtration of water (Awf) 

[2(1 - a)2 .,. (1 - a}4] (1 
r r Asf 

Awf = [2 (1 -

- 2.104 !. + 2.09 (a) 3 - 0.95 (!.)5] r · r · r 
A - A 3 A S 

2.104 ..!!...+ 2.09 c.J!) - o~9s c.1!...) J r r r 

where a is the molecular radius of the probing molecule, a is the w· 

molecular radius of water and r is the equivalent pore radius, knowing 

that 

1 - a 

Rewriting these two equations, they become: 

r2c1 - ~) 2 - c1 - :)4][1 - 2.104; +-2.09 c;) 3 - o.9s c;) 5J 
l - a = ~-----A-.--2--------A----------------A----------A------------A--~. 

[2(1 - ;) - c1 - ~) 4 ][1 - 2.104 ; +. 2.09 c ~) 3 - o.9s c ;) 5] 

Goldstein and Solomon plotted (1 - a) as a function of the radius of 

the test _molecule for various equivalent pore, radii. A family of theo-

retical curves was obtained with the equivale~t pore radius as the 

parameter (see Figure_6), The experi~entally determined values of 1 - a 

for the permeating molecule51 through the intestinal basement meml;>ran~ are 

given in Table IV. The best fit curve for these values.for the pore 
0 

radius is 16. 88 A and thus is the equj,,vahnt pore radius for the basement 

membrane (see Figure 7). 

Permeability Coefficients 

The permeability coefficients (Ps) were determined for thes~ same 

permeat~ng molecules. The radioactive volume flux was plotted against 
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time and a linear regression was used to determine the slope of the line 

which is the classical permeability coefficient (see Table VIII). 

The permeability coefficient is related to the apparent solute 

permeability coefficient (w) by the equation 

P = w 'RT s 

where R is the gas constant 8.317 erg/deg/mole and Tis the absolute 

temperature. 

To ascertain ·the absolute solute permeability coefficient (w), the 

magnitude of the unstirred layer must be defined. Unstirred layers are 

regions of slow laminar flow parallel to the membrane (9). According to 

Dainty (9) the thickness of the unstin:ed layer can vary between 20 and 

500 µ, depending on the rigorousness of the stirring. 

In our system the permeability coefficient was found to be dependent 

on the air lift apparatus at slow bubbiing speeds. At rates below three 

bubbles per second the unstirred layer is considerable and the permea-

bility of water to the membrane was decreased. At very fast rates of the 

air lift, the un~tirred layer.was reduced to a minimum and the pe~ea-

bility of the membrane to water remained constant (see Figure 8). 

To calculate the unstirred layer.measurements of the diffusion of 

tri tiated water across the basement membrane, the permeability coef-

ficient was compared with the filtration coefficient of the membrane as 

determined earlier under an osmotic pressure gradient. Cass and 

Finkelstein (13) have shown. that· in the cas~ of zero unstirred -layer, 

these two coefficients,(P and L) are equal. The ratio of the two s p 

permeability coefficients may be used to estimate the thickness of the 

unstirred layer. I use the equation derived by Milgram (45), 
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TABLE VIII 

PERMEABILITY COEFFICIENTS 

p x 104 w' x 1014 0 x io14 
Substance T w s 

CM/Sec Mol/Dyne/Sec Mol/Dyne/Sec 

Water 25 9.74 3. 93 4.58 

Urea 25 8.34 3.37 5.23 

Glucose 25 6.43 2.59 6.22 

SucTose 25 6.26 2.53 8.56 

Inulin 25 2.53 1. 02 42.74 

IR = 8.314 x 107 ERG/DEG/MOLE 

2T = 298 K. 

3p 
s = w'RT 
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1 ----= 
Ps(TRUE) 

1 - 2 .!. 
ps(OBS) D 

where P (t ) is the filtration coefficient (L which is equal to P s ·rue p · s = 

LP(RT/vw) where vw is the molar volume of water), Ps(obs) is the 

tritiated water permeability coefficient, D is the diffusion coefficient, 

and tis.the thickness of the uns1;:irred layer on both sides of the base-

ment membrane.. The total unstirred layer is thus· equal to a t value of 

61.8 µm for the basement membrane of ·Ascari$ suum using our air lift ...----

system. The unstirred layer on one side of the membrane thus is equal to 

half this value or 30.9 µm. 

The absolute permeability coefficient can be determined from the 

equation (13) 

1 1 
-- -+ w' - · 0 

w 
~o 

D 

where w0 is the absolute solute permeability coefficient and.is given in 

Table VIII. 

Electrolytes 

The permeability coefficients (P ) were determined for sodium, s 

potassium and chloride ions to try.and determine the net charge on the 

intestinal basement membrane. Sodil,llll and potassium ions each have a 

permeability coefficient of 4.0 x 10-4 cm/sec while chloride ions have a 

permeability coefficient of 7.0 x 10-4 cm/sec. Since the chloride ions 

diffuse more readily in.the membrane there is a net positive charge on 

the basement membrane, To confirm this finding, that the net charge on 

the membrane wa$ positive, the pH of the bathing solution was raised to 

a value of 10.5, thus effectively blocking the net positive charge. The 
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permeability coefficient for sodium, potassium and chloride ions were 

again measured and the results are given .in Table IX. The membrane was 

now found to be more permeable to sodium and potassium ions. · If the pH 

is lowered to 2.5, no change in ion selectivity is observed. To confirm 

our findings, the bathing medium was kept at a pH of 7.2 and the positive 

charges on the membrane blocked by the addition of FFDNB to the bathing 

meQ.ium. The membrane increased its permeability for sodium and potassium 

ions. If the negative sites in the membrane are.blocked by the addition 

of a 5.25 mM calcium ion solution, the membrane is then more permeable to 

the chloride ions. Collectively.the evidence indici;i.tes.that at a physio

logical pH the net charge on the basement membrane of the intestine of 

Ascaris suum is positive. Figures 9 and 10 are diagrams of the effects 

of blocking the charges on the membrane and observing the subsequent 

changes in permeability of the membrane to the permeating molecules. 
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TABLE IX 

p AT DIFFERENT pH'S AND WITH VARIOUS BLOCKING AGENTS s 

Molecular 
p x 104 p x 104 p x 104 

Substance- s s s 
Radius CM/Sec CM/Sec CM/Sec 

pH 7.2 pH 2.3 pH 10.5 

Cl 2.9 7.0 8.2 7.0 

Na+ 4.5 4.0 4.0 8.2 

K+ 2.9 4.0 4.0 8.0 

FFDNB CaC1 2 

Cl 2.9 7.0 6.0 28.0 

Na+ 4.5 4.0 11.5 5.0 

K+ 2.9 4.0 12.0 5.4 
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CHAPTER V 

DISCUSSION 

The intestinal basement membrane of Ascaris ~ functions as a 

support.structure upon which the overlying columnar epithelial cells 

rest. · This basement membrane also functions, as a diffusion barrier 

which can be seen by examining its permeability character:i,stics to a 

series o.f non"'."ele~trolytes of graded molecular size. The permeability 

characteristics. which completely desc~ibe a membrane (28) are the pore 

radius, the filtration coefficient, the reflection coefficient, and the 

solute permeability coefficient. Collectively these characteristics 

establish the intestinal basement membrane of Ascaris suum as a barrier 

to diffusion. 

Determining the permeability characteristics of the intestinal 

basement membrane to various hydrated ions, both anions and cations, 

allows for the further identification of this m~mbrane as an ion 

selective barrier. The basement membrane is more permeable to n~gatively 

charged ions than to positively charged ions; This information coupled 

with the transmural potential work of Merz (35) and. biochemical analysis 

of Peczon, et ~· (43) showing a complete lack of sialic acid in the 

membrane, convincingly demonstrates t~at the net electrical charge in the 

ba~ement membrane is positive. 

65 
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Pore Size 

We have used two separate techniqu.es in the determination. of. the 

equivalent pore radius of the. intestinal basement membrane ·Of Ascaris 

suum. Pappenheimer's method is based on the direct measurements of the 

A/D.x, the relative geometric pore area per unit path length, in th~ mem-

brane with isotopically labelled molecules of graded molecular size. It 

is independent,of the fact that the pores· are perpendicular to the mem-

brane surface and that all the water in the membrane is free. Pappen.,. 

heimer's method considers two factors.restricting the diffusion of 

spherical molecules through pores; the first condition is that the per-

meating molecule must pass through the opening of the pore without 

striking the edge of the pore and secondly, viscous,resistance inside the 

pore should be as if no pore were present. This method is further de

pendent upon the measureil)ent.of the filtration coefficient. The filtra-

tion coefficient is measured by determining the radioactive volume flux 

of water through the membrane.created by a pressure gradient. Conse-

quently; knowing the A/D.x values and the filtration coefficient allows 

for calculati,on of the ,average pore radius of the basement membrane; · 
0 q 0 

Using the Pappenheimer methoc1 (40), values of 24.3 A, 24.8 A, and 22.3 A 

were measured for the basement membrane prepared by sonication, ' " 

increasing sodium chloride concentration in the holding meditun, and 

shaking the intestine with glass beads, respectively. 

A second method, the Goldstein and Solomonmethod, makes use of the 

reflection or Stavennan coefficient, (a). The osmotic pressure developed 

across the membrane by a substance· to which the .membrane ,is penneable is 

always smaller than that produced by a nonpermeating molecule (65), · If 

the solute molecules permeate across.the membrane through the same 
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channels as water, the movement of solute and water interact in the mem-. 

brane and the observed osmotic pressure (Tiobs) may be lower than the 

theoretical osmptic pressure (Titheor). The ratio of the two pressures is 

the reflection factor, 

CJ = TI OBS 

TITHEOR 

It was stated by Durbin (13) and shown in detail later by Durbin (14) 

that 

1 - cr 

where As/ Awf is the relative geometric pore area per unit path length 

(As/bx) of the solute divided by the relative geometric pore area per· 

unit path length (A~f/bx) for water. Goldstein and Solomon plotted 

(1 -cr) as a function of the radius of the test molecule to determine the 

best fit curve for the pore radius. For the basement.membrane.of Ascaris 
0 

a value of 16.88 + 4.7 A was measured. The main point of the .criticism 

of tnis method is that 1 - cr is always different from zero for a per-

meating .solute, even if there are no pores in the membrane (9, 10). 

The average pore size of the basement membrane determined by these 

two methods is about 17 A and 24 A. Statistically they are from tne same 

group. An average pore radius of 17-24 ~moves through.this.membrane 

very slowly, Most molecules, however, that would normally be passing 

into the pseudocoelomic cavity (molecules such as glycerol with a 

molecular radius of 2.74 A., or glucose with a molecular radius of 4.40 A, 
and small mole9ular weight amino acids, dipeptides or tripeptides), all· 

are sufficiently small tQ pass through the basement membrane by simple 

diffusion, i.e., without.an active carrier mediated process. 
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The obvious advantage of the Goldstein-Solomon method over the· 

Pappen~eimer method is the fact that it is not dependent on measurements 

made of the filtration coefficient, as is the Pappenheimer method. The 

reason that the filtration coefficient determination can be of concern. 
\ 

will be discussed in the following section. The Pappenheimer method is. 

independent of the.fact that the pores are perpendicular in the membrane. 

This is of real advantage for characterization of a basement membran.e •. 

The basement membrane does not have pores in the classical sense, i.e., 

tub.es which pass through the entire width of the membrane, Rather, the 

basement membrane is a felt..,.like or cheese-cloth type of membrane through 

which the· solutes must "trickle". Measurement of the basement membrane 

as a.barrier to diffusi0n is characterized by an "average" pore radius, 

or a theoretical pore which, if it did exist, would impede the free flow 

of s9lutes through it. 

Determination of the Filtration Coefficients 

The filtration coefficient is measured by determining the radio.,. 

active volume flux of water through the membrane created by a pressure 

gradient.. This pressure gradient may be established either by increasing 

the sucrose concentration on.one side of the membrane, an osmotic pres-

sure gradient. or by the addition of a water column to one side of the 

membrane to create a hydrostatic pressure gradient. According to 

Onsager (37) the flux of water through the membrane is the same regard-

less of the type of pressure gradient established, i.e., osmotic or 

hydrostatic pressure, It is not obvious that a concentration difference 

across a membrane should have the same effect as a pressure difference 

and this leads to an osmotic bulk flow rather than a diffusion of water 



through the pores in the membrane. The fact·that the same coefficient, 

LP, is use.d to describe flow of water through a semipermeable membrane 

under the action of either a hydrostatic or an osmotic pressure differ

ence doesn't imply that measurements of the same coefficients; LP, on a 

basement membrane using both a hydrostatic and osmotic pressure differ

ence will yield comparable results. 
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In dete:rmining the filtration coefficient on the intestinal basement 

membrane of Ascaris, a value of 18.1 x lo-12 cm5/dyne-sec was obtained 

using an osmotic pressure gradient and a value of 22.2 x 10-lO cm5/dyne

sec was obtained using a hydrostatic pressure gradient. Knowing from 

Onsager's relationship (see Chapter II) and from the work done with 

artificial membranes· (33 '· 34) that the osniotic pressure is equivalent to 

hydrostatic pressure gradients, within the semipermeable membrane, the 

question arises as to why the apparent discrepancy in the filtration 

coefficient determinations. 

Other workers in the field. have observed and reported differences in 

the filtration coefficient using hydrostatic .and osmotic pressures in the 

same living membrane. Coulter (57) determined the filtration coefficient 

of the .blood-brain barrier in .rabbits by applying a hydrostatic pressure. 

Fenstermaker and Johnson (57) measured a filtration coefficient across 

the. same barrier by using an osmotic pressure gradient, and filtration 

coefficients two orders of magnitude lower than the one measured by the 

hydrostatic pressure method were seen. This was.the same type of results 

found with the ,giant squid axon by Vargas. (58) and with the alga cells 

(58) and also in our experiments with the intestinal basement membrane of 

Ascaris.suum. 

The explanation for the discrepancy in the filtration coefficients 
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measured using two differe~t pressure gradients lies with the phrase 

"within the membrane". Mauro (34) has shown that for an artificial 

membrane the osmotic pressure is equivalent to the hydrostatic pressure 

measured within the.membrane. The· fact that these two pressures are 

equal within the membrane is ~due to the fact that the artificial membrane 

contains water-filled pores passing through the width of the entire mem

brane. Basement membranes 1 as was .. previously discussed, do not contain 

typical cylindrical-like pores .which traverse the entire membrane. The 

glycoprotein structure of the membrane.looks rather like felt-work. One 

or more channels of a larger diameter could permit a high flux of solute 

through the membrane when a hydrostatic pressure is applied, thus 

accounting for the increased filtration coefficient with the increased 

hydrostatic pressure. Another possibility is the. expansion of the pores . 

caused by a hydrostatic pressure increasing the penneabili ty of the mem

brane to water and solutes, Again the effect is one of increasing the 

flow of water through the membrane, and hence the filtration coefficient .. 

Collectively these filtration coefficients are used in determining 

the average pore radius as given in Table VII. Note the vast differenc.e 

between the average pore radius as d,etermined using the two different 

filtration coefficients. This again shows the advantage of using the 

Goldstein-Solomon method of pore radius determinations, since it does n0t 

depend,on the filtration coefficient measurements. 

Two sources of error do oc~ur in the .calculations of the filtration 

coefficients by establishing an osmotic pressure gradient. One is that 

sucrose is not completely impermeable to the basement membrane, i.e., a 

reflection coefficient of 0.73 as determined by our experimentation, and 

as a result. the calculated. osmotic pressure is slightly greater than. that 
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actually created across the membrane. However, the same solute, sucrose, 

was used in creating all of the osmotic pressl;lre gradients and would. 

effect the calculated osmotic pressure gradients at all concentrations to 

an equal and proportional degree. As such, it would. not effect the slope 

of tl)..e line which is used in the determination of the actual filtration 

coefficients. Also, the time interval for the experiment was of short 

duration,. allowing for the diffusion of only a very small amount of 

sucrose, and thus effecting the dec;:rease·in osmotic pressure on the side 

of the chamber only slightly. 

The second error results from the 11opposi te11 diffusion of water. 

against elther the osmotic or hydrostatic .pressure.gradient. The actual· 

volume flux of water through the membrane would have been expected to 

have.been_smaller. This would be the diffusion of water driven by the 

osmotic or hydrostatic pressure minus the diffusion of water that 

occurred against the concentration gradient, i.e., the net volume. flux 

of water. The reason this was. not calculated was that the experiment was. 

done during very short time intervals and the opposite diffusion then 

would be negligible. 

Permeability Coefficients 

In measuring the average pore radius of the basement membrane, three 

different methods for removing the epithelial cells were used. The com-. 

parison of the.average pore.radii as determined by these methods in con-.: 

jtmction with the.electron photomicrographs indicates that both the glass 

bead and sodium chloride preparations fail to remove completely the 

epithelial cells from the basement membrane. Consequerrt1y, all the 

studies carried out on the permeability characteristics of the basement 



72 

membrane use the basement membrane prepared solely by the sonication 

method. 

The classical permeability coefficient (Ps) has been determined for 

a series of non-ionic molecules of graded molecular size, The apparent 

solute permeability coefficient (w') is derived from the equation 

w' = P /RT. In _order to calculate the absolute solute permeability s 

coefficient w, the effect of the unstirred layer had to be determined. 

The unstirred layers are regions of slow laminar flow parallel to 

the membrane, This -means that in the modified Ussing chamber used in 

these experiments, with the air lift system reducing the unstirred layer 

to a minimum, the apparatus still had a calculated unstirred layer on one 

side of the chamber of 30,9 µm. Thus during permeability coefficient 

measurements the diffusing molecules were diffusing first th~ough an un-

stirred layer of 30,9 µm, and subsequently through the membrane and 

finally through another unstirred layer on the opposite side of the 

chamber. This unstirred layer was kept to a minimum value of 30.9 µm 

only if. the air-bubble rate was greater than three bubbles per second._ 

Uncorrected permeability constants higher than 10-4 cm/sec (31) are 

likely to.be considerably affected by the presence of the unstirred layer 

for the permeability of the unstirred layer may be.of the same order of 

magnitude as the membrane itself. Unlike the classical permeability 

coefficient P , the filtration coefficient L of the membrane is only s p 

very slightly.affected by the unstirred layer (9), and so is not of con-

cern in the differences seen between the hydrostatic and osmotic pressure 

measurements on the filtration coefficient (65). 
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Ion Selectivity 

The transmural potential existing across the in vitro intestine of 

Ascaris ~is pseudocoelomic negative with respect to a positive 

luminal electrode. Merz (35) and Beames,~~· (3) have postulated that 

the reason for this positive luminal and pseudocoelomic negative paten-

tial difference is due to the basement membrane. Merz excogigated that 

the basement membrane is more permeable to chloride ions, allowing for 

faster diffusion through the membrane and thus a net negative pseudocoel. 

The tight junction between the columnar epithelial cells at the apex of 

these cells near the lumen appears to be a "leaky" tight junction allow-

ing for a more rapid diffusion of positive ions back into the .lumen of 

the intestine. 

To determine if the basement membrane is an ion selective barrier, 

characterization of the membrane to various ions was investigated. The 

membrane is more permeable to chloride ions, 7 x 10-4 cm/sec, than it is 

to sodiu~ or potassium ions, 4 x 10-4 cm/sec. Collectively this informa-

tion suggests that the .net electrical charge in the.basement membrane.is 

positive. At a high pH of 10.5 the positive charges are blocked and the 

basement membrane becomes more permeable to sodium and potassium ions. 

If the high pH fluid is replaced with our normal basal saline at a pH of 

7 ~ 2, . the permeability coefficient for sodium and pota~sium returns towards 

-4 the normal value of 4.0 x 10 cm/sec, although it doesn't completely re-

turn to normal even after washing the tissue three times, presumably be-

cause of the remaining negative charges in the interstices of the 

basement membrane. At low pH values no permeability changes are noted 

because the net charge in the .membrane is still positive. 

When the bathing medium is kept at a neutral pH and the positive 
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charge in the membrane is blocked by the addition of 1,5 difluro, 2,4 

dinitrobenzene (FFDNB) to the medium. the penneability of the sodium and 

potassium ions is increased. If the FFDNB is removed and replaced with 

our normal basal saline, the permeabiiity characte~istics for sodium and 

potassium return towards normal. When the negative sites in the membrane 

are blocked by the addition of a.5.25 mM calcium ion solution. the per

meability of the sodium and potas~ium ions in the membrane remains un

changed. 

Collectively the information demonstrates that the net charge in the 

intestinal basement membrane of Ascaris is positive, being more penneable 

to the negatively charge ion.s than to the positively charged ions. This 

gives c~edence to the hypothesis that the basement membrane is largely 

responsible for the negative transmural potential of the gut of Ascaris 

suum. 



CHAPTER VI 

SUMMARY AND CONCLUSION 

The intestinal basement membrane of Ascaris suum functions as a 

support structure upon which the overlying epithelial cell$ rest .. It. 

functions also as a barrier to the free diffusion of elect~olytes and 

non-electrolytes. To substantiate thelatter, that the basement membrane 

functions as a barrier to simple diffusion, determinations were made as 

to the pore.size, the filtration coefficient, the reflection coefficient 

and. the .. solute permeability coefficient for a series of non-electrolytes 

of graded molecular size. This basement membrane functions further as an 

ion selective barrier, being more permeable to anions than to cations. 

1. Pore size measurements made using Pappenheimer's method gave the 

results of 24 A and the Goldstein and Solomon method gave a result of 

17 ft.. 

2. Filtration coefficient measurements made using an osmotic pres.., 

-12 5 sure gradient gave an L of 18.1 x 10 cm /dyne-sec. A filtration . p . 

coefficient.measured using a hydrostatic pressure gradient gives an.L of 
p 

22,2 x 10-lO cm5/dyne..,sec. 

3. The reflection coefficient measurements made for the basement 

membrane prepared by sonication were 0.15, 0.61, 0.73 and 0.81 _for urea, 

glucose, sucrose, and inulin, respectively. 

4. Permeability coefficients were determined for water, urea, 

glucose, sucrose.and inulin and the results are 9.74 x 10-4 cm/sec!, 
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-4 -4 -4 8.34 x 10 cm/sec, 6.43 x 10 cm/sec, 6.26 x 10 cm/sec, and 2.53 x. 

10-4 cm/sec, respectively. 

Collectively. these results allow for characterization of the base-

ment membrane as.a barrier to diffusion. 

This basement .membrane also functions as an ion selective barrier. 

To demonstrate this the penneability coefficients were made for various 

ions. A penneability coefficient of 4.0 x 10-4 cm/sec was determined for 

sodium and potassium ions while chloride ions have a .permeability coef.,. 

ficient of 7.0 x 10-4 cm/sec. 

1. The P determined with FFDNB as a blocking agent of the positive s 

charges in the membrane increased to sodium and pota~siurn and remained 

constant for chloride ions. 

2. At.high pH's of 10.S, again~the P was.increased to sodium and s 
potassium ions. · 

Collectively this· incJ,icates that the intestinal basement membrane of 

Ascaris suum is more,permeable to anions than to cations. This supports 

the theory that the ionic selectivity of the basement membrane plays a. 

major role in establishing the transmural potential across the gut of 

the worm.· 
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