
LINEAR STATISTICAL INFERENCE AS RELATED TO THE 

INVERSE GAUSSIAN DISTRIBUTION 

By 

ANNE SOBIEGRAJ DAVIS 
-;::::--

Bachelor of Science in Mathematics 
Michigan Technological University 

Houghton, Michigan 
1968 

Master of Science 
Rensselaer Polytechnic Institute 

Hartford, Connecticut 
1971 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1975 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulf illrnent of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
July, 1977 



, ·.' _; j 

IL..~ 
I q 77 'D 
D :i..ttJ 11 
~f' ;L 



~t\OMA-sj 
~\, ~~ 

O UNIVERSITY ~ 

~ARY 
LINEAR STATISTICAL INFERENCE AS RELATED TO THE 

INVERSE GAUSSIAN DISTRIBUTION 

Thesis Approved: 

Dean of the Graduate College 

1000946 

ii 



ACKNOWLEDGMENTS 

The author is indebted to all the faculty members of the Statistics 

Department for the encouragement and assistance they have given her 

while in pursuit of this degree. Some members of the faculty deserve 

special mention. 

The author wishes to express her appreciation to Dr. J. Leroy 

Folks who served as her major thesis adviser, suggested the problem, 

guided her in the preparation of the thesis, and saw that she received 

financial support while attending Oklahoma State University. Apprecia

tion is also expressed to Dr. Stephen Tweedie, Dr. P. Larry Claypool 

and Dr. Robert D. Morrison for serving on the author's advisory 

committee. 

Finally, the author wishes to express her appreciation to Cathy 

Scott, who served as her typist. 

iii 



Chapter 

I. 

TABLE OF CONTENTS 

INTRODUCTION 

Background and Need for the Study 
Statement of the Problem . • 
Organization of the Report • 

II. REVIEW OF THE LITERATURE 

Point Estimation . • . 
Hypothesis Testing • • 
Confidence Intervals . 
Other Relevant Findings 

Page 

1 

2 
3 
4 

5 

6 
7 
8 

III. A LIKELIHOOD RATIO TEST FOR THE EQUALITY OF TWO A'S 11 

IV. POINT ESTIMATES AND THEIR PROPERTIES IN THE 
REGRESSION MODEL . • • . 

Model A 
Model B 
Model C 
Model D 

V. TESTS OF STATISTICAL HYPOTHESES AND INTERVAL 
ESTIMATION ON B . . . . . . . . • 

·Model A 
Model B 

VI • . SUMMARY • • . . 
BIBLIOGRAPHY • 

APPENDIX 

iv 

. 18 

• 19 
. 2r 

• • • • • 32 
• • • • • • 35 

• 37 

• • • • 38 
• • 39 

. 49 

• 56 

• 58 



TABLE 

Table 

I. UNBIASED ESTIMATES OF S FOR MODEL C AND D 

v 

Pag_e 

55 



LIST OF FIGURES 

Figure 

t. A Typical Graph of g(Q) . . . • 

2. A Graphical Method to Determine Estimates of a and S 

vi 

Page 

16 

31 



CHAPTER I 

INTRODUCTION 

When studying the first passage time distribution of the Brownian 

motion process with positive drift, Tweedie (20) was able to obtain 

the logarithm of its moment generating function by inverting the loga-

rithm of the moment generating function of the normal distribution. 

Because of the inverse relationship, he named the density of this first 

passage time distributon the inverse Gaussian distribution. 

More specifically, a random variable with an inverse Gaussian 

distribution has the density 

f(x;µ,A) = ~ A exp l- A.(x-]J) 2 l, x > O, where ]J > 0 and A.> 0 
2Tix 3 2]J 2 x ~ 

= O, otherwise , 

with mean = ]J and variance 

A review of the literature demonstrates that scholars are paying 

increasing attention to the inverse Gaussian distribution. However, the 

use of this distribution is constrained by the fact that the statistical 

methodology for it has not been rigorously developed. One particular 

area of the inver~e Gaussian distribution which remains underdeveloped 

is the use of regression analysis. The purpose of this thesis is to 

shed some light on this problematic area. 
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Background and Need for the Study 

According to Parzen (15) 

when a particle of microscopic size is immersed 
in a fluid, it is subjected to a great number 
of· random independent impulses owing to collisions 
with molecules. The resulting vector function 
(X(t), Y(t), Z(t))representing the position of 
the particle as a function of time is known as 
Brownian motion. (p. 2) 

2 

It was observed by Cox and Miller (8) that if we study the probabil-

ity density function of the time t when the one dimensional Brownian 

motion process first attains the value a(~O), this time has the inverse 

Gaussian distribution. 

Recently, the inverse Gaussian distribution has been found to have 

application in several widely disparate fields. Arthur Nadas (14) uses 

as an example of the Brownian motion process the lifetime of an elec-

tronic device having thin metal-film conductors which may fail due to 

mass depletion at a certain location on the conductor. Banerjee and 

B attacharyya (1) show that demand for frequently purchased low cost 

consumer products has an inverse Gaussian distribution. Wasan (23) 

observes that in market research, data frequently have the inverse 

Gaussian distribution. He argues that a variation of sales depends on 

the volume of sales. If the number of sale orders is large then the var-

iation in sales is expected to be large and the volume also will be large. 

The characteristic of the variance being proportional to the mean is one 

which is compatible with the inverse Gaussian distribution. 

Although the most common application of the inverse Gaussian distri-

bution is its use in failure data, the inverse Gaussian is not used as 

frequently as are the exponential, log normal, or Weibull distributions. 

Undoubtedly the less frequent use of the inverse Gaussian is prompted by 



3 

the fact that the statistical methodology of this distribution has not 

yet been rigorously developed. The purpose of this paper is to add 

to __ the development of the inverse Gaussian distribution. 

Statement of the Problem 

In this thesis, our main objective is to investigate some matters 

of statistical inference related to the inverse Gaussian distribution. 

Two problems are investigated. The first problem concerns deriving 

a test to compare the A.'s,. the secondary parameter of the distribution, 
1 

when there are two inverse Gaussian populations, For the second problem 

assume that a sequence of independent random variables Y1 ,Y2 , •.. , Yn 

satisfies 

where 

Yi = X0 + E µ i' i 1,2, ... ,n 

Y. is an observable random variable, 
1 

X is a vector of known quantities, 

S is a vector of unknown parameters 

E. is an error term such that E. - (0,07) and E1. is 
1 1 1 

independent of E. for all i+j. 
J 

In the usual regression analysis, we assume that the random variables 

are normally distributed. Suppose instead, that the Y. 'shave an 
1 

inverse Gaussian distribution, Y. - IG(XS,A.), Then we need to be able 
1 -- 1 

to estimate the parameters of the population, set confidence intervals 

on the parameters, and test hypotheses about them. 

The following are the objectives of this paper. 

1. To construct a likelihood ratio test for the hypothesis H0 : A=n 

against the alternative H0 : A'n where x1 ,x2 , ••• ,Xn is a 
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random sample from an inverse Gaussian distribution with 

parameters µand /..,and Y1 ,Y2 , ... ,Yn is a random sample from 

an inverse Gaussian distribution with parameters V and n • 

2. To determine maximum likelihood estimates and unbiased 

estimates of 8, /..., and a: for the regression model. 
- l. l. 

3. To determine the distributional properties of the estimates 

in the regression model. 

4. To construct a test for the hypothesis H0:8= B* against the 

alternative H 8 I 8* for the regression model, where 
a 

8 is a scalar. 

Organization of the Report 

The organization of this report is as follows. The literature 

pertaining to the inverse Gaussian distribution is reviewed in Chapter 

II. In Chapter III a test of the hypothesis concerning the equality 

of the /..'s when there are two inverse Gaussian populations is derived. 

Chapter IV begins the analysis of the regression model. Here various 

models are discussed, estimates are determined, and the properties of 

these estimates are investigated. Continuing with the regression 

model, the problem of testing statistical hypotheses and setting confi-

dence intervals on the parameter S, where~ is a scalar, is discussed 

in Chapter v. The thesis is then briefly summarized in Chapter VI. 



CHAPTER TI 

REVIEW OF THE LITERAWRE 

Let x1 ,x2 , ••• ,Xn be a random sample from an inverse Gaussian 

population with parameters µ and A • Then the probability density 

function of X. is 
l 

= O, otherwise • 

for x.>O, where µ>O and \>O 
l 

Because of its several emergent applications (Baneriee and Bhattacharyya 

(1), Nadas (14), Parzen (15), etc.), scholars are turning their 

attention to developing the inverse Gaussian distribution. To date, 

this development has roughly followed the logical sequence of development 

of any distribution: point estimation, hypothesis testing, and setting 

confidence intervals. The pages which follow review the literature on 

the inverse Gaussian distribution. The review is organized along the 

lines of the sequence outlined above. Developments relevant to the 

topic of this report are highlighted. Other developments are detailed 

elsewhere (Chhikara(3)). All major publications dealing with the inverse 

Gaussian distribution are cited in the bibliography. 

5 
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Point Estimation 

Tweedie (21) determines maximum likelihood estimates of the para-

meters µ and A, of the inverse Gaussian distribution where A = A w ~and 
l i 0 i 

w. is known and positive. These are 
l 

Ii 

I w. x. 
i=l- l 1. 

µ 
n 
I w. 

i=l l 

n w. 
A. l 

l n 
1 1 I w. (- - ~> 

i=l i xi µ 

If the w.'s are equal 
l 

then µ 

* 

x and 
n 1 1 

A.= n/.E (- - ::-) 
l i=l x. 

l x 

µ has an inverse Gaussian distribution with parameters µ and 

Also, 

n n\ 
Ao . L:1 w. , and 

i= i Ai 
has a chi-square distribution with n-1 degrees 

of freedom. In addition µ and Ai are stochastically independent and 

(µ,A.) is jointly sufficient for (µ,A.). The.completeness property of 
l l 

the inverse Gaussian distribution (Wasan(23), cited in Chhikara(3)) 

allows us to find the minimum variance unbiased estimates of µ and A 

(7)' 

n 

I w. x. (n 3)wi l l -" i=l 
µ = A. 

n l n 
1 1 I W, I w.(- - A") 

i=l l i=l i xi µ 

* ·In this paper, the notation ~ refers to a maximum likelihood 
estimate. If the estimator is unbiased, the notation " is used. 



A 

Or if thew. 's are equal, µ = x and 
1 

:\. 
1 

n - 3 

n 1 1 l (- - ::-) 
i=l xi x 

Tweedie (21) also proves the following two properties when X. has an 
1 

inverse Gaussian distribution with parameters µ. and A .• 
1 1 

1. For c > O, cX. has an inverse Gaussian distribution with 
1 

parameters cµ. and c:\ .• 
1 1 

n 
2. .E1x. has an inverse Gaussian distribution if and only if 

1= 1 

jJ. 2 

1 - k for all i = r- 1,2, ••. ,n. The parameters then for 
1 

Hypothesis Testing 

Let x1 ,x2, ..• ,Xn be a random sample from an inverse Gaussian 

distribution with parameters µ and A • Chhikara and Folks (6) develop 

a uniformly most powerful (UMP) test for the hypothesis H0 : lJ ~ µ 0 , 

Ha: µ < µ0 when A is known. They determine UMP unbiased tests for the 

following three cases, 

1. HO: jJ = l.lo 

H a : 
µ :f l.lo A known 

2." HO: jJ < l.lo -

H : jJ > l.lo a A unknown 

3. HO: jJ l.lo 

H 
a : 

jJ :f l.lo A unknown • 

7 
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For two independent random samples x1,x2 , •.• ,Xn, from IG(µ,A) and 

Y1 ,Y2, .•. ,Yn' from IG(V,A) Chhikara (4) studies hypothesis testing about 

the means for the following cases 

1. HO: )J < v 

H : )J > v A known a 

2. HO: )J v 

H : )J a :f v A known 

3. HO: )J < v 

H : )J > v a A unknown 

4. HO: )J = v 

H : )J :f v 
a A unknown • 

He determines UMP unbiased tests for all of the above cases. 

Tweedie (21) develops an analogue to the analysis of variance for 

testing equality of several means for a nested design when the observable 

random variable has an inverse Gaussian distribution. His result is 

identical to Chhikara's result for case 4 above, when the problem is 

reduced to a one way analysis on two inverse Gaussian populations. 

Shuster and Miura (19) advance the development of the inverse Gaussian 

distribution by devising a two way analysis of reciprocals for the case 

where the ratio of the.mean to the variance is constant for each variate. 

Confidence Intervals 

From the UMP unbiased tests, Chhikara and Folks (6) determine a 

uniformly most accurate unbiased confidence interval for )J when >.. is 

unknown to be 



if 

1 - /iv/(n-1) tl-a/ 2 > 0 

and the confidence interval is 

where 

(x[l + l'xv/(n-1) tl-a/21-1 , 00) otherwise ' 

v 
n 

l/n l 
i=l 

1 1 (- - -) 
xi x 

* 

Of course, confidence intervals can be obtained for A from the 

chi-square distribution. 

Other Relevent Findings 

Tweedie (21) determines the characteristic function of an inverse 

Gaussian random variable X which is given by 

~X(t) = exp[A/µ{l - (1 - ---::A~ 

and all moments exist. The rth moment about zero is 

and 

* 

r 
]J 

r-1 
l 

s=O 

(r - 1 + s) ! 
s!(r - 1 - s)! 

(L) s for r > 1 ' 
2A ' 

r 
\ (2r - s)! (2A)s f > 1 l , or r • 

s=O s! (r-s) ! µ 

Using a different approach, Seshadri and Shuster (17) obtained 
the same confidence interval as Chhikara and Folks. 

9 
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Some moments which will be used later are 

E(X) = µ 

E(X2) = µ2 + µ3A-l 

There are many interesting parallels between the inverse Gaussian 

and the normal distribution. One of them which will be used later is 

proved by Shuster (18). Recall that if X has a normal distribution with 

parametersµ and 0 2 , i.e., if 

x E: R 
µ E: R 
0 > 0 

then (x-µ) 2/(202) has a chi-square distribution with 1 degree of freedom. 

Shuster shows that if X has an inverse Gaussian distribution with para-

metersµ and A , i.e., if 

f(x;µ, A) = ~21TAx3 exp {- A(x-µ)2} 
2 µ2 x x > 0 

µ > 0 
A > O 

then X(x-µ) 2 /(µ 2 x) has a chi-square distribution with 1 degree of free-

dom. 



CHAPTER III 

A LIKELIHOOD RATIO TEST FOR THE 

EQUALITY OF TWO A'S 

In this chapter the likelihood ratio test for H0 : Al = A2 versus 

Ha: Al 1- A2 will be derived. Since there exists a uniformly most power

ful unbiased test of the null hypothesis H0 : µ 1 = µ 2 against the alter

native Ha: µ1 i µ 2 when Al= A2, it is necessary to have a test procedure 

for the equality of the A. 's. 
1 

Suppose we have a probability density function f(x;8) with the para-

meter space specified by n . Suppose a sample of n values x1 ,x2 , ••. ,Xn 

5_s taken and that the likelihood function L(X1 ,x2 , ••• ,Xn;8) is formed. 

If we wish to test the hypothesis H0 : 8 E w against the alternative 

H : 8 E (n - w), the likelihood ratio test gives us the test statistic 
a 

where L(n) is the maximum of L with respect to e subject to the condition 

that 8 En. L(w) is the maximum of L with respect to 8 subject to the 

condition that 8 E w. If L(w) is close to Lo;2), we expect H0 to be true 

and we have no reason to reject H0 ; if, however, L(w) is quite distant 

from L(n), we expect H0 to be false and we reject H0 . So we reject H0 
A 

if A is small and not if A is large. Since L(w) and L(n) are probability 

density functions, A > O; and since w is a subset of ~ , A< 1 • 

11 
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Let X = (x1 ,x2 , ••• ,Xn) be a random sample of size n from an inverse 

Gaussian distribution with parameters µ and A • Let Y 

be a random sample of size m from an inverse Gaussian distribution 

with parameters v and n . Suppose we are testing H0 : A = n against 

H : A 1 n . Then under the null hypothesis a 

and 

Now 

and 

L(w) 
A (n+m)/2 n 1 

= r27TJ TI 3/2 
i=l xi 

• exp l-~ [ z 
2 i=l 

m 1 
TI i=l 3/2 

Yi 

2 µ x. 
l. 

A [ + ](n+m)/2 L(w) = n m 
µ 1 1 m 1 1 
l (- - _) + l (- - =) 

i=l xi x i=l Yi y 

n 1 
TI 
i=l xi3/2 

L(Q) 

m 1 
TI i=l 3/2 

Yi 

n 1 
TI 
l.·=1 3/2 xi 

exp{- (n+m)} 
2 

m 1 
TI 
i=l 3/2 

Yi 

n (x.-µ) 2 

l \ 
m 

- .!l l 
i=l x.µ 

l. 
2 i=l 

L(Q) =r n ] n/2 [ m ] m/2 
n 1 1 m 1 1 l (- - =) l (- - =) 

. i=l xi x i=l Yi y 

1 (m+n)/2 
( 2TI] 

n 1 
TI 
i=l x. 312 

1. 

m 1 
TI 
i=l 3/2 

Yi 

exp {- (n+m)} 
2 



So that 

L(w) _ --.,..- -
L(St) [ 

n + m 

n 1 1 l (- - =) + 
i=l xi x 

m ] (n+m)/2 

l (_!_ - l=-) 
i=l Yi y 

[ 
n 1 1] l <- - ::-) 

i=l xi x 
• 

n 

n/2 

[ 
m 1 1 Jm/2 l (- - =) 

i=l Yi y 
m 

(m+n)(n+m)/2 

n/2 m/2 n m 

m 1 1 n 1 1 
Now let Q = l (- - _)I l (- - =) • 

i=l Yi y i=l xi x 

1 
n/2 

m 1 1 
-~1(Yi -y) 

l+-1_-___ _ 

n 1 1 l <- - -::-) 
i=l xi x 

We will prove that Q > 0 

n 1 1 
by using mathematical induction to show l (- - ~) > 0 for all x. > 0. 

i=l xi x 1 

Let n = 2, then 

n 

I > 0 

i=l 

because x. > 0 for i 
1 

1,2. Now assume 
n 1 1 l (- - =) 2: o. 

i=l xi x 
This implies 

that 
n 1 
l 

i=l xi 

n 
n2 I l 

i=l 
x > o. 

i -

implies 

n+l 
~ _!_ -
L x. 
i=l 1 

(n+l) 2 
n+l 
l xi 

i=l 

> 0 • 

We want to show that this assumption 

13 



Now 

n+l 
(n+l) 2 

n 2 (n+l) 2 2 

I 1 I 1 n 1 + 
n 

+---
x. n+l x. n xn+l n+l n 

i=l l. l i=l l. l l l x. x. x. x. 
l. l. l. l. 

i=l i=l i=l i=l 

so we need merely to show 

1 (n+l) 2 2 
+ n > 0 --- . 

xn+l n+l n 
l x. l x. 

i=l l. 
i=l l. 

But the left hand side of the inequality is equal to 

n+l n 
2 

n 
2 

n+l 
l x. l x. - (n+l) xn+l l x. + n xn+l l x. 

l. l. l. l. i=l i=l i=l i=l 
n+l n 

xn+l l x. l x~ 

i=l 
l. 

i=l l. 

and the denominator is always positive since x > 0 for all i, so we 
i 

need to show that the numerator is non-negative. Rearranging terms in 

the numerator we find it is equal to 

So 
n 

l 
i=l 

(_!_ - ~) > 0 
x. x 

l. 

for all n and hence Q ~ O. 

When 
n 1 1 l <- - -=-) = 

m 1 1 l (- - =) then 
i=l xi x i=l Yi y 

(m+n)(m+n)/2 (l/2)(n+m)/2 
n/2 m/2 

n m 

We want to reject HO for small values of A • For a fixed n and m, A 

is a function of Q and is small for either large or small values of Q 

so that.we can use Q as a test statistic. To 1 see this, we investigate 

the behavior of Q. 

14 



Let 

, n/2 m/2 
An m __ _,...... _ _,...... = g ( Q) 

1 n/2 1 m/2 

[l+Q] [l+(l/Q)] (rn+n)(rn+n)/2 

Then 

h(Q) ln g(Q) (n;rn) ln(l+Q) + (m/2) ln Q 

and 

h I (Q) (n+rn) 
2(l+Q) +m/(2Q) 

so that 

h'(Q) > 0 when Q < m/n 

0 when Q m/n 

~ 0 when Q > m/n 

which implies g(Q) is an increasing function when Q < m/n and is 

a decreasing function when Q > m/n • A typical graph of g(Q) might 

look like Figure 1. 

So /.. < c implies 

(n+rn)(n+rn)/2 
n/2 m/2 

n m 

which implies 

\!J 1 1 l (- - =) 
i=l Yi y 

n 1 1 l (- - =) 
i=l xi x 

lies outside of [a,b]. 

g 

m 
1 1 l (- - =) 

i=l Yi y 
< c 

n 
l 1 1 

(- - ....-) 
i=l x. x 

l 

15 



Now 

and 

so 

m 1 1 
n I (- - =) ~ X2 (m-1) 
i=l Yi y 

n 1 1 
A l (- - -) .., X2 (n-l) 

i=l xi x 

(n-1) 
m 1 1 
I c- - -> 

i=l Yi y 

n 1 1 cm-1> I <- - =) 
i=l xi x 

is distributed as an F statistic with m-1 and .n-1 degrees of freedom 

under the null hypothesis. The constants a and b are usually selected 

so that if A = n. 

a -1/2 J 1 (-1-)1/2 __ x __ _ 

0 S(~, n;l) n-1 
dx 

00 

J 1 (-1-)1/2 
b S(~, n;l) n-1 

-1/2 
~~-x----~- dx = a/2 

where a is the significance level of the test • 

16 



g(Q) 

n/2 m/2 
en m 

(n+m)(n+m)/2 

a m/n b 

Q 

Figure 1. A Typical Graph of g(Q) 
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CHAPTER IV 

POINT ESTIMATES AND THEIR PROPERTIES 

IN THE REGRESSION MODEL 

A total of four models will be presented in this chapter. They 

will be explained here and then they will be ref erred to throughout this 

chap,ter. They are listed in the order in which they are discussed. 

Model A. Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sample from an 

inverse Gaussian distribution with parameters BX. and A such that 
]_ 

Y. =BX. + E. where Bis an unknown scalar constant, X. is a known 
]_ ]_ ]_ ]_ 

quantity , and E. is an error term with zero mean and independent of 
]_ 

Ej (i#j) • 

Model B. Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sample from an inverse 

Gaussian distribution with parameters BX. and 
]_ 

A. such that Y. = BX.+E .• 
]_ ]_ ]_ ]_ 

Y. also has the property that the ratio of its variance to its mean is 
]_ 

the same for all i 1,2, ••• ,n. 

Model C. Let y = (Y 1 'y 2 ' 0 0 • 'y n) 

Gaussian distribution with parameters 

E. are as in model A. 
]_ 

be a random sample from an inverse 

a + BX. and A such that 
]_ 

Y. =a+ Bxi + Ei' a is an unknown constant, and B ' x.' and E. are as 
]_ ]_ ]_ 

in model A. 

Model D. Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sample from an inverse 

Gaussian distribution with parameters a+ BX. and A. such that 
]_ ]_ 

18 
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y. = a+ BX. + E:. • Y. also has the property that the ratio of its var-
i i i i 

· h f 11 · 1 2 n ~ is an unknown iance to its mean is t e same or a i = , , •.. , • ~ 

constant. 8, Xi' and Ei are as in model A. 

In addition to these four-models, a variation of models A and B 

will be discussed. The variation will be to consider B as a vector of 

unknown constants and X as a matrix of known quantities. 

Model A 

Let Y = (Y1 ,Y2, ••• ,Yn) be a random sample from an inverse Gaussian 

d~stribution with parameters Bx. and A • Then the joint density func
i 

tion of Y is 

n 
= rlJn/2 1T 1 

27T i=l 3/2 
Yi 

for yi > 0 

s > 0 

= O, otherwise • 

For this model, the variance of Y. is 
i 

Point Estimation 

0'2 
i 

n 

I 
i=l 

A > 0 

x. > 0 
i 

i i 

2 
(y .-Bx.) } 

The maximum likelihood estimates of the parameters are 

n Yi 
I 2 i=l x. 

13 
i 

n 
I 1 

x. i=l i 



02 

i 

n 

n 1 1 I <- - ~> 
i=l Yi Sx. 

1 

3 x. 
= _1_ 

n 

Investigatio~ into the Properties of the 
Maximum Likelihood Estimates 

Recall that 

s = 

n Y. 
l~ 

i=l '\ 
n . l _1 

i=l xi 

20 

( 1 ~) 2] i=l xi 

n 1 
l 

i=l xi 

The distribution of S can be determined by the followin8 list of implica-

tions which can be verified by using some of the properties of the 

inverse Gaussian distribution discussed in Chapter II. (The notation 

a+ b is used to indicate that condition a implies condition b.) 



\ 
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n Y. l _.J._ 
n i=l xi2 1 B = - IG(S, A l ) n 1 i=l x. 

l ]_ 

i=l xi 

A 

So B is an unbiased esimate of B and will be referred to as B henceforth. 

Since 

2 
A. n (yi-Bxi) 

- 2s2 l = 
i=l xi2yi 

n 1 
l 

i=1 xi nA 
A 

2BB 2 -2A 
A -

(S,A) is sufficient for (S,A). Because of the completeness property of 
A 

the inverse Gaussian distribution, B is the minimum variance unbiased 

estimate of B . Since B has an inverse Gaussian distribution, its 

variance is 

Var(S) 

The distribution of nA/A can be determined by finding its condi-

tional moment generating function given that 

n i_ l 
A x. 2 

B 
i=l ]_ 

= n 1 l x. i=l ]_ 
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The conditional moment generating function is defined as follows. 

Let X and Y be random variables. Then the conditional moment generating 

function of Y given X is 

J 
y 

tY 
e 

h(Y,x)dY 
g(x) 

where g(x) is the marginal density function of X evaluated at x , 

h(Y,x) is the joint density function of Y and X evaluated at X = x, and 

£(Y/x) is the conditional density function of Y given that X = x. For 

the problem at hand, 

f .J 
0 

where g(S;S,A.) 

n 
1 A. l 

i=l x. 
]_ 

A 

2rrS 3 

0 

nA.t/A. 
e 

!,,; 
] 2 exp {-

h(y1 ,y2 , .•• ,yn_1 ,S;S,A.) 

g(S;S,A.) 

n 1 A 

A. l (S-6) 2 
i=l xi 

} 
2s 2s 

and h(y1 ,y2 , •.• ,yn_1 ,S;S,A.) can be determined by making the transforma-

tion to the new variables y1 = y1 , y2 = y2 , ••• , Yn-l = Yn-l' 
A 

S =[E~=l (yi/xi2)]/[E~=l l/xi]. 

jJj f(y1 ,y2 , ••• ,yn-l'yn;S,A.) where jJj = x~ E~=l l/xi and f(y1 ,y2 , ••• , 

Y 1 ,y ;S,A.) is the likelihood function in terms of the new variables. n- n 



Now 

n .y. I _1_ 

1 /1 A i=l xi2 
E{en/\t /\Is= ---

n 1 
I-

i=1 xi 

00 

1 

A n r 
x (B I -

n i=lxi 
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= 

n 1 
I-

• exp 
A( ) n-l 1 i=lxi 1 

{- l-2t ( I - - -- + "' n 1 n-1 y. }dy1rlY2· • • dyn-1 • 
2 i=1 Yi s x2 <B I _ _ I \ 

We know that 

n . 1x. . 1 x. 
1= 1 1= 1 

oo oo ,.,. n n-1 

(4.1) 

1 f ... f [-2A ](n-l)/2[B3 I _!_]1/2 1T ~/2 
o TI i=l Xi i=l y. ,.,. n 1 n-1 y. 3/2 

x ((3 I - - I -T) 0 
1 

n i=lxi i=l xi 

n 1 
I-

A n-l l i=l xi 1 
exp{- - ( I - - "' + -------- }dy1dY2· .• dyn-1· 

2 i=l y i B 2 "' n 1 n-1 Y. 
x (BI - - I ~) 

n i=lxi i=l xi 

00 00 
A 

0 0 
J £(yl,y2, ... ,yn-llB;B,A) dyl,dy2, ... ,dyn-l = 1 ' f 

so that equation (4.1) equals 
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1 

(l-2t)(n-l)/2 

which is the moment generating function of a random variable that has a 

chi-square distribution with n-1 degrees of freedom and is independent 
A 

of B • So has a chi-square distribution with n-1 

A 

degrees of freedom and is independent of B . Sinee (nX)/A has a chi-

square distribution with n~l degrees of freedem we can determine the 

first and second moment of A by integrating the moment generat-

ing function of nA/A the appropriate number of times and evaluating 

it for t = O. (See appendix for this proof.) This procedure yields 

E(A) = (nA)/(n-3) when n > 4 and E(A) does not exist 

for n < 4 , 

so that 
n Yi 

(n-3) I "" x 2 

A i=l 1 

n Yi n n 
I I 1 

( I 1_)2 
x 2 -

i=l i i•l Yi i•l xi 

A 

and (n-3)A/A - x2 (n-l) . 

Since A is an unbiased estimate of A which is a function of a 

sufficient statistic, it is the minimum variance unbiased estimate of 

A and its variance is 
Al 

Var(A) = 2A2 l(n-5) when n > 6; 

Var(A) does not exist for n < 5. 

An unbiased estimate of this variance is 



n y, 
2(n-3)( l ~1~)2 

2 ~2 i=l xi 2 

(n-3) = -[=--n--y ___ n___;"---=---n---J-2 
l =1T l .L - ( l .!.__) 2 

i=l xi i=l Yi i=l xi 

Let us now study the maximum likelihood estimate of a: . 
1 

n y l ( l _L)2 
. 1 x. 2 1= 1 

n 1 I-
i=l xi 

=---
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The mean of a: can be determined since it is the product of independent 
1 

random variables whose means are known. 

Since 

A -

Ea: 
1 

n 
A. l 

x. 3 
1 =--
n 

1 

i=l x. 1 

8 82 

cs-8) 2 
nA + ---:;:;- ... 

A. 

a2 
i 

8x. 
1 

3 

(n-l) 3o~ (n-1)8 
~-~+ -----

n 
n 

n A. l l__ 
i=lxi 

3o: 82 (n-1) + ~-1 _____ _ 

n 
1 

cs-8) 2 l nS 3o: izl x. 1 + 1 
A 

o: 8 
1 

02 83 
1 

(8,o. 2 ) is sufficient for (8,o:). If there is a function of 0 2 which 
1 1 i 

is unbiased for o: then this will be the minimum variance unbiased 
1 

estimate of o: • We have not been able to find such a function. How-
1 

ever, an unbiased estimate 

of moments. This results in 

of o 2 can be found by using the method 
i 
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3 n 1 
n A 

x. l l (y. 2 - [32x.2) 
A 

l. i=l x. i=l l. 
l. 

0~ l. = 
l. n 

3 
n 

1 
n 2 I x. I I x. 

i=l l. i=l xi i=l 
J_ 

3 
[c I 1-) 2 

n 2 ( I Yi )2 
n 

x/] x. l Yi I l. i=l xi i=l i=l Xiz i=l = n 3 n n 2 n 
1 l xi c l- L )2 l x. l 

i=l i=l xi i=l l. i=l xi 

Since Var(B) = 2 3 n 0. f[x. iL.l (l/x. )]., an unbiased estimate of the variance 
l. i= l. 

of B is 

n n 
2 n Y n ( l 1_)2 l c I -.L)2 l 2 

Yi - x. 
A i=lxi i=l i=l XiZ i-=l l. 

02 = n n n A n 
3 B l x. ( l 1_)3 I x 2c I 1-)2 

i=l l. i=l xi i=l i i=l xi 

For the more general case where E(yi) = B1x1 i + B2x2i • 

maximum likelihood estimates of B1 and B2 are the solutions to the 

following equations 

n 

l 
i=l 

(Y,i-[3lxli-[32x2i)xli 
A A 2 

(Blxli+B2x2i) Yi 

n 

l 
i=l 

= 0 

n n 

I I 0 . 
i=l i=l 

(4 .1) 

(4. 2) 

These are nth degree polynomials in B1 and B2 and hence have no known 

solution in a closed form. Unbiased estimates of B1 and B2 can be 

determined intuitively. They are 



" 

n y. 
l ]_ 

i=l xli2 

n 1 
l --

i=l x2i 

1 n 

l 
i=l xli 

n 1 
l 

i=l x2i 

and 

n 

l 
i=l xli 

1 

n 1 
l 

i=l xli 

n x1 i n 
I x 2 I 

i=l 2i i=l 

~ _l 
l 2 

i=l x2i 

n 

l 
i=l 

n 

l 
i=l 
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These formulas can be extended in a similar fashion to obtain unbiased 

where 

The distributions of these estimates is not known at this time. 

Further study into their properties needs to be done. 

Model B 

Let Y = (Y1 ,Y2 , ... ,Yn) be a random sample from an inverse Gaussian 

distribution with parameters Sx. and Ai such that (S2 x. 2)/A. = k. 
]_ ]_ ]_ 

Then the joint density function of Y is 

Now o~ 
]_ 

[ 1 Jn/2 
f(y;S,k) = 21Tk 

n 

l 
i=l 

= 0, otherwise 

Bkxi . 

Sx. 
]_ 

3/2 y; 
]_ 

1 exp{- -
2k 

n 

l 
i=l 

when yi > 0 

s > 0 

x. > 0 
]_ 

k > 0 

2 
(y. -f3xi) 

]_ } 

Yi 
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Point Estimation 

Maximum likelihood estimates of the parameters can be determined. 

They are 

s "Ylx 

k = 
-2 -2 
y /nx 

n 

l 
i=l 

n x -2 
l (_L - : ) 

i=l Yi y 

-3 
y x. 

02 J. 
i = --=3 

nx 

n 

l 
i=l 

x 2 -2 . x c-L - =--) 
Yi y 

n x. 2 
J. 

n x 2 

I c-L ~ ) 
i=l Yi 8 

Investigations into the Properties of the 
Maximum Likelihood Estimates 

Recall that 8 "Y1X. The distribution of 8 can be determined 

from the following list of implications which can be verified by using 

some of the properties of the inverse Gaussian distribution discussed 

in Chapter II. 

y. - IG(8x., 
J. J. 

B2 2 x. 
J. 

k 
) + 

Bx 
Y /n - IG(__!_ 

i n 

0 2 2 
fJ x. 

J. 

nk 
) + 

y = 
n Yi 
l - -

i=l n 

2-2 
n8 x 

IQ(Sx, k ) + 

nt3 2x t3 = y/x - IG(t3, k ) • 



So S is an unbiased estimate of S , hence 

Since 

n 
l/k l 

i=l 

- A 2 
= nx(S-S) 

A 

kS 

- A 2 
nx(S-S) 

A 

kS 

s2 
+

k 

s s 

2 n x. 
l (__?:__ - ~) 

i=l Yi S 
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(S,k) is sufficient for (S,k). Because of the completeness property of 

the inverse Gaussian distribution, S is the minimum variance unbiased 

estimate of S with Var(S) = Sk/nx 
A 

As with Model A, the distribution of (nS2k)/kS 2 can be determined 

by obtaining its conditional moment generating function given that 
A 

S=- y/x. This results in the following two ·statements 

A 

(i) (nS2k) /kS2 - x2(n-l) 

- A 

(ii) (nS2k) /kS2 is independent of s 

Since 2 
A 

S2x. a~ s2 2 a~ 
1 1 and k = 

xi 1 
k = ='Bx. .. ~ 

A.i 1 A. Sx. 
1 

it is easy to show that 

(iii) (nA..) /A.. 
1 1 

- x2 (n-1) 

A -

(v) (S,a~) is sufficient for (S,a~) • 

The mean and variance of A.. can be determined by integrating the 
1 

moment generating function of a chi-square variate with n-1 degrees 

of freedom. This produces 



E(Ai) = (nA.)/(n-3) for n > 4 , 
1 -

E(A.) does not exist for n < 4. 
1 

So that an unbiased estimate of A. is 
1 

and 

(n-3)x. 2 
l 

·\ = -n--x__,,..2----2--
l (-i ___ x ) 

i=l Yi "J 

(n-3)A. 
l 

A - x2 (n-1) • 
A. 

l 
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Since Ai is an unbiased estimate of Ai which is a function of a 

sufficient statistic, A. is the minimum variance unbiased estimate of A. 
1 l 

and its variance is 

A 

V.J.r (Ai) = (2A. 2 i)/ (n-5) when n 2: 6 , 
" Var(A..) does not exist for n < 6. 

1 

An unbiased estimate of this variance is 

A 4 
A 2A. 2 2(n-3)x 
0~ =--1- = i 

A n-3 ~n x.2 -2]2 • . . ~ ( 1 x 
1 l --::-) 

i=l Yi y 

As with Model A, although a: is not unbiased, the method of moments 
1 

produces an unbiased estimate 2 
of a. . This is 

1 

A 

02 
i 

n 2 
nxx. l (yi 

1 i=l 

2 -2 ~ 
n x - l 

i=l 

2 
x. 

l 
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Since Var(B) (0. 2 )/nxx. , an unbiased estimate of the variance of Bis 
1 1 . 

i=l 

2 
x. 

1 

maximum For the more general case where E(yi) = B1x1i + B2x2i 

likelihood estimates of B1 and B2 are the solutions to the following 

equations. 

... 
n xli n (yi-Blxli-~2x2i)xli 
I + l/k I = 0 

i=l Blxli+B2x2i i=l Yi 
(4. 3) 

n 
(y i-Bl xli·-B2x2i) x2i I x2i n 

+ l/k I = 0 i=l ~ 

f\ xli+B2x2i i=l Yi 

(4.4) 

2 n (y i-Bl xli-B2x2i) 
where k l/n I 

i=l Yi 

Equations (4. 3) and (4.4) are nth degree polynomials in Bl and 82 
and at this time, have no known solution in a closed form. 
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Unbiased estimates of $1 and 82 can be determined intuitively. They 

are 

2 2 
n n yixli n n xli 
l x2i l 2 l Yi l 

x2i 
" i=l i=l x2i i=l i=l 

~3i = 3 2 
n n xli n n xli 
l x2i l --2 - l xli l 

i""l i=l x2i i=l i=l x2i 

2 2 
n n yix2i n n x2i 
l xli l 2 l Yi l 

xli 
A i=l i=l xli i=l i=l 

S2 = 2 3 n n x2i n n x,... 

l l l l L.1 

xli --2 - x2i 
i=l i=l xli i=l i=l xli 

These formulas can be extended to obtain unbiased estimates of 

S1 ,S2 , .•• ,SP where E(yi) = S1x1i + S2x2i + .•. +Spxpi . The distribution 

of these estimates is not known at this time. Further study into their 

properties needs to be done. 

Model C 

Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sa~ple from an inverse Gaussia~ 

distribution with parameters a + Bx. and A. Then the joint density 
1 

function of Y is 

= r2TIAJ n/2 f(y;a, 8, A) Ll 
n 1 

lT i=l 3/2 
Yi 

n 
exp {- ; l 

i=l 

2 
(y .-a-Sx.) 

1 1 } 

(a+Sx.)2y. 
1 1 

~' f.or yi > 0, where d+Sxi > 0, A. > 0 

= O, otherwise. 



In order to determine the maximum likelihood estimates of a and 

S , the following set of equations must be solved for a and S . 

n (y .-a-Sx.) I 1 i o 
i=1 <a+sx.) 3 

1 

n 

I 
i=l 

x. (y .-a-Sx.) 
1 1 1 
~ ~ 

(a+Sx.) 3 
1 

0 • 

These equations are nth degree polynomials in a and S . There is no 

known solution to them in a closed form. Since Model C, with a= O, 

is identical to model A, the following approach was used to determine 
A A 

a and S • 

(ie,y) 

x 
(x,o) 

x. 
1 

Model C 

Model A 

Figure 2. A Graphical Method to Determine 
Estimates of a and S 

33 
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We can think of the data from Model C to be the :Madel A data plus a • 

So if a is subtracted from each observation in l'bdel C, the data appears 

as :tvbdel A data. So rather than observing y. from ;MJdel C, assume that 
]_ 

y.-a is observed in Model A. Then the estimate of B would be 
]_ 

n y.-a l ]_ 
i=l Xi 2 

B = -----
n 1 
l 

i=l xi 

From Figure 2, the value a is equal to y-Bx so it seems reasonable to 

estimate a by the formula y-Bx. Solving these two equations produces 

the following unbiased estimates of a and f3 • 

n (yi-y) 
l x. 2 

f3 
i=l ]_ (4.5) 

n (x. -x) 

l ]_ 

x. 2 
i=l ]_ 

A 

y - Si (4.6) 

Other unbiased estimates of a and B can be obtained intuitively. 

Suppose all the x. 's are distinct, then for any pair of observations, 
]_ 

an intuitive estimate of the slope is (y.-y.)/(x.-x.). The average 
]_ J ]_ J 

of all such values is an unbiased estimate of f3 with y-Bi being unbiased 

for a . 

1 n - - A 

Another unbiased estimate of B is,.... l (y.-y)/(x.-x) with a 
ni=l 1 1 

y-Sx. 
However, this solution is· undesirable "if any x.=x. 

l 
Since these last 

two solutions have undesirable properties for some xi' we propose using 
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equations (4.5) and (4.5) as the unbiased estimates of a. and S . 

Another property of (4.5) that is appealing is that it reduces to the 

unbiased estimate of B in Model A when y = x = O. The distributions 
A A 

of a and Barenot known at this time. Their properties need to be 

studied further. 

Model D 

Let Y = (Y1 ,Y2 , •.• ,Yn) be a random sample from an inverse Gaussian 

distribution with parameters a.+Bx. and A. such that the ratio of the 
]_ ]_ 

variance of y. to its mean is a constant (k) for all i = 1,2, .•. ,n. 
]_ 

Then the joint density function of Y is 

~;k]n/2 a.+Sx. 2 n 
1 

n (y .-a-Bx.) 
f (y ;a., S, k) = TT ]_ 

exp{- - I ]_ ]_ } 
3/2 i=l 2k i=l Yi y. 

]_ 

for y. > 0, where a.+Sx. > O, k > 0 
]_ ]_ 

O, otherwise 

where o: = (a.+Sx.)k. 
]_ ]_ 

In order to determine the maximum likelihood estimate of a and S 

the following set of equations must be solved for a. and S • 

n 
1 

n y.-a.-Sx. 
l + l/k l 

]_ ]_ 
0 

i=l a.+Bx. i=l y. 
]_ 

]_ 

n x. n (y .-a-Sx.)x. 
I 

]_ 
+ l/k l 

]_ ]_ ]_ 
0 

~ ~ 

Yi i=l a+Sx. i=l 
]_ 

- ~ 2 
n (y. -a.-Sx.) 

where k l/n I 
]_ ]_ 

i=l Yi 

Since these are nth degree polynomials in a and S , no known solution 

exists in a closed form. 



Using a graphical method similar to the one used for ~bdel C, 

unbiased estimates of a and B can be found. These are 

n (y.-y)(x.-x) 
I 1 1 

A i=l x. 
B 

1 = 
(x.-X) 2 n 

l 1 

x. i=l 1 

A 

y Bx 

As with ~del C, other unbiased estimates of a and B can be found 

intuitively. One such pair is 

B 
2 A 

n(n-1) 

A A 

a = y - Bx 

n n y.-y. 
I I 1 J 

i=l i=l xi-xj 
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(4. 7) 

(4. 8) 

However, this pair seems less desirable than the estimates in equations 

(4.7) and (4.8) since the x. 's must be distinct. Another intuitive 
. 1 

pair of unbiased estimates is 

A 1 n y i-y 
B=nI x.-x 

i=l 1 

A A 

a = y Bx 
Again, these seem less desirable than the estimates in (4.7) and (4.8) 

if any x. = x. So we propose using (4.7) and (4.8) as the unbiased esti
i 

mates of a and B . Note that (4.7) r~du~es to the unbiased estimate of 

B for Model B when y = x = O. At this time, the distributions of a and 
A 

B are unknown. Their properties warrant further study. 



CHAPTER V 

TESTS OF STATISTICAL HYPOTHESES AND 

INTERVAL'ESTIMATION ON B 

Let Y = (Y1 ,Y2 , •.• ,Yn) be a sequence of random variables from an 

inverse Gaussian distribution with parameters Sx. and A. so that 
]_ ]_ 

Y. = SX. + E. where S is an unknown constant; x. is a known quantity 
]_ ]_ ]_ ]_ 

and E. is an error term distributed so that its mean is zero, its 
]_ 

variance is a~, and E. is independent of E .• In this chapter we inves-
1 ]_ J 

tigate the problem of testing hypotheses and setting confidence inter-

vals on the parameter S for both Models A and B as described in Chapter 

IV. Since the distributions of the point estimates are not known 

for the other models, we do not consider them here. A likelihood ratio 

test is derived and it is based on a statistic which, if the null 

hypothesis is true, has a known distribution. 

As explained in Chapter IV, we take a random sample X (X1 ,x2 , 

••. ,X) from the density f(x;8) with the parameter space n . In order 
n 

to test the hypothesis H0 : 8 E w against the alternative 

H : 8 E n-w using the likelihood ratio test, we calculate a 

where L(w) is the maximum of the likelihood function with respect to 

e subject to the condition that the null hypothesis is true. L(~) 

37 
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is the maximum of the likelihood function with respect to 8 subject 

to the condition that 8 E Q • We use A. for our test statistic and 

reject the null hypothesis for small values of A. •. 

Model A 

Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sample from an inverse Gaussian 

distribution with parameters 8xi and A. • 

A Test of the Hypothesis H0 : 8=8* against 
H : 8#8* -a 

and 

Now 

and 

where 

Under the null hypothesis 

L(w) [~Jn12 TI- 1 
2TI i=l 3/2 

Yi 

A. n (y.-8*x.) 2 

exp{- 28*2 l --~-.~2-y_._i_} 
i=l l. l. 

L(w) 
n8*2 n/2 n 

1T ~/ 2 exp{- I } . 

8 

A 

L(m 

n (y.-8*x.)2 
27T l l. l. 

i=l xi2yi 

n 
2TI l 

i=l 

n 1 
Tr i=l 3/2 

Yi 

A 

n 82 
(y .-sx.) 2 

l. l. 

x. 2 Yi l. 

=I~ I-. [ n y. I n 1] 
i=l xi i=l xi 

i=l Yi 

exp {- 2~2 
n 

l 
i=l 

n/2 n 
1 Tr 3/2 

i=l Yi 

2 
(y .-Bx.) } 

l. l. 

x. 2y. 
l. l. 

exp {- n } 
2 



Then 

n 

[aT 
I 

i=l 
>.. = ~ 

8 
n 

I 
i=l 

= 

..... 2 
(yi-BXi) 

x.2y. 
1 1 

(yi-8*xi)2 

x.2y. 
1 1 

n/2 

I _1 
n y.) 

. 1 x.2 
1= 1 

n 1 
I-

i=1 Yi 

n n Yi 
I 1 l 

= 

8*2 

n y. . 
( l x\ )2 

i=l i - 28* 
n 1 
I-

i=1 xi 

1 + 
"' n 1 
f3f3* l -. 

i=lyi 

[ 
1 U ]n/2 

l+
n-1 

i l y. = . 1 i=l 
n 1 

l xi 
i=l 

1 

n y. I _1_ 

i=l xi2 

x. 2 
1 

n/2 

-

n 
2 

8*2 
n 

l 
i=l 
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n 
2 

1 
x. 

1 
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where 

Now A is a monotonic function of U, so U can be used as the test 

statistic. 

To investigate the properties of U, we return to the distribution 

of B 

B and 

Since 8 has an inverse Gaussian distribution with parameters 
n 

A l l:_ , then 
i=l xi 

A 

B 82 

has a: chi-square distribution with 1 degree of treedom. We know 

has a chi-square distribution with n-1 degrees of freedom and is 

independent of 8 , so that 

n 1 ,... 2 n yi 
(n-1) L (B-B*) l 

i=l Xi i=l Xi 2 
----=--------------= = (n-1) U 

A 2 ~ 1 ~ Yi - ( ~ _l)~ 
SS* .:1 Yi i:l xi 2 i:l xi j 

has an F distribution with 1 and n-1 degrees of freedom when the null 



hypothesis is true. So that u can be used as the test statistic for 

S=l3* against H : 13;13* with rejection region 
a 

{Y = (Yl,Y2, ••• ,Yn):(n-l)u > Fl,n-1,1-a} 

Confidence Intervals on B 

Since 
n 

(n-1) l 1 
i=l xi 

<s-s> 2 
n Yi 
l x.2 

i=l l. 

. -
has an F distribution with 1 and n-1 degrees of freedom, a (l-a)l00% 

confidence set consists of S's satisfying 

n A 

(n-1) l ..!_ (13-13)2 
i=l xi < F 

l,n-1,1-a 

This set is equivalent to the set of S's satisfying 

13 2 [ (n-1) 
n 1 

l x. i=l . l. 

A n 
F (13 l 1 
l,n-1,1-a i=l yi 

n 
l _1_)] 

i=l xi 
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+ 
,.. n " n 1 

B[-2(n-1)13 l ..!_] + (n-1)13 2 l < 0 ., (5.1) 
i=l xi i=l xi 

which is a quadratic in B • First we will assume that this parabola 

opens upward. If this is so, we can find an interval for 13 which satis-

fies (5.1) when the quadratic has real roots. ynder our assumption 

n ,.. n 
(n-1) l -l - F . ( B l 1 

i=l xl l,n-1,1-a i=l yi 

n 
\ ..!_) 0 
l > ' 

i=l xi 
or 
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,....n 
F ( S l l 
l,n-1,1- a i=l yi 

< 1 . (5.2) 
n 

(n-1) l 1 
i=l xi 

The zero's of inequality (5.1) occur at 

2{n-1>sl: ± 4F (n-1)s 2 I-<sI-- l -) ,..,n 1 ~ ,....nl ,,,nl n 1 
.1. __ 1 x1. l,n-1,1-a . 1x. . 1y. . 1 x. 

1= 1 1= 1 1= 1 

(5. 3) 

which has real roots if and only if 

But 
n 1 l - = 

i=l xi 
and 

has a chi-square distribution. So that A is positive with probability 

one and the roots of inequality (5.1) are real with probability one. 

Now inequality (5.3) is equivalent to 

1 ± 

A 

1 ~ 

A n 1 
F (S l - -l,n-1,1-a . 1y. 1= 1 

n 
(n-1) l .l.._; 

i=l xi 
An 1 

F . (f3 l - -
l,n-1,1-a i=lyi 

n 1 
(n-1) l -

i=l xi 

(5.4) 
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Because of (5.2), we know both the numerator and the denominator 

of (5.4) are positive. So the set of S's satisfying (5.1) is equivalent 

to the set of s's satisfying 

A 

s < s 
A n n 

F (S l 1 l __!_) 
1, n-1, 1-a. i=l Yi i=l xi 

1 + n 
(n-1) l 1 

x. i=l 1 

< s 

A n 1 
F (S l l,n-1,1-a . 1 Yi 1= 

1 - n 
(n-1) l 1 

x. i=l 1 

This then is a (1-d) 100% confidence interval on S • 

Suppose instead, the parabola opens downward, then 

or 

n 1 ,...n 1 n 1 
(n-1) l - - F (S l - - l -) < 0 

i=lxi l,n-l,l-a i=l Yi i=l xi 

An 1 
F (S I - -
l,n-1,1-a i=lyi 

n 
(n-1) l 1 

i=l xi 

< 1. 

n 
__!_) l 

i=l 
x. 1 

Now the set of S's satisfying (5.1) lies in two disjoint regions. The 

zero's of the quadratic are still as represent.~d in (5.4). However, now 

the denominator of (5.4) is negative and the numerator is either positive 

or negative, depending on which zero is being evaluated. Because inverse 

Gaussian has a positive m~an, SX. > O,and we chose to add the further 
1 



restriction that S > 0 and x. > 0 for all i = 1,2, •.• ,n in our initial 
l. 

description of the model. So that a confidence set on S which yields 

negative values is meaningless. We then eliminate this region from 

our confidence set and find that the set of S's satisfying (5.1) is 

equivalent to the set 0£ S's satisfying 

1 + 

s 

F (Sy 1 
l,n-1,1-a i=l yi 

n 
(n-1) l 1 

i=l xi 

n 
l _!_) 

i=l xi 

< s < 00 

which is a (l-a)l00% confidence interval on S. 

Model B 
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Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sample from an inverse Gaussian 

distribution with parameters Sx. and A. where (S 2 x. 2 )/A. = k. 
l. l. l. l. 

A Test of the Hypothesis H0 : S=(3~ Against 
H: S:fS* -a-"--'-''--

and 

Under the null hypothesis 

r 1 J n/2 
L(W) = L21Tk 

n S*x. 
lT - 1.,.._ 
i=l 3/2 

Yi 

L(w) [ ] 

n/2 

n ( y .. - (3*x . ) 2 
21T l l. l. 

i=l Yi 

1 exp{- -
2k 

n 

lT 
i=l 

n 

l 
i=l 

2 
(y.-S*x.) 

l. l. } 

Yi 

exp {- E.} 
2 



Now 

and 

t 1 Jn/2 
L(~) = -

2'ITk 

L(Q) 

2 
n Sx. 1 n (y .-Sx.) 

1T 1 exp { - - I 1 1 } 
i=l y 3/2 2k i=l Yi 

i 

n f3x. 
TT i n 
I I exp {- - } 

i=l 3/2 2 
Yi 

where B y/x. The ratio of the likelihood functions is 

n 
l 2 ( y .) ' 

-i=l l. 
28* -----

n 

I x. 
i'-'l 

l. 

,.. n (Y.-B*x.)2 
82 l l. l. 

i=l Yi 

n n x1 
2 

I y. I -
i=l 1 i=l Yi _ S*2 

n 

l x. 
i=l l. 

n 
+B*2 l Yi 

i=l 

n 
l y. 

i=l l. 

n 
I 

i=l 

n 

l x. 
l. i=l 

n x. 2 

l l. -
Yi n n 

i=l B*2 l x. + B*2 l 
. 1 l • 1 i= 1= 

:x • 
l. 
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n/2 

x. 
l. 



1 

- 26* 

1 + 
n n 
l y. 

i=l 1 
I 

i=l 

n 
I y. + B*2 

i=l 1 

x. 2 
1 

Yi 
B*2 

n 

I 
i=l 

n 
l x. 

i=l 1 n 

I x. 
i=l 

1 

1 n/2 
= [ 1 + U/(n-1)) 

where 

- A 2 
U = (n-l)nx(B-B*) 

2" n xi2 x2 
B* B l <- - ::::-) 

i=l Yi y 
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n/2 

x. 
1 

Since B has an inverse Gaussian distribution with parameters B and 

2-(nB x)/k, 
- A 2 A 

(nx(B-B) )/kB has a chi-square distribution with 1 degree 

Also (nB2k)/kS2 , where k = l/n I (xi
2 

- ~2 ), 
i=l Yi Y. 

of freedom. has a chi-

square distribution with n-1 degrees of freedom and is independent of B, 

so, 

- A 2 
(n-l)nx(B-B*) 

A n x. 2 -2 

B* 2 S I (..2_ - : ) 
i=l i y 

has an F distribution with 1 and n..,l degrees of freedom under the null 

hypothesis. As a result of this, U can be used as a test statistic 

for H0 : B=B* against the alternative Ha: B~B*·. 



Confidence Intervals 

Since 

- A 2 
(n-1) nx(S-13) 

has an F distribution with 1 and n-1 degrees of freedom, a (l-a)l00% 

confidence set (!ous:ts-t.s of all S's satisfying 

- " 2 
(n-l)nx(S-S) < 

A n x.2 -2 -
s 2s I <-1- - : ) 

i=l y i y 

F . 
l,n-1,1-a 

This set is equivalent to the set of S's satisfying 

,.., n x. 2 

S2 [ (n-l)nx - F (S l - 1- - n~)] 
l,n-1,1-a i=l yi 

" " 
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+ B[-2(n-l)nxS] + (n-l)nxS 2 < o . (5. S) 

Following the arguments used in setting confidence intervals on 

Model A, suppose 

( " n x. 2 
) 

(n-l)nx - F1 -l l- S l ~1- - nx ~ O, 
,n ., a i=l Yi 

then the set of S's satisfying (5.5) is equivalent to the set of S's 

satisfying 
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< s 

1 + 
(n-l)nx 

A 

< s 

en x. 2 

nx) Fl,n-1,1-a Si~l 
l 

y. 
1 -

l 

(n-l)nx 

which is a (l-a.)100% confidence interval on S . If 

A n X. 2 

(n-l)nx - F (S I 1 

l,n-1,1-a i=l yi 
nx) < O, 

then the set of S1 s satisfying (5.5) is equivalent to the set of S's 

satisfying 

< s < 00 

l+ 
•1,n-l,n-tlt ¢- -ni) 

(n-l)nx 

which is a (l-a.)100% confidence interval on S • 



Chapter VI 

SUMMARY 

This study is devoted to the investigation of the inverse Gaussian 

distribution with an emphasis on the theory of linear statistical 

inference. The following four linear models are discussed. 

Model A. Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sample from an inverse 

Gaussian distribution with parameters BX. and A such that Y. = SX. + £. 
l l l l 

where S is an unknown scalar constant, Xi is a known quantity, and Ei 

is an error term with zero mean and independent of£. (i#j). 
J 

Model B. Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sample from an inverse 

Gaussian distribution with parameters SX. and A, such that Y. = SX. + £ .. 
l l l l l 

Y. also has the property that the ratio of its variance to its mean is 
l 

the same for all i 1,2, ••• ,n. S, Xi' and Ei are as in model A. 

Model c. Let y = (Yl,Y2' • •• ,Yn) be a random sample from an inverse 

Gaussian distribution with parameters a+ SX. and A such that 
l 

Y. =a+ sx. + Ei' a is an unknown constant' and B, x.' and €. are as 
l l l l 

in model A. 

Model D. Let Y = (Y1 ,Y2 , ••• ,Yn) be a random sample from an inverse 

Gaussian distribution with parameters a+ SX. and E. such that 
l l 

Y. =a+ SX. + € .• Y. also has the property that the ratio of its var-
1 l l l 

iance to its mean is the same for all i = 1,2, ••• ,n. a is an unknown 

constant. 6, Xi' and Ei are as in model A • 

. •] 
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so 

Problems of point estimation, interval estimation, and the testing 

of statistical hypotheses for models A and B are investigated in detail. 

For the more general model, models C and D, the method of maximum like-

lihood, which is used successfully for models A and B, does not lead to 

estimates of the parameters in a closed form. For these models several 

unbiased estimates of the parameters are determined. 

Likelihood ratio tests are developed for (i) testing the equality 

of the A's when there are two inverse Gaussian populations, (ii) testing 

H0: S•S* against lta: 137'$* for both models A and B. These tests lead to 

statistics that have F distributions under the null hypothesis. Note 

that similar results are well known in the case of testing the hypothe-

ses (i) about the equality of variances when there are two populations 

and (ii) H0 : S•S* against Ha: S~S* when the data have a normal distri

bution. Next, the problem of obtaining confidence intervals on S has 

been discussed. 

As an application of the results, consider the experiment where we 

fix X, the independent variable, and measure Y, the dependent variable, 

at each level of X. If Y has an inverse Gaussian distribution, is 

identically zero when X is zero, and increases as X increases, then the 

conditions satisfy those governing model A. We desire to estimate the 

change in the dependent variable as the independent variable changes, 

i.e., S, the slope of the line. The maximum likelihood estimate of B 

is 

n Yi 
l X2 ... i•l i 13 • 
n 
l l 

i•l xi 
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WQich is also the minimum variance unbiased estimate of S . The like-

lihood ratio test produces the following test statistic for the hypothe-

sis H0 : S=S* ~gainst the alternative Ha: SIS*. 

4>Cx) 

where 

·U = 

1
1, if U > Fl l 1 . - ,n- , -a 

o, otherwise 

n 

l 1 CS-S*) 
i=l xi 

n 

l 
i=l 

and a is the size of the test. If 

n 

Cn-1) l 1 
i=l xi 

"' n 
F CS l l 
l,n-1,1-a i=l yi 

n 
l .1_) > 0 

i=l xi 

then the Cl-a)l00% confidence interval on S is 

1 + 

A n 1 
F CS l - -l,n-1,1-a . 1 y. 

< 

i= l 

n 1 
(n-1) l -

i=l xi 

< s 

s 
"' n 

F (S l l 
l,n-1,1-a i=l Yi: 

1 -
n 1 

cn-1) I -: 
i=l xi 



otherwise, the (l-a)l00% confidence interval on B is 

1 + 

A n 1 
F (B I - -l,n-1,1-a . 1 y. 

1= 1 

n 
<n-1) I 1 

i=l xi 

n 
I _l) 

1 x. i= 1 

If in addition to the above restrictions on Y, the data is such 
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that the experimenter feels the ratio of the variance to the mean of Y 

is constant for all X, then the conditions satisfy those governing model 

B. For this case, the maximum likelihood estimate of B is 

n 
I Yi A i=l 

B n 
I x. 

i=l 1 

and this is also the minimum variance unbiased estimate of B . To test 

the hypothesis H0 : B=B* against the alternative 

hood ratio test produces the test 

<I>(x) 1, if U > F 
- l,n-1,1-a 

0, otherwise 

where 

(n-1) -
<s-s*) 2 

u nx 

8*2 
A n x. 2 -2 
8 I 1 x 

(- - -:=-) 
i=l Yi y 

H : Bi- B*, the likeli
a 



and a is the size of the test. If 

2 ,... n x. 
(n-l)nx - F ( s I - 1- - nx) > 0 ' 

l,n-1,1-a i=l y i 

then a (1-a) 100% confidence interval on S is 

B < B 
" n x. 2 

F CB I l nx) 

1 + 
l,n-1,1-a i=l Yi 

(n-l)nx 

< 

1 -

,... n x 2 

F ((3 I i 
l,n-1,1-a i=l yi 

(n-1) nx 

\ 

otherwise, a (l-a)l00% confidence interval on B is 

8 < s < co 

l+ 

,... n x. 
F cs I l 
l,n-1,1-a i=l yi 

nx) 

(n-1) nx 
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nx) 

With regard to models C and D in this study, they differ from models 

A and B respectively in that now Y is positive for X = 0. We investigate 

the problem of determining the intercept and the slope for these models. 

One problem in studying these models arises in portraying the properties 

of the random variate. Should the model be y1• = a+ SX. + s. where y. 
l l l 

has an inverse Gaussian distribution or should the model be 
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y 1. - a= Bx. + E. where y.-a has an inverse Gaussian distribution? 
1 1 1 

We have not been able to answer this question. Either way, maximum 

likelihood estimates of a and B are difficult to obtain. Unbiased 

estimates of a and S are obtained using several methods. These estimates 

along with their variances are presented in Table 1. These statistics 

are unbiased estimates for both models C and D. At the present time, 

the variances have not been compared for a possible ranking. Since the 

least squares estimates does not have a smaller variance than the 

maximum likelihood estimate for models A and B, we question its use 

in models C and D. So we feel that (4), from Table 1, may not be 

an appropriate estimate. Estimates (2) and (3) have singularities 

for some x. and x and are undesirable for this reason. Estimates (1) 
1 

and (5) have no singularities and have the additional property that these 

reduce to B when x = y = 0 for models A and B respectively. This 

suggests that (1) and (5) be used to estimate S in models C and D 

respectively. 
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TABLE 1 

UNBIASED ESTIMATES OF FOR MODEL C AND D 

Unbiased Estimate of f3 

-n Y -y 
l !. 2 

1) i=l l. 

-n x.-x 
l~ 

i:o::l xi 

n i-1 y.-y 
2) 2/[n(n-1)] ! l 1 j 

i 1 . 1 x.-x. = J= l. J 

-n y -y 
a> .11n I 1 _ 

x -x 
i=l i 

n (y -y) (x -x) I i i 
i•l xi 

5)------
n (xi-x)2 
>:--

i=l xi 

j<i 

Variance of the Unbiased Estimate f3 

1 

4 
2 2 n (n-1) 

n n 1 n 2 
I 0 2 r I -;zz - x. 2 1 

k=l k iul i k. 

n 
l: cr 2 

k=l k 

n n 
l/n4. l: crk2 p:: ~ - ~]2 

k=l i=l xi -x ~ -x 

1 
n 
l: cr 2 

k=l k 

n x -x n(xk-x) 
[ E-i__ ]2 
i=l xi ~ 
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DEFINITIONS 

1. Stochastic process - A random phenomenon that arises through a pro-

cess which is developed in time in a manner 

controlled by probabilistic laws. 

2. Brownian motion (Wiener) process - A stochastic process X(t),t > 0 

such that 

a. X(O) = O, 

b. X(t) has independent increments, i.e., for t 0 < t 1 < ••• < tn 

X(t1) - X(t0), ... , X(tn) - X(tn-l) are independent random 

variables, 

c. for t : 0, h > 0, the distribution of X(t+h) - X(t) depends on 

h but not on t. 

d. for t : O, h > O, the distribution of X(t+h) - X(t) is normal 

with mean=O and variance=a 2 h, cr > O. 

3. Brownian motion process with positive drift - A Brownian motion 

process such that X(t+h) - X(t) ~ N(µh,a 2h), µ > 0, o > 0 

THEOREM 

Theorem. Let the random variable X have with probability 1 only positive 

values, and let E(l/X) exist. It is known that the moment generating 

function of X is well defined in (-00,0] and can be written as 

00 

J tx 
e dF(x), - 00 < t s 0 . 

0 



t t 00 

Define M1 ( t) J ~X(u)du = J du J euxdF(x) 
-co -00 0 (1) 

00 t 00 

J dF(x) J euxdu = J ! etxdF(x) 
x 

0 0 

then M1 (0) = E[l/X]. If we let 

t 

Mr(t) = J Mr_1 (t)du 
-00 

then 

M (O) = E[l/Xr] • 
r 

Proof: Substitute t = 0 in (1). 
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