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CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Introduction and Background 

Recently increasing interest has been shown in the problem of the 

changing regression model for a sequence of random variables. An 

observed data set may be satisfied by a single regression analysis, 

which is normally the assumption, or it may require two or more separate 

regression relationships. A "switching regression problem" is one in 

which the observations follow a model consisting of several regression 

models. If a single switch occurs, this type of situation is called a 

two-phase regression problem. Most of the work which has been done 

on two-phase regression problems is with the simple linear regression 

case and assumes a sequence of independent random variables Y1 , Y2 , 

••• ,Y such that 
n 

Y. al l 

and 

Y. Cl2 l 

+ 

+ 

Bl xi + ei, i 1,2, .•. ,m 

S2xi + e. i m+l, ••• ,n 
1, 

where thee 's are i.i.d. N(0,0 2 ) and the x.'s are the values of a con-
i .1 

comitant variable X. m is some unknown point, and when m=n there is no 

change and when m=2,3, ••• ,n-2 there is one change. 

Essentially, there are two problems associated with two-phase 

regression: i) detecting the change, i.e., is there a change occuring in 

a sequence of random variables?,ii) if the change does occur, estimat:ing 

1 
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and making inferences about the shift point m and all the unknown 

regression parameters. Assuming a change does occur, Quandt (1958) 

estimated the switch point m and the regression parameters by a maximum 

likelihood technique. Hinkley (1969, 1971) under the assumption that 

the two-phase regression model is continuous, estimated and made infer

ences about the abscissa of the intersection, i.e., Y = (a2-a1 )/(S1-B2 ), 

of the two regression lines. 

The above works are based on the classical approach where the 

inferences are solely based on the sample data. Sometimes prior infor

mation may exist. Bayesian approach is concerned with the combination 

of sample data and prior information. How can the information from two 

different sources be combined with each other? One way is to apply 

Bayes' theorem to obtain a conditional distribution which is called 

the posterior distribution. The posterior distribution provides the 

means of making all relevant inferences about a parameter or a set of 

parameters in which we are interested. Lindley (1965), Box and Tiao 

(1973), DeGroot (1970) and Zellner (1971) gave a detailed description 

of the Bayesian inference. Barnett (1973) described the various 

approaches to statistical inference and decision-making. 

Based on the Bayesian approach, Holbert (1973) studied the problems 

of estimating the shift point m and the abscissa, Y , of the intersection 

of the two regression lines. Assigning a uniform proper prior to the 

shift point m and an improper prior to the unknown regression parameters, 

he derived the posterior distribution of m and y for a number of cases. 

Ferriera (1975) also assigned a vague-type prior distribution to the 

unknown regression parameters and assigned three different prior distri

butions to the shift point. He obtained the marginal posterior 
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distribution and the expected values for the shift point m and the 

regression parameters. Other studies related to two-phase regression 

problems are those of Quandt (1960, 1972), Sprent (1961), Robinson (1964), 

Hudson (1966) and Bacon and Watts (1971). 

In studying the related decision problem of testing the presence 

of a switch from one regression scheme to another, Brown, Durbin and 

Evans (1975), employing a non-Bayesian approach, developed the tests 

for the constancy of a regression relationship based on the cusum and 

cusum of the squares of recursive residuals. Broemeling (1972) discussed 

a Bayesian procedure for detecting the change of distribution parameters 

in a sequence of random variables. He approached the problem in terms 

of posterior odds on 'no change'. Smith (1975) considered an informal 

sequential procedure to detect the change. Other studies related to 

this problem have been done by Quandt (1960), Bhattacharyya and Johnson 

(1968), Farley and Hinich (1970), Farley, Hinich and McGuire (1975), and 

Garbade (1977). 

In this paper, the problem is generalized to the multiple linear 

regression case and is approached by the Bayesian method and analysed 

with a proper prior for all.unknown parameters. It will be shown that 

even though x'x is singular (x is the design matrix in regression 

analysis), one still can estimate and make inferences about the shift 

point and regression parameters. 

The use of improper priors to represent "ignorance" has been 

recently criticized by Dawid, Stone and Zidek (1973), because their use 

can lead to logical contradictions. One of the examples that leads to a 

contradiction is a shifting sequence of exponential populations. Since 
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such a contradiction cannot arise where one employs a proper prior dis

tribution, it is important to reexamine the shift point and switching 

regression problems with proper prior distributions. 

Another reason for using proper prior distributions is that when 

the shift point does occur, the posterior distribution will exist for 

all parameters including the shift point parameter m for all its possible 

values 1,2, ••• ,n-l. With improper prior distributions, it can be 

shown that the posterior distribution will exist for m, but only at the 

mass points m = p, p+l, ••• ,n-p, where pis the number of regression 

coefficients. It is unrealistic to assume that if a shift occurs only 

once, it occurs at only these points. Thus by using a proper prior dis

tribution for all parameters one avoids this unrealistic assumption. Of 

course, one must be able to realistically formulate these priors based 

on the prior knowledge. 

Ferreira's (1975) study emphasized the sampling properties of the 

point estimators of the regression coefficients in order to examine the 

effect of three prior distributions assigned to the switch point. His 

study is important in that it may convince non-Bayesians that certain 

Bayesian estimators have optimal sampling properties. My study is con

fined to switching regression problem8 where only the posterior distri

butions will be derived and from these, point and interval estimators 

and the highest posterior density (H.P.D~) regions providing test of 

hyµ.othesis may be derived. If loss functions can realistically be 

assigned, then estimators and test of hypothesis can be constructed from 

a Bayesian decision theoretic viewpoint. 

In many practical problems either the data itself will validate the 

assumption that there is a change in the regression relationship or 
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or there will be reasons which make this assumption reasonable. For 

example, in biological systems, the threshold level of a chemical may be 

specific, i.e., the response of the system to the chemical is additive 

to the threshold level. After this level has been attained, the 

response stays constant or the chemical becomes toxic to the system, 

resulting in a decreasing response with increasing concentration. Ohki 

(1974) found that the top growth of cotton increased sharply .with a 

very slight increase of manganese in the blade tissue, but after the 

inflection point of the nutrient calibration curve was attained the 

manganese content of the blade tissue increased sharply with no increase 

in plant growth. Pool and Borchgrevink (1964), reported on the level of 

the synthesis of blood factor VII (proconvertin), a coagulation factor 

in the blood, as a function of warfarin concentration in the liver of 

rats. Synthesis is inhibited when the warfarin concentration surpasses 

a critical level. This data set was used by Hinkley (1971) to illustrate 

maximum likelihood estimation of the shift point. Some other examples 

of this problem can be seen in the papers of Sims, Atkinson and Smitobol 

(1975) and Millar and Denmead (1976). 

Statement of the Problem 

We assume that a sequence of independent random variable Y1 , 

Y2 , ••• ,Yn satisfy 

Y. = x.'B. + e., 
l -l l l 

i = 1,2, ••. ,n 

where x. is a pxl known vector of p regressor variables, 
-l 

B. is a pxl vector of regression parameters, 
l 
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e. is an error term anrl 
l 

el' e2, ••• ,en are i. i. d. N(O,o 2 ) . 
With the usual regression analysis, we assume that 

f\ = B2 = ... = Sn = §1 
i.e., the model is 

Y . = x . ' s1 + e . , 
l -l - l 

i = 1,2, ..• ,n (1.1) 

Is this assumption valid? We need to check the consistency of this 

model over a set of data. It is necessary to construct a test to detect 

the change, i.e., with the null hypothesis HO of no change, vs the 

alternative hypothesis H1 of one change. If H0 is true, the model (1.1) 

is correct. We can then claim that the model is constant over this 

sequence of data and go ahead and do the usual regression analysis. If 

H1 is true, we claim that there is a change point, m, and break the data 

set into two subsets with each subset of observations following a 

different regression model. This model is 

Y. 
l 

x. 's1 + e 1., -l -

= x. 'B2 + e., 
-l - 1 

i 1,2, ••• ,m 

i m+l, ••• ,n 

where ~l ! ~2 . In this case, we need to find out where the shift 

occurred and make inferences about the shift point m and all unknown 

regression parameters. 

The objective of this study is to develop Bayesian techniques to 

i) detect the presence of a change from one regression model to another, 

(ii) estimate and make inferences about the shift point and other unknown 

parameters in a sequence of independent rando~~ariables which change 

regression model at an unknown point, and (iii) estimate and make infer-

ences about the abscissa of the intersection of two regression lines. 



and 

where 

CHAPTER II 

POSTERIOR DISTRIBUTIONS U1VOLVING THE 

TWO-PHASE MULTIPLE REGRESSION 

Basic Assumption 

Suppose a sequence of normal independently distributed random 

Y. = x. I B1 + ei, i 1, 2, ••• ,M 
l ~l -

M 1,2, ••• ,n-l 

Y. x. I B2 + ei, i =M+l, ••• , M 
l -l -

x. is a pxl column vector of known fixed quantities on p 
-l 

regressors for the ith observation, 

~l is a pxl column vector of regression coefficients of the 

first linear multiple regression model, ~l ERP, 

~2 is a pxl column vector of regression coefficients of 

the second linear multiple regression model, §2 ERP, 

e 's are i.i.d, N(O,o 2 ), i = 1,2, ••• ,n where o 2 > 0 and 
i 

Thus, we assume that there is .a changing regression relationship 

over this sequence of random variables and there is exactly one change 

at an unknown shift point H. We are interested in estimating the shift 

point M as well as any unknown regression pararner.ers §1 , ~ 2 and possibly 

the unknown common variance o 2 • Let 8 be the vector, consisting of all 

7 
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possible unknown regression parameters and o 2 • We assign a prior prob-

ability density function (abbreviated p.d.f.) to G, denoted by n(G), -and 

assume that M and G are independently distributed. Throughout this paper, 

we assume that M has a uniform prior distribution over the space. 

In-l = (1,2, ..• ,n-l) . 

Denote n0 (m) as the prior probability mass function (abbreviated 

p.m.f.) of M, then 

TIO (m) 

1 
n-l , m = 1,2, ... ,n-l 

0, otherwise 

Under the above assumptions, the probability density function 

(abbreviated p.d.f.) of Y = (Y1 ,Y2 , ... ,Yn) given~= (x1 ,xJ, ... ,xn)' 

and m, §1 , §2 , and o 2 is 

where 

m 
2 -n/2 { 1 I 2 (2no) exp (- -) [ L: (y.-x. 61) 

n 

+ L: (y.-x. '62)2]} 
i=m+l l ~i ~ 

2o 2 i=l l ~l ~ 

o:: 0-n exp(-=!_) [y-x(m)S]' [y-x(m)SJ 
20 2 ~ ~ 

~ = ( ~l (m)) 
~2 (m) 

and ( 
x 1 (m) 

x(m) = 

¢ 

and ~l (m), : 1 (m) and §1 denote the usual observation vector, design 

(2.1) 

matrix, parameter vector, respectively, for the first regression model, 

using the first m observations. Similarly, y2 (m), x2 (m) and §2 corres

pond to the same parameters of the second regression model using the 

last n-m observations. 
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The expression of (2.1) is a function of rn and 0 and is the likeli-

hood function, L(m,O). By the Bayes theorem, the joint posterior p.d.f. 

of M and 0 is 

TI (m,~I~) rr L(m,O)no(m)no(O) 

ex L(m,O)n0 (0) 

The second equation follows because n(m) is a constant over I 1 . 
n-

From (2.2) we can derive the marginal p.d.f. of Mand 0 . 

( 2. 2) 

Many situations can give rise to the model (2.1). There are six 

cases to be considered: 

i) 0 2 known, both regressions known; 

ii) 0 2 known, one regression known, the other unknown; 

iii) o 2 known, both regressions unknown; 

iv) 0 2 unknown, both regression known; 

v) 0 2 unknown, one regression known, the other unknown; 

vi) o 2 unknown, both regression unknown. 

We begin our study with the most general case, i.e., the case that 

o 2 is unknown, and both regressions are unknown. 

Posterior Distributions of the Unknown Parameters 

The Most General Case 

In this case, both regression parameter vectors §1 and §2 are 

unknown, and o 2 is unknown. We need to assign a proper prior to these 

parameters. The joint prior distribution of B = ( §1 ', §2 ')
1 and 

R = l/o2 are assigned as follows: the conditi6nal distribution of B 

when R = r(r > O) is a 2p-dimensional multivariate normal distribution 

with mean vector B , and precision matrix rT such that B E R2P and 
~w ~w 
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T is a given symmetric 2px2p positive definite matrix. -The marginal dis-

tribution of R is a gamma distribution with parameters a and b such that 

a > 0 and b > 0. If TI0 (~\r) and TI 0 (r) denote the conditional p.d.f. of 

B when R r and the marginal p.d.f of R, respectively, then 

TI0 (?\r) = (2TI)-( 2p/ 2) \rT\ 112 exp[-~ (S-B )'T(B-B )] 
·~ 2 ~ ~ )J ~ ~ )J 

(2.3) 

ba a-1 -br TI (r) = ~~ r e 
O f(a) 

(2.4) 

Hence, the joint p.d.f. of Band Risa normal-gamma p.d.f., which 

is 

( 2. 5) 

From the relation (2.5), the marginal prior p.d.f. TIO(~) has the 

form 
00 

~ [l + l:_ (B-B )' aT (B-B )]-(a+p) 
2a ~ ~JJ b ~ ~)J 

(2.6) 

which is the p.d.f of 2p-dimensional multivariate t distribution with 

2a degrees of freedom, location parameter B , and precision matrix 
~)J 

aT/b. 

We assume that M is independent of B and R. Therefore the joint 

prior distribution of M, B, and R is 

~ ra+p-l exp{(-r)[b +..!.(SB)' (SB)]} 2 ~-~)J ~-~)J (2. 7) 

form= 1,2, ••• ,n-l, BE R2P and r > O. 

From (2.1) the likelihood function is 

L(m,S,r) ~ rn/ 2 exp{-(r/2)[y-x(m)B]' [y-x(m)S]} . ( 2. 8) 
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By Bayes theorem, combining the likelihood function with the prior 

density, results in a joint posterior density of M, 8 and R, which is 

n(m,S,r) cr ra+p+(n/ 2)-lexpl(-r) [b + -21 (8-8 )'T(B-8) 
t - ~µ - -µ 

+ ~ (~-x(m)~)'(~-x(m)~)]} (2.9) 

form= 1,2, ••• ,n-1, 8 E R2P and r > O. 

From (2.9), we can derive the following marginal posterior density 

for all the unknown parameters. 

i) The Posterior Probability Mass Function of Shift Point M. 

Integrating n(m,8,r) with respect to r and 8, we get the marginal 
~ ~ 

posterior p.m.f. for M. In order to evaluate the integral, we need to 

use the identity 

where 

[8-B*(m)] 1 [x(m) 'x(m)+T] [S-B*(m)] + y'y + 8 'TB 
- ~ ~ µ _µ 

- B*(m)' [x(m)'x(m)+r]B*(m) 

. -1 
B*(m) = [x(m) 'x(m)+T] [TB +x(m) 'y] 

~µ -

(2.10) 

( 2 .11) 

Note that [x(m) 'x(m)+T]-l exists even when x(m) 'x(m) is singular, 

because x(m)'x(m) always is a positive semidefinite matrix and Tis a 

positive definite matrix. 

Substituting the identity (2.10) into (2.9), (2.9) can be 

rewritten as 

where 

I a*+p-1 { 1 
n(m,~,r ~)crr exp (-r) [D(m) + 2 C§-~"<(m))' 

a* a + E_ 
2 

(x(m)'x(m) + T)(B-B*(m))]} 
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D(m) 
1 

b + ~{~'~+§µ'T§µ-~*'(m) [x(m)'x(m)+T]§*Cm)} 

b + l2 {[y-x(m)~*(m))'Y. + [B -B*(m)]'TB} 
·- - - ~µ ~ -µ 

(2.12) 

Then 
00 00 

nCml y) J J 2p n(m,s,r)dSdr 
0 R 

00 

a*+p-1 co 

ex J r · exp[-D(m)r] f R2p 
exp{(-r/2) 

0 

[@-@*(m)]' [x'(m)x(m)+T] [~-~*(m)]}d§dr 

00 

ex -1/2 J a*-1 !x(m)'x(m)+TI r exp[-D(m)r]dr 
0 

-a* I 
1
-112 

ex D(m) x(m) 1 x(m)+T , m 1,2, ... ,n-l (2.13) 

In going from the second line of (2.13) to the third, we use the 

2p-dimensional multivariate normal density to integrate out B and 

from the third line of (2.13) to the fourth line, we use the gamma 

density to integrate out r. 

In order to get a more intuitive feeling of D(m), D(m) can be 

expanded as 

D(m) = b + ~ {[~-~(m)]' [~-~(m)]+[~(m)-§µJ'w(m) [~(m)-§µ1}, 
where w(m) = x(m)'x(m) [x(m)'x(m)+T]-lT and y(m), S(m) are the vectors 

of usual least squares predicted values and least square estimators, 

using x(m) and i3 as the design matrix and regression coefficient vector; 

i.e. , 

B(m) -1 [x(m)'x(m)] x(m) 'y 

y(m) x(m)'B(m) 
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When m = p, p+l, •.• ,n-p, [x(m)'x(m)]-l denotes the usual inverse 

of x(m)'x(m); whereas, when m = 1,2, •.• ,p-l or m = n-p+2, ..• ,n-l, 

[x(m)'x(m)]-l denotes the generalized inverse of x(m)'x(m) due to the 

singularity of x(m)'x(m). Notice that D(m) is invariant to the choice 

of the generalized inverse. Hence, n(mjy) is invariant to the choice 

of a generalized inverse. 

where 

(ii) The Posterior p.d.f,of B 

From (2.9) we can obtain the posterior p.d.f. of B , which is 

n-1 
n<§I~) I 

m=l 

n-1 
a: I 

m=l 

n-1 
a: I 

m=l 

n-1 
a: I 

m=l 

n-1 
a: I 

m=l 

00 

f n(m,B,r)dr 
0 

00 

J a*+p-1 1 
r exp{(-r) [D(m)+2 [§-§*Cm)]' 

0 

[x(m)'x(m)+T][B-B*(m)]}dr 

{D(m) + I[§-§*(m)]' [x(m)'x(m)+T] [§-§*Cm)]}-(a*+p) 

-(a*+p) 1 -
D(m) {l + ~[B-B*(M)]p(m) [B-B*(m)]} 2a* ~ ~ ~ ~ 

2a*+2p 
2 

D(m)-a*Jx(m) 'x(m)+TJ-l/ 2 t[B;2p,2a*,B*(m),p(m)] 

(2.14) 

p(m) = (a*/D(m)) [x(m) 'x(m)+T] (2.15) 

and t[B;2p,2a*,S"~(lll),p(m)] is the p.d.f. of the 2p-dimensional multi-

variate t distribution of the variable vector B with degrees of freedom 

2a*, location vector B*(m), and precision matrix p(m). From (2.13), 

we can rewrite (2.14) as 

• 
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n-1 
nCs I y) l 

m=l 
t[f3;2p,2a*,f3*(m),p(m)] • nCmly) - ' 

(2.16) 

= O, otherwise 

The marginal posterior distribution for any subset of the components 

of f3 can be easily found because (3 is a mixture of multivariate t dis-

tributions. Let us partition the random vector (3, the location vector 

f3*(m) and the precision matrix p(m) as 

( ~l) ~ = (3 ' 
-2 

( ~l *(m)) 

~*(m) = 22*(m) ' 

_ ( Pn (m) 

p(m) - p (m) 
21 

P12(m)) 

P22 (m) 

The dimensions of f3. and f3.*(m) are pxl (i=l,2) and the dimension of 
-l -l 

P .. (m) is pxp (i,j=l,2). Then 
lJ 

where 

where 

(iia) The Posterior p.d.f. of ~l is 

n-1 
TI(~11?;)= L t[~1 ;p,2a>~,~1 *(m),p1 *Cm)] • nCml~) 

m=l 

(iib) The Posterior p.d.f. of §2 is 

n-1 
C§ 2 ll) = m~l t[~2 ;p,2a*,~2 *(m),p 2 *(m)] • n(mly) 

and t[Y;k,n,µ,v] as previously defined. 

(iii) The Posterior p.d.f. of R 

Let TI(rl~) denote the marginal posterior p.d.f. of R, then 

n-1 

l 
m=l 

J n(m,(3,r)dB 2p 
R 

(2.17) 

( 2 .18) 

(2.19) 

(2.20) 



15 

n-1 
a*+p-1 1 

a: l f exp{ (-r){D(m)+ 2 [~-~*(m)]' R2p 
r 

m=l 

[x(m) 'x(m)+T] [S-B*(m)]} }d§ 

n-1 
a*+p-1 

l f r 
a: r exp[-D(m)r] exp{- -[B-B*(m)]' 

m=l R2p 2 ~ ~ 

[x(m)'x(m)+T] [B-B*(m)]}dB 
~ ~ ~ 

n-1 
I 

1
-112 a"•-1 a: l x(m)'x(m)+T r exp[-D(m)r] 

m=l 

n-1 
-a*I 

1
-1/2 a: l D(m) x(m)'x(m)+T g[r;a*,D(m)] 

m=l 

Therefore 
n-1 
l g[r;a*,D(m)] • nCml~), r>O 

m=l 

(2.21) 
0, otherwise 

where g[r;a>~,D(m)] is the p.d.f. of a gamma distribution of the variable 

R with parameters· a* and D(m). 

(iv) The Posterior p.d.f. of o 2 

Since R = l/o 2 is distributed as a mixture of gamma distributions, 

from (2.21) we can obtain the distribution of o 2 , as 

n-1 
l ig[o 2 ;a*,D(m)] • n(m[~),o 2 > 0 

m=l 
n(o 2 [ ~) 

(2.22) 

O, otherwise 

where ig[o2 ;a*,D(m)] is the p.d.f. of an inverse gamma distribution of the 

variable o 2 with parameters a* and D(m). A random variable y has an 

inverse gamma distribution with parameters a and B , whose p.d.f. is 

1 
a+l 

y 

0, otherwise 

e 
-B/y 

y > 0 
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Other Special Cases 

Since the derivation for the most general case has been studied 

in great detail, it is not necessary to show the proof for 

other cases. If we regard the previous case as a main theorem, then we 

can state the other cases without proof. 

Corollary 1: If the assumption given above holds, and if ~l is known, 

~ 2 is unknown, and o 2 is unknown, and if a joint prior distribution to 

§2 and R = l/cl is assigned as follows: the conditional prior distri-

bution of §2 when R = r is a p-variate normal distribution with mean 

vector §2 and precision matrix rT 2 such that §2 ERP and -r2 is a given 

pxp symmetric, positive definite matrix, and the marginal distribution 

of R is a gamma distribution with parameters a and b, such that 

a > O, b > O, then 

(i) The posterior p.m.f. of Mis 

I -a*I 1-1/2 n(m z) a D2 (m) x2 (m) 'x2 (m)+T2 , m 1,2, ... ,n-l (2.23) 

where 

a* = a + n/2 

(2.25) 



(ii) The Posterior p.d.f. of B is 
~2 

n-1 
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TI(~ 2 1~) = m~l t[~ 2 ;p,2a*,~2 *(m),p 2 (m)] (2.26) 

where p2 (m) = [a*/D2 (m)](x2(m)'x2(m)+T 2), t[~ 2 ;p,2a*,~2 *(m),p2 (m)] is 

defined as before and TI(mlr) is given by equation (2.23). The marginal 

posterior distribution of the elements of ~ 2 can be derived by (2.26). 

(iii) The Posterior p.d.f. of R is 

n-1 
TI(rly) = l (2.27) 

m=l 

where g[r,a*,D2 (m)] is the gamma p.d.f. of the variable R with parameters 

a* and D2 (m), and TI(mly) is given by (2.23). 

Corollary 2: If ~l is unknown and ~2 is known, and o 2 is unknown, 

then the results are similar to the results of Corollary 1. 

Corollary 3: If the basic assumption given above holds and if o 2 is 

unknown and both ~l and ~2 are known, and it is assumed that R=l/o 2 has 

a gamma distribution with parameters a and b, a > 0, b > 0, then 

where 

(i) The Posterior p.m.f. of Mis 

I -a* TI(m y) ~ B(m) , m = 1,2, ..• ,n-l 

a* = a + n/2, 

B(m) b + l/2[y - x(m)BJ' [y - x(m)BJ 

(ii) The Posterior p.d.f. of R is 
n-1 

n(rlz) = I g[r;a*,B(m)] • n(mly), 
m=l 

( 2. 28) 

(2.29) 

(2.30) 

where g[r;a*,B(m)] is previously defined and TI(mly) is given by (2.28). 

Corollary 4: If the assumption given above holds, and if o 2 is known, 

and both ~l and ~2 are unknown, and B (B ',B ')'has a 2p-variate 
~l -2 

2 -1 normal distribution with mean vector B and covariance matrix o A , 
-JJ 

such that B' ER2P, and A is a 2px2p symmetric, positive definite matrix, 
~JJ 
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then 

(i) The posterior p.m.f. of Mis 

I 1
-1/2 1 

nCml~) cc x(m)'x(m)+A exp[ 202 C(m)], m = 1,2,n-l - ( 2. 31) 

where 

C(m) = B*(m)' [x(m)'x(m)+A]B*(m), (2.32) - -
-1 B*(m) = [x(m) 'x(m)+A] [AB +x(m) 'y] 

- -JJ -
(2.33) 

(ii) The Posterior p. d. f. of B is 
n-1 -

TT(Biy) L N[B;B*(m),V(m)] • TT(mly) ( 2. 34) 
m=l 

where 

V(m) = o 2 [x(m)'x(m)+A]-l (2.35) 

TT(miy) is given by equation (2.31) and N[B;B*(m),V(m)] is the 2p-variate 

normal p.d.f. of the variable vector B with mean vector B*(m) and 

covariance matrix V(m). The marginal posterior p.d.f. for any subset 

of the components of B can be easily obtained from (2.34). 

Corollary 5: If the above basic assumptions hold and if 02 is known, §1 is 

known, §2 is unknown, and §2 has a p-variate normal distribution with 

B d . . 2A -l h h -B P mean vector _2 an covariance matrix o 2 , sue t at _2 E R 

and A2 is a given pxp symmetric and positive definite matrix, then 

(i) The Posterior p.m.f. of M is 

m = 1,2, .•. ,n-l (2.36) 

where 

c2 (m) = [x1 (m)§1-2~1 (m)]'x1 (m)§1-@2 *(m) '[x2 (m) 'x2(m)+A2 J§2*(m) 

(2.37) 
(2.38) 



where 

(ii) The Posterior p.d.f. of ~2 is 

n-1 
n(§2 i~) = l N[~2 ;§2 *(m),V2 (m)] • n(mjy) 

m=l 
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(2.39) 

(2.40) 

TI(mj~) is given by (2.36) and N[§2 .~2*(m),V2 (m)] is the p-variate normal 

p.d.f. of the variable vector §2 with mean vector ~ 2 *(m) and covariance 

matrix v2 (m). 

Corollary 6: The case for o 2 known, §1 unknown, §2 known is similar to 

the case of Corollary 5. 

Corollary 7: If 02 
' §1· e2 are all known, then the posterior p.m.f. 

of M is 

l,2, ... ,n-1.(2.41) 

Point Estimation for Parameters 

In the estimation problem, we can find several different estimators 

corresponding to different loss functions. With a square error loss 

function, the estimator is the expected value of the posterior distri-

bution. For the most general case where ~l' ~ 2 , and o 2 are unknown, we 

can find 

(i) the expected values of M, §1 , §2 , R and o 2 , which are 

n-1 
E(mi ~) l m • TI(ml~), 

m=l 
(2.42) 

n-1 

l a 1 *(m) . TT(mj ~), 
m=l 

(2.43) 

n-1 

l a '~(m) . TT(mi~), 
m=l 2 

(2.44) 
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n-1 
l [a* ID ( m) ] • TI ( m \ ~) , 

m=l 
(2.45) 

and n-1 
E(0 2 \y) = l [D(m)/(a*-1)] • TI(m\y) , (2.46) 

m=l 

where TI(m\y), a1*(m), a 2*(m), a*, and D(m) were previously given. 

(ii) The covariance matrix of the posterior distributions of m, 

§1' ~2' r and 0 2 are as follows: 

n-1 2 
Var(m[y) l [m-E(m[y)] . n(m[y), (2.47) 

m=l 

n-1 
a'~ - 1 

Cov(§1 [~) l a*-1 
[p1*(m)]- •n(m\~), (2.48) 

m=l 

n-1 
a* -1 

Cov(~2 \~) l a'~-1 
[p2*(m)] • n(m\y), (2.49) 

m=l 

n-1 
a* 

Var(rj~) l (D(m))2 
. n(m\y), (2.50) 

m=l 
and 

n-1 2 
Var(02 \ ~) l (D(m)) • n(m\y), (2.51) 

2 m=l (a*-1) (a*-2) 

where 1T(m\y) is the same as (2.13). 
n-1 

(2.42) to (2.51) have the form l h(m) • n(m\y), which can be 
m=l 

interpreted as the expected value of h(m) under the posterior distribu-

tion of m. The value h(m) is the expected value or the variance (or 

covariance matrix) of the posterior distribution of those unknown 

parameters when it is known that the shift point is at m. 

For other special cases, the estimates of the unknown parameters 

can be found in a similar way. Bayesian confidence intervals, theregions 

of highest posterior density.and tests of hypothesis about the switch 

point and the other unknown parameters may be obtained from their 
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posterior p.d.f., respectively. For a more detailed discussion about 

Bayesian inferential and decision processes, the reader is referred to 

DeGroot (1970), Ferguson (1967) and Zellner (1971). 

Numerical Example 

In this section, an example is given to illustrate the method of 

estimating the shift point and all the unknown regression parameters 

for the most general case, where both regressions and the common 

variance are unknown. This example is for p=2 and uses the data gene-

rated by Quandt (1958) as shown in Table I of Appendix A. This data 

consists of a seauence of 20 observations which is generated from the 

following model: 

and 

y. = 5 + 0.5x. + e., 
1 1 1 

where e. 's are i.i.d. N(O,l). 
1 

i 1, ... '12 

i 13, •.• ,20 , 

Assume that the two phase regression model is 

Yi a 1 + S1xi + ei, i = l, ••• ,M 

Yi a 2 +S2xi + ei, i = Mtl, •.• ,n 

where ei's are i.i.d. N(O,o 2 ) and M, ~ = (a1 ,S1 ,a2 ,S2)' and o 2 are 

unknown. 

The first part of the example is to illustrate the effect of various 

prior distributions on the posterior distribution of the shift point M. 

The second part of the example is to make inferences about all the 

unknown parameters. 
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Sensitivity of the Posterior p.m.f. of M 

We assume that the assumption stated previously are valid for this 

data set and analyze it by using two sources of prior information. The 

first source is a data based prior and the second source is not data 

based. In order to obtain the data based prior it is assumed the shift 

point is near 12, and we group the first 9 consecutive observations into 

3 sets and group the last 6 observations into 2 sets, i.e., 3 observa-

tions in each set. Based on the 3 observations in each set theregression 

analysis is performed for each set. The usual least squares estimator a, • 
A 

S and 0 2 are obtained. Then from the first 3 sets, the mean and var-

iance of a and of S are found, and the covariance between a and S is 

calculated. These values are used for obtaining the prior parameters 

of the first regression. A similar procedure is done for the last 2 

sets and the values obtained are used for the second regression. The 

numerical results are shown in Table II of Appendix A. From this table, 

s = [2.7523, 0.5878, 6.1420, 0.4440] . 
~µ 

If we assume that the coefficients of the first regression are indepen-

dent of the coefficients of the second regression, then we obtain the 

covariance matrix of S , as 

4.2926 -0.5704 

-0.5704 0.0762 
Cov(S) 

4.8878 -0.4647 

-0.4647 0.0442 

Since R has a gamma distribution ,with parameters a and b, 0 2 l/R 

has an inverse gamma distribution with parameters a and b. By the 
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method of moments, we obtain 2 estimators for a and b. One is based on 
A 

the 5 values of 02 in Table II of Appendix A and the other is based on 
A A 

the 5 values of r = 1/02 
' 

also in the same table. Based on the 02' s, 
A A 

the estimates are al = 3.5032, b = 1. 0550 and based on r's, the es ti-
1 

mates are a2 = 0.3625, b2 = 0.0226. Since B has a 4 variate t distribu-

tion with degrees of freedom 2a, location parameter B and precision 
~)J 

matrix a/b T, it follows from the properties of the multivariate t 

distribution that Cov(B) = [b/(a-l)]T-l whenever a> 1. In this case 

when a = a 2 = 0.3625, b = b2 = 0.0226, Cov(§) will not exist, hence a 2 

and b2 will not be considered as the prior parameters of a and b for the 

purposes of this study. 

we 

Based on a = a1 = 3.5032, b = b1 

obtain T= [b/(a-1)] Cov(B)-1 , which is 

1.0550 and Cov(B) stated above, 

17.4064 130 .2590 

130.2590 980.3119 

T = 422.1041 4439.3427 

4439.3427 46698.8884 

The values for a, b, B , and T complete the specification of the 
~)J 

prior normal-gamma distribution. Using these values in (2.13), the 

posterior p.m.f. of M is calculated and shown in Table III of the 

Appendix A. These results show that the p.m.f. of Mat m = 12 is 0.8728 

which is an extremely high probability. No doubt, the shift point is at 

m = 12, which is the true shift point indicated by Quandt's data. 

For the second prior the values of the parameters are specified. 

Since the joint prior distribution of B and R is a multivariate normal-

gamma distribution of the type stated in (2.5); 
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a) S has a multivariate t distribution with 2a degrees of freedom, 

location vector S , and precision matrix T(S) 
~]J 

that Cov(S) = [b/(a-l)]T-l; 

(a/b)T , and it follows 

b) the precision R has a gamma distribution with parameters a and 

2 
b, hence E(R) = a/b and Var(R) = a/b ; 

c) The variance 0 2 has an inverse gamma distribution with para-

meters a and b, hence E(0 2 ) = b/(a-1), Var(0 2 ) = b2/[(a-1) 2 (a-2)] . 

Two experiments are conducted in order to test the sensitivity of 

the probability mass function of M, (2.13) . 

Experiment 1. We specify the values of ~]J , T(S), E(R) and Var(R), 

which are assumed to be: 

1) ~jJ = (2.5, 0. 7, 5, 0.5) I 

2) T(S) =;\I, where I is the 4x4 identity matrix and ;\ takes the 

values 0.01, 0.1, 1, 10, 100. Therefore, all the regression coefficients 

are uncorrelated. 

3) E(R) = 1 

4) Var(R) varies and takes the values 0.01, 0.1, 1, 10, 100. 

Once the values of S , T(S), E(R) and Var(R) are specified then 
-JJ 

the values for the prior parameters S , T , a and b are determined. The 
~ ]J 

combination of values for ;\ and Var(R) lead to 25 different prior distri-

butions. Based on each prior, the p.m.f. of M in (2.13) is calculated 

and shown in the Tables IV through VIII of Appendix A. 

Experiment 2. We specify the values of S , Cov(S), E(0 2 ) and 
~JJ 

Var(0 2 ), which are assumed to be: 

(2.5, 0.7, 5, 0.5)' which is the same as Experiment 1. 

2) Cov(S) = vI where I is a 4k4 identity matrix and v takes the 

values 0.01, 0.1, 1, 10, 100 • 



3) E(o 2 )=1. 

4) Var(o2 ) 0.01, 0.1, 1, 10, 100 • 

Once the values of S , Cov(S), E(o 2 ) and Var(o 2 ) are specified 
-µ -

then the values for the prior parameter~µ , T, a and bare selected. 

Hence the combinations of v and Var(o 2 ) lead to 25 different type 

prior distributions. For each prior, the p.m.f. of M is calculated 

and shown in the Tables IX through XIII of Appendix A. 

The results from the Experiment 1 show that 

1) the posterior p.m.f. of M has a peak at m = 12, regardless 

of the values of A and Var(R), i.e., whether A= 0.01 or 100 and 

Var(R) 0.01 or 100, 

2) when A decreases, the probability at the end points m = 1 

25 

and m = 19 increases. It is more noticable when A = 0.01 and A = 0.1. 

The reason is that when A-+0 (i.e., T AI approaches singularity) 

and x(m)'x(m) is singular at m 1 and m = 19, x(m)'x(m)+T approaches 

singularity, 

3) The posterior probability at m 12 increases with an increase 

in Var(R). 

The results from the Experiment 2 show that 

1) the posterior p.m.f. of M has a peak at m = 12, regardless of 

the values of v and Var( 0 2) when v takes values between 0.01 and 100 

and Var( 0 2) takes values between 0.01 and 100. The posterior probabi-

lity of m = 12 increases very little as Var( 0 2) increases from 1 to 100. 

2) When v increases, the probability at the end points m 1 and 

m 19 increases, especially at m = 1. It is more noticeable when 

v 100 and v lo Th . h h . (. -lI . e reason is t at w en v increases i.e., T = v 
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approaches singularity) and x(m) 'x(m) is singular when m 1 

and m = 19, x(m)'x(m)+ T approaches a singular matrix. 

3) The posterior probability at m = 12 increases with an increase 

in Var(o 2 ). 

From the above results we conclude that if the prior is data based 

or otherwise, the shift point is at m = 12 using Quandt's data. This 

conclusion is very satisfying since the true switch point is at m = 12. 

Point and Set Estimation 

In this part of the example, we are emphasizing inferences about 

the unknown regression parameters. We assume that the prior value for 

Quandt' s data is as follows: B = (2.5, 0.7, 5, 0 • 5) I, T = I4' a 3 
~µ 

and b = 2 (i.e.' E(S) = (2.5, 0.7, 5, 0.5)', Var(S) = I4 ' E(o 2 ) 1 

and Var(o 2 ) = 1). From these prior values the p.m. f. of M has been 

shown in Table XI of Appendix A and the location estimates of M are: 

Mode of Posterior Distribution 12.00 

Median of Posterior Distribution = 12.00 

Mean of Posterior Distribution = 11.11 . 

Although the mean is at 11.11, we are willing to say that the shift 

point is at 12.00 because the probability at m = 12 is 0.6844 and the 

probability at m = 11 is 0.0495. 

Inferences about the unknown regression parameters can be made 

either from (1) the marginal poste~ior distribution or (2) the condi-

tional posterior distribution when the shift point m = 12. We are 

going to make inferences from both distributions. Although previously 

the marginal posterior p.d.f. was obtained for each set of unknown para-

meters, the conditional posterior p.d.f. was not derived. From (2.16), 
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(2.21) and (2.22), we can easily show that 

(i) the conditional posterior p.d.f. of B when M =mis 

(2.52) 

(ii) the conditional posterior p.d.f. of R when M = m is 

n(r I~ ,m) = g[r;a*,D(m)], r > 0 (2.53) 

(iii) the conditional p.d.f. of 02 when M m is 

n(0 2 I~, m) = ig[02 ;a*,D(m)], 02 > 0 . (2.54) 

The point estimates and the highest posterior density (H.P.D.) 

regions will be obtained for each set of paramet·ers by employing 

both marginal and conditional posterior distribution. For the defini-

tion and properties of the H.P.D. region, see the paper by Box and Tiao 

(1965). 

(i) Point estimates and H.P.D. regions for a 1 : 

Let n(a1 1~) and n(a1 1~,m) denote the marginal posterior p.d.f. of 

a 1 and the conditional posterior p.d.f. of a 1 when m = 12. In order to 

compare the difference in making inferences between n(a1 j~) and 

n(a1 1~,m), the point estimates and the H.P.D. regions of content 0.90, 

0.95, 0.99 are calculated and presented as follows: 

Point estimates 
mean 
mode 
median 
variance 

H.P.D. regions 
90% 
95% 
99% 

2.36 
2.32 
2.35 
0.2541 

(1.52, 3.19) 
(1.34, 3.42) 
(0.86, 3.95) 

2.29 
2.29 
2.29 
0.1937 

(1.56, 3.01) 
(1.42, 3.16) 
(1.11, 3.46) 
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In order- to compare the prior knowledge with the posterior infor-

mation, the prior p.d.f. TI0 (a1) of a 1 and TI(a1 !~), TI(a1 !~,m) are 

plotted and shown in Figure 1. 

(ii) Point estimates and H.P.D. regions for B1 : 

Similarly, we calculate the point estimates and the H.P.D. regions 

for the marginal posterior p.d.f. TI(B 1 !~) of B1 and the conditional 

posterior p.d.f. TI(B1 !~,m) of B1 when m = 12. The results are 

TIU\!~) TI CB1 I ~,m) 

Point estimates 
mean 0.67 0.69 
mode 0.68 0.69 
median 0.69 0.69 
variance 0.0069 0.0017 

H.P.D. regions 
90% (0.58, o. 77) (0.62, 0.75) 
95% (0.55, 0. 80) (0.61, o. 77) 
99% (0.02, o. 90) (0.58, 0.80) 

The prior p.d.f. TI0 (B1), marginal posterior p.d.f. TI(§ 1 i~) 

and the conditional posterior p.d.f. TI(B 1 !~,m) are plotted in Figure 2. 

(iii) Faint estimates and H.P.D. regions for a 2 

The point estimates and the H.P.D. regions for the marginal post-

erior p.d.f. TI (a2 il) and the conditional posterior p.d.f. TI(a2 !~,m) 

are as follows: 

Point estimates 
mean 
mode 
median 
variance· 

H.P.D. regions 
90% 
95% 
99% 

5.34 
5.45 
5.39 
0.3933 

(4.15, 6.54) 
(3.80, 6. 72) 
(3.20, 7.12) 

5.52 
5.52 
5.52 
0.3617 

(4.50, 6.50) 
(4.33, 6.71) 
(3.91, 7.12) 
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P.D.F. of a 1 
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Figure 3 . 

(iv) Point estimates and H.P.D. regions for s2 : 

The point estimates and H.P.D. regions for the marginal posterior 

p.d.f. of B2 and the conditional posterior p.d.f. of B2 when m = 12 

are calculated and the results are as follows: 

Point estimates 
mean 
mode 
median 
variance 

H.P.D. regions 
90% 
95% 
99% 

0.52 
0.51 
0.52 
0.0026 

(0.43, 0.61) 
(0.41, 0.63) 
(0.37, 0.67) 

0.51 
0.51 
0.51 
0.0024 

(0.43, 0.59) 
(0.41, 0.60) 
(0.38, 0.64) 

Similarly, the prior p.d.f. TI0 (S 2), and the posterior p.d.f. 

TI (B2 1~), TI (B 2 1~,m) are plotted and shown in Figure 4. 

(v) Point estimates and H.P.D. regions for R and o 2 

The estimates and H.P.D. regions for Rand o 2 are as follows: 

TI(rly) TI( r I y, m) 

Point estimates 
mean 1. 20 1. 30 
mode 1.09 1. 20 
median 1.17 1. 27 
variance 0 .1126 0.1297 

H.P.D. regions 
90% (0.61, 1. 78) (0.71, 1.87) 
95% (0.54, 1. 93) (0.64, 2.02) 
99% (0.43, 2. 26) (0.51, 2.33) 
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Point estimates 
mean 
mode 
median 
variance 

H.P.D. regions 
90% 
95% 
99% 

11(021 ~) 

0.92 
0.76 
o. 86 
0.078 

(0.47, 1.36) 
(0.44, 1.55) 
(0.38, 1.97) 

0.83 
0. 72 
0.80 
0.0633 

(0.46, 1.20) 
(0.43, 1.34) 
(0.37, 1.66) 

The prior, marginal posterior and conditional posterior p.d.f. 

of R and 0 2 are plotted and shown in Figure 5 and Figure 6. 
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CHAPTER III 

INFERENCES ABOUT THE INTERSECTION OF 

TWO REGRESSION LINES 

Suppose y1 , ... ,yn is a sequence of random variables, such that 

y. 
l 

i 1, ..• ,M 

i = M+l, ... ,n, (3 .1) 

where e. ~ N(0,0 2 ), i = l, ... ,n and M = l, ... ,n-1, thus, a change occurs 
l 

once in this sequence of random variables. This model is a special 

case of the changing regression model stated in Chapter II with p=2. 

In Chapter II, we have derived the posterior distribution for M, B, R, 

and 0 2 • In this chapter, we are interested in making inferences about 

the abscissa y of the intersection point of two regression lines, there-

fore we need to find the posterior distribution of Y . From model 

(3.1), it is easy to show that Y = (a 2 - a 1 )/(B1 - B2) and is a function 

of the regression coefficients. Only the most general case where all 

parameters are unknown will be considered and a conjugate prior distri-

bution will be employed. For other special cases, the derivation is the 

same and will not be discussed here. 

Posterior Distribution of y 

Before we are able to find the posterior distribution of y , we 

need to find the posterior distribution of § = (a1 ,S1 ,a2 ,S2). When the 

prior distribution of (M,S,R) is a multivariate normal-gamma 
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distribution, as specified by the relation (2. 7), then the joint posterior 

p.d.f. of ~ = (a1 ,B1 ,a2 ,B2) is a mixture of multivariate t distributions 

stated in (2.14) with p=2. This means that B has a posterior p.d.f. of 

n-1 
TI(~!~) = L t[~;4,2a*,~*(m),p(m)] • n(m!y) . 

m=l 

B*(m), p(m) and TI(m!y) are the same as (2.11), (2.12) and (2.13). 

Consider the transformation 

which can be expressed as 

w 
0 

1 
TB 

In order to find the distribution of w, it is necessary to state a 
...... 

(3.2) 

(3. 3) 

property of the multivariate t distribution. Suppose that a random vec-

tor x = (x1 , ... ,xk)' has a k-dimensional multivariate t distribution 

with n degrees of freedom, location vector µ , and precision matrix H 

-1 
and suppose A is an mxk matrix such that AH A' is nonsingular. Then 

the random vector U = (U1 , ..• ,Um)' defined as U =AX has am-dimensional 

multivariate t distribution with n degrees of freedom, location vector 

Aµ, and precision matrix (AH-lA')-1 . From this property, the posterior 

p.d.f. of w = (w1 ,w2)' is 

n-1 
l t[w;2,2a*,w(m),V(m)] • TI(mil) 

m=l 
(3. 4) 

where 

w(m) TB* (m) (3. 5) 

and 

V(m) (3.6) 



Now consider the transformation 

Then the joint p.d.f. of y1 and y 2 is 

where 

and 

k(m) 

n-1 
I 

m=l 

+ C(m)]}-(a*+l) • n(m\y), 

-oo < Y. < oo, i = 1,2 
l 

1/2 
\v(m) \ f(a*+l) 

2a*nf (a*) 

(y1 ,l)V(m)(y1 ,l)' 

~'(yl)V(m)~(yl) ' 

~' (y 1) V(m) T~'~(m) 

C(m) = [TS*(m)] 'V(m) [TS*(m)] • 
~ ~ 
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(3. 7) 

(3.8) 

(3. 9) 

(3.10) 

(3.11) 

(3 .12) 

Before integrating (3.8) with respect to y 2 , the following algebraic 

manipulation needs to be done. 

where 

1 + (l/2a*){A(y1 ,m) [y2 

2 
- B (y1 ,m)/A(y1 ,m)} 

I , I 2 G(y1 ,m) + (A(y1 ,m) 2a*) [y2 B(y1 ,m) A(y1 ,m)] 

2 1 + (l/2a*) [C(m) - B (y1 ,m)/A(y1 ,m)]. 

(3 .13) 

(3 .14) 
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Substituting (3.13) into (3.8), then 

n-1 
\' -Ca*+1) I I l k(m)G(y1 ,m) y2 {l + [S(y1 ,m)/(2a*+l)] 

m=l 

(3.15) 

where 

(3.16) 

and 

(3.17) 

It is shown in B.l. of Appendix B that S(y1 ,m) > 0. Integrating (3.15) 

with respect to y 2 , the posterior p.d.f. of y1 is 

n-1 
I f[(2a*+l)/2] 

n(yl ~) = · 1/2 
(2Tfa*) r (a*) 

l 
m=l 

1/2 -1/2 
[V(m) I E[y0 J A (y1 ,m) 

G-(a*+ 1/2) (yl,m) • n(m[y), y c R-
1 

(3.18) 

where y0 has a general t distribution with 2a*+l degrees of freedom, 

location parameter Q(y1 ,m), and precision parameter S(y1 ,m). From the 

proof shown in B.2. of Appendix B, 

(2a*+l) 112r(a*+l) 

a>'</IT f[(2a>'<+l)/2] 
s-(l/ 2)(yl,m){l + [l/(2a*+l)] 

2 -a>'~ 
• S(yl,m)Q (yl,m)} + Q(yl,m) { 2 ~(2a*+l) [Q(yl,m) 

1/2 
• S (y1 ,m)] - l} , (3.19) 

where ~2 a,''+l (x) is the cumulative distribution function of a student t 

distribution with 2a*+l degrees of freedom. 

Thus, (3.18) and (3.19) complete the specification of the marginal 

posterior p.d.f. of y. From the above derivation, it is easy to show 

that the conditional posterior p.d.f. of y when M =mis 
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n(y I y ,m) f[(2a*+l)/2] jv(m) 1 112 EIYol -1/2( ) 
(2na*)l/2r(a*) A yl,m 

- [a'~+(l/ 2)] 
• G , (3.20) 

where Elr0 1 is defined as (3.19). 

Although both (3.18) and (3.20) are not in an easily recognizable 

form, it is not difficult to compute the point estimators and interval 

estimators of y with the aid of a computer. An illustration is followed 

by a numerical example. 

Example 

Data from Pool and Borchgrevink (1964) will be used and is shown 

in Table XIV of Appendix A. The independent variable X represents the 

logarithm of Warfarin concentration and the dependent variable Y is blood 

factor VII production. Hinkley (1971) and Holbert (1973) have used this 

data to illustrate the techniques which they developed. Their analyses 

are based on no prior information or vague type prior information, 

whereas our method is based on proper prior distribution. For purposes 

of illustration, assume that the values for the prior parameters are: 

~µ = (0,0.2,0.95,0), T = 14 , a = 2 and b 0.0017, i.e., Eo 2 = 0.0017 

which is the estimate obtained by Hinkley (1971). From (2.13), the 

posterior p.m.f. of Mis calculated and is shown in Table XIVof Appendix 

A. The location estimators for Mare: Mode = 6.00, Mean= 6.13. From 

here we know that the shift index is at 6; i.e., the first 6 observations 

x1 , ..• ,x6 follow the first regression line, whereas the remaining 9 obser-

vations x7 , .•• ,x15 follow the second regression line. Now we are going 

to find the abscissa y of the intersection qf these two regression lines. 

When we derive the posterior and conditional p.d.f. of y , we did not 



have the restriction that xm < y < xm+l as did Hinkley (1971). Hence 

y is at the entire real line. It is seen that (3.18) and (3.20) do 

not yield an explicit form for the estimates. Therefore we need to 

use the definition of the estimation in order to be able to find the 

estimators. Due to the difficulty in evaluating an integral from 
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-=to 00 , the density given by (3.18) and (3.20) will be truncated over 

the interval [3.50, 6.50]. Since 

6.5 
J rr( y j~) 
3.5 

0.99999954 

and 

6.5 
J rr(yj~,m) = 0.99999994 
3.5 

therefore the inferences based on this truncated p.d.f. will not lose 

any information. The marginal posterior p.d.f. rr(y!Y) and the condi-

tional posterior p.d.f. n(yjy,m) when m=6 are plotted in Figure 7 and 

with the aid of the computer, the estimators are evaluated and shown in 

the following table. 

Point estimates 
Mode 
Median 
Mean 
Variance 

H.P.D. regions 
90% 
95% 
99% 

4.81 
4.81 
4.81 
0.0258 

(4.55, 5.07) 
(4.49, 5.13) 
(4.37, 5.26) 

rr(yjy,m) 

4.79 
4.80 
4.80 
0.0227 

(4.56, 5.05) 
(4.50, 5.11) 
(4.41, 5.23) 

The above results show that the estimator for M is m=6 and the 

estimator for y is at approximately 4. 81. The estimators for m and y 

were calculated from the posterior distributions (2.13), (3.18) and 

(J.20) and \no restriction was placed on the value of y when the 

---- --
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posterior distributions of y were computed. This method differs from 

that of Hinkley (1971) who restricted the value of y between x and 
m 

xm+l in his model. Hence we can claim that our method can locate the 

point at which the regression model changes from one line to another 

when the changing model is continuous. 
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CHAPTER IV 

THE DETECTION PROBLEM 

Assume a sequence of independent, normally distributed random 

variables Y1 , ... ,Yn, such that 

Y. 
l 

Y. 
l 

x. 's1 + e 1. , i 
-l -

x. 'B + 
-l -2 

i 

1,2,. .. ,\ 

\+l, ... ,n 

where e. 's are i.i.d. N(O,o 2 ) and;\= l, •.• ,n. When;\= m (m = 1, ... , 
l 

n-1), the first m observations are distributed N(~i'~1 ,o 2 ) and the 

remaining n-rn observations are distributed N(x. 'S~,o 2 ). When \=n, there 
..... l ..... ~ 

is no change in the regression relationship in this sequence of random 

variables and all n observations are distributed N(~i'~1 ,o 2 ). 

We need to construct a test for the null hypothesis, denoted by H , 
0 

of no change versus the alternative hypothesis, denoted by H1 , of exactly 

one change, i.e., 

H ;\ = n 
0 

versus rn ' 

rn=l, ••• ,n-1 

We will consider only the most general case that both regressions 

are unknown and 0 2 is unknown. The procedure for testing the same 

hypothesis for the other cases can be constructed by the same technique. 
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Posterior Probability of 'No Change' 

Since A is unknown, we assign a prior p.m.f. for A , which is 

q \ = n 

l:.s. 
n-1 

A= m (m = l, ..• ,n-1) 

where q is a preassigned value by the researcher, The distribution 

of \ indicates that the prior probability of no change occurring is q 

and the remaining probability, uniformly distributed over the points 

1,2, ••• ,n-l, is the prior probability of exactly one change. 

When \ = n, then §1 and 0 2 are the unknown regression parameters. 

Assume that the joint p.d.f. of <§1 ,R) is a multivariate normal-gamma 

p.d.f., as stated by the following relation. 

( 2n)-p/ 2 JrT1 J112 exp[- .E.2 (B B )' (S B )] 
-1--1µ Tl -1--1µ 

a-1 -br 
r e 

When A= m, B = <§1 ',§2 ') and 0 2 are the unknown regression para

meters and we assume that the joint p.d.f. n0 (§,r) of B and R is a multi

variate normal-gamma p.d.f., as specified by the relation (2.5). 

The likelihood function consists of 

L(\=n,~1 ,r) = (r/2n)n/ 2 exp{-.E.(y-xB )'(y-xB )} 
·~ 2 - ~l - -1 

( 4. 3) 

and 

( 4. 4) 

where x is a nxp design matrix with corresponding vectors ~l' the pxl 

regression coefficient vector, and y, the nxl observation vector. 
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Assume that A is independent of the other regression parameters 

then by Bayes theorem 

where 

and 

Tin(A=n,~1 ,rly) cr TI0 (A=n,~1 ,r) • L(A=n,~1 ,r) (4.5) 

( 2 ) -p I 2 1 11I2 ( n+p) I 2 +a-1 
cr q TI Tl r 

1 
• exp{-r[D(n)+-CS -S *)'(x'x+r )(S -S >~)]}, 

2 ~l -1 1 -1 -1 

-1 
R_ * = ( x I x+T ) ( T s +x I y) 
:::1 1 1-l]J -

(4. 6) 

D(n) = b + ~[l'l +~l]J 1 Tl~l]J-~l*'(x'x+Tl)~l*], (4. 7) 

cr (..!.:3_)(2TI)-p1Tll/ 2 r(n/ 2)+p+a-l exp{(-r){D(m) 
n-1 

1 
+ ~[~-~*(m)]'[x(m)'x(m)+TJ[§-§*Cm)]}},(4.8) 

S*(m) and D(m) were given by (2.11) and (2.12), respectively. From 

(4.5) we obtain the posterior p.m.f. of A when A=n 

00 

cr j j l/2D( )-(n/2+a) j 1 + 1-1/2 q Tl n X X Tl (4.9) 

which is the posterior probability of 'no change', and from (4.8) we 

obtain the posterior p.m.f. of A when A = mJ 

00 

TI (A=mjy) = J 2 J TI (A=m,S,r)drdS 
n - R p 0 n - -

cr (1-q) jTjl/2 D(m)-(n/2+a) jx'(m)x(m)+Tj-1/2 
n-1 

which is the posterior probability of a change at A=m. (4.9) and (4.10) 

complete the specification of the p.m.f. of A . 

Consider a test of H0 : A=n versus H1 : A~n, where one makes the 

decision from the posterior probability of no change or one uses the 
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posterior odds ratio. The posterior odds in favor of H0 , ~n' is given 

by 

~ 
n 

n C\.=nly) 
n ~ 

n cMn I y) 
n ~ 

n o=n I y) 
n ~ 

1-n o=n I y) 
n ~ 

(1-q) ITll/2 
n-1 
L D(m)-(a+n/ 2) lxCm)'x(m)+Tl-l/ 2 

(4.11) 

m=l 
k 

When nn(,\=nj~) :S. k1 or Qn :S. l-~ =k2 , we reject the hypothesis H0 
1 

of no change. Otherwise, we accept H0 • k1 , k 2 are pre-assigned con-

stants specified by the researcher. Clearly, larger values of 

n (,\=njy) indicate that H0 is more tenable. 
n ~ 

An Informal Sequential Procedure 

Another procedure for detecting a change is the informal sequential 

method of Smith (1975) for testing a location parameter change-in a 

sequence of random variables. Consecutively one takes the first t 

where t=2, ... ,n. For each set of observations, y1 , •.• ,yt' one assumes 

the same joint prior p.d.f. as stated in (4.2) and (2.5) for the unknown 

regression parameters, and assigns two types of prior distributions to 

,\ (where ,\=l, ... 't) 

TI 0(,\) = q, ,\ t 

l=3. ,\ = 1, ... ' t-1 t-1 ' ' (4.12) 

and 

no(,\) 
1 ,\ 1, .•• 't = = . 
t 

(4.13) 

Thus, (4.12) indicates that the prior probability of no change is q 

regardless of the number of observations in each set. The remaining 
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probability is the prior probability of exactly one change and is 

uniformly distributed over the points l, .•. ,t-1. Also, (4.13) is a 

special case of (4.12) and indicates the prior probability of no change 

is l/t, i.e., the larger the number of observations the smaller the 

prior probability of no change. 

For each set oft observations, ~t = (y 1 ,y 2 , ••. ,yt) and using the 

appropriate prior, one may calculate TI (A=tly ) and~ , and plot 
t ~t t 

TI (A=tjy ) or ~ versus t. If the plot reveals a downward trend, this 
t -t t 

indicates that a change has occurred. A numerical example will be given 

to illustrate this in the next section. 

A Numerical Example 

For Quandt's data we assume that B = (2.5,0. 7,5,0.5) ', T = 14 , a 1 
~µ 

and b = 1. For four different values of the prior probability of no 

change, q, the posterior p.m.f. of A , TI (Aly), were calculated and are 
n -

shown in Table XV of Appendix A. For q = 0.05, TI (Aly) has a peak at 
n -

A= 12 and the posterior probability of no change, TI (nly), is 0.032. 
n -

One would reject H0 if he assigns k1 = 0.05 and accept H0 if he assigns 

kl = 0.01. When q = 0.50, 0.95 and 0.99, the corresponding TI Cnly) is 
n ~ 

0.3855, 0.9226, 0.9842. If k 1 = 0.05, one would always accept H0 based 

on these high prior values of q. It is a reasonable result because 

(4.9) implies that the posterior probability of no change is somewhat 

sensitive to the value of q, the prior probability of no change. But, 

for all values of q the results show that the posterior probability of 

no change is less than the prior probability of no change and this is due 

to adding the information from the data. Hence, the data indicate the 

existence of the change. 
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In order to illustrate the informal sequential procedure for testing 

the hypothesis, Table XVI of Appendix A presents the posterior probabil- · 

ity of no change calculated on the basis of the first t observations 

(t = 2, ••• ,n), with the prior probability stated in (4.12) and (4.13). 

For all prior values of TI 0 (t), rr (tjy) peaks at t=3 and t=ll. Although 
t ~ 

when t=12, TI (tjy) decreases, but the magnitude of the decrease is not 
t ~ 

as high as when t=l3. For q=0.95 and 0.99, TI (tly) changes slightly 
t ~ 

with changing t, the number of observations. The result indicates that 

the instability of the regression relationship in this sequence of random 

variables, y 1 ,y2 , ..• ,y20 occur after t=3 and t=ll. When q = 0.05, 

the instability is most evident after t = 12. 



CHAPTER V 

SUMMARY 

The main objectives of this paper are to use a proper prior for 

(1) detecting the presence of a change from one regression model to 

another; (2) estimating and making inferences about the switch point and 

the unknown regression parameters in a sequence of independent random 

variables which change regression models at an unknown point; and (3) 

estimating and making inferences about the abscissa of the intersection 

of two regression lines. 

The advantage of Bayesian approach using proper prior distributions 

is that one can get the exact distribution for the shift point and all 

the unknown parameters even when the sample size, n, is less than the 

number, p, of regression coefficients. Although one may complain about 

the restriction which one places on the family of prior distributions 

and claim that such a restriction is perhaps unrealistic, it deserves 

consideration because the experimenter may have good reason for having 

faith in such a prior distribution. When we use a conjugate prior distri

bution which can represent our prior information as accurately as it can 

be, the mathematical operations are easier to perform. When one does not 

know the prior values for the prior distribution, estimates can be found 

by the empirical Bayes method from past observations. The example of 

Chapter II gave some illustrations for estimating the prior values 

when one has several available sets of past observations. Although we 

have used the present data to estimate the prior values, this was 

51 



• 

52 

for purposes of illustration. When only one set of past observations 

is available, then we should (1) find the marginal distribution of the 

dependent variable Y and (2) estimate the prior values by using the 

method of moments or the maximum likelihood estimates from past obser-

vations. For more details the reader is referred to Maritz (1970). 

Suppose that one wishes to represent vague type prior information 

about unknown regression parameters. For example, for the most general 

case where both regressions are unknown and 0 2 is unknown. In this case 

one wants to find the posterior distributions for the unknown parameters 

in the changing regression model. If n ~ 2p + 1 and 2px2p matrix 

x(m)'x(m) is nonsingular, we can let the parameter space of M be 

IM= (p,p+l, ••• ,n-p) and let T+O, a+-p and b+O in the posterior distri

butions of M, §, R,(or 0 2 ) and y given by this paper. Then the same 

limiting posterior distribution will be obtained from an improper prior 

namely a joint density function of the following form: 

n 0 (~,R) l/R for S E R2P and R > 0 

when p=2, it is a special case of the limiting posterior distributions. 

These limiting posterior distributions are the same as the posterior 

distributions given by Holbert (1973), Ferreira (1975) and Holbert 

and Broemeling (1977). These workers investigated a two phase simple 

linear regression model by using vague type prior distributions. 

In this :paper we have assumed that both regression models have 

equal variance. This assumption is appropriate in a situation in which 

experiments are conducted under well controlled conditions which insure 

constancy of the variances of random disturbances in all experiments' 

whereas in some situations, this assumption is not satisfied, one 

may extend this study to the following two cases; (1) two regressions 

have unequal variance, i.e., ei ~ N(0,0f), i = l, ... ,m, and 



53 

~i ~ N(O, o~), i = m+l, ••. ,n, where ol # o~, (2) all random variables 

y1 , ... ,yn have unequal variances, i.e., ei ~ N(O,o~), i = l, ... ,n where 

o~ #a~# ... # o~. When both regressions are unknown and o 2 is unknown, 

one may approach the problem by employing two multivariate normal gamma 

prior distribitionsfor the first case and a multivariate normal-Wishart 

prior distribution for the second case. 

Most of the posterior distributions derived in this paper are mix-

tures of well known distributions, namely, normal, t, and gamma distri-

bution. One can express the mean and variance of the mixture distri-

butions in an explicit form and can easily calculate them, as shown in 

Chapter II. No direct formula exists for the computation of H.P.D. 

regions of mixtures of distributions. Thus H.P.D. regions shown in 

the examples of this paper were found with the aid of the computer. 

More investigations are needed on the properties of the mixture 

distributions. 

In this paper, we assumed that if the change did occur, it occured 

once. One can extend the problem to the case when there are k changes 

in a sequence of random variables which are subjected to changing 

regression models at k unknown points. Also the problem can be extended 

to the multivariate case where at each time point, one observes more 

than one variate, say s variates, then the observation matrix is 

nxs instead of an nxl observation vector. 

There are two other major problems which can be studied in the 

area of changing regression models. One is the development of a sequen-

tial procedure to detect the change from sequential sampling. The other 

is the problem of predicting future observation of the sequence. 



All calculations for the examples shown in this paper were done 

in double precision on an IBM 370/158 Computer at Oklahoma State 

University Computer Center. 
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TABLE I 

QUANDT'S DATA SET 

' I I Obs. No. (i) 1 2 3 
.. 

4 . 5 6 7 8 0 10 _,. 

t. 
x- 14 13 5 2 6 8 1 12 17 20 l 

Yi 3.473 11. 555 5.714 s. 710 6.046 7.650 3.140 10.312 13.353 17.197 
---~ --- --- - - -~-=-,,,.. ---

Obs. ~i (i) 11 I 12 . 13 .. . 14. 15 ... 16 17 18 19 20 ',o. 
I 

xi 
I 15 11 3 14 16 10 7 19 18 9 

Yi 13.036 8.264 7.612 11. 802 12.551 10. 296 10.014 15.472 15.65 9.871 



TABLE II 

LEAST SQUARES ESTIMATORS FOR EACH OF THE FIVE SETS 

/,, A2 A 
l/o2 Set No. Observations No. a s 0 r 

Contained in each set 

1 (1, 2, 3) 0.8009 0.8336 1. 0007 0.9993 

2 (4, 5, 6) 4.9266 0.2891 0. 5892 1. 6973 

3 (7, 8, 9) 2.5294 0.6406 0.0144 69.2712 

Mean 2.7523 0.5878 

Var. 4.2926 0.0762 
A A 

Cov (a, S) -0.5704 

4 (15,16,17) 7.7053 0.2953 0.2043 4. 8960 

5 (18,19,20) 4.5787 0.5925 0.2993 3.3407 

Mean 6.1420 0.4440 

Var. 4.8878 0.0442 
A A 

Cov(a,S) -0.4647 
A A 
a Al 

3.5027 ~2 0.3623 

bl 1. 0550 b2 0.0226 

°' 0 



TABLE III 

POSTERIOR DISTRIBUTION OF M FOR DATA BASED PRIOR 

M 1 2 3 4 5 6 7 8 9 10 

p.m.f 0.0002 0.0002 0.0004 0. 0000. 0.0002 . 0. 0006. 0. 0117 0.0234 0.0279 0.0280 

l 

M 11 12 13 14 15 16 17 18 19 

p.m.f 0.0244 0. 8 728 0~0017 0~0022 0. 0039. 0.0019 0. 0001. 0.0001 0.0002 
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TABLE IV 

POSTERIOR DISTRIBUTION OF ~'1 WHEN ;\=0.01,E(R)=l 
ANDS = (2.5,0.7,5,0.5)' 

~lJ 

~Var(R) 

~ 0.01 0.1 1 10 100 

1 0.3505 0.3480 0.3410 0.3390 0.3389 

2 (J. 0159 0.0158 0.0155 0.0154 0.0154 

3 0.0132 0.0131 0.0128 0.0128 0.0127 

4 0.0010 0.0013 0.0016 0.0017 0.0017 

5 0.0021 0.0024 0.0027 0.0027 0.0027 

6 0.0034 0.0037 0.0039 0.0039 0.0040 

7 0.0186 o. 0177 0.0167 0.0165 0.0164 

8 0.0274 0.0254 0.0234 0.0230 0.0230 

9 0.0279 0.0257 0.0235 0.0230 0.0230 

10 0.0362 0.0331 0.0301 0.0295 0.0295 

11 0.0347 0.0318 0.0289 0.0283 0.0283 

12 0. 4077 0.4173 0.4323 0.4360 0.4364 

13 0.0054 0.0055· 0.0054 0.0054 0.0054 

14 0.0078 0.0077 0.0075 0.0074 0.0074 

15 0.0169 0.0159 0.0149 0.0146 0.0146 

16 0.0146 0.0139 0.0132 0.0130 0.0130 

17 o. 0015 0.0019 0.0022 0.0023 0.0023 

18 0.0022 0.0028 0.0032 0.0033 0.0033 

19 0.0129 0. 0172 0. 0211 0.0219 0. 0220 
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TABLE V 

POSTERIOR DISTRIBUTION OF M WHEN :\=O.l,E(R)=l 
AND~µ= (2.S,0.7,S,O.S)' 

Var(R) 

~ 0.01 0.1 1 10 100 

1 0.1454 0.1458 0 .1436 0.1429 0.1428 

2 0.0151 0.0155 0.0155 0.0155 0.0155 

3 0.0151 0.0142 0.0150 0.0150 0.0149 

4 0.0013 0.0017 0.0021 0.0022 0.0022 

5 0.0027 0.0032 0.0036 0.0037 0.0037 

6 0.0045 0.0050 0.0053 . 0.0053 0.0053 

7 0.0259 0.0246 0.0232 0.0229 0.0228 

8 0.0381 0.0354 0.0326 0.0320 0.0320 

9 0.0389 0.0358 0.0328 0.0321 0.0321 

10 0.0500 0.0458 0.0417 0.0408 0.0407 

11 0.0480 0.0440 0.0400 0.0392 0. 0391 

12 0.5459 0.5580 0.5745 0.5784 0.5789 

13 0. 0072 0.0073 0.0072 0.0072 0 .0072 

14 0.0103 0.0102 0.0099 0.0098 0.0098 

15 0.0225 0.0212 0.0198 0.0196 0.0195 

16 0.0189 0.0181 0.0171 0.0169 0.0169 

17 0.0018 0.0023 0.0027 0.0028 0.0028 

18 0.0026 0. 0032 0.0038 0 .0039 0. 0039 

19 0.0058 0. 0077 0.0095 0.0099 0.0099 
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TABLE VI 

POSTERIOR DISTRIBUTION OF M WHEN ).=l,E(R)=l 
ANDS = (2.5,0.7,5,0.5)' 

~J.1 

Var(R) 
0.01 0.1 

~ 1 10 100 

1 0.0384 0.0419 0.0444 0.0448 0.0449 

2 0.0040 0.0050 0.0057 0.0059 0.0059 

3 0. 0071 0.0080 0.0087 0.0088 0.0088 

4 0.0009 0.0014 0.0019 0.0020 0.0020 

5 0.0025 0.0031 0.0037 0.0038 0.0038 

6. 0.0046 0.0053 0.0059 0.0060 0.0060 

7 0. 0351 0.0338 0 .0324 0 .0320 0.0320 

8 0.0519 0.0489 0.0457 0.0451 0.0450 

9 0.0541 0.0505 0.0469 0.0462 0.0461 

10 0.0659 0.0613 0.0566 0.0557 0.0556 

11 0.0629 0.0585 0.0541 0.0532 0.0531 

12 0.6036 0.6120 0.6233 0.6259 0.6262 

13 0.0079 0.0082 0.0084 0.0084 0.0084 

14 0.0113 0 .0114 0.0113 0.0113 0.0113 

15 0.0250 0.0240 0.0229 0.0229 0.0226 

16 0.0186 0.0183 0.0177 0 .0177 0.0176 

17 0.0014 0.0018 0.0023 0.0023 0.0023 

18 0.0019 0.0025 0.0030 0 .0030 0 .0031 

19 0.0029 0.0040 0.0051 0.0051 0.0053 
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TABLE VII 

POSTERIOR DISTRIBUTION OF H WHEN A.=10, E(R)=l 
AND B = (2.5,0.7,5,0.5)' 

~µ 

Var (R) 

~ 
0.01 0.1 1 10 100 

1 0.0026 0.0042 0.0060 0.0063 0.0064 

2 0.0005 0.0008 0.0013 0.0014 0.0014 

3 0.0015 0.0022 0.0030 0.0031 0.0032 

4 0.0003 0.0005 0.0009 0. 0010 0. 0010 

5 0.0013 0.0019 0.0026 0.0027 0.0028 

6 0.0033 0.0042 0.0050 0.0052 0.0052 

7 0.0431 0.0426 0.0418 0.0416 0.0416 

8 0.0647 0.0624 0.0598 0.0593 0.0592 

9 0.0702 0.0671 0. 0639 0.0632 0.0632 

10 0.0817 0.0777 0.0737 0.0728 0.0727 

11 0.0776 0.0739 0.0701 0.0693 0.0692 

12 0.5888 0.5944. 0.6012 0.6027 0.6028 

13 0.0081 0.0088 0.0093 0.0094 0.0094 

14 0. 0114 0.0119 0.0123 0.0124 0.0124 

15 0.0247 0.0246 0.0243 0.0243 0.0243 

16 0.0164 0.0169 0. 0171 0. 0171 0. 0171 

17 0.0008 0.0013 0.0017 0.0019 o., 0018 

18 0. 0011 0.0017 0.0022 0.0024 0.0024 

19 0.0018 0. 0027 0.0038 0.0040 0.0040 
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TABLE VIII 

POSTERIOR DISTRIBUTION OF H WHEN ;\=100, E(R) =l 
AND i3 = ( 2 .5 '0. 7' 5 '0. 5) I 

~µ 

Var(R) 

~ 
0.01 0.1 1 10 100 

1 0.0003 0.0006 0.0011 0 .0012 0.0013 

2 0.0002 0.0004 0.0007 0.0008 0.0008 

3 0.0008 0.0013 0.0019 0.0020 0. 0020 

4 0.0002 0.0004 0.0007 0.0007 0.0007 

5 0.0010 0.0015 0.0022 0.0023 0.0023 

6 0.0027 0.0036 0.0045 0.0047 0.0047 

7 0.0425 0.0426 0.0424 0.0424 0.0424 

8 0.0644 0.0629 0.0612 0.0609 0.0608 

9 0.0694 0.0673 0.0650 0.0645 0.0645 

10 0.0918 0.0882 0.0846 0.0838 0.0838 

11 0.0881 0.0847 0.0812 0.0805 0.0804 

12 0.5822 0.5850 0.5885 0.5893 0.5894 

13 0.0083 0.0092 0 .0100 0.0101 0.01011 

14 0.0111 0.0120 0.0127 0.0129 0.0129 

15 0.0212 0.0218 0.0222 0.0222 0.0223 

16 0.0134 0.0143 0.0150 0.0152 0.0152 

17 0.0006 0.0010 0.0015 0.0015 0.0016 

18 0.0008 0.0012 0.0018 0.0019 0.0019 

19 0.0012 0.0019 0.0028 0 .0030 0 .0030 
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TABLE IX 

POSTERIOR DISTRIBUTION OF M FOR v=O.Ol,E(o 2 )=1 
AND s = (2.5,0.7,5,0.5) I 

~JJ 

Var(0 2 ) 
0.01 0.1 1 10 100 

~ 
1 0.0003 o .. 0004 0.0006 0.0006 0.0006 

2 0.0002 0.0003 0.0004 0.0004 0.0004 

3 0.0007 0.0010 0.0011 0.0012 0.0013 

4 0.0001 0.0002 0.0003 0.0004 0.0004 

5 0.0009 0.0012 0.0013 0.0014 0.0014 

6 0.0026 0.0029 0.0030 0 .0031 0 .0031 

7 0.0417 0 .0387 0 .0359 0.0354 0.0353 

8 0. 0636 0.0588 0.0542 0.0534 0.0533 

9 0.0686 0.0635 0.0587 0.0578 0.0577 

10 0.0911 0.0848 0.0788 0.0776 0.0775 

11· 0.0874 0.0813 0.0755 0.0744 0.0743 

12 0.5876 0.6137 0.6387 0.6436 0.6441 

13 0.0080 0.0079 0.0076 0.0075 0.0075 

14 0.0108 0 .0104 0 .0100 0.0098 0.0098 

15 0.0208 0.0195 0.0182 0.0180 0.0179 

16 0.0130 0.0125 0 .0118 0.0117 0.0009 

17 0.0006 0.0008 0.0009 0.0009 0.0011 

18 0.0007 0.0009 0.0011 0.0011 0.0018 

19 0.0011 0.0015 0. 0017 0.0018 0.0018 
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TABLE X 

POSTERIOR DISTRIBUTION OF M FOR v=O.l,E(0 2 )=1 
AND B = (2.5,0.7,5,0.5) I 

-)l 

Var(0 2 ) 

~ 
0.01 0.1 1 10 100 

1 0.0025 0 .0031 0.0036 0.0037 0. 0037 

2 0.0004 0.0006 0.0007 0.0008 0.0008 

3 0.0015 0.0017 0.0019 0.0019 0.0019 

4 0.0003 0.0004 0.0005 0.0005 0.0005 

5 0.0012 0.0015 0.0016 0.0017 0.0017 

6 o.003r 0.0033 0.0034 0.0034 0.0034 

7 0.0424 0.0387 0.0352 0.0346 0.0345 

8 0.0639 0.0581 0.0529 0.0518 0.0517 

9 0.0695 0.0634 0.0578 0.0567 0.0566 

10 0.0810 0.0744 0.0681 0.0669 0.0668 

11 0.0770 0.0706 0.0646 0.0635 0.0633 

12 0.5945 0.6248 0.6541 0.6598 0.6604 

13 0 .0079 0.0075 0. 0071 0.0070 0.0070 

14 0. 0111 0. 0104 0.0097 0.0095 0.0095 
-

15 0.0242 0.0222 0.0203 0.0199 0.0199 

16 0.0160 0.0149 0 .0137 0.0135 0.0135 

l Z 0.0008 0.0010 0. 0011 0 .0011 0.0011 

18 0.0011 0.0013 0.0014 0.0143 0.0014 

19 0.0017 0.0021 0.0023 0.0024 0.0024 
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TABLE XI 

POSTERIOR DISTRIBUTION OF M FOR v=l,E(o 2 )=1 
AND 6 = (2.5,0.75,0.5)' 

~JJ 

Var(o ) 
0.01 0.1 1 10 100 m---_____ 

1 0. 0372 0 .0351 0.0325 0 .0319 0. 0319 

2 0.0039 0.0040 0 .0039 0.0039 0.0039 

3 0.0068 0.0066 0.0062 0.0061 0.0061 

4 0.0009 0. 0011 0. 0011 0.0011 0. 0011 

5 0.0023 0.0025 0.0025 0.0024 0.0024 

6 0.0044 0.0043 0.0041 0.0041 0.0041 

7 0.0344 0.0305 0.0269 0.0262 0.0261 

8 0.0512 0.0453 0 .0398 0.0388 0.0387 

9 0.0534 0.0474 0.0418 0. 0408 0.0406 

10 0.0653 0.0584 0.0519 0.0506 0.0505 

11 0.0624 0.0557 0.0495 0.0483 0.0481 

12 0 .6104 0.6478 0.6844 0.6915 0.6923 

13 0.0077 0. 0071 0.0064 0.0063 0.0062 

14 0.0110 0 .0100 0.0089 0.0087 0.0086 

15 0.0245 0.0217 0.0191 0.0186 0.0186 

16 0.0182 0.0162 0.0144 0.0140 0.0140 

17 0.0013 0.0014 0.0015 0.0015 0.0015 

18 0.0018 0.0019 0.0020 0.0019 0.0019 

19 0.0027 0.0031 0.0032 0.0032 0. 0032 
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TABLE XII 

POSTERIOR DISTRIBUTION OF M FOR v=l0,E(o 2 )=1 
AND B = (2.5,0.7,5,0.5)' 

-JJ 

Var(o ) 

~ 
0.01 0.1 1 10 100 

1 0.1419 0.1274 0.1128 0 .1099 0.1096 

2 0.0147 0.0134 0 .0119 0 .0116 0. 0116 

3 0.0147 0.0132 0. 0117 0 .0114 0.0114 

4 0.0013 0.0014 0.0014 0.0014 0.0014 

5 0.0026 0.0026 0.0025 0.0024 0.0024 

6 0.0043 0.0041 0.0038 0.0037 0.0037 

7 0.0254 0.0223 0.0194 0.0189 0.0188 

8 0. 0377 0. 0330 0.0286 0.0278 0 .0277 

9 0.0385 0. 0339 0.0295 0.0286 0.0285 

10 0.0497 0.0441 0.0387 0.0377 0 .0377 

11 0. 04 77 0.0423 0. 0371 0.0361 0.0360 

12 0.5541 0.6008 0.6475 0.6566 0.6576 

13 0.0070 0.0063 0.0056 0.0055 0.0055 

14 0.0101 0.0090 0.0079 0.0077 0. 0077 

15 0.0221 0.0194 0.0169 0.0164 0.0163 

16 0.0185 0.0163 0.0142 0.0138 0.0137 

17 0. 0017 0.0019 0.0019 0.0019 0.0018 

18 0.0025 0.0026 0.0025 0.0025 0.0025 

19 0.0055 0.0060 0.0061 0.0061 0.0061 
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TABLE XIII 

POSTERIOR DISTRIBUTION OF M FOR v=l00,E(o 2 )=1 
AND s = (2.5,0.7,5,0.5) I 

~µ 

Var(o-) 
0.01 0.1 1 10 100 

~ 
1 0.3442 0.3152 0.2846 0.2784 0. 2777 

2 0.0156 0.0143 0.0129 0.0126 0.0126 

3 0.0130 0.0119 0. 0107 0.0105 0.0105 

4 0.0010 0.0011 0.0011 0. OOH 0 .0011 

5 0.0020 0.0020, 0.0020 0.0020 0.0019 

6 0.0033 0.0032 0 .0030 0.0030 0.0030 

7 0.0184 0.0165 0.0147 0.0144 0.0143 

8 0.0273 0.0244 0.0217 0 .0212 0. 0211 

9 0.0278 0.0250 0.0223 0.0217 0.0217 

10 0.0362 ·0.0329 0.0296 0.0289 0.0288 

11 0.0347 0.0315 0.0283 0.0277 0.0276 

12 0.4164 0.4645 0.5143 0.5256 0.5267 

13 0.0053 0.0049 0.0045 0.0044 0.0044 

14 0. 0077 0.0070 0.0063 0.0062 0.0061 

15 0.0167 0.0150 0.0133 0.0130 0.0130 

16 0.0144 0.0130 0.0116 0. 0113 0 .0113 

17 0.0015 0.0015 0.0016 0.0016 0.0016 

18 0.0022 0.0023 0 .0023 0.0023 0.0023 

19 0.0124 0.0138 0.0144 0.0144 0.0144 



Obs. No. ( i) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

TABLE XIV 

DATA FROM POOL AND BORCHGREVINK (1964) 
AND THE POSTERIOR DISTRIBUTION OF M 

x. y. M 
l l 

2.00000 0.370483 1 

2.52288 0. 537970 2 

3.00000 0.607684 3 

3.52288 0.723323 4 

4.00000 0. 761856 5 

4.52288 0. 892063 6 

5.00000 0. 956 70 7 7 

5.52288 0. 940349 8 

6.00000 0.898609 9 

6.52288 0.9538SO 10 

7.00000 0.990834 11 

7. 52288 0.890291 12 

8.00000 0. 990779 13 

8.52288 1.050865 14 

9.00000 0.982785 

72 

nCml z) 

0.00000 

0.00000 

0.00001 

0.00053 

0.19744 

0.48151 

0.31535 

0.00513 

0.00002 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 
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TABLE XV 

POSTERIOR PROBABILITY MASS FUNCTION OF A. 

A Prior Probability of no change, q. 

0.05 0.50 0.95 0.99 

1 0 .0430 0.0273 0.0034 0.0007 

2 0.0056 0.0035 0.0004 0.0001 

3 o. 0084 0.0053 0.0007 0.0001 

4 0.0018 o.oon 0.0001 0.0000 

5 0.0036 0.0023 0.0003 0.0001 

6 0.0057 0. 0036 0.0005 0.0001 

7 0 .0313 0.0199 0.0025 0.0005 

8 0.0443 0.0281 0.0035 0.0007 

9 0.0454 0.0288 0.0036 0.0007 

10 0.0548 0.0348 0.0044 0.0009 

11 0.0523 0.0332 0.0042 0.0009 

12 0.6034 0.3830 0. 0482 0.0099 

13 0.0081 0.0052 0.0006 0.0001 

14 0. 0110 0.0070 0.0009 0.0001 

15 0.0222 0.0141 0. 0018 0.0004 

16 0. 0172 0.0109 0.0014 0.0003 

17 0.0022 0.0014 0.0002 0.0000 

18 0.0029 0.0018 0.0002 0.0000 

19 0.0049 0.0031 0.0004 0.0001 

20 0.0320 0. 3855 0.9226 0. 9 842 
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TABLE XVI 

POSTERIOR PROBABILITIES OF 'NO CHANGE' FOR AN 
INFORMAL SEQUENTIAL PROCEDURE 

No. of Obs. Prior Probability of No Change 
q I 

t 0.05 0.50 0.95 0.99 I l/t 

1 1.0000 1.0000 1.0000 1.0000 1.0000 

2 0.0484 0.4914 0.9483 0.9900 0.4914 

3 0.1815 0.8082 0.9877 0.9978 0.6781 

4 0.0206 0.2858 0.8838 0.9754 0.1177 

5 0.0420 0.4546 0.9406 0.9880 0.1725 

6 0 .0712 0. 59 31 0.9651 0.9931 0.2257 

7 0.2263 0.8475 0.9906 0.9982 0.4809 

8 0. 3411 0. 9077 0 .994 7 0.9990 0.5842 

9 0.3830 0.9218 0.99$6 0.9991 0.5959 

10 0.4830 0.9467 0.9970 0.9994 0. 6636 

11 0.5233 0.9542 0.9975 0.9995 0.6759 

12 0.4682 0 .9436 0. 9969 0.9994 0.6033 

13 0.0255 0.3321 0.9043 0. 9801 0. 3979 

14 0.1002 0 .6790 0. 9 75 7 0.9952 0 .1400 

15 0.1062 0. 6930 0. 9 772 0.9955 0.1388 

16 0. 0790 0.6198 0.9687 0.9938 0.0980 

17 0.0214 0. 29 38 0.8877 0.9763 0.0253 

18 0.0348 0.4062 0.9286 0.9855 0. 0 38 7 

19 0.0478 0.4883 0. 94 77 0. 9895 0.0503 

20 0.0320 0.3855 0.9226 0.9842 0.0320 
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THEOREMS 

B.l. Prove that S(y1 ,m) > 0. 

where 

and 

Proof. 

From Eq. (3.17) 

(1) a* = a + n/2 > 0, 2a* > O, and 2a* + 1 > 0 , 

(3) 

since a > 0 and n > 0 

then a* > 0, 2a* > 0, and 2a* + 1 > 0 

since V(m) is p.d., from the definition of p.d., 

2 G(y1 ,m) = 1 + (l/2a*)[C(m) - B (y1 ,m)/A(y1m)J > 0. 

Eq. (3.4) and (3.8) show that 

2 
A(y1 ,m)y 2 - 2B(y1 ,m)y2 + C(m) > O. 

If we divide both sides by A(y1 ,m) (where A(Y1 ,m) > 0 from 

(2)), we get 

y2 
2B(y1 ,m) 

Y2 
+ C(m) > 0 - A(y1 ,m) 2 A(y1 ,m) 

A(y1 ,m)C(m) ·2 B(y1 ,m) 
]2 

- B (y1 ,m) 
> 0 • (Y -

A(y1 ,m) + A2(yl,m) ·2 

Since 
B(y1 ,m) 

[y2 - A(y1 ,m) ]2 > 0 ' 
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then 
2 

A(y1 ,m)C(m) - B (y1 ,m) 

A (y1 ,m) 

Therefore G(y1 ,m) > 0 

> 0 

From (1), (2) and (3), S(y1 ,m) > 0 and the proof is complete. 
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B.2. Suppose x is distributed as a general t distribution with n degrees 

of freedom, location parameter µ and precision T (n > 0, - 00 < µ < 00 , 

T > O), then 

2n1/ 2 f[(n+l)/2] (l +Tµ2/n)-(n-l)/2 

(n-l)(Tn) 112r(n/2) 

where ~ (x) is the cumulative distribution function of a student t 
n 

distribution with n degrees of freedom. 

Proof. 

The p.d.f. of x is 

f(xln,µ,T) = k[l + ~ (x - µ) 2]-(n+l)/ 2 
n 

where 

k 
Tl/ 2 I'[ (n+l)/2) 

(nn) 112r(n/2) 

The expectation of x is defined 

00 

Elxl f !xi f(xln,µ,T)dx 
-00 

00 

f x f(xJn,µ,T)dx + 
0 

by 

0 

f (-x)f(xJn,µ,T)dx . 
-00 

(B2 .1) 

(B2. 2) 



Now, let us evaluate the first term of the right hand side of 

(B2.2), . 
• 

00 00 

J x f(xln,]J,T) dx = J 
0 0 

Let y 

dy 

2 
T(x-]J) 

2T(x-µ)dx 

00 

(x - µ)f (xln,]J,T)dx + µJ f (xln,µ,T)dx 
0 

Z = Tl/ 2 (x-]J) 

dz T112dx 
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dx l/(2T(x-µ)) dy dx -1/2 
T dz (B2. 4) 

Then (B2.3) becomes 

00 00 

k 
2T J [l + l ]-(n+l)/2d + ~ J 

2 n y y 1/2 
[l + l z2]-(n+l)/2d 

1/2 n z 
T]J T -µT 

nk 
(B2.5) T(n-1) 

where ~ (x) is the cumulative distribution function of a student 
n 

t distribution with n degrees of freedom. 

Similarly, we substitute the same transformation as (B2.4) to 

the second term of the right hand side of integral (B2.2), then 

we obtain 

0 
J (-x) f (x In,µ, T) dx 
-00 

0 0 - J (x-JJ)f(xl n, ]J, T)dx -µf f(x fn, JJ, T)dx 
- 00 

0 
-k J (x- JJ) [l + __! (x-µ) 2 ]-(n+l)/ 2 dx 

n 

0 
- k µf [l +..I.ex - µ) 2]-(n+l)/ 2 dx 

n 
- 00 



k 
T]J2 

J [l + l y]-(n+l)/2dy 
2T n 

00 

[l + l z2]-(n+l)/2 dz 
n 

-l.lTl/2 
klJT-l/ 2 f 

Substituting (B2.5) and (B2 .. 6) to (B2.2), (B2.2) becomes 

2n1/ 2f[(n+l)/2] [l + l ]JT2 1-Cn-l)/2 

(n-l)(TTI) 1 / 2r(n/2) n 

and this completes the proof. 
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(B2.6) 
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