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INfRODUCTION 

This study presents an extension of large sample procedures for 

estimation and hypotheses testing problems for IIRlltivariate linear 

models, as it describes situations that cannot be analyzed under the 

Standard Multivariate (SM) general linear model. Kleinbaum (12), has 

developed the theory to deal with the Growth Curve Multivariate (GCM) 

model and the More General Linear Multivariate (MGLM) model, which is 

applicable to the problem of missing observations among the dependent 

variables in the SM model with known design matrix. The author ex­

tends the results of Kleinbaum to include an analysis of covariance 

model with missing observations among the independent variables (or 

covariates) as well as among the dependent variables. This is accom­

plished by using the same linear model structure as Kleinbaum to 

handle the problem of missing observations among the dependent vari­

ables and then employing a modification of the covariance method of 

Zyskind, Kempthorne, et al (28) to replace missing observations among 

the independent variables by their least squares estimates. 

Chapter I contains a discussion of the Multivariate Analysis of 

Covariance (MAC) model, gives a brief discussion of estimation and 

hypothesis testing for the MAC model and describes experimental situ­

ations for which the MAC model does not apply. 

In Chapter II a review of the literature dealing with missing 

values in linear models is discussed. In particular, a detailed 

description is given of the approach of Zyskind, Kernpthorne, et al (28) 
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to the problem of missing values on the dependent variables of a 

univariate linear model and the approach of Kleinbawn (12) to the 

problem of missing values among the dependent variables of a multi­

variate linear model. 

In Chapter III a general form of the MAC model is developed 

which employs a modification of the covariance method of Zyskind, 

Kempthorne, et al (28) to handle missing observations among the co­

variates and uses the linear model structure of Kleinbawn (12) to 

handle the problem of missing values among the dependent variables. 

The model is called the More General Multivariate Analysis of 

Covariance (MGMA.C) mode 1. 

Chapter IV extends the results of Kleinbaum (12) concerning the 

problem of BLUE estimation in the More General Linear Multivariate 

(MGIM) model to the problem of estimation of estimable linear sets 

of the design and regression parameters in the MGMAC model. Unbiased 

and consistent estimation of the variance-covariance matrix I is also 

discussed along with a procedure suggested by Schwertmann and Allen 

(21) for obtaining a positive definite and consistent estimate of I 

when the unbiased and consistent estimate suggested by Kleinbaum (12) 

is negative definite. 

2 

In Chapter V Best Asymptotic Normal (BAN) estimation of estimable 

linear sets of the design parameters is considered for the MGMAC 

model. Test statistics constructed from BAN estimators and consistent 

estimators of the variance parameters are also discussed. 

Chapter VI summarizes the results of this report and suggests 

some possibilities for further research. 



OIAPTER I 

MULTIVARIATE ANALYSIS OF COVARIAi\JCE MODEL 

The Multivariate Analysis of Covariance (MAC) Model is based on 

the multivariate linear model 

E(Y) = Xa + Zs 

Var(Y) = I ®2: 
n 

where Y is an (n x p) matrix composed of p-variate responses on n 

individuals, 

X is an (n x mx) known design matrix of rank R(X) = rx(:!: mx~n) 

corresponding to the classificatory variables of the model, 

a lS an (mx x p) matrix of lillknown parameters, 

z is an (n x mz) matrix composed of concomitant variables, 

13 is an (m x p) matrix of unknown concomitant parameters, z 

Var(Y) is the (np x np) variance-covariance matrix of the (nn x l) 

vector defined by putting the rows of Y underneath each other in a 

long column vector, 

(1. 1) 

L: = (errs) is a (p x p) positive definite matrix of usually unknown 

parameters which represents the variance-covariance matrix of any row 

of Y, 

and In&L: is the Kronecker Product of the matrices In and 2:. 

The MAC model may be more concisely represented by using the 

following definitions: 
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A = cx:z) lS the (n x m) design matrix constructed by horizontally 

augmenting the design matrix X by the matrix Z where m = mx + mz, 

y = (~) is the (m x p) matrix of unknown parameters constructed 

by vertically augmenting the parameter matrix a by the parameter 

matrix s. 

Thus, the MAC model may be written as follows: 

E(Y) = Ay (l. 2) 

Var(Y) = Tn~L: 

Variate-Wise Representation of the MAC Model 

The MAC model may be alternatively represented in a variate-wjse 

representation by making the following definitions: 

Y.s is the (n x 1) vector which denotes the sth(s l, ... ,p) 

column of Y, 

and y is the (m x 1) vector which denotes the sth(s 1, ... ,p) 

column of y. 

Thus, Y (_rl' ... •Yp) 

and 1- (yl' ... ,yp) 

so that the MAC model may be described as 

s = l, ... ,p 

Cov(y ,y5 ) = a I for all r,s -r - rs n 1, . .. ,p. 

(l. 3) 

The variate-wise representation consists of p univariate models 

corresponding to the p variates. These p separate univariate models 

are related by the p(p-1)/2 covariances between the different variate 

pairs. 
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Vector Representation of the MAC Model 

TI1e vector representation of the MAC Model is obtained by making 

the following definitions: 

r--
y 11-1 -1 

2::.2 I 1-2 
Let _r = and J_ = CL 4) 

Zp l~ 

Estimation and Hypotheses Testing in the MAC Model 

Rao (18), using generalized inverses, has shown for the SM model 

that the Best Linear Unbiased Estimate (BLUE) of a linear function of 

the elements of the parameter matrix, when estimable, is given by the 

sum of the BLlJE's obtained separately from the lillivariate models 

resulting from the variate-wise representation. For estimating an 

estimable linear set of the elements of the parameter matrix, Roy (19) 

suggests using the sum of the BLUE's for the linear sets obtained 

separately from the lillivariate models. 

Thus, if C is a known (m x w) matrix (s = 1, ... ,p) then the s 

estimate of H'y = "'°'C'y , when it is estimable, is given by - L....J s-s 

'"°'c' (A'A) -A'y where (A'A) denotes the generalized inverse of A'A. L...J s -s 

The dispersion matrix of this estimate is given by "'""'°"c' (A'A)-C 0 • ~ L...J S · S SS 

Assuming that the rows of Y are each normally distributed, the 

likehood flillction for the MAC model is given by 
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where z is a (p x p) positive definite matrix and y is a an (m x p) 

matrix. Thus, the MLE's of y and z are given by 

y = (A'A)-A'Y and ~=lY'(I 
n 

A(A'A) A')Y. 

A 

It can be observed that H'.r. (where y is obtained by stacking the 

columns of y into a vector) is the same as the estimator obtained by 

using the sum of the BLUE's from the univariate models. 

The general linear hypothesis for the MAC model can be expressed 

in the form H : CyD = 0 where C is a (g x m) matrix of full rank g~ m, 
0 

D is a (p x v) matrix of full rank v and CyD is estimable. Several 

test procedures have been proposed for testing H0 • For example, 

W ·1~ 1 L'k l'h ~ D ~- w 0 11 °" I T . D (Tz, ~d R ' L R 1 •.. s 1 .e Loo...,. .,_a~10, ,,ot~ .... i.Lg s L rac.:- L 1 a1. oy s argest oat 
0 

are the tests most commonly used in practice. Explanations of these 

tests can be found in standard texts on multivariate analysis such as 

Anderson (3) and Morrison (15). 

Experimental Situations in Which the MAC Model Does Not Apply 

The MAC model as defined in (1.1), (1.2), (1.3) and (1.4) involves 

three assumptions which are not always met in practice due to failure 

or inability to obtain complete observations on all experimental units. 

These assumptions are: 

(i) a response is observed on each variate on all experi-

mental units, 

(ii) the design matrix, X, is the same for each response 

variate, and 



(iii) each concomitant response 1s observed on each c~1er1-

mental unit. 

7 

In general the above assumptions are met rn the initial design of 

an experiment unless it is physically impossible or Lmeconomical to 

observe a response on each variate. But even when the experiment is 

initially designed to conform to the above assumptions, missing ob­

servations can occur among the independent as well as the dependent 

variables due to the occurrence of some illlfortlfilatc event such as the 

dropping of a testtube, the failure of an electronic instrument or the 

death of a subject before responses are observed on each variate. 

Any failure of the experimental data to conform to the above 

assumptions makes the MAC model inappropriate for analyzing the 

experiment based on all observed. data, :'Jecauses any ol1servations for 

whicn one or more dependent and/or indeoerrdent resl]onses are missing 

requires the total deletion of that experimental unit. 



CHAPTER TI 

LITERATURE REVIEW 

Allan and Wishart (1) were probably the first to consider the 

problem of missing data in statistical analysis whereas Yates (26) was 

the first to present a general solution using a least squares method 

of substituting for missing values in a designed ex'Periment. Wilks 

(25) discussed both a maximum likelihood approach and a method-of-

moments approach to the problem of missing values in regression 

analysis. 

Haitovsky (9) compares two alternative methods for dealing with 

the problem of missing observations among the independent variables 

and/or the dependent variables in a univariate regression model. One 

method (Method 1) is simply to discard all incomplete observations 

and then apply the ordinary least-squares technique to the complete 

observations. The other method (Method 2) consists of computing the 

covariances between all pairs of variables, each time using onlv the 

observatio~s having values of both variables, and to use these 

covariances in constructing the system of normal equations 

Cov(x.,x.)s = Cov(x.,y) 
i J i 

(2.1) 

(i,j = l, ... ,m), 

h C ( ) . h ( ) . . . h . J J ( . . ) th were ov x.,x. is t e m x m covariance matrix 1n w ic1 t1e i,J 
i J 

element (i,j = l, ... ,m) is computed from the measurements common to 

8 
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both x. and x. (i f. j) as well as from all the existing measurements 
l J 

on xi for i = j, and similarly for Cov(xi,y) (i = 1, ... ,m). The 

comparison was made using Monte Carlo techniques since Method 2 does 

not have optimal statistical properties and since the derivation of its 

distribution theory is intractable. Comparing the two methods with 

regard to unbiasedness and efficiency indicated that Method 2 was 

superior only in the rare case in which 9-10 per cent of the observa-

tions were complete and hence available for use in Method 1. By 

decomposing the Mean Square Error (MSE) into one term accounting for 

bias and the other accounting for the variance when bias is ignored, 

Haitovsky was able to show that the variance term was far more impor-

tant in the large difference observed between the two methods. He 

concluded that although the bias affects the relevance of the inference, 

the major problem with Method 2 is caused by the inconsistency intro-

duced into the system of normal equations (2.1). 

Buck (6) treats the problem of missing values among the dependent 

variables in a multivariate linear model by estimating the missing 

values using regression methods and then calculating a revised 

variance-covariance matrix. He represents the sample of n experimental 

units by expressing the responses, y .. (i = l, ... ,n; j = l, ... ,p), rn 
lJ 

the form of an (n x p) matrix, Y, in which some of the elements are 

missing. Assuming t~1at k of the n p-varia te resnonses are complete, 

he lets these form the first k rows of Y and then calculates the 

expected value of y . (r = l, ... ,k) by forming for each value of J, 
rJ 

the multiple regression of the jth variable on the other p - 1 van-

ables from the set of observations consisting of the first k rows of Y. 

Thus, he obtains p·equations which can be expressed as 
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Th · · 1 h · t d f 11 If the i· th uni· t e missing va ues are t en estima e as o ows. 

h h . th b . . . . 1 . . d b f as t e J o servation missing, its va ue, y .. , is estimate y one o. 
iJ 

the equations (2.2) substituting y .. for y ., that is 
iJ rJ 

E(y .. ) = f.(y.l, ... ,y .. l,y .. l, ... ,y. ). iJ J i iJ - iJ + ip 

This formulation assumes only one missing value rn each incom-

plete response but can be extended to the case in which units have 

more than one missing value. Buck shows that if the value y. is 
J 

missing for a proportion A. of all experimental units, and the pre-

dieted values are substituted and a new variance-covariance matrix 

calculated, then the expectations in this matrix are the same as they 

would be if there were no m1ss1ng values, except for the variance 

v' .. of y. which is in terms of expectations 
JJ J 

v' . . v .. - A./c.. , 
JJ JJ JJ 

where v .. is the jth diagonal element of the variance-covariance matrix, 
JJ 

say V, that would result if there were no missing elements and c .. is 
JJ 

h .th d. 1 1 · v- 1 t e J iagona e ement in . 

Beale and Little (5) propose a solution to the problem of missing 

observations in the dependent variables of a multivariate normal linear 

model based on the Missing Information Principle of Orchard and 

Woodbury (16) which involves approximating the Maximum Likelihood 

solution through an iterative technique. The argument of Beale and 

Little follows that of Orchard and Woodbury but emphasizes that the 

effect of the principle is to replace a maximization problem by a 

fixed point problem. They construct a conditional likelihood frnKtion 
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composed of the likelihood equation for known values plus a conditional 

likelihood of unknown values given the known values and then show that 

a stationary solution to the conditional likelihood equation 1s equi-

valent to the Maximum Likelihood solution based on the original like-

lihood equation. Thus, assuming the (n x p) observation matrix, Y is 

distributed as a Multivariate Nonnal, they group the observations into 

two vectors r and~ with a joint distribution depending on the vector 

~ of parameters, where r has been observed but ~has not been observed. 
A 

To approximate the Maximum Likelihood Estimate (MLE) e of e based on 

the log likelihood L(r;~ they suggest maximizing the expected value 

of L(~,l_;~ where ~ is treated as a random variable with some known 

distribution. Thus, letting f Cyr;~ denote the probability density 

function for the conditional distribution of ~ given r and ~' and 

letting LC.Yr;~) denote ln f (yr;~) then 

( 2. 3) 

A distribution 1s defined for ~ by taking any assumed value ~A 

for ~ along with the observed value of l· One can then take expecta­

tions of both sides of (2.3) and integrate with respect to z. This is 

expressed by 

They then find the value ~l of ~ that maximizes the left hand 

side of (2.4) and write 

(2.4) 

since~ may depend on ~A· Thus, equation (2.5) represents a trans-
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fonnation, namely a value of e such that e = ~(~. 

Z-yskind, Kempthorne, et al (28) present a very thorough treatment 

of the analysis of covariance technique, first introduced by Bartlett 

(4), to a univariate linear model with missing observations occurring 

on the the dependent variable. They approach the problem by parti-

tioning the model 

E(_r) = Xa ( 2. 6) 

Var(_r) o2 I n 

so that it may be written 

E(_r) (X1) a 
X2 -

(2. 7) 

where _r is an (n x 1) vector of observations, X (~~) is an (n x p) 

known design matrix of full rank p ~ n, and a is a (p x 1) vector of 

unknown parameters. 

In general the computational formula for the fitting of a full 

model of the form (2.7) is used where the data corresponding to the 

vector x1~ of m components are missing or are simply not available. 

Thus, the model to be fitted is E(_r2) = x2~, but a solution to the 

nonnal equations 

is not immediate, whereas a solution to the nonnal equations corres-

ponding to the full set of data is standard. They capitalize on the 

available infonnation by considering the following analysis of 

covariance model fonn: 
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o X -I 
E ( ---m) = ( X2

1 ) ~ + ( 0rn ) ~ ( 2 • 8) 
r n-m,m 

where I J_s an (n x m) identity ma tr ix. Since the sum of squares of 
m 

deviations of the observations from their expected values for the model 

(2.8) and the model E(y2) = Xz.'.:. are minimized for identical sets of 

values for the vector .'.:.' the computations required for fitting the 

model E(y2) = x2.'.:. can be performed on the corresponding analysis of 

covariance model. Then using the facts: (i) that for the model 

E(iJ = x.'.:. + z~ 

the full set of normal equations 

X'Xa + X'ZS = X'y 

Z'Xa + Z'ZS = Z'r 

can be equivalently expressed as 

X'X.'.:. + X' z~ = X'r 

(2.9) 

(2.lOa) 

(2.lOb) 

{(I- X(X'X)-X')Z}'{(I 

{ (I - X ( X' X) -X' ) Z } 'l 

X(X'X) X)Z}a = 

(2. lOa) 

(2.lOc) 

and (ii) that if A.'a is an estimable parametric function for the model 

E(2::'._z) = x2.'.:. and if for the model E(iJ 

by 

CxX 1 ) a the BLUE of A.' a is gI ven 
2 -

the BLUE of A. 'a for the model E(2::'._z) = x2~ is given by 



where B is obtained by solving the error normal equations (2.lOc) 

where Z = (-I 0) and y = (~) 
m - l2 

Thus, B in expression (2.12) plays the role of r1 in the point 

estimation of~·~ for the model E(y) = (~~)~_. It would appear that 

one could easily extend the results of Zyskind, Kempthorne, et a1 to 

handle the problem of missing responses among the dependent variables 

of a multivariate linear model. However, this is not the case due to 

the dependence of their solution upon the fact that the residual sum 

14 

of squares for the model (2.8) and the model ECr2) = x2~ are identical 

for identical sets of values for the vector ~ which is not guaranteed 

in the multivariate case due to the covariance structure among 

responses from the same experimental lil1it. 

As mentioned in the introduction, Kleinbaum (12) proposes a 

solution to the problem of estimation and hypothesis testing for the 

MGLM model which is applicable to the case involving missing ohser-

vations among the dependent variables in the SM model with known design 

matrix. He writes the SM model in the form 

E(Y) = Xa 

Var(Y) = I '11lL: n 

where Y is an (n x p) matrix composed of p-variate resnonses on n 

individuals, 

X is an (n x m) known design matrix of rank R(X) r(~m~n), 

a is an (m x p) matrix of lil1known parameters, 

(2 .13) 

Var(Y) is the (np x np) variance-covariance matrix of the (np x 1) 

vector defined by putting the rows of Y underneath each other in a 



long colll1Tll1 vector, 

z = (ors) is a (p x p) positive definite matrix of usually W1known 

parameters which represents the variance-covariance matrix of any row 

of Y, 

and In&z is the Kronecker Product of the matrices In and z . 
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Letting y be the (n x 1) vector denoting the sth column of Y and 
-s 

a the (m x 1) vector denoting the sth colll1Tll1 of a, he writes the 

variate-wise representation of the SM model as 

E(y J = Xa , 
-5 -

s = l, ... ,p (2.14) 

for all r,s = l, ... ,p. 

1hen stacking the observation vectors on top of one another the 

vector representation of the SM model becomes 

E(y) = Dx~ 

Var(iJ = Sl 

(2.15) 

From these representations Kleinbaurn develops a general form of 

the model which allows the omission of responses from variates not 

observed on a given experimental W1it. For the case involving missing 

observations among the dependent variables of an SM modeJ, he con-

structs the generalized model as follows. Assuming tl1ere are n exo-

perimental units and a total of p response variates, v1 , ... ,Vp, he lets 

z , s = l, .•. ,p be the vector of length Ns, say, corresponding to all -s 

observations on Vs in the entire experiment and lets X5 be the (N5 x m) 

design matrix corresponding to ~s' i.e., Xs is determined from X hy 



deleting the rows which correspond to missing values of y . He then 
-s 

lets the (Nr x Ns) (r < s) matrix Qrs denote the incidence matrix of 

O's and l's defined by Q = (q. ·c )) where rs lJ rs 

16 

1 "f h .th t f d h .th 1 t e 1 componen o ~r an t e J com-
ponen ~ of ~s are observed on the same 

qij(rs) experimental unit, 

0 otherwise. 

Thus, the variate-wise representation of the MGLM model is given 

by 

E(z ) = XS~ Var(z ) 0 rs 1N (2.16) . -s -s s 
Cov(z ,z ) = 0 rsQrs' ri...s -r -s 

Cov(z ,z ) = CJ QI r > s, r,s = l, ... ,p. -r -s rs rs' 

Using the above definitions the vector representation of the MGLM 

model is given by 

xl l 
X2 <P 

E(~) a and 
-. 

<P 

x p 

where ~' a, rt, N and M are defined by 

z = 

~l 

~2 

z 
-p 

a = 

Var(_0 = rt ( 2. 17) 

.C:.1 

.C:.2 



a 11 IN1 

CT12Qiz 

Q = 

CT Q' lp lp 

CT12Ql2 

CTzzIN 
2 

CT Q' 2p 2p 

and M = "'m L.J s' 

olpQ1pl 

ozpQZr I 
I 

CT 
pp IN 

pj 
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Kleinbawn then shows that the unique BLUE of any estimable linear 

function or linear set of the treatment parameters is given by a linear 

function or linear set, respectively, which involves the unknown 

parameters of the variance-covariance matrix st. In fact, restricting 

linear estimates to be known functions not involving Q requires addi-

tional restrictive conditions on the model. Therefore, he considers 

Best Asymptotically Normal (BAN) estimation which is a non-linear 

method of estimation using estimates of Q and giving variances that 

are, in large samples, the minimlUll that could be acl1ieved by linear 

estimators if Q were known. 

For testing linear hypotheses in the MGLM model, assuming the data 

is normally distributed, Kleinbaurn suggests using test statistics 

which are quadratic forms called Wald Statistics and are constructed 

from BAN estimators of linear functions of the treatment parameters. 

Since the asymptotic distribution of a Wald Statistic is a central 

chi-square variable, the test criteria give chi-square tests when the 

sample size is large. 

Attempts have been made by several authors to obtain Maximum 

Likelihood Estimates (MLE) of the parameters in a multivariate linear 
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model with missing ob-servations among the dependent variables. However, 

most of these methods are applicable to only very specific models. For 

instance, Anderson (2) describes an iterative technique for ohtaining 

the MLE's of a= a' and rt when a' is a (p x 1) vector and X is an . s 

(N x 1) vector of ones. Hocking and Smith (10) have developed a pro-

cedure for obtaining BAN estimators of ~ and 5l for the multi variate 

linear model with missing observations among the deoendent variables 

and they have shown for a special case foat their approach gives the 

maximum likelihood solutions obtained by Anderson. Their estimation 

procedure involves obtaining initial estimates of the parameters from 

the group of observations with no missing values and then modifying 

these initial estimators by adjoining the information in all the re-

maining groups in a sequential manner by the addition of linear combi-

nations of zero expectations. However, for purposes of a general com-

puter program, extremely cumbersome notation would be required to 

express the formulae for calculating the estimators at each stage. In 

fact, Hocking and Smith have only considered a fe\v cases involving 

simply structured models. 

Bayesian approaches to the problem of missing observations in-

elude those of Dagenais (8), Mehta and Swamy (14) and more recently 

that of Press and Scott (17). Press and Scott (17) propose a solution 

to the problem of missing values among the independent and/or dependent 

variables in a univariate normal regression model with vague prior 

distributions. They write the model 

in the partitioned form 



r_ = Ua + VS + c 

where r_ is an (n x 1) vector of dependent variables which may or may 

not have missing elements, 

X = (U'.V) is an (n x p*) matrix representing the p* independent vari-

ables, 

lJ = (u1, ... ,u )' is an (n x p) matrix representing the independent - -n 

variables which have at least one element missir~.g, 

V = (~1 , ... ,~)' is an (n x q) (q = p* - p) matrix representing the 

remaining complete independent variables, 
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J_ = (~) is a (p* x 1) vector of regression parameters corresponding to 

the matrix X and 

~ is an (n x 1) vector of residuals assumed to be independent and nor­

mally distributed with mean zero and variance o2 . 

In addition they assume that, given V, the rows of U are indepen-

dent nonnal random vectors with u.-N(r'v.,E) where E is positive defi-
-J -J 

nite and symmetric and r' is an unknown (p x q) matrix. Using this 

linear model structure with vaque prior distributions, Bayes modal 

estimators of the parameters ~' _§_ and r are obtained as the joint mode 

of the posterior distribution of the regression parameters and missing 

u' s and· y' s . 

For the special case in which none of the dependent variable 

observations are missing, the Bayes modal estimators are equivalent to 

the estimators obtained by Buck (6) where u. is regressed on r_ and the 
-J 

remaining p* - 1 independent variables. If, on the other hand, missing 

values occur only on the dependent variable their solution reduces to 

the ordinary least squares solution ignoring all data corresponding to 
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missing values of r_. It should be pointed out, however, that ignoring 

those values of X for which missing values occur on r is equivalent to 

requiring that xl (where xl is the (r x p*) matrix representing the 

rows of X corresponding to missing values of y) be orthogonal to r 
(where r is the (r x 1) vector representing the missing values of }:') 

which is only true if x1 is a matrix of zeros. 



CHAPTER III 

GENERALIZATIONS OF 1HE MAC MODEL 

It appears that if it were possible to generalize the results 

cited in the literature which deal with missing observations, at best 

one would have procedures for handling missing values among the depen­

dent and/or independent variables in a univariate analysis of covari­

ance model or missing values among the dependent variables in a multi­

variate analysis of covariance model. The general fonn of the SM model 

for missing observations among the dependent variables as discussed by 

Srivastava (23) and Kleinbaum (12) does, however, appear to be valuable 

as an initial representation of the General Multivariate Analysis of 

Covariance (GMAC) model,(i.e., the MAC model in which missing obser­

vations occur among the dependent variables only). The results of 

Kleinbaum for estimation and hypothesis testing in the MGLM model can 

then be generalized to the More General Multivariate Analysis of 

Covariance (MGMAC) model (i.e., the MAC model in which missing obser­

vations occur among the dependent and/or independent variables) by 

employing a procedure for dealing with the missing independent vari­

ables similar to that suggested by Zyskind, Kempthorne, et al (28) for 

handling missing dependent variables in a univariate linear model. 

For the special case in which missing values occur only among the inde­

pendent variables, it is possible, using a modification of the analysis 

of covariance technique, to obtain the usual MLE's of y and i.: and to 
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perform hypothesis tests based on the generalized likelihood-ratio 

principle originally developed by Wilks (25). 

The MAC Model with Missing Independent Variables 

If missing observations occur only among the independent van-

ables, the standard analysis applicable to the full model discussed 

in Chapter I can be performed after replacing the missing covariates 

by their least squares estimates. This is accomplished by using the 

technique of Zyskind, Kempthorne, et al (28) on the independent vari­

ables rather than the dependent variables. For simplicity of dis­

cussion, the modified analysis of covariance technique will be illus-
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trated on a univariate regression model in which one independent vari-

able is missing. 

Let E(iJ Z*S and Var(z:) V where 

xll xl2 

X21 x22 

Z* s = 

xnl ~2 
'-

and let 

E(iJ Zf + ~Sl ( 3 .1) 

where 
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0 xl2 xlm xll 

X21 Xzz x, 
~.m 0 

z and w = 

xnl ~2 xrun l () 
It is clear that the set of S values which minimize 

-1 er - z * E) 'v er - z * f.) ( 3. 2) 

is the same as the set of S values whid1 minimize 

-1 (y - Zs - ws )'V (y - Zs - ws) - - -1 - - -1 
(3. 3) 

since (3.2) and (3.3) are identical expressions. Thus, E(r_) 

gives the same solution as E(r) = Z*s. 

Searle (22) has shown that the model (3.1) can be fitted in two 

steps by first fitting the model E(_r) = ZS to obtain 

and then replacing w by R , where R is computed as follows: - w .. w 

Then fit E(_r) = Rwsl to obtain 

It can be shown that if the least squares solution to E(_r) Z*s 
,.. 

is given by f_, then 



or equivalently 

f3 (Z'V-lZ)-lzry-1 Y1 - x11f310 

Yz 
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But it has already been shown that the set of_§_ values satisfying 

(3.3) is the same as the set of_§_ values satisfying (3.2) and therefore 

( 3. 4) 

Now the model E(r_) = Zf + ~s 1 can alternatively be written 

E(r) = Zf + ~*6 1 where~*'= (1,0, ... ,0) and 01 = x11s1. Fitting this 

model in two steps gives 

_?_ = (Z'v- 1z)-1z1v- 1r and 

6 = (R' V- 1R1 ). -lR' V-ly so that 
1 ·w* w* w* -

f3 = (3 

or equivalently 

f3 (3.5) 

Comparison of (3.4) and (3.5) indicCl;tes that 61 is an estimate of 

xllsl and that the least squares estimate of S in the model E(y_) Z*s 

when xll is missing from Z* is given by 



25 

(3 

where o1 is the least squares estimate of x11s1 obtained by the ana1y­

sis of covariance technique. 

These results are easily generalized to the case of more than one 

missing independent variable by replacing the vector '!!....* by a matrix W* 

composed of t columns similar to '!!....* (i.e. , with ones corresponding to 

missing x .. and zeros elsewhere) where t represents the number of 
lJ 

missing independent variables in Z* and hence the number of additional 

parameters to be estimated. Also, the use of Var(y_) = V in the above 

development enables a generalization to the vector version of the Ml\C 

model, where in this case W* is replaced by l\v* = Ip&W* and V is re­

placed by ri = L: &I . For the MAC model an additional pt parameters will n 

need to be estimated in the presence of t missing independent variables. 

Thus, for the MAC model in which missing observations occur among 

only the independent variables, estimates of y can be obtained by using 

the model 

E(Y) A*y + W*o (3.6) 

where A* is obtained by replacing the missing values in A by zeros, W* 

is an (n x t) matrix consisting oft columns with a one· in each column 

corresponding to a missing x .. in A (or a zero in A*) and zeros else­
lJ 

where, o is a (p x t) matrix of parameters which result from the t 

missing value.s in A. Similar to the parameters introduced by Zyskind, 

Kempthorne, et al, these parameters represent linear combinations of 

the original design parameters. However, in this case each additional 
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parameter represents only the product of one missing independent vari-

able and the corresponding covariate parameter associated with it. 

1he model (3.6) may be rewritten as 

E(Y) = (A*:W*)(x) 

which is in the same form as the MAC model discussed in Chapter I. 

Therefore, the MLE's of CX) and are given by 

ex) = {(A*: W*) I (A*; W*)} - (A*: W*) 'Y and 

_!_y' {I 
n 

(A*;W*) { (A*:W*) '(A*'.W*)} (A*'.W*) '}Y 

In summary, it has been shown that the MLE's of y and z can be 

obtained for the model E(Y) = Ay in the presence of missing observa-

tions among the independent variables. 

1he MAC Model with Missing Dependent and/or 

Missing Independent Variables (MOOC) 

For purposes of clarity and simplification the general form of 

the MGMAC model will be presented by first rewriting the various forms 

of the MAC model, then generalizing to the Gene·ral Multi variate 

Analysis of Covariance (GMAC) model and finally by extending the GMAC 

to the MGMAC model. To make the presentation as brief as possible, 

definitions of variables and parameters previously defined will be 

omitted lIDless specifically needed for clarification. 

The Multivariate Analysis of Covariance Model (MAC) can be 

represented by 

E(Y) = Xa. + ZS ( 3. 7) 



Var(Y) = I ©I: n 

or alternatively by 
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E(Y) = Ay, where A= (X:Z). (3.8) 

Thus, the variate-wise representation of the MAC model is given 

by 

E CL) = AJ..s , s = 1 , .•. , p ( 3. 9) 

Cov(r_r,zs) = 0rsln for all r,s = l, ... ,p 

and the vector representation is given by 

E(iJ = DA_r 

Var(iJ = rl 

(3.10) 

where DA = Ip~ and rl = I:&In. 

To obtain the general form of the GMAC model, assume there are n 

experimental units and a total of p response variates, v1, ... ,Vp. Let 

~s' s = l, ... ,p be the vector of length N, say, corresponding to all s 

observations on Vs in the entire experiment. Let the (Ns x m) matrix 

Ds, s = l, ... ,p be the design matrix corresponding to ~s' i.e., Ds 

is determined from A by deleting those rows which correspond to 

missing values of l.s. Let the (Nr x Nx) (r < s) matrix Qrs denote the 

incidence matrix of O's and l's defined by Q = (q. ·c )) where rs lJ rs 

qij(rs) = 

. f h . th t f d h . th 1 i t e i componen o l.r an t e J 
component of l.s are observed on the same 
experimental unit, 

0 otherwise. 
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Then the variate-wise representation of the GMAC model 1s given 

by 

E(z ) = D y Var(z ) 0 rsIN (3.11) -s s-s -s s 

Cov(z , z ) = 0 rsQrs' r< s -r --s 

Cov(z , z ) -r -S 
a Q' rs rs' r>s r,s l, ... ,p. 

Using the above definitions the vector representation of the C':iMAC 

model is given by 

E(_0 = D.r. (3.12) 

Var(_0 = ~ 

where ~' D, y, ~' N and M are defined by 

~l D1 

r ~l Dz ¢ 
z = D = r. = 

¢ I 
I 

z D I 
-p p l Xr _ 

all IN 
1 

0 12Q12 0 lpQlp 

0 12Qi2 ozzIN a 
2pQ2p 2 

~ . 

0 lpQlp a Q' Zp 2p a IN 
PP p 

N = LNs and M = mp. 

To obtain the general form of the MGMAC model assume that the 

design matrix A= (XiZ) of the MAC model has £t missing observations 



th in the !l coli.mm, (!l = mx+l, ... ,mx+mz). Then in the Ct\ x m) design 

matrices D of the variate-wise representation of the GMAC model the s 
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!lth column will have !lts =flt - !lks, missing observations where !lks is 

the number of experimental units for which both the independent vari-

able in column !l of Ds and the dependent variable on variate Vs are 

m1ss1ng. Thus Ds would have ts= 2:!lts missing values. Ds is then 

replaced by F where F is derived from D by augmenting D (with O's s s s s 

in place of missing values) by a matrix D* s of dimension (NS x ts) com-

posed of t columns s each with a one in the row position corresponding 

to the missing values in Ds and zeros elsewhere. (Note: Fs has 

dimension (Ns x ms) where ms= m +ts). Thus, the variate-wise repre­

sentation of the MGMAC model is given by 

E(z ) - F E, Var(~s) = 0 rs 1Ns (3.13) -s - s-s' 

Cov(z , z ) -r -s 0 rsQrs' r <s 

Cov(z ,z ) -r -s a Q' rs rs, r > s, r,s 1, ... ,p 

where I = Cf) and where i is a (ts x 1) vector of unknown parameters 

which result from the missing values in Ds. Similar to the parameters 

introduced by Zyskind, Kempthome, et al, these parameters represent 

linear combinations of the original design parameters. However, in 

this case each additional parameter represents only the product of one 

missing independent variable and the corresponding covariate parameter 

associated with it. 

The vector representation of the MGMAC model is given by 

E(~ = FE, 

Var(~) = n 

(3.14) 
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where F, ~' N and Mare defined by 

Fl 
1 

t; l j 

F2 cp ~21 
F = t; = 

~p J 

cp 

F 
p 

N = LNs and M = .L'm . 
_J s 



GIAPTER IV 

BEST LINEAR UNBIASED ESTIMATION 

It has already been shown for the f\1AC model and for the MAC model 

with only missing independent variables that the Maximum Likelihood 

Estimates (MLE's) of y and I are given by generalized least squares. 

It is also well known that Best Linear Unbiased Estimation (BLUE) for 

the MAC model is achieved by generalized least squares and that the 

resulting estimator is independent of Q. That is, using the vector 

representation of the MAC model, the generalized least squares esti-

mate of y is given by 

(D'Q-lD )-D'Q-ly ={(I ®A')(I-l®I )(I ®A)}-(I ®A')(I-l®I )y 
A A A - p n p p n-

(I-l®A'A)-(I-l&A.')2:'._ 

{I&(A'A)-}(I-l®A')_r 

{I ®(A'A)-A' }y p -

Since it has been shrn·m, using the analysis of covariance tech-

nique, that the MAC model with only missing independent variables can 

be written in the same form as the usual MAC mode 1, it follows that 

BLUE estimation for the case of missing independent variables is also 

achieved by generalized least squares. 

31 
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BLUE Estimation of Linear Sets H' t;, for the MGMAC Model 

Kleinbaum (12) has considered BLUE estimation for the MGLM model 

and his results generalize immediately to the GMAC model and the MGMAC 

model since each one of these models is identical in form to the MGLM 

model, except for the components and dimensions of the design matrices. 

111e following direct extensions of similar results by Kleinbaum for 

the MGLM model are stated only in terms of the MG.MAC model since the 

GMAC model is just a special case of the MGMAC model. 

For the MGMAC model a linear set of the form H' t;, = ""'C '. t;, , where - L.-1s-s 

C is a known (m x w) matrix (s s l, ... ,p), is estimable if and only 

if for each s each component of C't;, has a BLUE u~der the lfilivariate 
S-S 

model for variate Vs alone. An estimate G'z will he called a BLUE set 

for H'l if G'~ is known and unbiased for H't;, and if for any other 

known and unbiased estimate, say K'~, then 

6 = Var(K'~ - Var(G'~ 

is non-negative definite. Extending the results of Roy (19) to the 

M;MAC model it follows that if G'z is a BLUE set for H't;, and K'z is 

any other known estimable set for H't;, then 

ch {Var(G'z)} ~ ch {Var(K'z)}, max - max -

tr{Var(G'~} < tr{Var(K'~}, 

and 

JVar(G'~ I < JVar(K'~) J. 

If e = I-I' t;, = ,L.c~is is estimable, and if Si is known then H' t;,. has 
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a un:i:que BLUE set given by 

whose variance covariance matrix is given by 

If the above estimate of e is to be a known linear function of z 
A 

it must be independent of Q However, for the MGMAC model ~ is not 

independent of.Q unless the following conditions are satisfied: 

each row of C'(F'F )-F'Q s V(F'), r < s s s s s rs s ( 4 .1) 

and 

each row of C'(F'F) F'Q' s V(F'), r > s s s s s rs s ( 4. 2) 

where Q (r < s) is the (N x N) incidence matrix of O's and l's rs r s 

defined previously (r,s = l, ... ,p). 

For the special case in whic11 IP= I~1' (i.e. , ! = H 'I = .f_) I is 

estimable if and only if each F is of full rank, and in this case an 
. s 

unbiased estimator is given by 

A 

where ~ -s 

if (4.1) 

I1 

s = 1, ... ,p 

(F'F )-1F1 z. Furthennore, ~ is a BLUE set for-~ if and only s s s-

and (4.2) hold, where (F'F )- is replaced by (F'F )-l . 
s s s s 

If conditions (4.1) and (4.2) are not satisfied one is led to 

consider nonlinear methods of estimation whio1 use estimates of L: and 

whici1 give variances that are, in large samples, the minimum that could 

be achieved by linear estimators if L: were known. 
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Unbiased and Consistent Estimation of L: 

A consistent and unbiased estimate of 2: for the MGMAC model is given 
A 

by L: = (ar5 ) where 

and 

s=l, ... ,p 

a rs = 
1 

N -R(F ) rs rs 

(r,s = l, ... ,p) , 

z' -rs 

F (F'F )-F'}z s s s s -s 

- F (F' F )-F' }z , r f s rs rs rs rs -rs 

where N (> 2) is the mnnber of experimental units on w:1ich V is r - r 

observed, 

( 4. 3) 

N C: 2) is the munber of experimental units on which boti1 V and V rs r s 

are observed together, 

z is the (N x 1) vector of all observations on V , 
~ r r 

~rs (r f s) is the (Nrs x 1) vector of observations on Vr which corre-

spond to w1its on which both V and V are observed together, r s 

Fr is the (Nr x mr) design matrix corresponding to ~r' 

Frs is the (Nrs x mr) design matrix corresponding to ~rs' 

lim(N /n) exists and is non-zero, s = l, ... ,p and s 
ll-7-00 

limO\/n) exists and is non-zero, r f s, r,s = 1, ... ,p. 
n-+m 

The estimate of L: given above follows directly from a similar 

result for the MGLM model discussed by Kleinbawn. Using the estimate 

of L: obtained from ( 4. 3), an unbiased estimator of t11e variance of 

e = ""c'(F'F )-F'z, where e = H'[, == ~Cs'_[,5 is estimable, is given by L.J s s s s- - L..J 



A 

Var(~ ~cr C'(F'F )-F'z 
~ SS S S S S-S 

+ 2 ~~cr C'(F'F )-F'Q F (F'F )-C 
~~ rs s s s s rs s s s s 

A 
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This result follows from direct calculation of Var(e) and from the fact 

that E is w1biased for E 

Positive Definite and Consistent Estimation of E 

For small samples and incomplete data vectors, the consistent and 

unbiased estimate of E given by (4.3) is not necessarily a positive 

definite matrix. If the estimated variance-covariance matrix is indef-

ini te a procedure suggested by Schwertman and Allen (21) can be used to 

obtain the positive semidefinite matrix w~1ich is "closest" to E in a 

weighted least squares sense. 'TI1is procedure involves finding a matrix 

T such that the weighted squared difference between eac~1 element of l: 

and T'T is minimized. 

They suggest the use of t;1e degrees of freedom associated with the 

estimate of cr as a weighting factor since it results in weighting rs 

inversely to variance, a condition required for minimrnn variance 

unbiased estimation. Ti1e expression to be minimized is thus 

where W = l/(N - R(F )) and ""t1 t 1 is the (r,s)th element of rs rs s £...., r s 

T'T . However, t:1e "smoothed" estimator of l: which results from 

(4.4) 

minimizing (4.4) is singular. T:1us, if 
A-1 
l: is required, Schwertman 

and Allen recommend applying their procedure to 
A-1 
l: rather than to i: 

If both the variance-covariance matrix and some form of the inverse 

are required they suggest using the inverse obtained by inversion of the 



36 

positive eigenvalues of the "smoothed" estimator multiplied by the 
A 

appropriate eigenvector product. Tims, if I:* is the "smoothed" esti-

mator of l: , then 

{ 1 *-1 ' /\- n.p.} 
i .Li-i 

( 4. 5) 

1 * d h . th . 1 d h . d . wi1ere >... an n. are t e i eigenva ue an t e associate eigenvector 
i Li 

A A 

of I:*, respectively. The inverse of I:* obtained from (4.5) has the 

desirable property that for the special case of unweighted least squares 

(i.e., giving equal weight to eaci1 squared difference in equation (4.4)) 

it is equivalent to t.;1e "smoothed" estimator of That is, in the 

least squares sense, this generalized inverse is the "closest" to 

but with t11e property of being positive semidefinite. 



CIIAPTER V 

LARGE SAMPLE ESTIMATION AND EYP011IESIS TESTING 

111is chapter extends the large sample estimation and hypothesis 

testing procedures of Kleinbaum (13) for the MGLM model to the MGMAC 

model. Therefore, results which are direct extensions of similar 

results by Kleinbaum for the MGU.1 model are stated without proof. 

It was sho"Wll in the previous chapter that the unique BLUE set of 

any estimable linear set of the treatment parameters is given by a 

linear set which involves the variance matrix E • This chapter, there-

fore, deals with Best Asymptotically Normal (BAN) estimators (i.e., 

nonlinear estimators involving estimates of E and having variances which 

are, ·in large samples, the minimum that could be obtained by linear 

estimators if E were known). The test statistics are asymptotically 

distributed chi-square variables constructed from BAN estimators of 

linear functions of the treatment parameters and consistent estimators 

of the variance parameters. 

BAN Estimation for the MGMAC Model 

" 
An estimator g(e ) based on a sample of n observations is said to 

- -n 

be a BAN estimator for g_(~ if 

-1/2 " d Inc { g ( e ) - g ( e rJ } ~ N ( 0 , I ) n --n --v w.:...w w 

where g_(!) == [g1 (~, .•. ,~(!)]' is a (w x 1) vector function of an 
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unlaiown (u x 1) parameter e = (e 1, •.. ,eu)', ~is the true value of 

e 

c = 
n [3_g_(~ 

38 e = e J - _'.'.__() 

is synnnetric, positive definite and of full rank w, B is the (u x u) 
n 

Fisher's InfoTI11ation Matrix given by 

B = 
n 

~n is the likelihood function for the sample, 

~ has asymptotic dispersion matrix~- , 
~ · nn 

and § implies convergence in distribution. 
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For the MGMAC model it was shown in Chapter IV that if SI is known, 

the unique BLUE of the estimable set e = H'f given by weighted least 

squares is 

A 

Thus, if z is assumed to be normally distributed, then e* is normally 
-n 

distributed, BLUE and hence BAN. If SI is unknown but can be estimated 
~ A 

by Q whid1 is obtained from Q by substituting the elements of z = (a ) rs 

given by (4.3) for the corresponding elements of z = (ors) then 

(S.l) 

is BAN for e H's 



The Asymptotic Variance Matrix of a BAN Estimator 

for the MGMAC Model 

The likelihood flll1ction c!J for the MGMAC model is given by 
n 

cp = 
n 

-1 F_0 , Q c~ - Fn } 

where Q is a fWlction of the (p x p) positive definite matrix I and ~ 

is a (p x 1) vector. Thus, the information matrix for i is given by 
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1 -1 -=B = F'Q F where Q is the true variance-covariance matrix, and the n n,i 
asymptotic variance matrix of any BAN estimator of an estimable linear 

set H'i, where H is an (M x w) matrix of full rank w, is given by 

H'B-l H = H'(F'Q-lF)-H n,i . 

Testing Linear Hypotheses for the MGMAC Model 

The test statistics proposed by Kleinbaurn for the MGLM model are 

Wald Statistics which are asymptotically distributed as central chi-

square variables. The Wald Statistic which was first suggested by 

Wald (24) for testing hypotheses of the form H0: K(~) = 0, is given by 

,,.... ~-1 ,., 
W = n [g ( 8 } ] I C [g ( 8 ) ], n --n n --n 

where C is obtained from C by substituting 8 for 8. That Wn is n n -n 

asymptotically x; when H0 is true follows from the result by Cramer 

(7) that. 

" 
and since ~ p ~ then 
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Thus, for the MGMAC model, if H'.f is estimable where H is an (M x w) 

known matrix of full rank w, then under the null hypothesis H0: H'~ = 0 

the test statistic 

( 5. 2) 

is asymptotically distributed as a central chi-square variable with w 

degrees of freedom, 

where Q = Q A ) 

E is any positive definite consistent estimator of E 

Q and F are defined by the vector representation 
A 

and H'.f is any BAN estimator of H'.f . 

Modified Procedure for Obtaining BAN Estimators 

and Wald Statistics for the GMAC Model 

For the MGMAC model. a general procedure was developed in the pre-

vious sections which gives BAN estimators of the design parameters and 

regression slopes and which allows hypothesis tests based on Wald 

Statistics which are asymptotically distributed as chi-square vari-

ables. However, equations (5.1) and (5.2) for the BAN estimators and 

Wald Statistics, respectively, each involve an. estimate of the 

(np x np) inverse of the variance-covariance matrix ri, whose dimensions 

become extremely large for a design involving many observations on a 

large munber of dependent variables. Therefore, numerical computation 

of (5.1) and (5.2) can become impractical even on an electronic corn-

puter due to the dependence of the computation on the calculation of 
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-1 
Q • For the GMAC model, however, alternative formulae involving 

A h 

functions of E rather than D can be obtained from the Matrix Modified 

representation of the GMAC model which will be described in the follow-

ing paragraphs. 

For the special case of the GMAC model a BAN estimator which is 

unbiased for any estimable linear set e = H'J_, is given by 

(5. 3) 

Also, if H is a known (M x w) matrix of full rank w, then under 

the null hypothesis H0 : H'J_ = 0 the test statistic 

(5. 4) 

is asymptotically distributed as a central chi-square variable with w 

degrees of freedom, 

where D 

E is any positive definite consistent estimator of E, 

Q and D are defined by the vector representation of the GMAC model 

(3.12). 

To obtain the general form of the Matrix Modified representation 

of the GMAC model, assume that there are n experimental units and a 

total of p response variates, v1, •.• ,Vp and that the model can be 

written in the form 

E(Y) = Xa + ZS 

Var(Y) = I ®E 
n 

(5. 5) 

where Y is an (n x p) matrix composed of p-variate responses on n in-

dividuals with missing values recorded as blanks, 



Xis an (n x ~)known design matrix of rank R(X) = rx($~~n) 

corresponding to the classificatory variables of the model, 

a is an (mx x p) matrix of unknown parameters, 
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Z is an (n x mz) matrix composed of concomitant variables with missing 

values recorded as blanks, 

s is an (mz x p) matrix of unknown concomitant parameters, 

I = (a ) is a (p x p) positive definite matrix of usually unknown rs 

parameters which represents the variance-covariance matrix of any row 

of Y, 

and In&I is the Kronecker Product of the matrices In and L:. 

For simplification of notation the model (5.5) is first written in 

the form 

E(Y) = Ay (5. 6) 

Var(Y) = In®I 

where A= (x:z) is the (n x m) design matrix constructed by horizon-

tally augmenting the design matrix X by the matrix Z, m = mx + mz and 

y = (~) is the (m x p) matrix of unknown parameters constructed by 

vertically augmenting the parameter matrix a by the parameter matrix s. 

The n experimental units are then divided into u disjoint sets of 

experimental units s1, •.. ,S with n. units ins .. On each unit in the 
u J J 

set S. only q. (~p) responses are observed (i.e., the remaining p - q. 
J J J 

response variates are missing in S.). Therefore, the GMAC model is 
J 

given by 

E(Yj) = AjyBj 

Var(YJ.) = I &B!L:B. 
n J J 

( s. 7) 

j = l, ... ,u 



where Y. is the (n. x q.) matrix of observations 
J J J 

A. is the (n. x m) design matrix for the set SJ., 
J J 

for the jth set S., 
J 

43 

Bj is the (p x qj) incidence matrix of rank R(Bj) f h .th 
= q. or t e J set 

J 

of experimental units. It consists of O's and l's and is defined by B. 
J 

= (bj(sr)) where 

1 "f . v . h th d d . i variate is tne r or ere variate 
measured in the j experimental set S., 

J 

0 otherwise. 

It is also assumed that Yj and Yj are independent if j f j' and 

the rows of Yj are independent and distributed as a qj-multivariate 

normal vector with variance-covariance matrix B!IB-. 
J J 

Based on the above Matrix Modified representation of the GMAC 

model the following results for estimation and hypothesis testing are 

direct extensions of similar results by Kleinbaum (12) for a special 

case of the MGLM model: 

(i) A BAN estimator for an estimable linear set e = H'r._ is 

given by 

H'r._ = H'[L: B.(B!rB.)- 1B.&A!A.J-~ IB.(B!~B-)- 1A.Jy. 
J J J J J J L.J [ J J J J -J 

where I is defined as in (4.3) and y. is formed by 
-J 

stacking the colllT!Il1s of Yj underneath each other. 

(5.8) 

A 

(ii) The Wald Statistic for testing the hypothesis H0 : H'r._ 0 

is given by 

(5. 9) 
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Extension of the Matrix Modified Representation 

to the MGMAC Model 

'Ib.e results in the previous section for the GMAC model follow from 

the fact that the Matrix Modified representation and the vector repre­

sentation of the GMAC model are completely interchangeable in the sense 

that either representation can be obtained derectly from the other 

without changing the assumed underlying linear model structure. 

Although the Matrix Modified representation which will be developed in 

this section for the MGMAC model is not completely interchangeable with 

the vector version of the MGMAC model developed in Chapter III ( to be 

referred to as the original vector version of the MGMAC model in the 

remainder of the discussion), a modified vector version which is com-

pletely interchangeable with the Matrix Modified representation of the 

MGMAC model will be developed in this section and it will be shown that 

the modified vector version leads to the same BAN estimators and Wald 

Statistics as the original vector version under the appropriate set of 

constraints. 'Ib.us, for any estimable linear set, BAN estimators and 

Wald Statistics can be obtained using the Matrix Modified representa­

tion of the MGMAC model since estimable linear sets are independent of 

the set of constraints used to obtain a solution. 

To obtain the Matrix Modified representation of the MGMAC model, 

assume that there are n experimental units and a total of p response 

variates, v1, •.• ,Vp, and that the model can be written in the form 

(5.5). Then replace Z by Z* where Z* is derived from Z by augmenting 

Z (with O's in place of missing values) by a matrix G of dimension 

(n x t) composed of t columns each with a one in the row position 
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corresponding to the missing values in Z and zeros elsewhere. (Note: 

Z* has dimension (n x m~) where m = mz + t). Thus, the Matrix .Modified 

representation of the MGMAC model may be written in the form 

E(Y) = Xa + Z* rn*J 
Var(Y) = In~L: 

(5.10) 

where o* is a (t x p) matrix of unknown parameters due to the t missing 

values in Z. Missing values in Y are then handled by the approach used 

for the GMAC model. For simplification of notation the model (5.10) is 

first written in the form 

E(Y) = A*r,* 

Var(Y) = In~L: 

(5 .11) 

where A* = (X Z*) is the (n x m*) design matrix constructed by hori-

zontally augmenting the design matrix X by the matrix Z*, m* = mx + m~ 

and r,* = [Xj is the (m* x p) matrix of unknown parameters constructed 

by vertically augmenting the parameter matrix a by the parameter 

matrices B and o*. 

The n experimental units are then diveide into u disjoint sets of 

experimental units s1, ... ,Su with nj units in Sj. On each unit in the 

set Sj only qj ( p) responses are observed (i.e., the remaining p - qj 

response variates are missing in S.). Therefore, the MGMAC model is 
J 

given by 

E(Yj) = Ajt,*Bj 

Var(Y.) = I ~!t:B. 
J n J J 

( 5 .12) 

j = l, ... ,u 

where Yj is the (nj x qj) matrix of observations for the jth set Sj' 
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Aj is the (nj x m*) design matrix for Sj, 

Bj is the (p x qj) incidence matrix of rank R(Bj) = q. for the jth set 
J 

of experimental units. It consists of O's and l's and is defined as 

before for the Matrix Modified representation of the GMAC model. 

It is also asslUl1ed that Y. and Y! are independent if j r j' and 
J J 

the rows of Yj are independent and distributed as a qj-multivariate 

normal vector with variance-covariance matrix Bj Bj. 

Based on the above Matrix Modified representation of the MGMAC 

model the following results for estimation and hypothesis testing are 

obtained: 

" H's_* 

(i) A BAN estimator for an estimable linear set!= H's_*, 

where s_* is obtained from t;,* by stacking the columns of 

t;,* underneath each other, is given by 

= H' [_EB. (B!EB.)- 1B.oaA~A~J-'°"'rB. (B!EB.)-lllaA~JY· 
J J J J J J L; l: J J J . J -J 

(5.13) 

where r is defined by (4.3) and 2'._ is formed by stacking 

the columns of Y. underneath each other, 
J 

(ii) The Wald Statistic for testing the hypothesis H0 : H't;,* 

= 0 is given by 

w = (H' ~*) '1 H' [L: B. (B! EB. )-1B .(laA~ 'A~J-Hi- 1 (H' ~*). 
n - JJJ JJJ) -

(5.14) 

To obtain the modified variate-wise representation of the MGMAC 

model which is completely interchangeable with the Matrix Modified 

representation, asslUl1e there are n experimental units and a total of p 

response variates, v1, .•. ,Vp. Let~, s = l, ... ,p be the vector of 

length Ns corresponding to all observations on Vs in the entire experi­

ment. Let the (Ns x m*) matrix F~, s = l, ... ,p be the design matrix 
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corresponding to z, (i.e., F* is detennined from A* by deleting those 
-5 s 

rows corresponding to missing values of rs. Let the (Nr x N5 ) ( r < s) 

matrix Q denote the incidence matrix of O's and l's defined pre-rs 

viously for the original vector version of the MGMAC model. Then the 

modified variate-wise representation of the MGMAC model is given by 

E(z ) = F* t;* 
-5 s-s (5.15) 

r>s r,s = l, ... ,p. 

Using the above definitions the modified vector version of the 

MGMAC model is given by 

E(~ = F*t;* 

Var(~ = rG 

where !' F*, rG, s_*, N and Mare defined by 

!1 

z = F* = 

z -p 

ollIN 
1 

0 12Q12 

0 12Qi2 ozzIN 
2 

Q = 

0 Q' 0 Q' lp lp Zp Zp 

(5 .16) 

F* 1 

F* 2 <P 

<P 

F* p 

"lpQ11 
0 2pQ2p 



I; (~) -1 

I* = N LNs and M* rn*p. 

5p (~) 
It should be noted that o* is a (t x 1) vector for each s = 

-s 

l, •.. ,p where tis the ntunber of missing independent variables in Z. 

Thus, i~ differs from the (ts x 1) vector is defined for the original 

vector version of the MGMAC model in that each o* accounts for all t 
-5 

missing values rn Z whereas each o only accounts for the ts missing -s 

values in Ds, s = l, .•. ,p. 

Thus, for the modified vector version of the MGMAC model 
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(5.17) 

is BAN fore= H*'t;*. Also, if H* is an (M x w) known matrix of full 

rank w, then under the null hypothesis H0 : H*'I* = 0 the test statistic 

is asymptotically distributed as a chi-square variable with w degrees 

freedom. 

Due to the fact that the design matrix A of the Matrix Modified 

model is composed of additional coltunns with l's corresponding to 

missing values in A and zeros elsewhere the fonnation of the matrices 

F~, s = 1, ... ,p results in F~ containing cohunns of zeros whenever the 

sth dependent variable is missing on the experimental units for which 

l's occur in the additional columns of A*. Thus, F* of the modified s 

vector version is the matrix Fs of the original vector version with' 
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additional columns of zeros and o_! is the vector o with m* - m 
-.:i -s s s 

additional parameters whenever m~ i ms, s = l, ... ,p. Also, asslUiling 

that the desired estimators and hypothesis tests involve only the 

the design parameters and regression coefficients of the original MAC 

model, then H* is the matrix H with additional rows of zeros whenever 

m~ i ms. Therefore, by rearranging the columns of the design matrix F* 

and the corresponding elements of s_* it is possible to represent (5.17) 

by 

(5.19) 

A 

where I is defined by (3.14), i** is an {(M* - M) x l} vector composed 

of the additional parameters introduced into the modified vector ver-

sion of the MGMAC model which were not introduced into the original 

vector version of the MGMAC model, Oh is a {w x (M* - M)} matrix of 

zeros and Of is an {N x (M* - M)} matrix of zeros. Then using 

(H 'i Oh) fc:..'.~~~~~-~ .. 1.~~J l···'·~~~~J l of ~qi og 

(H': Oh) [(:..'.~~~~~~:..'.~~>] 

H'(F'Q-lF)-F'Q-l~ (5.21) 

where Og is an {(M* - M) x l} vector of zeros. 



Comparison of (5.21) with (5.1) indicates that the BAN estimator 

obtained from the modified vector version of the MGMAC model when the 

the generalized inverse is computed by (5.20) is the same as the BAN 

estimator obtained from the original vector version of the MGMAC 

model. Similarly, Wald Statistics obtained from the modified vector 

version, when the generalized inverse is computed by (5.20), are the 

same as those obtained from the original vector version of the MGMAC 

model. 1herefore, since the modified vector version of the MGMAC 

model is completely interchangeable with the Matrix Modified repre­

sentation of the MGMAC model, BAN estimators and Wald Statistics can 

be obtained for estimable linear sets using the Matrix Modified 

representation of the MGMAC model. 
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CHAPTER VI 

SUMMARY AND RECCMvfENDATIONS FOR FUR1llER RF.SEARCH 

It has been shown that the standard analysis applicable to a full 

MAC model can be performed in the presence of missing covariates by 

using a generalization of the analysis of covariance technique. In 

addition Kleinbaum's method of analyzing multivariate linear models 

with missing observations among only the dependent variables has been 

extended to include missing values among the independent variables of 

the model. The asymptotic properties of the estimators and test 

statistics remain the same (i.e., the estimators a and Sare BAN 

estimators and tests of hypothesis about these parameters are based 

on asymptotically chi-square test statistics). This extension was 

accomplished by employing a modification of the covariance method of 

Zyskind, Kempthorne, et al. However, as is evident from the preced­

ing chapters several theoretical as well as computational problems 

remain to be solved. 

The estimator of L: given in Chapter IV is unbiased and consis­

tent but not necessarily positive definite and so it would be valuable 

to obtain an alternative estimator of L: which will always be positive 

definite and consistent. 

The computation of estimators and tests statistics involves the 

inversion of very large and possibly sparse matrices because of the 

increase in the colunm dimension of the design matrices when there 
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are many missing independent variables. This problem could be 

avoided if it were possible to develop a routine for inverting the 

matrix ~ which is a slight variation of the matrix E~I due to the n 

removal of rows and columns corresponding to missing independent 

variables. 

The conclusions of this study, as with Kleinbaum's, are based 

on optimal large sample properties and so it is difficult to assess 

the small sample properties of the estimators and test procedures 

without extensive simulation experiments. Such simulations could be 

carried out by constructing regression data with correlated indepen-
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dent variables generated from normal or uniform generator subroutines 

as was done by Hai tovsky ( 9 ) . The dependent variables could then 

be obtained as a linear combination of the design variables, regression 

variables and a normally distributed error term. This would enable 

the comparison of BAN estimates with true parameter values, comparison 

of the results of hypotheses tests with the actual truth or falsity 

of the hypotheses in question, repeated S?Jllpling from a prespecified 

model to determine the consistency of estimates and hypotheses tests 

from sample to sample., variations in E, keeping ~ fixed, to determine 

the effects of different covariance structures on the estimates and 

test statistics and variations in the proportion of observations ran-

domly deleted from the dependent and independent variables. 

As with many articles in the literature on unintended missing 

data, the process that caused the missing observations has been ig­

nored with the assumption that inferences about the parameters of the 

model are independent of the observed pattern of missing data. 

Rubin (20) gives an informative discussion of the effects of ignoring 
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the process that causes missing data and he suggests that in many 

practical situations, Bayesian and likelihood inferences are less 

sensitive than sampling inferences to the process that causes the 

missing data. Thus, a Bayesian approach to the problem of missing 

values in the :MAC model might also be considered by beginning with the 

Seemingly Unrelated Regression model of Zellner (27) and then employ­

ing a generalization of the approach of Press and Scott (17) to deal 

with missing observations among the dependent and/or independent 

variables. 
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APPENDIX A 

DESCRIPTION OF CCMJ?u'TER PROGRAM 

The computer program described in the remainder of this section 

is a standard fortran program which provides BAN estimators of block, 

treatment and regression parameters and Wald Statistics for testing 

hypotheses specified by the user. All computational routines are 

based on the theoretical framework developed in the preceding chapters 

for multivariate analysis of covariance models with missing values 

among the dependent and/or independent variables. 

Preparation of Data Cards 

The computer program is designed for the analysis of data from an 

experiment in which a complete observation consists of a block label, 

a treatment label, nIBnerical values on one or more concomitant vari­

ables and numerical values on one or more dependent variables. The 

data card(s) corresponding to a complete observation should contain a 

block nIBnber, a treatment number, value(s) of the covariable(s) and 

the value(s) of the dependent variable(s), as well as any identifica­

tion the user desires. The order in which these occur on the card is 

not important. It is necessary, however, that both blocks and treat­

ments be nIBnbered sequentially beginning with "l". 

The data corresponding to the obseT'Jation on block # 3, treatment 

#2, may look as follows: 
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TEST 06 SITE A 3 2 113.8 680 110.7 507 8.9 

Identification Blk & Trt X's Y's 

Missing Values 

The user may choose any number he desires to correspond to missing 

values among the Y's or X's. This number will then be punched in the 

data card for any X or Y value which was not recorded when the experi­

ment was conducted. Of course, the selected number must not be the 

same as any of the X or Y values occurring in the data set being 

analyzed, and must also be of a magnitude which allows it to be coded 

in the number of collUl111s provided for the X's and Y's. Suppose that, 

in the example above, both 113.8 and 507 had not been recorded and 

were to be treated as missing values. If the missing value code 

selected by the user was 44.4, the card would have been punched as: 

TEST 06 SITE A 3 2 044.4 680 110.7 44.4 8.9 

Control Cards 

Listed below is a description of the control cards which must accom­

pany every job. 

Control Card #1 - Current Data Set Information 

The first 21 collUl111s of this card consist of seven three digit 

(i.e., I3) fields which contain in order the values of 

NP - The number of dependent variables (Y's) 1 ~NP~ NPDIM 

NT - The number of treatments 

NB - The number of blocks 

NK - The number of covariates (X's) 

NN - The number of observations 

1 ~NT~ NTDIM 

1 ~NB~NBDIM 

l~NK~NKDIM 



IDGT - An input parameter to the LPSDOR subroutine 
(which computes a generalized inverse of a 
matrix). The elements of the matrix are 
assumed to be correct to IDGT places. Since 
this program computes the matrix elements in 
double precision, it is suggested that the 
user supply IDGT = 14. 

NMISS - The number of missing values in the covari­
ates only. Do not include, in this count, 
missing values in the dependent variables. 

The next eight columns are blank. Columns 30 - 63 should be 

punched as follows: 

Col. 30-39: EPS - A test value for zero which is 
used in the DMFGR subroutine which calculates 
the rank of a matrix. It is suggested that 
the user supply EPS = l.OE- 07. 

Col. 40-49: D - The double precision missing value 
code described in an earlier section. In that 
section, as an example a missing value code of 
44.4 was used. In that case it would be coded 
as 44.4 DO. 

Col. 50 -63: These columns contain seven two-digit 
(IZ) fields indicating the desired print op­
tions for the analysis. Each I2 field con­
tains either "00", which requests that the 
printing be suppressed, or "01', which re­
quests that the printing not be suppressed. 
In order, the seven codes refer to: 

Col. 50-51: Print option for listing of MAC model. 

Col. 52-53: Print option for listing of GMAC model. 

Col. 54-55: Print option for listing of MGMAC mode 1. 

Col. 56-57: Print option for listing of sigma and 
its inverse. 

Col. 58-59: Print option for listing of the Matrix 
Modified Mode 1. 

Col. 60-61: Print option for subgroups of observa­
tions corresponding to the different 
patterns of missing values. 

Col. 62-63: Print option for parameter values. 
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With regard to the user's choice of the print options, it is 

suggested that for most purposes it would be sufficient to code 50 

through 63 with "01000001000001". This provides the user with a list-

ing of the MAC model, sigma and its inverse, and the parameter values 

as well as results of hypotheses tests. 

Control Card #2 - Variable Fonnat for the Input Data Set: 

On this card the user supplies a FORTRAN f onnat statement which 

specifies the colurnns in which the block number, treatment number, 

dependent variables (Y., i = 1, ... ,NP) and covariables (X., j = 1, ... , 
1 J 

NK), in that order, are to be found. The block and treatment numbers 

must be read according to an Iw form.at, while the dependent and inde-

pendent variables would ordinarily be read with F w.d or D w.d fonnats. 

This card must begin with a left parenthesis (in column 1) and end 

with a right parenthesis and contain no intervening blanks. For the 

example given earlier, the variable fonnat card would be 

(Tl8,Il,6X,Il,T42,FS.l,1X,F4.0,3X,F4.l,T30,FS.l,1X,F4.0). 

Control Card #3 - Number of Hypothesis Matrices Being Supplied: 

This is the simplest of all of the control cards, and merely 

states how many hypothesis matrices are to be supplied to provide the 

basis for hypothesis tests for the particular job. This is an integer, 

NUMHYP, which is punched, right justified, in the first 5 columns of 

the card. Ordinarily, this number will be less than 10, so that only 

column 5 need be punched. 



Remaining Control Cards: 

For each of the hypotheses to be tested, one group of cards must 

be supplied. The first card provides the following information rela-

tive to each hypothesis: 

Col. 1 - 5: The number of rows, NR, in the hypothesis 
matrix. This is an integer, right justi­
fied in colunms 1 - 5. 

Col. 6 -25: Any alpharneric code which identifies the 
hypothesis being tested. This is simply 
an identification which will be listed 
with the output in the hypothesis test­
ing section of the printout. 

Col. 26-27: "00" if the user does not desire to have 
the test statistic evaluated for this 
particular hypothesis on all NP response 
variables simultaneously; "01" if the 
user does desire .to have the test statis­
tic evaluated for this hypothesis on all 
NP response variables simultaneously. 

Col. 28-29: "00" if the user does not desire to have 
the test statistics evaluated for this 
hypothesis on the first response variable 
separately; "01" if the user desires to 
have the test statistic evaluated for 
this hypothesis on the first response 
variable separately. 

Col.((26+2NP) - (27:-ZNP)): "00" if the user does not 
desire to have the test statistic evalu­
ated for this hypothesis on the NPth re­
sponse variable separately; "01" itthe 
user does desire to have the test statis­
tic evaluated for this hypothesis on the 
NPth response variable separately. Note: 
NP~ NPDIM ~26. 

The remaining NR cards in the group for a particular hypothesis 

give the coefficients for each row of the hypothesis matrix, one row 
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on each of NR cards. These coefficients are read from consecutive four 
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digit fields according to an F 4.2 format. The number of coefficients 

read per card will be equal to (NB+ NT+ NK), with the exception that 

if the data set is composed of one block only (or one treatment only) 

the number will be (NB+ NT+ NK - 1). This number will of course 

vary from one problem to the next. The number of rows in the hypo-

thesis matrix, NR, will also vary from one hypothesis to the next and 

from problem to problem. 

If the number of rows in the ith hypothesis being tested is 

denoted by NRi, i = 1, ••• ,NUMHYP, then the number of control cards 

after control card #3 will be 

NUMHYP 
l: 
i=l 

(NR. + 1). 
l 

The method of constructing the hypothesis matrices will be demon-

strated in the next section. 

Examples Illustrating Construction of Hypothesis Matrices 

In Chapter V the general formulation of the assumed model with 

E(Y) = Xa + ZS 

as the underlying mean structure for the data was outlined. In that 

case a was an (mx x p) matrix of unknown design parameters and S was 

an (m2 x p) matrix of unknown regression coefficients for the con­

comitant variables. A matrix, B, can be formed by 'stacking' the a 

matrix on the S matrix. In keeping with the notation used in relation 

to the computer control cards, this will be a matrix with row dimension 

(NB + NT + NK) and column dimension NP. 
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Denoting the block parameters by b .. 's, the teratment parameters lJ . 
by t .. 's and the regression lJ coefficients by B·. 's, the B matrix may be lJ 
thought of as follows: 

bll b12 bl 
. NP NB rows for block 

parameters, 
bNB bNB b 

1 2 NBNP 
-----------~---------

tll tl2 t 
1NP 

B NT rows for treat-
ment parameters, 

tNT tNT t 
1 2 NTNP 

---------------------
Bll 612 B 

. 1NP. 
NK rows for re-

BNK BNK B 
gression coefficients. 

1 2 NKNP 

This makes it a rather easy matter to construct full rank hypo-

thesis matrices to test hypotheses of the form H0 : HB = OM' where H 

is a full rank hypothesis matrix of dimension r (= rank of H) by 

(NB +NT+ NK) and OM is the (r x NP) matrix containing all zeroes. 

For example, the hypothesis of no treatment differences (i.e., t 1j = 

t 2j = ••. = tNT. for all j = 1, ... ,NP) can be tested with an H matrix 
J 

containing (NT - 1) orthogonal rows. Similarly, the hypothesis of no 

influence of covariates (i.e., s .. = 0, i = u, ... ,NK; j = 1, ... ,NP) 
lJ 

can be tested with a full rank hypothesis matrix of row dimension NK. 

Some specific examples will now be given to illustrate the construction 

of H matrices. 
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Example I: 

Suppose there are two blocks, two treatments, one covariate and 

three response variables. Here NB =NT = 2, NK = 1, and NP = 3. Thus 

B can be written 

bll bl2 bl3 

b21 b22 b23 

B tll tl2 tl3 

t21 t22 t23 

Sll Sl2 S13 

To test the hypothesis of no treatment differences, H could be the 

(1 x 5) matrix 

H = (0 0 1 -1 0). 

Notice that HB 0 is equivalent to 

To test the hypothesis of no influence of the covariate, H could be 

the (1 x 5) matrix 

H = (0 0 0 0 1). 

Notice that HB = 0 is equivalent to 
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Example II: 

Suppose there are two blocks, four treatments, two covariates and 

three response variables. Here NB= 2, NT= 4, NK = 2, and NP= 3. 

Thus B can be written 

-
bll bl2 bl3 

b21 b22 b23 

tll tl2 t13 

t21 tz2 t23 
B = 

t31 t32 t33 

t41 t42 t43 

Bn B12 813 

821 822 823 -
To test the hypothesis of no overall treatment differences, H 

could be the (3 x 8) matrix 

0 0 1 -1 0 0 0 0 

H = 0 0 1 1 -2 0 0 0 

0 0 1 1 1 -3 0 0 

To test the hypothesis of no overall block differences, H could be 

the (1 x 8) matrix 

H = (1 -1 0 0 0 0 0 0). 

To test the hypothesis of no overall effect due to the covariates, 

H could be the (2 x 8) matrix 

II= [: 

0 0 0 0 0 1 

0 0 0 0 0 0 
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To test the hypothesis of no effect due to the first covariate 

only, H could be the (1 x 8) matrix 

H (0 0 0 0 0 0 1 0) . 

To test the hypothesis of no difference between treatments one, 

three and four, H could be the (2 x 8) matrix 

10 0 1 0 -1 0 0 0 
H = 

Lo 0 1 0 1 -2 0 0 

ExamEle I II : 

Suppose there are three different treatments in the e)(periment but 

only one block, and one covariate. Suppose in addition that there are 

two response variables., Here NB = 1, NT = 3, NK = 1 and NP = 2. How-

ever the row dimension of the B matrix is (NB+ NT+ NK - 1) or 4, 

since we do not require any block parameters. (Refer to the discussion 

in the Control Card section above.) B will be the ( 4 x 2) matrix 

,-
ti2 j tll 

I 

t21 t22 I 
H = I 

! t31 t32 ! 
I 

1_B11 512 j 

The hypothesis matrix for testing "H : No Treatment Differences" 
0 

could be the (2 x 4) matrix 

rl -1 
H = 

1-1 1 

0 01 
OJ -2 
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The complete set of punched cards necessary to execute a job using 

the source program with a level G FORTRAN compiler are submitted to the 

card reader in the following order: 

DATA CARDS 

(CONTROL CARD #2· -

(CONTROL cARiJ#i-
I I /GO. SYSIN DD * 

(-ENTR-Y}.1AIN ____ .. -···· 

(I /LKED. ~SINDD--*----. 
ASSEMBLER SOURCE DECK 

If/~ SYSIN nff\;;-----

(-. . EXEC ASMFC 

FORTRAN SOURCE DECK 

f I IFORT. SYSIN DD * 
l / / EXEC FORTGCLG ,REGION .GO= SOOK 

iJoB-CARD 

The form of the initial job card and the various job control cards 

may vary from one installation to another. The user should verify the 

validity of these with systems personnel at his particular computer 

center. 

The core specified above was sufficient for the example problem 

given in Appendix B. The actual core needed for a particular problem, 

however, will change significantly with varying numbers of dependent 

variables, blocks, treatments, covariates and/or missing values among 

the covariates. 



APPENDIX B 

A WORKED EXAMPLE 

A sample problem will now be presented and the necessary program-

ming steps illustrated. This data set was constructed to represent a 

set of results from a series of test shots involving two different 

metals from which projectiles were made (the "blocks") and three 

different projectile shapes (the "treatments"). Each block/treatment 

combination was replicated five times, resulting in a total of thirty 

observations. Two concomitant variables were measured on each pro-

jectile. These were x1 = Initial Projectile Weight and x2 = Initial 

Projectile Velocity. The three dependent variables recorded were Y1 

Residual Projectile Weight, Y2 =Residual Profectile Velocity, and 

Y3 = Plug Weight. 

The data were generated using the model 

b. + t. + s1x1 + s2x2 + s 1.J.k 
1 J ijk ijk 

where Y .. k represents the kth replication of treatment j in block i for lJ 
any one of the three response variates. For this problem i = 1,2; j = 

1,2,3; k = 1, ... ,5. The disturbances were chosen from a table of ran-

<lorn standard normal deviates. The values used for the model para-

meters were as shown in the following B matrix. 
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yl Yz y3 

0 0 0 bl 

2 20 0 b2 

10 8 0 tl 

B = 10 8 0 tz 

20 20 4 t3 

8 0 0.005 s1 

0 7 0.01 Sz 

The data resulting from this simulation were: 

Observation II Block Treatment xl x2 yl y2 YJ 

1 1 1 110 710 98 .0 504.4 7.3 

2 1 1 110 710 97.5 503.2 5.2 

3 1 1 112 695 98.2 494.5 8.3 

4 1 1 111 705 100.0 501.1 8.2 

5 1 1 112 690 100.1 490.9 8.1 

6 1 2 110 710 98.4 504.6 8.3 

7 1 2 109 705 95.5 501. 2 8.8 

8 1 2 107 700 94.6 497.0 10. 5 

9 1 2 111 700 99.3 498.8 9.5 

10 1 2 112 710 98.9 504.3 7.5 

11 1 3 116 810 llO. 7 586.4 8.1 

12 1 3 115 770 112. 4 558.9 8.5 

13 1 3 116 790 ll3. 3 572. 6 8.9 

14 1 3 116 800 ll0.6 581.1 8.7 

15 1 3 117 790 115. 3 572. 9 7.4 
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16 2 1 109 705 98. 3 522.8 6.6 

17 2 1 112 705 101.0 521. 3 8.3 

18 2 1 111 690 99.1 510.0 6.3 

19 2 1 llO 700 99.8 517.2 8.3 

20 2 1 111 710 103.1 5211. 3 8.4 

21 2 2 112 700 100.9 ·517.6 5.8 

22 2 2 112 690 100.5 510.5 7.2 

23 2 2 114 695 103 .1 514.6 6.2 

24 2 2 112 700 99.5 517.3 7.4 

25 2 2 ll3 705 102 .0 522.9 8.8 

26 2 3 115 795 114.2 597.1 12.3 

27 2 3 ll6 800 ll4.8 598.6 12.5 

28 2 3 ll7 795 ll5. 9 598.0 12.7 

29 2 3 ll6 790 ll6 .0 593.0 12.3 

30 2 3 117 805 ll5 .2 602.4 12.4 

For the purpose of a realistic example in i,;hich there are missing 

observations among both the dependent and independent variables, the 

following observations were treated as if they were missing: 

Yz on observation #1 

y3 and x2 on observation #11 

Xz on observation #18 

Yz and Y3 on observation #24 

Preparation of Data Cards 

It is first necessary to select a value to use as the missing 

value code. Any negative number would suffice, as would zero. Suppose 



that D = SO.ODO is chosen, a number intennediate in magnitude hetween 

Y3 and the other X and Y variables. The data cards were punched as 

follows: 

Col. 1 - S: The identification SAMPLE 

Col. 10: Block mnnber 

Col. 12: Treatment number 

Col. 13 - 16: x1, in fonnat F 4.0 

Col. 17 - 20: x2, in fonnat F 4.0 

Col. 22 - 25: yl' in fonnat F 4.1 (Decimal not punched) 

Col. 27 - 30: Y2, in fonnat F 4.1 (Decimal not punched) 

Col. 31 - 34: Y3, in format F 4.1 (Decimal not punched) 

For example, the first data card was, beginning in column 1: 

SAMPLE 1 1 110 710 0980 0500 073 
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Notice that the Y2 value of 598.0 has been replaced by 50.0, since 

it is beeing treated as a missing value in this example. 

Preparation of Control Cards 

Control Card #1: 

To complete this card, it was detennined that for the present 

problem NP= 3, NT= 3, NB= 2, NK = 2, NN = 30 and NMISS = 2. To 

provide a thorough look at the printout available from the program, 

every print option was chosen. Using the suggested values for EPS and 

IDGT, the first control card has the form, beginning in column 1: 

003003002002030014002 l.OOE-07 SO.ODO 01010101010101 
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Control Card #2: 

For this card, any pennissible FORTRAN fonnat statement to read 

in the block number, treatment number, Y's and X's may be used. One 

possibility for the given data would be 

(TlO, Il, lX, 11, T21, 2FS.l, F4.l, Tl4, F3~0, lX, F3.0) 

Control Card #3 and Subsequent Control Cards: 

For this problem four hypotheses shall be tested to illustrate the 

flexibility of this aspect of the program. 

(1) H: 
0 

No Block Differences. With only two blocks, the H matrix 

consists of one row which compares the two block effects. Recalling 

that for this problem the matrix of unknown parameters is 

bll bl2 bl3 

b21 b22 b23 

tll tl2 tl3 

B t21 t22 t23 

t31 t32 t33 

611 612 613 

621 622 623 

the H matrix is H = (1 -1 0 0 0 0 0). If the overall test 

is chosen as well as the test on response variates two and three 

separately, the necessary control cards are 

OOOOlNO BLK DIFF 01000101 

0100-100 
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(2) H: No Treatment Differences. The H matrix for constrasting 
0 

the three treatments requires two rows and thus 

[: 
0 1 -1 0 0 0 

H = 
0 1 1 -2 0 0 

The necessary cards, electing the overall test as well as Y1 and 

Y2 separately, are 

(3) 

00002NO TRT DIFF 

000000000100-100 

0000000001000100-200 

01010100 

H: 
0 

No Difference Between Treatments 1 and 2. If the over-

all test is chosen as well as the test on each variate separately, the 

necessary cards are 

(4) 

OOOOlNO DIFF BE1W TR 1&2 01010101 

000000000100-100 

H: 
0 

No Effect Due to Covariates. Electing the same test 

options as for the previous example, the control cards are 

00002NO EFFECT COVARS 

000000000000000000000100 

01010101 

0000000000000000000000000100 

These control cards for hypotheses must be preceded by control 

card number three, which for this problem will have a "4" punched in 

column five, indicating that four hypotheses are to be tested. 



74 

The Printed Output From the Program 

The program output, when all print options are exercised has 

essentially ten parts. 

(1) Problem Dimensions - This is the first page of the printout. 

It provides the user with the current program dimensions and dimensions 

for his particular job, as well as the print options chosen for the 

job. 

(2) Listing of the Input Data - Each observation is given with 

its block value, treatment value, dependent variables and independent 

variables in that order. 

(3) The l\1A.C Model Listing - The response variables and complete 

design matrix are listed for the multivariate analysis of covariance 

model. 

(4) 'Ihe Gl\1A.C and MGMAC Model Listing - These are given for each 

response variate separately, along with the rank of the corresponding 

design matrix. 

(5) Sigma and "Smoothed" Sigma - The sigma matrix submitted to 

the subroutine "SMOOTH" is printed along with the smoothed sigma matrix 

which the subroutine returns. 

(6) Sigma and Sigma Inverse 

by the LPSDOR subroutine are given. 

Sigma and its inverse as computed 

(7) The Matrix Modified Model - This is listed, showing the 

extra columns added to the design matrix to account for the missing 

values. 

(8) The Groups of Observations with Different Patterns of 

Missing Values - These are the "S." sets referred to in Chapter V. The 
J 

design matrices associated with these sets are used in the computation 



of the parameter estimates and the Wald statistics. 

(9) Parameter Values - The parameter matrix of dimension (NB + 

NT + NK) by NP is given. 

(10) Hypothesis Test Results - The hypothesis matrix and asso­

ciated Wald Statistic are given for each of the hypotheses to be 

tested. 
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The listing of the computer printout for the sample problem 

follows in the remaining pages of this section. It should be pointed 

out that it is normal for underflow errors to occur, particularly in 

large scale analyses. It might also be noted that the error code from 

LPSOOR is printed each time that subroutine is called; a successful 

call to LPSDOR results in an error code of zero. 



PARAMETER VALUES READ FROM FIRST OATA CAkO 

THE CURRENT VALUE BEING USED FOR THE MISSI~G CODE IS : 50.0000 

THE VALUE OF IDGT SUPPLIED FOR USE IN LP~OOR SUEROUTINE IS 14 

THE VALUE OF EPS SUPFLIED FOR USE IN THE OMFGR SUBROUTINE IS e lOOOOOE-06 

NUMBER OF MISSING VALUES IN COVARIATES : 2 

MAX DI lll RESP VECTOR: 7;CURR:'.NT DIM RESP \/ECTOR: 3 

MAX NUlllB OBS: lOC:C\ .. ;:<RENT NUMB 0 BS: 3C 

MAX NUMB BLOCKS: 2;cuRRENT NU~1B BLOCK~: 2 

MAX NUMB TRTS: 4; CURRENT NUMB TRT S: 3 

-MAX NUMB COVARS: :?;CURRENT NUMB CCVAR~: 2 

MAX NUMB CCLS IN MOD-IF I E:D OES I GN MATRIX: 10 

CURRENT NUMAER COLS MAY BE SEEN IN LISTI~G CF MCDIFIED DESIGN MATRIX TO FOLLOW LATER 

PRINT OPTICNS CHOSEN FOR THIS PROGRAM: O=~OPRI~T.t~PRINT 

PRINT OPTION FOR MAC MODEL : 

PRINT OPTION FOR GMAC MODEL : 

PRINT OPTION FOR MGMAC MODEL 

PRINT OPTION FOR SI~MA & ITS INVERSE 

PRINT OPTION FOR MATRIX MODIFIED MODEL 

PRINT OPTION FOR DEPENDENT VARIABLES AND CESIGN MATRIX FOR VARIOUS MISSING VALUE PATTERNS 

PRINT OPTION FOR BETA VALUES : 



LISTING OF INPUT DATA 

98.00 50.00 7 .Jo 110.00 710.00 

1 97.50 503.20 5.20 110.00 710.00 

98.20 494.50 8. 30 i1:a.oo 695.00 

100.00 501.10 8.20 111.00 705.00 

l 100.l 0 490.90 8. 10 112.00 f90.00 

2 98040 50.4060 8030 110.00 710.00 

2 95.50 50 lo 20 6080 109000 705.00 

2 Q4.60 497.00 10 .so 107.00 100.oc 

2 99.30 49 8. 80 9.50 111. 00 100.00 

1 2 g~.90 504030 7.50 112.00 110.00 

3 110.70 586.40 so.co 116.00 so.co 

3 112.40 558.90 a.so 115.00 110.00 

3 11 3. 30 572.60 8.90 116.00 790.00 

1 J 110.60 561.10 8.70 116.00 eoo.oo 

3 113.:30 572.90 7.40 ll 7. 00 790.00 

2 9do30 522.80 6.60 109.00 705.00 

2 101.00 52 lo 30 8030 11 2. 00 705.00 

2 99.10 510.00 6 • .30 l1 l. 00 so.co 

2 99.80 517.20 8.30 lt0.00 700.00 

2 . 103.10 524030 8040 111.00 110.co 

2 2 100.90 517.f>O s.eo 112.00 100.00 
-....] 

-...J 



2 2 1co.so sic.so 7.20 112.00 690.00 

2 2 103.tO 514.60 6.20 114.00 ~c;s.oo 

2 2 99.50 so.co so.oo 112.00 700000 

2 2 102.00 522a90 a.so 113000 70'5.00 

·2 3 114.20 597.10 12.30 115.00 795000 

2 3 114.80 598.60 12.so 116.0C eoo.oo 

2 3 115.90 598.00 12. 70 117000 795000 

2 3 116.00 593.00 12. 30 116.00 790.00 



30 OBSERVATIONS HAVE BEEN READ FOR T~E CURRENT DATA SET. DOES THIS AGREE WITH THE CURRENT M OBS GIVEN EARLIER? 

THE VALUES OF Y AND A FOLLOW MAC MODEL 

98.00 so.co 7.30 1.00 o.o 1.-00 o.o o.o 110.00 110.00 

97.50 503.20 s. 20 t.oo o.o 1.00 o.o o.o 110.00 110.00 

98.20 494.50 8030 1.00 o.o l. 00 o. 0 o.o 112.00 695.00 

l 0.0. co 501.10 a.20 1.00 o.o 1.00 o.o o.o 111.00 705.00 

100.10 490.90 8.10 1.00 o.o 1.00 o.o o.o 112.00 690.00 

98.40 504.60 8.30 loOO o.o o.o 1.00 o.o 110.00 710.00 

95.50 so1.20 8. 80 l.oo c.o o.o l.oo o.o 109.00 705.00 

94.60 497.00 10.50 l.oo c.o o.o 1.00 o.o 107.00 700.00 

99.30 498.80 9.50 loOO o.o o.o 1.00 o.o 111.00 100.00 

98.90 504.3) 7.50 l.oo c.o o.o 1. 00 o.o 112.00 _710.00 

110.70 586.4 0 50.00 i.oo o.o o.o o.o 1.00 116.00 so.co 

112.40 558.90 a.so 1. 0 0 o.o o.o o.o 1.00 115.00 770.00 

113.JO 572.60 8.90 l .o 0 o.o o.o o.o 1.00 116.00 790.00 

110.60 581.10 8070 1.00 o.o o.o o.o 1.00 116.00 eoo.oo 

115.30 572.90 7.40 i.oo c.o o. 0 o.o 1.00 117.00 790.00 

98.30 522.80 6060 o.o 1.00 1.00 o.o o.o 109.00 705.00 

101.00 521.30 8. 30 o.o 1. co i.oo o.o o.o 112.00 -705.00 

99.10 510.00 6.30 o.o 1.00 1.00 o.o o.o 111.00 so.oo 

99.80 517.20 8.30 o.o 1.00 loOO o.o o.o 110.co 100.00 '-] 
<..O 



103010' 524030 8040 OoO loOO 

lC0.90 517060 s.80 o.o i.oo 

too.so 510.50 7o 20 o.o 1.00 

103.10 514.60 6.20 OoO 1.00 

99.50 50.00 so.co o.o 1.00 

102.00 522090 8.80 o.o 1.00 

114.20 597.10 12.30 o.o loOO 

114.80 598.60 1205-0 o.o 1.00 

1150 90 598.00 12070 o.o 1.00 

116000 593.00 12. 30 o.o 1.00 

loOO o.o 

o.o loOO 

o. 0 1.00 

o.o 1.00 

o.o 1.00 

o.o 1.00 

o.o ci. 0 

o. 0 o.o 

o.o o.o 

o.o o.o 

o.o 111.00 

o.o 112.00 

o.o 112000 

o.o 114000 

o.o 112.00 

o.o 113.00 

1.00 11s.oo 

loOO 116.00 

1.00 117.00 

1.00 1f6.00 

710.00 

700.00 

690.00 

695.00 

700.00 

705.00 

795.00 

8.00. 00 

795.00 

790.00 

00 
0 



THE VALUES OF Y AND A FOR VARIATE 1 GMAC MODEL 

98.00 1.00 o.o 1.00 o.o OoO 11 o. 00 710.00 

97.50 1.00 o.o i.oo o.o o.o 110000 710000 

98.20 1.00 o.o i.oo o.o o.o 112.00 695.00 

100.00 i.oo o.o 1.00 o.o o.o 111000 705. 00 

100.10 i.oo o.o 1.00 o.o o.o 112.00 690.00 

98040 1.00 o.o o.o 1. 00 Oo 0 110.00 710.00 

95.SO 1.00 o.o o.o 1.00 o.o 109.00 705000 

94.60 1. 00 OoO o.o 1.00 o.o 107.00 700.00 

99.30 1.00 OoO o.o t.oo o.o 111.00 700.00 

98.90 1.00 o.o o.o 1. 00 o.o 112.00 710.00 

110.70 loOO o.o o.o o.o 1.00 116.00 so.co 

112040 1. 00 o.o o.o o.o loOO 11 s. 00 770.00 

1 13. 30 1.00 o.o o.o OoO 1.00 116.00 790.00 

110.60 1.00 o.o o.o o.o 1. 00 116.00 aoo.oo 

115.30 1.00 o.o o.o OoO 1.00 117.00 790.00 

98.30 o.o i.oo 1.00 OoO o.o 109.0(J 705. 00 

101.oc o.o i.oo 1.00 o.o o.o 112000 705. 00 

99.10 o.o i.oo 1.00 o.o o.o 111. 00 so.oo 

99.80 o.o i.oo 1.00 o.o o. 0 110.00 700.00 

103.10 o.o 1.00 loOO o.o o.o 111000 710.00 

100.90 o.o 1.00 o.o 1.00 o. 0 112.00 700.00 '.;C 
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0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 . . . • 0 111 0 111 111 0 I/) 0 
O' O' 0 0 Cl' 0 QI O' 

'° '° 
,.. ,.. ,... Cl) ,... ,.. 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 . • . • • !IJ <t !IJ I') I/) '° 

,.... '° ..., .. ... ... ... ... ... ... ... ... 
0 0 0 0 

0 0 0 0 0 0 0 0 . • . .. . • 0 0 0 0 ... ... 

0 0 0 0 
0 0 0 0 0 0 0 0 . . . . . .. 0 0 0 u 

0 0 0 0 ,0 0 0 0 
• . . . . . 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 . ... 

0 0 0 0 0 0 0 0 . . . . 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
111 lf) 0 !IJ Cl) "' 0 . . • . 
0 I') O' !IJ <t <t Ill '° 0 0 O' 0 ... .. .. ... .. 



THE VALUES OF Y AND A FOR VA~IATE l FOLLC- MGMAC MODEL 

98.00 1.00 o.o i.oo o.o o.o 110.00 710.00 o.o o.o 

97050 i.oo o.o l.oo o.o o.o 110.00 710.00 o.o o.o 

98.20 l.oo o.o 1.00 o.o o.o 112.00 695000 o.o o.o 

100.co loOO o.o 1.o0 o.o o.o 111.00 705.00 o.o OoO 

l 00. l 0 leOO o.o loOO o.o o.o 112.00 690.00 o.o o.o 

98.40 1.00 o.o o.o 1.00 o. 0 110.00 710.00 o.o o.o 

95.50 leOO o.o a.a loOO o.o 109.00 705.00 o.o o.o 

94.60 l.oo o.o o.o 1.00 o. 0 101.00 700.00 o.o o.o 

99o3C 1.00 o.o OoO 1.00 o.o 111.00 700.00 o.o o.o 

98.90 i.oo OoO o.o leCO o.o 112.00 710.00 o.o o.o 

!~0.70 leOJ o.o o.o a.a 1.00 116000 o.o 1. 00 o.o 

112040 1.00 o.o o.o a.o 1.00 115000 770000 o.o o.o 

1 13. JO loOO o.o OoO c.o loOO 116.00 790000 o.o o.o 

110.60 1.00 c.o o.o o.o 1. 0 0 116.00 800.00 o.o o.o 

115.JO l•OO OoO o.o OoO 1.00 117.00 790.00 o.o o .• o 

98.30 o.o loOO l. 00 o.o o.o 109.00 705. 00 o.o o.o 

101.00 o.o leOO 1. 00 o.o o.o 112.00 705000 o.o OoO 

99.10 o.o l 0 00 loOO o.o Oo 0 111.00 o.o ') 0 0 1.00 

99.80 o.o l.oo 1.00 o.o o.o 110.00 700.00 o.o o.o 

103.10 o.o loOO loOO o.o o.o 111.00 710000 o.o o.o 

1 00.90 o.o 1.00 o.o i.oo o.o 112.00 700.00 o.o o.o 00 
V-1 



100.50 o.o i.oo o.o 1.00 o.o 112.00 690.00 o.o o.o 

103.10 o.o loOO o.o 1.00 o. 0 114.00 695.00 o.o o.o 

99.50 o.o 1.00 o.o loOO o.o 112.00 100.00 o.o o.o 

102.00 o.o 1.00 o.o 1. 00 o. 0 113.00 705.00 o.o o.o 

114020 o.o loOO o.o o.o 1.00 115.00 795.00 o.o o.o 

114.80 o.o 1.00 o.o o .o· 1. 00 116.00 800.00 o.o o.o 

115.90 o.o leOO o.o o.o 1.00 111.00 795.00 o.o o.o 

116.CO o.o 1.00 o.o o.o 1.00 116.00 790.00 o.o o.o 

THE RANK OF THE DESIGN MATRIX FOR VARIATE 1 FOR THE MGMAC MODEL IS 5 

ERROR CODE FRCM LPSOOR 0 

ERPOR CODE FRC~ LPSOCR 0 

ERROR CODE FKOM LPSOOR 0 



THE VALUES OF Y ANO A FOR VARIATE 2 FOLLOW GMAC MODEL 

503020 1.00 o.o 1.00 o.o o.o 110.00 710.00 

494e50 1.00 o.o 1.00 o.o o.o 112.00 695.00 

so1.10 I• 00 o.o 1.00 o.o o.o 111.00 705. 00 

490.90 1.00 o.o 1.00 o.o o.o 112.00 690.00 

504.60 i.oo o.o o.o 1.00 o.o 110.00 710.00 

so1.20 1.00 o.o o.o 1.00 o. 0 109.00 705. 00 

497.00 loOO o.o o.o 1.00 o.o 107.00 700.00 

498.80 i.oo o.o o.o 1.00 o. 0 111.00 700.00 

504.30 1.00 o.o o.o 1.00 o.o 112.00 710.00 

586.40 1.00 o.o o.o o.o 1.00 116.00 so.oo 

558.90 i.oo o.o o.o o.o 1.00 11s.oo 770.00 

572.60 i.oo o.o o.o o.o 1.00 116.00 790.00 

581.10 1.00 o.o o.o o.o 1.00 116. 00 aoo.oo 

572.90 1.00 o.o o.o o.o 1.00 117.00 790.00 

522.80 o.o 1.00 1.00 c.o o.o l 09. 0 0 705.00 

521. 30· o.o 1.00 1.o0 c.o o.o 112.00 705.00 

s10.oo o.o 1.00 1.00 o.o o.o 111. 00 50 .oo 

517.20 o.o 1.00 i.oo o.o o.o 110.00 700.00 

524.30 o.o 1.00 1.00 o.o o.o 111.00 ·71 o.oo 

517.60' o.o le 00 o.o 1.00 o. 0 112.00 700.00 

s10.so o.o 1.00 o.o i.oo o.@ 112.00 690.00 00 
U'1 
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THE VALUES OF Y AND A FOR VARIATE 2 FOLLCw MGMAC MODEL 

503.20 loOO o.o i.oo o.o o.o 110.00 710.00 o.o o.o 

4 94 .so 1.00 o.o loOO o.o o.o 112.00 695.00 o.o o.o 

501.10 1.00 o.o 1 .oo o.o o.o 111.00 705_.oo o.o o.o 

490.90 1.00 o.o loOO o.o o.o 112.00 690.00 o.o o.o 

504.60 1.00 o.o o.o 1. 00 o.o 110.00 710.00 o.o o.o 

501.20 1.oc o.o o.o 1. 00 o.o 109.00 705 .oo o.o o.o 

4'>7.00 loOO o.o o.o t.oo o.o 107.00 700.00 o.o o.o 

498.80 1.00 o.o o.o 1. 00 o.o 111.00 700.00 o.o o.o 

504030 1.00 o.o o.o 1. 00 o.o 112.00 710.00 o.o o.o 

586.40 loOO o.o o.o o.o 1.00 lt6.00 o.o 1.00 o.o 

558.90 1.00 o.o o.o o.o 1.00 115· 00 770.00 o.o o.o 

572.60 1.00 o.o o.o o.o 1.00 116.00 790.00 o.o o.o 

581.10 loOO o.o o.o o.o 1.00 116.00 aoo.oo o.o o.o 

572.90 loOO o.o o.o o.o 1.00 117.00 790.00 _o.o o.o 

522.80 o.o 1. 00 t.oo o.o 0 .-o 109.00 705.00 o.o o.o 

521.30 o.o i.oo t.oo o.o o. 0 112.00 705.0C o.o o.o 

510.00 o.o 1.00 1.00 o.o o.o 111.00 o.o o.o l.oo 

517.20 o.o 1.00 1. 00 o.o o.o 110.00 700.00 o.o o.o 

524.30 o.o 1.00 l.oo o.o o.o 111.00 710.00 o. 0 o.o 

517.60 o.o t.oo o.o 1.00 o.o 112.00 700.00 o.o o.o 

510.so o.o l.oo o.o i.oo o. 0 ' 112.00 690.00 o.o o.o 00 
-....J 



Si4.60 o.o i.oo OoO 

522090 o.o 1 o 00 OoO 

597.10 o.o loOO o.o 

598o6C OoO 1 o 00 o.o 

598000 o.o 1.00 o.o 

59300.0 o.o 1.00 o.o 

602.40 o.o loOO o.o 

THE RANK OF THE OES!GN MATRIX FOR VARI ATE 

ERROR CODE FROM LPSDCR 0 

ERROR COOE FRCM LPSOGR 0 

1000 OoO 114000 

1.00 OoO 113000 

o.o i.oo 11s.oo 

OoO loOO 116000 

c.o loOO 117000 

o.o 1.00 ll6o00 

o.o 1. 00 117. 00 

2 FOR THE l\IGMAC MODEL 

695000 

705.00 

795. oo· 

eooooo 

795.00 

790.00 

aos.oo 

IS 5 

OoO 

o.o 

OoO 

o.o 

o.o 

o.o 

o.o 

OoO 

o.o 

o.o 

o.o 

o.o 

o.o 

o.o 

00 
00 



THE VALUES OF Y ANO A FOR VARIATE 3 FOLLOW GMAC MODEL 

7.30 i.oo o.o i.oo o.o o.o 110· 00 710000 

5.20 1.00 o.o 1.00 o.o o.o 110000 710.00 

a.30 loOO {!. 0 i.oo o.o OoO 112.00 695.00 

8.20· i.oo o.o I .O 0 o.o OoO 111.00 705 .oo 

8010 loOO o.o 1.00 o.o OoO 112000 690.00 

8030 1.00 OoO o.o 1.00 OoO 110.00 710.00 

a.eo loOO o.o o.o 1.00 OoO 109000 705000 

10.so 1.00 o.o o.o IoOO o.o 107. 00 700.00 

9oso l. 00 OoO OoO 1.00 o.o 111.00 700000 

7.50 1. 00 o.o o.o 1.00 o.o 112.00 710.00 

a.so I.Oo o.o o.o c.o !oOO I I 5o 00 770.00 

8090 1.00 o.o o.o o.o lo 00 116000 790.00 

8.70 loOO a.a o.o o.o 1. 00 116.00 aoo.oo 

7o40 1.00 o.o o.o o.o 1.00 117.00 790.00 

~.6'0 o.o 1.00. loOO o.o o.o 109.00 705000 

8-. 3 0- o.o loOO 1.00 o.o o.o 112.00 705.00 

6.30 o.o 1.00 lo 0 0 o.o OoO 111.00 so.co 

8.30 o.o loOO loOO o.o o.o 110.00 700000 

8040 OoO 1. 00 1.00 OoO o.o 111.00 710.00 

s.so· OoO loOO o.o 1.00 o. 0 112.00 700000 

7.20 OoO 1.00 o.o 1.00 o.o 112.00 690000 ::c 
<-.:;; 
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THE VALUES OF Y AND A FOR VARIATE 3 FOLLCW MGMAC MODEL 

7.30 l.oo o.o l.oo o.o o.o 110.00 710.00 o.o 

s.20 loOO o.o i.oo o.o o.o 110.00 710.00 o.o 

8.30 1. 00 o.o 1.00 o.o o.o 112.00 695.aO o.o 

a.20 leOO o.o 1.00 o.o o.o 111.ao 7a5. 00 o.o 

s.1a 1.oa o.a i.oa o.o a.a 112.oa 690.aO o.o 

8030 loOO o.o o.o 1.00 o.o 110.00 710.00 o.o 

a.ea 1.aa o.o o.o 1.00 o.o 109.00 705.00 o.o 

l0.5a 1.oa o.o o.a 1.00 o.o 107.oa 700.ao o.o 

9.50 1.00 o.o a.a 1.00 o.o llloOO 700.00 o.o 

7.5a 1.00 o.a o.a 1.oa o.o 112.0-0 110.ao o.o 

8.so 1.oa o.o o.o c.o 1. 00 11 s. 00 77a.ao a.o 

8.90 1.ao o.a o.o a.o 1.ao 116.00 790.00 o.o 

s.10 t.ao a.o o.o o.o 1.00 116.00· aao.oo o.o 

7.40 i.oo o.o o.o o.o i.oo 117.00 790.00 o.o 

6.60 o.a 1.oa 1.00 o.o o.o 109.00 7a5.00 o.o 

8030· o.o I• 00 i.oo c.o o.o 112. 00 705. oa o.o 

6.30 o.o 1.oa 1.o0 o.o o.o 111.00 o.o t. 00 

e.3a o.o 1.00 i.ao a.o o. 0 110.00 100.ao a.o 

8.40 o.o 1.00 1.o0 a.a o.o 111.00 ·710.00 o. 0 

5.ao· o.o 1.00 o.o l.ao o.a 112.ao 700.00 o.o 

7.20 o.o 1.00 o.o 1. 00 o. 0 112.00 690.00 o.o ~ 
f--1 



6.20 o.o i.oo o.o 

8080 o.o l.oo OoO 

12.30 o.o 1.00 OoO 

12.50 o.o loOO OoO 

12070 OoO 1.00 o.o 

l2o30 OoO l 0 0 0 o.o 

12.40 OoO 1.00 OoO 

THE RANK OF THE DESIGN MATRIX FOR VARIATE 

ERROR COOE FROM LPSDCR = 0 

INPUT ~ATRIX TO SMOOTH 
1.0281164 

-.117'J!501 
.19631602 

-.11701501 
.69946443 
.11176522 

MATRlX OUTPUT GY SMOOTH 
loC281164 

-.11701501 
.191:31602 

-.11701501 
.69946443 
.11176522 

1.00 o.o 

loOO OoO 

o.o 1.00 

o.o lo 00 

o.o 1. 00 

o.o tooo 

o.o 1.00 

3 FOR THE 

.19631602 

.11171:522 
2o288210Q 

.19631602 
011176522 
2.2882109 

114.00 695.00 

113.00 705000 

115000 795. 00 

116.00 aoo.oo 

117000 795000 

116000 . 790000 

117000 eo5oOO 

MGMAC MODEL IS 

o.o 

OoO 

o.o 

o.o 

OoO 

o.o 

o.o 

5 

ID 
N 



THE VALUE OF SIGMA FCLLOWS 

1.02s1z -·117015 .196316 

-.117015 0699464 ell17f>S 

• 196316 0111765 . 2028821 

ERROR CODE FROM LPSOOR 0 

THE VALUE OF SIGMA INVERSE FOLLOWS 

1001196 0184607 -.9583790-01 

ol846C7 t.47459 -08736300-01 

-09583790-01 -.8786300-01 0449537 

• 



THE VALUES OF Y AND A FOLLOW MATRIX MODIFIED MODEL 

98.00 50.00 7 • .10 1.00 o.o 1. 00 o.o o.o 110.00 710.00 o.o o.o 

97. 50 503.20 5.20 1.o0 o.o 1.00 o.o o.o 110.00 710.00 o.o o.o 

98.20 494.50 8.30 i.oo o.o le 00 o.o o.o 112.00 695000 o.o o.o 

1 00. c 0 501.10 8.20 1.00 o.o 1. 00 o.o o.o 111.00 705.00 o.o o.o 

100.10 490.90 s.10 loOO o.o 1.00 o.o o.o 112.00 690.00 o.o o. 0 

98.40 504.oO 8030 1.00 o.o o. 0 1. 00 o.o 110.00 710.00 o.o o.o 

95.50 501.20 8.ao t.oo o.o o.o 1.00 o.o 109.00 705.00 0 • O· o.o 

94.60 497.00 IO.SO leOO o.o o. 0 1.00 o.o 107.00 700.00 o.o Q.O 

99.30 498.80 9.50 i.oo o.o o.o 1.00 o.o 111.00 700.00 o.o o.o 

98.90 504.30 7.50 1.00 o.o o.o 1.00 o.o 112.00 710.00 o.o o. 0 

110.70 586 .. ~0 so.oo 1.00 o.o o. 0 o.o 1.00 116.00 o.o 1.00 o.o 

112.40 ssa.90 a.so loOO o.o o.o o.o loOO 11So0 0 770.00 o.o • o. 0 

113.30 572.60 8.90 1.00 o.o o. 0 o.o i.oo 116. 00 790000 o.o o.o 

110.60 581.10 8.70 t.oo o.o o.o o.o 1.00 116.00 aoo.oo o.o o.o 

115.30 572.90 7.40 i.oo o.o o.o o.o l.oo 1 l 7. 00 790.00 o.o o.o 

98.30 522.80 6060 o.o 1. 00 lo 00 o.o o.o 109.00 705.00 o.o o.o 

101. 00 521.30 a. 30 o.o i.oo 1.00 o.o o.o 112000 705000 o.o o.o 

99.10 510000 6.30 o.o loOO -1.00 o.o a.a 111.00 o.o o.o 1.00 

99.80 517.20 a.JO 0 .o 1.00 1. 00 o.o o.o 110.00 700.00 o.o o. 0 

103010 524.30 8040 o.o lo 0 0 1.00 o.o o.o l 11. 00 710.00 o.o o.o 

1 00.90 517.60 5.ao o.o i.oo o.o loOO o.o 112.00 700.00 o.o o.o r.o 
~ 



100.so s10.so 7o20 o .• o 1.00 o.o 1.00 o.o 112.00 690.00 o.o o. 0 

lOJolO 514.60 6020 o.o tooo o.o loOO OoO 114000 695000 o.o OoO 

99.SO so.co SOoOO o.o 1.00 o.o 1.00 o.o 112.00 700.00 o.o o.o 

102.00 522.90 8080 OoO 1.00 o.o l. 00 o.o 113.00 705.00 o.o o.o 

114020 597.10 12.30 o.o 1.00 o.o o.o 1.00 11s.00 795000 o.o o.,o 

114080 598060 lZoSO o.o loO'l o.o 1).0 1.00 116.00 800000 o.o o. 0 

115090 598.00 12.10 o.o 1.00 o.o OoO 1.00 117000 795.00 o.o o.o 

116.00 593.00 12030 o.o 1 • 01) o.o o.o loOO 11·6.00 790000 o.o o.o 



****** DEPENDENT VARIABLES AND CESlGN MATRIX FOR THE VARIOUS GROUPS CORRESPONDING TO DIFFERENT .PATTERNS OF MISSING 

V,t.LUES 

***"' THERE ARE 7 DIFFERENT POSSIBLE G~CUPS ~UMBERED FROM 1 TO 7 THOUGH IN GENF.RAL NOT ALL GROUPS WILL APPEAR 

*** WHICH ONES OCCUR DEPENDS ON THE PATTE~N OF MISSING VALUES.HOWEVER THE TOTAL 4 OBSERVATIONS IN ALL GROUPS MUST 
EQUAL NN 

THE OEPENnENT VARIABLES AND CORRESPONDING DESIGN MATRIX FOLLOW FOR GROUP 

1 VARIATES 

99.50 so.oo so.oo o.o lo 00 o.o 1.00 o.o 

THE DEPENDENT VARIABLES ANO CORRESPONDING CESIGN MATRIX FOLLOW FOR GROUP 

2 V,t.RIATES 

9B.OO so.oo 7.30 1.00 o.o 1.00 o.o o.o 

ERROR CODE FROM LPSOOR 0 

THE DEPENDENT VARIABLES AND CORRESPONDING CESIGN MATRIX FOLLOW FOR GROUP 
2 VARIATES 

110. 70 586.40 so.co 1.00 o.o o.o o.o 1.00 

ERROR CODE FROM LPSDOR 0 

4 WHICH HAS 1 OBSERVATIONS ON 

112. 00 100.00 o.o o.o 

5 WHICH HAS OBSERVATIONS ON 

110.00 710.00 o.o o.o 

6 WHICH HAS 1 OBSERVATIONS ON 

116000 o.o 1.00 o.o 



THE DEPENDENT VARIABLES AND CORRESPONDING CESIGN MATRIX FOLLOW FOR GROUP 

3 VARIATES 

97.50 503.20 5.20 1.00 o.o 1. 00 o.o o.o 

98.20" 494.50 8030 1.00 o.o 1.00 o.o o.o 

1oo.00 501.10 8.20 1.00 o.o leOO OoO o.o 

100.10 490.90 e.10 1 • 0 0 o.o 1.00 o.o o.o 

98.40 8030 1.00 o.o o.o 1. 00 o.o 

95.50 so1.20 a.so 1o00 OoO o.o loOO o.o 

94e60 497.00 10.50 1.00 a.o o.o 1.00 o.o 

99.30 498.80 9e50 l.oo o.o o.o 1. 00 o.o 

98.90 504.30 7.50 1.00 o.o o.o 1.00 o.o 

112.40 S58o90 a.so 1.00 o.o o.o o.o 1.00 

1l3. 30 572.60 8.90 o.o o.o o.o 1.00 

1!5.30 572.90 1.00 o.o o.o o.o 1.00 

98.30 522.80 6.60 o.o loOO 1. 00 o.o o.o 

101.00 521 • 30 8.30 o.o 1.00 1.00 o.o o.o 

99.10 510.00 6.Jo o.o 1.00 1.00 o.o o.o 

99.80 517.20 8, 3o o.o 1.00 1.00 o.o o.o 

1 03. 1 0 524,30 8.40 a.a t.oo 1.00 o.o o.o 

100.90 517.60 5,so o.o t.oo o.o 1.00 .o.o 

100.50 s10.5~ 7.20 o .a 1.00 o.o i.oo o.o 

103.10 514060 6.20 o.o 1.00 o.o t.oo o.o 

102.00 522.90 8,80 o.o l.oo o. 0 1. 00 o.o 

7 WHICH HAS 27 OBSERVATIONS ON 

1lo.00 710.00 o.o o.o 

112.00 695.00 o.o o.o 

111.00 705.00 o.o o.o 

112.00 690.00 OoO o. 0 

110.00 110.00 OoO o.o 

109.00 705.00 o.o OoO 

101.00 700.00 o.o o.o 

111.00 700.00 o.o o.o 

112.00 710.00 o.o o. 0 

us.co 110.00 o.o o.o 

116.00 790.00 o.o o.o 

111.00 790.00 o.o o.o 

109.00 705.00 o.o o. 0 

112.00 705.00 o.o o.o 

111.00 o.o o.o 1.00 

11 0. 00 100.00 o.o a.a 

111.00 710.00 o.o o.o 

112. 0 0 700.00 o.o o. 0 

112.00 690.00 o.o o.o 

114.00 695.00 o.o o.o 

113.00 705.00 o.o o.o 



114.20 597.10 12.30 o.o 1.00 o.o o.o 1.00 115.oo 795.00 o.o o.o 

l1Ao80 598.60 12.so o.o 1.00 o.o o.o l.oo 116.00 800.00 o.o o. 0 

115.90 598.00 12.70 o.o 1.00 o.o o.o 1.00 117.00 795.00 o.o o.o 

116.C'O 593.00 12.30 o.o 1.00 o.o o.o l.oo 116.00 790.00 OoO o.o 

11s.20 602.40 12.40 o.o 1.00 o. 0 o.o 1.00 117.00 805.oo o.o o.o 

ERROR CODE FRC"'l LP SD OR = 0 

IH0208I IBCO"I - PROGRAM INTERRUPT ( p) UNDERFLOW OLD PSW IS 071DOOOD625F7642 . REGISTER CONTAINED 7A100000000 

TRACEBACK ROUTINE CALLED FROM I SN REG. 14 R.EG. 15 RE"G. 0 REG. 

LSVALR 0018 62eF1F24 005F2328 ocoooooo 005F1B58 

"LPSDOR 0554 625EAF56 005F1A20 00000008 005912C4 

MAIN OOCOEAA2 01590A78 OOOSF378 0060EFF8 

ENTRY POINT= 01590A78 

STANDARD FIXUP TAKEN • EXECUTION CONTINUI~G 

IH0208I IBCOM - PROGRAM INTERRUPT (Pl - U~DERFLOW 'OLD PSW IS C71DOOOD625F759E • REGISTER CONTAINED 7A100000000 

TRACEBACK RQUTINE CALLED FRO~ ISN RE<Ee 14 REGo 15; REG. 0 RE Ge 

LSVALR 0018 OOSF2328 00000000 005F1B58 

LPSOOR 0554 625EAF56 005FlA20 OOOC0008 005912C4 

MAIN OOCOBAA2 01590A78 OOD5F378 0060EFF8 

ENTRY POINT= 01590A78 

STANDARD FIXUP TAKEN • EXECUTION CONTINUI~G 

IH02081 IBCOM - pqQGRAM INTERRUPT (P) - UNDERFLOW OLD PSW IS 071DOOOD625F7642 • REGISTER CONTAINED 7FFFFFFEOOO 



LSllALR 0018 62!:F1F24 005F2328 00000000 005FIS58 

LPSDOR 0554 62!:E.AF56 005FlA20 00000008 005912C4 

"'Ar N OOCOEAA2 01590A78 OOD5F378 0060EFF8 

ENTRY POINT= 01590A78 

STANDARD FIXUP TAKEN • EXECUTION CONTINUI~G 

1H0208I IBCOM - PROGRAM INTERRUPT (Pl - U~DERFLOW OLD PSW IS 071DOOOD925F7430 • REGISTER CONTAI~ED F 9FFFFFFE 00 

TRACEEACK ROUTINE CALLED FROM ISN REG. 14 REG• 15 REG. 0 REG. 

LSVALR 0018 62!:FIF24 005F2328 00000000 005F1B58 

LPSOOR 0554 62!':EAF56 005F1A20 00000008 005912C4 

MAIN OOCOE!AA2 01590A76 OODSF378 0060EFF8 

ENTRY POINT= 01590A78 

STANDARD FIXUP TAKEN , EXECUTION CONTINUING 

IH0208I IBCOM - PROGRAM INTERRUPT (Pl - U~OERFLOW OLD PSW IS 07IOOOOD925F7420 • REGISTE~ CONTAINED 72FFFFFF400 

TRACEE.ACK ROUTINE CALLEO FROM ISN REG. 14 REGo 15 REG. 0 REG. 1 

LSVALR 0018 62EF1F24 005F2328 00000000 OOSF 1858 

LP SD OR 0554 1:2!:EAF56 OOSF 1 A20 00000008 005912C<l-

MAIN OOOOEAA2 01590A78 OODSF 378 0060EFF8 

ENTRY POINT= 01590A78 

STANDARD FlXUP TAKEN , EXECUTION CONTINUING 

ERROR CODE FROM LPSDOR = 0 



****** LISTING OF PARAMETER ESTIMATE~ IN THE ORDER BLOCKS. TRTS. REGRESSION COEFFICIENTS DOWN THE PAGE ****** 

VAR• l VAR1t2 VARM3 VARf4 VARAl5 

::!.43125 3. 49547 11.0229 

5.32569 23.7083 12.1166 

-.200726 4.59276 7.10731 

-.580883 4e81954 7e69C98 

9.93823 17.7915 e.34121 

.897597 e87ti527D-Ol -.347398 

-.563294D-02 .685404 e391009D-01 

****** HYPOTHEStS TESTING SECTION****** 

4 HYP~THESIS MATRICES SHALL SE USED.IN TURN.FOR COMPUTING CH! SQUARE STATtSTICS 

EACH MATRIX SHOULD HAVE 7 COLUMNS AS FCLLCWS : 

THE FIRST 
THE NEXT 
THE LAST 

2 COLUMNS CORRESPOND TO BLCCK PARAMETERS 
3 COLUMNS CORRESPOND TO T~EATMENT PARAMETERS 
2 COLUMNS CORRESPOND TO CCVARIATE COEFFtCIENTS 

VARM6 

,_.. 
0 
0 



**** LISTING OF HYPOTHESIS MATRIX 1 FCLLOWED BY ITS EXTENSION FOR MODIFIED MOOEL.HYPOTH 10 rs: NO BLK DIFF 

1.00 -1.00 o.o o.o o.o o.o o.c 

ROW( 1): 1.00 -1 .oo o.o o.o o.o a.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o o.o o.o o.o o.o 

ROW( 2): o.o o.o o.o o.o o.o o.o o.o o.o o.o 1.00 -1.00 o.o o.o o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o o.o o.o o.o o.o 

ROW( 3): o.o o.o o.o o.o o.o o.o o.o ·o.o o.o o.o o.o o.o o.o o.o o.o o.o '-OeO o.o 
1.00 -1.00 o.o o.o o.o o.o o.o o.o o.o 

ERROR CODE FRCM LP SD OR 0 

THE WALD STATISTIC FCR HYPOTHESIS 1 FOR ALL 3 RESPONSE VARIABLES SIMULTANEOUSLY IS 3469.4462 

ITS ASYMPTOTIC DISTRIBUTION UNDER THE ~ULL HYPOTHESIS 15 CHI-SQUARE WITH 3 DEGREES OF FREEDOM 



****** RS:SULTS OF HYPOTHESIS TESTS ON INDIVIDUAL VARIATES FOR HYPOTH MATRIX 1 WITH ID: NO BLK OlFF 

*** THE OPTIONS FOR THE 3 INDIVIDUAL VARIATES ARE: 0 1 

ERROR CODE FRCM LPSDOR 0 

THE WALD STATISTIC FOR HYPOT~ESIS l RESTRICTED TO RESPONSE VARIATE 2 ONLY IS 3310.2092 

ITS ASYMPTOTIC DISTRIBUTION UNDER THE NULL HYPCTHESIS IS CHI-SQUARE WITH 1 DEGREES OF FREEDOM 

ERROR CODE F~OM LPSOOR 0 

THE WALD STATISTIC FOR HYPOTHESIS 1 RESTRICTED TO RESPONSE VARIATE 3 ONLY IS 3.0643 

ITS ASYMPTOTIC DISTRIBUTION UNDEq THE N~LL HYPCTHESIS IS CHI-SQUARE WITH 1 DEGREES OF FREEDOM 

f--' 
0 
N 



**** LISTING OF HYPOTHESIS MATRIX 2 FCLLCWED BY ITS EXTENSION FOR MODIFIED MOOEL.HYPOTH IO IS: NO TRT OIFF 

o.o o.o loOO -1. 00 o.o o.o o. 0 

o.o o.o loOO 1.00 -2.00 o.o o.c 

ROW( 1 ) : 0 .o o.o loOO -1.00 o.o 0 .o o.o o.o o.o o.o o. 0 o.o o.o o.o o.o o.o 0 .-o o.o 
o.o o.o o.o o.o o.o o.o o.o o.o o. 0 

ROW( 2) : o.o o.o loOO 1 .oo -2.00 0 .o o.o o.o o.o o.o o.o o. 0 o.o o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o o. 0 o.o o.o 0 .o 

ROl'll( 3 l : o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o loOO -1.00 o.o o.o o. 0 o.o o.o 
o.o o.o o.o o.o o.o o.o o.o o.o o. 0 

ROW,( 4): -e .. 0 o.o o.o o.o o.o o.o o. 0 o.o o.o o.o o.o t.oo 1.00 -2.00 o.o o.o . o.o .o.o 
o.o o.o o.o o.o o.o o.o o.o o.o o.o 

ROW( 5): o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
o.o o.o l.oo -1. 0 0 o.o o.o o.o o.o o.o 

ROW( 6) : o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o u.o o.o o.o 
o.o o.o t .o o l. 0 0 -2.00 o.o .o.o o.o Q .• 0 

ERROR CDCE FROM LP SD OR 0 

THE WALD STATISTIC FOR HYPOTHESIS 2 FOR .ALL 3 RESPONSE VARIAeLES SIMULTANEOUSLY IS 6308415 

ITS ASYMPTOTIC DISTRILUTION UNDER THE NULL HYPOTHESIS IS CHI-SQUARE WITH 6 DEGREES OF FREEDOM 



****** RESULTS OF HYPOTHESIS TESTS ON l~DIVIDUAL VARIATES FOR HYPOTH MATRIX 2 WITH ID! NO TRT OlFF 

*** THE OPTIONS FOR THE 3 INDIVIDUAL ~AR!ATES ARE: 1 0 

ERROR CODE FRCM LPSOOR = O 

THE WALD STATISTIC FOR HYPOTHESIS 2 RESTRICTED TO RESPONSE VARIATE 1 ONLY IS 1804689 

ITS ASYMPTOTIC DISTRIBUTION UNDER THE NULL hYPGTHESIS IS CHI-SQUARE WITH 2 DEGREES OF FREEDOM 

ERROR CODE FROM LPSDOR = 0 

THE WALD STATISTIC FOR HYPOTHESIS 2 RESTRICTED TO RESPONSE VARIATE 2 ONLY IS 35.9924 

ITS ASYMPTOTIC DISTRIBUTION UNDER THE NULL HYPCTHES!S IS CHI-SQUARE WITH 2 DEGREES OF FREEDOM 



**** LISTING OF HYPOTHESIS MATRIX 3 FCLLOWED BY ITS EXTENSION FOR MODIFIED MODEL.HYPOTH 10 IS: NO OIFF BETW TR 1&2 

o.o o.o 1.00 -1.00 o.o o.o o.c 

ROW( 1l: o.o o.o 1.00 -1.00 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o o.o o.o o.o o.o 

ROW( 2): o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 1.00 -1 .oo o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o o.o o.o o.o o. 0 

RO\lf( 3): o.o o.o o.o o.o o.o o~o o. 0 o.o o.o o.o o. 0 o.o o.o o.o o.o o.o ·OoO o.o 
o.o o.o t. 0 0 -1. () 0 o.o o.o o.o o.o o.o 

ERROR CODE FRCM LPSDOR 0 

THE WALD STATISTIC FOR HYPOTHESIS 3 FOR ftLL 3 RESPONSE VA~IABLES SIMULTANEOUSLY IS 

ITS ASYMPTOTIC DISTRIBUTION UNDER T~E NULL HYPOTHESIS IS CHl-SOUARE WITH 3 DEGREES OF FREEDOM 

,_.... 
0 
Ul 



****** RESULTS OF HYPOTHESIS TESTS CN I~DlVlDUAL VARIATES FOR HYPOTH MATRIX 3 WITH 10: NO OI~F BETW TR 1&2 **** 

*** THE OPTIO~S FOR THE 3 INDIVIDUAL VARIATES ARE: 1 

ERROR CODE FRCM LPSDOR = 0 

THE WALD STATISTIC FOR HYPOTHESIS 3 RESTRICTED TO RESPONSE VARIATE l ONLY IS 2e737b 

ITS.ASYMPTOT1C DISTRIBUTION UNDER THE NULL ~YPCTHESIS IS CHI-SQUARE WITH 1 DEGREES OF FREEDOM 

ERROR CODE FROM LPSOOR : 0 

THE WALD STATlSTIC FOR HYPOTHESIS 3 RESTRICTED TO RESPONSE VARIATE ·z ONLY IS 0. 3090 

ITS ASYMPTOTIC DISTRIBUTION UNDER THE NULL HYPOTHESIS IS CHI-SQUARE WITH 1 DEGREES OF FREEDOM 

ERROR CODE FROM LPSDOR 0 

THE WALD STATISTIC FCR HYPOTHESIS 3 RESTRICTED TO RESPONSE VARIATE 3 ONLY IS 0.6594 

ITS ASYMPTOTIC DISTR!8UTION UNDER THE NULL HYPOTHESIS IS CHI-SQUARE WITH 1 DEGREES OF FREEDO~ 



**** LISTING OF HYPOTHESIS MATRIX 4 FCLLOWEO BY ITS EXTENSION FOR MODIFIED MODELeHYPOTH IO ·ts: NO EFFECT COVARS 

o.o o.o o.o o.o o.o i.oo o.c 

o.o o.o o.o o.o o.o o.o 1. 00 

RO"ll( 1) : o.o o.o o.o o.o o.o 1.00 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o o. 0 o.o o.o o.o 

ROW( 2): o.o o.o o.o o.o o.o o.o 1.00 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o o.o o.o o.o o.o 

ROW{ :3): o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o i.oo o.o o-. 0 o.o 
o.o c.o o.o o.o o.o o.o o.o o.o o.o 

ROW{ 4): o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o. 0 o.o o.o o.o o.o i.oo o.o o.o 
o.o o.o o.o o.o o.o o.o o.o .0. 0 o.o 

'«:n• < 5) : o.c 0. () o.o o .·o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o i.oo o.o o.o. a.a 

R :Ji'i ( 6) : o.o o~o o.o o.o a.a o.o o. 0 o.o o. 0 o.o o.o o.o o.o o.o o.o o.o o.o o.o 
o.o o.o o.o o.o o.o o.o i.oo o.o o.o 

ERROR CODE F"!OM LP SD OR 0 

TH~ WALD STATISTIC FGR HYPOTHESIS 4 FOR ALL 3 RESPONSE VARIABLES SIMULTANEOUSLY IS 1043.5!!30 

I TS ASYMPTOTIC DlST!'I lBUTION UNDER THE l\ULL HYPOTHESIS IS CHI-SQUARE WITH 6 DEGREES OF FREEDOM 



****** RESULTS OF HYPOTHESIS TESTS ON I~OIVIDUAL VARIATES FOR HYPOTH MATRIX 4 WITH 10: NO EFFECT COVARS 

*** THE OPTIONS FOR THE 3 INDIVIDUAL VARIATES ARE: l 

ERROR CODE FRCM LPSDCR = O 

THE WALD STATISTIC FOR HYPOTHESIS 4 RESTRICTED TO RESPONSE VARIATE 1 ONLY IS 36.6924. 

ITS ASYMPTOTIC DISTRIBUTION UNDER THE NULL HYPOTHESIS rs CHI-SQUARE WITH 2 DEGREES OF FREEDOM 

ERROR CODE FROM LPSOOR 0 

THE WALD STATISTIC FOR HYPOTHESIS 4 RESTRICTED TO RESPONSE VARIATE 2 ONLY IS 985.34-37 

ITS ASYMPTOTIC DISTRIBUTION UNDER THE NULL HYPOTHESIS IS CHI-SQUARE WITH 2 DEGREES OF FREEDOM 

ERROR CODE FROM LPSDOR 0 

THE WALD STATISTIC FOR HYPOTHESIS 4 R~STRICTED Tcr RESPONSE VARCATE 3 ONLY IS 3.9067 

ITS ASYMPTOTIC DISTRIBUTION UNDER THE ~ULL HYPCTHESIS lS CHl-SQUARE WlTH 2 DEGREES OF FREEDOM 

•••• 
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00 



APPENDIX C 

COMPUTER PROGRAM SOURCE LISTING 
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c 

c 

c 

c 

c 

c 
c 

c 
G *** 
c *** 
c *** 
c 

REAL*B A(lOO.t0).AJACt0.10).ASC100.tO).BC7.7l.89ClOO. 71.BETA( 70) 
*•BLK(l00.2l.BS(7,71.BTC100.61.BSIG(7.7).8SIGBC7.71.BSIGIOC7.7), 
#B~SIG1(7.7),BETAMX(26.7l 

IN TE GER* 4 I E!L K ( 10 0) • t TRT ( 1 0 0) • IR ( 7) • I RR ( 7 • 7) • t N ( 10 0 • 7) • 1 NO ( 100 I • 
XNCJ ( 1 27 ) , NCL ( 12 7) •NC MK ( 9 l • NCM ( 7, 9) , NC "1C C 7 • 7 • 91 , NC TC ( 7, 7) •NC T ( 7 l • 
@NMA(7),NMAC(7.71.~~MRC~(91 

INTEGER*4 !ROW( ;<6) .ICCLC26) • IPRKOD(7) ,KORESP(7) 

REAL*4 FMT(2Q),EF~.HYP1D(5) 

REAL*B F(lQ0,10).w.O,SIGI.H!56. 7Q),HPRNV(56. 70).HPRH(56.56), 
XHSETA(56),HBETAP(561.HP(8. 70).PROD2(7Q,70) 

REAL*8 RV( 70).J:;SS(lO.tOhRSSSC100).S(l00.!0).T( 5180l.SIG(7.7). 
NSIGINV(7~7)oTRT(!00.4).U(l00.100l.V(!OOI. 

RE AL * 8 X ( 1 0 0 • 3 I • Y ( 1 0 0 • 7 I • Y Y S ( l 0 0 • 7 I , Y S ( 1 0 0 • 7 I , Z C t 0 0 ) , Z T ( 1 0 0 I , 
<ZY!lOO).ZZ(7) 

ARRAYS #HICH MAY HAVE TO BE REDIMENSIONED TO HANDLE A LARGER # 

OF MISSING VALUES ARE : A.AJA.AS,BETA,BETAMX.F,H.HPRNV.PROD2,RV, 
RSS.Rsss.s.T.NC~K.NCM.~CMC.I~CW.ICOL 

110 

c 
c 

*** 
*** 

CURRENT DIMENSICNS CF ARRAYS; INCREASE THESE AND THE CORRESPONDING 
DIMENSIONS TO !~CREASE THE CAPACITY OF THE PROGRAM 

c 

c 
c 

NPDIM 7 
NNOIM 100 
NBOIM 2 
NTDIM = 4 
NKOIM=3 
NAO IM = 10 
NFDIM = 10 
NPROD=70 
NHPRHD=56 

C EQUIVALENCE (T(lloAS(l))e(X(lloS(1)),(H(1).U(1)) 
c 

c 
c 
c 
c 
c 
c 
c 
c 

DATA B/49•0.000/.ELK/200•0.0DQ/,H/3920•0.000/,IN/700•l/. 
5PROD2/4900•0.0DC/,RV/70*0•COO/,TRT/400•0.0DO/ 

NP 
NT 
NB 
NK 

READ 

DATA RSS/lOO•o.oco/ 

EQUALS THE NU MEER OF DEPENDENT VARIABLES 
EQUALS THE NU MEER OF TREATMENTS 
EQUALS THE ll:UllEER OF !!LOCKS 
EQUALS THE NUMEER INCEPENDENT Vi\RlABLES 

INPUT DATA 

READCS.ll NP.NT,11:e,NKoNN,IDGT,NMISS.EPS0DolPRKOD 
FORMAT(7I3.T3o.e10.o,010.o.7I21 
WR IT E ( 6 , 99 O 1 I 

9901 FORMAT('l' o 1 PARA"ETER VALUES READ FROM FIRST DATA CARD 
WRITEC6.99091 0 

. ,////) 



c 

9909 FORMAT( 1 0 1 o'TH= CURRENT VALUE BEING USED FOR THE MISSING CODE IS 
<' .G16.6) 

wRITE(6o9910) ICGT 
9910 FORMAT('O'o'THE ~ALU= OF IDGT SUPPLlED FOR USE IN LPSDOR SU8ROUTIN 

*E IS :•.rs> 
wRITE(6,9911l F.F5 

9911 FORMAT('C'o'THE VALUE OF EPS SUPPLIED FOR USE IN THE DMFGR SUUROUT 
*INE IS : ',G16,6) 

WRITE(6,9902l ~~ISS 
9902 FORMAT('O' ,•NUMEER OF MISSING VALUES IN COVARIATES : 0 ,I1Q 

wRITE(6,990~l NFDIM,NP 
9903 FORMAT( 1 0 1 o 1 MAX CIM RESP VECTOR:•,13,•;CURRENT DIM RESP VECTOR!•, 

#13) 
WRITE(6o9904l N~OIMoNN 

9904 FORMAT('O'•'MAX NUMB oss:•,1s.5x,':cuRRENT NUMB oss:•,[15') 
wRITE(6o9905) NEDIM,~8 

9905 FORMAT('O'o'MAX ~UMB BLOCKs:•.rs.2x.•:cuRRENT NUMB 9LOCKS:•.r7) 
WRITE(6o9906) NTCIM,~T 

9906 FORMAT( 1 0 1 1 1 MAX ~UMB TRTs:•.1s.sx.•:cuRR'ONT NUMB TRTs:•.t7J 
WRITE(6o9907) NKC!M,NK 

9907 FORMATC 1 0 1 • 1 MAX ~~M9 COVARs:•.Is.ix.•:cURRENT NUMO COVARS:•.11) 
wqITEC6o9908l NACIM 

·9908 FORMAT('0'1'MAX ~UMB COLS IN MODIFIED DESIGN MATRtx:•.u10/1/olXo 
#'CURRENT NUMBER CCLS MAY BE s=EN IN LISTING OF MODIFIED DESIGN MAT 
URIX TO FOLLOW LATE"l 1 ,//) 

WR1TE(6e9770) 
9770 FOR'IAT( 1 0'o'PRil\T OPT!CNS CHOSEN FOR THIS PROGRAM! O=NOPRINTel=PRI 

NNT 1 l 
9769 FORMAT('0 1 • 1 PRil\T CPTICN FOR MAC MODEL: •,151 
9768 FORMAT(•o•,•PRil\T OPTION FOR G~AC MODEL : •,IS) 
9767 FOR.'IATC'C'o'PRil\T OPTION FOR "!GMAC MODEL: 'o!Sl 
9766 FORMAT(•o•.•PRI~T CPTICN FOR SIGMA & ITS INVERSE •.Isl 
9765 FORMAT('O','PRil\T OPT!CN FOR ~ATRIX MODIFIED MODEL 1 oI51 
9764 FORMAT( 1 0'o 1 PRI~T CPTICN FOR CEPENDENT VARIABLES ANO DESIGN MATRIX 

*FOR VARIOUS MI~SING VALUE PATTERNS: •,ISi 
9763 FORMATC'0 1 1 1PRil\T OPTION FOR BETA VALUES: '.IS) 

WRITE(6,9769) 1Ff;K00(1) 
INRITEC619768) 1Ff;K00(2) 
WRITE(6,9767) IPF<K00(3) 
wRITE(6o9766) 1Ff;KCD(4) 
WRITE(o,9765) IFl'K00(5) 
WRITf.:(619764) [Ff;K00(6l 
WR1TEC6e97c3) 1Ff'KC0(7) 
REA0(5,2) FMT 

2 FORMAT(20A4) 

C WRITE INPUT DATA 
c 

WR I TE ( 6 • 3 l 
3 FORMAT(1H1,'LlSTING OF INPUT DATA 1 o///l 

IF(NBeLE.l.ANDel\ToLEe1) GO TO 11 
IF(NBoLEoll GO TC 29 
lF(NToLEell GO TC 28 
lKKK=O 
DO 4 l=l ,NN 
READ(S,FMT) IBLK(Il1ITRT(l),(V(J,J),J=loNP),(X(loJl1J=loNKl 
IKKK:IKKK+l 
WRITE(6,5) lBLK(I)1lTRT(I),(Y(I,JloJ=t.NP),(X(I,JleJ=loNK) 
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5FORMAT(lH0.2!4,1'5F8o2l 
c 
C SET UP BLOCK DES!G~ 
c 

c 

DO 7 II=l,NEJ 
IFCIBLKClloEOolll FlLK(l.IIl=loODO 

7 CONTINUE 

C SET UP TREATMENT CESIGN 
c 

DO 6 II=loNT 
IF ( I TR T ( I) • =:a. I r ) TR T (I. I I)= 1 • ODO 

6 CONTINUE 
4 CONTINUE 

WR!TE(6,9798) !KKK 
9798 FORMAT('O'o//,•c•.15,• CBSERVATIONS HAVE BEEN READ FOR THE CURRENT 

#DAT~ SETo DOES THIS AGREE WITH THE CURRENT# OBS GIVEN EARLIER?') 
c 
c BUILD DESIGN MATRIX ev AUGMENTING BLOCKS. TREATMENTS AND COVARIATES 
c 

CALL ARRAY(2,NN,~8,NNDIM,NBDIMo8LKoBLK) 

CALL ARRAYC2oNN,~T.NNOIMoNTDIMoTRT,TRTI 
CALL CTIE(BLK.TRT,BT.~N.NB.o.o.NT) 

NBT=NB+NT 
GO TO 25 

11 IKKK=O 
DO 41 I= 1, NN 
READ(5,FMTI (Y( loJ).J=loNP),(X(!,J),J=loNKl 
!KKK=IKKK+l 
WRITE(6o95) (Y(l,J)oJ=loNP),(X(loJ),J=loNK) 

95 FORMATC1H0,15F8o2) 
41 CONT I NUE 

WRITE(6,9798) IKKK 
DO 22 I=l ,N~ 
DO 22 K=loNK 
A ( I • K ) =X ( I , K ) 

22 CONT I NU::: 
NM = NK 
GO TO 26 

29 IKKK=O 
D:.J 40 1=1,NN 
READC5,FMT) ITRT(!),(Y(l,J),J:l,NP),(X(!.J),J=loNKI 
lKKK=lKKK+l 
WRITE(6,45) ITRT(l),(Y(I,J)oJ=l•NP),(X(I,JloJ=1,NK) 

45 F~RMAT(lHOoI4ol~F8o2) 
DO 6 0 I I = 1 , N T 
IF< I TRT( r) .Ea. t I, TRT( r. I I >=1.000 

60 CONTINUE 
40 CONTINUE 

WRITE(6,9798) IKKK 
00 24 II=1,NN 
00 24 K=loNT 
BT< I I ,K) = TRTC II ,K) 

24 CONTINUE 
CALL ARRAYC2.~N,NT,NNDIMoNTOIMoBToBTl 

NBT = NT 
GD TO 25 

26 IKKK=O 
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DO 4 2 I =l, NN 
RE AD ( 5, FM T ) I 9 L K ( I ) • ( Y ( I • J) • J = l • NP ) , ( X ( I • J ) • J = 1 , N K ) 
lKKK=lKKK+t 
WR I TE ( 6, 46) I BL K (I) , CY ( I• J) • J= I , NP J • ( X ( I , J) • J= 1 • NK) 

46 FORMAT(lHO.l4ol~Fe.2) 
DO 61 II=l,NB 
l FI IrlL K ( I l • !O 0 • I ll BL K ( l .I I ) 

61 CJNT !NUS 
42 CONTINUE 

WR I TE ( b , 97 913 ) I I< K K 
DO 27 I= I, NN 
DO 27 K=l ,NB 
~T(!,Kl=BLK(I,Kl 

27 CONTINUE 

1 •ODO 

CALL ARRAY(2,NN.~8.NNDIM.NBDIM,BT.8Tl 

NtH = N~ 
25 CALL ARRAY(2,NN,~K.NNOIMoNKDIMoX.Xl 

CALL CTIECBT.x.A.~~.NAT.o.o.~K) 

NM=N'3TH~K 

CALL ARRAY(l,NN.~M.NNDIM,NADIMoAoA) 

N8MOD=N9 
NTMOO=NT 
IF (NA.EOoll NBNCD=NB-1 
IF (NToEOoll NT~CC=NT-1 

c 
C NM EQUALS THE NUMEER OF COLUMNS IN THE DESIGN MATRIX 
c 
C WRITE THE MATRIX FCRM OF Y ANO A FOR TH~ MAC MODEL 
c 

26 WRITE(6, 12l 
12 FORMAT(lHt, •THE VALUES OF Y ANO A FOLLOW 

IF ( IPRKOD(l)oECoO) GO TO 9797 
MAC MODEL',///) 

DO 13 I=l,NN 
WRitE(6,19l (Y( I,J),J:t,NP),(A(l,JJ,J=l•NM) 

19 FORMAT( 1 0 1 .14F9o2) 
13 CONTINUE 

GO TO 9795 
9797 WRITE(6,9796) 
9796 FORMAT( '0',' 

c 
THE ABOVE LISTING WAS SUPPRESSED : IPRTKOD(lJ=O') 

C COMPUTE THE VARIAlE FORM OF Y ANO A FOR THE GMAC MODEL 
c 

9795 DO a J=t.NP 
c 
C WRITE THE VARIATE-WISE FORM OF Y ANO. A FOR GMAC MODEL 
c 

WRITE(6o16l J 
16 FORMAT(1Hlo 1 THE VALUES OF YANDA FQR VARlATE 1 ol2o 1 FOLLOW 

•GMAC MODEL•,///) 
IF (IPRKOD(2>.ECoCl GO TO 9794 
GO TO 9792 

9794 WR!TE(6,9793l 
9793 FORMAT('O'•' 
9792 ICT=O 

ThE ABOVE LISTING WAS SUPPRESSED 

DO 9 1=1 ,NN 
IF(Y(I,JloEOoO) GC TO 9 
ICT=ICT+l 
Z(ICT) = Y(I,JI 

IPRTKODC 2 )=0 1 ) 
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c 

00 10 K= 1 •NM 
F(ICT.K) = A(I.J<) 

10 CONTINUE 
IF ( !PRK00(2) .ec.ci· GO TO 9 
l'IRITEC6.18) ZClCTl. (FC!CT.K).K=loNM) 

18 FORMAT( •o•, 14F9o2) 
9 CONT !.'WE 

C NCT(J) EQUAL THE ~UMBER OF 08SERVATIONS FOR VARIATE J,J=l•••••NP 
c 

c 

NCT(J)=!CT 
NBB=O 
IFCNMISS.EO.O) GC TO 6000 
00 3000 I = l,NN 
DO 3000 K = 1.N~ISS 

BBC I .Kl = o. ODO 
3000 CONTINUE 

C REMUVE MISSING VALUES FRO~ A MATRICES AND REPLACE BY ZEROES 
C BUILD EXTRA COLUMSS FOR A MATRICES TO ACCOUNT FOR MISSING VALUES 
c 

c 

KK=NBT+l 
DO 90 K-=KK,NM 
L=NCT(J) 
NCM(J,Kl=O 
DO 100 I = l, L 
!F(F(!,Kl.NE.Dl GO TO 100 
F(!,K) = O.ODO 
NCM(J,KJ = NCM(J,K) + 

110 KKK= NCM(J,K) 
s9cI.KKKl i.oco 
N8B = NBiJ + 1 

100 CONTINUO: 
90 CONTINUE 

C BUILD NEW A MATRICES FOR MGMAC MODEL 9Y AUGMENTATION 
c 

L = NCT(J) 
c 
C NMA(J) EQUALS THE N~MBER CF COLUMNS IN THE DESIGN MATRIX FOR VARIATE J 
c 

c 

NMA(J) = NM + Nee 
DO 130 Kl=l •L 
NMPl = NM + 1 
NMAJ = NMA(J) 
DO 130 K2 = ~MPl,NMAJ 
NOUM = K2 - NMP! + 1 
FCK1,K2) = BS(KJ,NDUM) 

130 CONTINUE 

C WRlTE THE VARIATE-WISE FORM OF Y ANO A FOR THE MGMAC MODEL 
c 

WR IT E ( 6 • 5 1 ) J 
51 FORMATC1H1. 1 THE VALUES OF VANDA FOR VARIATE•,12,• FOLLOW 

*MGMAC MODEL•,///) 
IF (1PRKODC31.EC.Cl GO TO 9791 
GO TO 9790 

9791 WRITE(bo97891 
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c 

9789 FOR~AT('O'•' 
GO TO 6000 

9790 LL=NMA(J) 
DO 5 2 != 1, L 

T~E A80VE LISTING WAS SUPPRESSED 

rlRITE(6,53l Z(J), (F(I,K),K=l.LLI 
53 FOR:~AT('0 1 ,14F9,21 

52 CONTINUE 
6000 N~A(Jl = NM + NEE 

Ll=NCT(JJ 
Ml=NMA(J) 

C COMPUTE VARIANCE 
c 
C Fl ND F 1 F 

c 
C TEST FOR RANK OF F ~ND CCMPUTE (F 1 F) INVERSE=RINV 
c 

DO 3002 I = 1.Ml 
DO 3002 L = !1Ml 
RSS( I oLJ = O.OOC 

DO 3003 K = loLl 

'IPRTKOD( 3 l=O I) 

!F(F(K.I).EO.a.coo oo.aR.F(K,Ll.EO.o.ooo 00) GO TO 3003 
RSS(loL) = PSS(I,Ll + F!Kdl*F(K,L) 

3003 CONTINUE 
3002 CONTINUE 

DO 900 I:t,Ml 
DO 900 K=l,Mt 
!Kl=( 1-1 )•Ml + K 

900 RSSSCIKlJ=RSS(I,Kl 
CALL DMFGR(RSSS0Ml,MtoEPS,lRANK 0 IROW,ICOL) 
IR(J) : !RANK 
WrtITE(6,55l J.l~(J) 

55 FORMAT(lt10,'THE R~NK OF THE DESIGN MATRIX FOR VARIA.TE'•l5o 1 FOR TH 
*E MGMAC '-IODEL rs•.is.• •,///l. 

CALL LPSuOR<Rss.~1.Mt.NFDIM,RSS.!DGT.T.IERl 

~RITE(6,9864) IER 
9864 FORMATC•o•,/,• '•'ERRCR CODE FRCM LPSDCR = 1 ,16,/) 

c 
C FORM THE PRODUCT F(RINV) 
c 

9753 DO 3004 I = IoLl 
DO 3004 L = loMl 
SCioLJ = O.ODO 
DO 3005 K = J,Ml 
IF<F<I.KloEa.o.cco oo.cR.RSSCK.L)oEO.o.ooo 00) GO TO 3005 
S<I.L) =.sc r.L) .. F(l.Kl*RSS(K,L) 

3005 CONTINUE 
3004 CONTINUE 

c 
c 
C COMPUTE F(RINV)F' 
c 

DO 3 0 0 6 1 = l • L 1 
DO 3006 L = t.Ll 
UCieLl = O.ODO 
DO 3007 K = leMl 
IF(S(l1Kl.Ea.o.coo oo.cR.F(L,Kl.EO.o.ooo 00) GO TO 3007 
U(I,Ll = U(I.Ll + SCl.Kl*F(L,K) 
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3007 CONTINUE 
3006 CONTINUE 

c 
c 
c 

c 

COMPUTE Z 1 1Z 

ZZ(J) = OoODO 
DO 320 I !=1.Ll 

z•z 

ZZ(J) = ZZCJ) + ZCIIl**2 
320 CONTINUE 

C COM~UTE Z'F(RtNV)F' 
c 

DO 3008 I = l 1L 1 

11(1) "' o.ooo 
00 3009 L = ltLl 
!F(U(L,tloEa.o.coo 00) GO TO 3009 
VC II = V( I) + Z(Ll*U(L.I l 

3009 CONTINUE 
3008 CONTINUE 

c 
C COMPUTE Z'F(R!NV!F'Z 
c 

c 

w .: o.ooo 
00 3 0 1 0 I -= l , L 1 
111 = w + Z<Il*V(ll 

3010 CONTINUE 
S!G(J,J) = CZZ(J) - Wl/(Ll - IRCJll 

C COMPUTE COVARIANCE 
c 

JJ = J + 1 
!F(JJ.GT.NPl GO TO 8 
DO 411 JJJ = JJ,NP 
ICTC = 0 
DO 409 I: t.NN 
IF<YCI1JJJloEOoC•CRoY(!,Jl.EOoO) GO TO 409 
ICTC = ICTC + 1 
ZC!CTC) = vct.Jl 
ZY(lCTCl = Y(l,JJJ) 
DO 4 10 K = 1 , NM 
F( !CTC,Kl .:: ·A( l ,1() 

410 CONT!NUO:: 
-409 CONTINUE'. 

NCTC(J,J.JJl : ICTC 
NBHC = 0 
IF(NMISS.EO.Ol GO TO 6001 
00 3001 I = 11NN 
00 3001 K = 1,NHtSS 
e1:1<t.1<> =o.ooo 

:3001 CDNT!NU!:. 
KK ::: NBT 0 + l 
00 490 K : KKoN~ 

L = NCTC(J,J.JJ) 
NCMC(J,J.JJ,Kl • 0 
00 4100 I = loL 
lF(F( f,K)oNEoOI GC TO 4100 
FC loKJ ,. 0.000 
NCMC(J,JJJ,Kl = NC~C(JoJJJ,K) + 
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c 

KKK = NCMC(J,JJJeKl 
BO(l.KKK) = i.occ 
NBBC = N83C + 1 

4100 CONTINUO: 
490 CONTINUE 

L = NCTC(J,JJJ) 
NMAC(J,JJJ) = N~ + NBBC 
DO 4130 Kt = lel 
NMPl = NM + 1 
NMAJ = NMAC(J,JJJ) 
DD 4130 K2 = NMPleNMAJ 
NDUM = K2 - N~Pl + 1 
F(1<!,K2) = BB(Kltl\OUM) 

4130 CONTINUE 
600t NMAC(J,JJJ) = N~ + NBBC 

L2 NCTC(J,JJJ) 
M2 = NMAC(J,J.JJ) 

C FIND F•F 
c 

DO 3012 I= !tM2 
00 3012 L = l .1"2 
RSS( I .Ll = OoODC 
DO 3013 K = 1tL2 
IF(F(Kel).EQoOoCOO 00.0ReF(K,L)oEOoOoODO 001 GO TO 3013 
RSS(leL) = RSS(I,L) + F(Ktll*F(K,L) 

3013 CONTINUE 
3012 CONTINUE 

c 
C TEST FOR RANK OF F ~NO COMPUTE INVERSE 
c 

c 

DO 9 0 l I = 1 , M2 
DO 901 K = leM2 
[Kl=( I-1 )*M2 + K 
RSSS( !Kt l=RSS( I eKl 

901 CONTINUE 
CALL DMFGR(RSSS,M2,M2tEPSolRANK,lROW,ICOL) 
IRR( J,JJJ) = IR~l\K 

CALL LPSDOR(RSS,~2,M2oNFOIMtRS5,IDGT,T,[ER) 
WRITE(6,9864) IER 

C FORM THE PRODUCT F(RINV) 
c -

DO 3014 I = ltL2 
DO 3014 L = ltM2 
S(l,L) = 0.000 
DO 3015 K = 1oM2 
lF(F(l,K)oEO.o.coo oo.oR.RSS(KoLloEO.o.ooo 00) GO TO 3015 
S ( I • L l = SC I , L) + F ( I , K) *RS S ( K, L ) 

3015 CONTINUE 
3014 CONTINUE 

c 
C COMPUTE F(RINV)F 1 

c 
DO 3016 1 = 1oL2 
DO 3016 L = loL2 
U( I,L) = 0.000 
DO 3017 K = loM2 
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lF(S(l.KJ.EO.o.coo oo.oR.F(L.Kl.EO.o.ooo 00) GO TO 3017 
U ( I • L l = U ( I , L l + S ( I • K) •F ( L • K) 

3017 CONTINUE 
3016 CONTINUE 

c 
c COMPUTE z•rzz 
c 

c 

ZZ(JJ = O.ODO 
DO .620 I I= l oL2 
ZZ(Jl = ZZIJJ + ZCIIl•ZYCII) 

620 CONTINUE 

C COMPUTE Z'FCRINVIF 1 

c 
DO 3018 I = l.L~ 

V(l) = OoOOO 
DO 3019 L = 1oL2 
lF(U(L.IleEO.O.CDO 00) GO TO 3019 
V ( I I = V C l I + Z < L l •U C L • l > 

3019 CONTINU~ 
3018 CONTINUE 

c 
c. COMPUTE Z 1 F(RlNV)F 1 ZY 

w = o.ooo 

c 

DO 3020 l = l.L2 
W = W + ZY C I I* V ( l ) 

3020 CONTlNUE 
SlGIJ.JJJ) 
SIG( JJJ,.J) 

411 CONTINUE 
8 CONT[NUE 

CZZ(J) - Wl/CL2 
SIG(J,J.JJ) 

I RR ( .J , .J .J J ) ) 

C *** CALL TO SMOOTH FCLLOWS THIS CARD 
c 

CALL SMOOTH(SIG.NPel) 
c 
C WRITE, OUT SIGMA A~C SIGMA INVERSE 
c 

WR.I TE (6,695 l 
695 FORMAT(lH!.•THE VALUE OF SIGMA FOLLOWS',///) 

IF ( IPRKOu(41eEO.Ol GO TO 9786 
DO 9788 J.JJ=l.NF 
WRITE(6,9787l CSIG(JJJ,JJJJ),JJJJ=leNP) 

9787 FOR~AT(•o•.1011x.G12.6)) 
. 9788 CONTINUE 

GO .TO 9784 
9786 WRlTE(6,9785l 
9785 FORMATc•o•,• TbE ABOVE LISTING ~AS SUPPRESSED 
9784 CALL LPSDORCSIG.~P.NP,NPOIM.SIGINVolDGToTolER) 

WRITEC6.986A) IE~ 

WRITE (6,.699) 

IPRTK00(4)'=O 1 I 

699 FbR~AT(lHle'THE VALUE CF SIGMA INVERSE FOLLOWS•,///) 
IF ( lPRK00(4).EC.O) GO TO 9783 
OD 9782 JJJ=l.NF 
WR!TE(6.9781) CSIGlNVCJJJ,JJJ.J),JJJJ=loNPI 

9781 FORMAT( •o• .1oc tll.Gl2o6ll 
9782 CONTINUE 

GO TO 9780 
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9783 WRITE(6.9785) 
c 
C REMOVE MISSING VALUES FRCM A ANC REPLACE BY ZEROES 
C BUILD EXTRA COLUMl\S FOR A MATRIX TO ACCOUNT FOR MISS{NG VALUES 
c 

c 

9780 NBS = 0 

5005 

1012 
1011 

IF(NMISSoEOoOI GC TO 6002 
DO 5005 I = l.NN 
DO 5005 K = 1.1\~ISS 
BB<I oKl = O.ODO 
CONT lNUE 
KK = Nl3T + 1 
DO 1011 K KK.l\M 
NCMK(K) = 0 
DO 1012 I = l •NI\ 
IF(A( Io Kl .NEoDl GO TO 1012 
A(I,K) = o. 00'.) 
NCMK ( K) = NCMK(K) + 1 
KKK = NCMK(K) 
BB( I.KKK) 1. oco 
Nl:!O = NBB + 1 
CONTINUE 
CONT l NUE 

C OUILD NEW A MATRIX FOR MATRIX MODtFIED MODEL 
c 
C NA EQUALS THE NUMEER OF COLUMNS IN THE MODIFIED DESIGN MATRIX 
c 

NA -= NM + NBB 
00 1114 Kl= lol\N 

NMPl = NM + 1 
DO 1114 K2 = NMFl,NA 
NDUM = K2 - NMP1 + 1 
A(KloK2J = BO(Klol\DUM) 

1114 CONTINUE 
c 
C WRITE THE MATRIX ~CC!FlEO FORM OF Y AND A 
c 

WRITE(6.1020 J 
1020 FORMATllHt,•THE VALU~S OF Y ANO A FOLLOW 

•MATRIX MODIFIED MODEL'.///) 
IF (lPRKOD(5l.ECoOl GO TO 97.79 
00 1021 I = 1•1\1\ 
WRITE(6,l022) (Y(l,J),J=t.NPJ,(A.(I,KJ.K=l1NA) 

1022 FORMATl'O' .14F9o2l 
1021 CONT INUF. 

WRITE(6o9729) 
9729 FORMAT('l'•' ****** DEPENDEN~ VARIABLES AND DESIGN MATRIX FOR 

X THE VARIOUS GROUPS CORRESPONDING TO DIFFERENT PATTERNS OF MISSJNG 
$ VALUES' I 
NDIGRP=2~*NP - 1 
WRIT:(6,9703) NCIGRP,NDIGRP 

9703 FORMAT('O' •'****THERE ARE '•I4o 1 DlFFERENT POSSIBLE GROUPS NUMBER 
XED FRO~ 1 Ta•,I4•' TH8UGH IN GENERAL NOT ALL GROUPS WILL APPEAR•,/ 
~/,'0'•'*** WH(C~ CNES OCCUR D~PENOS ON THE PATTERN OF MISSING VALU 
<ESoHO~EVER THE TCTAL M CBSERVATIONS IN ALL GROUPS MUST EQUAL NN'l 

GO TO 6002 
9779 WRITE(619778) 
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c 

9778 FOR~AT('O'•' 
WRITE(6,9729) 

6002 NA = NM + NBS 

T~E ABOVE LISTING WAS SUPPRESSED 

DO 1019 J = 1,NP 
B(J,JI = 1.000 

1019 CONTINUE 
DO 1000 I= leN~ 
t NO ( I ) = 0 
DO l 0 0 1 J = 1 , NP 
IF(Y(l,J).N=.D> GC TO 1030 
IN(! o.JI = 0 

1030 L = NP - J 

IND( II = IND( I) + IN( I ,J 1*2**L 
1001 CONTINUE 
1000 CONTI,.,.UE 

1004 

1005 
1003 

KP = Z*•NP -
DO 1002 LL !,KP 
NCL(LL) = 0 
DO 1003 I = 1.~~ 
IFC!NO(!),NEoLL) GO TO 1003 
NCL(LL) = NCLILL) + 1 
ICT = NCL( LL) 
DO 1004 J = loNP 
YS(!CT,J) Y(I,J) 
CONTINUE 
DO 1005 K 1 •NA 
AS(rCToK) A ( I , I< ) 

CONT(NUE 
CONTINUE 
IFCNCLILL)oEO.O) GO TO 1002 
JCT = 0 
DO 1007 J = loNP 
IF(YS(1.J) .ea.cl GO TO 1007 
JCT = JCT + 1 
DO 1008 JJ 1,~p 

~S(JJ,.JCT) = B(JJ,J) 
1008 CONTINUE 
1007 CONT l NUE 

NCJ(LL) .JCT 

tPRTK00{5)=0 1 ) 

C WRITE THE GROUPED CATA FCRM OF Y AND A FOR THE MODlFIED MATRIX MODEL 
c 

c 

K = NCL(LL) 
JJ = NCJ(LLI 
WRITE(6o1032) LL,K,JJ 

1032 FORMAT(!HO, 'THE DEPENDENT VARIABLES AND CORR~SPONDING DESIGN MATRI 
•x FOLLOW FOR GRC~P·.Is.• WHICH HAS 1 115.• OBSERVATIONS ON•.15,• VAR 
*I A TES ' , / / / ) 

IF ( IPRK00(6) ,EC.O) GO TO 9777 
DO 1024 I= 1.K 
WRITE(6el025) CVSCl,J)1J=l•NP),(ASCl1KK),KK=l•NA) 

1025 FORMAT('O'o14F9,2l 
1024 CONTINUE 

GO TO 9776 
9777 WR!TE(6,9775) 
9775 FORMAT(•Q•,• THE ABOVE LISTING WAS SUPPRESSED : IPRTK00(6)=0') 

C COMPUTE THE SUM OllER ALL GROUPS OF (8(1NV(B'•SIGMA•B)}XA 1 )Y 
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c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 

COMPUTE 

9776 NAP = NA*NP 
NJ= NCJ(LLI 
00 1036 I = 1.NJ 
00 1036 L 1.NF 
BSIG(l,L) = O.OCO 
DO 2066 K = t.~F 
IF<~S(K.I).Ea.o.ooo 00) GO TO 2066 
OSIG( l.L) = OSIG(I.L) + 8S(K.I)*SIG(K,L) 

2066 CONTINUE 
10.36 CONTINUE 

COMPUTE 

OU 1 0 3 7 I = 1 •NJ 
00 1037 L = leNJ 
8SIG13( IeLl = o.CDO 
DO 2067 K = t.~F 

IF<BS(K,L).EO.o.ooo 00) GO TO 2067 
E:ISIGH(l.Ll = BSIGE(l,Ll + BSIGCI.K)*BS(K.L) 

2067 CGNTINUE 
1037 CONTINUE 

COMPUTE INV(E'*SIGMA*9l 

lFINJ.EOol) GO TO 1038 
CALL LPSDOR(8SIG8.NJ.NJ.NPDtM.BSIGB.lOGT.T.IER) 
WRITE(619864) !ER 
GO TO 1039 

1038 BSIGO(NJ.NJ) = loOOO/BSlGB(NJ.NJ) 

COMPUTE 

1039 DO 1040 I= loNF 
DO 1040 L = t.NJ 
88SIGl(l.LI = O.COO 

00 2070 K = 1.NJ 
IF(OSII.K).Ea.o.oco 001 GO TO 2070 
89S!Gl( I oLI -= BE!SIGI (l ,L) + BS(! ,Kl*BSIGB(K1Ll 

2070 CONTINUE 
1040 CONTINUE 

co:~PUT E ( a ( f N v ( E •• s I GM A •a ) , XA • , . 

NL = NCL(LL) 

C GET COLUMNS OF Y 

c 
DO 1042 I= 1.NL 
00 1042 J = 1,NJ 
YYS( I.J) = OoOOC 

00 2072 K = 1.NF 
IFIBS(K.J)oEO.o.ooo 00) GO TO 2072 
YY S < I , J I = YY S ( I, J) + VS I t, K) *AS I K • J ) 

2072 CONT I NUE 
1042 CONTINUE 
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c 
c 
c 

c 

COMPUTE 8(INV(E'*SIGMA*B))XA')Y 

l I = 0 
DO l 043 l. NP 
DO 1043 K = 1.N.e 
II= II + 
DO 1043 J 1,NJ 
DO 2073 L 1.NL 
1F(9BSIGIII.J).EO.o.ooo oo.oR.AS(L.Kl.Ea.o.ooo 00) GO TO 2073 
qi/(![)= RV(Il) + BBSIGI(l,J)*AS(L,Kl*YYS(L,JI 

2073 CONTINUE 
1043 CONTINUE 

C CO~PUTE THE SUM CVER ALL GROUPS OF ((8(INV(B'•SIGMA•BlB'IXA'AI 
C AND COMPUTE THE INVERSE 
c 
c 
c 

CO~PUTE B(lNV(B'*SlGMA*BlB' 

00 1051 1 •NF 
OD 1 0 5 1 L = l , NP 
BS!GlB(!,L) = OeOCO 
DD 20~1 K = loNJ 
IF!BS!L.Kl.Ea.o.oDO oo.oR.BBS!GI(I.KleEa.o.ooo 00) GO TO 2081 
!JSIGl8(IoLI = BSIGIB(I,Ll + B8SIGI(I,Kl*BS(L,KI 

2081 CONT !NUE 
1051 CONTINUE 

c 
c 
c 

COMPUTE A'A 

NL = NCL(LL) 
DO 1052 I = loNA 
DO 1052 L = loN~ 

AJA( I oL) = O.ODO 
DO 2082 K = lo1'L 
IF(AS(K.Il.EO.a.oco 00) GO TO 2082 
AJA(loL) =AJA(!,!.)+ AS(K,IH•AS(K,L) 

2082 CONTINUE 
1052 CONTINUE 

c 
c 
c 

COMPUTE (B(INV(B'*SlGMA*BlB')XA 1 A 

C PUT THE ABOVE lNTC A MAT~IX 
c 

c 

II = 0 
00 1054 l,NF 
DO 1 054 K 1 • N .e 
KK = 0 
I 1 = . I 1 + 1 
00 1054 J 1 • N·F 
DO 1 054 L = l, NA 
KK = KK + 
PROD2(II.KK) = FRCD2(11.KK) + BSIGIB(I,Jl*AJA(L,KJ 

1054 CONTINUE 
1002 CONTINUE 

C COMPUTE THE INVERSE OF THE ABOVE SUM 
c 
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c 

CALL LPSDOR(PROC2.NAP.NAP.NPRCD.PROD2oIDGT,T,IER) 
WRITE(b.9864) IE~ 

00 1056 I = 1.NAP 
OETA( Il -= O.ODO 

C COMPUTE BETA ESTIMATES 
c 

00 1056 L = l.NAF 
BETA(!)= BETA(Il + PROD2C!oL)*RV(L) 

1056 CONTitJUE 
00 9728 18=1,NP 
00 9728 I9=1•NA 
I 7 = ( I 8-1 l •NA+ I 9 

9728 BETAMX( I9.I8l=BETA(l7) 
WRITElt>ol067l 

1067 FORMAT('!',• ******LISTING OF PARAM~TER ESTIMATES IN THE ORO 
I/ER : BLOCKS, TRTS. REGRESSION COEFFICIENTS DOWN THE PAGE******'! 

IF ( !PRKOD(7loEGo0l GC TO 9774 
WRITE(6,1062) 

1062· FORMAT('O'•' VARAf 1 
< VARll4 
" VAR1t7 1 l 

DO 1060 I8=1 ,NM 

VARllS 

WRITE(b19727) CEETAMX(l8ol9lol9=1•NP) 
9727 FORMAT( '0' ,7( 1XoGl8o6)) 
1060 CONTINUE 

C WRITE(6.1926l 

VARl/2 VARAf3 
VARAf6 

Cl92b FORMAT(//, 1 1 , 1 ****** ESTIMATES OF DUMMY PARAMETERS INT 
C XRODUCED 8ECAUSE OF MISSING VALUES ******'l 
C IF (NM.EQ,NAl GC 10 1919 
C NMPl=NM+l 
C DO 1925 18=,..MPl.NA 
C WRITE(6.9727) (EETAMX(I81I9).!9=t.NP) 
Cl925 CONTINUE 
C GO TO 1917 
Cl919 WRITE(6ol919l 
Cl918 FORMATl'O'o' THERE ARE NO DUMMY PARAMETERS ( THERE WER 
C ltE Nu MISSING VALUES )'l 

c 

GO TO 1917 
9774 ~RITEl6o9773) 
9773 FDRMAT('O'•' 
1917 CONTINUE 

THE ABOVE LISTING WAS SUPPRESSED IPRTKOD(7 >=O') 

C READ IN THE SPECIFIED HYPOTHESES MATRICES 
c 

WR1TEl6o9756l 
9750 FORMAT('l'1' 

STION ****** 1 1///) 
READ(5o2020) "Ut-HYP 

2020 FORMAT( 151 
WRITE(6o9772) NU~~yp 

****** HYPOTHESlS TESTING SEC 

9772 FORMAT( 10•.1s.• HYPOTHESIS MATRICES SHALL BE USED.IN TURN.FOR COMP 
NUT!NG CH! SQUARE STATISTlCS 1 o///) 

WRITE(6.9771) ""' 
9771 FORMAT('O'•'EAC~ ~ATRIX SHOULD HAVE •.ts.• COLUMNS AS FOLLOWS : 'l 

WRITEC619759l ~E~CD 

9759 FORMAT('O'•' T~E FIRST •.rs.• COLUMNS CORRESPOND TO BLOCK PARAMETE 
"RS I, 
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c 

WRITE(6.9758) NTMOD 
9758 FORMAT(• '•' THE ~EXT •.rs.• COLUM~S CORRESPOND TO TREATMENT PARA 

ll:METERS') 
WRITE(6.9757) NK 

9757 FORMAT(' • •' THE LAST •.rs.• COLUMNS CORRESPOND TO COVARIATE COEF 
ll:FICIENT5 1 ) 

00 2000 l = 1.~U~HYP 

REAO(S.20211 NU~RCW(l).HYPJO.KOOOVL.!KORESP(l91.I9=l•NPI 

2021 FOR'1AT( 15.SA4.2Ct21 
NR = NUM RO w ( I ) 
W~ITE(b.19991 I.HVPID 

1999 FOf~MAT(lHl.'***• LISTING OF HYPOTHESIS MATRix•.rs.• FOLLJWED BY IT 
@S EXTENSION FCR ~CDIFIEO MOOEL.HYPOTH ID rs: •.SA4.///I 

00 2001 J = 1.NI' 
REAO(S.2C221 (H(JoKl.K=l.NM) 

2022 FOHMAT(20F4e21 
l'IRITE(b.19981 (H(J.K) .K=t .NMI 

1998 FOKMAT('0'.20(tx.FS.211 
2001 CONT I NUE 

NRP :: NR*NP 

C NRP=NR•~P ANO NAP=NA•~P 

c. 
C EXTEND HYPOTHESIS ~ATRIX TO ACCCUNT FOR AOOITJONAL PARAMETERS 
C RESULTING FROM MISSING INDEPENDENT VARIABLES 
c 

[F(NM.EOoNA) GO TC 2002 
DO 2003 J l ,NI' 
DO 2003 K =·!.NEB 
KK = NM + K 
H(J.KK) = O,ODO 

2003 CONTINUE 
c 
C BUILD HYPOTHESIS MATRIX FOR PARAMETER VECTOR 
c 

c 

2002 DO 2004 L = 1.N~ 

DO 2004 J = 1.NI' 
JJ = J + NR•(L - l) 

DO 2004 K = loNA 
KK = K + NA*(L - 1) 
H(JJ.KK) = H(J.K) 

2004 CONTINUE 
DO 4000 J=l .NRP 
WRITE!6.97551 J.(H(J,Kl.K=t.NAPI 

9755 FORMAT(' •.//.• •, 1 ROW( 1 .I2.•1: •.2oc1x.Fs.21> 
4000 CONT l NUE 

IF (KLlDOVL.EO.Ol GO TO 9749 

C COMPUTE THE TEST STATISTIC 
c 
C COMPUTE H'•PRINV 
c 

DO 2005 J = t.N~P 
DO 2005 L = 1.NAF 
HPRNV(J.L) : OoCCO 
DO 2006 K = t.NAP 
IF(H(J,K).EC.o.cco oo.cR.PR002(K.L).EQ.O.ODO 001 GO TO 2006 
HPRNV(J.L) 2 HP~~V(JoL) + H(JoK)*PR002(KeL) 
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2000 CONTINUE 
2005 CONTINUE 

c 
C COMPUTE H'•PRINV•M 
c 

DO 2007 J l1N~P 

DO 2007 L = 1 ,NJ;P 
HPRH(JoL) O.OCC 
DO 2008 K 1.~AP 

lF(HPRNV(J,K),EO.o.oDO oo.oP.H(L.K)oEa.o.ODO 00) GO TO 2008 
HPRH(J1L) = HPR~(JoL) + HPRNV(J,K)*H(L,K) 

2008 CONTINUE 
2007 CONTINUE 

c 
C CO~PUTE THE INVERSE OF H1*PRINV•H 
c 

c 

CALL LPSDOR(HPR~.~RP,NRP.NHPR~D.HPRH.IOGr.T.IER) 

WRITE(o,9864) IER 

C COMPUTE H'*BETA 
c 

DD 2009 J = 1,NJ;P 
H~ETA(J) = OoODC 
DO 2010 L = 1,NAP 
IF(H(J.L).EO.o.cco 00) GO TO 2010 
HSETA(JJ = HBETA(J) + H(JoLl•SETA(L) 

2010 CONTINUE 
2009 CONTINU!: 

c 
C COMPUTE (H••BETA) 1 ( INV(H'*PRINV•H)) 
c 

c 

DO 2011 J 
H~E.TAP(J) 

DO 2011 L::: 
HBET AP( J) 

2011 CONTINUE 

l • Nf;P 
o.oco 
lo Nf;F 

HBETAP(J) + HBETA(L)*HPRH(J 0 L) 

C COMPUTE (H*BETA)'(INV'~'*PRINV*H))(H*BETA) 

c 

c 

WALD = OoODO 
DO 2012 J = loNFP 
WALD ::: WALD + HEETAP(Jl*HBETA(J) 

2012 CONTINUE 
WR1TE(6,20131 t.~P.WALD 

2013 FORMAT(lHQ,//1l~01 1 THE WALD STATISTIC FOR HYPOTHESIS 1 ,I4, 1 FOR ALL 
# •,14,• RESPONSE VARIABLES SIMULTANEOUSLY IS: 1 oF15.4,//) 

WRITE(6,2015) Nf;P 
2015 FORMAT('O','ITS ASYMPTOTIC DISTRIBUTION UNDER THE NULL HYPOTHESIS 

N IS CHI-SQUARE WITH 1 1I41' DEGREES OF FREEDOM•,///) 

125 

C COMPUTE THE TEST STATISTIC FOR THE TESTS ON INDIVIDUAL RESPONSE VARIABLES 
c 

9749 WRITE(6o9750) I.H~PIO 

9750 FORMAT( 11'•' ******RESULTS OF HYPOTHESIS TESTS ON INDIVIDUAL VARI 
mATES FOR HYPOTH ~ATRtx•.13,• WITH ID: •.5A41' ******'•///) 

WRITE(6197081 NP,(KDRESP(l9J,t9=1•NP) 
9708 FDR~AT(//, 1 '•' 

XS ARE: '•1013,/I 
***.THE OPTIONS FOR THE 1 ,I3o' INDIVIDUAL VARIATE 



DO 9748 IV=leNP 
IF (KDRESP(JV).EO.O) GO TO 9748 

c 
C EXTRACT APPROPRIATE PART OF THE H MATRIX CONSTRUCTED EARLIER 
c 

DO 9747 IV1=1·"~ 
DO 9747 IV2=1eNAP 
IV3=( lV-1 l*NR+lVt 

9 7 4 7 HP ( I 11 l • [ V2 ) = H ( [ \I 3 , I V 2 ) 
c 
C COMPUTE H'*PRINV 
c 

DO 9 746 J:q • NR 
DO 9746 L=l .NAP 
HPRNV(J,Ll=OoOO 
DO 9745 K=l ,NAP 
IF (HP(J.Kl.Ea.o.co.cR.P~OD2(K.Ll.EOaOo00) GO TO 9745 
HPRNV(J,L):HPRNV(J,L) + HP(JeKl*PR002(K,L) 

9745 CONTINUE 
<;746 CONTINUe'. 

c 
C CO~PUTE H'•PRINV*~ 

C· 
00 9744 J=l,NR 
00 9744 L=l ,NR 
HPRH(J,Ll=OoOO 
DO 9743 K=l,NAP 
IF (HPRNV(J,K).EC.o.co.aR.HP(L.K)aEO.o.oo> GO TO 9743 
HPRH(J,L)=HPRH(JoL) + HPRNV(J,Kl•HP(L,Kl 

9743 CONTINUE 
<;;744 CONTINUE 

c 
C COMPUTE THE INVERSE OF H'*PRINV*H 
c 

c 

CALL LPSODR(HPR~,NR,NReNHPRHD,HPRH,IDGT.T,JERl 

WR1TE(6,9864) IEFO 

C COMPUTE H'•3ETA 
c 

DO 9742 J=l,NR 
H9ETA(J)=OoDO 
DO 9741 L=l,NAP 
IF (HP(J.L).Ea.c.001 GO TO 9741 
HBETA(J)=HBETA(J) + HP(JeL)*BETA(L) 

9741 CONTINUE 
9742 CONTINUE 

c 
C COMPUTE (H'*dETA) '( !"V(H'*PR!NV*Hl) 
c 

OD 9740 J=l,NR 
Ht!ETAP(J)=OoDO 
DO 9740 L=l,NR 
HOETAP(Jl=HBETA~(J) + HBETA(L)*HPRH(J,L) 

9740 CONTINUE 
c 
C COMPUTE (H•BETAl 1 (INV•H••PRINV*H))(H*BETA) 
c 

wA1..o=o.oo 
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00 9739 J=l .NR 
9739 WALO=WALD + HBE1AF(J)*HBETA(J) 

WRITE(6,9738) lt!V,WALD 
9738 FORMAT( 1 Q•, 1 THE W-LO STATISTIC FOR HYPOTHESIS 1 ,14,1 RESTRICTED TO 

le RESPONSE VARIATE •,t4,• ONLY IS : 'oF15o4,/) 
WRITE(6,9737) N~ 

9737 FORMAT('O' ,•ITS ASYMPTOTIC DISTRIBUT!CN UNDER THE NULL HYPOTHESIS 
#IS CHI-SQUARE •ITH 1 oI4t 1 DEGREES OF FREEDOM 1 ,////) 

9748 CONTINUE 
DO 9730 19=1 oNHF~i-,o 
DO 9730 18=1,NPt=OD 

9736 H(l9.!Bl=O.DO 
2000 CONTINUE 
9999 STOP 

0Et3UG SUBCHK 
ENO 
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•OPTIONS IN EFFECT* NOTERM,ID,EBCDJC.SCURCE,NOLIST,NODECK,LOAD,NOMAP,NOTEST 
•OPTIONS IN EFFECT* NAME = MAIN , LINECNT = 6G 
•STATISTICS* SOURCE STATEMENTS = 715oPROGRA~ SIZE = 376500 
•STATISTICS* NO DIAGNOSTICS GENERATED 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE SMOOT~(AI.N.KOO) 

••• THIS SUBROUTINF. ACCEPTS A ooueLE PRECISION INPUT MATRIX Al OF DIMENSION .... ..... ...... 
••• 
*** 
*** 
*** 
••• .... 
*** 
*** 
*** 
*** 
*** 
*** 

N av N AND CHECKS TO. SEE IF IT rs POSITIVE SEMIDEFINITE. IF so IT IS L!::FT 
INTACT ANO RETU~~eo. IF NOT IT IS S~OOTHEO BY THE LEAST SQUARES ALGORITHM 
( NOT GENERALIZEC LEAST SQUARES ) OF SCH~!::RTMAN AND ALLEN (~NlV KE~TUCKY 

DEPT. STATISTICS TECH REPORT f56.SEPTEM9ER 1973) TO THE NEAREST POSITIVE 
SEMIOEFINlTE MAlRlX AND RETURNED. 

AN OPTION IS AV~ILABLE TO PRINT BOTH THE MATRIX SUBMITTED TO THE ROUTINE 
AND THE ONE RET~R~EO BY IT : 

KCC 0 BYPASSES THE PRINT OPTION 
KCD = 1 INVOKES THE PRlNf CPTIONe 

THE PROGRAM CAN ee MADE TO HANDLE LARGER MATRICES BY INCREASING ND[M, THE 
DIMENSIONS OF VA. EG. ANO At IN THE SUBROUTINE SMOOTH. THESE SHOULD MATCH 
THE DIMENSION OF THE AREA HOLDING THE !NPUT MATRIX IN THE CALLING PROGRAMo 

REAL*8 VA(7.7l.TRCeEG(7.7).Al(7o7) 
NO f ,"4=7 
00 1 4 I= l • N 

DCJ 14 J=l•N 
14 VA(I.Jl=AI(I.J) 

IF ( K 00 • E Q • 0 l G C T 0 1 .3 
CALL MATOUT (VA,N,N, 1 INPUT MATRIX TO SMOOTH 1 .NDIMoNDIM) 

13 TRC=O,QDO 
CALL HDIAG(VA.N.C.EG,NR.ND£M) 
DO 15 I=l.N 
IF (VA(IdloLToCoODOl TRC=TRC+VA(l,I) 

15 CONTINUE 
DO 16 I= 1 • N 
IF ( VA ( I • t I •LT• C •CD 0 l GO TO 1 7 

16 CONTINUE 
GO TO 40 

1 7 DO 2. l I= I • N 
DO 2. 1 J= I , N 

21 Al(J,Jl=OoODO 
DO 20 l=l •N 
IF (VA(l.I)oLTo0.000) GO TO 20 
DO 19 J.:;1.N 
00 19 L= 1, N 
Al(J.Ll=Al(J.L) + EG(J,Il * VA(I.tl * EG(L.11 

19 CONTlNU~ 
20 CONT lNUE 
40 IF (KODoEOoOl GC TC 41 

CALL MATOUT(Aioh•N•'MATR[X OUTPUT BY SMOOTH •,NDIM.NDIM) 
41 RETURN 

DEBUG SUBCHK 
END 

•OPTIONS IN EFFECT• NOTERM,IO,E8CDIC.SOURCE1NOLlST.NOOECK.LOAO,NOMAP.NOTEST 
•OPTIONS IN EFFECT* NAME = SMOOTH 1 LINECNT : 60 
•STATISTICS* SOURCE STATE~ENTS = 321PROGRAM SIZE = 2.352 
•STATISTICS• NO DIAGNOSTICS GENERATEC 



SUOROUTINE HO!AG CH.NotEGEN.UoN~oNN) 

IMPLICIT REAL*B (A-H,C-ZI 
DIMENSION H(NJl..11.NI ,U(NN,NN) ,X( 100), IO( 100) 

IF(!EGEN)S0,10.eo 
10 0040!=1,N 

D040J=1,N 
IFCI-J)30,20t30 

20 u< r,Jl=t.ooo 
GOT040 

30 u11.J>=o.ooo 
40 CONTINUE 
50 NR=O 

IFCN-1)~70,470,60 

60 NMil=N-1 
0030 I=l, NM! l 
X(()=0.000 
lPLt=l+l 
0080J=IPL1 ,N 
IFCX( I l-OAdS(H( I.J))) 70.70.eo 

70 X(Il=OAtlS(H(I.J)) 
IOCil=J 

80 CONTINUE 
RAP=7,450580596C-9 
HOTE ST -=l 00038 

90 00120t:::1,NMit 
IF(I-11110.110,100 

100 IF(XMAX-XCill11Ct120.120 
110 XMAX=X( l I 

lP !V=I 
JPIV=IOCIJ 

120 CONT I NUE 
IFCXMAX)470o470o130 

130 IF<HOTEST) tso.1ec.140 
140 IF(XMAX-HDT~STJleo.1so.1ao 
150 HDI"4IN=DABSCHC1.1)) 

001701=2,N 
IF(HOIMIN-DABS (H(ltil))170o170o160 

160 HOIMIN=DASS (HCl.II) 
170 CONTINUE 

HDTEST=HDlMIN*R~P 

IF(HDTEST-XMAXI J8C.470,470 
180 NR=NR+l 

JF(H(IPIV,IPIV)-h(JPIVoJPIV))200o190,200 
190 s=1.ooo 

TANG=DSCGN c2.oco,s>•HCIPIV,JPIV)/(DABS(H(IPIV1IPIV)-H(JPIV,JPIV)) 
l+DSORT ( (H( IPIV,IF!V)-H(JPIV,JPilll l**2+4,0DO•HC IPIV.JPIVl**2l I 

GO TO 210 
200 TANG=DSIGN c2.occ.CHCIPIV0IPI\/)-H(JPIV.JPIV)))*H(!PIV.JPIV)/(OABS( 

lH(IP!V,IPlV)-H(JPIV,JPIV))+DSORT ((H(lPIV,IPIV)-H(JPIVoJPlVll*~2+4 
2.ooo•HCIPIV,JPI~>••211 

210 COSINE-=t'.O/DSORl c1.ooo+TANG••21 
SINE=TANG•COSINE 
HI I=H( !PI\/, IPIV) 
HCIPIVoIPI\/l=CO~IJl.E**2*CHII+TANG•t2.0DO*HCIPl\/•JP!V)+TANG•HIJPI\/,J 

lPIV))) 
H(JPIV,JPIV):COSl~E**2*(H(JP!V,JPIVl-TANG•(2.0DO*H(!P[\/,JPIVl-TANG 

l•HII)) 
H(IP[VoJPilll=OoCOC 
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' 

tF(H(lPtV.IPIVl-H(JPIVoJPIV))220•230.2JO 
220 HTEMP=H(tP[V.!PIV) 

H( IP IV, IP l V) =H ( JP IV• JP IV) 
H(JPIV,JPIV):HTEMP 
HTEMP=OSlGN 11.cco.-SINEl•COSlNE 
COSlNE=DABS (Sl~EI 

SI NE=HTEMP 
230 CONTlNUE 

DO 3 l. 0 I = 1 , NM I 1 
IFII-IPIVl250.~10.240 

240 IF(I-JP!Vl250.~10,250 
250 lr(lU(ll-IPIVl2E0.270.260 
260 IF( [Q( l)-JPIVl310.270.J10 
270 K:[Q( 1) 

280 HTEMP:H( I ,KI 
H(l,Kl=0.000 
IPLl=I+l 
Xlll=O.ODO 
DOJOOJ=l PL 1 ,N 
IF(X(ll-DABS (H(l,J)))290.290o300 

290 XCll=DABS (H(I,J)} 
IOll l=J 

·300 CONTINUE 
HC!,Kl=HTEMP 

310 CONTINUE 

320 

330 

340 

350 

360 
370 

380 

390 

400 

410 

420 

X( IPIVl=0.000 
X(JPIVl=0.000 
00440l=1 ,N 
lF(I-lPIVl320,440.360 
HTEMP=HC I, IPIV) 
H ( I, IP IV) =COS t NE •HTEMP+S I NE *H ( t •JP l V) 

IFCXC II-DABS (H<I.'tPIV)))330.3409340 
XCll=DABS (H(I,lPIVI) 
IQ( I l=IPIV 
H([,JPlVl=-SlNE•HTEMP+CCSlNE*HCioJP!Vl 
IFCXII)-DA3S (H(I,JPIV)l)350.440,440 
X( l>=DABS (H( t.JPIV)) 
IQ( I ).:JPlV 
GOT0440 
lFCl-JP!V)370.44C.400 
HTEf.!P=HI IPIV, l) 
HllPIV.Il=COSINE•hTEMP+SINE*HCI.JPlV) 
!FIX( 1P!Vl-DA8S (H(!PIV,1)))380,390.390 
X ( l PI V >=DA I:) S ( H ( IP IV, I ) l 
10( IPIV l=I 
H(I,JPIVl=-SINE•HTEMP+CCSINE•H(l,JPIVl 
IF(X( ll-DAl3S(H( I.JP[V) ))350,440.440 
HTEMP=tH IP IV, t l 
H ( I P I V , l l = C 0 S l N E *HT E MP+ S I NE * H ( JP I V , I ) 
IF(X( IPIV)-DASS (HCIPtV.!)))410•420.420 
X{IPIV)=DAOS (H(lPIV,t)) 
[Q(lPIVl=l 
H(J~lV,Il=-SlNE•HTEMP+COSINE*HIJPlV.I) 

tF(X(JPIVl-DABS (H(JPlVoI)l)430,440,440 
430 XCJPIVl=DAl:3S (H(JPlV.I)) 

[Q(JPIVl=I 
440 CONTINUE 

IFIIEGE~)90,4SO.~O 

450 00460 I=l .N 
HTEMP=U(I.IP[V) 
U([,IPIVl=COSINE*HTEMP+SINE*U(I,JPlV) 

460 U(I,JP!Vl=-SINE•HTEMP+COS!NE*UCI.JPIV) 
GOT090 

470 RETURN 
DEBUG SUBCHK 

END 
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•OPTIONS IN EFFECT* NOTERM.10.Eeco1c.sauRCE.NOLIST1NODECK1LOAO.NOMAP1NOTEST 
*OPTIONS IN EFFECT• NAME = HDIAG • LINECNT = 60 
*STATISTICS* SOURCE STATEMENTS= llq,PROGRAM SIZE= 9266 
*STATISTICS* NO DIAGNOSTICS GENERATEC 

SUBROUTINE MATOLT(A,M.N1TlTLE,NR1MCI 
REAL>f<8 A 
OlMENSION A(NR.~Cl.TITLE(6) 
FORMAT('0'/ 1 0 1 ,~A•> 

2 FORMAT(' •.7Gl8.8) 
wqITE(6,1) TITLE 
DO 3 l = 1 , M 

3 WRITE(612l (A(!,J),J::l,Nl 
RETURN 
DEBUG SUBCHK 
END 

•OPTIONS IN EFFECT• NOTERM,IO,EBCOIC,SCURCE1NOLIST,NODECK1LOA01NCMAP1NOTEST 
•OPTIONS IN EFFECT* NAME = MATOUT • LINECNT = 60 
•STATISTICS* SOURCE STATEMENTS = II,PROGRAM SIZE= 700 
•STATISTICS• NO D!AGNUSTICS GENERATED 

•STATISTICS• NO DIAGNOSTICS THIS STEP 
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