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INTRODUCTION

This study presents an extension ofvlarge sample procedures for
estimation and hypotheses testing problems for multivariate linear
models, as it describes situations that cannot be analyzed under the>
Standard Multivariate (SM) general linear model. Kleinbaum (12) has
developed the theory to deal with the Growth Curve Multivariate (GCM)
model and the More General Linear Multivariate (MGIM) model, which is
épplitable to the problem of missing observations among the dependent
variables in the SM model with known design matrix. The author ex-
tends the results of Kleinbaum to include an analysis of covariance
model with missing observations among the independént variables (or
covariates) as well as among the dependent variables. This is accom-
plished by using the same linear model structure as Kleinbaum to
handle the problem of missing observations among thé dependent vari-
ables and then employing a modification of the covariance mefhod of
Zyskind, Kempthorne, et al (28) to replace missing observations among
the indeﬁendent variables by their least squares estimates.

Chapter I contains a discussion of the Multivariate Analysis of
Covariance (MAC) model, gives a’brief discussion of estimation and
hypothesis tésting for the MAC model and describes experimental situ-
ations for which the MAC model does not.apply.

In Chapter II a review of the literature dealing with missing

values in linear models is discussed. In particular, a detailed

description is given of the approach of Zyskind, Kempthorne, et al (28)

1



to the problem of missing values on the dependent variables of a
univariate linear model and the approach of Kleinbaum (12) to the
problem of missing values among the dependent variables of a multi-
Variate ITinear model.

In Chapter III a general form of the MAC model is developed‘
which employs a modification of the covariance method of Zyskind,
Kempthorne, et al (28) to handle missing observations among the co-
variates and uses the linear model structure of Kleinbaum (12) to
handle the problem of missing values among the dependent variables.
The model is called the More General Multivariate Analysis of
Covariance (MGMAC) model.

Chapter IV extends the results of Kleinbaum (12) Concefning the
problem of BLUE estimation in the More General Linear Multivariate
(MGIM) model to the problem of estimation of estimable linear sets
of the design and regression parameters in the MGMAC model. Unbiased
and conéistent estimation of the - variance-covariance matrix £ is also
discussed along with a procedure suggested by Schwertmann and Allen
(21) for obtaining a positive definite and consistent estimate of &
when the unbiased and consistent estimate suggested by Kleinbaum (12)
1s negative definite.

In Chapter V Best Asymptotic Normal (BAN) estimation of estimable
linear sets of the design parameters is considered for the MGMAC
model. Test statistics constructed from BAN estimators‘and consistent
estimators of the variance parameters are also discuséed.

Chaptef VI summarizes the results of this report and suggests

some possibilities for further research.



CHAPTER I

MULTIVARIATE ANALYSIS OF COVARIANCE MODEL

The Multivariate Analysis of Covariance (MAC) Model is based on

the multivariate

E(Y) =

Var(Y)

where Y is an (n
individuals,

X is an (nx mX)
corresponding to
o 1S an (mX X p)
Z is an (n x mz)

g is an (mZ X p)

linear model

Xo + Z8 (1.1)

1}

I Q7
n

X p) matrix composed of p-variate responses on n

known design matrix of rank R(X) = rx(élnxérﬂ
the classificatory variables of the model,
matrix of unknown parameters,

matrix composed of concomitant variables,

matrix of unknown concomitant narameters,

Var(Y) is the (np x np) variance-covariance matrix of the (np x 1)

vector defined by putting the rows of Y underneath each other in a

long column vector,

L= (Ors) is a (p x p) positive definite matrix of usually unknown

parameters which

of Y,

represents the variance-covariance matrix of any row

and Inﬁz is the Kronecker Product of the matrices In and I.

The MAC model may be more concisely represented by using the

following definitions:



A = (XiZ) is the (n x m) design matrix constructed by horizontally

augmenting the design matrix X by the matrix Z where m = m+m,,

y = (g) is the (m x p) matrix of unknown parametcrs constructed
by vertically augmenting the parameter matrix o by the parameter

matrix B.

Thus, the MAC model may be written as follows:

E(Y) = Ay (1.2)

lVar(Y) = Tn®2
Variate-Wise Representation of the MAC Model

The MAC model may be alternatively represented in a variate-wise

representation by making the following definitions:

Y is the (n x 1) vector which denotes the sth(s =1,...,D)

colum of Y,
th

and l_is the (m x 1) vector which denotes the s~ (s = 1,...,p)
column of vy.
Thus, Y = (yp,---,¥,)
and y = (Yl,---,Yp)
so that the MAC model may be described as
E(ys) = Ay, s =1,...,p (1.3)
COV(XT,XS) = OrsIn for all r,s = 1,...,p.

The variate-wise representation consists of p univariate models
corresponding to the p variates. These p separate univariate models
are related by the p(p-1)/2 covariances between the different variate

pairs.



Vector Representation of the MAC Model

The vector representation of the MAC Model is obtained by making

the following definitions:

Xlw . Y1
| ) ¥
ety = |. | , and y=1. 1. (1.4)
| *p) )
Then, E(y) = DAl. and Var(y) = @, where DA = Ip@A and Q = Z@In.

Estimation and Hypotheses Testing in the MAC Model

Rao (18), using generalized inverses, has shown for tﬁe SM model
that the Best Linear Unbiased Estimate (BLUE) of a linear function of
the elements of the parameter matrix, when estimable, is given by the
sum of the BLUE's obtained separately from the umivariate models
resulting from the variate-wise representation. For estimating an
estimable linear set of the elements of the parameter matrix, Roy (19)
suggests using the sum of the BLUE's for the linear sets obtained
separately from the univariate models.

Thus, if CS is a known (m x w) matrix (s = 1,...,p) then the
estimate of H'y = :E:Céls, when 1t is estimable, is given by
:E:Cé(A'A)—A'XS where (A'A) denotes the generalized inverse of A'A.
The dispersion matrix of this estimate is given by j{::i:c;(A'A)—CSoSS.
Assuming that the rows of Y are each normally distributed, the

likehood function for the MAC model is given by



5 = (2m) TP z] Pexpl Ltr(z (Y - Ay)'(Y - AY)))

where £ is a (p x p) positive definite matrix and y is a an (m x p)

matrix. Thus, the MLE's of vy and & are given by

; = (A'A)_A'Y and £ = ?]{_YI(I - A(A'A)_A')Y,

It can be observed that H‘i_(where i_is obtained by stacking the
columns of y into a vector) is the same as the cstimator obtained by
using the sum of the BLUE's from the univariate models.

The general linear hypothesis for the MAC model can be expressed
in the form HO: CyD = 0 where C is a (g x m) matrix of full rank g=m,
D is a (p x v) matrix of full rank v and CyD is estimable. Several
test procedures have beenvproposed for testing H,+ For example,
Wilk's Likelihood Ratio, Hotelling's Trace (Té) and Roy's Largest Root
are the tests most commonly used in practice. Explanations of these
tests can be found in standard texts on multivariate analysis such‘as

Anderson (3) and Morrison (15).
Experimental Situations in Which the MAC Model Does Not Apply

The MAC model as defined in (1.1), (1.2), (1.3) and (1.4) involves
three assumptions which are not always met in practice due to failure
or inability to obtain complete observations on all experimental units.
These assumptions are:

(1) a response is observed on each variate on all experi-
mental units,
i

(1i) the design matrix, X, is the same for each response

variate, and



(iii) cach concomitant response is obscrved on.oach experi-
mental unit.

In general the above assumptions are met in the initial design of
an experiment unless it is physically impossible or uneconomical to
observe a response on each variate. But even when the expériment 1s
initially designed to conform to the above assumptions, missing ob-
servations can occur among the independent as well as the dependent
variables due to the occurrence of some unfortunatc event such as the
dropping of a testtube, the failure of an electronic instrument or the
death of a subject before responses are observed on each variate.

Any failure of the experimental data to conform to the above
assumptions makes the MAC model inappropriate for analyzing the
experiment based on all ohserved data, becauses any observations for
which one or more dependent and/or independent fesnonses are missing

requires the total deletion of that experimental unit.



CHAPTER TI
LITERATURE REVIEW

Allan and Wishart (1) were probably the first to consider the
proBlem of missing data in statistical analysis whereas Yates (206) was
the first to pfesent a general solution ﬁsing a least squares method
of substituting for missing values in a designed experiment. Wilks
(25) discussed both a maximum likelihood approach and a method-of-
moments approach fo the problem of missing values in regression
analysis.

Haitovsky (9) compares two alternative methods for dealing with
the problem of missing observations among the independent variables
~and/or the dependent variables in a univariate regression model. One
method (Method 1) is simply to discard all incomplete observations
and then apply the ordinary least-squares technique to the complete
observations. The other method (Method 2) consists of computing the
covariances between all pairs of variables, each time using only the
observations having values of both variables, and to use these

covariances in constructing the system of normal equations

Cov(xi,xj)s = Cov(xi,y) : (2.1)

(i,j = 1,...,m,

where Cov(xi,xj) is the (m x m) covariance matrix in which the (i,j)th

element (i,j = 1,...,m) is computed from the measurements common to
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both X5 and Xj (1 # j) as well as from all the existing measurements

on X for i = j, and similarly for Cov(xi,y) (i=1,...,m. The
comparison was made using Monte Carlo techniques since Method 2 does
not have optimal statistical properties and since the derivation of its
distribution theory is intractable. Comparing the twb methods with
regard to unbiasedness and efficiency indicated that Method 2 was
superior only in the rare case in which 9-10 per cent of the observa-
tions were complete‘and hence available for use in Method 1. By
decomposing the Mean Square Error (MSE) into one term accounting for
bias and the other accounting for the variance when bias is ignored,
Haitovsky was able to show that the varianée term was far more impor-
tant in the large difference observed between the two methods. He
concluded that although the bias affects the relevance of the inference,
the major problem with Method 2 is caused by the inconsistency intro-
duced into the system of normal equations (2.1).

Buck (6) treats the problem of missing values among the dependent
variables in a multivariate linear model by estimating the missing
values using regression methods and then calculating a revised
variance-covariance matrix. He représents the sample of n experimentai

units by expressing the responses, y.. (i =1,...,n; j =1,...,p), in

ij yeo
the form of an (n x p) matrix, Y, in which some of the elements are
missing. Assuming tnat k of the n p-variate responses are complete,
he lets these form the first k rows of Y and then calculates the

expected value of yrj (r =1,...,k) by forming for each value of j,

the multiple regression of the jth

variable on the other p - 1 vari-
ables from the set of observations consisting of the first K rows of Y.

Thus, he obtains p equations which can be expressed as
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E(yrj) = fj(yrl""’yrjnl’yrj+1""’yrp)' (2.2)

The missing values are then estimated as follows. If the ith unit
has the jth observation missing, its value, yij’ is estimated by one of

the equations (2.2) substituting yij for y that is

Tj’

E(yij) = fj(yil""’yij-l’yij+1""’y ).

ip
This formulation assumes only one missing value in each incom-
plete response but can be extended to the case in which units have
more than one missing value. Buck shows that if the value yj is
missing for a proportion A of all experimental unité, and the pre-
dicted values are substituted and a new variance-covariance matrix
calculated, then the expectations in this matrix are the same as they
would be if fhere were no missing values, except for the variance

V'jj of Y; which is in terms of expectations

vi.. =v.. - AcC..
ij T Vij T Mey5 o

h . . . .
diagonal element of the variance-covariance matrix,

where vjj is the jt
say V, that would result if there were no missing elements and Cis 1s
the jth diagonal element in vl

Beale and Little (5) propose a solution to the problem of missing
observations in the dependent variables of a multivariate normal linear
model based on the Missing Information Principle of Orchard and
Woodbury (16) which involves approximating the Maximum Likelihood
solution through an iterative technique. The argument of Beale and
Little follows that of Orchard and Woodbury but emphasizes that the

effect of the principle is to replace a maximization problem by a

fixed point problem. They construct a conditional likelihood function
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composed of the 1ikelihood equation for known values plus a conditional
likelihood of unknown values given the known values and then show that
a stationary solﬁtion to the conditional likelihood equation is equi-
valent to the Maximum Likelihood solution based on the originél like-
lihood equation. Thus, assuming the (n x p) observation matrix, Y is
distributed as a Multivariate Normal, they group the observations into
two vectors y and z with a joint distribution depending on the vector
6 of parameters, where y has been observed but z has not been observed.
To approximate the Maximum Likelihood Estimate (MLE) é_of 6 based on
the log likelihood L(y;6) they suggest maximizing the expected value
of L(z,y;6) where z is treated as a random variable with éome known
distribution. Thus, letting f(z/y;8) denote the probability density
fuﬁction for the conditional distribution of z given y and 6, and

letting L(z/y;6) denote 1n f(z/y;6) then

L(z,y;8) = L(y;8) + L(z/y;8). (2.3)

A distribution is defined for z by taking any assumed value 6
for 6 along with the observed value of Xﬁi One can then take expecta-
tions of both sides of (2.3) and integrate with respect to z. This is

expressed by
E{L(z,y;8)/y;0,3 = L(y;8) + E{L(z/y;8)/y;8,} - (2.4)

They then find the value (oW of 6 that maximizes the left hand

side of (2.4) and write

Oy = 2(8,) (2.5)

since by may depend on LG Thus, equation (2.5) represents a trans-
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formation, namely a value of 6 such that 6 = ¢(8).

| Zyskind, Kempthorne, et al (28) present a very thorough treatment
of the analysis of covariance technique, first introduced by Bartlett
(4), to a univariate linear model with missing observations occurring
on the the dependent variable. They approach the problem by parti-

tioning the model

E(y) = Xa (2.6)

- 2
Var(y) = o In

so that it may be written
X
E) = Do (2.7)
2

where y is an (n x 1) vector of observations, X = (i;) is an (n x p)
known design matrix of full rank p<n, and o is a (p x 1) vector of
unknown parameters.

In general the computational formula for the fitting of a full
model of the form (2.7) is used where the data corresponding to'the
vector Xja of m components are missing or are simply not available;
Thus, the model to be fitted is E(XZ) = ng) but a solution to the

normal equations

XX = X5y,

is not immediate, whereas a solution to the normal equations corres-
ponding to the full set of data is standard. They capitalize on the
available information by considering the following analysis of

covariance model form:
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BGm = (e + Con g . (2.8)
— n-m,m

where Im is an (n x m) identity matrix. Since the sum of squares of
deviations of the observations from their expected values for the model
(2.8) and the model E(yz) X o are minimized for 1dent1ca] sets of
values for the vector a, the computations required for fitting the
model E(yz) X,a can be performed on the corresponding analysis of

covariance model. Then using the facts: (i) that for the model
E(y) = Xa + 78 (2.9)

the full set of normal equations

X'Xa + X'Z8 = X'y (2.10a)
Z'Xo + 2'78 = L'y (2.10b)

can be equivalently expressed as
X'Xa + X'Z8 = X'y (2.10a)
{(I- X(X'X) XDZH'{(T - X(X'X) X)Z}a = (2.10c)

{(I- X(X'X) X")Z}'y

and (i1) that if A'a is an estimable parametric function for the model
L(yz) = X a and if for the model E(y) = (ﬁé)g_the BLUE of A'a is given

by
a'y; tayy, (2.11)

the BLUE of A'a for the model E(Xz) = X,0 is given by

-~

a;'B+a'y, (2.12)
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where é‘is obtained by solving the error normal equations (Z.IOC)‘

— - = O
where Z = ( Im 0) and y (?m) .

Thus,.é in expression (2.12) plays the role of Y1 in the point
estimation of A'a for the model E(y) = (ié)gf It would appear that
one could easily extend the results of Zyskind, Kempthorne, et al to
handle the problem of missing responses among the dependent variables
of a multivariate linear model. However, this is not the case due to
the dependence of their solution upon the fact that the residual sum
of squares for the model (2.8) and the model E(XZ) = ng.are identical
for identical sets of values for the vector a which is not guaranteed
in the multivariate case due to the covariance structure among
responses from the same experimental unit. |

As mentioned in the introduction, Kleinbaum (12) proposes a
solution to the problem of estimation and hypothesis testing for the
MGILM model which is applicable to the case involving missing obser-
vations among the dépendent variables in the SM model with known design

matrix. He writes the SM model in the form

E(Y) = X (2.13)

Var(Y) = In®z

where Y is an (n x p) matrix composed of p-variate responses on n
individuals,

X is an (n x m) known design matrix of rank R(X) = r(£m<n),

a is an (m x p) matrix of unknown parameters,

Var(Y) is the (np x np) variance-covariance matrix of the (np x 1)

vector defined by putting the rows of Y underneath each other in a
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long colum vector,

r = (OTS) is a (p x p) positive definité matrix of usually unknown
parameters which represents the variance-covariance matrix of any row
of Y,

and D is the Kronecker Product of the matrices I and =

th

Letting Y be the (n x 1) vector denoting the s~ column of Y and

th

a the (m x 1) vector denoting the s~ column of o, he writes the

variate-wise representation of the SM model as

E(y,) = Xa, s=1,...,p (2.14)

COV(XT,XS) = o1, for all r,s = 1,...,p.

Then stacking the observation vectors on top of one another the

vector representation of the SM model becomes

E(y) = Dya | | | (2.15)
Var(y) = Q

where DX = Ip@X and = Z@In .

From these representations Kleinbaum develops a general form of
the model which allows the omission of responses from variates not
observed on a given experiméntal unit. For the case involving missing
observations among the dependent variables of an SM model, he con-
structs the generalized model as follows. Assuming there are n exn-
perimental units and a total of p response variates, Vl,...,Vp, he lets
Z, s = 1,...,p be the vector of length Ns’ say, corresponding to all
observations on Ve in the entire experiment and lets X, be the (NS X m)

design matrix corresponding to z

z, i.e., X, is determined from X by
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deleting the rows which correspond to missing values of y.. He then

lets the (Nr X NS) (r<s) matrix Qrs denote the incidence matrix of

0's and 1's defined by Qg = (qij(rs)) where

1 if the ith component of z_ and the jth com-
ponent of z_ are observed on the same

qij(rs) = experimentai unit,

0 otherwise.

Thus, the variate-wise representation of the MGIM model is given

by
E(gs) = X.o Var(gs) = OTSINS (2.16)
Cov(gr,zs) = OrSQrs’ rds
COV(ET’ES) = 0.Qs>  T>S, r,s =1,...,p.

Using the above definitions the vector representation of the MGLM

model is given by

E(z) = and  Var(z) = o (2.17)

|

X
p

where z, a, @, N and M are defined by

- o
4 %1
2 Sy
z= > o = ’
Z
=g | =P,
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I~ -
ulny %z - Gptlp
12%2 22!y, 92p%p

Q = N )
' |
pp OpVzp - - pply
- p |

N = ZNS and M = st.

Kleinbaum then shows that the unique BLUE of any estimable linear
function or linear set of the treatment parameters is given by a linear
function or linear set, respectively, which involves the unknown
parameters of the variance-covariance matrix ©. In fact, restricting
linear estimates to be known functions not involving @ requires addi-
tional restrictive conditions on the model. Therefore, he considers
Best Asymptotically Normal (BAN) estimation which is a non-linear
method of estimation using estimates of @ and giving variances that
are, in large samples, the minimum that could be achieved by linear
estimators i1f & were known.

For testing linéér hypotheses in the MGIM model, assuming'the data
is normally distributed, Kleinbaum suggests using test statistics
which are quadratic forms called Wald Statistics and are constructed
from BAN estimators of linear functions of the treatment parameters.
Since the asymptotic distribution of a Wald Statistic is a central
chi-square variable, the test criteria give chi-square tests when the
sample size is large.

Attempts have been made by several authors to obtain Maximum

Likelihood Estimates (MLE) of the parameters in a multivariate linear
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model with missing observations among the dependent variables. However,
most of these methods are applicable to only very specific models. For
instance, Anderson (2) describes an iterative technique for obtaining
the MLE's of o = a' and @ when o' is a (p x 1) vector and XS is an

(N x 1) vector of ones. Hocking and Smith (10) have developed a pro-
cedure for obtaining BAN estimators of o« and @ for the multivariate
linear model with missing observations among the dependent variables
and they have shown fof a special case that their approach gives the
maximum likelihood solutions obtained by Anderson. Their estimation
procedure involves obtaining initial estimates of the parameters from
the group of observations with no missing values and then modifying
fhese initial estimators by adjoining the information in.all the re-
maining groups in a sequential manner by the addition of linear combi-
nations of zero expectations. HoWever, for purposes of a general com-

puter program, extremely cumbersome notation would be required to

express the formulae for calculating the estimators at each stage. In
fact, Hocking and Smith have only considered a few cases involving
simply structured models.

Bayesian approaches to the problem'of‘miSSing observations in-
clude those of Dagenais (8), Mehta and Swamy (14) and more recently
that of Press and Scott (17). Press and Scott (17) propose a solution
to the problem of missing values among the indépendent and/or dependent
variables in a univariate normal regression model with vague prior

distributions. They write the model

in the partitioned form
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where y is an (n x 1) vector of dependent variables which may or may
not have missing elements,

X = (U'V) is an (n x p*) matrix representing the p* independent vari-
ables,

U= (El,...,gn)' is an (n x p) matrix representing the independent
variables which have at least one element missing,

V= (X."~°’Xn)' is an (n x q) (q = p* - p) matrix representing the
remaining complete independent variables,

Yy = (g) is a (p* x 1) vector of regression parameters corresponding to
the matrix X and

e is an (n x 1) vector of residuals assumed to be independent and nor-
mally distributed with mean zero and variance o?.

In addition they assume that, given V, the rows of U are indepen-
dent normal random vectors with Ej~N(F'Xj’Z) where % is positive defi-.
nite and symmetric and T' is an unknown (p x q) matrix. Using this
linear model structure with vaque prior distributions, Bayes modal
estimators of the parameters o, 8 and I' are obtained as the joint mode
of the posterior distribution of the regression parameters and missing
u's and y's.

For the special case in which none of the dependent variable
observations are missing, the Bayes modal estimators are equivalent to
the estimators obtained by Buck (6) where Ej is regressed on y and the
remaining p* - 1 independent variables. If, on the other hand, missing

values occur only on the dependent variable their solution reduces to

the ordinary least squares solution ignoring all data corresponding to
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missing values of y. It should be pointed out, however, tﬁat ignoring
those values of X for which missing values occur on y is equivalent to
requiring that X1 (where X is the (r x p*) matrix representing the
rows of X corresponding to missing values of y) be thhogonal toy
(where y is the (r x 1) vector representing the missing values of X)

which is only true if Xy is a matrix of zeros.



CHAPTER III
GENERALIZATIONS OF THE MAC MODEL

It appears that if it were possible to generalize the results
cited in the literature which deal with missing observations, at best
one would have procedures for handling missing values among the depen-
dent and/or independent variables in a univariate analysis of covari-
ance model or missing values among the dependent variables in a multi-
variate analysis of covariance model. The general form of the SM model
for missing observations among the dependent variables as discussed by
Srivastava (23) and Kleinbaum (12) does, however, appear to be valuable
as an initial representation of the General Multivariate Analysis of
Covariance (GMAC) model  (i.e., the MAC model in which missing obser-
vations occur among the dependent variables only). The results of
Kleinbaum for estimation‘and hypothesis testing in the MGLM model can
then be generalized to the More General Multivariate Analysis of
Covariance (MGMAC) model (i.e., the MAC model in which missing obser-
vations occur among the dependent and/or independent variables) by
employing a procedure for dealing with the missing independent vari-
ables similar to that suggested by Zyskind, Kempthorne, et al (28) for
handling missing dependenf variables in a univariate linear model.

For the special case in which missing values occur onlf among the inde-
pendent variables, it is possible, using a modification of the analysis

of covariance technique, to obtain the usual MLE's of y and ¢ and to

21
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perform hypothesis tests based on the generalized likelihood-ratio

principle originally developed by Wilks (25).
The MAC Model with Missing Independent Variables

If missing observations occur only among the independent vari-
ables, the standard analysis applicable to the full model discussed
in Chapter I can be performed after replacing th¢ missing covarilates
by their 1east‘squares estimates. This is accomplishéd by using the

technique of Zyskind, Kempthorne, et al (28) on the independent vari-
ables rather than the dependent variables. For simplicity of dis-

cussion, the modified analysis of covariance technique will be illus-
trated on a univariate regression model in which one independent vari-
able is missing.

~ Let E(y) = Z*8 and Var(y) = V where

— "1 -
11 *12 Xm 8y
X1 X2 Xom B,
2% = s B =
an %2 xnm Bm
L - [ -
and let
E(y) = 28 + w8, (3.1)

where
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0 xp; ><1mT X]p
X1 *22 Xom 0
Z = and w =
Xhl XnZ - Xnm 0 )

It is clear that the‘set of B values which minimize
(y - Z%6) 'V (y - Z%g) (3.2)

is the same as the set of g values which minimize

1

(3]
—

(y - Z8 - wB)'V "(y - I8 - wBq) (3.

since (3.2) and (3.3) are identical expressions. Thus, E(y) = Zg + W8,
gives the same solution as E(y) = Z%*B.
Searle (22) has shown that the model (3.1) can be fitted in two

steps by first fitting the model E(y) = ZB to obtain

g = vl lowyly,

and then replacing w by Rw’ whereRw is computed as follows:

—w -z il

f=»

%:E_
Then fit E(y) = RwBl to obtain

~ 1y =lpe-1
T (R&V R‘i) Ry -

It can be shown that if the least squares solution to E(y) = Z*B

is given by E) then

Bed - @vinovhg
(6]
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or equivalently

~ 1 .1 _1lYy - X448
b= vl iyl T

But it has already been shown that the set of g values satisfying

(3.3) is the same as the set of g values satisfying (3.2) and therefore

- - - 1o o111 7 Xqq8
(Z#'V 12*) 12*'\/ 1)’ = (Z;V 12) 1171 11 1]

y v, (3.4)

[
Now the model E(y) = Z§_+.E81 can alternatively be written

E(y) = ZB8 + y?dl where w*' = (1,0,...,0) and 81 = Xy187- Fitting this

model in two steps gives

1

_é = (Z'V-IZ)_IZ'VF y and

- 1o, -1g, -1
61 = (R&#V Rﬁ*) R&#V. y . so that

8 =8 - (@vinlovles

or equivalently

S 2111 -

n
Comparison of (3.4) and (3.5) indicates that 61 is an estimate of

X1181 and that the least squares estimate of g8 in the model E(y) = Z*B

when X117 is missing from Z* is given by



8= vinlzvtyr -4
2
where 81 is the least squares cstimate of X1181 obtained by the analy-
sis of covariance technique.

These results are easily generalized to the case of more than one
missing independent variable by replacing the vector w* by a matrix W*
composed of t columns similar to w* (i.e., with ones corresponding to
missing Xij and zeros elsewhere) where t represents the number of
missing independent variables in Z* and hence the number of additional
parameters to be estimated. Also, the use of Var(y) = V in the above
development enables a generalization to the vector version of the MAC
model, where in this case W* is replaced by DW* = Ip@W* and V is re-
placed by @ = L@l . For the MAC model an additional pt parameters will
need to be estimated in the presence of t missing independent variables.

Thus, for the MAC model in which missing observations occur among

only the independent variables, estimates of vy can be obtained by using

the model
E(Y) = A%y + W%g ‘ (3.6)

where A* is obtained by replacing the missing values in A by zeros, W¥%
is an (n x t) matrix consisting of t columns with a one in each column

corresponding to a missing X; in A (or a zero in A*) and zeros else-

J
where, 6 is a (p x t) matrix of parameters which result from the t
missing values in A. Similar to the parameters introduced by Zyskind,

Kempthorne, et al, these parameters represent linear combinations of

the original design parameters. However, in this case each additional



26

parameter represents only the vroduct of one missing independent vari-
able and the corresponding covariate parameter associated with it.

The model (3.6) may be rewritten as
E(Y) = (A*:W%)(])

which is in the same form as the MAC model discussed in Chapter I.

Therefore, the MLE's of (g) and are given by

(1) = {(A%: W) ' (A% W%)} (A% W9)'Y  and

A

z

Il

%Y'{I - (ARIWR) {(AXIWR) T (AR WR) )T (ARIWR) 1YY

In summary, it has been shown that the MLE's of y and £ can be
obtained for the model E(Y) = Ay in the presence of missing observa-

tions among the independent variables.

The MAC Model with Missing Dependent and/or

Missing Independent Variables (MGMAC)

For purposes of clarity and simplification the general form of
the MGMAC model will be presented by first rewriting the various forms
of the MAC model, then generalizing to the General Multivariate
Analysis of Covariance (GMAC) model and finaily by extending the GMAC
to the MGMAC model. To make the presentation as brief as possible,
definitionskof variables and parameters previously defined will be
omitted unless specifically needed for clarification.

The Multivariate Analysis of Covariance Model (MAC) can be

represented by

E(Y) = Xa + ZB (3.7)
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Var(Y) = I &2
or alternatively by
E(Y) = Ay, where A = (X'Z). (3.8)

Thus, the variate-wise representation of the MAC model is given

by

E(ys) = Ay, s=1,...,p (3.9)

Cov(y,,y,) = o, I forall r,s = 1,...,p
and the vector representation is given by

E(y) = Dyy (3.10)

Var(y) = @

A

To obtain the general form of the GMAC model, assume there are n

where D, = Ip@A and = Z@In.

experimental units and a total of p response variates, Vi,...,Vp. Let

25, s = 1,...,p be the vector of length N,, say, corresponding to all

observations on Vé in the entire experiment. Let the (NS X m) matrix

D., s =1,...,p be the design matrix corresponding to z_, i.e., D

S S S

is determined from A by deleting those rows which correspond to
missing values of Ys- Let the (Nr X Nx) (r<s) matrix Qrs denote the
incidence matrix of 0's and 1's defined by QrS = (qij(rs)) where
1 if the ith component of y_ and the jth
component of y_ are observed on the same
qij(rs) = experimental unit,

0 otherwise.
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Then the variate-wise representation of the GMAC model is given

by
E(Es) = Dsls Var(gs) =
Cmdgﬂgg =C%§%s’ r<Ss
- '
COV(Er’ES) 0.sQgs T>S

Using the above

model is given by

E(z) = Dy

Var(z) = @

where z, D, v, Q, N and M are defined by

- ~
3| Dy
D, ¢
£= R D: 2_
¢
zZ D
-P P
O111N1 91,012
91292 0ZZINZ
Q:
O1inp oZpQép

and

L
N = :E:NS

g
rs

M

I

O1pQ1p

o}
ZpQZp

[}

N
S

I
pp°N

mp.

r,s = 1,...,p.

|=

(3.11)

definitions the vector representation of the GMAC

(3.12)

To obtain the general form of the MGMAC model assume that the

design matrix A = (X:Z) of the MAC model has  t missing observations
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th

in the ¢ column, (2 = mx+1,...,mx+mz). Then in the (NS x m) design

matrices DS of the variate-wise representation of the GMAC model the

th . _ - . .
£ colum will have ot = ot - zks’ missing observations where ka is
the number of experimental units for which both the independent vari-
able in colum & of DS and the dependent variable on variate V. are

issing. Thus D_ would h = Y t_ missing val D. is th
missing. us D, wou ave tS = :i.zts missing values. s 1S then
replaced by FS where Fg is derived from D by augmenting Dy (with 0's
in place of missing values) by a matrix Dg of dimension (NS X t ) com-
posed of t, columns each with a one in the row position corresponding
to the missing values in Dy and zeros elsewhere. (Note: Fg has

dimension (Ns X ms) where m_ = m + ts). Thus, the variate-wise repre-

S

sentation of the MGMAC model is given biy

E(ES) = Fsgs’ Var(gs) = UrsINs (3.13)
COV(—Z-r’—Z—s) - GrsQrs’ r<s

= 1
COV(-Z—r’Es) CTrsQrs, r»s, r,s=1,...,p

where § = (%(-) and where § is a (ts» x 1) vector of unknown parameters
which resulz from the missing values in Ds' Similar to the parameters
introduced by Zyskind, Kempthorne, et al, these parameters represent
linear combinations of the original design parameters. However, in
this case each additional parameter represents only the product of one
missing independent variable and the correspohding covariate parameter

associated with it.

The vector representation of the MGMAC model is given by

Var(z) = Q



where F, ¢,

N

and M are defined by

and
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CHAPTER IV
BEST LINEAR UNBIASED ESTIMATION

It has already been shown for the MAC model and for the MAC model
with only missing independent variables that the Maximum Likelihood
Estimates (MLE's) of y and ¥ are given by generalized least squares.
It is also well known that Best Linear Unbiased Estimation (BLUE) for
the MAC model is achieved by generalized least squares and that the
resulting estimator is independent of . That is, using the vector
representation of the MAC model, the generalized least squares esti-

mate of y is given by

(D}'\Q—IDA) 'DAQ‘lx

1

A | - a1
((18A") (27 RI ) (1,8A)}7 (1 RA") (28I )y

(z"learn) " (x leanyy

(R(A'A) T}z lean)y

{IPQ(A'A) A}y .

Since it has been shown, using the analysis of covariance tech-
nique, that the MAC model with only missing independent variables can
be written in the same form as the usual MAC model, it follows that
BLUE estimation for the case of missing independent variables is also

achieved by generalized least squares.
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BLUE Estimation of Linear Sets H'¢ for the MGMAC Model

Kleinbaum (12) has considered BLUE estimation for the MGLM model
and his results generalize immediately to the GMAC model and the MGMAC
model since each one of these models is identical in form to the MGIM
model, except for the components and dimensions of the design matrices.
The following direct extensions of similar results by Kleinbaum for
the MGIM model are stated only in terms of the MGMAC model since the
GMAC model is just a special case of the MGMAC model.

For the MGMAC»model a linear set of the form H'g = :Z:Cé Eq» where
CS is a known (m x w) matrix (s = 1,...,p), is estimable if and only
if for each s each component of C;ES has a BLUE under the univariate
model for variate V, alone. An estimate G'z will be called a BLUE set

for H'g if G'z is known and unbiased for H'g and if for any other

known and unbiased estimate, say K'z, then
Ao = Var(K'z) - Var(G'z)

is non-negative definite. Extending the results of Roy (19) to the
MGMAC model it follows that if G'z is a BLUE set for H'¢ and K'z is

any other known estimable set for H'g then

ChmaX{Var(G'g)} ‘é chmaX{Var(K'E)},

tr{var(G'z)} < tr{Var(K'z)},
and
[Var(G'z)| < [|Var(K'z)].

If 9 =H'g =‘Z:ﬁ%§5 is estimable, and if Q is known then H'g has
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a unique BLUE set given by

6 =1'g =1 Ee ) F

whose variance covariance matrix is given by
Y o=y P
Var