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CHAPTER I 

INTRODUCTION 

The idea of a valuated group is a fairly recent one. F. Richman 

and E. A. Walker remarked in the introduction of [8], that B. Charles 

gave the first treatment of valuated groups as separate entities in 

1955, in fl]. The recent interest in valuated groups can be attributed, 

in part, to F. Richman. Valuated groups play central roles in his 

papers [6] and [7]. Since those articles, valuated groups have become 

a discipline all of their own. In fact, more than one and one-half days 

were devoted to them at the Bicentennial Abelian Group Theory Confer

ence held at New Mexico State University in December, 1976. 

In [4], Hunter, Richman and E. A. Walker defined trees, valuated 

trees and their associated simply presented, valuated p-groups. They 

were mainly concerned with studying finite valuated trees and their 

associated simply presented, valuated p-groups. Their principal result 

is that every finite, simply presented, valuated p-group is a direct sum 

of indecomposable, simply presented, valuated p-groups. Also included 

in this paper is the fact that valuated trees that admit no nontrivial 

retraction form a basis for a complete set of invariants for finite, 

simply presented, valuated p-groups. 

The work in [4] is the starting point for this study. Some of the 

necessary background information will be included in this chapter. 

Also, some of this author's own definitions, that fit here naturally, 

1 



are included. This chapter will close with a brief description of the 

chapters that follow. 

Throughout this paper, p will be a fixed prime and all groups 

will be abelian p-groups. 

1.1 Definition. A tree is a set X with a distinguished element 

O, (the root of X), that admits a multiplication by p satisfying: 

(1) pO = 0 

(2) for each x in X there is a non-negative integer n such 

that 
n p x o. 

1.2 Definition. If X is a tree and a is an ordinal, then the 

subsets paX will be defined inductively by setting pOX = X and 

paX = {) p(pSX). The height of an element x in X is defined as 
S<a 

follows: 

h(x) 
if 

if 

x E pa~Pa+lx, and 

a x E p X for all ordinals a. 

1.3 Definition. A valuated tree is a tree X together with a 

function v defined on X that satisfies: 

(1) v(x) is an ordinal or oo, 

(2) v(px) > v(x), where the convention. oo > oo is adopted. 

The function v is called a valuation. 

1.4 Definition. Let X and Y be valuated trees. A valuated 

tree map f : X + Y is a function that satisfies: 

(1) f(px) = pf(x), 

(2) v(x) 2_ vf(x). 

2 
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1.5 Proposition. The class of valuated trees together with 

valuated tree maps form a category denoted by VT. 

Pictorially, valuated trees are graphs with ordinals on them. For 

example, let 

5 

x 
8 

The nodes represent elements of the tree and the ordinal next to them 

represents the value of the element. Passage downward from one element 

to another represents multiplication by p. The root or 0 of this 

tree has value oo. 

If X is a valuated tree that contains distinct elements x and 

y with px = py, then px is called a vertex of X. For example, in 

the tree pictured above, the root and the element whose value is w + 1 

are vertices. A tree is called indecomposable if it contains a unique 

element of order p. 

A valuated tree X admits a natural, partial ordering by declaring 

x < z if and only if there exists a non-negative integer n such that 

n 
p z x. Trees without infinite chains are called reduced trees. If 

x e: X, then B 
x 

determined by x. 

and is denoted by 

subtree of X. 

{ 'f 
x e: xlz ..s_ x or x.::. z} is called the branch 

The upper part of the branch 

Up(B ). It is easy to see that 
x 

B 
x 

B 
x 

is {z e: x Ix .::. z} 

is a valuated 



If X.(i EI) is a family of valuated trees, then their coproduct 
1 

is their disjoint union with roots identified. 

1.6 Proposition. Each valuated tree is the coproduct of its 

branches B , where x has order p. Thus, each valuated tree is x 

uniquely the coproduct of indecomposable, valuated trees. 

If X is a tree, then the height function defined on X is a 
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valuation, hence, any tree is a valuated tree. If.one forgets the addi-

tion structure on an abelian p-group, then it can be viewed as a tree, 

and hence, as a valuated tree. 

1.7 Definition. A valuated p-group (A,v) is a p-group that is 

a valuated tree and satisfies: 

v(x + y) >min {v(x), v(y)}. 

1.8 Proposition. If (A,v) is a valuated p-group and a E A, 

then v(na) = v(a) if (n,p) = 1. 

1.9 Definition. Let G and H be valuated p-groups. A valuated 

p-group map f : G + H is a group of homomorphism that is a valuated 

tree map. 

1.10 Proposition. The class of valuated p-groups together with 

valuated p-group maps form a category denoted by Vp. 

The next theorem, which is a special case of theorem 1 in [8], 

allows us to view valuated p-groups as subgroups of abelian p-groups, 

where the valuation is simply the restriction of the height function 

of the larger group. 



1.11 Theorem. Let (A,v) be a valuated p-group. Then there is 

an abelian p-group G such that A can be embedded into G and 

v = 
hG1A· 

The next definition is taken from category theory. We will need 

it in a later chapter. 

1.12 Definition. An additive category satisfies a weak 

Grothendieck condition if for every index set I and every nonzero 

manic A+ L: B., there is a finite subset J of I and a commuta
iEI 1 

tive diagram 

C ------'!lo L: B. 

l T1 

A ------~ L: B. 
iEI 1 

with the map C + A. nonzero. 

5 

1.13 Proposition. The category Vp has the following properties: 

(1) Vp is additive, 

(2) Vp has kernels and cokernels, 

(3) Vp has infinite sums, 

(4) Vp satisfies a weak Grothendieck condition. 

Proof: Properties 1 and 2 follow from theorem 3 in [8]. Property 3 

follows from a remark in [5]. It is straightfqrward to see that 

property 4 holds. Q.E.D. 
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Since every valuated p-group is also a valuated tree, then there 

is a forgetful functor from Vp to VT. It has an adjoint whose 

description, as given in [4], is as follows. Let X be a valuated tree 

and E Z(x) 
xtX 

be the free abelian group on the nonzero elements of 

X. Let ~ be the subgroup of FX generated by 

{p ¢t) Ix E: X and px 0} U { p *) - <J>x) Ix E: X and px I 0} , 

and set 
F 

S(X) = X/~· Each element of S(X) has a unique representa-

tive in FX whose coefficients are in 0,1, .•• ,p-l. If s = 

Eui ~\) + ~, where 0 < ui < p, 

S(X) becomes a valuated p-group. 

then by setting v(s) =min {v(x.)}, 
l 

From now on, we will drop the ~ 

in the unique representation of an element of S(X). If f : X ~ Y ·is 

a map of valuated trees, then f induces a map from FX to FY, by 

taking Eui(xi) to Eui~(xi))', that takes ~ into ~· By con-

sidering the diagram 

it is seen that f induces a group homomorphism S(f) : S(X) ~ S(Y). 

Since f is a valuated tree map, S(f) is a valuated group map. If 

Y is a valuated group, then the map taking l:ni(x) to l:niq(xi)') 

shows that S is the adjoint of the forgetful functor. 
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1.14 Definition. If X is a tree, then S(X) is called a simply 

presented p-group. 

This definition agrees with the usual one. 

1.15 Definition. If X is a valuated tree, then S(X) is called 

a simply presented valuated p-group. 

In Chapter II, we will consider the following question: Is it 

possible to define an equivalence relation on the category of valuated 

trees that depend only on the valuated trees, such that two trees will 

belong to the same equivalence class if and only if their associated 

simply presented, valuated p-groups are isomorphic? In an effort to 

answer the above question, this writer's adviser, Dr. Dennis Bertholf, 

suggested that the writer consider stripping the valuated trees. Later, 

it was found that Rodgers in [9], had used stripping functions to 

study a similar problem involving trees without valuations. By using 

the two ideas, this researcher was able to define valuated stripping 

functions. The main result in this chapter is that if a is a valuated 

stripping function from one tree onto another, then the associated 

simply presented, valuated p-groups are isomorphic. By taking inverses 

and compositions of valuated stripping functions, this author defined 

what is called a T-function and showed that if e : X + Y is a 

T-function, then S(X) is isomorphic to S(Y). 

In Chapter III, it is shown that cyclic, valuated p-groups are 

necessarily presented valuated p-groups. Also, direct sums of cyclic, 

valuated p-groups are again, simply presented valuated p-groups. It is 

possible to characterize all direct sums of cyclics in terms of certain 
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types of valuated trees. By restricting our attention to this class of 

valuated trees, the desired equivalence relation can be defined. Chapter 

III concludes with the observation that the numerical invariants given 

in [3], for finite direct sums of cyclics, will serve,to characterize 

all direct sums of cyclics. 

In Chapter IV, the class of direct sums of indecomposable, simply 

presented, valuated p-groups will be studied. The types of trees that 

give rise to indecomposable, simply presented, valuated p-groups are 

identified in [4] and it is shown that these trees form the basis for a 

complete set of invariants for finite, direct sums of indecomposables. 

In this chapter, this author will characterize all direct sums of 

indecomposables in terms of certain types of trees. Then, by restrict

ing our attention to this class of trees, it is possible to again define 

the desired equivalence relation mentioned in the paragraph concerning 

Chapter II. This leads to a proof of the fact that trees in [4], form 

the basis for a complete set of invariants for all direct sums of in

decomposables. 

This paper concludes with a brief summary and a few open questions. 



CHAPTER II 

VALUATED STRIPPING FUNCTIONS 

In [4], Hunter, Richman and E. A. Walker pointed out the fact that 

if X and Y are isomorphic trees, then S(X) is isomorphic to S(Y). 

They also gave an example of two nonisomorphic trees X and Y, with 

S(X) isomorphic to S(Y). This example served as a counterexample to 

the converse of the first statement. It is natural to try to define an 

equivalence relation on the category of valuated trees such that two 

trees X and Y belong to the same class if and only if S(X) is iso-

morphic to S(Y). If possible, we would like the definition of this 

equivalence relation to be independent of the associated simply presented 

valuated p-groups. 

The authors in [4] were interested in constructing decompositions of 

S(X) by looking at X. In order to do this, they made use of retrac-

tions. A retraction of X is a valuated tree map r : X + X such that 

2 
r = r. The technique used here will be somewhat different and similar 

to that of Rodgers [9]. 

The two valuated, trees mentioned above are the following: 

0 0 

x = andY= y~ 

Since X has two elements of order p and Y has only one element of 

9 
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order p, there can not be an isomorphism from X onto Y. 

Notice that if one stripped an upper branch of Y that stems from 

the vertex with value 1 and placed it so that it stemmed from the root of 

Y; a new tree Y' is created, and Y' is isomorphic to X. However, 

the question is whether S(Y) is isomorphic to S(Y'). By combining 

lennna 1 and the proof of lenuna 3 in [4], we see that the answer is yes. 

In fact, the proof of the following proposition follows from those two 

results. 

2.1 Proposition. Let X be a valuated tree with x and y in 

X, x # y, px = py # O. If there is an order preserving, valuated tree 

map f : Up(B ) + Up(B ) 
x y 

such that f(x) = y and f is value nonde-

creasing, then Up(B ) 
x 

can be stripped and placed at the root of x so 

that a new tree X' is formed and S(X) is isomorphic to S(X'). 

Formally, we shall think of X' as the set X with a new multipli-

cation * defined on it where p * x' = px' if x' # x and p * x = 0. 

This brings us to the definition of a stripping function. 

2.2 Definition. Let X and Y be valuated trees and a : X + Y 

be a bijection. Then a is called a stripping function provided: 

(1) a preserves heights and valuations 

(2) cr(px) # pcr(x) implies pcr(x) = 0 and there exists z E X 

such that px = pz and an order preserving, value nondecreas-

ing, valuated tree map f : Up(B ) + Up(B ) x z such that f(x) = 

z and cr(px) = pcr(z). 

We will now prove that S (X) is isomorphic to S (Y) · if a is a 

stripping function from X onto Y. First, we need the following 
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technical lemma. 

2.3 Lemma. Let X and Y be valuated trees and o : X + Y be a 

stripping function. If x is in X with o(px) # po(x), then there is 

an element z in X such that px = pz and an order preserving, value 

nondecreasing, valuated tree map f Up(B ) + Up(B ) such that f (x) = x z 

z and cr(pf(x')) = pcr(f(x')) for all x' in Up(B ). 
x 

Proof: Inductively, define a sequence {f } of order preserving, value 
n 

nondecreasing, valuated tree maps f 
n 

Up(B ) + Up(B ) such that if x z 
k 

p x' x, then o(pfk(x')) = po(fk(x')) and fn(x') = fk(x') for all 

n > k. The element z and the function f exist because cr is a 
0 

stripping function. Suppose fk has been defined and define fk+l as 

follows: 

x' element in Up(B ) and 
n 

with n ~ k, then If is an p x' = x 
x 

fk+ 1 (x') fk(x'). If 
n 

then consider the define p x' = x, n = k + 1, 

following cases: 

Case I. o(pfk(x')) = pcr(fk(x')). Define fk+l (x') 

Prx" = x', r > 0 - ' define f (x") = f (xu) k+l k • 

Case II. cr(pfk(x')) # po(fk(x')). SinGe cr is a stripping func-

tion, there exists u in X such that pfk(x') = pu and an order pre-

serving, value nondecreasing, valuated tree map g : Up(B ) + Up(B ), 
y u 

where y fk(x'), such that g(y) = u and cr(pu) = pcr(u). Define 

fk+l(x') = u and if prx" = x', r ~ O, define fk+l (x") = g(x"). It is 

easy to see that fk+l is an order preserving, value nondecreasing, 

valuated tree map that satisfies the induction hypothesis. 

Now, define a valuated tree map f by using the sequence {f }. 
n 

If x' is an element in Up(B ), then there is a unique n > 0 such 
.X 
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that n 
p x' x. Define f(x') = fn(x'), thus, f : Up(B ) + Up(B ) 

x z 

where z = f (x) 
0 

f (x), for all n > 0. In order to see that f is a 
n 

valuated tree map, suppose that x' is an element of Up(B ), and 
x 

n 
p x' = x. Then note that f(px!) = f (px') = f (px') = pf(x'). n-1 n 

Since 

each of the f 's are order preserving and value nondecreasing, then 
n 

so is f. Also cr(pf(x')) = pcrf(x') follows from the fact that 

a€Cfn(x')» = pcr(fn(x')), where pnx' = x. Q.E.D. 

In view of this result, we will assume that the function f in the 

definition of a stripping function has the additional property that 

cr(pf(x')) = pcr(f(x')) for all x' in Up(B ). 
x 

The technique used in 

the next result is taken from Rodgers [9]. 

2.4 Theorem. If a X -+ Y is a stripping function, then S(X) 

is isomorphic to S(Y). 

Proof: Inductively, define a function d on X as follows: Set 

d(O) 0. If x belongs to X and e(x) = k + 1, (e(x) is the expo-

nent of x, i.e., e(x) 

x) then define 

d(x) 

is the number so that e(x) 
p 

Jd(px) 

\§(px) 

if 

+ 1 

cr (px) = pcr (x) 

if cr(px) ::f pcr(x). 

is the order of 

If a(px) ::f pcr(x), then there is an element z in X such that 

px = pz and an order preserving, value nondecreasing, valuated tree map 

f : Up(B ) + Up(B ) such that f(x) = z, and cr(pf(x')) = pcr(f(x')) 
x z 

for all x' in Up(B ). When cr(px) ::f pcr(x), pick such a function and 
x 

call it f , but restrict f to the subset {x' £ Up(B ) !d(x) = d(x')} x x x 

of Up(B ), x 
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Use d to define inductively, a function TI x -+ x such that for 

each x 

(1) 

(2) 

(3) 

(4) 

(5) 

in x the following conditions hold: 

II(px) = pTI(x) if and only if o(px) = p o(x) 

v (II (x)) ..?_ v(x) 

there is a nonnegative integer n for which rr0 (x) = 0 

either pJI(x) = JI(px), or pJI(x) px 

if d(x) = m, m > o, with cr(px) :f pcr(x), then if x' 

belongs to Up(Bx) and d(x') = d(x), then rr(x') = f (x'). 
x 

Construct IT as foilows: If d(x) 0, set JI(x) = O. Assume 

that IT has been defined for all x in X such that d(x) < k, where 

k is a positive integer. If x is an element of X with d(x) = k, 

then we have two cases. 

Case 1. pcr(x) :f cr(px). We have already chosen z in X such 

that px = pz and f : Up(B) ~-Up(B ), f (x) = z, o(pz) = pcr(z). x x z x . 

Since o(pz) = po(z), it follows that d(z) = d(pz) d (px) < d (x) • 

Therefore, JI(z) has been defined and we define JI(x) by setting 

IT(:x) = z = f (x). x Also, if x' belongs to Up(B ) x and d (x') = d (x) , 

set II(x') = f (x'). Since cr(pf (x')) = pcr(f (x')) for all x' in x x x 

Up(B ), we have d(z) = d(f (x')). Therefore, JI(f (x')) has been x x x 

defined. 

Condition 2 holds because f (x') is value nondecreasing. Since 
x 

TI(f (x')) has been defined, there is a nonnegative integer n such 
x 

that ITn(f (x')) = 0. Therefore, ITn+l(x') = Tin(IT(x)) = Iln(f (x')) 0 
x x 

which shows that condition 3 holds. In order to check condition 4, note 

that pIT(x) = pz px and if x' :f x, pIT(x') = pf (x') = f (px') = x x 

IT(px'). Condition 5 follows directly from the definition of Jl. 

Case 2. o(px) = pcr(x). Since d(x) = k > 0, there is a least 
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posi.tive integer r such that prx • x', with d(x) = d(x') and 

cr(px') ~ pcr(x'). Now x' satisfies Case 1, therefore, IT(x') = fx 1 (x') 

and IT(x) = f ,(x). 
x 

In this case, we have IT(px) = f ,(px) =pf ,(x) = 
x x 

pIT(x) which shows condition 1 holds. 

We will use IT to construct another function rr' : X ~ S(X) by 

setting IT'(x) = x - IT(x). Denote the image of X under IT' by X'. 

Claim 1. X' is a valuated tree. Clearly, X' is a set and 0 

belongs to· X' because Il 1 (0) = O. If x .. IT(x) is an element of 

then p (x - IT(x)) = px - p Il(x). Now p IT(x) = IT(px) or pIT(x) = px, 

X' ' 

so p(x - TI(x)) = px - px = 0, or p(x - TI(x)) = px - TI(px). It should 

be pointed out that if pII(x) • IT(px) and pTI(x) = px, then IT(px) = px, 

whichwouldcontradict condition 3 unless px = O~ Therefore, multiplica-

tion by p is well defined, and X' is closed under this multiplica-

tion. Since v(x - Il(x)) = min.{v(x), v(IT(x))} = v(x), we have 

v p(x -Il(x)) 2:.. v(x - Il(x)), Actually, this shows that n' is value 

preserving. 

Claim 2. X' is isomorphic to Y. Define n : Y ~ X' by 

n(cr(x)) = IT'(x). The map n is well defined because a is a bijection 

and n' is a funct1"on. T h.e k that i · e IT( ) o c c n s mo~1c, suppos x - x = 

x' - IT(x'). This implies that x + IT(x') = x' + IT(x). By the unique 

representation of ele~nts of S(X) with coefficients between 0 and 

p, we have x = x', or x = Il(x). If x = IT(x) then x = O, hence, 

x' = IT(x') which implies x' = 0. Thus, in either case x = x' which 

implies n'(x) = IT'(x'). To see that n is epic, notice that if 

IT' (x) is in X' , then n(cr(x)) = IT'(x). Since both a and IT I 

value preserving, then so is n· Also, n(pcr(x)) = n(cr(px)), or 

are 



pa(x) .. 0. However, cr(px) • pa(x) if and only if TI(px) == pJJ(x). 

If (J (px) = pcr (x)' then n (pcr (x)) = n (cr (px)) = IT I (px) = pII I (x) = 

p(ncr(x)). If pcr(x) = O, then n(pcr(x)) = n(O) = 0 = px - px = 

px - pII(x) = p(x - II(x)) • pncr(x). 

Claim 3. X~O} generates S(X). Let s be in S(X) and 

k 

1.5 

s = E 'ri(x), 0 < ri < p, xi e: X. Then s can be represented also as 
i=l 1' 

where m is large enough so that If1(xi) = 0, for i = 1,2, k. 

This implies that S(X') = S(X). Since X' is isomorphic to Y, we 

also have S(X') is isomorphic to S(Y). By transitivity, S(X) is 

isomorphic to S(Y). Q.E.D. 

One might wonder if the converse of the above theorem holds. In 

order to see that it does not, consider the following example. 

Let X = and Y = 

Let x and y denote the element of value 0 in X and Y 

respectively. If a is a stripping function from X onto Y, then 

a(x) = y. Note that v(cr(px)) = 5, and v(pd(x)) = v(py) = 4. There-

fore, cr(px) # pcr(x); however, pcr(x) # O. Therefore, there is no 

stripping function from X onto Y. By arguing in a similar way, 

we can see that there is no stripping function from Y onto X. 
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If z = then 

00 

if we define a 1 : X + Z and a2 : Y + Z so that both are value pre

serving, then they will be stripping functions. By the theorem above, 

we have S(X) is isomorphic to S(Z) and S(Y) is isomorphic to S(Z); 

therefore, S(X) is isomorphic to S(Y). 

The trouble seems to be in requiring that the stripped branch be 

placed at the root. It seems reasonable that it could have been placed 

at any other vertex that it could have been stripped from. This brings 

us to the definition of a transferring function. 

2.5 Definition. Let X and Y be valuated trees. A bijection 

~ X + Y will be called a transferring function provided: 

(1) ~ preserves heights and valuations, 

(2) If ~(px) I p~(x), then there exist z in X and y in Y 

such that px = pz with p~(x) = py and there exist order 

preserving, value nondecreasing functions f : Up (B ) 
x 

f(x) = z, ~(pz) = p~(z) and 

~(p~-l(y)) = py, g(~(x)) = Y• 

g : Up(B~(x)) + Up(By)' 

+ Up(B ), 
z 

2.6 Proposition. If ~ : X + Y is a transferring function then 

~-l : Y + X is a transferring function. 

Proof: Clearly, 
-1 

~ preserves heights and values. Suppose that 

This implies 
-1 -1 

PY = ~(~ (py)) I ~(p(~ (y)) or, 

written differently, ~(p(~-l(y)) I p~(~-l(y)) = py. Therefore, there 
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exist z ln X and u £ Y such that 
-1 

p'l' . (y) "" p~ and PY pll. 

Also, we have order preserving value nondecreasing functions f and g, 

and 

g : 
-1 -1 

Up(B) + Up(B ), g(y) = u, ~(plJ' (u)) = pu. Thus, IJ' (plJ'(z)) = pz 
y u 

and P111 - 1 (u) -- "'-l(pu) hi h · l' "'-l · f · f · r r w c imp ies r is a trans erring unction. 

Q.E.D. 

2.7 Proposition. If IJ': X + Y is a transferring function, then 

there is a valuated tree Z and stripping functions cr1 : X + Z and 

cr 2 : Y + z. 

Proof: Let Z be the set Y with the same valuation defined on it. 

Define a new multiplication by p, call it * ' on Z as follows: 

-1 
plJ' (z)' and 

otherwise. 

Consider the map cr1 : X + Z defined by cr1 (x) = IJ'(x) where IJ'(x) 

is thought of as an element in Z. It follows directly from the defini-

tion of a stripping function that cr1 is a stripping function. 

Now consider the map cr 2 Y + Z defined by cr2 (y) = y. If 

cr 2 (py) Ip* cr 2 (y), then 

and IJ'-l(py) # plJ'-l(y). 

py # p * y. This implies that p * y = 0 

Since IJ'-l is a transferring function from 

onto X, there is an element u s Y such that py pu and an order 

y 

preserving, value nondecreasing, valuated tree map f : Up(B ) + Up(B ) 
y u 

h h f() · d "'-l(pu) -- p"'-l(u). sue t at . y = u an r r The last part of the 

statement above can be stated as cr 2 (pu) = p * cr 2 (u); therefore, cr2 

is a stripping function from Y onto z. 



2.8 Corollary. If 'i' · X > Y is a tranAferring function, theu 

S(X) is isomorphic to S(Y). 

111 

Proof: By proposition 2.7, there is a valuated tree Z and stripping 

functions a 1 : X + Z and a2 : Y + Z. It follows from theorem 2.4 

that S(X) is isomorphic to S(Z), and S(Y) is isomorphic to S(Z). 

Therefore, S(X) is isomorphic to S(Y). Q.E.D. 

The converse of this corollary is not necessarily true. Consider 

the two trees X and Y below. 

\t .. • 

Let X = 1 • • • and Y :i= 

Suppose there is a transferring function 'i' : X + Y. Then 'i' 

has to be value preserving and 'i'(px) z p'i'(x) if and only 

••• 

if v(x) = w, or v(x) = ~. Thus, if v(x) is an even integer, 

'i'(px) ~ p'i'(x). However, if 'i'{px) ~ p'i'(x), then there must exist an, 

element z in X such that px = pz and 'i'(pz) p'i'(z). Therefore, 

there is no transferring function from X onto Y. 

In order to see that S(X) is isomorphic to S(Y), consider the 

tree Z below. 



l • • • 

Let Z = 3 • • • 

• 

If we define functions ~l from X onto Z and ~ 2 from Y 

onto Z such that they are value preserving, then both functions will 

be transferring functions. This implies that S(X) is isomorphic to 

S(Z) and S(Y) is isomorphic to S(Z), hence, S(X) is isomorphic 

to S(Y). 

This example also shows that the composition of transferring func

tions may not be a transferring function. This brings us to the next 

definition. 

2.9 Definition. Let X and Y be valuated trees. A bijection 

e : X + Y will be called a T-function if and only if e is the 

composition of transferring functions. 

Since the identity function is a transferring function, then it 

follows that any transferring function is a T-function. Also, it is 

easy to see that a stripping function is a transferring function, hence, 

any stripping function is a T-function. 

2.10 Corollary. If 8 

isomorphic to S(Y). 

X + Y is a T-function, then S(X) is 

The converse of this corollary is open. We believe it is true 

and that it gives the right equivalence relation. In the chapters that 
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follow, we shall show that the converse of Corollary 2.10 does hold for 

simply presented, valuated p-groups that are direct sums of cyclics 

and for those that are direct sums of indecomposables. 



CHAPTER III 

DIRECT SUMS OF CYCLIC VALUATED p-GROUPS 

In [3], Hunter, Richman and E. A. Walker characterized finite 

direct sums of cyclic, valuated p-groups in terms of numerical in-

variants. They gave a criterion 'for finite valuated p-groups to be 

direct sums of cyclics. Also, included in this paper is a proof that 

2 any finite, p -bounded, valuated p-group is a direct sum of cyclics. 

In this chapter, we observe that any cyclic, valuated p-group is a 

simply presented, valuated p-group and that direct sums of cyclic, 

valuated p-groups are again simply presented, valuated p-groups. Then, 

by using some of the stripping techniques in the preceding chapter and 

results from [4] and [10], we will characterize all direct sums of 

cyclic, valuated p-groups in terms of a class of valuated trees. We 

also notice that the numerical invariants introduced in [3] will 

characterize all direct sums of cyclics. An example of an infinite, 

2 
p -bounded, valuated p-group that is not a dir~ct sum of cylcics is also 

given in this chapter. 

Although some of these ideas will be considered in a more general 

setting in Chapter IV, we feel that it is useful to study the direct 

sums of cyclic, valuated p-groups in a separate chapter. Before proceed-

ing with their development, we will need the following remarks that· 

appear in [4] and [5]. 
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3.1 Remark. If {Xi}' (i EI), is a family of valuated trees, 

then their coproduct X, is their disjoint union with their roots 

identified, written X = l:Jxi. 

3.2 Remark. If {A.} is a family of valuated groups, then the 
1 

direct sum of the A. is their group direct sum with the value of an 
1 

element being the minimum value of its component. 

The following proposition also appears in [5] as a remark, but we 

will state it as a proposition and give a proof of it. 

3.3 Proposition. If {X.} (i e I) is a family of trees and 
1 

X = (:} X. their coproduct, then S (X) 
1 

is isomorphic to $ S(X.). 
iEI . 1 

22· 

Proof: Without loss of generality, assume x. n x. = 
1 J 0 ' for i 'I j. 

If x is a nonzero element in X, then there is a unique j in l 

such that x is in x .. , Therefore, px = 0 in x if and only if 
J 

px = 0 in x .• It follows that ~ EI1 RX and FX = 
J iEI 1 

$ ( ~ z (x)) ~ FX. By considering S (X) as an abelian group, 
iEI j EXi 1,J iEI 1 

we have 

S(X) x iEI 

t't)S(X.). 
• 1 
1 

The group morphism is value preserving by Remark 3.2, therefore, the 

group isomorphism is a valuated group isomorphism. Q.E.D. 

3.4 Remark. If Y is an infinite ascending chain, then S(Y) is 

isomorphic to Z(p 00
). 
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By using Proposition 3.3 and Remark 3.4, we shall see that it suf-

fices to consider only reduced valuated trees; that is, trees with no 

infinite chains. 

3.5 Proposition. If X is a valuated tree, then there exist 

valuated trees xd and xr, with xd a union of infinite ascending 

chains and Xr reduced such that S(X) is isomorphic to S(Xd) 0 S(Xr). 

Proof: For each vertex x in X that belongs to an infinite ascend-

ing chain, pick x' in X such that x' belongs to an infinite 

chain and px' = x. Let X' be the set X and define a new 

multiplication by p, call it * , on X' as follows: 

p * x 
JO if 

=\px otherwise. 

px = px ' , x I- x' for some x' 

It is easy to see that X' with multiplication 

chosen above and 

* , is a valuated 

tree. If a : X ~ X' is defined by cr(x) = x, then a is a stripping 

function. Let Xd be the union of all infinite ascending chains in 

X' and Xr = X~d together with 0. Since ~ is a stripping func

tion, then S(X) is isomorphic to S(Xd\J Xr)' which is isomorphic 

S (X). 

It follows from Remark 3.4 that S(Xd) is the divisible part of 

However, as v(x) = h(x) = 00 , for any element x in a divisible 

group, nothing new can be gained by considering a divisible group as a 

valuated group. Also, it is well known that any abelian group A, can 

be written as A = D 6 R, where D is divisiible and R is reduced. 

In view of these two facts and Theorem 1.11, we will consider only trees 
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with the property v(x) = "" if and only if x = 0. Such a tree will 

be called a reduced valued tree. 

3.6 Definition. A valuated group is cyclic if it is cyclic as an 

abelian group. 

3.7 Proposition. If A is a cyclic, valuated p-group, then A 

is a simply presented, valuated p-group. 

Proof: Suppose x is a generator of A and the order of x is 
n 

p , 

n a positive integer. Let 
2 n i 

X = {x,px,p x ... ,p x = O}, v(p x) is the 

value of 

tree. If 

of S(X), 

i 
p x in A, i = O, 1, 2, ••• , n. Clearly, 

l:nr (prx), where 

then l:nr (Prx) = 

0 < n < p, 0 < r < n, 
r 

r r 
l:n p (x) , where I:n p 

r r 

X is a valuated 

is an element 

is an integer 

expressed in its base p representation. Therefo.re, S (X) is a cyclic 

group generated by (x). .Notice that the order of S (X) is 
n p , 

therefore, S(X) and A are group isomorphic. If mx is an element 

of A, where 
k 

m = p t, (t,p) = 1, then 
k k 

v(mx) = v(p tx) = v(p x). 

If we write m 
i 

I:nip , i 2'._ 0, 0 < °i < p, in its base p representa-

tion, then the smallest power of p that appears in this representa

tion is k. Therefore, vl:ni(pix) = v(pkx), which implies the group 

isomorphism is value preserving. Q.E.D. 

3.8 Corollary. If A = © A., where each A. is a cyclic, 
iEI 1 1 

valuated p-group, then A is a simply presented, valuated p-group. 

Proof: We have that each Ai 

A=~ S(Xi) ~ S(~Xi). Q.E.D. 

=S(X.), 
1 

therefore, 

1 
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In order to see that there are simply presented, valuated p-groups 

that are not direct sums of cyclic, valuated p-groups, we will give a 

counterexample. First, we will need the following technical lemma. 

3.9 Lemma. Let X be a valuated tree and let X 
a. {x E Xlv(x) = 

s 
a.}. If S(X) is isomorphic to X(Y), then Ix I = IY I, for all a.. a. a. 

Proof: Suppose for some a. the lemma is false. Without loss of 

generality, assume Ix I > a. 

{ L:u. ~ .') E S (X) Iv (x.) = a., 
1~·1 1 

that ls(x) I > ls(Y) I· a. a. 

IY 1. If we denote the set 
a. 

for each i} by 

If 0 : S' (X) + S (Y) 

S(X) , then it follows 
a. 

is the given isomorphism 

and '¥ its inverse, then each element in '¥ (S (Y) ) 
a. 

has value a.. Let 

II 1 : S(X) + S(X) 
a. 

and II 2 : S(Y) + S(Y) 
a. 

to be set maps that are projec-

tions on the components of value a. and O, if no component has value 

a.. Notice that II1 ('¥S(Y) ) is a proper subset of S(X) because 
a. a. a. 

!S(Y) I < !S(X) I· Therefore, there exists an element x in S(X) a. a. a. 

such that x is not in 

element of S(Y) , but 
a. 

this would imply that x, 

of II1 ('¥S(Y )). 
a. a. 

However, 

II1 ('¥S(Y) ). Observe that 
a. a. 

0(x) is not an element of 

II2 (0(x)) is an 
a. 

S(Y) because 
a. 

which is equal to II11j10 (x) 
a. 

is an element 

is an element of II1 ('¥S(Y )). a. a. 

Therefore, x - '¥II20(x) 1 0 and has value 
a. a.' because if no 

component with value a. remained after subtracting, this would imply 

that x - ~1'¥II 2 0 Cx) a. a. ' 
which is a contradiction. By applying 0, we 

- 2 - - 2 - - 2 -get 0(x -'¥II 0(x) = 0(x) - 0'¥II 0(x) = 0(x) - II 0(x). Since the 
a. a. a. 

value of 0cx) is a. and 0Cx) is not an element of S (Y) , then the 
a. 

value of 0(x) - II20(x) is greater than a.. This contradicts the fact 
a. 

that 0 is value preserving, therefore lxa.1 = jYa.1 and the lemma 

is prov~d. Q.E.D. 
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An immediate corollary to this lemma is the following: 

3.10 Corollary. Let X be a p-bounded tree. Then S(X) is 

isomorphic to S(Y) if and only if X is isomorphic to Y. 

Now we can proceed with the above mentioned counterexample. Let X 

be the tree given below. 

1 

w 
Let X 

00 

We claim that S(X) is not a direct sum of cyclics. On the 

contrary, suppose S (X) = $ S (Y. ) , 
i 1 

with each S(Y.) cyclic. Since 
1 

S (X) = S ( tJy.) and X contains only one element of value w, then 
1 

by our lemma, \.:}Y. contains only one element of value w. Since 
1 

there is a one-to-one correspondence between X and {l,2,3, •.. ,w, 00 }, 

we will denote the element x of X with value a by xa, where a 

is in {1,2, ••• w,oo}. We will use a similar notation for elements of 

Y. 

Case 1. There is a in \:)y. such that pyn = y . 
1 w 

Then 

0 (xn+l) = L:ui(y i)' where i > n + 1. 
x. 

Since pxn+l = WW, then 

0 (x ) = p 0 <x +l;') = L:u . p (y ;> w n 1 ~ 
where if 

pyi # 0 and ui' = ui. Since v(yi) ~ n + 1, for each i in the 

representation, then yn f yi. This implies that yw is not a 

component in 0 (x). 
w 

This contradicts 0 being value preserving. 



Cas(• l. There ls no 

then since 

in 

px1 = x w' 

such that 

we have 

Euip<>'i ~ = Lui ~y i ~, Yi' =Yi if, PY. # 0 • 
1 

Again, 

a component of 0 (x~, which is a contradiction. 
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11 

is not 

2 This example is a p -bounded, valuated p-group that is not a direct 

sum of cyclics. It is interesting to note that if X had been the 

tree given below, then S(X) would have been a direct sum of cyclics. 

1 w 

Let X 

co 

In order to see this, notice that a(x ) = y is a stripping 
a a 

function from X onto Y, where Y is the tree given below. Thus, 

where each S(Y.) 
1 

1 
Let Y 

is cyclic. 

co 

In the second example, notice that Up(B ) 
xw 

w 

has the property that 

for each n > 0 there is an order preserving, value nondecreasing, 

valuated tree map f 
n 

Up(B ) -+ 
x 

n 
Up(B ) 

xw 
with f (x ) = 

n n 
x • 

w 
This is 
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exactly the reason why each Up(B ) 
x 

n 
can be stripped. This concept is 

isolated in the next definition. 

3.11 Definition. Let X be a valuated tree and let x be a 

nonzero vertex of X. We will say that the vertex x is proper pro-

vided: 

(1) There is an x' in X such that px' = x and 

(2) If pz = x, there exists an order preserving, value non-

decreasing, valuated tree map f : Up(B ) + Up(B ') 
z x 

such 

that f ( z) = x' . 

3.12 Theorem. If X is a valuated tree such that each nonzero 

vertex of X is proper, then S(X) is a direct sum of cyclic, valuated 

p-groups. 

Proof: Let X' be the set X. For each vertex x in X, pick x' 

in X so that x' satisfies conditions 1 and 2 in the definition 

above. Define a multiplication by p on X' as follows: 

P * x = fo 
lYx 

if px = px' , x -I x' , for some x' chosen above, 

otherwise. 

If we define cr : X + X' by cr(x) = x, then cr is a stripping 

function. The valuated tree X' has no nonzero vertices, therefore, 

S(X') is a direct sum of cyclics. However, since 0 is a stripping 

function from x onto X' , we have S(X) is isomorphic to S (X'). 

Thus, S(X) is a direct sum of cyclics. Q.E.D. 

3.13 Corollary. Let A be a p-bounded valuated p-group. Then A 

is a direct sum of cyclic, valua~ed p-groups if and only if A is a 
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simply presented, valuated p-group. 

The converse of theorem 3.12 is also true; however, we will need 

some other results before we can give a proof of it. 

One result that is needed is the following theorem of C. L. Walker 

and R. B. Warfield, Jr. We refer the reader to [10] for the proof of 

it. 

3.14 Theorem. (C. L. Walker and R. B. Warfield, Jr. [10]). Let 

A be an additive category with kernels and infinite sums which satisfi'es 

a weak Grothendieck condition. If M = l: M. = N ~ K, 
. I i 
lE: 

with each M. 
l 

countably finite approximable, and with endomorphism ring of each M. a 
I l 

local ring, then N is isomorphic to a direct sum l: _M., for some 
ii::J l 

J c I. Consequently, any two direct decompositions of M have iso-

morphic refinem~nts. 

From this theorem, we get the following important corollary • 
.... ,~ .. 

3.15 Corollary. A sunnnand of a direct sum of cyclic, valuated 

p-groups is a direct sum of cyclic, valuated p-groups. 

Proof: In order to prove this, we need to show that the conditions of 

the the theorem above are satisfied. The fact that the category 

additive with kernels and infinite sums which satisfies a weak 

v 
p 

Grothendieck condition follows from proposition 1.13 and remark 3.2. 

is 

It is clear from the definition of countably finitely approximable that 

any finite valuated p-group is countably finitely approximable. It 

follows from a remark in [ 4] , that the endomorphism ring of a finite 

valuated p-group is local. Q.E.D. 



Since any tree is the coproduct of indecomposable trees and the 

functor S preserves coproducts, then by the corollary above, we can 

restrict our attention to indecomposable valuated trees. 

3.16 Lemma. If X is an indecomposable valuated tree and S(X) 

is a direct sum of cyclic, valuated p-groups, then X is bounded. 

Proof: Suppose that S(X) is isomorphic to Gt S(Y.), where each 
. 1 
1 

S(Y.) is cyclic. By lemma 4 in [4], there are order preserving, 
1 

valuated tree maps, from S(X) onto x and from s ( ~y.) 
1 

onto t:)Y .. If 0 : S(X) -+ S(~Y.) is an isomorphism, then f = r 0 I 1 1 y x 
\:h .. is an order preserving, valuated tree map from x into If 

1 

x is the unique element of order p in x, then f(x) has order p 

in l7)Yi. Without loss of generality, we may assume that f(x) belongs 

If 
n 

p x' = x, then 
n n 

p f(x') = f(p x') = f(x) which implies 

that f(x') is an element of Y1 . Since n is arbitrary, we have the 

image of X under f is contained in Y1 • The tree Y1 is bounded 

because S(Y1 ) is a cyclic, valuated p-group. Since f preserves 

order, X is also bounded. Q.E.D. 

3.17 Lemma. Let X be an indecomposable valuated tree such that 

S(X) is a direct sum of cyclic, valuated p-groups. If X has a non-

zero vertex x, of minimum order, then x is a proper vertex. 

Proof: Suppose that S(X) is isomorphic to ~ S(Y.), where each 
• 1 
1 

S(Y.) is cyclic. Let f 
1 

X -+~Y., be the order preserving, valuated 
1 

tree map defined in lemma 3.16 and g 

-1 
valuated tree map defined by g = rX0 

\:) y. 
1 

-+ X be an order preserving, 

As in lemma 3.16, we may 



assume that f(X) is contained in Y1 • We note that Y1 is a finite 

chain because S(Y1) is cyclic. Therefore, it contains exactly one 

element of each order less than or equal to its bound. Since g pre-

11 

serves order and x is the only element in X whose order is equal to 

that of f(x), then g(f(x) = x. Let y' be the element in Y1 , such 

that py' = f(x), and denote g(y') by x'. Now px' = pg(y') = 

g(py') = g(f(x» = x. If px" = px' = x, then we define a mapping 

by h(z) g(f(z~. The mapping h, is order h: Up(B 11 )-+ Up(B ,) 
x x 

preserving since both f and g are order preserving and h (x") = 

g (f(x"~ = g(y') = x'. Therefore, x is proper. Q.E.D. 

3.18 Theorem. If X is an indecomposable valuated tree and S(X) 

is a direct sum of cyclic, valuated p-groups, then each nonzero vertex 

of X is proper. 

Proof: The theorem will be proved by inducting on the exponent of the 

bound of X. If X is a p-bounded tree, then there are no nonzero 

vertices, so the theorem is true. Suppose that x n 
is a p -bounded 

valuated tree where n > 1, and assume the theorem holds for all 

k 
p -bounded, valuated trees with k < n. If X has no nonzero vertices 

we are done, so assume X has a nonzero vertex. Since X is indecom-

posable, it has a unique vertex x, of minimum order. By lemma 3.17, 

x is a proper vertex. Therefore, there is an element x' in X such 

that px' = x and if px" = px', there is a value nondecreasing order 

preserving, valuated tree map f Up(B 11 ) -+ Up(B ,) , with f(x") = x'. 
x x 

Let X' be the set X and *, a new multiplication by p on X' 

defined as follows: 
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~t. if pz = px' and z = x' and 
p * z 

otherwise. 

If 0 : x -+ X' is defined by o(x) = x, then · o is a stripping func-

tion. Let {x. Ii e: I} be the subset of x for which pxi = x. For 
1 

notational convenience, we will assume x = x' . We have 
0 

X' tJx., 
1 

where i 1' 0, XO = x\\J. Up(B ) and 
i¥0 xi 

and 

S (X) ~ & S (X.). 
- ie:I 1 

Since each S(X.) is a summand of a direct sum of 
1 

cyclic, valuated p-groups then, by corollary 3.14, each S(X.) 
. 1 

is a 

direct sum of cyclic, valuated p-groups. Also, each X. 
1 

is bounded. 

If i 1' 0 the bound of is less than n 
p ' the bound of x. 

Therefore, by.the induction hypothesis, every nonzero vertex of Xi, 

i 1' 0, 

proper. 

proper. 

greater 

is proper. Since Xi ~Up (Bx.), each vertex in 
1 

Thus, each vertex of X that is not contained in 

Notice that the order of the minimum vertex x' 
0 

than the order x. If we repeat the argument with 

Up(B ) x. 
is 

1 

x0 is 

ih is 

XO playing 

the role of x, then the order of the minimum vertex in x00 will be 
i), '~- [•~tt 

greater than the order of xo. Since x is bounded, the process must 

terminate after a finite number of reptitions. Therefore, all nonzero 

vertices of X are proper. Q.E.D. 

By. combining theorems 3.12 and 3.18, we have the following 

corollary. 

3.19 Corollary. Let X be a valuated tree. Tqen S(X) is a 

direct sum of cyclic, valuated p-groups if and only if each nonzero 

vertex of X is proper. 
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Next, we will consider the converse of theorem 2.10 when S(X) and 

S(Y) are direct sums of cyclic, valuated p-groups. 

3.20 Proposition. Let S(X) be a direct sum of cyclic, valuated 

p-groups. Then S(X) is isomorphic to S(Y) if and only if there is 

a T-function 8, from X onto Y. 

Proof: The "if" part of this proposition follows from corollary 2.10. 

In order to show the other half, let S(X) and S(Y) be direct 

sums of cyclic, valuated p-groups. By corollary 3.19, each nonzero 

vertex of x and y is proper. Therefore, as in the proof of theorem · 

3.12, x and y may be stripped to \:) x. and t) y., respectively, 
iEl 1 jEJ J 

with each x. and Y. a finite chain. 
l J 

Since S(X) is isomorphic to S(Y) and \:) X. and l:) y. are 
iEl l jEJ J 

strippings of x and Y, then E9 S (X.) is isomorphic to El) S (Y. ) . 
iEl l j EJ J 

By theorem 3.14, there is a bijection 0 I -+ J and an isomorphism 

'JI. : S (X.) -+ S(Y0(i», for each i in I. Since S (X.) and 
l l l 

S(Y0(i)) are cyclic, x. is isomorphic to y0(i)' for each i in 
l 

Since x.n ~ = 0, for i -1: k and Y.n y = 0 for j -:f t' then 
l J t , 

the valuated tree map 'I' 

where x is an element of 

Let z be \j Y. and 
jEJ J 

al (y) = y and a2 : x -+ z 

tJ X. -+ \:} Y. defined by 'l'(x) 
iEl 1 j EJ J 

'I'. (x)' 
l 

xi' is a valuated tree isomorphism. 

al : y -+ z be the function defined by 

be the function defined by a 2 (x) = 'I'. (x)' 
l 

I. 

where x is contained in x .. The functions al and a2 are clearly 
1 

stripping functions. The function a : X-+ Y, defined by e(x) = 
-1 

a1 a2 (x), is the desired T-function. Q.E.D. 
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For the moment, we will restrict our attention to the class of 

valuated trees that give rise to direct syms of cyclic, valuated 

p-groups. We will say two trees X and Y are eguivalent if and only 

if there is a T-function e from X onto Y. It is easy to see that 

this relation is an equivalence relation. As usual, we will denote the 

equivalence class of a valuated tree X, by [X]. Now, we can restate 

proposition 3.20 as follows: 

3.21 Corollary. Let S(X) be a direct sum of cyclic, valuated 

p-groups. Then S(X) is isomorphic to S(Y) if and only if [X] = 

[Y]. 

We saw in the proof of proposition 3.12, that if S(X) is a 

direct sum of cyclics, then there is a valuated tree X' in the class 

[X] such that X' is the union of finite chains. Furthermore, we have 

from the proof of proposition 3.20, that X' is unique up to iso

morphism. We will call X' the canonical representative for the class 

[XJ. In view of these remarks, we have the following corollary. 

3.22 Corollary. The canonical trees form a basis for a complete 

set of invariants for direct sums of cyclic, valuated p-groups. 

In [3], Hunter, Richman and E. A. Walker noted that each element x 

in a valuated p-group determines a sequence 

~(x) = (v(x), v(px), v(p2x}. ••. ) 

called the value sequence of x. Then they showed that the value 

sequences of a minimal set of generators forms a complete set of 

invariants for finite direct sums of cyclic, valuated p-groups. This 
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fact was expressed without reference to generators; instead, they used 

functorial invariants. 

We will carry out a similar program for arbitrary direct sums of 

cyclic, valuated p-groups. Actually, the functorial inariants given in 

[3], will be shown to characterize all direct sums of cyclic, valuated 

p-groups, and the proof given for the finite case will carry over. A 

detailed discussion of the statements above will be given later. 

First, we shall point out a relationship between the value sequence 

of a generator for a cyclic, valuated p-group S(X), and the canonical 

tree X. If x is a generator of a cyclic, valuated p-group S(X), 

and 2 n 
XI = { X, pX, p X, • , • , p X = Q}, then it follows from proposition 

3.7 that S(X) is isomorphic to S(X'). Since X and X' are canonical 

trees, X is isomorphic to X'. If we form a sequence by taking the 

values of elements of X in ascending order and infinitely many copies 

of the symbol ~. then the sequence formed is exactly the value 

sequence of the generator x. On the other hand, if we truncate the 

value sequence of x after the first ~, and form the valuated tree 

X' = {x, px, . . . , n p }, then 
x 

X' is isomorphic to x . By using this 

relationship and corollary 3.22, we have the following proposition. 

3.23 Proposition. Let S(X) be a dire,ct sum of cyclic, valuated 

p-groups. If one generator is chosen for each cyclic summand, then the 

value sequences of these generators form a complete set of invariants 

for S(X). 

Now, we will state the necessary def-initi<;ms and results from. [3] 

so that .we can express the fact above without referring to generators. 

The reader is referred to [3] for the proofs of these results. 



3.24 Definition. A value sequence is an increasing sequence 

where a. is an ordinal, or the symbol 
'1 

00. 
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3.25 Definition. Let µ = (al' a2, ... ) ' and v = (Sl' S2' ... ) 
be two value sequences. Then µ > v if and only if a. > s. for 1 - 1 

i = 1, 2, . . . and µ > v if µ > v and a . 1 
.; Si for some i. 

3.26 Definition. Let A be a valuated p-group and µ a value 

-+ * sequence. A(µ) = {a E A : v(a) ~ µ} and A(µ) is the subgroup 

generated by {a E A 
-+ 
v(a) > µ}. Define f(µ,A) to be the dimension 

of the vector space 

(A(µ) + pA~(A(µ)* + pA), 

h 1 f . ld Z/ Z h A( ) and A(µ)* are cons1'dered over t e p-e ement 1e p , w ere µ 

as subgroups of A as an abelian group. 

3.27 Proposition. 

f(µ, Ef)A.) = U(µ,A.). 
iEI 1 . 1 

1 

3. 28 Proposition. 

f(µ,A) 

If A @A. is a valuated p-group, 
. I 1 1E 

Let A be a cyclic, valuated p-group. 

1 if µ is the value sequence of a 
generator A, and 

otherwise. 

then 

Then, 

3.29 Theorem. Two direct sums of cyclic, valuated p-groups A 

and B are isomorphic if and only if f(µ,A) = f(µ,B) for all value 

sequences µ. 

Proof: The proof follows from propositions 3.27 and 3.28. Q.E.D. 



3.30 Corollary. If S(X) is a direct sum of cyclic, valuated 

p-groups and X' = l.:J X. 
isl 1 

the canonical representative for the 
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equivalence class [X], then f(µ,A) is the cardinality of the set of 

trees X.(i EI), with x1. EX., h(x.) = 0 and ~(x.) = µ. 
1 1 1 1 



CHAPTER IV 

DIRECT SUMS OF INDECOMPOSABLES 

In [4], Hunter, Richman and E. A. Walker identified the types of 

trees for which the associated simply presented, valuated p-group is 

indecomposable. Then they showed that a reduced, indecomposable, simply 

presented, valuated p-group is finite and arises from a unique valuated 

tree. The fact that these valuated trees form a basis for a complete 

set of invariants for finite, simply presented, valuated p-groups is 

also given in [4]. 

After giving the necessary definitions and background information 

from [4], we will identify all trees whose associated simply presented, 

valuated p-groups are direct sums of indecomposables. We will define 

an equivalence relation on this class of trees in such a way that two 

trees are equivalent if and only if their associated simply presented, 

valuated p-groups are isomorphic. This equivalence relation will be 

defined without reference to simply presented, valuated p-groups. As 

in the previous chapter, we will be able to pick a canonical represent

ative from each equivalence class and to show that these canonical trees 

form a basis for a complete set of invariants for direct sums of inde

composables. 

We will now proceed with this development. As in the previous 

chapter, we will restrict our attention to reduced valued, valuated 

trees. The following two theorems are from [4], and we refer the 
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reader to [4] for their proofs. 

4.1 Theorem. Every infinite reduced valuated tree has a non-

trivial retraction. 

4.2 Theorem. An indecomposable valuated tree X has no non-

trivial retractions if and only if S(X) is indecomposable. 

In order to use the stripping techniques from Chapter II, we will 

need to make the following definitions. 

4.3 Definition. Let X be a valuated tree and let x be a 

vertex of x. The vertex x will be called almost proper if there 

exists a finite subset {xl, x2, ... ' x } of x such that: 
n 

(1) pxi x for each i in {l, 2, ... , n} and 

(2) if px' = x and x' .; xi, 

then there exists in 

preserving valuated tree map 

that f(x') = x • 
j 

for all i in {1, 2, ... ' n}, 

.•. ' x } n 
and an order 

f : Up(B ,) + Up(B ), 
x x. 

such 

J 
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We will assume that the set {x1 , x 2 , ..• , xn} is minimal in the 

sense that if x . ./: x., then there is no valuated tree map, as described 
1 J 

in condition 2, from Up(Bx;) 
1 

into Up(B ). 
x. 

J 

4.4 Theorem. If X is a valuated tree such that each nonzero 

vertex of X is almost proper, then S(X) is a direct sum of inde-

composables. 

Proof: For each nonzero vertex x in X, pick a minimal set 

{x1 , x 2 , •.• , xn} that satisfies conditions 1 and 2 in definition 4.3. 
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Let X' be the valuated set X with multiplication by p defined as 

follows: 

JI if z is one of the 

p * z • ~z •otherwise. 

chosen above and 

It is clear that X' with this multiplication by p is a valuated tree. 

The function a : X + X' defined by cr(x) = x, for each x in 

X, is·a stripping function. Therefore, by theorem 2.4, S(X) is iso-

morphic to S(X'). The valuated tree X' is the union of indecomposable 

valuated trees. It follows from the definition of X' and lemma 3 in 

[4], that each of these indecomposable valuated trees has no non-trivial 

retractions. By using theorem 4.2 and the fact that the functor S 

preserves coproducts, we have that S(X') is a direct sum of indecom-

posable, simply presented, valuated p-groups. Since S(X) is isomorphic 

to S(X'), then S(X) is a direct sum of indecomposable, simply pre-

sented, valuated p-groups. Q.E.D. 

The converse of this theorem is also true. However, before we can 

give a proof of it, we will need to results that follow. 

4.5 Proposition. Let S(X) be a direct sum of reduced, indecom-

posable, simply presented, valuated p-groups. Then a summand of S(X) 

is again a direct sum of reduced, indecomposable simply presented, 

valuated p-groups. 

Proof: The proof of this proposition follows from the theorem of C. L. 

Walker and R. B. Warfield, Jr., which was stated in Chapter III as 

theorem 3.14. The.fact that a reduced, indecomposable simply presented, 

valuated p-group is necessarily finite follows from theorems 4.2 and 
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4.1. Therefore, the indecomposable summands of S(X) are finite, and 

as in the proof of corollary 3.15, the conditions of theorem 3.14 are 

satisfied. Q.E.D. 

In view of the proposition above and the fact that the functor S 

preserves coproducts, we only need to consider indecomposable trees 

whose associated simply presented, valuated p-groups are direct sums of 

indecomposables. We will need the following technical lennnas. 

4.6 Lennna. If X is an indecomposable valuated tree and S(X) 

is a direct sum of reduced, indecomposable simply presented, valuated 

p-groups, then X is bounded. 

Proof: Suppose S(X) is isomorphic to $ S(Y.) 
. I i 
is 

where each S(Y.) 
l 

is 

indecomposable. By lemma 4 in [4], there are order preserving, valuated 

tree maps, rx from S(X) onto x and ry from S((:JY.) onto \:} y .• 
l l 

If 0 : S(X) + S( l:JY.) is an isomorphism, then f ry01x and g 
l 

-11 
rx0 ti Yi 

are order preserving, valuated tree maps from x into 

{:JY. and from \1Yi into x, respectively. If x is the unique 
l 

element of order p in X, then f(x) has order p in \:)Yi. 

Without loss of generality, we may assume that f(x) belongs to Y1 . 

If 
n p x' = x, then 

n n 
p f(x') = f(p x') = f(x), which implies that 

f(x') is an element of Y1 • Since n is arbitrary, the image of X 

under f is contained in Y1 . Since S(Y1 ) is indecomposable, by 

theorem 4.2, Y1 has no non-trivial retractions. Therefore, by 

theorem 4 .1, Y 1 is .finite, hence, bounded. Since f preserves order 

and f(x) is contained in Y1 , X is bounded. Q.E.D. 

4.7 Lemma. Let X and Y be valuated trees and let f X+Y 
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and g : Y + X be order preserving, valuated tree maps. Let x be a 

vertex of X such that the following conditions hold: 

(1) Either f(x) is not a vertex in Y or f(x) is an almost 

proper vertex, and 

(2) gf(x) = x. 

Then x is an almost proper vertex. 

Proof: Denote f(x) by Y• If y is an almost proper vertex, then 

there is a finite set {yl, Y2' ... , yn } such that pyi = y, for each 

i in {l, 2, ... , n}, and if py' = y there is a yj in 

{y l' Y2' e e I , yn } and an order preserving valuated tree map 

h: Up (B 1 ) + Up (B ) taking y' to y. . Since x is a vertex in X, 
y yj J 

there is an element z in X such that pz = x. Therefore, pf(z) 

f(pz) = f(x) = y, which implies that if y is not a vertex there is a 

set {y1 , ... , yn} as described above, where n = 1. Denote g(yi) by 

x. and notice that px. 
1. 1. 

x. If px' = x, 

then there is a y' in Y such that f(x') y' • Therefore, 

f : Up(B ,) + Up(B ,). If y' = y~ for some i in {l, 2, ... , n}, x y ..._ 

then gf Up(B 1 ) + Up(B ) is an order preserving valuated tree map 
x xi 

taking x' into x .• 
1. 

If y' -:f y i, for all i in { 1, 2, ... , n }, 

then there is a yj in {y1 , y 2 , ... , yn} and an order preserving 

valuated tree map h : Up (B I ) + Up (B ) , 
y yj 

taking y' to y .• 
J 

In 

this case, ghf : Up(B ,) + Up(B ) 
x x. 

is the desired map. Therefore, 

J 

x is almost proper. Q.E.D. 

Now, we are ready to prove the following proposition. 
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4.8 Proposition. If X is an indecomposable valuated tree and 

S(X) is a direct sum of reduced, indecomposable, simply presented, 

valuated p-groups, then each vertex of X is almost proper. 

Proof: Assume that S(X) = f;) S(Y.), 
isl 1 

where each S(Y.) 
1 

is a reduced, 

indecomposable, simply presented, valuated p-group. From lemma 4.6 and 

its proof, we have that X is bounded and that there are order preserv-

ing, valuated tree maps F : X + Y1 and g : Y1 + X. From lemmas 4.1 

and 4.2, the tree Y1 is finite with no non-trivial retractions. This 

last statement implies that every vertex of Y1 is almost proper. 

We will now induct on the exponent of the bound of X. If X is 

a p-bounded tree, then there are no vertices, so the proposition is 

true. Suppose that X n 
is a p -bounded, valuated tree where n > 1 and 

k 
assume that the proposition holds for all p -bounded, valuated trees 

with k < n. If X has no vertices we are done, so assume that X has 

vertices. Since X is indecomposable, there must be a unique vertex 

x, of minimum order. Since x is the only element in X, whose order 

is equal to that of x and the functions f and g are order preserv-

ing, then gf(x) = x. Therefore, by lemma 4.7, x is an almost proper 

vertex. 

Let {x1 , x 2 , ... , xm} be a corresponding minimal subset of X 

that satisfies conditions 1 and 2 in the definition of an almost proper 

vertex. Therefore, if px' = x and x' 1- x. 
1 

for each i in 

{l, 2' ... , m}, then Up(B I) x 
can be stripped. This implies that 

S(Up(B ,)) is a summand of S(X); hence, by proposition 4.5, it is a 
x 

direct sum of reduced, indecomposable, simply presented, valuated 

p-groups. The valuated tree Up(B ,) 
x 

is indecomposable and the 
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exponent of the bound of Up (B I) x 
is less than that of x. Therefore, 

by the induction hypothesis, every vertex of Up(B ,) 
x 

is almost proper. 

Since x' is an arbitrary element in X such that px' = x and 

x' # xi' then we only need to consider the remaining vertices of 

Up(B ), i 
x. 

1. 

1, 2, ... , m. 

First, we notice that f (x.) = y., 
]_ 1. 

Otherwise, if f(x.) = y. with i # j, 
]_ J 

where is as in lemma 4.7. 

then fg : Up(B ) ~ Up(B ) 
y. y. 

1. J 

would be an order preserving valuated tree map taking yi to y .• 
J 

Lemma 3 in [4] would then imply that Y1 has a non-trivial retraction 

which is a contradiction. Therefore, f maps Up(B ) 
xi 

into Up(B ), 
Yi 

and g maps Up(B ) 
Yi 

into Up(B ). 
xi 

If we denote the vertex of minimum 

order in Up(B ) 
xi 

by x'., 
]_ 

then gf(x'.) = x~ because x' ]_ ]_ i 
is the only 

element in Up(B ) that has its order and f and g are order pre
x. 

1. 

serving. By lemma 4.7 the vertex x' 
i 

is almost proper. 

As in the first part of this argument, we can now strip all but 

finitely many upper branches that stem from 

bound of these stripped branches is less than 

x!. 
]_ 

n. 

The exponent of the 

Therefore, by the 

induction hypothesis, the vertices in these stripped branches are 

almost proper. Therefore, we 

vertices of Up(B ) where 
xij 

only need to consider the remaining 

ti 
{x .. } are the minimal finite sets 

1.J j=l 

corresponding to the almost proper vertices x!. 
]_ 

Again, we notice 

that f(x .. ) = y.. and, we repeat the above argument. Since X is 
1.J 1.J 

bounded and the orders of the minimum vertices are increasing, this 

process must terminate after a finite number of steps. Therefore, every 

vertex in X is almost proper. Q.E.D. 
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We can now prove the converse of theorem 4.4 which will be stated 

as a corollarY.. below. 

4.9 Corollary. If S(X) is a direct sum of indecomposable, 

valuated p-groups, then every nonzero vertex of X is almost proper. 

Proof: By proposition 3.5, there exist valuated trees 

such that is a union of infinite ascending chains and 

and X 
r 

x 
r 

is 

reduced with S(X) isomorphic to S(Xd) e S(Xr). In the proof of 

proposition 3.5, we were able to strip x 
r 

from X leaving Then 

we showed that each vertex of Xd was proper, and then Xd was formed. 

Therefore, all that is needed to prove the corollary is that each vertex 

in X is almost proper. This follows from proposition 4.8. Q.E.D. 
r 

Next, we will show that the converse of corollary 2.10 holds if we 

consider only those trees whose associated simply presented, valuated 

p-groups are direct sums of indecomposables. First, we need the 

following theorem from [4], and we refer the reader to [4] for its 

proof. 

4.10 Theorem. Let X be a finite valuated tree with no non-

trivial retractions. If S(X) is isomorphic to S(Y), then X is 

isomorphic to Y. 

4.11 Theorem. Let X be a valuated tree such that S(X) is a 

direct sum of reduced, indecomposable, simply presented, valuated 

p-groups. Then S(X) is isomorphic to S(Y) if and only if there is 

a T-function from X onto Y. 
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Proof: If there is a T-function from X onto Y, then by corollary 

2.10, S(X) is isomorphic to S(Y). 

For the converse, assume that S(X) is a direct sum of reduced, 

indecomposable, simply presented, valuated p-groups and S(X) is 

isomorphic to S(Y). By corollary 4.9, every vertex of X is almost 

proper. Therefore, as in the proof of proposition 4.4, there are trees 

X' and Y' and stripping functions a · X -+ X' 1 . and cr2 : Y-+Y', 

where X' and Y' are unions of valuated trees with no non-trivial 

retractions. So, we assume that X' = \:) X. 
id 1 

and Y ' = \:) Y . , 
jd J 

where 

each x. and each Y. is reduced with no non-trivial retractions. 
1 J 

By theorem 4.1, each x. and each Y. is finite. Since S(X) is 
1 J 

isomorphic to S (X'), we have @ S(X.) is isomorphic to © S(Y.). 
iEI 1 j E:J J 

By theorem 3.14, there is a bijection 0 : I -+ J and an isomorphism 

'¥ • : S(X.) -+ S(YV'. ) for each i in I. Since x. is finite with 
1 1 1 

1 

no non-trivial retractions, then by theorem 4.10 x. is isomorphic 
1 

to y0.' 
1 

for each i in I. Since x. (\ x = 0 
1 k 

for i -I k and 

Y. n y£ 0 for j ::f £, then the valuated tree map '¥ x. -+ Y. 
J 1 J 

defined by '¥ (x) = '¥. (x) , where x belongs to x., is a valuated 
1 1 

tree isomorphism. 

Let Z = l:JY. and 81 : y -+ z be the function defined by 
j E:J J 

8l(y) = y and 82 : x -+ z be the function defined by 8 2 (x) = '¥. (x) ' 
1 

where x is an element of x .. The functions 81 and 82 are 
1 

stripping functions. The function 8 : X -+ Y defined by 

-] 
8(x) = e1 e2 (x) is the desired T-function. Q.E.D. 

Our next task is to describe the theorem above in a different way. 

This will lead to a result concerning a complete set of invariants for 
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direct sums of reduced, indecomposable, valuated p-groups. As in 

Chapter III, we will say two trees X and Y are equivalent if and 

only if there is a T-function from X onto Y. This relation is easily 

seen to be an equivalence relation. Also, as before, we denote the 

equivalence class of a tree X by [X]. In view of this equivalence 

relation, we can now interpret theorem 4.11 as follows. 

4.12 Corollary. Let S(X) be a direct sum of reduced, indecom

posable, valuated p-groups. Then S(X) is isomorphic to S(Y) if and 

only if [X] = [Y]. 

We say in the proof of theorem 4.4 that if S(X) is a direct sum 

of reduced indecomposables, then there is a valuated tree X' in the 

equivalence class [X] such that X' is the union of finite trees with 

no non-trivial retractions. Furthermore, we have from the proof of 

theorem 4.11 that X' is unique up to isomorphism. We will call X' 

the canonical representative for the class [X]. This brings us to the 

following corollary. 

4.13 Corollary. The canonical trees form a basis for a complete 

set of invariants for direct sums of reduced, indecomposable, valuated 

p-groups. 

Recall that in Chapter III, we were able t.o characterize direct 

sums of cyclics in terms of numerical invariants. We will show that 

these numerical invariants are inadequate for characterizing direct sums 

of indecomposables. In fact, these invariants will not characterize 

any other class of valuated p-groups that properly contains direct sums 

of cyclics. 
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4.14 Lemma. Let A be a finite valuated p-group. Then A(µ) 

A(µ)* for all but finitely many value sequences µ. 

Proof: Let r = {~(a) : a E: A}. Since A is finite, then so is r. 

If µ is a value sequence that does not belong to r and x E: A(µ), 

then * For any value it is always that x E: A(µ) • sequence µ, true 

* 4 r, then A(µ) * A(µ) c:::: A(µ). Therefore, if µ = A(µ) . Q.E.D. 

4.15 Corollary. Let A be a finite valuated p-group and 

r = f\t(a) a E: A}. If µ is a value sequence and µ 4 r, then 

f(µ,A) = 0. 

It is clear that there are finite indecomposable valuated p-groups 

that are not direct sums of cyclics. In fact, if 

1 2 

4 3' 

x 
5 

00 

then S(X) is an indecomposable, simply presented, valuated p-group 

that is not cyclic, as there are no non-trivial retractions. 

4.16 Proposition. If S(X) is a finite, indecomposable, simply 

presented, valuated p-group, then there exists a direct sum of cyclic, 

valuated p-groups A, such that f(µ,S(X)) = f (µ,A) for all value 

sequences µ. Therefore, the invariants f (µ,A) are inadequate for 

characterizing direct sums of indecomposables. 

Proof: Assume that S(X) is not cyclic and set r = {~(x) : x s S(X)}. 

If µ E: r, then compute f(µ,S(X)). Let B be a cyclic valuated 
µ 



p-group such that µ is the value sequence of a generator of B . If 

f(µ,S(X}) = k where k > o, 

(B ). 
µ l 

is isomorphic to B ' µ 

where it is understood that 

k µ 

then set A 
µ .e (Bµ)i, where each 

i=l 
for i 1, 2, •.• , k. 

A = 0 if f(µ,S(X)) 
µ 

Set A = $A , 
µE:f µ 

0. By using 

propositions 3.27 and 3.28 together with corollary 4.15, it is easy to 

check that f(µ,S(X)) = f(µ,A) for all value sequences µ. Q.E.D. 
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CHAPTER V 

SUMMARY AND OPEN QUESTIONS 

Part of the definition of simply presented valuated p-groups 

implies that each simply presented valuated p-group comes from a 

valuated tree. However, two simply presented valuated p-groups may be 

isomorphic and the trees that they come from may look quite different. 

One of the objectives of this study was to try to determine if there 

is a relationship between two valuated trees whose associated simply 

presented valuated p-groups are isomorphic. 

A stripping function was defined in Chapter II.· It was shown that 

if there is a stripping function from one valuated tree to another, then 

the associated simply presented valuated p-groups are isomorphic. An 

example was given to show that the converse of the result is, in general, 

not true. We then defined a more general type of function called a 

transferring function. A result similar to the one for stripping func

tions was obtained. Unfortunately, the converse of this result is false, 

and we gave a counterexample. By using these transferring functions, we 

defined a third function called a T-function. We then showed that if 

there is a T-function from one valuated tree onto another, then the 

associated simply presented valuated p-groups are isomorphic. The 

converse of this result is open, but we rather suspect that it is true. 

We will record it as our first open question. 
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Question 1. Let X and Y be valuated trees with S(X) iso

morphic to S(Y). Does there exist a T-function from X onto Y? 

In Chapter III, we turned our attention to direct sums of cyclic, 

valuated p-groups. First, we showed that direct sums of cyclic, 

valuated p-groups are necessarily simply presented valuated p-groups. 

Then, we were able to characterize direct sums of cyclics in terms of 

the types of valuated trees from which they originated. Next, it was 

shown that if we restrict our attention to the class of valuated 
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p-groups that are direct sums of cyclics, then for this class, we could 

give an affirmative answer to question 1. After defining an equivalence 

relation on the class of valuated trees whose associated simply presented 

valuated p-groups are direct sums of cyclics, we were able to show that 

two valuated trees belong to the same equivalence class if and only if 

their associated simply presented valuated p-groups are isomorphic. A 

canonical representative was chosen from each equivalence class and we 

showed that these canonical trees formed a basis for a complete set of 

invariants for direct sums of cyclics. This fact was expressed in 

terms of the numerical invariants given in [3]. In fact, the proof 

given in [3], for the finite case, carries over to the more general 

case. 

In Chapter IV, we examined direct sums of indecomposable simply 

presented valuated p-groups. For this larger class of simply presented 

valuated p-groups, we were able to obtain results similar to those 

in Chapter III. In particular, we characterized direct sums of indecom

posable, simply presented, valuated p-groups in terms of the types of 

valuated trees from which they originated. Again, question 1 has an 
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affirmative answer if we restrict our attention to the class of valuated 

trees that give rise to direct sums of indecomposables. An equivalence 

relation was defined on this class of valuated trees, and then it was 

shown that two trees belong to the same equivalence class if and only if 

the associated simply presented valuated p-groups are isomorphic. As in 

Chapter III, we picked a canonical representative from each equivalence 

class and showed that these canonical trees formed a basis for a complete 

set of invariants for direct sums of indecomposables. Some of these 

results were extensions of results found in [4]. 

We were not able to characterize direct sums of indecomposables in 

terms of numerical invariants, but we did show that the numerical in

variants used to characterize direct sums of cyclics were inadequate for 

characterizing direct sums of indecomposables. This brings us to our 

next question. 

Question 2. Is it possible to characterize direct sums of indecom

posables in terms of numerical invariants? 

More generally, consider the following question. 

Question 3. Can simply presented valuated p-groups be character

ized by numerical invariants? 

We will close with a few remarks concerning questions 2 and 3. 

In [5], Hunter, Richman and E. A. Walker gave some numerical 

invariants for simply presented valuated groups that they called the 

Ulm and derived Ulm invariants. They showed that these invariants 

could be read directly from the tree. Their definition of these in

variants based on valuated trees is given below. 



Definition. Let X be a valuated tree. For each ordinal a, 

{x s X : v(x) = a and v(px) > a +l}. Denote by X(a) 

the set {x s X : v(x) ~a}. For each y in p(X(a)) of value 

a + 1, choose an element z in X(a) 
y 

such that pz = y. 
y 

Define 

{y s X(a) : v(py) 

IDx(a) I for each 

a + 1 and x f z }. Define fX(a) 
PY 

a. Define GX(a) = {x E X : v(x) = a 
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and there is a S <a with x ~ pX(S)} and define gX(a) = IGx(a) I. 

The cardinal numbers fX(a) and gX(a) are called the Ulm and derived 

Ulm invariants, respectively. 
0 

0 

If x and Y = then, 

ordinal a, however, S(X) is not isomorphic to S(Y). Notice that 

S(X) and S(Y) are both direct sums of cyclics. This implies that the 

Ulm and derived Ulm invariants are inadequate for characterizing direct 

sums of indecomposables, h~nce, they will not serve as answers to 

questions 2 or 3. 
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