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PREFACE 

This study is concerned with evaluating existing and formulating 

new correlations for the viscosity of binary mixtures of paraffin hydro

carbons. Viscosity of the n-butane-n-decane system was measured over 

a 25 to 85 mole fraction range to evaluate a correlation using logarithm 

of surface tension and reciprocal viscosity. 

The surface tension correlation was judged invalid and other cor

relations from the literature were tested with experimental and liter

ature viscosity data. A new correlation was devise.cl using an experi

mentally-determined interaction parameter. 

I wish to thank my major adviser, Dr. Robert N. ~addox, for his 

patience and concern during my research. Several other graduate stu

dents helped me considerably and I would like to thank them: Stuart 

E. Bennett, for designing and constructing the apparatus and for 

drawing details of it; James R. Dea:m, for his surface tension data and 

correlation, and his density data; WilUam R. OWens, for his assistance 

in writing computer programs; and Harry G. Rackett, for his density and 

other equations. Much gratitude must go the sponsoring organizations,· 

the Natural Gas Processors Association, who funded the research, and 

the National Aeronautics and Space Administration, who provided for my 

subsistence. 

Last, but not least, I thank my wife~ Jan, for. helping me prepare 

this thesis and giving moral support during graduate school. 
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CHAPTER I 

INTRODUCTION 

The Natural Gas Processors Association (NGPA) of Tulsa, Oklahoma, 

is sponsoring research on absorbers to determine causes for low effi

ciency and ways to improve this efficiency. The research at the 

Oklahoma State University School of Chemical Engineering is in two 

phases - static and dynamic. Included in the static phase are the 

study of viscosity and surface tension of paraffin hydrocarbon mixtures. 

The dynamic phase is concerned with evaluating absorption factors, A, 

from operating absorbers. 

where 

A= L/KV 

L = liquid flow rate, moles/hr 

V = vapor flow rate, moles/hr 

K = vapor-liquid equilibrium constant 

(1-1) 

Deam (6) has measured surface tension of pure components and 

liquid mixtures using a pendant drop apparatus. He has correlated 

these data with a parachor and an excess surface tension equation. 

For densities outside the range of literature data, he used the Rackett 

equation (30). 

Bennett (2) designed and constructed a viscometer apparatus for 

use over a wide temperature and pressure range. Using a capillary 

1 
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viscometer, he measured the viscosity of liquid ·methane-n-nonane mix-

tures. He observed that plots of the logarithm of surface tension ver-

sus reciprocal viscosity generated a 'family of parallel straight lines 

of constant composition. This follows the work of Pelofsky (27) and 

Schonhorn (34), who used similar coordinate systems to correlate pure 

component viscosities. }lowever, Bennett could not get a wide enough 

composition range using the methane-nonane system to fully test his 

hypothesis. 

This author used B,~nnett 1s apparatus to measure the viscosity of 

the n-butane-n-decane ·.s,i'~:l~em over a 25 to 85 mole per cent butane 

composition range. He also used literature viscosities of the methane-

n-decane (24), n-hexane-n-hexa4ecane (17), n-hexane~n-tetradecane (17), 

and n-hexadecane-n-tetradecane systems to test the Bennett and other 

correlations. Even though the log surface tension-recipl;"ocal vi,scosity 

plots do yield parallel straight lines of constant composition (Figures 

10, 11, 12), these lines do not lie between the pure component lines 

as they would if mixture surface tension were a simple function of 

composition and pure component viscosity. Therefore, this type of 

correlation was· discarded and other types were applied. The most 

successful type of correlation attempted was 

(1-2) 

where f ·is an experimentally determined function of composition, tern-

perature, and the excess Gibbs free energy. This approach is from 

Grunberg and Nissan (15) and Gambill (12), who suggest that the devia-

tion from Arrhenius'' prediction 
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(1-3) 

is a function of exponential reciprocal temperature, composition, and 

constants in the Margules free energy equation. This type of correla~ 

tion gives a predicted viscosity within five per cent of the experi

mentally determined value. 



CHAPTER II 

LITERA.TURE SURVEY 

Several different topics were surveyed in the literature. Rather 

than confuse the reader by presenting.the survey in one mass, the 

author attempted to group the results according to these topics. 

Viscosity Correlations 

In addition to the Bennett correlation, other methods of pre-

dieting mixture viscodty were sought. The main type of correlations 

published were corresponding states, empirical, surface tension, three-. 

body model, and residual viscosity. 

Stiel (36) presents a plot of~ vs. uJ for saturated pure 

liquids at Tr= 0.7 and one ofj-(jvs. Tr for a gaseous mixture of 

nitrogen-ethylene. Each curve suggests that the reduced visGosity is 

a function of the independent variable, acentric factor and reduced 

temperature, respectively. Stiel attributes the following rules to 

Prausnitz and Gunn (36). 

Wm =Xx.wi 
i 1. 

p = {R Tcm/%x .Ve~)(~ xiz i) cm 1.1. ... 1. c 

Stiel (36) also mentioned the work of Preston, Chapman, and 

4 
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Prausnitz (29), who have worked with the corresponding states principle 

in correlating the transport properties of cryogenic mixtures. They 

show that the reduced viscosity,,*, is a function of reciprocal re

duced temperature, 1/T*, alone, where 

log101 * = A + B/!* 

"l * = ~ r!/(m~ '\) 

T* = k T I J 

Preston, et 'al. suggest mixing rules, 

_ xjVCj 

<pj -.L_xiVCi 
i 

(2-4.) 

';~~"' 

{2·.,'6') 

'(2-7) 

(2-8) 

(2-9.) 

(2-16) 

(2·-11) 

to use.in reducing mixture data to a form suitable for the original 

correlation. The main value of this correlation is to calculate point 

values of viscosity and not a general line. One drawback of this 

system is the necessity of having experimental viscosity to determine 

">112 • 

Gambill (12) lists several empirical equations proposed by others 

.and makes comments a.bout their applications. For miscible liquid-

liquid mixtures, he separates the equations into two types, those with 
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and those without an interaction parameter. Equations with this para-

meter will predict experimental results more accurately than equations 

without, but generally this parameter must be detel'mined using experi-

mental results. Gambill says this parameter will vary with absolute 

temperature as exp(B/T), and will also be proportional with real-non-

ideal mixtures to the energy of mixing. 

Gambill (12) recommends equations by Kendall and Monroe (21) as 

the best equation withQut an interaction paramet~r 

(2 ... 12) 

and Grunberg and Nissan (15) as the best with a pa:i:-ameter. 

(2-13) 

Grunberg and Nissan (15) attached theoretical importance to their 

parameter by defining d as 

d = c b (2-14) 

where C is the ratio of the logarithm of the viscosity to the logarithm 

of the vapor pressure and bis the constant in the shortened form of 

the Margules equation: 

(2-15) 

In this way the interaction parameter can be calculated using the Van 

Laar equation with constants evaluated from van der Waal's equation. 
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(2-17) 

(2-18) 

(2-19) 

b. =RT ./(8 P .) 
l. Cl. Cl. 

(2-20) 

Assume for a first estimate, the Arrhenius equation for mixture vis-

cosity, 'Equation (1-3), the Antoine equation for pure component vapor 

pressure, 

log10P = A - B/(C + t) (2-21) 

where tis temperature in degrees Fahrenheit, and that vapor pressure 

of a mixture can be averaged by mole fraction, and the final equation 

for the Grunberg-Nissan interaction parameter is 

(2-22) 

An empirical equation using diffusivity was proposed by Budden-

berg and Wilke (4) for the viscosity of gas mixtures. 

}Am= 
JJ-1 

+ Y.2 
X2 l .38v,t1 x1 1.38~2 

1 + -
0 12e1 

1 + -xl x2 °12€>2 (2-23) 

Herning and Zipperer are attributed by Dean and Stiel (7) to have 

presented a correlation using molecular weight. 

}-J. m = (2-24) 
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Silverman and Roseveare (35) proposed a viscosity correlation 

based on surface tension with two empirical constants. 

(2-25) 

Pelofsky (27) surveyed the field of surface tension-viscosity 

correlations and proposed 

(j' = A exp (B/>'t) (2 -26) 

Written in logarithmic form, 

lnO' = ln A+ B/'1 (.2-2(7) 

Equation (2-27) states that a straight line with slope B can be drawn 

intersecting the point where the viscosity becomes infinite at a sur-

face tension value of A using natural logarithm of the surface tension 

and reciprocal viscosity as coordinates. This idea, using lnCT ,!ilnd 

1/~ as coordinates, is the basis of Bennett's correlation. 

Bennett (2) proposed that lines of constant"c.omposition plotted 

on this coordinate system would be straight and parallel, and distri-

buted between the pure component lines according to a function of 

the composition. 

Schonhorn (34) modified Pelofsky's equation to extend it over 

the entire range of the liquid phase. This is done by introducing 

'f\v' the viscosity of the vapor in equilibrium with the liquid so that 

the final equation is 

(2..;28) 

Equation (2-208) satisfies the boundary condition at the critical point, 
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(2-29) 

· At points outside of the critical region, Equation (2-28) redt,1ces to 

Equation (2-46). 

Residual viscosity is one correlation used by most publishers of 

viscosity data to show the accuracy of the data. This is defined as 

the viscosity at a given temperature and pressure minus the viscosity 

of the gas at the given temperature anµ a standard pressure, usually 

atmospheric. Plotting residual viscosity as a function of density 

generally gives a single curve independent of temperature. The shape 

of the curve is a function of the molecular weight of the fluid 

studied. 

Giddings and Kobayashi (13) have published a family of curves 

of different molecular weight mixtures using residual viscosity and 

reduced density as coordinates. They also show a chart of dilute gas 

viscosity as a function of temperature and molecular weight. 

Several workers have published equations for dilute gas viscosity, 

including 

Lee and Eakiri (22) 

Sutherland (10)· 

(7.43 + 0.0133 M) T3 / 2 
JJ-m= T+ 75.4+ 139 M 

.J-'l = B T3 / 2 / (T + S) 

Viscosity and Density Data 

The Zeitfuchs-type capillary viscometer used in this study 

measures kinematic viscosity. The Bennett <;:orrelation (2) uses 

(2-30) 

(2-31) 

absolute viscosity, which is the product of kinematic viscosity and 

density. Therefore, the density of the butane-decane system must be 
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known at the experimental points. 

Reamer and Sage (32) reported density data of the n-butane-n-

decane system from 100 degrees F to 460 degrees F and from bubble point 

to the critical point or maxcondentherm of the mixture. Rackett (30) 

has devised an equation for density of mixtures 

( l-Tr)2/7 
V/V = Z 

c c 
(2-3 2) 

which was used to calculate the density of the system at points out-

side the range of published data. 

Viscosity data of mixtures other than n-butane-n-decane were 

sought to test correlations. Since most correlations used pure com-

ponent viscosity, these data were also needed. 

Pure component viscosity data were found at atmospheric pressure 

for nabutane (1, 25~ 16), n~hexane (1, 14), n-decane (1, 9, 14, 16), 

n-tetradecane (1, 14)~ and n-hexadecane (1). Pure component viscosity 

data at elevated pressures were found for n-butane (5, 8, 33, 37) and 

decane (9, 23). 

Mixture viscosity data were.found for the methane-n-decane system 

(24), the he;icane-decane system (9), the hexadecane-tetradecane system 

(17). 

The ·most exhaustive compilation of physical properties of pure 

components is API Project 44 (1). This work was used extensively by 

the author for viscosity data at atmospheric pressure, as well as for 

pure component density, surface tension, and vapor pressure. 

Lipkin, Davison, and Kurtz (25) have measured and tabulated 

absolute and kinematic viscosity and density data of pure propane, 

isobutane, and n-butane over a temperature range of -100 degrees F to 
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100 degrees Fat atmospheric pressure. 

Grunberg and Nissan (16) have measured and tabulated n-butane 

viscosity from -76 degrees F to 86 degrees F and decane from -4 degrees 

F to 176 degrees F, all at atmospheric pressure. 

Giller and Drickamer (14) have also measured and listed viscos

ities for n-pentane from -136 degrees Q to 20 degrees C, n-hexane from 

-98.5 degrees C to 20 degrees C, n-heptane from -93 degrees C to 20 

degrees C, n-octane from -62 degrees C to 20 degrees C, n-decane from 

-33.1 degrees C to 20 degrees C, n-dodecane from -ii degrees C to 20 

degrees C, and n-tetradecane from 4.5 degrees C to 20 degrees C, all 

at atmospheric pressure. 

Methane and n-butane data were published by Swift, Lohrenz, and 

Kurata (37) over a pressure and temperature range of 85-675 psia and 

-220 to -118 degrees F for methane and 45-250 psia and 68 to 212 

degrees F for n-butane. 

Carmichael and Sage (5) present experimental and smoothed data 

for n-butane at 40, 100, 160, 280, and 320 degrees Fat pressures up 

to 5000 psia. 

Absolute viscosity data for gaseous and liquid n-and iso-butanes 

are presented by Sage, Yale, and Lacey (33) at 100, 130, 160, 190, 

and 220 degrees F and pressures from atmospheric to 2000 psia. 

Dolan, et al. (8) published 11 recommended values" for the vis

cosity of n-butane at temperatures from 100 degrees F to 460 degrees 

F and 14.7 to 10,000 psia. These data represent the work of several 

researchers and are smoothed points ~ather than experimental. 

Other researchers have investigated the viscosity of liquid 

n-decane. Lee and Ellington (23) present smoothed and experimental 
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viscosity and density data over a temperature range of 100 to 460 

degrees Fat pressures from 200 to 8000 psia. Their experimental work 

was only to 340 degrees F; the points at 400 and 460 degrees Fare 

predicted by a residual viscosity correlation. 

Lee, Gonzalez, and Eakin (24) publishe(l rec.om.mended and experi-. 

mental viscosity and density values for the methane-n·decane system 

over the complete composition range at temperatures of 100 to 340 

degrees F and pressures from bubble point to 10,000 psia. The 

experimental data were taken at compositions of 30, 50, and 70 mole 

per cent methane and at pressures up to 7000 psia. The balance of 

the points were calculated by residual viscosity. 

In 1935, Dow (9) followed up the work of Bridgman (3) in studying 

the effect of pressure on the viscosity of liquids. Bridgman u.sed 

pure liquids and Dow worked with mixtures. Dow studied six mixtures 

of organic liquids, including n-hexane-n-decane. He.presents relative 

viscosity data for pure n-decane at 30 and 75 degrees Cat pressures 

to 4000 psia. He used a falling ball type apparatus and defined 

relative viscosity as log t/t 0 where tis the time of fall at 30 

degrees C and atmospheric pressure. 

Heric and Brewer (17) :measured the viscosity of 14 binary liquid 

nonelectrolyte mixtures, among them hexadecane-hexane, tetradecane

hexane, and hexadecane-tetradecane. All data are at 25 degrees C and 

are assumed at 14.7 psia. The entire composition range is covered, 

and values for weight, volume, and mole fractions, kinematic viscosity, 

density, excess Gibbs free energy of activation of flow, and excess 

volume at each point are listed. 
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Sources of Other Data 

Vapor pressure data were found in Perry 1 s and from AP! Project 44 

(1). Where vapor pressure was to be calculated, as in a computer 

program, Antoine's equation was used, with constants from API 44 (1). 

API 44 was also the source of ~urface tension data, and outside 

of this range Deam's equation (6) was used. 

O"'·mix = ~ xi (Ji +O'E (2-33) 

The correlation of Buddenberg and Wilke (4), Equation (2-23), 

required diffusivity data. These were calculated by extrapolating 

the data of Reamer, Lower, and Sage (32) to the temperature region of 

the butane-decane study. 



CHAPTER III 

APPARATUS 

The apparatus used was basically tha~ built by Bennett (2) and 

the reader is referred to his thesis for more complete details. 

The heart of the system is a glass capillary viscometer of the 

Zeitfuchs cross-arm type. Since the walls cannot stand a pressure 

differential of any magnitude, a pressure cell was built to maintain 

a negligible pressure drop across the viscometer. This cell was en

closed in a temperature bath, which in turn was surrounded by a pro

tective shield to help save the·operator in case of any accident in 

the cell. The other ·major section was the pressure distribution sys~ 

tem, used to introduce gas to the p:,;:essure cell. 

Viscometer 

The viscometer used was a model C-50 Zietfuch cross-arm visco

meter manufactured by the C~lifornia Laboratory Equipment Company 

(Figure 1). The components of the viscometer were the reservoir, 

cross-arm, capillary tube, and supports. 

The reservoir held the liquid sample and the cross-arm carried 

the sample from the reservoir to the capillary. Fine lines painted 

on the reservoir and cross-arm tube walls were used to insure a con

sistent size sample for each run. 

In the capillary tube was a bulb with a fine Une at the top and 

14 



MOUNTING 
HEAD 

RESERVOIR--

CAPILLARY 
TUBE . 

MEASURING 
BULB 

, .. 
3-8 

( 

3" ,16 __ _ 

I II 
8 
~ 

1311 
·9-

16 

Figure lo Diagram of the Zeitf'uchs Cross-Arm Viscometer 

15 



16 

bottom. By measuring the ti·me taken by the meniscus to travel 

between lines, the relative viscosity was known. Multiplication of 

the relative viscosity by the viscometer consta.nt gave the kinematic 

viscosity of the.sample. 

The viscometer was connected to the liquid injector and methane 

feed lines by a 11 Teflon11 sleeve fitted tightly against the walls of 

the reservoir and a length af 11Tygon 11 tubing fitted tightly aver the 

capillary end to the viscometer (Figure 5). A wing nut pasitioned 

the viscometer correctly on the sleeve. Slots cut vertically on the 

sleeve let gas escape from the reservoir to the pressure cell to 

maintain a zero pressure differential across the viscometer. 

Pressure Cell 

The pressure cell (Figure 2) maintained pressure on the visco

meter and allowed visual observation of the viscometer reservoir, 

cross-arm tube, and capillary bulb. Attached to the cell at the top 

was the liquid injection system. 

The cell body (Figure 3) was a heavy stainless steel cylinder 

with observation ports and a top. The seal between the cell and the 

top was insured with a 11Viton 11 0-ring when the top was bolted on. 

Four U; inch-diameter observation ports (Figure 4) were installed 

in the-side of the cell. Each port was in four parts, the outer wall, 

retainer bolt, quartz window, and seals. The outer wall was a stain

less cylinder bored and threaded and welded to the cell wall. The 

retainer bolt was a hollow hex-head bolt used to hold the quartz 

window in place, tightened anly hand-tight to prevent scratching the 

quartz. The window was a fused quartz lens made by the General 
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Electric lamp glass department. The lenses were capable of service 

. to 2200 psia with a safety factor of seven·· to one. The seal between 

the cell and the lens was achieved with a 11Viton11 a-ring with a 

stainless steel ring inside to prevent collapse under vacuum. On 

the other side of the lens was a "Teflon" gasket. :Secause of the 

danger of the lens breaking, all observations were made by looking 

at a mirror focuaed on the observation.ports • .,., .:. ~ 

Liquid Injection System 

The liquid injection system (Figure 5) held reserve liquid and 

controlled the volume·of liquid in the reservoir. The system con

sisted of a liquid reservoir cylinder, injector p;i.ston, ball valve, 

gas inlet, and a connection tube. 

The reservoir held reserve liquid and the piston was used to 

farce this liquid into the viscometer reservoir or pull it back up. 

The piston was operated by a screw driver. A ball valve was at the 

base of the reservoir to hold the liquid in or ou.t if a pressure 

difference occurred between the reservair and pressure cell. 

~etween the valve and the,.pressure cell were two concentric 

areas. Attached to the ~mnular · area was a gas .inlet ~nd on the in-

side was a tube connecting the reservoir to the viscometer reservoir •. 

The lQWer tip of the tube was at the upper liquid level when the 

correct volume was in the viscometer. 

Temperature Controls 

A temperature. bath surrounded the p1;essure cell. Attached t.o 

·the bath was a refrige1;ation unit circt1lating methanol as the heat-
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transfer medium. For runs at ambient or higher temperatures, the 

methanol was blocked off and water was put in the bath. 
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Due to the nature of this study, the only fluid used in the bath 

was water. For temperature lowe:,; than ambient, ice was used as the 

coolant. A heater system using a Lightnin' mixer, Calrod heater, 

Hallikainen Thermotrol, and Rosemount Engineering Co. temperature 

probe was used for other conditions. 

The Pressure Distribution System 

The functions of the pressure distribution system were to intro

duce the gas to the viscometer, control the level of liquid in the 

reservoir, and achieve fine control of the system pressure. 

The gas used in this study was n-butane, which was stored in a 

cylinder adjacent to the unit. Bennett had used methane gas at pres

sures up to 1500 psia and had a Heise Bourdon-tube pressure gauge for 

measuring systei:µ pressure. This gauge was graduated in five psi 

increments up to 3000 psia and was unsuitable for use with butane, 

since the maximum pressure in a butane cylinder is 35 psia. An 

· Ashcroft-American Duragauge graduated in one-half psi increments up 

to 30 psig and in one-half in Hg increments to 30 in Hg vacuum was 

·mounted in parallel to the Heise gauge. 

Pressure in the system was controlled by the regulator on the 

butane cylinder, the inline pressure controller and the vent valve 

(Figure 2). Major increases in pressure were achieved by adjusting 

the regulator, while fine changes were made with the inline pressure 

controller~ The inline pressure controller was a cylinder with a 

piston attached to a screw drive. Changing the height of the piston 
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changed the volume and pressure of the system. 

A Duo .. sea1 vacuum pump was us~d to evacuate the system before 

·each run. 

Materials Tested 

Then-butane used was PhiUips Petroleum Company Instrument 

Gra<:le guaranteed to be at least 99,5 mole per c::.ent butane. Then

decane used was Phillips Petroleum Company Research Grade guaranteed 

to be at least 99.85 ·mole per cent decane. Deam (6) also used these 

IIiaterials and analyzed them chromatographically. His results showed 

the printed analyses were correct. 



CHAPTER IV 

EXPERIMENTAL PROCEDURE 

The main steps in making an experimental run were charging the 
. . 

system, bringing the system to E1quilibrium, measuring viscosity, and 

dismantling the apparatus. Reference to Figu:re 2 wiU pr<;lve helpfu1 

while following the procedure. 

Charging the system involved introducing the c:or:tect amount of 

· liquid into the viscometer reservoir a,nd filling the preuure cell 

with the gas studied. After the viscometer was attached to its hold-

ers on the top flange of the pressure cell and the ball valve shut, 

six to eight ml of liquid were pipetted into the.injection l;'eservoir 

and the screw dr:iver given two or three t1,.1rns to h<!>ld. the piston in 

position. The top Uartge was bolted onto the pressure cell and the 

gas leads connectE1d. The gas cylinder was hOQked up to the systems. 

Vent valve A, the regulator valve, and the ball valve F were closed 

and all others open. The vacuum pump was turned on. ~fter evacuation, 
. ' . 

valve G was closed and the pump shut off. The cylinder va1ve was 

opened and the system pressurized to 1.5 ps:la. Ball valVEl·F was 

opened and the injection pistonpusheddown, forcing Uquid :j.nto the 

system until the meniscus reached the line on the reservoir wall. 

Valves D, E, and F were closed •. The regulator valve was slowly opened 

· so bubbles were seen passing throt1gh the lfquid in the. reservoir. The 

bubbling continued slowly until the system was at the desired ptessure 

24 
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and the cylinder valve was then closed. The only valV!es used in 

equilibrating and running were B, C, D, and E. All others were 

closed. If viscosity was to be measured at a temperature other than 

ambient, the temperature bath was filled with the proper heat trans

fer medium and allowed to come tp the correct temperature. When the 

system was at the desired temperature and pressure, it came to equili

brium. Gas slowly dissolved in the liquid naturally, but bubbling gas 

through it helped speed the process. The inline pressure controller 

was used to transfer the gas from the cell to the liquid. Valves Band 

D were opened and valve C closed. The controller piston was lowered, 

forcing gas through the capillary and the liquid. This was repeated 

once every thirty minutes for two hours until the system reached 

equilibrium. 

Viscosity was measured by timing a specific volume of 1:i,quid as it 

passed through the capillary. Valves B, D, and E. were closed and valve 

C opened·. The piston was raised slightly, drawing liquid over the 

siphon into the capillary. The bulb was allowed to fill, wetting the 

walls. The piston was lowered until the bulb was empty. The piston 

was raised until liquid was drawn over the siphon again. Valve E was 

opened to equalize the pressure across the ends of the viscometer. 

Timing started as the meniscus passed the lower line and stopped as it 

crossed the top line. This time was reading number one. Valve E was 

closed and the piston lowered until the bulb was empty again. This 

was repeated nine times for each experimental point, 

Bennett (2) showed there is no loss in ~ccuracy to repeat the 

.measuremep.ts with the same liquid when compared to using a new sample 

for each reading. If the wall of the viscometer is dry, the reading 
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will be different from one taken when the wall is wet. Therefore, the 

calibration must be done after the wall is wetted. Also all runs for 

record must be made with wet walls. 

When all readings are complete, valves B, E, F, G, and the cylinder 

valve were closed and valves A, C·, and D .opened,. The system was' 

allowed to come to atmospheric pressure. The temperature bath was 

drained. The gas lines were then uncoupled and the top flange unbolted. 

The top should be lifted straight up so the viscometer will not touch 

the side of the cell. All sample liquid was drained from both reser~ 

voirs. Acetone was used to clean the viscometer, which was dried by 

gently passing dry air through it. The above procedure was repeated to 

make other experimental runs. 



CHAPTER V 

DISCUSSION OF DATA 

The butane-decane system was chosen to study experimentally be

cause Deam (6) had experimentally determined the surface tension and 

density of the mixture at the conditions of this study. Also the 

mixture was of two liquids and not of·a gas dissolved in a liquid. 

The procedure for determining the absolute viscosity of a sample 

was to multiply the average time of a run by the density and the visco

meter constant. The constant was determined by calibrating the visco

meter with distilled water at 25 degrees C, Density was interpolated 

from Reamer and Sage (32) or calculated by the Rackett equation (30), by 

Deam's method (6), for points outside the experimental region (Figure 6). 

The viscosity of each point was plotted on viscosity-composition charts 

(Figure 7) and viscosity-temperature charts (Figure 8) to compare data 

and use for possible correlation ideas. 

The pressure and temperature range was limited by the :apparatus. 

The maximum pressure in a butqne cylinder was 35 psia and the apparatus 

could not be operated at pressure less than atmospheric. Raoult's Law 

holds at these pressures and was t1sed to determine the pressure-compo

sition curve (Figure 9). The maximum temperature that could be reached 

with the present heating system was 130 degrees F. In spite of these 

limitations, the composition range from 0.25 to 0.85 mole fraction 

butane was covered. The complete summary of experimental data appears 

as Table I. 

27 



28 

48.------,,----~----...,.....-----,-----,------,.----.......... -----------------

44 

42 

38 

36 

I ~ec,..~ 

I 
I 
I 

'\>o~ // 
)I 
I 

I 
I 
I 
I 

Cb~ I 
. \/ 

--
/ 

ti calculated by Rackett eq. 
o R.earner & Sage exp data 

-...... ' ' ' ' ., ' \ .\ 
\. 

\ 
\ 
.~ 

~ 

34~·~~---~-AMP.I~d~a~ta_.__,_ __ ~·~:---,--'---------:L----.....1-..-,-.-..1-~--.l..-~__J 
0. 0.2 0.4 0.6 0.8 I.O 

X4 , MOLE FRACTION BUTANE 

Figure-Go· Density of n-Bu.tane-n-Decane Mixtures 



a. 
u 

::t 

o.s.-.· .. -------------------------------------

06 

04 

o- 77°F 
a- 90°F 

0.2~ /:;- 60°F 
<>- 100 °F 
v· 50°F 
o- J30°F 

0 0.2 

o, 

Va 

0.4 0.6 0.8 

MOLE FRACTION BUTANE 

Figure 7. n-Butane-n-Decane Viscosity~Composition Chart 

1.0 

....., 

'° 



a.. 
u 

30 

1.0....-....._.....------,-----,.-----.----........ ----.----...,......-, 

0.9 

0.8 

0.7 

0.6 

0.5 

8 
0.4 

0.2 

0.39 

0.565 

0.85 

0.1 ~__,..,---__ ....._ __ __. ___ ......_ ________ ..__ __ _._ ___ ....,___. 
50. 60 80 100 120 140 160 180 

T,°F 

Figure 8. n-Butane-n-Decane Viscosi.ty-Temperature Chart 



~ 

w 
a: 
::> 
V) 
V) 
w 
a: 
a. 

X4 , MOLE FRACTION BUTANE 

Figure 9. n-Butane-n- Decane Pressure -Composi tion Chart C,I 
f-' 



32 

·TABLE I 

SUMMARY OF EXPERIMENTAL DATA FOR BUTANE.-DECANE 

Ru-o Mole frac T, Pressure Densitj, Time, Viscosity, 
No. butane Degrees .F psia gm/cm sec cp 

i 

. 1 0.565 77 20.0 0.6696 77.5 0.4515 

2 o. 71 77 25.0 0.6.471 59.8 0.3695 

3 0.85 77 30.0 01! 6183 52.8 0 .2993 

4 0.69 60 18.0 Q.6592 61. 7 0.4336 

5 0.39 90 17.0 0.6856 64.9 0.4744 

6 0.565 90 25.0 0.6648 56.7 0.4019 

7 o. 71 60 18,5 0.6551 59.2 0.4135 
' 

8 0.85 50 18. 5, O .6343 61.8 0.3162 

9 0.85 60 22.5 0.6167 48.0 0 .3156 

10 0.25 110 15.0 . 0.6922 75.8 0.5594 

11 0.39 110 23.5 0.6768 65.6 0.4734 

12 0.565 100 29.0 0.6593 57.4 0 .4035 
', 

13 o. 71 90 31.0 0.6407 53 .3 0.3641 

14 0.25 130 20.0 0.6845 66.9 0.4882 

15 0.39 130 31.5 ; 0.6625 56.7 0.4005 

Viscometer constant= 0,010662 
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Surface t:ension data were tabulated for pure components in API 

Project 44 (1) and calculated for mixtures by Deam's (6) equation 

(jmix =L 
i 

l'T" E x. v. + cr 
1. 1. 

(5-1) 

where excess surface tension, 0-E, is read from a graph with x1 , the 

mole fraction of the lighter component as the abscissa and O"E as the 

ordinate, and lines of constant reduced temperature radiating from the 

origin. 

Residual viscosity is independent of temperature and is a func-

tion of density only; it is widely used as a correlation technique. 

Therefore, this author reasoned that kinematic viscosity might be 

independent of density and would correlate better. 

After drawing curves using both absolute and kinematic viscosity 

' for the various correlations, the shapes were seen to be basically the 

same and neither would consistently fit the correlations better. 

Absolute viscosities are reported in this thesis rather than 

kinematic. Generally, published viscosity data are absolute unless'·, 

otherwise stated. 

Bennett (2) tested the reproducibility of results from the 

apparatus and found they w~re within: 25 per cent of literature 

data for n~nonane. 'l'he only difference in accuracy of data between 

this work and Bennett's is due to differences in technique. 



CHAPTER VI 

DISCUSSION OF CORRELATIONS 

Bennett (2) showed that plots of the logarithm of surface tens:i,on 

as a function of reciprocal viscosity for mixtures yield straight 

parallel lines· (Figure 10). He theorized that graphs using the same 

coordinates for other mixtures would be simUar. However, he lacked 

sufficient data points over a wide enough composition range to prove 

this. 

-· Definition of Error Reporting 

Since the Bennett correlation did not work, others from the lit-

erature were used and modified to determine the one tha-t · would most 

faithfuUy reproduce experimental data. The accuracy is reported as 

average absolute and maximum positive and negative per cent difference 

between calculated and experimental points unless otherwise stated. 

Per cent differenGe is defined as 

% diff = calculated viscosity - experimental visc;:osity 
experimental viscosity 

The average absolute per cent difference is defined as 

ave abs% diff ,= (1/n)t, % diffil 
1 . 

A star (*) in the ·maximwn positive per cent difference site shows 
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that all calculated points were less than e]!:perimental and only negative 

values of per cent difference were calculated. The reverse is true for 

a star(*) in the maximum negative per cent difference site. 

Surface Tension-Viscosity 

Using Bennett's coordinate system, the resultant gr~p.hs are indeed 

parallel straight lines of constant composition and convergent straight 

isotherms for methane-decane (Figure 11). The butane-decane plot 

(Figure 12) is inconclusive because the points ~eem an extension of 

the pure decane line. This method of correlating viscosity does not 

work for these two systems since the graphs show that mixture viscosity 

is not a simple function of the pure component viscosity. On Figure 

11 the,decane line should be positioned closest to the ten per cent 

methane line, not the 70 per cent methane line. The butane-decane 

system point$ were clustered together so that definite lines could not 

be drawn with assurance. The hexadecarte-tetradecane-hexane systems 

were not correlated by this method as all points were along a single 

. isotherm. 

Gas Mixture. Viscosity Correlations 

The equation using molecular weight by Herning and Zipperer (7), 

Equation (2-24), was tested on the butane-decane system. The ratio of 

experimental viscosity to calculated viscosity ranged from l. 76 t.o 

2. 94. 

Buddenberg and Wilke (4) suggested using diffusivity and density 

as variables in Equation (2-20). The average absolute and maximum 

positive and negative per cent differences for the butane-decane system 
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were 68.3, 185.0, and -31.6 per cent, respectively. 

Both of the above equations were for gas mixtures, but this 4.uthor 

tested them for liquids. 

Mixing-Rule Correlatipns 

Using the two mixing-rule equation below, ~he errors were appro~i-

mately the same. The Kendall and Monroe (21) equat.ion, Eq1,.1ation (2-12), 

used viscosity to the one-third power and the average absolute and 

maximum positive and negative per cent difference1;1 were.16.6, 2.l, and 

-29.7 per cent, respectively, for the butane-decane system. Arrhenius, 

as reported by Gambill (12), used the weighted sum of logarithms of 

viscosity in Equation (l-3). The average absolute and maximum positive 

and negative per cent differences were 25.3, *, and -32.8 per cent for 

butane-decane, 19.8, *, and -24.6 per cent for hexane-hexadecane, 13.3, 

*, and -17.8 per cent for tetradecane-hexane, ~nd 0.562, 1.41, and 

-0.306 per centfor hexadecane-tetradecane, respectively •. 

Grunberg-Nissan Correlation 

Grunberg and Nissan (15) intJ;"oduced an interaction parameter to 

the Arrhenius equation as derived earlier in Equations (2-13) through· 

(~-22). This author tested Equation (2-13) on the four binary systems 

since the.parameter seemed detet'Ql:Lnable a priori. Grunberg and Nissan 

were not explicit in their definition of bin Equation (2~15) and this 

author tried three variations of the Margules equation. 

(6-3) 

(6-4) 
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(6-5) 

There was not much difference in the accuracy using the above three 

definitions, as is shown in Table II. 

Heric and Brewer (17) listed experimental values of the excess 

free energy of activation of flow, GE, for t,he hexadecane,-tetradecane-

hexane systems. These data were used to evaluate the constants in 

the Wilson equation, Equation (5-1). 

(6~6) 

where 

· Wilson's equation was. rearranged and µsed to evaluate activity co-

efficients :for Equations (6-3), (6-4), and (6-5). 

(6-7) 

(6-8) 

According to Orye and Prausnitz (26), Wilson's equation calculates 

values of free energy of activation of flow nearer t,o experimental than 

the Van Laar equation, but there was no improvement in the accuracy of 

the corr~lation. Using the calculated parameter gave worse results 

than the Arrhenius equation (Table II). One way to improve the effect 

of the parameter is to use experimental viscosity in Equation (2-22), 



TABLE II 

SUMMARY OF GRUNBERG-NISSAN CORRELATION 

bis evaluated by these equations: 

A b = 0 l /x~ 

! . is evaluated by the Van Laar Equation· 
l 

System A B 

C4-ClO 34.6 32.6 

* * 
-43.2 -41.4 

Cl6-C6 27.8 36.0 

* * 
-34.6 -47.6 

cl4-c6 20 .• 6 27.4 

* * 
-26.0 -34. 7 

cl6-\4 0.694 o. 728 
1.45 1.45 

* * 

Top number is average absolute per cent difference; 

middle number is maximum positive per cent difference; 

bottom number is maximum negative pet' cent difference. 

c 

29.0 

* 
-3 7 .o 
41.5 

* 
-51. 9 
30.6 

* 
-3 8.1 

41 

o. 728 
1.45 

* 
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but then d falls into the classification Qf experimentally-deteI111ined 

parameters and loses its uniqueness. 

Corresponding States <;orrelation 

Preston 1 Chapman, and Prausnitz (29) used the corresponding states 

principle for their correlation of transport properties of cryogenic 

liquids, as derived earlier in Equations ·(2.-4) through {2-11). 

The interaction parametez,;1] 12 for butane-decane was determined 

by solving Equation (2.-10) for~ 12 , 

/ 

(6.-9) 

substituting experimental data into the right side of Equation (6-9), 

and averaging ~ 12 • Calculated viscosities were determined by Equation 

(2.~10) using the. average>? 12 • Values of the Lennard .. Jones parameters 

were taken from Hirschfelder, Curti.ss, and Bird (18), plotted as a 

function of molecular weight, and extrapolated to obtain values for 

decane. Then log10 ~ * was calculated for both experimental and cal-

culated values of ~·. Both sets of log10lt* points were fitted to 

Equation (2-4) by least squares. The correlation coefficients for 

the exper!mental and calculated points were 0.812 and 0.928, res-

pectively. The average absolute and maximum positive and negative 

per cent differences were 1.33, 2.83, and ... 2.02 per cent, respectively, 
( 

meaning that the points fit the curve well, and there is very good 

agreement between the experimental and calculated values (Table III). 

Where values for all the parameters can be determined, this correlation 

is the best tested. However, the interaction parameter m,ist be 



Run 
No. exp 

1 0.4515 

2 0 .3695 

3 - .2 993 

4 0 .4336 

5 0.4744 

6 0.4019 

7 0.4135 

.'8 0.3162 

9 0 .3156 

10 0.5594 

11 0 .4734 

12 0.4035 

13 0.3641 

14 0.4882 

15 0.4005 

TABLE III 

SUMMARY OF PRESTON, CHAPMAN, AND PRAUSNITZ 
CORRELATION FOR BUTANE-DECANE 

log1Jt* log1ol'\* 

calc 1/T* exp calc 

o.4522 0.765 2 .8989 2. 8896 

0.3561 0.842 2. 8119 2.7959 

Q.2640 0.887 2. 7204 2.6659 

0.3884 0.857 2.8814 2. 8335 

0.5356 0.655 2. 9204 2. 9731 

0 .4331 0.745 2.8484 2.8809 

0.3742 Q.869 2.8608 2.8174 

0.2870 o. 931 2.7442 2.7022 

0.2778 o. 915 2. 7434 2.6880 

0.5601 0.562 2. 9920 2. 9926 

0.4979 0.634. 2.9195 2.9414 

0.4224 o. 734 2.8501 2.8700 

O .3436 0.820 2.8055 2.7803 

0 .5909 0.542 2. 932 9 3.0158 

0.4698 0.610 2.8469 2.9162 

Average absolute% difference 1.327 
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lo diff 

0.023 

-0.570 

-2.005 

-1.660 

1.805 

1.142 

-1.516 

-1.531 

-2.021 

0.020 

0.751 

0.699 

-0.897 

2.827 

2 .435 
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determined, eit.her using a mixture data point or by devising a 

technique to predict it. 

Free Energy Correlation 

· Gambill (12) stated his investigation showed that an interaction 

parameteJ;' added to t;he A.rrhenius equat;i.on was proportional to exponen-

tial reciprocal temperature and to the excess free energy •. Thiij 

author took Gambill 1s suggestion and adapted the Arrhenius equation 

by adding an.interaction parameter which was an empirical function 

of temperature and/or free energy. The equations he used were 

(6-10) 

(6-11) 

lnu = x lnJ.t. + x21n>,t + e:icp (C/T) 
/-m 1 ~- 1. ~ 2 

(6 .. 12) 

where A, B, and Care experimentally determined constants. 

These equations were tested using experimental free energy and 

free energy calculated by the.Wilson and Van Laar equations for the 

hexadecane-tetra.decane-hexane systemi;; and by the Van Laa:i:- equation for 

the butane-decane system. The average absolute.and maximum positive 

and negative per cent differences are tabulated for the various cases 

of this correlation (Table IV - A, B, C). 

Reduced Viscosity Correlation 

Stiel (36) presented plots of reduced viscosity as a function of 

acentric factor.and reduced .temperature, where reduced viscosity is 

defined as 



System 

c4-c 
10 

c -c 
16 14 

TABLE IV A 

SUMMARY OF THE PROPOSED CORRELATION 

MErHOD OF FREE ENERGY CALCULATION 

Experimental 

0.163 
0.275 

-0.268 

0.123 
0.451 

-0.130 

0.323 
0.787 

-0.136 

Wilson 
Equati9n 

0.693 
1.66 

-1.08 

0.372 
1.22 

-0 .596 

1.30 
1.20 

-2 .11 

Top numbe:r: is average absolute per cent difference; 

middle number i~ maximum positive J.)er cent difference; 

bottom number is maximum negative per cent difference. 

Van Laar 
Equation 

4.26 
13. 9 

- 9.33 

1.43 
2.96 

..,.2 .07 

0.836 
1.05 

-1. 72 

1.35 
1.20 

-2 .21 

45 . 
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TABLE IV B 

SUMMARY OF THE PROPOSED CORRELATION 

MEl'HOD OF FREE ENERGY CALCULATION 

Wilson Van Laar 
System Experimental Equation Equation 

C4-Cl0 8.06 
19.2 

-11.3 

c -c 0.163 o. 712 1.43 
16 6 0.274 1.63 2.85 

-0.266 -1.11 -2 .15 

c -c 0.123 0.3 77 0.855 
14 6 . 0.449 0.21 LOO 

-0 .131 -0.608 -1.79 

c -c 0.103 o.744 0.830 
· · 16 14 0.199 1.33 1.49 

-0.00745 -0.946 * 
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TABLE lV C 

SUMMARY OF THE PROPOSEP CORRELATION 

l_y-tm = x1i1J'l1 + x21~Z + eC/T 

METHOD OF FREE ENERGY CALCULATION 

Wilson Van Laar 
System Experimental Equation Equation 

C4 .. clO · 5.73 
13 .4 

-l0~6 

c -c 4.51 · 4.51 4.51 
16 Q 8.00 8.00 8.00 

-6.55 -9.55 .. 6.55 

c .. c 4.02 4.02 4.02 
14 6 8. 71 8. 71 8. 71 

.. 6.00 -6.00 -6.00 

Cl6-Cl4 0.748 0.748 0.748 
1.81 1.81 1.81 

* * * 
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(6 .. 13) 

Each plot suggested reduced viscosity was a function of the independent 

variable •. 

The a.centric ;factor graph shc,wed where the viscosity of eac;h 

p,araffin at a reduced temperature of 0.7 would lie on this coordinate 

system. This author reasoned that acent;ic factor of a mixture is a 

function of composition only, so paraffin mixtur~· curves should have 

the same general shape as the pure component. For methane-decane 

(Figure 13), the isotherm,s are convergent curved lines, as are the 

lines of constant redµced temperature. The butan~-decane chart 

(Figure 14) shows parallel if;otherms. An equat:lon was not devised to 

represent this coordinate system. 

For. the nitrogen-ethylene system, St:lei (36) plots reduced 

gaseous viscosity:,)1,- *f, wher';f( * ii; gas viscosity and i is 

defined by Equation (6-13), as a flmction of reduced temperature. 

This gave a single line fqr the various compositions o;f nitr.ogen-

ethylene. For ·methane-decane (Figure 15) the :lsotherm,s converged 

into the 70 per c~nt methane composition 1:lne to give a triangular-

shaped graph. The butane~deGane data (Figure 16) were not over a 

sufficiently broad temperature range to get this triangular curve. 

No equation was used to correlate this system. 
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Figure 15. Stiel Reduced Temperature Correlation for Metharie-n~Decane 
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Figure 16. Stiel Reduced TempeTature Correlation for n .... Bu'l;,ane-n-Decane · 



CHAPTER VII 

CONCLUsioNS AND RECOMM~NDATIONS 

The correlations ,studied were broken down into three basic 

types - graphical, equations wit;hqut experimentaUy determined para

meters, and equations with.experimentally determined parameters. 

This author set as the requirement for a good correlation the ability 

to predict mixture viscosities within ten per cent of experimental. 

Bennett's graphical technique (2) was found invalid for the 

systems tested. Stiel 1 s coordinates (36) may work for some mixtures, 

but these results were.inconclusive, 

The equations of Herning and Zipperer (7), Equation (2-24), 

Buddenberg and Wilke (4), Equation(2-23), Kendall and Monroe (21), 

Equation (2-12), and Arrhenius (12), Equation (1-3), did not meet 

this requirement. The equation by Grunberg and Nissan (15), Equation 

(2~13), and adapte9 by this author also did not meet the ten per cent 

requirement. However, Equation (2.,.13) may be evaluated by othE:!r 

means to reduce the error. None of the above equations had an 

experimentally determined parameter. 

The two types of equations that accurately predicted viscosity 

data had experimentally determined interaction parameters. 

The corresponding states technique of Preston, Chapman, and 

Prausnitz (29) predicted point values of viscosity very well and 

also reduced the data to a simple function of reduced temperature. 

5,3 



54 

·However, the procedure is quite involved and req1,1ires th<i! use of 

Lennard-Jones parameters and critical valu,;nes of pure components. 

'rhis author proposed three equations usin$ combinations of an 

experimentally determined constant,· temperature, and excess free energy 

of mixing as parameters. 'They are Equations (6-10), (6-11), and (6-12) • 

The main disadvantage of this type of correlation is that it requires 

1 f h f f . . . GE va ues o t e excess ree energy o m1.x1ng, • This GE may be 

evaluated by the Wilson or Vian Laa:r equations or experimentally. Both 

equations have constants to determine, by curve-fitting experimental 

data or some other means. Edmister (11) shows how to calculate the 

Van Laar constants using critical pressure and temperature. But the 

Van Laar equation is the least accurate, especially with constants 

dete:rmine.d in this manner. In spite of these difficulties, this 

correlation predicts mixture vil:lcosity very well. 

Both techniques are·straight forwal;'d and can be directly pro-

grammed for computer usage or could be used for hand calculations. 

There are no trial-and-error steps or logic functions required in 

either process. 

Reconunenc;lations 

Persons continuiq,g this work are recommended to do the following: 

l. Evaluate the interaction parameter of Preston et al. (29) 

LEquation (2-,10)_/ for othermixtures and cotirelate it. 

2. Apply the proposed correlation LEquations (6-10), (6-11), and 

(6-12)_/ to more systems. 

3. Evaluate the Grunberg-Nissan (15) parameter LEquation 2-13)_/ 

experimentally and correlate it. 



55 

4. Adapt the apparatµs to time runs elect]!."()nica,lly and invent a 

technique to take samples of the fluid in the reservoir to 

analy2:e chroma~ographtcally. Install a dev~ce .to read 

pressure inside the cylinder. 

5. Test Stiel 1s graphical coordinates (36) on other mixtures. 
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NOMENCJ.4\ TURE. 

ENGLISH LETTERS 

A, B, C, • , • Empirical, constants 

GE Excess free energy of activation of flow 

k Boltzmann's constant 

M ~olecular weight 

P Critical pressure 
c 

r lntermolecu,lal:' distance at minimum ~nergy 
0 

T Absolute temperature 

Tc Critical temperature 

Tr Reduced temperature, T/Tc 

T* Redu.ced temperature, 'kT/~ 

t Temperature, °For 0 c 

V Volume 

Ve· Critical volume 

x1 Mole fraction 

Zc Critical compressibility factor 

GREEK LETTERS 

Activity coefficient 

Lennard-Jones energy parameter 

Absolute viscosity, cp 

Reduced viscosity according to P;estcm, et al., -}Equation (. 
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~ ij 

v 
~ 
e 
a
,: 

<I> i 

µ 

Viscosity interaction parameter 

Kinematic viscosity, C$ 

Viscosity paI"ameter, r 116 /(Ml/2p2/3) c . c 

Density 

Surface tension, dyne/cm 

Tine, sec 

Volume fJ;"action, xiV ci /~xiv ci 
l 

Liquid viscosity, cp 

)J.. * Gas viscosity,)-< p 

t,) Acentric factor 
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