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CHAPTER I 

INTRODUCTION 

The development of techniques to simulate hydrological events has 

been widely report~d in recent years. The paucity of data in many areas 

where development of water resources sy~tems was desirable has been a 

major obstacle to efficient design. To overcome this deficiency, 

hydrologists have found it more and more necessary to attack their prob

lems with the tools of the statistician, to create synthetic data where 

none or little existed before. Unfortunately, in some circles over

emphasis has been placed on synthetic data, which cannot, however sophis

ticated the t,·chniques of analysis, be more accurate than the original 

parameters which were used in tts generation. This has led in the 

recent past to a ·search for more complex methods of analysis than are 

probably warranted by the original data, or the conclusions which can 

safely be drawn from the results. However, generation of hydrological 

data may, if its results are used with caution, be a useful tool for the 

design engineer. 

The analysis of the sequential occurrence of stream flows is based 

upon the assumption that they form part of a time series, which is con

sidered to be infinite. The first valuable studies of time series were 

made by Fourier who proposed to his incredulous contemporaries that any 

series can be described by a process of sums of harmonics, even though 

the number of harmonics may be very large. However, a successful method 

1 



2 

to describe the harmonics has had to await the development of spectral 

analysis in recent years. Other methods have been the use of periodo-

grams, developed by Shuster, and the use of correlograms, each of which 

attempt to show the significant pel;'iods in t~e harmonic cycle. 

For many years research workers attempted to apply the methods of 

Fourier analysis to many types of time series, with varying degrees of 

success. However, in a departl.lre from tl:i.is concept of a series con-

sisting of a sum of pure harmonics, possibly with superposed fluctuations, 

Yule (1927) conside:i;-ed a system comprising a period;!c movement which was 

affected by true external disturbances, These disturbances would account 

for changes in pl'tase and amplitude which had been observed by workers 

attempting harmonic analysis of natural seI'i.es, Yule's investigation 

led to a regressi9n equation of the form 

(1.1) 

where Et is a random variable at time t, 

and ~1 and l3a are constar,i.ts, given by 

131 !:J. ( 1 - ra) = ·1 ria -

132 ra - ri3 
= a. 1 - :r'J. 

Here, ri is the correlation between successive elements of the series 

separated by one, and for a general lag k 

rk = [var w(t) • var w(t + k)]170 (L4) 
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These correlations were referred to by Yule (1926) as the serial corre-

lation coefficients for the series. 

Yule's equation (Equation 1.1), which is known as a process of 

linear autoregression, was used by Walker (1931) in an analysis of 

meteorological data. Its use for streamflow sequences has usually been 

limited to a first order form, ignoring the function of Wt-a• 

(J..5) 

Julian (1961) used an equation of this type in studies of streamf'low 

sequences where the variable Wt was the streamflow Xt at time t. The 

constant a may be shown in this case to be r:i. the first order serial 

cqrrelation (v. Section 2.4.b). The method was also used by Brittan 

(1961), using the standardized variable 

(1.6) 

where m and s3 are respectively the mean and variance of Xi, 

for the random variable wt• The discussion of Section (2.l.b) will show 

that this is usually a more valid variable. 

A model which has received wide attention recently is that of Thomas 

and Fiering (1962). T4is is based essentially upon different ev=:sumptions 

to those used above. The standardized monthly flow in the month '! is 

assumed related to the standardized flow in the month 1:'=l by a linear 

regression b'"C, with the addition of a random component which is a func-

tion of r-r the correlation between the.se months. The standardized 

monthly flows are given by 
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(L?) 

where mt' and~ are respectively the mean and variance of 

the month T. 

The autoregression equation is given by 

(1.8) 

where qt is a standardized normal random variable. 

It can be shown that 

(1.,9) 

the regression coefficient. 

The Thomas and Fiering model assumes that correlation exists be-

tween the months T and T-1. If correlation does not exist and 

r :::.: O, the model cannot be used. It is conceivable that no cor:r·elation 
1' 

could exist between months and Thomas and Fiering themselves fou.nd that 

correlations in some months, when tested for significance with the 

t-test (v. Section 6.4), were not signifi?ant. The model was used in 

studies for the Oklahoma Arkansas Water Planning Study by Perry (1968) 

and Dunaway (1968). It was successfully applied to river basins with 

large drainage areas where it was found that insignificant co:r:r·elations 

did not arise. However, when applied to basins with small contributing 

area it was found that often as many as one-half of the cor~clatior1s 

were not significant. It was concluded, therefore~ that the model could 



not be used for basins with small areas~ and it was hypothesized that 

rapid run-off after severe storms common in the study area resulted in 

this poor correlation between monthly flows. 

5 

This report is the result of an investigation to attempt to find a 

model or models which could be used to describe the monthly flows of 

small river basins which the Thomas and Fiering model had failed to 

describe. Nine small river basins in and around the study area were 

selected for analysis, and used to study the applicability of the pro= 

posed models. Subsequentl.y, two larger basins were also examined. 

Statistical tests of the significance of the models, which are not 

applicable to the Thomas and Fiering model, were also appl::i.ed. 



CHAPTER II 

THEORY OF ANALYTICAL METHODS 

1. Time Series 

a. De:Uni tion 

Let {t} denote a set of points in time and Wt be a -variable corre

sponding to each point t. Such a series of variables is called a time 

series. The variable Wt may be considered to consist of two parts, 

one deterministic and a function of t, and the other random, not being 

a function of t or the deterministic element. Then: 

where Ot is a deterministic element 

and Et is a random element. 

(2.1) 

If the deterministic element is absent, the series is completely random 

and may be denoted by 

(2.2) 

Similarly, if the random element is absent 

6 



The deterministic portion may be found by analysis of the series. 

If both Ot and Et are ]);resent, the time series may be one of two 

types. If the series can be described by.a poJ..ynomial of the form 

7 

(2.4) 

. . ' ' 

the series is described by a process of moving averages. · Alternatively'l 

if the series can be<described by an expression of the form 

(2.5) 

the series is said to be a process of linear autoregression. The proc-

ess of linear autoregression will be considered in this study. 

b. Stationarity 

As the process of linear autoregression is to be used only for 

stationary time series, the seriei:, under consideration must be station-

ary or made stationary by mean$ of a tran,sformat:i.on. Stationarity may 

be defined as follows. 

Again'l let (tl denote a set of.points·in time and let Wt be a 

variable corresponding to each point t. The probability distribution 

function of w( t1 'l ta., •.• , · tn ) 'l where w( t1 , ta, •.. 'l t 11 ) ls a subset of 

The set [Wt) is termed stationary if, for all ( UJ. 'l ••• ~ Un), the 
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relationship 

F(t1, ••• , tn; Ui, ••• ,Un)= F(t:i_ + k, ••• , tn + k; u.i., ••• , Un) 

(2.7) 

is satisfied for all k < n (Wold, 1954), where k is referred to as the 

lag. Thus, in any subset of the population (w1;} statistical parameters 

obtained from this subset should not vary from those obtained from 

other subsets by more than is expected by chance. Mathematical expecta-

tions (denoted by the symbol E) obtained from this distribution function 

may be used to describe stationarity in terms of these parameters. 

Thus, stationarity of the first order is defined by 

E[ W1; J = µ = constant (2.8) 

where µ is the mean of the· population ( W1;}. 

Second order stationarity can be defined as 

E[ wt • Wt+k J = constant. 

As the serial correlation coefficient between W1; and Wt+k is defined as 

(2.10) 

and by. the hypothesis of stationarity 

(2.11) 
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and 

(2.12) 

wher~ d3 is the variance of the population wt 

E[w "' J - µ·a P,k : _..._.t~•_,...~A·t+~k.._.,.,~_,_ __ 
a'1fi (2.1.3) 

Thus, 

[Roesner and Yevdjevich (1966)] 

If an observed series is normally distributed and is stationary to 

the first and second orders, it is stationary to all higher orders 

(Matalas, 1967 a). However, such higher orders are beyond the scope of 

this theoretical discussion. 

An observed hydrological sequence (Xt}, where Xt is the mean 

monthly flow in the month t, may be considered to be a sample from a 

population of the fo;r-m (Wt}. Such a sequence is rarely foi.:md to be 

stationary, because the period of record is too short for finite sub-

sets to have identical stat:;1.stical parameters. However, the s<S,ries may 

be standardized by m€!ans of the transformation 

where m and s2 are respectively the mean and variance of [Xt}, thus 



n 

s2 = (n: 1) I (Xt - m)a 
t=l ' 

there being n observations of Xt• 

10 

(2.16) 

(2.17) 

The standardized variable Zt thus has mean of zero and variance of 

one and is stationary to the second order. 

2. Serial Correlation 

The observed series (Xi J, (X1 , Xa, ••• , Xn), may be broken down 

into (n - 1) pairs of series.of the form 

Xa, •• •, Xn.-k} 
k < n. 

Xic+1, • • •, Xn. 

The serial correlation coefficient of t4e series for a lag k is 

defined as 

(2.18) 

(2.19) 
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n-k n-k n-k 

L (xtxt+k) - (n: k) I xt L Xt+k 
= _______ t .... =_..,l ___________ t_=_l __ t_=_·l _________ _ 

(n:k) (% x,)J""[% x; .. -(n:k)(~ ~ •• rr [
n-k 

6 
(2 .. 20) 

This can be seen to be analogous to the correlation between dependent 

and independent variables. However, by the hypothesis of stationarity 

var(Xt) ~ var(Xt+k ) • Therefore, Equation (2 .20) may be considerably 

simplified by writing 

n-k n-k n-k 

L (Xt Xt+k ) -
1 2 xt 2 Xt+k (n - k) 

t=l t=l, t=l (2 .21) r1c = var (Xt ) 

As the series (X1 , X3 , ••• , ~ ) is assumed to be a subset of an 

infinite series (X), rk is an estimate of the population serial correla-

tion coefficient P1c, referred to hereafter as the autocorrelation 

coefficient. For a stationary series r1<, .... Pk as n .... 00 • From the series 

[ Xt } , (n - 1) values of rk may be computed. Howe·ver ~ rk loses :its sig-

nificance as k increases and :i:Xt and I:Xt+lc in Equation (:? .21) begin 

to differ significantly. Although no precise limits for k ma:y- be 

set, Blackman and Tukey (1958) have recommended that k 1" n/10. 

A plot of the serial correlation coefficients rk against the lag 

k is called a correlogram. The shape of the correlogram'I whic:h may be 

formed by joining the points of the plot with straight lines (although 

the graph is not strictly continuous) may reveal the nature of the time 

serieso Kendall (1951) describes four types of correlogram. A random 
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series (Equation 2.2) has a correlogram which is a straight line with 

ric = 0 for all k, as the serial correlation is zero. A correlogram 

which osqillates and is not damped is typical of a time series which 

consists of a sum of harmonic components (Equation 2.3). A correlogram 

which oscillates but is damped quickly and vanishes is typical of a 

time series described by a scheme of moving averages (Equation 2.4). A 

correlogram which is damped but does not vanish is typical of a scheme 

of linear autoregression (Equation 2.5). 

The correlogram of the independent series will only approach a 

straight line with ric = 0 as n .... 00 • Anderson (1942) has shown that if 

the sample (Xt} is normally distrib.uted about its mean with variance of 

one, rk may be considered zero if at significance level ex 

-1 - Kg. (n - 2)113 -1 + Ka. (n - 2)112 

(n - 1) < r~ < (n - 1) (2.22) 

where Ka: is the two-tailed standard normal deviate at significance 

level, ex. 

If the correlogram falls within these limits, the series is considered 

to be independent. 

3. Separation of Deterministic and Random Elements 

As the observed. series fxt} is a subset of a populei.tion [ X}, in 

accordance w~th Equation (2.1) 

Inspection of the correlogram of the series Xt may reveal the nature of 
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the time series. If rk = 0 at significance level a., the series is ran-

dom and bt will be absent. If the correlogra.m shows distinct cycles and 

is not damped, it may be possible to describe the deterministic element 

as a sum of harmonic components. 

The hydrograph of monthly flows from a river basin with typical 

seasonal flow pattern suggests that the cycle of movement of monthly 

flows may be described as a periodic function of the form 

(2.24) 

where h is the period of the cyclic movement and mt the mean 

monthly flow in the month t. 

This is a difference equation of order h, whose solution may be written 

m, = m + i Kp sin (~ pt + dp) 
p=l 

[Wold (1954)] 

where p = order of harmonic 

h 
n = number of harmonics< 2 

dp = phase of cycle 

Kp = constant. 

By means of the identity 

sin (a. + m = sin (X. • cos r3 + cos (X. • sin ~. 

Equation (2.25) may be rewritten as 

(2 .. 25) 
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n n 

mt :;: m + I AP cos ~'lt pt + L BP sin ~ pt 
p:;:l p=l 

(2.26) 

where 

(2.27) 

(2.2~) 

[Brooks and Carruthers (1953)]. 

The constants Ap and Bp are, therefore, determined by: the first h 

terms of the series fxt}.· However, inspection of the series shows tha.t 

an annual cycle usually predominates and h is, .therefore, chosen to 

be twelve. The constants Ap and Bp are then formed from the flows of 

the first year of the observed series, but to make them more representa-

tive of the whole series they are chosen to be defined in terms of the 

mean mT of the month T(T = 1, 2, ••• , 12) where 

T+l2(N .. 1) 

m,. ~ L .x. (2 .. 29) 

t::l 

t = T + 12i 

i = O, 1, 2, ••• , (N-1) 

N = number of complete years in record. 



Hence 

12 
BP - g_ ~ m't 

- 12 ,i,., 
't'=l 

Equation (2.26) then becomes 

2n 
cos 12 pt 

• 2 n .,. sin 12 p •• 

2n sin 12 pt. 

15 

(2.30) 

(2.31) 

(2.32) 

By a similar qerivation, a continuous function of the standard deviation 

may be constructed, using the standard deviation s't of the month 't 

where 

(2.33) 

Then 

n n 

+I cP 2n . +I Dp • 2n: t (2.34) St = s cos 12 p-i; SJ.n 12 p 
p::l p=l 

where 
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21t 
st' cos 12 pt' (2.35) 

4. Stochastic Models 

a,. Standardization of Variables 

The series [Xt.] or some transformation of (Xt} may then be stand-

ardized by means of Equation (2.15). 

Then 

(2.37) 

will be called the standardized series of (Xt}• 

Alternatively, the continuous functions mt. and St of Equations 

(2.32) and (2.34) may be 1.,1.sed, whence 

However, tniq series does not necessarily have mean of zero and variance 

of one, and must be standardized by means of the expression 

Z 11 
. ' t - mz zt. == _....__ ----· 

Sz 
(2.39) 
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where mz and sz are respectively the mean and variance of zt". 
Th.is expression, Equation (2.39), will be called the fitted series. 

b. ·Autore3:ressive Schemes 

As the series [Zt} and fzt'l are stationary they may be described 

by a process of linear autoregression. From Equation (2.5), for a 

first order autoregressive scheme 

(2.40) 

This represents the regression of Zt on Zt-i, the term Et being a 

residual error. The .constant a1 may be :found by regression, and is 

seen to be -ri the first order serial correlation coefficient. Thus, 

is the first order autoregressive scheme for generating Zt• 

For the second order scheme, fr~m Equation (2.5) 

(2.42) 

The coefficients ~1 and ~a which may be determined. by regression are 

~ ra - '!:la 
a = 1 - ria (2.44) 



18 

Thus 

(2.45) 

. . . . . . 

· is the expression for the sec.ond cird,er autoregressive scheme • 
. ·. . . . . . . 

The residual Et in the above expressions is independent of Z and 

E. Considering the first order scheme, let 

T)t = ~ (2.46) 

where )...3 = var (Et ) • 

~t is then a standardized independent variable. Further, as 

var. (Zt) = var (Zt-1 ) 

and usin~ t;he expansions of variance and covariance 

= 1 + ri3 - 2 cov (Zt, I\ Zt-1) 

=l+~.a..:.2r 8 
1 l 

as Zt-l and E, are independent. 



and Et = 1\ (1 - r,_3)1/a. 

Thus, the autoregressive scheme of Equation (2.41) becomes 

If the standardized series of { Zt} (Equation 2 .37) is used, 

Equation (2.50) becomes 

11 (1 - ~a )1/a 
t l 

whence 

This is a form of the simple first order expression widely used in 

hydrological studies and will be referred to as Model IA. 

19 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

If the Fitted Series referred to above (Equation 2.39) is used, 

Equation (2.41) gives 

(2.53) 

This expression will be referred to as Model IB. 

Instead of using the Standardized or Fitted Series of (Zt,}, a 
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model may be formed using the series 

X - mT . yt = - ..... t ___ _ 

s-r 

where as above m't and sr: are the mean and variance of the month 'to 

Equation (2.41) then becomes 

{2o55) 

and 

(2.56) 

Th;ls is similar to the autoregressive scheme used by Thomas and Fiering 

. (1962), Equation (L8). However, in their expression r't wae the corre-

lation coefficient between the months 't and 't-1, there being twelve 

values of r't. In that case, it can be shown that 

(2.57) 

where b't is the regression coefficient used by Thomas and Fiering 

in their expression. 
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c. Skewed Distributions 

Models IA and IB were constructed for series having insignificant 

skewness. If, however, the observed series (Xt} is drawn from a popula= 

tion {X} with skewness Yx, the skewness gx of (Xt} is an estimate of Yx, 

where 

(2.58) 

µ3 = third moment about mean = ~ L (X - µ)3 

µ2 = second moment about mean = r:j • 

Accordingly, the standardized variable \ of Equation (;:, .50) must also 

be skewed. D~noting such a $kewed variable by l;t, with skewness Y;;, 

? c y s 11~ y " 2 
C:t = -ii; 1 + 6 - 36) - rr, 

[Matalas (1967b)J 

where as before ~t ,.._, n(O,l). 

Thomas and Fiering (1963) have shown that the skewness of l;t is related 

to the skewness of (X} by 

As gx, expressed by 



n 

where ~ = ~ 2 ( Xi - m )3 
t=l 
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is an estimate of 'Yx, and r1 an estimate of Pi, the estimate gl; of 'Yl; 

may be represented as 

_. (1 - r,3 ) 
· gl; -(1 - r,:a}'3/2 • gx 
. 1 

and thus 

2 c g?; 'lt ~t._)·· 2 
~ = ~ 1 + . 6 . - "jb" - gt;. (2.64) 

Equation (2.50) then becomes 

and Model !IA is the expression 

and Model IIB the expression 

(2.67) 
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5. 'I'ests of Goodness of Fit of Autoregressive Schemes 

The expression representing the first order autoregressive scheme 

is Equation (2.41) which may be rearranged thus 

(2.68) 

If this expression describes the process, Et should be stochastically 

independent (Roesner and YevdJevich, 1966). This independence may be 

tested by constructing the correlogram of E,, and determining whether 

the serial correlation coefficients of Et fall within the confidence 

limits of Equation (2.22), 

-1 :I: K (n - 2 )112 

C.L. (ex) -- ___ n_cx __ - 1-- (2.69) 

As mentioned above, this test is only applicable if Et is normally dis-

tributed with variance one. If the residual Et is found to be inde-

pendent in this way the hypothesis that Equation (2.4·1) represents the 

autoregressive scheme is accepted. Similarly Et' for the second order 

scheme (Equation 2.45) may be tested in the same way. 

Alternatively, a large sample X2 =test proposed by Qu.enouill.e (1947) 

may be used. The statistic Rpr1e which is ..... n[ o, o 2 (Rp)J is Esed to 

construct a large sample 'X:3-test of the form 

(2.70) 



to test whether the autoregressive scheme is of order p. Here J, is 

the number of lags used to estimate Pk and (J, - p) is the number of 

degrees of freedom. The hypOthesis that the autoregressive scheme is 

of order p is reJected if ~-p > .'/?(ex.), the value of xa with Ce - p) 

degrees of freedom at significance level ex.. 

To test whether the autoregressive scheme is of order p = 1, 

Matalas (1967a) has shown that 

(2.71) 

and 

1 = • (1 - rla ra. 
(n -k) (2.72) 

Similarly, for the second order scheme, where p = 2 

(2.73) 

(2.74) 

where (2.75) 
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6. Distribution of Variables 

a. Introduction 

As mentioned above, the analytical methods used in this study are 

applicable only to time series which are stationary to the second ordero 

Only if the distribution of the variables is normal can the series be 

considered stationary to all higher orders (Matalas, 1967a). Hydrolog-

ical sequences have been found to be approximately normally distributed, 

or may be transformed to a normal distribution. Other distributions, 

particularly those of Pearson and Gumbel have been found to fit 

hydrological sequences (Matalas, i963; Markovic, 1965) but detailed 

consideration of.these distributions is beyond the scope of this study. 

A variable X .· having probability density function 

f(x) 
- 1 ex - a.,:a 

l 2 b ) 
= b(2n)i7:a e (2.77) 

is said to be normally distributed with parameters a and b, and is 

denoted by x ..... n(a, b). To test whether an observed series fXt} is 

normally distributed, it is necessary to compare the frequency distribu= 

tion of the variables·with that of a normal distribution. The sample 

may be divided into k mutually exclusive classes and the relative 

frequency of events in each class compared with that of a normal dis-

tribution. Frequently, this analysis is done with class intervals of 

equal length and variable probability. ·The choice of class intervals 
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of equal probability has been shown by Markovic (1965) to lead to 

simplicity in computation. This method is based upon the analysis of 

Mann and Wald (1942). As there is no theoretical method for determining 

the most suitable number of class intervals statisticians have formu-

lated numerous rules. It is generally accepted that too few classes may 

obscure the main characteristics of the distribution, and that too many 

classes may overemphasize chance variations. A commonly accepted rule 

is that the expected class frequency fJ of any class J, 

E[ fj ] ~ 5 ( 2. 78) 

[Hald (1952)]. 

b. Transformations of the Variable~ 

It was decided to analyze the distribution of (X} and (logeX}. 

The distribution functions of the transformat1·ons considered are 

derived from Equation (2.77) as follows. 

i. Normal Distribution 

- (?{ - µ'\3 
1 0 ) 

f ( x ) = cr ( 2n )j /3 e • . (2.79) 

ii. Log-normal Distribution 

f(x) 
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where logJJ,. and "1. are re spec ti vely the mean and variance of { logeX}. 

c.. Esti,mation of Parameters 

As the parameters µ and cf' of the population are not known they 

must be estimated. If a random sample ha:vi:ng para.meters .m and s is 

taken from the population, it ca:n be shown by the Method of Maximum 

Likelihood that 

and 

However, for n large, 

_ (n - 1) • ga 
n 

. [Hald (1952)]. 

(n - 1) 
-+ 1; thus, 

n 

(2.81) 

(2.82) 

The sample parameters may then be used as estimates of the population 

parameters, and, as before 

n 

µ = m =.~I·· xt (2.84) 

t=l. 

(2 .85) 



Similarly 

n 

loge~ = loge ll\ = ~ I (logeXt) 

t=l 

d. Testing Good~ess of Fit of Observations 
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(2.86) 

(2.87) 

The xia-test may be used to test the goodness of fit of the observed 

series with the theoretical probability distributions of Equations (2.79) 

and (2.80). The test, developed by Pearson (1900) may be summarized as 

follows. 

If a set of random variables x1 (i = 1, 2, ••• , n) are stochastically 

independent, it can be shown that the statistic 

n 

=2 
i=l 

(Xt - mt1 )2 

n1t1 
(2.88) 

where n1 is the probability of occurrence of the event x1 is approx

imately d:t.stributed a9 X2 w:tth (n - 1) degrees of freedom, the approxi

mation being more valid if nn1 > 5 (Equation 2.78). It is assumed thus 

far that the p;r-obab1.lities 1t are known. However, in a random sample 
I 

drawn from a population w;l. th parameters µ and rfi , only the estimates 

p1 are known, as are the estimates IJl and slJ of the population 

parameters. Fisher (1924) has shown that the number of degrees of 

freedom (n -.1) of Equation (2.88) must be reduced by 9, the number of 



population p~rameters which are estimated from the sample. Equation 

(2.88) then becomes 

1 = .... 
n 

But (Xi_ + Xa + .... + xn ) = n 

(x, ... nP1 )a 
npt 

( x, 3 - 2nx1 P1 + n2 Es 3 ) 

np1 

n 

+ n I pt. 

1=1 
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Therefore, l (In xa l ')@ ... - ~ - n n-c ..;1 - n . p . • (2.90) 
. 1=1 1 

If the sample :ts grouped into k classe.s and the frequency of 

th events in the J class is£,, then 

~~-, = ~ (i r,• )- n, 
J;::l 

(:? .91) .,, 

The hypothesis that the observed sequence agrees with the theoretical 



distribut~on is reJected if ~-c-l ~ X3{cx.) at (k-c-+) degrees of freedom 

for a given significanGe level ex.. 

e. Class Boundaries 

Clas.s boundaries for k classes of equal probability may be deter-

mined from the normal probability distribution functions of Equations 

(2.79) and (2.80). Th~ solution may be simplified by standardizing the 

(2.92) 

or 

(2.93) 

Then, for both Y and~ 

for any class boundary b3 (J = 1, 2, ••• , k) in the standardized series. 

No definite solution to this integral extsts, but approximate values 

are tabulated. From the class boundaries b., of the standardized series, 

the boundaries B3 of the observed series are oM;ained from the 

expression 

{2.95) 
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f. Skewness of Djstribution 

The ske\,.rness gx of Xt is estimated by the expression (Equation 

2.60) 

na !!b.. 
gx "" (n - 1) (n - 2) • fi3 • (2.96) 

The coefficient gx is ..... n [o, 6 ] (Snedecor and Cochran, 1967)0 
(n + 3) 

Confidence limits for g are then x 

(2.97) 

If gx falls within these confidence limits, the hypothesis that gx is 

zero is accepted at significance level~. 



CHAPTER :tlI 

ME'I'HODS .. OF COMPUTATION 

1. Autoregressive Schemes. 

The complexity of the calci;:t;lations invqlved in the procedures 

described :j.n Chapter II mc;tde the use of a c<:>mputer essentia,l. . .i\ program 

system was set up to aµalyze the record frorn apy.,!:ita.tion given its mean 
; 

monthly flows. According to .the c.ontro],e chosen, this program analyzed 

both models desc;r:i,bed in Chapter II: · Motj.el ~ ( Equattqn 2 ~ 52) 

and Model B (~q1,1ation 2.53) 

The program also te$ted,the possible validity of tne second order 
. . 

scheme of the form p::f;'_ Equation .<:? .45). The progrq.lll exaq1ined the 

untransformed flows, the logarithmic flows, or bot:\1-. A flow c;hart of 

the program showing its possible operation combination.sis shown in 

Figure 1. The operations ponducted in Models A and B l;U'e di~c1,1,ssed 

below. M,:p1y of these operatione were c.arried out by su,l;lprogra.ms under 
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BEG1N 

"' 
READ STATION PARAMETERS AND CONTROL NUM-;E-;S ] 

L. . ·=·~--==-o- ··=m - . ~. r -
~' . . 

r ,._ .. -· -

-READ FLOW RECORD 

'I 

· 1 
I 
+ COMPUTE LOGS OF FLOWS 

ANALYZE MODEL A ANALYZE MODEL B 

STOP I I STOP 

Figure L, Flow Chart of Pr.ogram System 

\.N 
\>,! 



the control of these models~ which wer<:; themselves $Ubprogra.ms under 

the control of thE; main p:cogram0 

The subprogram for analysis of Model A is 9hown in flow chart fo:r1X1 

in Figure 2. 'rhe program computed the mean variance and skewness of 

f Xt}. The skewness was tested for sign:,i.fipance by means of the confi

dence limits of Equation (2.97). If the skewness was significant, the 

skew parameter gt of Equation (2.63) was calculated, and the prog:r>am 

wrote the mean and variance, skew coefficient and skew parameter. If 

the skewness was·not s:i,gnifica:Q.t, the program wrote the mean and 

variance, and the message that the skewness was insignifi9ant. The 

program then analyzed the distribut;:i,on of (Xt 1 · · The analysts of dis

tribution is more·fully discu::;;sed below. The standardized series of 

Equation (2.37) was then formed and correlations computed on the vari= 

able (.zt}. Twenty-five lag correlat:i,ons were calculated· using Equation 

(2w21), and used to test both first and second order models by use of 

Equation (2.70). The computed values of 'X? were compared with xa at 

significance level 0.05. For the first order model, the number of 

degrees of freedom wai!:l 24, and for the se.cond order model 23. Either 

model was accepted if the computed X2 . was less than X:20 •06 at the st1jated 

number of degrees of freedom. 

The series Et was also constructed in accordance with Eq_uation 

C?.68) and correlations for 25 lags calculated. To determine whether 

the residual had a normal distribution and variance of one, in order to 

be tested by the confidence limits of Equation (2.69), its mean and 

variance were calculated. and,distribution examined. The computed corre

lations were punched on cards for subsequent examination. 

·The flow chart of the subprogram to analyze Model·B is shown in 



BEGIN 

ACCEPT FLOW RECORb, STATION PARAMETERS, FROM MAIN PROGRAM 

COMPUTE MEAN, VARIANCE AND 
SKEWNESS OF X 

WRITE MEAN, VARIANCE, SKEW 

COEFFICIENT AND SKEW PARAMETER 

STANDARDIZE RESIDUAL· Zt 

COMPUTE CORRELATION ON Zt 
WRITE CORRELATION 

: ] 

-..~--~~~----l~~-----~~--..-
J 

COI\ISTR UCT SER I ES 

"t •Zt -r1Zt-1 

COMPUTE CORRELATION ON Et 
WRITE CORRELATION 

. . . I .. 

do 

EXAMINE DISTRIBUTION OF X 
WRITE FREQUENCIES AND COMPUTED X2 

TEST SIGNIFICANCE OF X2 

WRITE SIGNIFICANCE 

TEST MODELS WITH X2 SIGNIFICANCE TE:TS 
~ WRITE SIGNIFl<;:ANCE 

EXAMINE DISTRIBUTION OF RESIDUAL. Et 

WRITE FREQUENCIES AND COMPUTED x2 

TEST SIGNIFICANCE OF X2 

WRITE SIGNIFICANCE 

.Figure 2. Flow Chart of Model A Analysis 
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Figure 3. The first part of this progri;..m wai:, set up to remove 

harmonics from the time series in accordance with the !llethod of Section 

2.3 until. the residual series had correlation which was insignificant 

at a chosen probability level, or until six harmonics had been removed. 

After calculation of the confidence limits of Equation (2.69), correla-

tions of twenty-five lags were first run on the original series and the 

correlogram thus produced examined for significance. If such signifi-

cance existed, the ·first harmonic was removed, correlation was repeated 

and the correlogram again examined. It was found that the test of sig-

nificance ap!)lied in the program was too rigid, and in all cases·six 

harmonics were automatically removed, and significan,t residual correla-

tion indicated. However, in certain circumi:rl:;ances the residual had 

become insignificant prior to this'p9int. This was determined by subse

quent inspection of the correlograms (plotted by mec;llls of a separate 

subprogram) from the serial correlation coefficients calculated after 

each harmontc removal. The number of harmonics to be removed wai:, 

selected by inspection and the program rerun. This aspect is more fully 

discussed below in Chapter V. 

When the desired number of ha:rmonics had be~n ;removed, the pon

stants ~, Bp, Cp, Dp of Equations (:?.~O), (2.31), (2.3,5), and (2.36) 

were tabulated. The program thell anal;yzed the residual {Zt''} remaining 

after the removal of the_ continuous functions of. mt and st as in, Equation 

(2.38). The mean variance and ske~1ess of {Zt"} were calculated as for 

Model A, and the significance of the sk~wness tested in the same way. 

The skew paramete:r;- gl;. w1;3.s calculated if necese1ary and the program wrote 

the parameters of the series c;tS for Model A. The dist:ribution of 

[Zt''} was 1;1.lso examined. The. program then constructed the fitted 



~--~-~I~N· :~] ~----., 
ACCEPT FLOW RECORD, STATION PARAMETERS, 

FROM MAIN PROGRAM 

CALCULATE CONFIDENCE LIMITS AT CHOSEN PROBABILITY 

REMOVE HARMONIC. CONSTRUCT RE$1DUAL z; 

COMPUTE CORREl-.ATION ON Z~ 

Without Harmoni.._ _ ____,-------,------------''--------------
Removol. TEST CORRELATION WITH CONFIDENCE l-.lMITS 

WRITE HARMONIC CONSTANTS 

COMPUTE MEAN, VARIANCE AND 
SKl:;:WNESS OF RESIDUAL 

WRITE MEAN, VARIANCE, SKEW 
COEFFICIENT, SKEW PARAMETER 

STANDARDIZE RESIDUAL Zt 

COMPUTE CORR. ON Zt 
WRITE CORR. 

CONSTRUCT. SERIES 
Et = Zt - r1 ztci 

., 
COMPUTE GORR. ON Et 

WRITE CORR. 

END 

EXAMINE DISTRIBUTION OF RESIDUAL Zt 
WRITE FREQUENCY AND .COMPUTED X2 

TEST S.IGNIFICAf\!CE OF X2 

WRITE SIGNIFICANCE 

TEST MODELS. WITH X2 SIGNIFICANCE TESTS 
WRITE RESULTS 

EXAfVIINE. DISTRI Bl,JTION OF RESIDUAL Et 

WRITE FREQUENCY ANQ COMPUTED xz 

. TEST SIGNIFICANCE OF X2 

WRITE SIGNIFICANCE 

Figure 3. Flow Chart of Model B Analysis 



series of Equation (2.39) and twenty-five'lag correlations were calcu.-

lated. These were used to test the vali~ity of both first and second 

order schemes as described for Model A. Similarly, the series (Et} was 

produced and its parameters oalculated and dietribuUon examined. 

Twenty-five lag correlati9ns calculated on (Et} were punched on cards 

for subsequent e.xaminat1on. ·. 

The distributions of the variables- fxt}' ~d the residuals (Zt''] 

and (E,} were analyzed by a separ~te sub:program U$ing themethod of 

Section 2.6. Twenty clas;ses were chosen for. the ·analys::J,.s and the 
. . . . . . . 

bound,ar:l,es of the. E1ta.ndarq.::tzed normal distribution Qf Equation (2.94) 

were obtained.from ~abulated values of Fisher .and Yates (i963). ·The 

boundaries of the.series under exam1nation were Cc;ilculated by Equation 
. . . . .. 

(2.95) using the ~omputed mean BJld varia~ce of th~ variable •. TJ.i.e prq ... 
" . 

gram then counted the frequency.fl of the events inea,chof the twenty 

classes. and computed )@. .. accordin~ to Equation (2.91) ~· The compµted X3. 

was then tested.for Signi'ficance at 17 degrees c;>f fr~edorn, and the 

hypothesis.that the distribution of the variable was normal was re~ected 

if '}@ > xg,05' the value of '}@ at 'significance level 0.05 for 17 degrees 

of freedom. 



Cf!APTER IV 

DRAINAGE BASI}iS USED IN STUDY . 

~iver basins having rel[;lt;tvely small areas and lon$ per\ods of 

record whose flow had not .been significantly affecteq. by regl,llation, 

diversion or abstraction were initially selected for the iIDalysis. It 

was imp0rtant also that. the location of the gauging i;;~ation had not 

been changed subst~tially du:ring the period of :recQrd. Tb.e stations 

were selected from recorqs tn the u.s.G.S. Water Supply Papers prior to 

1960, and subsequently'from Su:vfa.ce Water Records. for Oklahomi,i and 

Kansas. The criteria for selection had to be somewhat flexible as in 
. ·. . ·.,' . 

most bf the basins considered some ril;tnor tnterference with.the natural 

flow of the stream, such o;1s construc.tion o:t: farm ponds in the upper 

reac};les, or abstract1,on ;for wa.ter supply or irdga.'tl,qn~ was reported ;tn 

the records. The record fo'r a basin was reJected if a maJor reservoir 

was operated in the basin during.the period of record,.if the record 

indica,ted substantial diversio-¥, or if the gauging station hi;i.d been 

~oved to inqlude or exclude a substantial drainage 8tr'ea. 

Nine stations meeting these criteria were.chosen for the analysis. 

Three were in Oklahoma, one was on tb.e 0).dahoma-,.Arkansal:$ border, and 
. . . . 

five were in Kansas. It was subsequently d,ecided to analyze also two 

stations with large contribu1;:ing area c;>n the A.!lkap.sas River, which had 

been analyzed by l?erry (1968). The locations of these eleven statipns, 

and the period of record available for the study are shown in Table l, 
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u.s.G .. s. 
Station No. 

7-1478 

7-1645. 

7-1705 

7-1945 

7-1965 

7"."3325 

7-3365' 

7-3390 

6-8680 

· 6-8905 

6-8915 

-TABLE I 

GAUGING STATIONS 'USED IN STUDY 

Walnut River, at Winfield, Kansas· 
. . . 

Arkansas R1ver; at.Tulia, Oklahoma 
. . 

Verdigri13 River, ···at I~depende~ce, Kansas 

Arkansas River, near·Muskogee,.Oklahoma 

Illinois ~iver, near_Tahl-equah, Oklahoma 

Elue Rive·r, near Blue, Oklahoma _ 

Kiamichi River; near Belzoni, Oklahoma .· 

Mountain Fork River, -near Eagle town, Oklahoma·. 

Saline River, near Wilson., Kansas - .· 

Delaware River, at -Valley Falls~ .Kansas 

Wakarusa River, near Lawrence,Kansas 

*Regulation of the river basin commenced. 

Period of Record 
(Water Years) 

• 1921~1966 

1925..::1964*. 

1922-1948* 

.. 1925:-1964* -

1937-1966 · 

1937-1966 

· 1926-1966 · 

1930-1966 

1930-1963* 

1923-1966 

1930.-:-1966 . 

~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

g 
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Table I! shows a summary of th,e maJor physiog:rap~ic features of the 

basi.ns studied Q Fig11res 4, 5, and 6 show the lc;,cation of the river 

basins. The. gauging stations a;re hereafter ri;:ferred to Wi thou.t their 

prefix numbers. 

The mei:ffi monthly flows ava~l~ble in the records were compiled from 

daily flow measurements except in the.few years when on.lyestimated 

mean monthly flows were available. The a.c·curacy of the rec9rds. in the 

stations selected is reported as generally "good'', · indicating an esti

mated error in the record of ±5% ... Oc,casionally·recor(i~ in, some winter 

monthEi, particularly during periods of ice cover, are reported as 11 fa1:r" 1 

or "poor", indicat:):.ng a poorer standard of accuracy. · However these 

periods were found to be infrequent arid were :p.o.t considered to have 

substantially affected the over-:all accu?!acy o.f the records. 

The records also indicated 1.f reguli:ition or. other interference 

with the natural st:re~mflow had occurred 1 or that the gal,lging station 
.. 

had been moved, during .the period 'of record.. Minor inte:rference or 

insignificant movement·of the gauge were considered to be accept~ble in 

considering the streamflow record to be. a continuoµs and homogeneous 

sample. Station 1705 on the Verdigris River at Independence, Kansas 

WaG reported as having abstractio.n above the gauge for municipal water 

supply which is returned to the stream fr9m the sewq.ge treatment plant 

below the gauge. This was not considere.d tq have a sign;I.ficant effect 

1.1.pon the record. ·The construction of the Fall Reservoir, where regula

tion began in 1949, limited the use of the record to l948 as ~hown in 

Table I. The.gauge at Station 8905 on the Delaware River, Valley Ji'alls, 

Kansas was reported to have.been.moved ~ut the slight cha.nge in 'io~at1011-

was not considered to have.affected the record, Records at Station 8680, 



42 

TABLE II 

PHYSIOGRAPHIC PATA FOR RIVER BASINS 

Average Slop'? Average Slope 
Average Lower Upper 

Station Area Length Slope Reaches Reaches 
No. mi3 mi ft/mi ft/mi ft/mi 

1478 1840 96.4 3,3 o.4 25.0 

1645 74615 -,. 

1705 2892 156.0 5.7 1.8 9~6 

1945 96674 

1965 959 94.2 Ll 3.3 36.1 

·z32;5 .,.., ... 1+78 11~\~- 10.0 2.0 200.0 

3365 1423 121.3 8~3· ·2.5 97,0 

3390 787 87,5 9.2 16.9 69.0 

8680 1900 234.5 8.9 5.6 1,, ,: 
./ . .,, 

8905 922 67.1 6.,9 4.2 9.8 

8915 458 8o.4 4.o 3.0 5.0 

- denotes information not available 
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Figure 5. Location of River Basins in Eastern Kansas 
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$aline: River, near W:ilson~ Kansas, are µsable up to 1963? when regµla= 

tion at the Wilson Dam commenped. The records at t~e seven other 

smaller stations had no reported interference With the nat~ral 

streamf;:Low. 

Reco~ds at Station 1645 on the Arkansa:$ River at Tul,j:,a, Oklf:Uloma, . 

were considered to be homogeneous by Perry up to 1964 after which time 

regulation at Keyston(j) Reservoir commenced. Prior regulation at Jqh.n 

Martin·Reservoii' in Colorado and G:veat Sait Plains ~eservoir ·in Oklahoma 

was considered to be insignifica4t. Station J,.945, at Mui;;kogE;H?, Oklahoma., 

is in,fluenced by an additional 22,000 sqaure miles of drainq.ge area from 

the rivers Neosho and Verdigris both of wh;t.cn. al;"e M .. ghly. regulated by 
. . 

multiple reseirvoir development. However 1 this station was se),ected to 

afford a comparisqnwith Peri-y's resu;Lt.s. 



CHAPTER V 

RESULTS 

1. Aui;o;regressive Models 

A summary of the results of the analysis of the autoregressive 

models is shown in Table III. The table shows the value of X~ computed 

by the X?--test of the autoregressive scheme (Sectton 2.5) ap.d the values 

wM.ch are acGepted. at signJficance level 0.05 at the re~pective number 

of degrees of fr~edom are underlined. ·· It· is seen that Model A was 

applicable to only a few stattons, while Model B satisfied more. 

Further, the second order scheme was not frequently accepted, and there 

was little difference between the acceptanc::.e of untl'.lansformed and 

logarithmic flows. These re.sults must be:t viewed tn conJunction with 

the results of the distribution of .the variables and residual.s as 

described below. 

2. Distribution of Variables and Residuals 

Tables IV and V show the distribution of the untransformed and 

loge.ri thmic flows for the eleven stations examined, wh:1-ch were u$ed in 

the Model A analysis. The untransformed flows s:\1.own in Table IV had 

distr:tbutions which were positively skewed, s9me highly, and none of 

the distributions could be accepted a,s 13-pproximately normal. Table V 

shows the distribution of the logarithmic tram,formation of the flows. 

All but one of the distributions which when untransf9rmed were 
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TABLE III 

COMPUTED ')(:ll FROM TEST OF AUTOREGRESSIVE SCHEME 

MODEL A MODEL ·B 
Station Untransformed Logs of Flows Untransformed Logs of Flows 

No. First Second First Second First Second First Second 
Order Order Order .Order Order Order Order Order 

1478 26.641 . 20.740 43.400 119.810 - - 54.426 146.824 

-1645 56.582 97.425 65.677 274.110 41.594 63.441 · 34.425 1-080933 

1705 39 .509 45.616 34.490 142.416 7 1 4 7 ·7 · ,:( D - -<..::' 22~285 ~5.Q8_§ 50a910 

1945 50.384 65.243 51.758 1-85.166 32.256 43.899 35.320 89"716 

1965 48.439 61.404 91.959 346.441 . 41.206 59.887 26.124 60.368 

3325 22.286 38.844 . 57 .123 151.657 22 .oi_g 2}.970 ,24.287 700243 

3365 82~605 8l.OG7 130.739 369.668 22.464 21.953 22-025 41.354 

3390 103.877 - 145.850 117.367 342.608 26.154 ::1.4~9 20.295 40.003 

8680 45.819 95.474 · 101.345 293.110 :/l~1~ 39/141 49.584 · 98.889 

8905 70.519 66.276 80.945 151.915 .22..·.:l'Z.7 ;-j3.701 83.949 1040962 

8915 24.9~ 34.264 79.871 309.095 15.805 17.389 79.761 121.458 

- denotes station not examined 

..j::"" 
00 



TABLE IV 

DISTRIBUTION PARAMETERS 

(MODEL A - UNTRANSFORMED FLOWS, (Xt}) 

Station Mean Standard Coeffi-cient Computed Acceptance of_ 
No. Discharge Deviation of ~- Normal 

cfs cfs Skewness Distribution 

1478 758.2- 1388~9 3.278 >999.000 R 

- 1645 6543.1 9090.8 2.955 860.-017 R 

1705 1640.9 _ 2893.8 3.076 717.728 R 

1945 19900.3 27467.6 - 3.212 708.068 R 

1965 864.8 1136.4 3.215 520.333 R 

3325 281.0 431.4 3.410 713.lll R 

3365 1690.1 2257.0 _2.178 721.821 R 

3390 1303.3 1548.1 2.062 - 640.324 - R 

8680 165.6 352.0 6.048 >999.000 R 

8905 386.1 678.3 4-.027 >999_.ooo R 

8915 172.4 356.3 4.384 >999.000 -R 

R denotes reJected 
-i::-

'° 



TABLE V 

DISTRIBUTION PARAMETERS 

(MODEL A - NATURAL LOGS OF FLOWS, {loge Xt}) 

Station Mean Standard Coefficient Computed Acceptance of 
No. Discharge Deviation· of X2 Normal 

cfs cfs Skewness Distribution 
- ---

1478 5.28732 1.98085 -1.444 28.296 R 

1645 8.09282 1.20470 * 19.179 A 

1705 5.85637 2.50473 -2.167 54.642 R 

1945 9.22163 1.20773 * 11.316 A. 

1965 6.12847 1.18877 -0.374 23.333 A 

3325 l+.84248 1.31153· .* 18.444 A 

3365 6.05085 2056575 -2.127 157.106 R 

3390 5.97518 2.45792 -2 .453 . •179.514 R 

8680 li..17482 1.28808 o.4313 23.863 A 

8905 4~7~631 1.70113 -0.302 34.878 R 

8915 2.56645 3~71200 -1.429 174.144• R 

A denotes accepted 

R denotes reJected 

* denotes insignificant skewness 

\J1 
0 
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positively skewed had negative or lnstgn:Hicant skewness. In three 

stat:i,ons, the skewness was accepted as ins:J,gnificant at the 0.05 signif= 

icance level u~ing the confidence limits of Equation (2.97). The nega-

tive skewness was, in general, less than the positive skewness of the 

untransformed flows, and five of the stat~ons had distributions which 

could be accepted as approximately normal. 

Tables VI and VII show the distribut:I,on of tlj.e residual.( Zt"} con-

:;,tructed after harmon:;tc removal in Model B. These are the variables 

used in the construction of the autpregressive scheme and are analogous 

to the variablE;ls [Xt} of Model A. Table VI shows that the untransformed 

residuals are 1;1.ll positivE;lly skewed, generally to the same degree that 

the parent sample fXt} was skewed. None of the u,ntransformed resid,uals 

could be accepted as apprortmately normally distributed. In Table VII 

it can be seen that the residuals of the logarithmic transformations 

also had distr;ibutions approximately the saine as their parent samples. 

However, in general, the skewness was less, and five of the samples had 
. . 

skewness which was insignificant at t,he 0.05 c;ign1fic9,Ilce level. $ix of 

the stations were found to have residuals whic;h were appro:ximately 

normally distributed. 

3. '1.'he Residual Et 

The d:tstribution of the. residual Et formed in each model was exam

ined and results are shown in Tables VIII, IX, X, and XI. The residuals 

from the untransformed variables, both in Model A and Model B, had in no 

case distributions which could be considered approximately normal. The 

variances shown in Tables VIII and X are seen to be only approximately 

equal to one. The residuals from the logarithmic variables shown in 



TABLE VI 

DISTRIBUTION PARAMETERS 

(MODEL B - UNTRANSFORMED FLOWS, RESIDUAL [ Z/'}) 

Station· · Me.an Standard Coefficient Computed 
No. Discharge De via ti on .· of ~ 

cfs cfs Skewness 

1478 
1645 0.02650 . 1.08106 . 3.53928· - 457.983 
1705 0.07730 1.26894 3.56132 -583.284 

. 1945 0;03049 1.08077 . 2.66490 433.111 
.. 1965 0.02309 1.1113li- 2.94235 339.222 
. 3325 -0.00255 · 1;00070 2.89633 LJ.12 .333 

3365 0.00928 1.04573 2.34738 366.293 -

3390 0 .. 00505. 1.01849 1.93300 · 227.712 
8680 0.13115 · 1.58483. · 6.87-809 868.961 
.8905 0.00631. .1.07037 3.3492n 771.470 
8915 0.018!+7 L11879 4.12966 925 .. 459 

R denotes reJected 

- denotes station not examined 

Acceptance of 
Normal 

Distribution 

R 

.R 

R 

R 

R 

R 

R 

R 

R 

R 

\J1 
f\) 



TABLE VII 

DISTRIBUTION PARAMETERS 

(MODEL B - NATURAL LOGS OF FLOWS, RESIDUAL [ Zt"}) 

Station 
No. 

1478 
1645 

1705 
1945 
2965 

3325 
- 3365 

3390 
868D 

_ 8905 

8915 

ME!an -
Discharge -

cfs 

-0.00493 
-0.00141 
0.00027 
0.00062 
0.00007 

-0.00066 
-0.00393 

0.00259 
0.00059 
0.00021 -

0.00358 

A denotes accepted 

R denotes reJected 

.Standard 
Deviation 

_ cfs 

_ 1.02276 
1.01066 
0.99818 

0.99399 
0.99123 
1.00865 
1.00562 --
1.00450 
1.00645 

_ 1.00795 
0.99401 

* denotes insignificant skewness 

Coefficient 
of 

-Skewness 

-0-.88108 

* 
-1.3,4490 

* 
* 

* 
·-0.90517 
~1.16477 

* 
-0.27878 

~1.38399 

Computed 
~ 

25.926 -

16.359 
31.185 
lB.838 

19.333 
20.556 
42.634 

45.-099 
17.392 
32.000 

153.027 

Acceptance of 
Normal 

Distribution 

A 

A 

R 

A 

A 

A 

R 

R 

A 

R 

R 

~ 



.. TABLE \TI:J;I 

DIS'.L'RIBUTION PARAfiETERS . 

54 

(MQDEL A. - UNTRANSfORMED FLOWS., RESIDUAL Et ) . 

StaJion. Mean. 
· No. Discharge 

cfs 

1478 0.00099 : 

1645 0.00114 

.. 1705 0.00128 

1945 0.00076··· 

1965 · 0.00014 

3325 -ci.00067 ·. 

3365 ... Q.00001 

3390 0.00080 

8680 .0.00070 
.. 

8905. 0.00078 

89l5 0.00064 

R denotes reJected. 

· ·· s·tandarel 
Deviation 

.cfs 

1.00066 . 

1.00011 

0.96726 

0.91768 

0.92795 · 

0.91911 

... · 0.95160 

0.92196 
,. 

0)37935 

0.94795 

0.9?714 

Computed .. xa• 

>999.000 

·. 790.088 

810.;i3: . 

833.086 . 

690.972 

940.498 

556.861 

327.700 

>999.000 

>999.000 

>999.000 

Acceptanc;:e 
of Normal 

·. Distri but:i,on 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 



TAB1'E IX 

DISTRIBUTlON PARAMETERS 

(]110DEL A - NATURAL LOGS OF FLOWS, RESIDlJAL Et) 

Station Mean 
No. Discha:rge 

cfs 

1478 0.00242 

1645 0.00142 

l.705 0.00128 

1945 0.00084 

1965 -0.00240. 

3325 -0.00232 

3365 -0.00158 

3390 .... 0.00029 

8680 0.00361 

8905. 0.0030~-

8915 -0.00058 

A denot~s accepted 

R denotes reJected 

Standard 
Deviation 

cfe 

0.99934 

0.70996 

0.70744 

0.73056 

0.74397 

0.77592 

0,81204 

0.81377 

0.76015· 

0.78742 

. 0.67789 

Computed 
~·. 

28.978 

57.411 

43.707 

39.942 

27.574 

54.866 

92.214 

62.828 

. 30.306 

58.806 

55 

Acceptance 
. of Normal 
Distribution 

R 

R 

A 

R 

R 

R 

R 

R 

R 

R 
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TABLE X 

DISTRIBUTION PARAM1"'TERS 

(MODEL B - UNTRANSFORMED FLOWS, RESIDUAL €1,) 

Station Mean Standard Computed Acceptance 
No. Discharge· , Deviation ~ of No:rmal 

cfs cfs · I)ist:ribution 

1478 

1645 0.00065 · 0.87699 257 .325 ·. R 

1705 0.00133 0.98358 564.368 R 

1945 0.00063 0.90015 321.822 R 

1965 -0.00211 · 0.93481 44;.173 R 

3325 -0.00152 0.94042 409.858 R 

3365 -0.00167 0.98088 38l..383 R 

3390 ·0.00037 · 0.97288 225.4~7 R 

8680 0.00041 0~96618 . 947 .152 R 

8905 . 0.00061 0.94364 688.598 R 

8915 0.00040 · 0.94803 867.293 R 

R ·denotes reJected 

- denotes station not examined 



TABLE XI 

DISTRIBUTION PARAMETERS 

(MOD~;B "'"NATURAL ;LOGS OF FLOWS, RESIDUAL Et) 

Stat;ton 
No. 

1478 

1645 

1705 

1945. 

1965 

3325 

3390 

8680 

8905 

8915 

Mean. 
·Discharge 

cfs 

0.00118 

0.00099 

0.00105 

0.0004-6 

""'.'0.00256 

-0.003.04 

-0.00144 

-0.00049 

0.00058 

0.00233 

... 0.00095 

A denotes accepted 

R denotes reJected. 

Standard 
Deviation 

cfs 

0.75812 

0.70548 

0.80658 

0.73974 

0.81417 

0.82531 

0.92394 

0.9:i?091 

o.75889 

· 0.82044 

0,77374. 

· Computed 
~ 

69.720 . 

41.051 

25.668 

31.544 

50.192 

44.621 

10.385 

30.724 

20.174 

27,649 

57,722 

57 

Acceptance 
of Normal 

Pistr:tbut;ion 

R 

R 

A 

R 

R 

R 

A 

R 

A 

R 

R 



Ta,bles IX and XI are seen to have distributions wM.ch in a number of 

cases are accepted as being approxi1T1ately normal, but the variances of 

these residuals differ widely from one. As.the residual correlation 

test of the autoregressive model (Equation 2.69) assumes that the dis-

tribution of the residual Et is normal With varianc$ one, 13J].d this 

condition was not sat:'(.sfied in any caE:ie, the test was not used. 

4. Harmonic Remov(:11. 

As de.scribed in Chapter III, the metho¢lused to remove harmonics 

and test the residual correlation was not completely satisfactory. It 

was found that the test in the ha.rmonic removal ~ubprogram which re-

Jected a residual and proceeded to the next harmonic if one correlation 

fell outside the confidence limits .was too severe~ This test ali;;o 

suffered from the limitation described above. for the residual Et, in 
. ·' . 

that the residual should h&ve iiad.a normal distribution With variance 

of one.· No check was made for.this condttion; no other test was avail-

able if the condition was not sat:i.sfiecl. 

· In no case, even after the rem~val of six harmonics was the test 

satisfied. In all cases the first serial cprrelation coe:ffic:J.,en;t r 1 

lay outside the cqnf:i.dence l:i.mi ts, and in m~y cases su,cceeding values 

of rk • However, it waq · found in· some cases. that from the· point where 

one rk fell inside the confidence lim:L tel all subsequent rk. also fell 

inside. This condition was then accepted as satisfying the test and 

residual correlation was considered to be insignificant. ijowever, this 

required visual inspection of the correlogr1:3.rn, which was plotted subse-

quently, and defeated the purpose of the test in the progrl;ID'I whtch was 

designed to eliminate this step.· After a residual Wl;l.S found to be 
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independent in this way, the ~rogram was rerun with the chosen number of 

harmonics for. the result.s of: ~he' station to be obtained. 

Only in seven· .Of the' 'twenty"'.'twc, cases e:x;apiined was this modified 

conditio~,. W~ich w11L be referred to as c~~dit1on: ;L?· satisfi~d. A 

second type, of resµlt was. also ohserved~. · Iri. this ca;e, the re~idual 

almost . s~tisfied· Condition lr 'b'ut one···• or . ttfi& .of·. t.~e, twenty.,;.five· correla-. 

tions baicuiated fe.11 outs::tde. the ·conf1denc.e :i.1Dl1ts~ lt ;,.,a:s rrequentiy 

found that their dep.1'¢ture from the :conf:tdence_ liroils increased rather . ' . ' . . . . 
. .· ' . · . .' : ' · . 

. than d.ecreased as more h~6n1qs. we~e r~riloved~ · .. In such cases, harmonic 

removal was terminatec:i·where f:he.be~t Go~d.:ttion ~ils obta1ned •. This 
. . . . 

"best" condition was Judged somewh;at arbtt~~ily, but it was usually 
.· . . .'· .. : ·. . . .. . . . 

tne point.where·the departure.from the confidence lim1ts was a minimum. 

This· con.di tiob. will be ~ef~rred. to as .Condi t:ton 2 •. '. 

·. A third c~~d+tio~ was l;l:l~o observed •. I:J:ere harrnon:tc removal was 

', 'f¢urid · ti .'.~~m~:;,e ip~;ha:p.s ~n~( 6~ '· t~h. disi:inct' cycle$ frqm the corre;Logram, 
: . ·. .. . . 

but ther'.~after, alt4o~gh, the~e ~as highly sig~iftcant correlation :tn 

all· twenty-five _calcrnlated rk ,·'further' h~rmonio ;emovalhad. no effect 
' ' 

upon the c<>rrelog;ram~ ·.1h.is co:ndition .\d.;1.1.be refe~red. to. as Condition 

3. Table 12 shows the tesul ta of ha:ri'noni6 removal: the number of 
• i . • • 

harmoriics removed for each statio.n ·Using the<ab~ve Criterta, and the 

condi t;ton. satisfied·~ Station 1478 w~~. unfque'., · For, th~ U:lltransfor~ed 

variables, harmonic remov~l· wis nbt fo~.d to produce'. ~:tg~:l,ficant change 

to the correlogram t_o·sati~fyany of t~~ .above:conditioris.' _Therefore, .. 

,no harmon:tcs were removed: > in ~ffect~ or1ly0:Model: A ·wa:s examined. ·.- . .. .·_ . . · ..... ·, . ' .. · .. ·... . . 



TABLE XII 

HARMONICS REMOVED· 

' ·, 

Station · Unt. · · 
. No •. 

Log~ 

1478 O* 1** 

1645 2** :l*"' 

1705. .2* 21-· 

· 1945 2* 2•* 

1965 ], * 2** 

3325 1+ 1+ 

3365 1+ 2i" 

·3390 ], * 2*" 

·. 8680 2* l** 

8905 1+ '1 ** 

8915 l* 1. ** 

.· .. +Condition 1 

*Condition 2 

. *"iCondition 3 

60 

Correlograrns typical of.the .three conditions de!ilCribed above are 

shown i.n Append:i,x III. .· These plots we;re produced· by computer print-out, 

and the accuracy of t;he position of the points :is limited by the spacing 

of the lines of print on the pr1nt~r. However, they are sufficiently 

accurate for illustrat1on. 

The cbrrelograrns shown in Appendix III for Stat1on 3365 (Logs) 

illustrate Condition 1. · .. The correlogrwn Without harmonic removal. shows 

a distinct cycle of twelve months, and thi~ is removed by the first 
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harmonic. The resulting correlqgram shows fluctuations with a period 

of approximately six months which·. a:i:'e significant at the 0 •. 05 level when 

tested by the confidence limits. Rem.oval of the period produces a 

correlogram in which the first s:L:xcorrelat1ons are significant, but 

thereafter, correlation is ins1e;n~f1cant and, the independence of the 

residual is accepted. Harmonic removal was then terminated .• 

Condition 2 is illustrl:l.ted by corre;Lograms for Station 1705 

(Untrani;;). Before harmonic removal, the correJ,ogram shows both twelve 

and six month cycles·~ · After removal of the twelve month cycle, the six 

month period becomes more dist:i,:r:1.ct •. This is then removed and a weak 

three month cycle appears. HoW'ever, · removal of this cycle does not 

reduce the correlation at significant points bµt increases it, and it 

increases further With further harmonic removal. Harmonic removal was, 

therefore, terminated after three harmori::I.cs. 

Correiograms .. for· $tati6n.8915: (Lo~~)'.:tll~st;ate Condition 3. Here, 

after removal of a distinct twelve mo.nth cycle, the correlogram does 

not change With removal of subsequent harmonic's; nowhere dpes the Corre

lation fall within the confidence limits. Harmonic removal was 

therefore terminated after one harmonic •. · ·· 



CHAPTER VI 

DISCUSSION 

1. Autoregressive Model$ 

For the eleven stations examined, an autoregressive model was 

found to describe the hydrological seque:p.ce at an acceptable level of 

significance. In one case, only Mode], A ".'fas applicable; in two other 

cases, both Models A and B were applical;>le. In five <;ases, one for 

Model A and four for Model B, both the unt:pansformed aI).d logarithmic 

flows gave an acceptable model. It was fc;rnnd that the ;f:i.rst order auto

regressive 9cheme was more widely accepted tnan the second and in only 

one case, Statton 8905, Model B (Untra,;1.s) was on:)..y the second order 

scheme accepted at the 0.05 significance level, where the fiA"st order 

scheme was accepted at the 0.01 significance level. In one case, 

Station 8680, no model was accepted at the 0.05 significance level; 

Model B (U:p.tran.;;) was acceptable at the 0 .• 01 significance level. Table 

III shows the values of X~ computed in the significance test; those 

accepted at the 0.05 significance level we underlined in fu],.l, whereas 

those accepted at the 0.01 significance level are underlined with a 

broken line~ 

The choice of an autoregressive moc;l,el when rnore than one gives an 

acceptable result depends upon the distributiop. of the variables upon 

which the model is operating. As described in Section (2.1.b), the 

autoregressive model is applicable only to stationary time series, and 
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. . . . 

the transformations used in·the analysis·rnake the series stationary only 

to the second order~ un.less the sertes is normally distributed. Thus, 

the record generated by the autoregressive model qorresponds·With the 

qriginal .· record only in the f1:rist and secqnd moments,. the mean and 

standard deviation. The introduction o.f the skewness qomponent gl; in 

the random l;~ pf Modei IIK'or Model I;[B' (l!:quatiohs 2.66 and 2 .• 67) 

extends this cpt-resppndence to the t}iird moment about the mean, the 

skewness. ·· However, · there is no correspondence at. higher moments, and 

·the distribution of the eynthesized reco:r;-d will only agree wi,th the 

. original recor'd 1:µ the mean, standard d~v1at1on and coefficient a:,f 

skewness. If' however, the series i'S normally distributed and is 

stationary to the second .ord.er~ it is sta.t.ionar:y to all higher orders 

(Mata.las, 1967a) ~ This may .be shown by the d.efinition of· stationarity 
l . • . 

(Eqliation 2.7). In that case, the syn.the~ic record generated by the. 

mod~l corresponds in all Hs moments with the original record and the 

d,istr1but1on pf the synthe$ized record: is the. same as. that of the origi-

nal record. 

For Model A the· variable. used in the autoregressive scheme -is the 

or:t,ginal s~ries [XiJ, or (logeXt} :ff the ,logaritlµn:tc .. transformation is 

used. The di.stribution of. the untransfortneq flows ·is sµmmarized in 
' . 

Table JV ~here it is ~een th~t n~ne .ot tile distribut:ton.s could be ac;-

. cept~das ~oriiiaL: 'l;'able V·shows the.distribution of th~ logarithmic 

transformattons,.and it is .seen that five of the stations had clistribu-

tions which were aocepted .is nor.mal at th.e 0,05 significance level. 

The distribution of the r.esiduals (z~"} .·of Model B are S{l.OWn 1.n Tables 

VI and VII, 1rfhichshow that none of the untransformed residual.s could 

be accepted as notmally distributed, while i;;i~ of .the l9gari~hmic 



64 

transformations had distributions which were a.ccepted. 

The criteria, therefore, which were used for selecting a model are 

as ;follows. If any or all. of the variabies · (or res:I,duals) were normally 

distr,ibuted, only these models were retained·. From the~e Model A was 

selected for its s:l,mplicity in preference to Model B; the first order 

model was selected for its simpliqity in preference to the second order 

model. If the ohoice lay between normally d:Lst~:i,buted untransformed and 

logarithmic flows, the distribut;lon with the lowest computed ')@ was ac,-

cepted •. lf none of the residuals or variables were normally distributed, 

Model A was chosen for its simplicity :t.n.preference to Model B. +f the 

skewness as deftned in Equation (2.96) wa,s sign.;tficant, the model (II) 

was selected +11- preference to the model(I) (Eq:uations 2.66 ~nd 2.67). 
. . . . 

Models selected for .the eleven stations 'exami~ed usi~g .these cri-

teria are l;iummar:ized in. Table XIII,.which shows that the.most desirable· 

combination was not always obtained, For. ex~ple,although the residual 

of the logarithmic tran~formation for St~t'ion 1478 wa,s no:r:-mally distr1 ... 

buted the auto:regressive model ~sing this residual was r·eJected. In 
. . 

this case Model A was then considered, and Model IIA (Untrans) selected. 

Similarly, for Station 8680, althoug:t+ the logarithm1c res:Lduals were 

normally distributed, none of the autoregres~;tve modele1 were accepted 

at the 0.05 signif.icance level. However, Model IIB (Untrans) was 

accepted at the 0.01 significance level. . Appendix II· summarizes the 

parameters required to describe the models listed in Table XIII. 
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TABLE XIII 

MO:PELS ACCEPTED 

Stat:f.on Model 
No. 

J,4.78 Model IIA Untransformed 

1645 Model· IB Log$ 

1705 Model IIB Logs· 

1945 Model. IB Logs 

1965 Model .. IB Logs 

3325 Model IB ·.Logs .. · 

3365 Model IIB Untransformed· 

3390 Model I.IB .untransformed 

8680· ··Model IJ;:S Untransformed 

8905 · Mo~el IIB ·. Un.triµis:f9rmed 

89.15 Model IIA. •. UntrMaformed 

2 ~ Tests of Fit · of Autoregressive Scheme 

It was intended that both the· te:;:;ts described in Section (2.5) 

should be used to test the adeqtiacyof.the ppoposed autoregressive 

schemes. It was hoped tha.t a comparison .could, be made betwe.en the ef-

fectiveness of ~he tests. Such a comparison had not been found reported 

in the literature. The residual correlation test was used by ~oesner 

ai;id YevdJevich (1966) in the analysis of some 14.0 run-off stations in 

the western United States. .No reported tise of Quenouille' s )@ -test for 

hydrological sequences was found. 

The residual correlation test as descr.ibed by Anderson (1942) . 
. ' . 

assumes that the variable Et is normally distributed With variance of 
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one. However 3 as reported above in Section (5.:?), none of the forty

fou.r sets of residuals obtained :l',n thls l:i)tudy (f:r9m Models A and B, 

untransformed and logarithmic variables) E;atisfied th:ts condition. The 

test, therefore, ts not strictly applical:)le to the stations examined 

in this study. Roesner and YevdJevich did not report whether this con-

dition had been investigated. As five of the stations which they 

examined were also examined in this study, whe:re it was found that in 

none of them was the test strictly applicable, the.validity of results 

obtained in other stations examined by them may also be questioned. 

Although the test is not strictly valid, an attempt was made to 

!3-pply it. The same problems enco1mtered in determining the signi;f::lcance · 

of the residual correlation after harmonic removal were found in the use 

of the test. The$ame three cogditions (q.v. Section 5.4) were observed, 
. .. 

and in the few stations examined the model was reJected by the test 

because of the sign:i.ficance. ·Of perhaps one correlation, even under 

Condition 1 which was the usual cond:J. tion found, wh:J.le the 'X2 -test ac-

cepted the model. The test was found to be cumbersome and tedious, 

because the correlograms had to be examined, and after initial failures 

was discarded in favou.r of the ')(":3 .,..test wh:'j:.ch was performed by the pro-

gram system during execution of the model analysis on the rk obtained 

from the residual { Zt}. No results from. the residual correlation test 

have, therefore, been reported,. and all testing of tj:1.e adequacy of the 

models was made with the x::i -test. 

No criteria have been found to Judge the adequacy of the X2 -test. 

However, its author, Quenouille (1947) used it to test the adequacy of 

published autoregressive models. He found th.at not all reported models 

which had hitherto been accepted satisfied the test. 



67 

3. Harmonic Removal 

Although the method of harmoni.c removal produced adequate q3oluUons 

for the stations examined, ;I.twas cumbel;'some to Uqe in the form pre

sented p.ere. It was unnecessary to assume that harmonics be removed 

until the residual was independent. This would be true for a stochastic 

model which consisted only of a harmonic component and a random element. 

However it was found that after removal of one or two harmon:tcs the 

series, as Judged by the shape of the correlogram,.was transformed from 

a harmonic series to one which could be described by linear autore

gression. Kendall's (1951) description of the shap~ o;f the correlogram 

for various stochastic proces8es was discussed in Chaptel;' II. In prac

tice the program removed harmonics up to the limit which had been 

$elected, six, and the resulting residual was tested for the application 

of an autoregressive scheme. This wo4ld pe acceptable, but it was felt 

that too many harmonics were being indiscriminately removed, leading to 

an unnecessary number o.f constants, and the the method of examining 

correlograms described in Chapter V was adopted. 

This study has thus far omitted reference to spectral analysts, a 

method of removal of sign:tficant cycles from a time series recently 

used in, hydrology by Roesner and YevdJevich (1966) and Quj,mpo (1968). 

The method gives a spectrum of the frequency of cycles in the series 

from which significant cycles and their periods may be detected. The 

method is complex, put yields accurate restilts and is more sensitive 

than the methods used in this study. However, Roesner and YevdJevich 

reported that 12, 6, 4, ••• month cycles were removed, and nowhere did 

they report cycles which did not have periods of 12/n, where n was an 

integer and'd1d not exceed six. These same six harmonics were removed 
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in this study without the use of the spectral analysis technique. The 

only advantage which the method.wlcluld bring :,ts in the detectio11i of sig

nificant cycles? whtch the method of th~s study failed to do adequately~ 

However, as mentioned above, the removal of cycles until the resid1wl 

is independent .is not necessary. Quimpo <1968) fo1,1nd that the results 

obtained from spec;tral analys;i.Si did not JusUfy the effort involved, and 

questioned the applicability of this sophisticated technique to series 

as imprecise and short as hydrological sequences. 

An alternative meth~d of performing the analysis which was not 

appreciated until all the results were available could be as follows. 

Instead of testing the autoregressive scheme. at the end of harmonic 

removal, the scheme could be tested after each .harmonic removal, and 

analysis stopped as soon as an acceptable model was produced. This 

method could also combine the analysis of Model A and Model B, as Model 

A is essentially Model B without harmon;I.c removal. One harmonic \"fould 

be removed from the series, the residual correlated and the correlations 

used in the 'X3 -test to test the adequacy of the model. If the model was 

not accepte\i at this stage a further harmonic would be removed and the 

process repeatep.. Only when sufficient harmonics were removed for the 

model to be accepted would the mean and vi9.ri1;J..Uce of the residual be cal

culated and its distribution analyzed. If this method had been used, it 

is possible that some of the models which were Judged to require removal 

of two harmonics would have been accepted with 0nly one, and that other 

models which failed with the selected number of harmonics would have 

been accepted With more. The analysis of Station 1645, one of the last 

stations examined, led to this method. Using Condition 3 (described in 

Section 5.4) to Judge harmonic rem9val, the model failed with one 
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harmonic, It also failed with twq and three, and not until four 

harmon:i.cs were :removed was the model a,ccepted~ 

4. Compar1s9~ of Moaels 

As discussed in Chapter I, this :'l,l'l.vestigat:ton sought to describe a 

model or mod.els which could be used where the model of Thomas and 

Fiering (1962) was found to be unsatisfactory. Perry (1968) and 
. . 

Dunaway (1968) reported that the Thomas and Fiering eqi;iation (Equation 

1.8) was not applicable to stream basins With small drainage areas, 

although it was applicable to large areas. The model requires .the cal-

culation, of th€) correlation rt' .between the months '! and T-1, and 

requires that this correlation is. no'l; zero. The corre],ation must be 

tested for sign:i,ficance, us:(.ng i;;mall sampling theory, by use of 

Student's-t (fisher, 1958). Perry found that for Station 1965 five of 
. '. . 

these correlatio,ns were not significant at the 0.10 significance level, 

which meant that the hypothesi1;, that the qorrelation was not zero could 

not be accepted. He conc.luded · that .the method c;:auld riot be used for 

Station 1965, although it was successfully used for Stations 1645 and 

1945. This problem had also been alluded to by Thomas and F:lering who 

found in their o:viginal investigation that there was a tendency for 

correlations in some months to be insignificant. Tney reported that in 

April and May, the months of the spring thaw in the station they exam-

ined, . correlation was not significant. 

The two models presented.in this study did not have thts limitation. 

As reported ab0ve, an. autoregress:Lve model, Model IB (Logs), has been 

shown to describe the hydrological.sequence of Station 1965, which 

Perry had concluded could not be described by the Thomas and Fiering 
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model9 The significance of the serial correlation coefflc~ents calou

lated'from the series {Zi '} cannot be ~ested by the t-test de:;;cribed by 

Fisl:j.er. This test assumes that the two,variables bein~ correlated, 

denoted for th.is description by · X and · Y, are each stochastically 

independent: al+ values of X are independent .of 1;1.ll other values of 

X; i;;imflarly for Y. I!owever; by the assumption of an autqregressive 

model, . X is dependEHlt upon preceding' v;µues of X ( v. Equatic;m 2!5). 

The mean mar;i.th.ly flows of the hydrologic;:al Giequence are not therefore 

stochastically independent, and the t-test is not applicable. However, 
. . . . . 

no such conclusion need be made about the aeqµ.ences of flows for given 

months used in: the Thomas and Fiering model. Ari anaJys:ts of the mo:p.thly 

sets of Station 1965 for ser1a.l ·correlatidn,. using the test descr:Lbed by 
' • r ': • ' ,' 

Anderson (1942} showed that eJ,eyen of th'? t.welve sets had insign,iftcant 

serial correlation. and cou~d, ', .therefore, be ccms:t.d~red ti;> be. independent e 

. . . . 
The corre;l.ation between th;e sets :I,s thqs va~id and the t-test may be 

used to test its signtficance. 

A further. dicia<lva,ntag~ · o:fi' the 'Thomas ar,td Fier.1ng model is that 

Quenouille' s. X? -test can:p.ot be used to test the adequacy qf the model. 

The model is not based upon the assumption of an autoregressive scheme 

describing a continuous '?eries (Xi}, .but upon t1r{elve qomqin,ed sub-series 

cons:tsting of sets of months. The x9-test could be conceivably applied· 

. to the,se· sub-series, but as mentioned. above, examiµation of Station 1965 

· $howed that· the sets wer~ ind~pendent and could not be d~scribed by 

linear autoregresi;;ion, Furthermore, ·the application of the test to the 

sub-series does not determine the a~equacy.of the model as a whole. 

T:q_e residual correlation test could be applied tq the residUc;U 

produced by the Thomas a.r).d Fiering model, but the tei;,t was found to be 
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impract:i.cable, even if applicable? when used in this study. It would 

presumably be no more successful when used with Thomas and Fiering's 

model. They reported only the results of comparison of the E;ynthesized 

record with the actual record, ip order to demo.nstrp.te the appl;icab:Ui ty 

of the model. Only the mean and varian<:;e could be compared by this 

method as the series is .stationary o:q.ly b'.I. ·the $econd order, Harms and 

Campbell (1967) reporited fairly ~ood agreement.when using this compari-
' ' ' ' . . 

son. Howeve:r, higher moments w111·not .nepessa:rily agree and Dunaway 

(1968) found large discrepancies in the frequency dietribution,, 

presW11ably because the moc(el a$sumedthat the untransformed flows were 

normally distributed, which in this. study was invariably found not to be · 

the case. 

Of the two models inve.stigated in this study, Model A was more 

simple to appl?. It requ;i:ried only fou:r: parameterE;;: the mean· and 

va:riance of the variable, the skewness parameter and the fir,st order 

serial correlat;ton coefficient. Model B requir~d at least eight 

parameters: the four required in Model A, and four for each succe9 :sive 

hi3-rmonio removed. However, the 'rl-10mas and Fiering model require.;; 

forty-eight parameters:· twelve monthly meam;, twelve monthly standard 

deviations, twelve correlation coefficie11;ts frqm month-to-month, and 

twelve regression coefficients fro\11 month-to-month. 

Model A and Moq.el B referred to above are first order autoregress-

i ve schemes. Al though the second order model was ;investigated ii1. this 

study, 1.t was felt that it would be hard to Justify the use of a second 

order model in preference to a first order model if both were cJ.Cceptable. 

Although the sample being investigated ip comparatiyely $mall, it is 

assumed to be f1.tlly representative of the population f:rorn which it was 
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drawn. However, this may not be true 1 and a model more comp)_fcated than 

the most simple acceptable could not be .Justified. Therefore, when only 

a second order model was acceptable at the 0,05 significance level, as 

in Station 8905, a first order model acceptable at the 0.01 significance 

level was preferred. 



CHAPTER.VII 

CONCLUSION$ 

1.) · A $:lmple first order l.inear autqregre6si ve model of the form 

(7.1) 

was found to describe. weakly stationary tram;formation.s of hydrological 

sequenqes in river ba,stns with. small contrir;mting areas. Two versions 

of this model, one without and one wit:P. removal of a harmonic component 

from the sequence, were examined •. The version }'l'ithout harl'!lonic removal 

was found to be iess widely accepted' than the version with harmo~ic. 

:removal, which required more paFameters for it:;; description.. The linear 

first order model .was compared with the model of Thomas and 1'"'iering 

(1962) 

r;.. . t.-l .. 'li'-l, t tlt; (1 - rrr:2 )'1./3 (x - m I . 
• S-r:,; l . 

(7 .• 2) 

which had been found not to.be applicable to drainage bas+ns with i;;mall 

contributing areas. The linear autoregressive rnqdel was founQ. to be 

more sirnple to apply~ requ.tring fewer parameters and simpler computation 

for 1 ts analy~is. 

73 
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2.) Two tests of the adequacy of the autoregressive model were 

compared~ One tested the 1?-ssumption that the res:tdual Ei;: of Equation 

(?.l) was independent-~ wltl.cn lt would be ifthe series described a 

process of linear autoregression •. Th,/ ind?pe:ndence of the residual was 
. . 

tested by eX$1intng. the significance ~:r' its serial correlatioIJ. cpeffi-
. . . 

cients~ ·. This test is.cmii. strictly appi:J,cible t6 p. stat:X,1;mary residual. 

The .other test was a large. sa.mpie· .. j .,.test propo.seq. by. Qul;!ni;mille. (1947) 

using. the seria;L cor1relat1on ".O.effici~nts fro!I') the stationary time 

series. The former test, the residual cor:relatton test, was found to 

. be cumbersome to apply.· Moreover, noq.e of the resiquals examined :'.l,n 

.th.e study·. were stationary a.n~ the. test was not ther.e:(ore str:t.ctly vs.lid. 

The :)@ -test was . found t6 be· E:limple to apply and· was adopte~ a:s 4he 

criterion for selectn1g a mode~. 

3.) Removal of s:t.~nificant. cycles. from the time series. wa9 at ... 
. . . 

fempted with harmo:q:tcs ~i~h a f~d~mental period .of twelve months. 
• • • • • t • 

Correlograms were us~d in an.attempt to d~f1ne significant cycles, and 

thEiir ~1gnificance; wa,s teste.d by examining the. serial correlation 

coefficients usi:i;lg a methodprqpo~ed by Anderso:n (1942). The methoc;i of 
. . . 

ha;monic removal waa not very successf~l. H9wever, it was.con.eluded 

that 1t was. not necessar;y to determ:T,.~~ the. s;!.gn1:t'.+cance of cycles, but • 

simply tq. investigate whether the residual after thetr :removal could. r;>e . 

described by 'the 11.ne~r au~o;regressive rqode1 of Eq~Uon (7.1). 

Quenouille' s X<'-test was used to_ test the adequacy of the model :tn this 

way. 
. . . . 
. . . . . . 

4.) 1'he distribution of the variables. a;nd residuals was.also 

examined •. The d::f.stribut1onof i.m observed ser+es. was compa:red with the 

theoretical :riormal probabilityd1st~1bution USirJ.g. the 'X'.3-test. proposed 
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by Pearson (:j.900). It was found that in no case 9ould the· seq1,1ence of 

· mean· monthly flo11i$. be consicl.e~ed to be appro:x:tmately normally distrib-

uted, although ;for some sequences examined t;he diE1trfbut1on of the 

natural logarithms of the me.an monthly flows wa.s fol.\Ild to be approx

imately novmai. The distrtbut1on of the residuals formed .after removal 

of the harmonic corrip~nent ·was· f.qurid · ln all·· cases to be similar to that 

of the original sequ~nce • 

. The distribution of the ·r~$idual ~=t (Equation 7 .1) was ~so e~a.m-

1ned. Fe~ sequenoes were found to have a resid.ua], which could· be con ... 

sidered to be appr~ximate;J.y normally distribµted. · None w~re 'normally 
·, . . . .. . 

·. diat:rihuted with variance one, th~. asl;'lumpti6n: upon whiqh the' test. of 

the signifioance of 'the' :residual wa.s based, 
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Symbol De;fini t:i.on 

a,b constants 

~} 
cP}. 

constants to describe mt 

constantp t,o describe. st 
Dp 

b't. 

bj 

B. 

reg~es:51on coefficient (Thomas and. Fiertng model) 

boundary of· cla1:>s J. in standardized series 

.l 
l;lour..1.dary of class J in observ.ed serie;:; 

dp phase of· harmonic 

e exponentie,l 

E Mathematica~ Expectation 

f 3 f~equency of. occurr·ence in cJ,a.ss J 
.. . . . .. 

F( t) Prob~b:tlity Distribution Fu..riction · 

.. esUmated · skewp.ess of [X~} 

gl; ee;t1r.hated · skewri.ess of St 
h period of harmonic 

k lag 

k number of cla:sses iri distribution analys1Ei 

Ko:. standard· norm;:d deviate at significante l~vel ex. 

·K.P coni5tant 

1., number of lags used in ')(?, -test of autoregressive scheme 

m mean of [Xt }_ 

rn.i_ mean of { log~;lt } 

IlJ.-3 third moment. abotj.t. mesn 

mt continuous function of monthly mean 

mz mean of ( Zt,"} 
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Symbol 

n 

n 

N 

p 

p 

p 
1 

R 

t. 

{XtJ 

(X} 

r z 1 . t . 

Def:!.ni. tion 

mean of mcinths t 

m.unber of harmor,iics 

number O·f observations (Xt} 

pumber of years of, record 

order of harmonic" 

order of autoregrel::isive EiCheme 

estimate of n · 
f 

serial correlat:ion coefficient for lag k 

statistic for. X:3-test of a,utoregrer3sive ,scheme 

variance of f Xt } 

continuous function of monthly :vari,;,.nce 

O·f ( z •. "} variance , 

. . 

variarJ.ce of months ~ 

time 

constant 

mean monthly d+ 9charge_ in .month t 

set of observations :;<: 
t 

set of observations of which {xt} is 

set of standardized f Xt} 

set of {Xt} after harmonic removal. 

set of standarclized [ Z/'} 

significance level 

·constanti;, 

skewness of [ X} 

skewness of [ 2;} 

a sample 
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Symbol 

µ 

1t 
f 

DeUnit;i9n 

determin:lstic component. of elel)1eri,t 

random component of element 

standardized normal random variable at time t 

variance of Et 

mean of population fX} 

mean of population {logeX} . 

second moment about mean 

third momeni;about mean 

skewed sta,np.ardized random varial;lle at t:J_me .t 

set o;f ( · .t 

probability of event i 

autocorrelation coeffic.ient for lag k 

variance of '{ x} 

vartance of {log X} e . 

index of month · 1' (1." = 1, 2, ••• , · 12) 

variable at t:imEI t 
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XIV 

PARAMETERS OF ACCEPTED MODELS 

0 : Standard_ Skewness 
Transfer- Mean of- DeV1..a.t:1on of Parameter 

Station _ Model mat:1on Var:1able Variable gt 

1478 IIA u 7.58;214 .. .··1388.9i.5 "3.62402 
164.5 IB L _ -0.00141 1.01066 • 

1705 IIB L 0.00027 0.99818 -2.03646 

1945 IB L - 0.00062 0.99399 • 

1965 
' 0.99123 IB L 0.00007 .. 

3325 IB L -0.00066 1.00865 .. 
3365 IIB u 0.00928 ,' 1.04573 z.47133 
3390- IIB u .. 0.00505 .1.01849 - 2.07846 
'8680_ - IIB u 0.13115 1.58483 _ 7 .51543 

8905 IIB - u 0.00631 l.-07037 3.84682 
. 8915 IIA u 172.413 356.318 5,20169 

.U Untransformed 

L Logs 

* Skewness 1ns1gn1f1cant 

- denotes parameter not re u1red 

r1-

0.28464 
· o.42082 

0,59213 

o.66544 

0.5808.5 

-0.56227 
0.19651 
0.23570 
0.26215 

0.332-81 
0,377()4 

No. 
Harmonics 

Removed 

4 

2 

2 

2 

l 

1 
l 

2 

l 

-

-~ 

---0:0389 
-Q.1663 
0.0578 
O.o458· 

-0.7663 
---0.2128 
-0.2240 
-0.1.561 
-0.8057 
-0.1103 
:..0.7508 

-135:5.J.12 
-1088.298 

32.996 
-77.793 
-3.5.-229 

-

Constants 

BP ·Cp 

-0.6575 0,1503 
0.2158 . 0.0875 
0~0970 0~0095 · 
0.0062 ..;0,0566 

-1.0077 0.3225 

0,5809 -0.0746 
-0.5747 0.1185 -
0.2360. · 0,0788 

-0.3.;44 0.1513 
0 .. 2238 0.0973 

-0.2818 0.1696 
· -191~826 -900.670 

139.3.52 -711.115 
-166.852 64.666 

-6.535 -100 • .592 
-259.853 41.506 

-- -

DP 

- -'000676 
- 0.0764 

0.0063 
000713 
0.9254 

~o.o602 
0-001?1 

o.on.5 
0.0649 

'_ ;,,,C).0119 

·~0.0019 

--24.5.993 

45.6:55-
-241.--677 
-25.686 

-309 • .559 

00 
-i::-
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