INVESTIGATION OF SELECTED THIOSEMICARBAZONES and their metal complexes as potertial ANTICANCER DRUGS

By

PAUL DAVID MOONEY
 Bachelor of Science
 OkIahom State University
 Stillwater, 0klahoma

1966

Submitted to the Faculty of the Graduate Collage of the Oklahoma State Univereity in partial fulfiliment of the requizements
for the Degree of
KASTER OF SCIENCE
August, 1969

INVESTIGATION OF SELECTED THIOSEMICARBAZONES and their metal complexes as potential ANTICANCER DRUGS

Thesis Approved:

790036

ACKNOWLEDGMENTS

I wish to express my gratitude to my wife, Sharon, for her patience and encouragement. I also wish to thank her for typing this thesis.

I wish to express my thanks to Dr. Ernest Hodnett for his invaluable guidance and counsel during the course of my graduate work and especially for help in the research leading to the production of this thesis.

A sincere expression of gratitude is extended to Dr. Neil Purdie for his consultations and for his availability and readiness to help and offer suggestions concerning portions of my work.

Thanks are due to the Oklahoma State University Department of Chemistry for financial assistance extended to me in the form of teaching assistantships each semester of my graduate enrollment except from June 1, 1968, to August 31, 1968, and I must express my appreciation to the Research Foundation and the National Science Foundation for a research grant extended to me during this period of time.

Finally, I would like to thank several of the other graduate students for helpful experimental hints and literature suggestions. Thanks are due to several students with similar research projects who have been quite helpful.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. HISTORICAL 3
III. INTRODUCTION TO EXPERTMENTAL WORK 8
IV. EXPERIMENTAL 24
Apparatus 24
Chemicals 25
General Titration Procedures 26
pRa Titration of 2-Formylpyridine Thiosemicarbazone (V) 27
pKa Titration Data for 2-Formylpyridine Thiosemicarbazone 28
Preparation of 0.01 M . Cobalt Perchlorate Solution 28
Analysis of 0.01 M . Cobalt Perchlerate
Solution 28
Stability Constant Titration of 2-Formylpyra- zine Thiosemicarbazone 29
Submittal of Data for Least Squares Straight Line Fit 30
Synthesis of 2-Formylpyridine Thiosemicarbazone 31
Preparation of Nickel Derivative of IV 32
Qualitative Tests on Nickel Complex of IV 33
3-Hydroxy-2-hydroxymethylpyridine Hydrochloride 33
3-Hydroxpyridine-2-carboxaldehyde Thiosemi- carbazone and its Copper (II) Complex 34
Cobalt (II) and Nickel (II) Complexes of 3-Hydrexy-2-formylpyridine TSC 37
Preparation of Copper (II) and Cobalt (II) Complexes of IV 37
V. RESULTS 38
VI. DISCUSSION OF RESULTS 39
BIBLIOGRAPHY 46
APPENDIX 48

LIST Of tables

Table Page
I. Individual pKa Values 42
II. Thermodynamic Stability Constant Results 43
III. Stability Constant Calculations 44

CHAPTER I

INTRODUCTION

The purpose of this investigation is to contribute some usable knowledge to the developing field of cancer chemotherapy. The intention is to elucidate a mechanism of action for one series of anticancer drugs. If a relationship between the physical or chemical properties of a series of organic compounds and their antitumor activities can be detected, then by preparing new drugs which optimize this trend or property new and, hopefully, more successful methods of treatment could be developed.

A class of compounds having known activities in various tumor systems was chosen for experimentation. Six thiosemicarbazones were selected which displayed activities from fair to excellent in various cancer systems of experimental animals. These were prepared from aldehydes of various \mathbb{N}-heterocycles, specifically those of pyridine, pyrazine, quinoline and isoquinoline. Since these compounds have chemical properties conducive to chelation of metal ions, they made desirable subjects for a complexation study.

It was decided to study the complexation of these thiosemicarbazones with copper (II), cobalt (II), and nickel (II), and to determine the formation constants of the complexes in solution. By comparing the stability constants with the activities in tumor systems of the crystalline metal complexes which would be subsequently prepared, per-
haps a correlation could be detected between the complexing ability of a compound and its carcinostatic activity. When the roles played by trace metals in the normal metabolism of the human body are considered it seems possible that metal ions could also play a major role in the metabolism of abnormal cells. This role quite possibly could be related to complexing ability of the metals.

The method of choice for the determinations in this investigation is that of potentiometric titration.

Because of the relative insolubility of the thiosemicarbazones themselves and the greater degree of insolubility of the metal complexes, determination of the stability constants in a 75 per cent dioxane-water solution was first considered. Since no correlation between the mixed solvent system and aqueous biological media could be made, this determination was discarded in favor of determinations in a very dilute aqueous medium.

The determinations were performed and solid metal derivatives were prepared. These derivatives will be submitted for testing and after these results are obtained perhaps a correlation can be made.

CHAPTER II

HISTORICAL

In most general texts on coordination or inorganic chemistry, reference is made to the development of prussian blue by Diesbach in Berlin as the eraliest recorded discovery of a metal complex. With the discovery of hexaammine cobalt (III) chloride, the real beginning of coordination chemistry is observed. 1,2

The interest in thiosemicarbazones arose from an original interest in compounds displaying the characteristic azomethine structure, $\mathrm{R}_{2} \mathrm{C}=\mathrm{N}$ - where R is either alkyl or hydrogen. Two compounds which exemplify this structure and which possess useful activity in chemotherapy are the guanylhydrazones of glyoxal and methylglyoxal (pyruvaldehyde). GAG (glyoxal bis (guanylhydrazone)) (I) and methylGAG (methylglyoxal bis(guanylhydrazone)) (II) are illustrated below showing the characteristic azomethine structure.

$$
\begin{align*}
& \mathrm{H}-\mathrm{C}=\mathrm{N}-\mathrm{NH}-\mathrm{C}(\mathrm{NH})-\mathrm{NH}_{2} \tag{I}\\
& \mathrm{H}-\mathrm{C}=\mathrm{N}-\mathrm{NH}-\mathrm{C}(\mathrm{NH})-\mathrm{NH}_{2}
\end{align*}
$$

$$
\begin{array}{r}
\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{~N}-\mathrm{NH}-\mathrm{C}(\mathrm{NH})-\mathrm{NH}_{2} \tag{II}\\
\mathrm{H}-\mathrm{C}=\mathrm{N}-\mathrm{NH}-\mathrm{C}(\mathrm{NH})-\mathrm{NH}_{2}
\end{array}
$$

The research in this laboratory turned to schiff bases of aromatic aldehydes with various aromatic and non-aromatic primary amines. Salicylaldehyde enjoyed the most attention and a large number of compounds were prepared from this precursor. The activity of some of these compounds has been tested and reported. ${ }^{3}$ A recently prepared Schiff base has demonstrated a high anti-leukemic activity in mouse leukemia L-1210. ${ }^{4}$ This Schiff base was prepared by simply condensing
salicylaldehyde with $\mathrm{p}^{-a m i n o p h e n o l . ~}$

This compound is still being tested and the results have not been published yet. This condensation reaction between salicylaldehyde and p-aminophenol is typical of the reaction used in preparing the various compounds.

Reactions between aldehydes and thiosemicarbazide or thiosemicarbazide hydrochloride yield compounds containing the characteristic azomethine structure. An example of this is glyoxal bis (thiosemicarbazone).

This compound when included in the diet inhibits the growth of certain tumors in mice. ${ }^{5}$ This is not an isolated case of activity.

Isatin-3-thiosemicarbazone gives almost complete protection in mice which have been inodulated with vaccinia virus in dosages up to 100,000 times the usual lethal dose. 6,7 of several compounds tested, the isatin structure seemed to give the best results. The thiosemicarbazone of 1 -methylisatin has been used with some success in a smallpox epidemic. Thiosemicarbazones of the 2-and 5-thiazolecarboxaldehydes have shown good antiviral activity. 8 The carcinostatic activity of 2 -keto-3-ethoxy-butyraldehyde (kethoxal) has been reported. ${ }^{9}$ Besides the parent compound interest has been demonstrated in the bis (thiosemicarbazone) derivative of kethoxal. 9, 10, 11, 12, 13 In 1956 it was reported by Brockman et al. that the thiosemicarbazone of pyri-dine-2-carboxaldehyde (IV) demonstrated antileukemic activity in L-1210 leukemia. ${ }^{14}$ This activity was verified by French and Blanz. ${ }^{15}$ It was
noted by French and Blanz that the compound was active but was "treacherously and cumulatively toxic." 15 The activity of this compound inspired the preparation of thiosemicarbazones of some other heterocyclic aldehydes, notably that of isoquinoline-1-carboxaldehyde (V). 15

In mice bearing $L-1210$ leukemia this compound exhibited a lengthening of life up to 69 percent with an intraperitoneally injected dose of 80 mg , of compound per kilogram of animal which had been inoculated with the tumor. In Lewis lung carcinoma in mice at a dose level of $80 \mathrm{mg} . / \mathrm{kg}$. some toxicity was observed causing a few deaths but in the surviving mice 100 percent inhibition of the inoculated tumor was observed when the drug was administered either by intraperitoneal injection or by a stomach tube. In two other tumor systems the same compound exhibited high inhibitions by diet, injection, or stomach tube administration.

To follow up this promising start, 43 additional thiosemicarbazones were synthesized and tested in 4 different tumor systems.16 Included in this list are the thiosemicarbazones of pyridine-2carboxeldehyde and isoquinoline-1-carboxaldehyde (2-formylpyridine thiosemicarbazone and 1-formylisoquinoline thiosemicarbazone respectively). Several of these were found to display encouraging activities.

3-Hydroxy-2-formylpyridine thiosemicarbazone (VI) shows an 88 percent inhibition of tumor when tested in mice inoculated with transplanted Lewis lung carcinoma and a 79 percent increase in longevity in $\mathrm{L}-1210$ mice.

2-Formylpyrazine thiosemicarbazone (VII) showed inhibitions of 71 and 75 percent in Lewis lung carcinoma and a denosarcoma 755 respectively at a dose level of $75 \mathrm{mg} . / \mathrm{kg}$. in each case.

Also in the paper are the thiosemicarbazone derivatives of iso-quinoline-1-carboxaldehyde and isoquinoline-3-carboxaldehyde, the latter of which does not display any significant carcinostatic activity.

In a private communication from Frederic A. French it was revealed that 5 -hydroxy-2-formylpyridine thiosemicarbazone has exhibited activity in $\mathrm{L}-1210$ Ieukemia which has caused come excitement.

It was suggested by French and B1anz 15,16 that these compounds might be acting at physiological pH values as tridentate ligands. They propose the formation of two five-membered chelate rings of partially conjugate character favoring an octahedral coordination of two ligands to one divalent metal ion which would yield an electrically neutral complex (VIII).

This is not the first suggestion that the activity of a drug might be related to its chelating abilities. As a matter of fact several compounds have been shown to have a dependence upon or have increased activities in the presence of metal ions. The antitumor activity of the copper chelate of pyruvaldehyde bis (thiosemicarbazone) is much greater than that of the ligand itself f^{17}. When the schiff base o-(\underline{N}-phenyl-formimidoyl) phenol is complexed with cobalt its antitumor activity is increased. 18 The in vivo activiry of kethoxal bis(thiosemicarbazone) against Walker 256 carcinosarcoma has been reported to
be enhanced by the presence of copper and zinc ions. 19,20 Responsibility for the activity of the drug both in vivo and in yitro has been laid to the copper chelate of the drug. The formation of the complex between kethoxal bis(thiosemicarbenone) and divelent metal ion and the structure of the complex are reproduced below.

INTRODUCTION TO EXPERTMENTAL WORK

The compounds selected for this work were taken from the list of 43 thiosemicarbazones which were reported by French and Blanz. 16 Selection of the six compounds was done so by considering the activities in different tumor systems. It was desirable to select compounds of different activities so it could be ascertained whether the metal derivatives of those compounds could improve their activities and if so to what extent. It was desirable to determine if compounds of low activity could be made usefully active and whether those of high activity could be improved.

Perhaps a brief description of the term activity should be presented. The compounds tested were done $s 0$ in four different tumor systems. Three of these, Sarcoma 180 (SAR), Lewis Iung carcinoma (LLC), and adenocarcinoma 755 (ADN), are solid transplanted tumors and the fourth, leukemia $L-1210$ ($L-1210$), is a leukemia of mice induced by intraperitoneally injected leukemia cells. Treatment of each tumor system begins 24 hours after the transplant inoculation with one dose per day. In the case of the solid tumors, at the end of a specified number of days, the solid tumors are excised and weighed to the nearest milligram. At the same time tumors are excised from control mice which have received a similar tumor transplant at the same time but have received no treatment. For solid tumors evidence of
activity is a significant difference in tumor size in the test and the control animals. For the solid tumors the ratio T / C (test/control) is reported and the compound tested is considered to have activity meriting further tests if this ratio is less than or equal to 0.53 indicating that the treated tumor is only half the size of the untreated tumor. For the leukemia, since there is mo solfd tumor to measure, a lengthening of life is desired and the T / G ratio is a measure of time (days) from tumor transplant will death. Since a greater longevity is desired, A T / C valu greater that 1.0 is desired and a value greater chan or equal to 1.25 is considered active.

In addition to compounds VF_{F} WI, VII wim VIII, two other compounds were selected for cestimg. These were 3oformylisoquinoline thiosemicarbezone (IX) and 5-hydroxy-2-formylpyridine thiosemicarbazone (X).

The tumors, dose, and activities of these compounds are reported below. 16

Cmpd.	$\mathrm{I}_{0}-1210$		SAR		LuC		ADN	
	Dose ($\mathrm{mg} / \mathrm{kg}$)	T/C	Dose $(\mathrm{mg} / \mathrm{kg})$	T/C	Dose (mg/kg)	T/C	Dose (mg/kg)	T/C
V	10	1.30	10	. 60	10	. 47	10	. 71
VI	67	1.47	35	. 76	67	. 20	67	. 10
VII	71	1.79	71	. 49	75	. 12	71	. 32
VIII	75	1.36	75	. 53	75	. 29	75	. 25
IX	150	1.13	100	. 90	100	. 72	75	1.01
X	--	$\cdots \infty$	-o.	\cdots	-	\cdots	-**	-00

The statistics for (X) are not presently available but private communications indicated the activity is considerable.

Samples of these six compounds and few others were obtined for testing from Frederic A. French of the Monnt Zion Hospital and Medical Center, Chemotherapy Research Loboratory in Palo Alto, Califormia.

If the structares of these compounds are considered it can be seen why they lend themselves well to chelation. The thoisemicarbazone structure may be comsidered to be very weak acid due to the
 The hydrogen on the spif, although only weakly acidic, should be tim tratable since the an ion sesultang from themoval of the hydrogen would be stabilized by the conjugated structure, and a pKa value should be measureable.

If a phenolic -OH is placed on the ring another source of hydrogen ions is present. The acid constamt of this wealely acidic group should also be measureable。 Using VI as an cxample this ionization may be demonstrated.

A third source of acidity may be foum fa the ring mitrogen atom of the pyridine structure. The protomationoionization equilibrium may be measured and an acid comstant calculated.

The charge resulting from the protomated ring may be shown by proper resonance structures to be delocallued thus stabillwing the ion.

If the pyrazime structure of compound wif is examined two nitrom gen atoms are seen in the ring and the queston may be raised whether one or both mitrogen toms are protomated and if ondy one, which one? Pyrazine itself has only one reported pka. 21 This is reasonable if one examines the molecule. Protontion of one nitrogen results in the introducation of positive charge which is delocalized throughout the ring and, as the structures below show, to the greatest extent at the 2, 4, and 6 position. the second mitrogen is at the 4 position and the partially positive nature of this mitrogen makes a second protome tion highly unlitely.

If a conjugnted structure suck as the thiosemicarbazone structure is substituted the 2 opowition as in compound vir, it seems reasonable to assum that protomaton occuts at the loposithon (octho to the side gromp) so that mot only the above delocalimaton results but an addio tional contribution is recelved from the conagated side chan in the following suggested manmer.

If protonation occurs on the nitrogen atom wich is meta to the side chain this additional comtribution cannot be demonstrated. It is thus suggested that for 2-fomylpyrazin thioscmicarbanone (VII) only one nitrogen is protometed, suggestion which is borme out by titration data and calculations; and this protonation occurs at che loposition In preference to the 4 position so that the charge may be delocalized through the conjugated side chain which is ortho to the protonated ring position. In all other species it is assumed that the nitrogen mem is protomated and the chage dracalimed where possible through out a conjugated structure. Thus assumpton is supported by the observation thet the materizls, 11 of wich re macuble at meutral pH are soluble at acid pla

Since these componads all have potentlally titratable hydrogen atoms they may be treated macide ligands ix complexation studies. Before any studies are made on complex formation by these compounds a measure of their acidity must be mad.

It was dusirembe to mige these measurcments by potentiometric tim tration. However, the problemof solubility rematud. All the como pounds worsed with were water insoluble for this reascn a mixed solvent systame wanidered. A 75% mixture of dionane in distilled water semed appenling simce all the moternis were solubie in this mixture and 1 go there were ready references on this type of measurements dome previously. However, since it was hoped to make some corm relation betwen complexation and tumor activity, a nonaqueous medium and any propertiee mesured in mon-aquous medium would be useless since a biological medium is certinly not monmaquous and direct correlation conld not be made. It mas decided to retura to aqueous
experiments.
It was observed that all the compounds tested, with the exception of the isoquinoline derivatives, were soluble in both acid and base, but precipitated in neutral solutions. In very dilute solutions though, the materials could be titrated smoothly through the neutral pH range ($6.00-8.00$) without the formation of a precipitate. It was interesting to note that when the solubility limits were exceeded a weighed sample dissolved in a measured amount of excess base would begin to precipitate shortly before sufficient acid was added to neutralize the excess base and the dissolved thiosemicarbazone. This precipitate could be redissolved by adding an amount of excess acid equivalent to the amount of compound present. If the acid was added slowly the amount of precipitate dissolved would be proportional to the amount of acid added. These solubilities serve to support the proposed ionization and protonation steps:

It was encouraging to note that a very dilute basic solution of the thiosemicarbazones could be neutralized without formation of a precipitate; now titrations could be done to measure the acid constants of the ligands. The constants are easily calculated after a titration according to some easily obtainable formulas. These formulas will now be derived for a triprotic acid and diprotic acid of the forms $H_{3} A^{\oplus}$ and $H_{2} A^{\oplus}$ respectively.

For the case of a diprotic acid such as the fully protonated form of (IV), which for the sake of brevity is written as $\mathrm{H}_{2} \mathrm{~A}^{\text {里, }}$, dissolved in base and the salt of which is being titrated with standard acid, the equations necessary for calculation of the acid dissociation constants are arrived at as follows:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~A}^{\oplus} \stackrel{\mathrm{Kal}}{\rightleftharpoons} \mathrm{HA}+\mathrm{H}^{\oplus} & \mathrm{Ka}^{1}=\frac{\mathrm{he} \cdot \mathrm{HA}]}{\left[\mathrm{H}_{2} \mathrm{Al}^{\mathrm{f}}\right.} \\
\mathrm{HA} \stackrel{\mathrm{Ka}^{2}}{\rightleftharpoons} \mathrm{~A}^{\Theta}+\mathrm{H}^{\oplus} & \mathrm{Ka}^{2}=\frac{\mathrm{h} \cdot\left[\mathrm{~A}^{-}\right] \mathrm{f}_{2}}{[\mathrm{HA}]}
\end{array}
$$

For the first ionization:
Total acid present $=a=\left[\mathrm{H}_{2} A^{\oplus}\right]+[H A]$
Total ions present $\left.=\left[\mathrm{H}^{+}\right]+\mathrm{H}_{2} \mathrm{~A}^{-}\right]+\left[\mathrm{K}^{-}\right]+\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
From electroneutrality: $\left[\mathrm{H}^{\oplus}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{\oplus}\right]+\left[\mathrm{K}^{\oplus}\right]=[\mathrm{Cl}]+\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}_{2} \mathrm{~A}^{\oplus}\right]=\left[\mathrm{C} 1^{-}\right]+\left[\mathrm{OH}^{-}\right]-[\mathrm{K} \oplus]-\left[\mathrm{H}^{\oplus}\right]$
$=\left[\mathrm{Cl}^{-}\right]-\left[\mathrm{K}^{\oplus}\right]-\left[\mathrm{H}^{\oplus}\right]$ since OH^{-}is negligible at low pH .
$[\mathrm{HA}]=a-\left[\mathrm{H}_{2} \mathrm{~A}^{\oplus}\right]=a-\left[\mathrm{C} 1^{-}\right]+\left[\mathrm{K}^{\oplus}\right]\left[\mathrm{H}^{\oplus}\right]$

$\log K a^{1}=\log h+\log Y-\log f_{1}$
$\mathrm{pKa}^{\beta}=\mathrm{pH}-\log \mathrm{Y}+\log \mathrm{f}_{1}$
where $Y=\frac{\left(a-\left[C^{-}\right]\left[\mathrm{K}^{+}\right]+\left[\mathrm{H}^{+}\right]\right.}{(\mathrm{C}]-[\mathrm{C}+]-\left[\mathrm{H}^{+}\right]}$
For the second ionization:
Total acid $=a=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$
Total ions present $\left.=\left[\mathrm{H}^{(\mathrm{e}} \mathrm{H}+\left[\mathrm{A}^{\circ}\right]+\left[\mathrm{K}^{(}\right)\right]+\mathrm{OH}^{-}\right]+\left[\mathrm{Cl}^{-}\right]$
From electroneutrality: $\quad\left[\mathrm{K}^{\mathrm{C}}\right]\left[\mathrm{E}^{0}\right]=[\mathrm{OH}]+\left[\mathrm{A}^{\circ}\right]+[\mathrm{C} 1]$

$$
\begin{aligned}
{\left[\mathrm{A}^{-}\right] } & =\left[\mathrm{E}^{-\theta}\right]+\left[\mathrm{H}^{9}\right]-\left[\mathrm{OH}^{-}\right]-[\mathrm{C} 1] \\
& =\left[\mathrm{K}^{-\infty}\right]-\left[\mathrm{OH}^{+}\right]-[\mathrm{C} 17
\end{aligned}
$$

$$
\begin{aligned}
& \text { since }\left[\mathrm{H}^{+}\right] \text {is negligible at high } \mathrm{pH} . \\
& \mathrm{HA}=a-\mathrm{A}^{-}=a-\mathrm{K} \mathrm{OH}^{-} \mathrm{Cl}^{-} \\
& \mathrm{Ka}^{2}=\frac{\left.\mathrm{h} \cdot\left(\mathrm{~K}^{\mathrm{g}}\right]-\left[\mathrm{QH}^{-}\right]-[\mathrm{Cl}]\right) \cdot \mathrm{f}_{1}=\mathrm{h} \cdot \mathrm{Z} \cdot \mathrm{f}_{1}}{(\mathrm{a}} \mathrm{H}^{\left.\left.-0 \mathrm{H}^{-}\right]+\left[1^{-}\right]\right)} \\
& 10 \mathrm{Ka} \mathrm{Ka}^{2}=\log \mathrm{h}+\log \mathrm{Z}+\log \mathrm{f}_{1} \\
& \mathrm{pKa}^{2}=\mathrm{pH}-\log -\log \mathrm{f}_{1}
\end{aligned}
$$

Calculation of ionic strength (I) for the ionization
$\mathrm{H}_{2} \mathrm{~A}^{\oplus} \longrightarrow \mathrm{HA}+\mathrm{H}^{(\oplus)}$
Charged species present: $\mathrm{K}^{\oplus}+\mathrm{OH}^{\circ}+\mathrm{H}^{\oplus}+\mathrm{Cl}^{-}+\mathrm{H}_{2}{ }^{\oplus}$

$$
\left[\mathrm{H}_{2} \mathrm{~A}^{\oplus}\right]+\left[\mathrm{k}^{\oplus}\right]+\left[\mathrm{H}^{\oplus}\right]=\left[\mathrm{C} 1^{-}\right]+\left[\mathrm{OH}^{-}\right]
$$

Ionic strength $=I=\frac{1}{2} \sum_{C i} \mathbb{Z i}^{2}$ where $\mathbb{Z i}$ is the electronic charge on a particular ion and $C i$ is the concentration of that particular ion. ${ }^{23}$

$$
\begin{aligned}
I & =\frac{1}{2}\left(\left[\mathrm{H}_{2}^{\mathrm{A}}\right] \cdot 1^{2}+\left[\mathrm{K}{ }^{\oplus}\right] \cdot 1^{2}+[\mathrm{Cl}] \cdot 1^{2}\left[\mathrm{OH}^{-}\right] \cdot 1^{2}\right) \\
& =\frac{1}{2}\left(2\left[\mathrm{Cl}^{-}\right]+2\left[\mathrm{OH}^{-}\right]\right) \cong[\mathrm{Cl}] \text { since }\left[\mathrm{OH}^{-}\right] \text {is negligible }
\end{aligned}
$$

at low pH .
Calculation of f_{1} : Calculation of f_{1} is possible by the relationship

$$
-\log f_{1}=.509\left\{\frac{\sqrt{I}}{1+\sqrt{I}}-0.3 I\right\} \text { Where } I \text { is ionic strength }{ }^{24} \text {. }
$$

Calculation of ionic strength for the ionization
$H A \rightleftharpoons H^{\oplus}+A^{-}$:
Charged species present $=\mathrm{H}^{\oplus}+\mathrm{Cl}^{-}+\mathrm{K}^{\oplus}+\mathrm{OH}^{-}+\mathrm{A}^{-}$

$$
\begin{aligned}
& {\left[\left[^{+}\right]+\left[K^{(x)}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{A}^{-}\right]+\left[\mathrm{Cl}^{-}\right]\right.} \\
& I=\frac{1}{2} \sum \mathrm{Ci} \mathrm{Zi}^{2}=\frac{1}{2}\left(\left[\mathrm{H}^{\oplus}\right]+\left[\mathrm{K}^{(2)}\right]+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{A}^{-}\right]+\left[\mathrm{C} 1^{-}\right]\right) \\
& =\frac{1}{2}\left(2\left[\mathrm{H}^{+9}\right]+2\left[\mathrm{~K}^{(\mathrm{O}}\right]\right)
\end{aligned}
$$

$I \cong K^{+}$since above $\mathrm{pH} 5\left[\mathrm{H}^{+}\right]$is negligible as compared to $\left[\mathrm{K}^{(\infty)}\right]$. Calculation of f_{1} is the same as before.

For the case of the ionization of a triproticacid, a similar treatment yields for the first two ionization, which are similar to those of a dicrotic acid, equations for pKa^{1} and pKa^{2} as follows:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{~A}^{\dagger} \rightleftharpoons \mathrm{H}_{2} \mathrm{~A}+\mathrm{H}^{+} \\
& \mathrm{K}_{1}=\frac{\mathrm{h} \cdot\left[\mathrm{H}_{2} \mathrm{~A}\right]}{\left[\mathrm{H}_{3}{ }^{\oplus}+\right.} \cdot \frac{1}{\mathrm{f}_{1}} \text { If }\left[\mathrm{H}_{3} \mathrm{~A}^{\oplus}\right]=\left[\mathrm{C} 1^{\top}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{\oplus}\right]-\left[\mathrm{K}^{\oplus}\right]
\end{aligned}
$$

and $\left[\mathrm{H}_{2} \mathrm{~A}\right]=\mathrm{a}-\left[\mathrm{H}_{3} \mathrm{~A}^{\oplus}\right]$ then with $\left[\mathrm{OH}^{-}\right]$dropping out at low pH , pKa^{l} may be defined as:
$\mathrm{pKa}{ }^{1}=\mathrm{pH}+\log \mathrm{X}-\log \mathrm{f}_{1}$ where $\mathrm{X}=\frac{\left[\mathrm{C}_{1}\right]-\left[\mathrm{H}^{(\oplus)}\right]-\left[\mathrm{K}^{\oplus}\right]}{a-\left[\mathrm{H}_{3}{ }^{(4)}\right]}$
and f_{1} is calculated by knowing that the ionic strength is closely approximated as the chloride ion concentration ($\mathrm{I} \cong\left[\mathrm{C} 1^{-}\right]$).
$\mathrm{pKa}^{2}=\mathrm{pH}+\log \mathrm{Y}+\log \mathrm{f}_{1}$
where $\mathrm{Y}=\frac{a-\left[\mathrm{H}^{\oplus}\right]-\left[\mathrm{K}^{\oplus}\right]+\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}^{-}\right]+[\mathrm{K}] \cdot\left[\mathrm{C}^{-}\right] \cdot\left[\mathrm{OH}^{-}\right]}$
and f_{1} is calculated by approximating ionic strength by the potssim ion concentration ($\mathrm{I} \xlongequal{\underline{N}}[\mathrm{~K} \oplus]$).

Derivation of pKa^{3}
K_{3} is derived as follows: $H A A B^{\circ} \rightleftharpoons H^{\oplus}+A \Theta_{;} K_{3}=\frac{h \cdot[A \Theta]}{\left[H A^{-}\right]} \cdot \frac{f_{2}}{f_{1}}$

$$
\mathrm{HA}^{-} \mathrm{H}^{\oplus}+\mathrm{A}=\quad a=\left[\mathrm{HA}^{-}\right]+[\mathrm{A}=]
$$

Total ions present $=\mathrm{K}^{\oplus}+\mathrm{OH}^{-}+\mathrm{H}^{\oplus}+\mathrm{Cl}^{\infty}+\mathrm{HA}^{-}+\mathrm{A}=$
$\left[\mathrm{K}^{(}\right]+\left[\mathrm{H}^{\oplus}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{-}\right]$
$\left[\mathrm{K}^{\oplus}\right] \quad\left[\mathrm{H}^{\oplus}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{Cl}^{\circ}\right]+a+\left[\mathrm{A}^{\circ}\right]+2\left[\mathrm{~A}^{\circ}\right]$
$\left[A^{-}\right]=[\mathrm{N}+]-\left[\mathrm{C}^{-}\right]$- a with $\left[\mathrm{Ea}^{\circ}\right]$ and $\left[\mathrm{OH}^{-}\right]$considered negligible compared to $\left[\mathrm{K}^{(+)}\right]$and $\left[\mathrm{Cl}^{\circ}\right]$ at pH values less than 11 . $\left[\mathrm{HA}^{-}\right]=a-\left[\mathrm{A}^{-}\right]$

Calculation of ionic strength (I)

$$
\begin{aligned}
\mathrm{I} & =\frac{1}{2}\left(\left[\mathrm{H}^{\oplus}\right]+\left[\mathrm{Cl}^{-}\right]+[\mathrm{K} \oplus]+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HA}^{-1}+4\left[\mathrm{~A}^{=}\right]\right)\right. \\
& \left.=\frac{1}{2}\left(\left[\mathrm{H}^{\oplus}\right]+[\mathrm{Cl}]+\left[\mathrm{K}^{\oplus}\right]+\left[\mathrm{OH}^{-}\right]+a-\left[\mathrm{A}^{-}\right]+4\right]\left[\mathrm{A}^{=}\right]\right) \\
& =\frac{1}{2}\left(\left[\mathrm{H}^{\oplus}\right]+[\mathrm{Cl}]+\left[\mathrm{K}^{\oplus}\right]+\left[\mathrm{OH}^{-}\right]+a-3\left[\mathrm{~A}^{-}\right]\right)
\end{aligned}
$$

substitute for $A=$

$$
\begin{aligned}
& \left.=\left(\left[\mathrm{H}^{\oplus}\right]+\mathrm{K}^{\oplus}\right]+\left[\mathrm{El}^{-}\right]+\left[\mathrm{OH}^{-}\right]+a+3\left[\mathrm{~K}^{\oplus}\right]+3\left[\mathrm{H}^{\oplus}\right]-3 \text { [} \mathrm{OH}^{-}\right]-3\left[\mathrm{Cl}^{-}\right]-3 \text { a) } \\
& =\frac{1}{2}\left(4\left[\mathrm{H}^{\oplus}\right]+4\left[\mathrm{~K}^{\oplus}\right]-2\left[\mathrm{Cl}^{-}\right]-2\left[\mathrm{OH}^{-}\right]-2\right. \text { a) } \\
& =2\left[\mathrm{~K}^{\oplus}\right]-\left[\mathrm{Cl}^{-}\right]-\text {a with }\left[\mathrm{H}^{\oplus}\right] \text { and }\left[\mathrm{OH}^{-}\right] \text {considered negligible }
\end{aligned}
$$

$$
\text { compared to }\left[\mathrm{K}^{\oplus}\right] \text { and }\left[\mathrm{Cl}^{-}\right] \text {between } \mathrm{pH}: 3.0 \text { to } \mathrm{pH} 11.0
$$

The values for f_{1} and f_{2} may now be calculated and with these values pKa^{3} may be calculated as

$$
\begin{aligned}
& \mathrm{pKa}^{3}=\mathrm{pH}-\log \frac{[\mathrm{A}=]}{\left[\mathrm{H} \mathrm{~A}^{-}\right]}-\log \mathrm{f}_{2}+\log \mathrm{f}_{1} \\
& -\log \mathrm{f}_{2}=(4.0) \cdot(.509)\left\{\frac{\sqrt{I}}{1+\sqrt{I}}-0.3 \mathrm{I}\right\}
\end{aligned}
$$

The procedure chosen for the determination of the pKa is titretion with standard acid of a sample dissolved in a known amount of excess standard potassium hydroxide. By knowing the amount of compound and amount of potassium hydroxide, the excess amount of base may be calculated. The amount of standard acid necessary to titrate the excess base may be calculated and added. Now the titration may be carried out as just a simple backotitration of an acid salt with standard acid.

For a polyprotic acid the amount of acid necessary to titrate the first equivalent was calculated and this was considered as titrating a single proton. For the second equivalent the titration was again considered as titration of the $H A \rightleftharpoons H^{\oplus}+A^{-}$equilibrium, and so on for each proton on the acid. As long as the pRay values of
each ionization are different from each other by a value greater than or equal to 2.0 each proton titrated can be considered as a separate titration and the simple pKa's calculated by using the formulas already discussed. If the pKa "s differ by values less than 2.0 they are considered to be overlapping and special calculations bust be used. This case was not encountered so will not be discussed.

To calculate the formation constants of the various ligands, once again the potentiometric method was chosen. Any substance capable of binding a proton can bind a positively charged metal instead and the resulting hydrogen-ion concentration can be used as a measure of complexing. Being completely general and allowing a ligand of the type HL (HA) where the ligand has only one potential anionic form, an example of chelation may be written as:

$$
\mathrm{HL}+\mathrm{M}^{++} \underset{ }{\mathrm{K}_{2}} \mathrm{ML}^{\oplus}+\mathrm{H}^{\oplus} \quad \mathrm{ML}^{\oplus}+\mathrm{HL} \underset{\mathrm{~K}_{2}}{\rightleftharpoons} \mathrm{KL}_{2}+\mathrm{H}^{\oplus}
$$ and a new term B_{2} is introduced and defined as $B_{2}=K_{1} K_{2}$ or the overall formation constant.

The ligands used in this investigation all bave nitrogens in an aromatic ring which are capable of being protonated. The titrations were done so that the calcudeted amount of acid was added sufficient to protonate all anions and then protonate 1 ring nitrogen. The ligand was then treated as $H_{2}{ }^{\oplus}$ or simply $H_{2} A$. The equations presented by Albert and Serjeant ${ }^{21}$ were then revised and used to determine the formation or stability constants. The ligands were titrated in the presence of a known amount of metal perchlorate with standard potassium hydroxide.

To begin developing the equations used the concentration of free and combined hydrogen ions is expressed two ways:

$$
C a=[L 0] \cdot f_{1} \cdot[\mathrm{KOH}] \text { equation } 1
$$

where [L0] is the concentration of ligand originally added and corrected for any dilution, and KOH is concentration of titrant added.

$$
[\mathrm{Ho}]=h+[\mathrm{HL}]+2\left[\mathrm{H}_{2} L^{\circ}\right] \cdot \mathrm{f}_{1} \text { - oh equation } 2
$$

where h and oh are the activities of the hydrogen and hydroxyl ions respectively.

Since $\mathrm{Ca}=[\mathrm{Ho}$] ,
$2\left[\mathrm{H}_{2} \mathrm{~L}^{\theta}\right] \cdot \mathrm{f}_{1}+\mathrm{HL}=2\left[\mathrm{I}_{0}\right] \cdot \mathrm{f}_{1}=[\mathrm{KOH}]-\mathrm{h}+$ oh equation 3 By the laws of mass action the ionization of the ligands may be expressed as:

$$
\begin{aligned}
& {\left[\mathrm{H}_{2} \mathrm{~L}^{\oplus}\right]=\frac{\left[\mathrm{HL}^{-}\right] \cdot h}{\mathrm{~K}_{1} \mathrm{f}_{1}} \quad \text { equation } 4}
\end{aligned}
$$

equation 5
Substituting (5) into (4) the values for [$\left.\mathrm{H}_{2} \mathrm{~L}^{(\omega)}\right]$ and HL $]$ are found as $\frac{h^{2}-\left[L_{0}\right]}{K_{1} K_{2}}$ and $\frac{h \cdot\left[L^{2}\right]}{K_{2}} f_{1}$ respectively.

By substituting equations 4 and 5 into 3 , equation 6 may be arrived at.

$$
\begin{aligned}
& \frac{2 \cdot h^{2}\left[L^{-}\right]}{K_{1} K_{2}}+\frac{h \cdot\left[L^{-}\right] \cdot f_{1}}{K_{2}}=2[L 0] \cdot f_{1} \cdot[K O H]-h+o h \\
& {\left[L^{-}\right]\left(\frac{2 h^{2}}{K_{1} K_{2}}+\frac{h f_{1}}{K_{2}}\right)=\frac{2[L O] \cdot f_{1}-[K O H]=h+o h}{P} \quad \text { equation } 6}
\end{aligned}
$$

Where P is defined as $\left(\frac{2 h^{2}}{K_{1} K_{2}}+\frac{h f_{1}}{K_{2}}\right)$

The total activity of ligand Lo may be expressed as:

$$
[\mathrm{LO}]=\left[\mathrm{L}^{-}\right] \cdot \mathrm{f}_{1}+[\mathrm{HL}]+\left[\mathrm{H}_{2} \mathrm{~L}^{\oplus}\right] \cdot \mathrm{f}_{1}+\left[\mathrm{LM}^{\Theta}\right] \mathrm{f}_{1}+2\left[\mathrm{~L}_{2} \mathrm{M}\right]
$$

If $\overline{\mathrm{n}}$ is defined as the average number of ligands bound by one atom of metal the following relationships are obtained.

$$
\begin{aligned}
& \bar{n}=\frac{\left[L_{M}^{(G)}\right] \cdot f_{1}+2\left[L_{2} M\right]}{M \theta} f_{2} \\
& \bar{n}[M 0] \cdot f_{2}=\left[L^{\oplus}\right]_{0 f_{1}}+2\left[L_{2} M \text { equation } 9\right.
\end{aligned}
$$

Substitute equation 10 into equation 8.

$$
\left[L_{0}\right]=\left[L^{\infty}\right]+[H L]+\left[\mathrm{H}_{2} L^{\oplus}\right] \cdot f_{1}+\bar{n}[\mathrm{MO}] \cdot f_{2} \quad \text { equation } 11
$$

Substitute equations 4 and 5 into equation 11.

$$
\begin{aligned}
& {[\mathrm{L} 0]=\left[\mathrm{L}^{-}\right]\left(\mathrm{f}_{1}+\frac{\mathrm{h} \cdot\left[\mathrm{~L}^{-}\right] \cdot \mathrm{f}_{1}}{\mathrm{~K}_{2}}+\frac{\mathrm{h}^{2}\left[\mathrm{~L}^{-}\right] \cdot \mathrm{f}_{1}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}+\overline{\mathrm{n}}\left[\mathrm{Mo}^{2}\right] \cdot \mathrm{f}_{2}\right.} \\
& {[L 0]-[L] \cdot f_{1}\left(1+\frac{h}{K_{2}}+\frac{h^{2}}{K_{1} K_{2}}\right)=\bar{n}[M 0] \cdot f_{2}} \\
& \stackrel{\tilde{n}}{=} \frac{[\mathrm{L} 0]-\left[\mathrm{L}^{\bullet}\right] \cdot \mathrm{f}_{1} \bullet \mathrm{Q}}{[\mathrm{M} \mathrm{\bullet}]^{\bullet \mathrm{f}_{2}}} . \\
& \text { where } Q=\left(1+\frac{h}{K_{2}}+\frac{h^{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right)
\end{aligned}
$$

Assuming a 2 to 1 complex as suggested by French and Blank ${ }^{15}$ the J.Bjerrum equation ${ }^{21}$ is summed over n for values of $n=0$ to 2 .

$$
\sum_{n=0}^{2}(n-n) \cdot B n\left[L^{m}\right]^{n}=0
$$

Irving and Rossetti ${ }^{25}$ express this summation as:

$$
\overline{\mathrm{n}}+(\pi-1) \cdot K_{1} \cdot\left[L^{\infty}\right]+(\overline{\mathrm{n}}-2) \cdot K_{1} K_{2} \cdot\left[L^{-}\right]^{2}=0
$$

which can be rewritten with activity coefficients as:

$$
\left.\frac{\overline{\mathrm{n}}}{(\mathrm{n}-1)\left[\mathrm{L}^{-}\right] \mathrm{f}_{1}}=\frac{(2-\mathrm{n})\left[\mathrm{L}^{\circ}\right] \mathrm{f}_{1}}{(\mathrm{n}-1)} \beta_{2}-\mathrm{K}_{1}\right] \quad \text { equation } 12
$$

This equation is in the form of a straight line for which the slope is B_{2} and the intercept is $-K_{1}$. The constants are evaluated by the method of least squares.

Values of $(\bar{n} / a-1) \cdot\left[A^{\circ}\right]$ are calculated for each pH reading, are termed Y and are added to give $\sum Y$. All values of $(2-\bar{n}) \cdot\left[A^{-}\right] /(\bar{n}-1)$ are tabulated, are called X and added to give $\sum \mathrm{X}$. Values of X^{2} and $X Y$ are tabulated for each titration reading and added to give $\sum X^{2}$ and $\sum X Y$ respectively. These sums are used to solve the standard simultaneous equation for least squares which are:

$$
\begin{aligned}
& \sum Y=n a+b \sum X \\
& \sum X Y=a \sum X+b \sum X^{2}
\end{aligned}
$$

where $=-K_{1}, b=B_{2}$ and $n=$ the number of observations. The solution of these equations gives mean values for $-\mathrm{K}_{1}$ and E_{2}. Since $B_{2}=K_{1} K_{2}, K_{2}$ may be arrived at by $K_{2}=B_{2} / K_{1}$. Individual values of B_{2} and K_{1} may be obtained by assuming that the mean values of K_{1} and B_{2} are correct then substituting them into equation 12 . Substituting the mean value of B_{2} allows calculation of K_{1} and vice versa using the mean value of K_{1}.

All the above calculations were performed routinely on an IBM 360 computer using the programs duplicated below. The stability constant program puts out a data card for each point in the titration on which is punched values for Y, X, W (a weighting factor which equals 1.0) and volume of potassium hydroxide. These are then used as data for the least squares treatment.

The stability constant experiments were performed for cobalt (II), copper (II), and nickel (II) for each of ligands (IV), (VI), (VII), and (X). Compounds (V) and (IX) which were selected for testing could not be dissolved in either acid or base so could not be titrated. It was now desirable to prepare solid metal chelates using these same metals. More of the ligands had to be prepared before derivatives could be made. Because of ease of preparation the two selected for derivatization were (IV) and (VI), 2-formylpyridine thiosemicarbazone and 3-hydroxy-2-formylpyridine thiosemicarbazone respectively. Compound (IV) was prepared simply by condensing pyridine-2carboxaldehyde with thiosemicarbazide to give the thiosemicarbazone derivative.

Compound (VI) required more detailed procedure, First 3-hydroxypyridine was hydroxymethylated at the 2 position using sodium hydroxide and a 40 percent aqueous solution of formaldehyde.

This 2-hydroxymethyl-3-hydroxypyridine was then oxidized by amorphous manganese dioxide which was prepared by heating manganous carbonate at 400 degrees for 24 hours, to 3-hydroxypyridine-2-caro boxaldehyde.

This aldehyde was then condensed with thiosemicarbazide to yield the desired thiosemicarbazone.

The metal derivatives were prepared by simply introducing a measured amount of the proper metal salt dissolved in distilled water into an acidic aqueous solution of the ligand. This solution was then adjusted with sodium bicarbonate to $\mathrm{pH} 5.0-6.0$, as measured with indicator paper. The metal complexes precipitated out as extremely fine granules which were too hard and slow to filter so separation was effected by centrifugation. The precipitates were washed $5-6$ times with water to remove excess metal ions and then twice with hot ethanol to remove any unreacted ligand, with centrifugation after each washing.

These derivatives were prepared and will be submitted for testing of anti-tumor activity after metal analysis on them is complete.

EXPERIMENTAL

Apparatus

All the potentiometric measurements in this work were performed using a Beckman Research pH Meter which allows pH reading accuracy to 3 decimal places. The samples were titrated at constant temperature in a glass cup around which was a water jacket, A Haake heating circulater and Brinkman Thermocool cooling unit were used in conjunction with each other to circulate water, whose temperature was maintained at 25 degrees, through the water jacket around the titration vessel. Stirring was accomplished magnetically by use of a Teflon-coated stirring bar and a Mag-Mix magnetic stirrer from Precision Instruments Co. Titrations were performed using pyrex burettes fitted with Teflon stopcocks. The burettes had 10 -milliliter volume with 0.05 ml-graduations. A rubber bung was secured over the top of the titration vessel after the sample had been dissolved. The burette, electrodes and a small tube which delivered a stream of nitrogen were inserted through openings in the rubber bung. Thus the titrations could be performed over a period of thirty minutes to an hour under a nitrogen atmosphere.

Chemicals

As mentioned before, the thiosemicarbazones tested in this investigation were secured from Frederic A. French of Palo Alto, California. All of them appeared as powders of varying shades of yellow.

The potassium hydroxide solution used as titrant was carbonatefree potassium hydroxide prepared as described by Albert and Serjeant. ${ }^{21}$ Briefly, it was prepared, with all manipulations performed under nitrogen, by dissolving Baker reagent grade potassium hydroxide pellets in doubly distilled water. Barium hydroxide was added and the barium carbonate allowed to precipitate overnight. The supernatant was passed through an ion-exchange column packed with Dowex 50W-x8 cato ion exchange resin in the potassium form. The eluted carbonatefree potassium hydroxide was stored in a 2-1iter polyethylene bottle fitted with polyethylene sample withdrawal tube, on the end of which was placed a piece of surgical tubing with a pinch-clamp. To allow air to enter the container each time a sample is withdrawn, a glass tube was fitted through the rubber stopper in the top of the bottle and a soda-lime-filled drying tube was placed on the end of the air vent tube. Thus any air admitted to the interior of the container is essentially free of carbon dioxide. The potassium hydroxide thus prepared was standardized against reagent grade potassium acid phthalate dried under vacuum for 24 hours. After standardization a volume of water was added in sufficient quantity to make the base approximately 0.10 normal. The base was again standardized with potassium hydrogen phthalate.

The acid used was Fisher reagent grade 0.10 normal standard Hydrochloric acid which was standardized for four-decimal-point
accuracy against the prepared carbonate-free standard potassium hydroxide.

The metal salts were prepared from cobalt, nickel and copper perchlorates which were acquired in salt form from the G. Frederick Smith Chemical Company of Columbus, Ohio. The perchlorate salts were used to avoid additional complexing by the anion since the perchlorate ion is not a good ligand. Solutions of each salt were made by dissolving sufficient amounts of the respective salts in a volume of doubly distilled water and then adding enough water to make 500 ml . of approximately 0.01 M solutions. The salt solutions were analyzed by cation exchange chromatography. Triplicate aliquots of the solutions were placed separately on a column of Dowex $50 \mathrm{~W}-\mathrm{X8} 100-200$ mesh which was in the hydrogen form. The samples were eluted with distilled water until the eluants tested neutral with indicator paper. The collected eluants were titrated with standard base to determine the milliequivalents of acid and thus the miliequivalents of metal could be calculated.

General Titration Procedures

A sample of thiosemicarbazone was weighed out and the number of millimoles calculated. The amount of sample weighed out was necessarily kept low because of solubility considerations. The sample was dissolved in 3.0 ml . of standard potassium hydroxide. By knowing the weight of the sample and the number of protons to be removed by the base (-SH, or -SH and-OH) the amount of base neutralized by the sample could be calculated and thus the amount of excess base was known. The amount of acid necessary to neutralize this excess base was calculated and added to the sample and then 40.0 ml . of water was added to give a
sufficiantly dilute olution to prevent precipitation Now tho amont of acid is calculated which is mecessary to titrate the -SH group pres sent, the -OH group it there is mas, and also to protomate the ntro gem in the ring. The sample was then titrated with this amount of hydrechlexic acid. The ph values were recorded after each addition aud thus the pRa values could be calculated. At this point the ligand coald be considered a olther $\mathrm{H}_{2} \mathrm{~A}^{+}$or $\mathrm{H}_{3} \mathrm{~A}^{+}$depending on the structure. Now the monnt f metal salt solution was calculated which would put emogh metal ions ia smiutien to give a appreximate 2 to 1 ligand to metal molar ratio. This volume salt golution was mixed in the sample and the smple was titrated with juat emorgh potasoum hydroxide (a calculated amount) to remeve every proten just placed on the ligas. This data was used tolculate the tobility conytant finemetalo IIgand complex. It should be added thet upon the formation fing trace of precipitate the titration mast be topped bocosse amy furo ther data will be useless. This is true both types fitrations mo pRe and stability comstant. pRa Titration F 2-Fermylgyridixe Thiosemicarbagen (V)
A. sample if compernd IV was measured out which weighed 0.0280 . The molecular weight fiv is 180.214 this gample is 0.1554 milo 11moles. This was dicstued in 3.0 ml . of 0.1054 N potasium hydroxide. Since there is only ne proten to be removed (that of the -SH group) only 0.1554 millm ies fof potastum hydrtxide is moutralized and this leaves 0.1608 millequivilemte excess base. This excess base required 1.448 mi . 0.1110 v (mad. Te protonte the ring nitregen requires an additional 1.400 ml . of 0.1110 N hydrochleric acid was added to neutralize the excess base chea 40.0 ml . .f wher was
added by a volumetric pipette and the sample was routinely titrated. All calculations involving the data were done on an IBM 360 computer. Since the pKa is theoretically that pH at half neutralization, the values calculated near the middle of each titration were averaged and those on each end thrown out. This gave values of $\mathrm{pKa}^{1}=3.723 \pm$.072 and $\mathrm{pKa}^{2}=10.871+.071$ for this compound. pKa Titration Data for 2-Formylpyridine Thiosemicarbazone

Vol. HC1	pH	VoI. HC1	pH
0.05	11.131	0.05	7.093
0.15	11.094	0.15	6.130
0.25	11.013	0.25	5.147
0.35	10.944	0.35	4.628
0.45	10.875	0.45	4.430
0.55	10.804	0.55	4.272
0.65	10.735	0.65	4.141
0.75	10.659	0.75	4.015
0.85	10.564	0.85	3.892
0.95	10.457	0.95	3.792
1.05	10.296	1.05	3.722
1.15	10.116	1.15	3.629
1.25	9.886	1.25	3.555
1.35	9.373	1.35	3.464
1.38	8.615		

Preparation of 0.01 M Cobalt Perchlorate Solution

1.83 grams of cobalt perchlorate hexahydrate were weighed and then dissolved in 50 ml . of doubly distilled water and this solution dilu= ted to 500.0 ml . in a 500 ml . volumetric flask.

Analysis of 0.01 M Cobalt Perchlorate Solution
A slurry of Dowex $50 \mathrm{~W} \times \mathrm{x} 8$ cation exchange resin was prepared in doubly distilled water. This slurry was poured into a column which had a loosely packed glass wool plug in the bottom and the resin allowed to settle until a bed of 1 cm . by 15 cm . was obtained. One
hundred mls of $1 \underline{M}$ hydrochloric acid were eluted through the column to insure that the resin was in the acid form. The resin was washed with doubly-distilled water until the eluant produced no precipitate with an aqueous 5% silver nitrate solution. An aliquot of 1.99 ml . of metal solution was introduced in the column and eluted with water until a droplet of the eluant tested neutral to pH paper. This eluant was then titrated with standard base. Duplicate experiments showed the concentration of the cobsalt (II) solution to be 0.0140 M . Solutions of copper perchlorate and nickel perchlorate were also prepared and analyzed in this manner.

Stability Constant Titration of 2-Formylpyrazine Thiosemicarbazone
A sample of 2-formylpyrazine thiosemicarbazone weighing 0.0104 grams was measured out and was calculated to be 0.9573 millimoles. This sample was dissolved in 3.0 ml . of 0.1203 N potassium kydroxide and 40.00 ml . of water was added. 3.87 ml . of 0.1082 N hydrochloric acid were added which was calculated to be sufficient to neutralize all excess potassium hydroxide then protonate the $-S^{-}$ion and also one ring nitrogen. A volume of copper, perchlorate solution was added sufficient to give a 2 to 1 ligand to metal ratio in the solution. This volume calculates to be 2.804 ml . of 0.0102 M copper perchlorate. The sample was titrated with 0.95 ml 。 of 0.1203 N potassium hydroxide which is the amount required to remeve two protons from 0.0573 millimoles of dibasic acid.

Potassium Hydroxide Added (ml.)	pH	Potassium Hydroxide Added (ml.)	pH
0.02	2.867	0.52	3.394
0.07	2.898	0.57	3.517
0.12	2.937	0.62	3.691
0.17	2.973	0.67	3.959
0.22	3.010	0.72	4.489
0.27	3.057	0.77	5.659
0.32	3.104	0.82	6.390
0.37	3.163	0.87	6.974
0.42	3.228	0.92	7.545

These data were used for the stability constant program reprow duced elsewhere in thi theses. The IBM 360 computer output gave values for X, Y, \bar{n}, L^{-}and various other values calculated during the course of the computations. Also the computer punched out one data card for each point on the titration curve. On this card were punched values for X, Y, volume of OH°, and weighting factor. These cards are used with a program for least squares straight line fit for the best values of K_{1} and B_{2}. Any cards coinciding with a point on the curve which yialded calculated negative values of \bar{n} or L^{-}were thrown out and not included in the curve fit.

Submittal of Dat for Least Squares Straight Line Fit

In front of the complete mass of data, a card must be inserted on which is punched the total number of data sets to be analyzed. Now the complete deck of data is placed behind this card. The first card of the individual data sets is the title card as punched out by the stability constant program. After each of these a card which is hand punched must be placed which gives the number of data point in that individual titration, and the number of terms in the equation to be fit-oln this case 2. Next is placed the cord which was punched by
the computer on which is such information as volume of titrant, pH , molecular weight, etc. Finally the individual data cards, which punes. ched by the computer, corresponding to that respective titration. In each ensuing set of titration data the one kand-punched card giving number of points and points in the equation to be fit (2) must be placed as just described.

In a 3-neck $500-\mathrm{ml}$. round-botton flask fitted with alseparatory funnel with standard taper joint, a condenser for reflux, and a standard-taper glass stopper, was placed mixture of 27.3 grams of thiosemicarbazide, 117 ml 。 of water and 3.0 ml . of glacial acetic acid. The mixture was warmed with a heating mantle and stirred magnetically until solution was effected. In the separatory funnel was placed a warm solution of 32.13 groms of pyridine-2-carboxaldehyde dissolved in 120 ml . of denatured 95% ethanol. The solution in the funnel was added slowly with stirring and heating to the solution in the flask. The solution in the flask turned a greenishyellow color and a cream-colored crystalline precipitate quickly formed. This precipitate was filtered off, washed three times with 25 ml . portions of denatured 95% ethanal, recrystallized from denatured 95% ethanol, dried and then weighed. The yield was 46.5 grams (86.1% yield) of 2 -formylpyridine thiosemicarbazone which melted at $215-216^{\circ} \mathrm{C}$. It was inceresting to note that the product when recrystallized from ethanol was a creammcolored needle crystal. Upon drying while exposed to light the crystals turned bright yellow in color. Material dried and then stored for period of six months in a brown glass bottle stayed cream colored. Upon exposure to light
these too turned yellow.

Preparation of Nickel Derivative of IV
In a 400 ml . beaker $9.0 \mathrm{grams}(0.05$ moles) of crystalline 2 -formylpyridine thiosemicarbazone was dissolved in 100 ml . of cool 1 N . sodium hydroxide. In a 100 ml . beaker was dissolved 6.23 grams (0.025 moles) of nickel acetate tetrihydrate. The metal solution was poured inta the solution of IV which was being stirred magnetically. A precipitate formed immediately. The mixture was adjusted with hydrochloric acid to a pH of 8 as indicated by Accutint pH 1-12 wide range indicator paper. A precipitate the color of cocoa settled as a fluffy grannular material with an extremely pale yellow supernatant. The granules of the precipitate were too fine to be separated with maximum recovery by filtration (the pores of a sintered glass filter funnel were plugged up by the precipitate). The residue was centrifuged in a Fisher Scientific Co. International Clinical Centrifuge. The precipitate was washed twice with distilled water (to remove any uncomplexed nickel (II) and cantrifuged between each washing. It was then washed twice with boiling ethanol to remove any uncomplexed ligand with centrifugation after each washing. The precipitate was dried overifght over colcium chloride in a vacuum dissicator. Yield was 9.5 grams of a dark tan powder which did not melt below 300°.

Qualitative Tests on Nickel Complex of IV

To insure that a complex of thiosemicarbazide was not the product recovered, the above procedure was duplicated substituting thio. semicarbazide for IV and the precipitate could not be duplicated.

A sample of the dry precipitate was ignited and a residue was left indicating the presence of metal.

Since nickel hydroxide $\left(\mathbb{N i}(\mathrm{OH})_{2}\right)$ is a transluscent pale green jellymike precipitate it was extremely doubtful that the tan pre cipitate was some type of nickel laydroxide material. To prove the presence of the ligand sodium fusion was performed on sample of the tan precipitate and positive tests yielding prussian blue and lead sulfidelindicated the presence of mitrogen and sulfur respectively, thus confirming the presence of the ligand.

Synthesis of 3 - Fy droxy-2-formylpyridine thiosemicarbazone was similar to the procedure of Heinerc and Martell. 22 3-Hydroxy 2 -hydroxymethylpyridine hydrockloride

To a solution of 3 -hydroxypyridue ($47.5 \mathrm{~g} . \mathrm{g} 150 \mathrm{moles}$) and sodium hydroxide ($20 \mathrm{~g} \mathrm{~g}_{\mathrm{o}}$) in water (200 mls), Merck 40% formaldehyde solution ($40 \mathrm{mls}, .5$ moles) was added. The clear mixture was wanad for five hours at 95° then cooled to room temperature and acetic acid ($30 \mathrm{~g} ., .5 \mathrm{moles}$) was added. The water was removed under reduced pressure, the remoining viscous oil was stirred with Baker ree agent grade acetone (. 5 Liters) and the precipitated sodium acetate was filtered off. The solid was extracted with warm acetone (three 250 ml . portions) and the combined extracts were further diluted with 750 ml . of acetone. The additional precipitate was removed by filtration and the solution was concentrated under reduced pressure
to 1 liter. Hydrogen chloride gas was introduced at 0° whereupon a colorless crystalline precipitate immediately formed. As soan as formation of the precipitate ceased it was filtered off washed with cold acetone (100 ml .) and stirred with a saturated solution of hydrogen chloride in absolute ethanol at 0° to dissolve unreacted pyridol. Filtration and washing yielded a nearly colorless solid. This solid was dissolved in a minimum of hot water and 2 grams of Nuchar $C-115 \times N$ ativated carbon were stirred in. The solution was warmed and stirred for 20 minutes whereupon the carbon was filtered off and a large volume (1 liter) of acetone was added to the clear filtrate. Filtration and drying gave about 21% yield (17.2 grams) of a white solid which darkened above 180° and turned black around 200°.

3-Hydroxpyridineo2-carboxaldehyde thiosemicarbazone and its copper (II)

complex

3-hydroxy-2-hydroxymethylpyridine hydrocharide (16.2 g., 0.1 mole) and amorphous manganese dioxide ($8.7 \mathrm{~g} ., 0.1 \mathrm{~mole}$), prepared by heating manganous carbonate for 24 hours at 400°, were suspended in absolute ethanol (200 mi.), heated with stirring to reflux temperature and 96% sulfuric acid ($10.2 \mathrm{~g} ., 0.1 \mathrm{~mole}$) in 50 ml . of ethanol was added over a period of 30 minutes. After additional heating under reflux for 1 hour the black solid turned brown and the pH rose to 6 as tested with indicator paper. The reaction mixture was cooled to 40° and filtered. The dark yellow solution was diluted with water (200 ml .) and manganous carbonate was precipitated by adding excess sodium bicarbonate. The filtrate was extracted with ether (one 400 ml . and two 150 ml . portions) and the combined ether
extracts were extracted with 3.7% hydrochloric acid (four 25 ml . portions, containing 0.1 mole of hydrochlocic acid). The acidic extracts were freed from ethanol in vacuo and adjusted to pH 7 with sodium bicarbonate. Ether was added until the aqueous material was saturated and two layers appeared. This mixture was then extracted with ether (three 100 ml . portions).

At this point the procedure deviated from that of Heinert and Martell. The ether extracts were combined and a sample was tested with a reagent of 2,4 -dinitropheaylhydramine in methanol and hydro chloric acid. One ml . of the $2,4 \times \mathrm{DNP}$ reagent was added to three ml . of the ether extract. An orange powder precipitated which, when separated, washed and dried, decomposed at $250-255^{\circ}$. This agrees with the melting point (dec.) reported by Heinert and Martell ${ }^{22}$ for the 2,4 -dinitrophenylhydrazone hydrochloride deriviatve of 3 whydroxy-pyridine-2mcarboxaldehyde. This solution was allowed to sit overnight whereupon two layers formed. The top layer was an ether layer and the bottom dark brown was aqueous. A sample of the brown aqueous layer was tested with 2,4 -dinitrophenylhydrazine and the orange powder recovered was the previously discussed 2,4-DNP derivative indicating the presence of the desired aldehyde. Two samples of the brown aqueous layer (5 ml . each) were refluxed for periods of 1 hour and 15 hours in solutions of water (50 ml) , glacial acetic acid (10 ml.) and thiosemicarbazide (5 g.).

The solution refluxed for 1 hour yielded light yellow crystals overnight whose melting point and infrared spectrum were identical with thiosemicarbazide. These were filtered off. To a 5 ml . aliquot of the liquor was added 1 ml . of 5% copper (II) nitrate solution.

When sufficient sodium bicarbonate was added to make the medium slightly basic an olive-green precipitate was formed. An aquecus solution of thiosemicarbazide, when treated in the same way, did not produce this precipitate. The remainder of the Iiquor was put in a beaker and to this was added with stirring a solution of copper (II) nitrate (5 grams) and water (15 ml), and sodium bicarbonate to bring the pH to 7.0-7.5. When effervescence ceased the same graygreen precipitate formed. This precipitate was centrifuged and washed five times with distilled water, centrifuging fter ach washing. This procedure yiclded a dry dark gray-green powder which doct fret melt below 300°. Sodium fusion was performed on a sample of this powder and the presemce of the ligand was indicated by the formation of lead sulfide and prussian blue. Ignition left a residue indicating presence of metmi. Two or three miligrams decomposed with five drops of concentrated nitric acid and diluted with 2 ml of water gave light bluewgreen solution which turned deep blue when neutralized with concentrated mmonium lyydroxide thes indicating the presemce of copper.

The solution which refluxed 15 fours was 110 wed to sit overnight and no crystals were observed to sette out. Sodium chloride 5 grams) was added and the solution was allowed to sit for five days whereupon a suspension of fine crystals formed. On the bottom of the flask were several score of large dark orange cryatals in the shape of parallelograms and starmike clusters of these parallelograms. Two of these crystis were removed, bloted, dried, and then crushed. A melting point range of $230-235$ (dec.) was found whick agrees with the $225-235$ (dec.) reported ${ }^{22}$ for the thiosemicarbazone derivative
of 3-hydroxypyridine-2-carboxaldehyde.
Cobalt (II) and Nickel (II) Complexes of 3-Hydrexy-2-formylpyridine
TSC
Having thus shown that 3onydroxy-2-formylpyridine thiosemicarbarizone has been formed the cobalt (II) and nickel (II) derivatives were prepared by substituting cobalt (II) nitrate and nickel (II) acetate for copper (II) nitrate. The cobalt complex is a very dark greenishbrown material which does not melt below 300°. The nickel complex is a tan powder which dees not melt below 300°.

Preparation of Copper (II) and Cobalt (II) Complexes of IV
Copper acetate and coblt nitrate were used and the procedure used to prepare the nickel (II) derivative of IV was followed.

The copper (II) complex is an olive-green powder which melts at 210-211.5 ${ }^{\circ}$. The cobalt (II) complex is a powder the color of cocoa with an extremely faimt reddish tiage. It dees not melt below 300°.

CHAPTER V

RESULTS

1. 2-Formylpyridine thiosemicarbazone cobalt (II) complex:

Chocolate-brown powder, m.p. 300°
2. 2-Formylpyridine thiosemicarbazone copper (II) complex:

01ive-green powder, m。p. 210-211. 5°
3. 2-Formylpyridine thiosemicarbazone mickel (II) complex:

Light brown powder m.p. 300°
4. 3-Hydroxy-2-formylpyridine thiosemicarbazone cobalt (II) complex:

Bark browa powder m.p. 300°
5. 3-Hydroxy-2ゅformylpyridine thiosemicarbazone copper (II) complex:

Dark olive powder m.p. 300°
6. 3-Hydroxy-2-formylpyridine thiosemicarbazone nickel (II) complex:

Tan powder m.p. 300°

CHAPTER VI

DISCUSSION OF RESULTS

The main problem encountered in this work was that of solubility. The pKa titrations, because of low solubility of the compounds, were necessarily done in dilute solutions i.e. concentrations around 10^{-3} molar. No problem was encountered in basic or acidic regions but in the neutral region of $\mathrm{pH} 6-8$, if the solution were not dilute enough, the compound in question would precipitate out thus preventing any further measurements from being taken. If the solutions were sufficiently dilute, however, the titrations could be carried smoothly through the neutral region of $\mathrm{pH} 6-8$.

In analysis of the date from the pKa titrations a value for the pKa could, of course, be obtained from each point in the titration. It was found that occasionally the individual calculated pKa values would vary noticeably from one another. To find an average the values near each end of the titration were disregarded and if any value near the middle was grossly out of proportion to those around it, that value would also be discarded. The remainder of the values were used to find a simple arithmetic average pKa. The variation in each average pKa treated this way would be of the nature of $\pm .05$ to $\pm .3$. However, the reproduceability of the average pKa from one experiment to the next was quite good. Average pKa values from repeated titrations of the ame compound were used to find what is reported in this
thesis as the "mean average pKa ", or a number average of the averages. Reproduceability was such that variation in these mean averages were generally on the order of ${ }^{\dagger} .05$ to ${ }^{ \pm} .12$.

The problem of solubility was a problem in the stability constant calculations but, as before, if the solution was kept sufficiently dilute, the titrations could be carried to completion even up to pH values as high as 10 without precipitation.

The main problem faced in determination forme the stity come stants was the calculations themselves. The completion of the computer analysis yielded values which, in every case except two, were negative for K_{1}, positive for K_{2}, and negative for β_{2} (the product $K_{1} K_{2}$). It was interesting to note, however, that the values thus obtained demonstrated some degree of reproduceability (Table 2). The calculations were then performed without activity corrections to obe tain conditional constamts at constant ionic strength. The ionic strength is approximated closely by the sum of the chloride ion concentration and twice the perchlorate ion concentration. Representam tive ionic strengths are on the ordor of .01 molar throughout the titration with minor changes in the fourth decimal place. Values obe tained by these calculations for the most part became positive but in nearly every case reproduceability wis gone (Table 3).

Several suggestions may be offered in an attempt to explain the negative values.

First, of course, the equations might not describe the proper complexation reaction. Perkaps the reaction $H_{2} A^{\oplus}+M^{++K_{1}} M_{1}^{\oplus}+2 H^{\oplus}$ is not the complexing form of the 1 igand. If only one proton is replaced by the metal ion i.e. the form of the ligand is RA rather than A^{-},
then the derivations presented in this thesis are invalid for calculation of the formation constants and other treatments should be applied.

A second suggestion is that the data are faulty. This appears unlikely because of the reproduceability of the values obtained.

A third alternative must be considered and that is decompesition. In one or two of the experiments the faint odor of hydrogen sulfide was noticed indicating decomposition of the sulfur pertion of the melecule. In a private communcation F.A. French, from whom the original samples were obtained, recently disclesed that he has found some evidence of decomposition of these materials. If decomposition doeseccur, it evidently is not in efther acid or basic golution because it would have been noticed in the pKa determinations and this was not the case. Perhaps with more cyidence, such as might be obtained from ultraviolet absorption studies, a metal-catalyzed decomposition could be investigated.

It is regrettable that the isoquimolime compound could net be dissolved thus ne information of any kind could be obtained.

It is als regrettable that thus far the stability constants are not determined because they wauld bave provided interesting speculam tion when compared with the anti-cancer activities of the solid metal chelates which will be submitted for physiological testing upon completion of metal analysis.

TABLE I
 INDIVIDUAL pKa VALUES

Compound	Mean Ayerage pKa	Mean Ayerage pKa^{2}	Mean Average pKa
IV	$3.723-.072$	$10.871=.071$	
VI	$4.035-.039$	$7.988-.094$	$11.228=.093$
X	$3.411-.128$	$6.076-.125$	$9.792=.080$
VII	$3.257-.193$	$10.571-.065$	

TABLE II
THERMODYNAMIC STABILITY CONSTANT RESULTS

	K_{1}	K_{2}	B_{2}	K_{1}	K_{2}	${ }^{\text {B }} 2$	K_{1}	K_{2}	B_{2}
$\begin{aligned} & \text { COM- } \\ & \text { POUND } \end{aligned}$	Co	Co	Ce	Cu	Cu	Cu	Ni	Ni	Ni
IV	$-.673 \times 10^{12}$	$.116 \times 10^{5}$	-. 783×10^{16}	-. 519×10^{11}	-. 137×10^{3}	$.713 \times 10^{13}$			
IV	-. 384×10^{13}	$\bigcirc 198 \times 10_{4}^{4}$	-. 784×10^{16}	-. 765×10^{12}	-. 251×10^{5}	-. 192×10^{17}	$=.126 \times 10^{13}$	$.628 \times 10^{9}$	-7.79×10^{21}
IV	-. 207×10^{12}	. 258×10^{4}	-. 535×10^{15}	-. 103×10^{13}	. 309×10^{5}	-. 319×10^{17}	$\bigcirc .174 \times 10^{13}$. 582×10^{8}	-. 101×10^{21}
IV	-. 195×10^{13}	, $109 \times 10_{5}^{4}$	-. $214 \times 10_{17}^{16}$	$-.154 \times 10^{13}$	$.288 \times 10^{6}$	-. 444×10^{18}	-. 100×10^{14}	. 697×10^{10}	. 702×10^{23}
IV	-. 120×10^{13}	$.124 \times 10^{5}$	-. 149×10^{17}	-. 289×10^{13}	$.542 \times 10^{9}$	-. 157×10^{22}	$\therefore .641 \times 10^{13}$	$.759 \times 10^{10}$. $.487 \times 10^{23}$
IV	-. 634×10^{12}	$.729 \times 10^{4}$	-. 462×10^{16}						
IV	-. 855×10^{13}	. 310×10^{4}	-. 265×10^{17}						
VII	$.853 \times 10^{10}$	989×10	$.843 \times 10^{13}$						
VII	$-. .113 \times 10^{12}$. 857×10^{3}	-. 974×10^{14}	-. $.352 \times 10^{12}$. $.520 \times 10^{5}$	$=.183 \times 10^{17}$	$.175 \times 10^{16}$	$.198 \times 10$ $.1 .71 \times 10^{8}$	$.300 \times 10^{23}$
X	-. 337×10^{11}	$.340 \times 10^{3}$	$-.114 \times 10^{14}$	$-.328 \times 10^{11}$. 579×10^{6}	-. 190×10^{17}	-. 262×10^{10}	. 532×10^{5}	. $.140 \times 10^{15}$
X	-. 797×10^{12}	$.149 \times 10^{8}$. 119×10^{20}	-. 237×10^{12}	. 478×10^{8}	-. 1113×10^{20}	. $.760 \times 10^{12}$. 132×10^{5}	-. $.101 \times 10^{17}$
		,	-					- 11	$\cdots .37$
VI	-. 588×10^{12}	$.247 \times 10^{4}$	$-.145 \times 10^{16}$	-. 605×10^{13}	$.310 \times 10^{11}$	$.188 \times 10^{24}$	$-.687 \times 10^{13}$	$.110 \times 10^{9}$	$-.757 \times 10^{21}$
VI	-. 659×10^{13}	. 542×10^{4}	-. 357×10^{17}	-. $877 \times 10_{14}^{13}$	$.104 \times 10^{11}$	-. 916×10^{23}	-. 847×10^{13}	. 961×10^{8}	-. 814×10^{21}
VI	$.787 \times 10^{10}$. 872×10^{3}	$.686 \times 10^{13}$	-. 341×10^{14}	. 444×10^{10}	-. 1515×10^{24}	$=.103 \times 10^{13}$	1195×10^{6}	-. 202×10^{18}
VI				$-.309 \times 10^{12}$	$.417 \times 10^{10}$	$-.129 \times 10^{22}$			

TABLE III
stability constant calculations

Compeund	B_{2}	K_{1}	K_{2}	$\underline{L} \mathrm{~g}^{\text {B }}$	Log K_{1}	Leg K_{2}
IV Co(II)	-2:1678×10 ${ }^{11}$	2.3132×10^{8}	$-9.37 \times 10_{3}^{2}$	0009000	8.3642	-0,0000
IV Co(II)	-6.54×10^{11}	5.31×10^{8}	-1.23×10^{3}		8.7348	
IV Ce(II)	-5.57×10^{16}	-4.38×10^{11}	$1.28 \times 10_{4}$		00.0000	5.1046
IV $\mathrm{Co}(\mathrm{II})$	-8.00 $\times 10^{15}$	-3.30×10^{11}	2.42×10^{4}		pa00000	
IV $\mathrm{Cu}(\mathrm{II})$	1.14×10^{9}	8.10×10^{6}	$1.41 \times 10_{8}^{2}$	9.0574	6.9084	2.1490
IV $\mathrm{Cu}(\mathrm{II})$	7.22×10^{18}	2.53×10^{10}	2.86×10^{8}	18.8583	10.4023	8.4560
IV Ni(II)	-2.42×10^{23}	-5.02×10^{12}	4.82×10^{10}			10.6831
IV Ni (II)	-1.37×10^{24}	-2.01×10^{13}	6.80×10^{10}			10.8325
						$10.7578 \cdot .074$
VI Co(II)	3.72×10^{17}	4.82×10^{7}	$7.71 \times 10_{5}^{9}$	17.5705	7.6833	9.8872
VI Ce(II)	1.05×10^{14}	4.66×10^{8}	2.26×10	14.0222	8.6679	5.3543
VI Co(II)	4.78×10^{22}	1.57×10^{12}	3.05×10^{10}	22.6793	12.1956	10.4836
VI $\mathrm{Cu}(\mathrm{II})$	5.98×10^{18}	1.94×10^{9}	$3.08 \times 10^{9}{ }^{10}$	18.7769	9.2879	9.4889
VI $\mathrm{Cu}(\mathrm{II})$	9.17×10^{22}	1.41×1010	6.48×10^{10}	22.9623	12.1504	10.8119
VI $\mathrm{Cu}(\mathrm{II})$	$2.84 \times 10_{18}^{20}$	2.31×10^{10}	1.23×10^{10}	20.4527	10.3643	10.0883
VI $\mathrm{Cu}(\mathrm{II})$	6.46×10^{18}	1.79×10^{9}	3.61×10^{9}	18.8104	9.2529	9.5575
				19.35-1.11	9.64 - . 73	9.71-. 38
VI Ni(II)	-9.71×10^{23}	$-4.57 \times 10_{9}^{12}$	$2.13 \times 10_{9}^{11}$	--ameos	0	11.3277
VI Ni(II)	1.87×10^{19}	4.47×10^{9}	4.17×10^{9}	19.2708	9.6502	9.6204
					9.6502	9.6204

Comp	ound	B2	K_{1}	K_{2}	$\underline{L o g} \mathrm{~B}_{2}$	$\log \mathrm{K}_{1}$	Leg K_{2}
X	Co(II)	9.42×10^{15}	8.96×10^{8}	1.05×10^{7}	15,9741	8,9521	7.0219
X	Cu (II)	$-5.19 \times 10_{15}^{22}$	$-1.64 \times 10_{8}^{12}$	3.17×10^{10}	0	--80-000	10.5014
X	Cu (II)	2.85×10^{15}	4.14×10^{8}	6.88×10^{6}	15.4541	8.6167	6.8374
X	Ni (II)	8. 58×10^{18}	3.28×10^{10}	$2.61 \times 10_{7}^{8}$	18.9333	10.5160	8.4173
X:	Ni (II)	3.87×10^{15}	8.84×10	$4,38 \times 10$	$\begin{gathered} 15.5878 \\ 17.26-1.6 \end{gathered}$	$\begin{aligned} & 7.9464 \\ & 79.23-1.28 \end{aligned}$	$\begin{gathered} 7.6414 \\ 8.03-39 \end{gathered}$
VII	Ce (II)	$-4.79 \times 10 \frac{11}{13}$	$9.82 \times 10^{9} 10$	-4.87×102		9.9923	
VII	Ce (II)	2.03×10^{13}	2.78×10^{10}	7.31×10^{2}	13.3077	10.4437	2.8641
VII	Cu (II)	$4.00 \times 10_{17}^{16}$	2.15×10^{10}	1.86×10^{6}	16.6018	10.3328	6.2691
VII	$\mathrm{Cu}(\mathrm{II})$	6.82×10^{17}	2.90×10^{10}	2.35×10	$\begin{gathered} 17.8335 \\ 17.22=.62 \end{gathered}$	$\begin{gathered} 10.4620 \\ 10.40 \propto .06 \end{gathered}$	$\begin{gathered} 7.3715 \\ 6.82 . .55 \end{gathered}$
VII	Ni(II)	$3.61 \times 10_{18}^{18}$	$3.24 \times 10_{9}^{9}$	1.11×10^{9}	18.5570	9.5106	9.0465
VII	Ni(II)	5.42×10^{18}	2.13×10^{9}	2.54×10^{9}	18.7337	9.3275	9.4062
					$18.65 \cdot .09$	$9.42-.09$	9.23-. 18

BIBLIOGRAPHY

(1) Basole and Johnson, Coordination Chemistry, New York, Benjamin and Co., 1964.
(2) Jones, Mark M., Elementary Coordination Chemistry, Englewood Cliffs, N.J., Prentice Hall, Inc., 1964.
(3) Hodnett, Ernest Mo, and Willie, Winfred, Proc. Okla. Acad. Sci. 46, 107-111, 1966.
(4) Hodnett, Ermest M., and Moore, Charles H., (unpublished results).
(5) French, F.A, and Freedlander, B.L., Cancer Res., 18, 1290-1300, 1958.
(6) Bauer, D.J., Brit. J. Exp. Path., 36, 105, 1955.
(7) Bauer, D.JJ., and Sadler, P.W., Brit. J. Pharmacel, 15, 101-110, 1960.
(8) Campaigne, E., Thompson. R.L., and Van Werth, J.E., J. Med.Chem., 1, 577-599, 1959.
(9) French, F.A., and Freedlander, B.L., Cancer Res., 18, 172-175, 1958.
(10) Petering, H.G., Buskirk, H.H.s and Underwood, G.E., Cancer Res., 24, 367-372, 1964.
(11) Mihich, E., and Nichol, C.A., Cancer Res., 25, 1410-1426, 1965.
(12) Petering, H.G., Van Giessen, G.J., Crim, J.A., and Buskirk, H.H., J. Med. Chemo: 9,
(13) French, F.A., and Freedlander, B.L., Cancer Res., 20, 519, 1960.
(14) Brockman, R.W., Thomson, J.R., Bell, M.J., and Skipper, H.E., Cancer Res., 16, 167-170, 1956.
(15) French, F.A., and Blanz, E.J., Cancer Res., 25, 1454-1458, 1965.
(16) French, F.A., and Blanz, E.J., J. Med. Chem., 9, 585-589, 1966.
(17) Cappuccino, J.G., Proc. Am. Assoc. Cancer Res, ,41, 1966.
(18) Hodnett, E.M. and Willie, W., Proc. Okla. Acad. Sci., 46, 107-111, 1966.
(19) Petering, H.G., Buskirk, H.H., Crim, J.A., and Van Giessen, G.J., Pharmacologist, 5, 271, 1963.
(20) Petering, H.G., Buskirk, H. H_{o}, and Kupiecki, F.P., Fed. Proc., 24, 454, 1965.
(21) Albert and Seijeant, Ionization Constants of Acids and Bases, New York, Jehn Wiley \& Sons, Inc., 1962.
(22) Heinert, Dietrich, and Martell, Arthur E., Tetrahedron, 3, 49-61, 1958.
(23) Davies, C.W., Ion Association, London, Butterworth \& Co. Lta., 1962, pp. 41 .
(24) Laitinen, Herbert A., Chemical Analysis, New York, McGrawhill Book Co., Inc., 1960, pp. 9.
(25) Irving, H, and Ressetti, (Mrs.) H.S., J. Chem. Soc., 3397, 1953.

APPENDIX

```
SOE 2211-50311,KP=26 PAUL D. MOUNEY
    THIS PROGRAM COMPUTES THE THERMODYNAMIC ACID CCNSTANTS--%PKAI,PKAL
    PKA3< FOR A TRIPROIIC ACIO HHCSE FULLY PRDTONATED FGRM POSSESSES
    PLUS ONE BE< CHARGE-H3AGE<O
    OF STANOARD KOH, ADDING A CAICULATEDEVLUME OF STANDARD HCLL TU
    NEETKALILE THE EXCESS KOH, ANO THEN TITRATING THIS SALI SOLUTION
    #ITH HCL. GFTER NEUTRALIZING THE EXCESS KOH, THF SOLUTICNIS
DIMENSIONA(191,VOLHCL1981,PH(981,TOTALA1991,CONKIGR),CONCL(98).
    ICLMIN(981,TOTKI{98],A2MIN{98),HAMING9),SALTS{Y3),HACTY{9RI,
    21ONSTR(98), SDRDOT(98),MINLG1(98),MINLG2(98),PK43(98),FDNEIO8),
    3ETw|(98),TOTCL(981, POH(98), CONOH1981, CONH2A(99), PKA2(981,
    CONH3A!981,PKAI!98)
    REALINVOL,MILLFT,NORHCL,NOROH,INITCL,IONSTR,MINLG1,MINLGL
    40 FORMAT (20x.6HFK&
    51 FERMATIIH1<
    52 FORMATIIOX,19A4<
    S00 FLIRAATII2,F6.2,F7.2,2F7.4,F5.2,F7.4.F4.1,F7.3
```



```
        F6.2,3x,9HMSL WT #,F7,2,3X,12HSAMPLEWT #,FT, 4,3x,12HN OF ACID *
        2.F7.411/<
    FGRMAT12X,124H##********************t*********************************
        *****#*
```



```
    17x,F12,5,6x,F7.3< 
    211 FORMAT(5x,5HVGLHCL,5X,2HPH,7x, कH1ONSTR,10X, 4HF
```



```
    I7HAZNIHSO5, 7HHAMINUS,1CX,5HSALTS.12X,4HPKA3<
    10 REAO{5,59|(A|J!,J=1,19)
        &11F1A.51%
```



```
        WEL!JH is THE vOLUME OF STANOAKE% KOH IN WHICH THE ACID SAMPLE
        has DISSOLVED.
    MNITCLIS THE VDLIME OF STANDARD HCL ADOEDTO NEUTRALIZF THE
    XCRSS KOHIN WHICH THE ACID SAMPLE ITSFLF LEAVING AN EXCESS AMCUUH
    IS KOH TS BE NEUTRALIZED BY STANDARD HCL IN DRUER TC START THF
    fitMatIun at the stoichiometric point of kcl plys the potassium
    sali of the acio.
    NIICL IS THIS AMOUNI OF HCL AIDEO TO NEUTRALIZE THE EXCESS KOH
    PLUS A.NY HCL TITRANT. IN A PRFVIOUS PIJRTICA OF THE TITRATMN--IF
    KAX IS THE PKA VALUE TO 8E CALCULATED-OKA1,PKA2,PKAS- AND HAS
    NNE GF THE YALUES 1.0, 2.0. OP 3.0. IT IS FORMATTED F4.I.
    F(MOPTS.EQ.94)GO TO }99
    RITEIG,ZOJINGPTS,INVUL,MOLNT, SAMNT. NIRHCL
    AITEIG.40:OKAX,INITCL
    IF{PKAX.EQ.1.1GO TO 111
    W\mp@code{TEIG.213)}
this portain of the program computes pkaz
```

 \(003341=1\), NOPTS
 DO334 \(I=1\), NOPTS
 READ 5,101 IVOLHCL 111, PHIL)

CONK1(I)=2. ETGTALAGI!

A2MIN(I)=TOTK111)-GLMIN: 1)-TOTALA(11
HAMIM(I)= TUTALATH-AZMIN(I)
SALTS(1)=AZMIN(1)/HAMIN!1)
HACTYIIIEEXP -2.3025 P*PH(II

MINLG2(1)=4.*MINLGA(1)

142MINILI,SALTSIII, PKA3II.
334 CONTINUE
WRITETO, 202
22 GONTINJO
6^{222} this porition dF the program computes pkaz.
WRITE(O.212)
WRITESG. 202
$i=0$
$1=0$
RO293 $1=1$ NOPTS
READI5,101)VOLHCL(1), PHII)
TOTKI:1)=1VDIKOH*NOROHI/IINVOL+VOLHCL(1)
IONSTR\{11=10TK111).

MINLG111 $=.509 \Rightarrow($ SQROIT(I) $+0.3 * 10$ SSTR(1)
MINLG2(1)=4.*MINLGI(1)
FGNE (I) EXPT-2.30P58*MINLGI(I)
FTKUI $1=E \times P(-2.30258 * M I N L G 2(1) 1$
TOTALAII
HAC
TOTYA $1=E X P(-2$.
TOTCLII)=IIINITCL+VOLHCL(IH)*NORHCLH/IINVUL+VOLHCLIIU

SALTSII=HA\%INII/CONHZAII)

MAMNII.,SALTSALI.PKAZ(11
9 conilive
wRITE(b,202)
$11 \begin{gathered}\text { go } 10210 \\ \text { CONTINUE }\end{gathered}$
WRITF16.2111
C this purtioli of the program computes pkai.
$1=0$
$003981=1$, NOPT
READ(5,1DI)VILHCLIS, PHII)
TOTKI (I)=(VOLKIH*NOROH)/(INVOL +VOLHCLIf)


```
MINLGI!!) \(=\) 509*(SORDOT(1)+.3*IONSTR(II)
MINLG2 \((1)=4\) *MINLG1 111\()\)
FONE
FONE \((1)=E X P(-2.30258 * M I N L G 111)\)
FTWOI
TOTALAIII =(SAMHT*1000-1/CMOLWT*(INVOL +VOLHCLII) 11
HACTY(I) \(=E X P(-2,30258 * P H(I))\)
CONHBA(I)=TaTC(1I)-TOTKIII)
```



```
SALTS(I)=CONH2A(IT/CONH3ACII
WRITFIG, 205IVOLHCLII, PHISII, IONSTRIII, FONEII),FTHOLI), CONH2AII).
WRITF(6,205)VOLHCLIIH, PHIII
398 CONTINUE
    WRITE 6.2021
99 gOTOLO
    STOP
END
sENTRY
```

3-OH-2-FPTSC PKAI NBTIIく P. 46\%BOTTOMS P. D. MOONEY

3-OH-2-FPTSC PKAZ NBZIK P. 68 P. D. MOONEY

PKAX \# 2.0
INIT VOL OF HCL $\# 2.200$


```
SJOB 22IL-50011,kP=20
paul B.-nOUNEY
    THIS PREGGAM COMPUTES THE THERMODYNAMIC PKA VALUES FOR A DIBASIC
    ACIO WHICH, IN ITS FULLY PROTONATED FGRM, HAS A WE< CHARGE.
    IEE. HPABER. THE DATA IS DHIAINED. AY TITRATING, THE ACID SALT---
    THE SOLJTION RESULTING FRCM OISSOLWING THE ACIO IN STANDAPO KGH--
    49 FORHATIIOX,6HPKAX H,F4.I,13X,17HIMIT VGL OF HCL H,F7.3//<
    50 FGRMATl 2x,19A4<
    51 FORSAT (IH1<
    52 FORMAT(20X,15A4S
    100 FORMATII2,FG.2,F7.2,2F7.4,F5.2,F7.4,F4.1,FT.3C
        FORMAT!//10X,15HNG OF POINTS #.,I2,3X,21HINIT VOL OF LIQUID #, %
        1FG.2.3x,9HN
```



```
    15HHACID,10X,5HSALTS,18X,4HPKA2< 
    202 FUKMATI2
```



```
    205 FORMATIGX,F5.2,3X,F6.3,1X,E14.6,2X,E14.0,5X,F8.5,4X,F8.5,5X,F14.0'
    203 FORMAT15x, GHVOLHCL, 5x, 2HPH,7x,6HIONSTR,10X,4HF五1<, 13X,5HCONHA
        17X,GHCSAH2A,10X,5HSALTS,18X,4HPKA1<
            REALINVUL, MILLWT, NORHCL,NOROH,INITCL,IONSTR,MINLG
            DIMENSIONVOLHCL(98),PH(98!,A(19),CONK:198),1ONSTR(98), SQRGOT(99),
            IMINLG(98),FUNE(98),CONLH(98),HACTY(98),CONCL(98),POH(981, CONOM(SB
            2,AMINUS(98),HACIO(981,SALTS(95),PKAZ(98),CHION(7B),CONLH2(93).
            3CONH2A(9B), CONHA(98),PKA1(98),CLMIN(93),TOTK1(93)
        10 READ(5,50)(A1N), =2,19)
        WRITE(6,51)
        WRITE(5,52)(A1J),,i=1,19)
        REAOI5,IOONNOPTS,INVOL,MOLWT.SAMWT,NORHCL,VGLKOH,NOROH,PKAX, INITC
    c PKAX IS THE PKA VALUE BEING CALCULATED ANID HAS THE VALUE OF &%.O
```



```
        IN A PREVIOUS PORTION OF THE TITRATION.
        IFINOPIS.EQ.99IGO TO 999
        WR1TE(O, 2OO)NGPTS, INVOL,MOEWT, SAMET, NORHCL
        HRIPKAX,49)PKAX,INITCL
        WRITE{G,2OI)
        WRITE(G,202)
    c THIS PORTION uF the program computes pkaz.
        l=0
        DU499 1=1,NOPTS
        REAS(5,101)VOLHCL(I,,PHII)
        IN THIS CASE THE IDNIC STRENGTH is mEASUREO directly AS ThE
        POTASSIUM ION CONCENTRATION.
        Custarlil=(sart(IO
        (a)
        *)
        FONE(I)=EXP(-2.30258&MINLGTI)
        CONLHI)=1SAMET*1000.1/(MOLWT*IINVOL +VOLHCLII)!)
c \(\quad\) ACTY(1) \(=\) EXP(-2.30258\#PH(1)
C The value represented gy the variable name clmintie is thf rutal
C CHLEKIDE CONGENTRATIIN.
 CLMIV(I)=INITCL +VOLHCLII)IFNORHCLIINVOL + VOLHCLIII)
CONCL (I) = (VOLHCL (I)
PUH(1)=\{13.997-PHE11)

HACIU(I)=CONLH(I)-CONK1(1)ACONOH(I)+CONCLII
SALTS(1)
PKA2(I)=PH(1)-ALOGIOISALTS(I))+MINLO(1)

1SALTSIH, PKAZII)
9 CCVIINUE
HRITEIS,20
GU TO 10
\(c^{500}\)
this pgition of the proggam computfs pxal.
WRITE(6.203)

\(1=0\)
0.9
TGTKI(T)=(VOAKOH*NOPH: i)

in this case ionic strengih is measured directiy as total chloride
iotal chloride ion cuncentration is indicated by the variable name
Cimingi<. the variable name concl wic is a measure of chloride ion
ADDED 1 N THE FORM OF HYDROCHLORIC ACIO zHCLS.

MINLG(1)=.509\#1 SaROCTII1-0.3*1ONSIRI! 11
FONEII)=EXP(-2.30258*MINLG(1)
HACTY(1) \(=\) EXP(-2.30258*PH(I)
CHION (1)=HACTY(1)/FONE: 1 )

C THETALACIO.
CONK 1 (I) \(=\) CDNLHz(I)

SALTS(I) CONHA(I)/CONLIZA1I)
PKAI(I)=Pti(I)-ALOG101SALTS(I):-MINLOC(I)

998 CONTINUE
WRITE(6,202)
GO To 10
STOP

\title{
PROGRAM FOR STABILITY CONSTANT CALCULATIONS
}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline VOL BASE & PH & CDNME & CONL & HACTY & SONOH & CONL & NBAR & & \(Y\) & & \(x\) & \multicolumn{2}{|l|}{F \(\mathrm{F}_{1} 1<\)} & \multicolumn{2}{|l|}{F\%2く} \\
\hline ****** & *** & ***\#\#\#\# & ******* & & & & & & & & & & & & \\
\hline 0.25 & 3.300 & 0.004999 & 0.009941 & \(0.501 \mathrm{E}-03\) & \(0.135 \mathrm{E}-10\) & \(0.18 \mathrm{E}-08\) & 0.86 E & 00 & -0.33E & 10 & -0.14E-07 & 0.8710 E & 00 & 0.5754E & 00 \\
\hline 0.50 & 3.380 & 0.004974 & 0.009892 & 0.417E-03 & \(0.163 \mathrm{E}-10\) & 0.21E-08 & 0.95 E & 00 & -0.38E & 10 & -0.43E-07 & 0.8712 E & 00 & 0.5761 E & 00 \\
\hline 0.85 & 3.510 & 0.004940 & 0.039824 & \(0.309 \mathrm{E}-03\) & 0.220E-10 & \(0.27 E-08\) & 0.11 E & 01 & 0.48 E & 10 & 0.29E-07 & 0.8715 E & 00 & \(0.5770 E\) & 00 \\
\hline 1.00 & 3.580 & 0.004925 & 0.009795 & \(0.263 \mathrm{E}-03\) & \(0.259 \mathrm{E}-10\) & \(0.30 E-08\) & 0.11 E & 01 & \(0.26 E\) & 13 & \(0.18 \mathrm{E}-07\) & 0.8717 E & 00 & 0.5773 E & 00 \\
\hline 1.25 & 3.700 & 0.004901 & 0.009747 & 0.200E-03 & 0. \(341 \mathrm{E}-10\) & 0.38E-08 & 0.13 E & 01 & \(0.13 E\) & 10 & \(0.11 \mathrm{E}-07\) & 0.8719 E & 00 & 0.5780 E & 00 \\
\hline 1.50 & 3.830 & 0.004878 & 0.009700 & \(0.148 \mathrm{E}-03\) & 0.45 JE-13 & 3.48E-08 & 0.14 E & 01 & 0.77 E & 09 & 0. \(32 \mathrm{E}-08\) & 0.8722 E & 00 & 0.5786 E & 00 \\
\hline 1.75 & 3.960 & 0.004854 & 0.009653 & \(0.110 \mathrm{E}-03\) & 0.621E-10 & \(0.60 \mathrm{E}-08\) & 0.15 E & 01 & 0.51 E & 09 & \(0.62 \mathrm{E}-08\) & 0.8724 E & 00 & 0.5792 E & 00 \\
\hline 2.00 & 4.120 & 0.034831 & 0.039606 & \(0.757 \mathrm{E}-04\) & 0.897E-10 & 0.79E-08 & 0.16 E & 01 & 0.33 E & 09 & 0.49E-08 & \(0.8726 E\) & 00 & 0.5799 E & 00 \\
\hline 2.25 & 4.280 & 0. 004808 & 0.009560 & 0.525E-04 & 0.130E-09 & \(0.10 \mathrm{E}-07\) & 0.18 E & 01 & 0.23 E & 09 & 0.34E-08 & 0.8729 & 00 & 0.5805E & 00 \\
\hline 2.50 & 4.470 & 0.004785 & 0.009515 & 0.339E-04 & 0.201E-09 & \(0.14 \mathrm{E}-07\) & 0.19 E & 01 & 0.15 E & 09 & 2.17E-08 & 0.8731 E & 00 & 0.5811 E & 00 \\
\hline 2.75 & 4.660 & 0.004762 & 0.009470 & \(0.219 \mathrm{E}-04\) & \(0.311 \mathrm{E}-09\) & 0.19E-07 & 0.20 E & 01 & 0.10 F & 09 & -0.59E-09 & 0.8733 E & 00 & 0.5817 E & 00 \\
\hline 3.00 & 4.850 & 0.004740 & 0.009425 & \(0.141 \mathrm{E}-04\) & \(0.482 \mathrm{E}-09\) & 0.25E-07 & 0.22 E & 01 & 0.74 E & 08 & -0.37E-08 & 0.8736 E & 00 & 0.5823 E & 00 \\
\hline 3.25 & 5.050 & 0.004717 & 0.009381 & 0.891E-05 & 0.764E-09 & \(0.32 \mathrm{E}-07\) & 0.23 E & 01 & 0.55 E & 08 & \(-0.78 \mathrm{E}-08\) & 0.8738 E & 00 & 0.5829 E & 00 \\
\hline 3.50 & 5.270 & 0.004695 & 0.059337 & 0.537E-05 & 0.127E-08 & \(3.41 \mathrm{E}-07\) & 0.25 E & 01 & 0.41 E & 08 & -0.13E-07 & \(0.8740{ }^{-1}\) & 00 & \(0.5836 \mathrm{E}^{-}\) & 00 \\
\hline 3.75 & 5.480 & 0.004673 & 0.009294 & 0.331E-05 & 0.206E-08 & \(0.48 \mathrm{E}-07\) & 0.26 E & 01 & 0.34 F & 08 & -0.18E-07 & 0.8742 E & 00 & 0.5842 E & 00 \\
\hline 4.00 & 5.720 & 0.004652 & 5.059251 & \(0.191 \mathrm{E}-05\) & 0.357E-08 & 0.49E-07 & 0.28 E & 01 & 0.32 E & 08 & -0.21E-07 & 0.8745 E & 00 & 0.5848 E & 00 \\
\hline 4.25 & 6.010 & 0.004630 & 0.009208 & \(0.977 \mathrm{E}-06\) & \(0.697 \mathrm{E}-08\) & \(0.31 E-07\) & 0.29 E & 01 & 0.49 E & 08 & -0.15E-07 & 0.8747 E & 00 & 0.5854 E & 00 \\
\hline 4.50 & 6.285 & 0.004509 & 0.009166 & \(0.525 \mathrm{E}-06\) & 0.130E-07 & -0.63F-07 & 0.30 E & 01 & -0.24E & 08 & \(0.32 \mathrm{E}-07\) & 0.8749 E & 00 & 0.5859 E & 00 \\
\hline 4.99 & 8. 960 & 0.004558 & 0.039084 & 0.110E-08 & 0.621E-05 & \(-0.14 E-03\) & 0.34 E & 01 & -0.10t & 05 & \(0.81 \mathrm{E}-04\) & 0.8753 E & 00 & 0.5871 E & 00 \\
\hline
\end{tabular}
```

SJOB 2211-50011,KP=26 PAUL D. MODNEY
THIS PROGRAM FITS POINTS TO THE BEST STRAIGHT LINE AND REPORTS
THIS PROGRAM FITS POINTS INTERCEPT AS KZI< AND THE SLOPE AS BDZ< WHICHE IS DEFINED AS
THF PRODUCT K\#1<\#K\$2<.
100 FORMAT (20A4<
101 FORMAT11H1,25x,20A4<
200 FORMATII2,F5.2,F6.2,FO.4,2FB.6,F5.2,2F6.3<
201 FORMATI/2X,ITHNUMER OF POINTSN,[2,3X,16HMOL WT OF COMPD\#,FG.2,
13x,5HPKA1\#,F6.3,3x,5HPKA2*,F6.3<
202 FORMATI2X, 13HINIT VOL H2OH,FG.2, 3X,10HSAMPLE, WI\#,F7.4,3X,
lOHN OF BASEN
301 FORMAT (3E14.3,F6.2S
400 FORMATI/////5X,11HVOL OF BASE,18X,4HX%I<,18X,4HY%I<,18X.
5HXY\$1<,18X,5HXXTI<<

```


```

 403 FORMATG/23X,SHSUMX #,El5.8,3X,GHSUMY #,E15.B,2X,7HSUMXY #,El5.5,2X
 I,7HSUMXX #, E15.8/////<
 701 FORMAT120x,5HK$2< #,E15.8<
 520 FORMAT//1/20X,11HLOG BR2< #,Fg.5<
 GOO FDRYAT////2OX,53HLOG B62< * F-B%2< IS NEGATIVE SO NO LOG IS POSSI
 1BLE.<
    ```

```

 602 FORMATI2OX,53HLOG K%1< *---K:L
 603 FORMATMOX,53HLOG Kq2<# #F9.5< IS NEGATIVE SO NO LOG IS POSSIBLE
 1.<
 REALINVOL,NWLE,NOROH, MOLME, KONE,KTWO
 DIMENSION XI98),Y(93),TITLE\20),W(98),VOLOH{98),XY(981,XXT98
 10 READ(5,100)TITLE
 REAO(5,2ODINOPTS,INVOL, MWLH, SWLH,NOROH, MOLME, VOLME, PKAI, PKAZ
 IFINOPTS.EQ.99) GO TO 909
 WRITE{6,201)NOPTS,MWLH, PKA1, PKAZ
 WRITE{S,2O2IINVOL,SWLH,NOROH, MOL ME,VELME
 SUMX=0.000
 Sumxx=0.000
 UM}\textrm{Y}=0.00
 =1
 hqi< has no meaning in this program. it is OUTput from the
 c. STAGILIIY CONSTANT PROGRAM AND IS NECESSARY IN ANOTHER LEAST
S@uares fit program.

```

DO \(300 \mathrm{I}=1\) riwnPT
EAC(5,301)Y(1), X(1), h(1), volar(1)
SUA X \(=\) SUM \(X+X(I)\)
SUMY \(=\) SUMY+Y(I)
SUMXY=SUMXY+X(1)\#Y(1),
\(\operatorname{sumx}=\operatorname{SUMXX} X+X(I) * X(I)\)
\(x Y(1)=x(1) \neq Y(1)\)
0 CONTINUE
WRITE 0,402 )
TRITE(6,401)(VOLQHTI),X(I),Y(I),XY(I),XX(I), \(1=1\), NIPIS
WRITESS.4021
WRITESS,403:SUMX, SUMY, SUMXY, SUMXX
FS \(=\) FLSAT (NUPTS )
 THE EXPRESSION FER KONE WHICH IS THE Y-INTESCFPT HAS THE NUMERATOR MULTIPLIED EY :-1< SO THE EXPRESSION IS NGT THAT OBTAINED GY SOLVING THE SIMULIANEOUS EQUATIDN. THIS IS DONE because algert and serjeant report the oerivation yielos -ki AS IHE INTERCEPT
wRITETG,7001KONE
wRITE(6,701)KTwC
WRITESG, 702 IHETAL
IFIRETAZ.LT.0.01G0 TO 501
XLOGER=ALOGIOEBETAZ
WRITE(6,520) XLOGS2
GO TO 502
WiRITET6.600
502 IF(KUNE.LT.0.0)GOTO503
XLGGKL=ALGG1OLKONE
WRITE \(0,6011 \times\) LOGKI
GC TV 504
503 mRIIE(t, 502)
1FKKTKO.LT.O.01GO TO 505
WRITE(0.603) XLOGKZ
GE TG 506
505 WRITE(b.604)
500 GO TE 10
siop
STOP
ENO
sentry

SAMPLE LEAST SQUARES OUTPUT

CU COMPLEX OF GLYCINE ALBERT AND SERJEANT DATA P. D. MOONEY



\section*{K\$1< \# 0.57002160 E 08 \\ \(K 81<\# 0.57002160 E 08\)
\(K \$ 2<\# 0.13946840 \mathrm{E} 05\) \\ \(\begin{array}{r}K \% \\ \text { B } 62 \leq \# 0.79500030 E 12 \\ \hline\end{array}\)}

LOG B. \(62 \leq \# 11.90037\)
\(\begin{array}{ll}\text { LOG K \% < } \# \# & 7.75589 \\ \text { LOG K } 2<~ \# ~ & 4.14447\end{array}\)

> VITA

Paul David Mooney
Candidate for the Degree of
Master of Science

\section*{Thesis: INVESTIGATION OF SELECTED THIOSEMICARBAZONES AND THEIR METAL COMPLEXES AS POTENTIAL ANTICANCER DRUGS.}

Major Field: Chemistry
Biographical:

Personal Data: The author was born in Stroud, Oklaboma, on August 10, 1943, the son of John William and Alma Payne Mooney, On July 8, 1966, he married Sharon Lynn Smith.

Education: The author graduated from C.E. Donart High School in Stillwater, Oklahoma in May, 1961. He entered Oklahoma State University in June, 1961, and in January, 1966, completed the requirements for the degree of Bachelor of Science in the field of Chemistry. He was admitted to the Graduate School at Oklahoma State University, Stillwater, Oklahoma where he completed the requirements for Master of Science degree August, 1969.

Profeasional experience: The author served as a graduate teaching assistant from the Summer of 1966, to the Summer of 1969. He received a National Science Foundation Research Assistantship through the Oklahoma State University Research Foundation for the period of June 1, 1968, to August 31, 1968.

Membership in Professional Societies: The author is a member of Phi Lambda Upsilon national honorary chemistry fraternity.```

