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CHAPTER I· 

INTRODUCTION 

In the field of chemical engineering one of the largast 

areas of interest is that which is concerned with distilla­

tion. As a result of the studies in distillation, the 

author believes there is a greater need for improved 

methods of predicti~g distillation tray efficiencies. 

Recently various studies have been made using the con­

cep't of generalized tray efficiencies •. The purpose of this 

:paper is to complete a literature survey to find existing 

distillation data and use these data to evaluate a set o.f 

generalized tray efficiencies. 

The author hopes that this material will be useful in 

further understanding those problems which may arise in 

other such related areas .. , 

l 
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CHAPTER II 

THEORY 

Before approaching the ideas and concepts of the 

mining tray efficiencies will be outlined. 

Tray e·fficiency is defined as a measure of the approach 

of an act.ual tray to an ideal or equilibrium tray. The 

ideal tray is one in which the vapor and liquid phas.es 

leaving the tray are in mutual thermodynamic equilibri~m. 

Murphree (109) assumed constant molal flow rates along the 

column to express tray efficiencies in the following 

manner. 

Murphree defined a vapor efficiency as 

Yn-Yn-1 

y;-Yn-1 
(1) 

where Yn is the composition of a component in the vapor 

leaving tray n, Yn ... l is the composition of a compcnent in 

the vapor entering tray n, and Yri is the composition of the 

vapor leaving the idea 1 plate in equilibrium with Xn, the. 

actual liquid leaving the real tray. The assumptions are 
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that the compositions Yn-l and xn remain unchanged on going 

from the actual to the ideal tray. The assumption that Xn 

remains constant is important in this definition since y~ 

is a function of xn. xn must be saturated if y~ is to ex-

ist in equilibrium with this liquid stream. Similarly, 

Murphree defined a liquid efficiency as 

(-2) 

where xn is the composition of a component in the liquid 

leaving tray n, xn+l is the composition of a component in 

the liquid entering tray n, and x~ is the composition of 

the liquid leaving the ideal plate in equilibrium with Yn, 

the actual vapor leaving the real tray. The assumptions 

associated.with this liquid efficiency are that the vapor 

and liquid compositions above the nth tray remain unchanged 

on passing from the c1ctual to the ideal stage. The assump-

tion that the composition of the vapor, Yn, remains con-

stant is important since x~ is a function of Yn· Yn must 

be saturated if a saturated liquid phase of composition :x~ 

is to exist in equilibrium with the vapor. Figure 1 shows 

a typical stage with the appropriate subscripts as used in 

these definitions. Murphree has defined tray efficiencies 

as the ratio of the actual change to the change which 

occurs if the tray is considered as an equilibrium stage" 
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n+l 

I xn+l i Yn 

n I xn r Yn-1 

n-1 

Figure 1. A Simple Distillation Stage 



The definitions of tray efficiency as previously men-

tioned tend to represent a physical situation only under 

certain operating conditions. Conditions such as vapor 

channeling and incomplete liquid mixing are two common 

cases which result in deviations from the Murphree model. 

On large diameter trays, the liquid composition can vary 

across the tray and pos~dbly result in an efficiency of 

greater than 100 per cent. 

A point Murphree efficiency, expressed in terms of 

vapor compositions, describes the degree of approach to 

equilibrium between the vapor and the liquid at a single 

point on the trayo It is defined as 

Eoo =- Yn(p)-Yn-1 
Y~(p)-Yn-1 

(3) 
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where Yn-l is the composition of the vapor which enters the 

tray and Yn(P) is the composition of the vapor leaving 

point p on the trayo y~(p) is the composition of the 

vapor in equilibrium with the liquid on the tray at 

point Po 

A similar expression may be given for the liquid point 

efficiency as 

xn(p)-xn+l 

x~(p)-xn+l 
( 4) 

where x,n+l is the composition of the liquid entering the 
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tray and xn(P) is the composition of the liquid leaving 

point p on the tray. x~(p) is the composition of the liquid 

in equilibrium with the vapor at the same point p. 

In some cases tray efficiencies are related to the 

separation efficiency of a whole column. Lewis (101) defin-

ed the overall column efficiency as the ratio of actual 

trays in a column to the number of ideal trays that will 

yield an equivalent separation. This definition suffers 

from the difficulty that it tries to describe the separation. 

behavior of an entire column with one number even though 

conditions are changing throughout the column. The actual 

and ideal comparison tray do not have the same separating 

ability. Therefore, when the number of plates differs the 

assumption•of equal reflux rates and product concentrations~-

must be made. 

Another concept in tray efficiency was first introduced 

by Carey (1·8) and reported by Nord (116) for the case of 

heat transfer on the distillation plate. This temperature, 

or thermal, efficiency is defined as 

ETV = (5) 

where Tnand Tn-1 are the temperatures of the vapor leaving 

and entering the tray respectively, and 'Irf is the tempera­

ture of the vapor in equilibrium with the liquid leaving the 



tray. Similarly, for the liquid phase, the efficiency is 

defined as 

E +L 
(6) 

where tn and tn+l are the temperatures of the liquid leav-

7 

ing and entering the tray respectively and t* is the temper­
n 

ature of the liquid in equilibrium with the vapor leaving 

the plate. 

Standart (136) has defined a generalized plate effi-

ciency which is concerned with the change of the extensive 

p:roperties of a phase across the tray. Standart has so 

defined this system that the two streams leaving the ideal 

plate are in equilibrium and satisfy all the heat and 

material balance requirements of the actual plate. 

Standart expresses the concepts concerning this defi-

nit.ion of the equilibrium state quantitatively as follows. 

E'or the actual and ideal equilibrium tray, an overall 

material balance is given as 

V + - V +L = V*+L* n-1 Ln+l - n n n n 
(7) 

which may also be expressed for each constituent, i, as 

where V and.Lare the molal flow rates of the streams 



around the nth plate and Yi and xi are the vapor .and liquid 

mole frac~ions respectively for the itp component. Vn-1 is 

the rate of the vapor entering tray n from the tray below 

and Ln~l is the liquid entering tray n from above. Vn and 

Ln are the rates of the vapor and liquid streams which 

actually leave the trayo V~ and L~ are the vapor and 

liquid rates respectively of the equilibrium stream leaving 

the idea 1 tray, asterisk ( *) denotes equilibrium. 

In con,junction with the material balance, Standart 

defined an enthalpy balanbe which is given as 

Vn-lHn-1 + Ln+lhn+l - Qn :. VnHn+ Lnhn = Vf(H:~ + L~hi (9) 

The definitions of V, L, Vn-l' Ln+l' V*, and L* remain 

unchanged o Qn is the ra'j:;e of heat lost from the nth t.ray 

to the surroundings. Here, the assumption is made that. the 

heat 1o·st from the actual and equilibrium tray 1-s the same-. 

H is the molal vapor enthalpy and h is the mola 1 liquid 

enthalpy. 

In addition to these equilibrium conditions, one 

should note that 

Tfi = ·ti and 

P{r, 1 ::. F-t, i 

(10) 

(11) 

where )li is the chemtca 1 potentia-1 of the ith component. 

1his is equivalent to statitig 

. ( 12) 
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where K is the distribution coefficient whose value is 

determined from an assumed value of T~ o T~ and t; are the 

temperatures of the vapor and liquid streams leaving the 

idea 1 tray o 

With this set of equations at hand, one may readily 

de.rive the following set of efficiencieso The overall 

material efficiency is given by Standart as 

E ( 13) 

The efficiency for the ith component is given by 

VnYn,1-Vn-1Yn~1,i _ Lnxn,1-Ln+lxn+l,i 
V;tv~,i-Vn""'lYn.--1,i - Ltx:t,i-Lnflxnti,1 

( 14) 

~nd the enthalpy efficiency is given as 

VnHn-Vn-lHn-l+rnQn Lnhn-Ln. .•. 1hn+l+(l-rn)Qn 

V~H~=Vn-1Hn-1+rnQn = L~h~-Ln+lhn+l +( 1-rn)Qn 
(15) 

r 0 is defined as the fraction of the heat lost by the vapor 

stream on the nth plate. This latter efficiency is not 

negessarily less than one. 

Unlike the Murphree and Carey effici.encies, these 

definitions of generalized tray efficiencies are completely 

symmetrical with respect to liquid and vapor. There is no 

need to make an assumption that the streams entering or 

le~ving the actua~ tray are saturated as is the case with 

the Murphree and Carey efficiencies~ In using the general­

ized plate efficiencies,the attainment of an equilibrium 
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plate is not an elaborate manipulation of the variable 

conditions, but merely a convenient reference from the com­

putational point of view. 

In considering the equilibrium equations of Standart. 's 

with the generalized efficiency equations, the fact is 

apparent that the overall material efficiency is a depe.ndent. 

equation, being dependent upon the efficiency equation for 

the ith component. 

In addition to a discussion of the generalized tray. 

efficiency, the author included a discussion of the method 

used in determining T* and the other equilibrium terms 

found in the mater1a 1 and en:liha lpy balance equations pre-. 

viously discussed. 

Certain experimental data must be known before one may 

start to calculate a generalized tray efficiency. These 

data consist of liquid and vapor flow rates to and from the 

tray, as well as their corresponding temperatures, enthal­

pies, and compositionso With this data at hand, one may 

perform the following calculationso 

For an m-component system, a temperature T~= t~ is 

assumed as the equilibrium temperature on tray n. An im­

portant fact to note is that this value of T* is bounded by 

the temperature of the vapor and liquid streams leaving the 

plateo Using this T*, a value for K, H*, and h* may be 



found for each component. These values are then used in 

the equilibrium equationso 

A material balance may be written for each component, 

i, as expressed in equation (8). The equations for x~ and 
i 

Yf may be written as Y!= k1xt , where 

11 

xf + x~ + oo. oo + x1 + •..... + x; = l ( 16) 

Yf 4- Y~ ,+ °" • oo + Yi + ...... + y: - l ( 1 7) 

This provides 2m+ 2 equations with the same number of 

unknowns. After solving for these unknowns, the va1ues of 

V* and L* may be substituted into equation (9). The assumed n n 

value of T* may be checked with the values calculated for 

H* and h*. This procedure is continued until the assumed 

value of T* checks with the results calculated in the 

enthalpy expression. 

Once these equilibrium quantities are found, the 

efficiencies may be determined as outlined previously/ 



CHAPTER III 

TRAY EFFICIENCY AND DISTILLATION STUDIES 

In recent years a great deal of research has been done 

in the field of tray efficiencies. Many factors which 

affect the distillation process, such as foaming, surface 

tension, entrainment, liquid mixing effects, froth height, 

and thermal effects have been studied. 

Empirical Correlations 

One of the approaches used to predict tray efficienciea 

involves correlations of an empirical nature. This empiri-

cal approach involves investigating and correlating large 

quantities of data for any or all design, operating, and 

system property variables encountered during rectifieation. 

Two correlations, one which predicts tray efficiencies-

as a function of liquid viscosity and the other which pre-

diets tray efficiencies as a function of liquid viscosity 

' 
and component relative volatility have found wide use. 

These correlations are empirical and represent adequataly 

12 



only those systems upon which they are based, and thus, 

their application to other systems is doubtful. 

Drickamer and Bradford (32) utilized plant test data 

from fifty-four refinery fractionating columns to develop 

a simple c orre lat ion between overa'i 1 r. olumn ··eff tc1 enr. v and 

feed stock molar average viscosity. All of the tests were 

made on bubble-tray columns with diameters in excess of 

4 feet. The correlations found apply only to this type 

of tray and for the hydrocarbon systems studied. 

13 

O'Connell (119) extended Drickamer and Bradford's 

correlation to include the overall efficiency as a funct~on 

of the product of the average liquid viscosity based on the 

feed composition and the relative volatility of the key 

components. By inclusion of the relative volatility, 

O'Connell was able to extend somewhat the Drickamer-Bradford 

correlation to systems with high relative volatility 

components. 

Utilizing only one or two variables, as did Dricka·mer, 

Bradford, and O'Connell, tends to oversimplify the comple.x 

problem associated with distillation efficiencies. To more.,., 

accurately account for the complexity of this problem, 

Chaiyavech and Van Winkle (20) attempted to evaluate the 

effect of several system property variables in a 1.0 inch 

diameter perforated plate distillation column. The 
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variables considered were surface tension, relative volati­

lity, viscosity, density, and diffusivity of both liquid 

and vapor phases. Data obtained from this column were 

correlated to give an equation for the Murphree plate e~fi­

ciency in terms of the system properties mentioned. 

English and Van Winkle (45) improved upon the correla­

tion of Chaiyavech and Van Winkle by extending the correla-

tion to include· column design and opera t-tng var·1a b le s 

as well as system property variables. The variables select­

ed by English and Van Winkle were fraction free area, weir 

height, reflux ratio, vapor mass velocity, relative vola­

tility, liquid Schmidt number,, and surface tension. The. 

data used in this correlation were from tests involving 

only binary systems with both bubble-caps and perforated 

trays. 

Fundamental Correlations 

The fundamental approach to tray efficiency resear.ch 

involves the use of mass transfer theory to characterize 

the transfer relationships which occur on a tray. One of 

the earliest major studies in this area was the project of 

the A.I.Ch.E. Research Committee. A five-year study start­

ing in July, 1952, was carried out at three universities. 
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Their primary goal was to develop a correlation for pred.i.ct­

ing bubble tray efficiencies in commercial distillation 

columns. 

The four main factors with which the A.I.Ch.E. Research 

Program were concerned were the rate of mass transfer in the. 

vapor and liquid phases, the degree of liquid mixing on the 

tray, and the amount of liquid entrainment between trays .• 

As a result of the findings, the A.I.Ch.E. Research Commit­

tee d~veloped separate correlations for each of these fac­

tors and used these correlations to predict efficiencies. 

The major steps in this prediction method were first to 

predict point Murphree efficiencies from the mass transfer 

relationships of the vapor and liquid phases/ The variables 

affecting the resistance to mass transfer were the physical 

characteristics of the tray, the vapor and liquid flow 

rates, and mass transfer relationships of the fluid phase. 

The mass transfer relationships considered in the gas phase 

were gas rate, mole fraction of the component in the phasei 

mass transfer coefficient, total system pressure, inter­

racial area on the tray, and gas holdup. In the liquid 

phase the mass transfer relationships considered were liquid 

rate and density, mass transfer coefficient, interfacial 

area of the tray, and liquid holdup on the tray. 
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To relate this point efficiency to the Murphree tray 

efficiency, a liquid mixing model on the tray was developed .. 

The variables considered were the distance of liquid travel 

across the tray, the eddy diffusion coefficient, and res1-

dence time of the liqui& on the tray. 

The final step in predicting the tray efficiency in-

volved a correction of th_e Murphree tray efficiency for 

entrainment. The variables involved with this step were 

surface tension, vapor velocity, and tray spacing. Once 

this had been completed, a value for the overall column 

efficiency was obtained from this corrected Murphree tray 

efficiency. 

Application of the A.I.Ch.E .. correlation is limited ta 

bubble-tray towers and, for most cases, to binary systems. 

This method may also be applied to systems in which little 

or no previous experience exists. 

Literature Survey of Prior 
Experimental Observations 

In the extensive literature survey which was undertaken 

in the preparation of this paper, several articles were 

found which had a deftnite connection to this particular 

field of interest. Many articles had no direct bearing in 

relation to what the author was searching for but were 
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important for the references which they contained. There­

fore, these articles will be referenced and may be found in 

the bibliography. (1-3, 5-17, 19-31, 33-44, 46-59, 61, 62~ 

64-81, 83-108, 110-115, 117, 118, 120-134, 136-148,150-165). 

Of all the articles surveyed, there were six papers 

with sufficient data to merit a discussion of these papers 

in relation to a generalized plate efficiency. 

In June of 1963, Bakowski (4) presented an article 

discussing the effects of mass transfer and plate effici­

ency in a bubble-cup column. The apparatus used by Bakowski. 

consisted of a boiler, a distillation column and a water­

cooled condenser. The column measured 4.o inches in dia­

meter and contained one plate. The temperature on the 

plate was measured by a thermometer fitted in a thermowell. 

Samples of the condensate entering the plate were taken at 

a position at the bottom of the column where the condensate 

was preheated before being returned to the top of the 

column. The samples of the liquid leaving and entering 

the plate were taken simultaneously. At this time a liquid 

rate was measured and the vapor rate was calculated from 

this liquid rateo 

The majority of the runs were made at total reflux. 

Assuming that there was no loss in the condenser, the com­

position of the vapor entering the plate was the same as the 



composition of the liquid returning from the plate to the. 

reboiler. At total reflux the vapor composition was found 

by taking a liquid sample leaving the plate and using this 

composition for the actual vapor composition. This method 

of determining a vapor composition was found to be simpler 

and more accurate than direct sampling of the vapor str~am 

itself. 
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The systems used in Bakowski's experiments include such 

mixtures as methanol/water, acetone/water, trichloro­

ethylene/toluene, benzene/toluene and water/acetic acid. 

Unfortunately, Bakowski failed to publish any flow 

rates or temperatures. Without these variables and the 

condenser and reboiler duties, a heat balance around a tray. 

could not be calculated. This limitation causes one to 

eliminate equation (9) from the set of equilibrium equations 

thus eliminating certain needed equilibrium values and 

making the calculation of a generalized tray efficiency 

impossible. 

Studies similar to those of Bakowski's have been per­

formed by Carey, et al.(18), with relation to plate effici­

encies in the distillation of binary mixtures. Three separ­

ate rectifying columns were employed in the experiments 

reported. Tne columns, all measuring 4.0 inches in diameter, 

contained one, seven, and ten plates with each plate having 



the same number of capsa Mixtures of ethanol and water 

were rectified in the single plate column while the 

binary mixture used in the multiple-plate columns was 

benzene/toluene. A complete physical description of the 

rectifying columns is included in the article. 

In all of Carey's work, the distillation operation 

was conducted at total reflux. At total reflux, the 

data reported gave compositions of liquid and vapor leav­

ing the tray as well as vapor velocities and reboiler 

duties. However, if tray temperatures were measured, 

there were no references given to them for either the 

vapor or liquid phase. Without this data one cannot 

calculate enthalpies and for the same reason as outlined 

in the discussion of Bakowski's data the values for the 

generalized plate efficiencies are impossible to obtain. 

In the Department of Chemical Engineering at 

New York University, a rectification column has been 

designed and built primarily for use in their chemical 

engineering laboratory. A dis cuss ion of the c onstruc·­

tion and operation of this column is given in an article 

presented by Huffman and Treybal (82). 

19 
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The complete apparatus consists of a boiler, a column, 

and a condenser with all the necessary accessories. The 

column is designed to allow the feed to enter at any plateJ 

permitting even the extremes of running the column as a 

stripping or as an enriching section. The column has been 

constructed to permit temperature measurements, rates· of 

flow, and samples of both liquid and vapor at all vital 

points. In addition, distillation may be performed with 

open steam, or under pressure or vacuum. 

The column contains ten plates of 11.0 inches in dia­

~eter with each plate containing two bubble caps. Ljquid 

samples are taken from each plate near the downpipes from 

that plate while the vapor samples are removed from each 

plate six inches above the plate. 

The experimental data given are for a carbon tetrachlo­

ride/toluene mixtureo The data given consist of vapor and 

liquid mole fractions and liquid temperatures on each plate 

as well as an overa·11 heat balance. However, no vapor 

t3mperatures or flow rates for either phase were published. 

For the same reason as mentioned previously, values for the 

generalized efficiency are impossible to obtain. 

A great deal of work in the field of plate efficiencies 

and the measurement of related experimental data has been 

done by J 0 A. Gerster at the University of Delaware. A 
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paper (60) published by Gerster discusses plate efficiencies 

in the separation of C4 hydrocarbons. 

The experimental distillation unit was a 13.0 inch 

diameter column with ten trays spaced 24 inches apart. Each 

plate was equipped with thirteen bubble caps with an insi.de 

diameter of 1.5 inches and a height of 2.5 inches. 

Liquid sample inlets. w~re located about O. 5 inches 

above the trays and directly beneath the center of the 

downpipes. Vapor sample inlets were placed about 0.5 inches 

below the tray, exactly at the center of the trays. The 

thermocouple wells, specially designed for precise tempera­

ture measurement and minimum sample holdup were located t.o 

coincide with the liquid and vapor sample probes. All of 

the experimental runs were made at total reflux. 

A summary of the data presented gives an overall heat 

balance with temperatures of the condenser and reboiler. 

The data also include the vapor and liquid compositions 

and the liquid rates through the column. A graph of the 

vapor and liquid tray temperatures is also given. Howeve~, 

due to the sensitive temperature dependence of the equili­

brium equations, this graphics 1 representation is inadequate . 

to use in calculating a generalized tray efficiency. 

Another article by Gerster, et al.(61),discusses plant 

performance of a 13 foot d lameter extractive distillation 



column consisting of two fifty-tray units operated in 

series. 
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In addition to measuring compositions, temperatures, 

pressures, and flow rates of the external streams, the 

column has been designed to measure vapor and liquid com­

positions, flow rates, and liquid temperatures of different 

locations within the tower. 

A summary of the data acquired is presented in tabular 

form.· This data consists of vapor and liquid flow rates, 

liquid temperatures, and compositions for the key components 

at intermediate locations within the column varying from. 

three to seventeen trays apart. The fact that no complete 

set of data is given for consecutive trays, makes a general­

ized plate efficiency calculation impossible. This is ex­

plained by the fact that operating data, such as these 

recorded, are needed for both flow to and from the tray. 

Perhaps the most complete set of distillation data from. 

the University of Delaware was published by the American 

Institute of Chemical Engineers in 1958 as a part of their 

study of tray efficiencies in distillation columns (149). 

The system with the most complete and useful set of 

data was acetone/benzene mixture published in part V of 

this reporto 
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These data were recorded for a 2.0 foot diameter col­

umn containing five trays. Each tray contained seventeen 

bubble caps measuring 3.0 inches in diameter and 2.625 

inches high. 

A summary of the operating conditions and results show 

that the data recorded were the column pressure, the flow 

rati:1 condition on tray three, the condense.r and reboiler 

duties, the compositions of vapor and liquid leaving the 

individual trays, and the temperature of the liquid on each 

trayo To simplify the calculations, only those runs which 

were made at total reflux were considered. These data, 

along with the column specifications given in the report, 

allow a trial and error calculation for the remaining vari­

able needed to calculate a generalized plate efficiency. 

Th.is remaining variable is the vapor temperature of the 

composition leaving the trays. In order to calculate this 

temperature, the enthalpy data for the acetone/benzene 

system must be available at the column conditions. If pure 

component enthalpy data were available, because the mixture 

is nonideal, the enthalpies of the component mixture could 

not be calculated as a product of mole fraction and the 

component enthalpy. After a reasonable Literature search, 

the author was unable to locate any pure component or mix­

ture data and therefore was unable to complete any 
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calculations of a generalized efficiency. 

In all of the experimental data found, at least. part 

of the operating variables needed to calculate a general-

ized tray efficiency were not given. Excluding the data 

published by the A.I. Ch.E. Research Committee, all of the 

data found in the open literature had too many degrees of 
\ 

freedom to make.any valid assumptions to use in completing 

the calculations of a generalized tray efficiency. 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

From the observations of the data found in the litera­

ture, the author believes that the measurement of all the 

necessary data needed to calculate a generalized tray 

efficiency is possible. This conclusion is based on the 

fact that all of the data needed were found separately, 

but unfortunately no' one complete set was found in the open 

literature for the same experimental results. Using what 

data is available, some assumptions can be made for the 

missing variables, but there is no way of checking the 

validity of these assumed values. Work is being done at 

the present time to obtain a complete set of distillation 

data. 

More work should be done in obtaining useful data to 

use with the definition of the generalized tray efficiencies 

to verify their validity and usefulness. 
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