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PREFACE 

A study of several promising modifications to the Benedict-Webb~ 

Rubin equation of state was made. The equation was modified to improve 

predicted saturated phase properties of methane at low temperatures. 

Experimental vapor pressures and saturated liquid densities were used 

to calculate two BWR parameters, simultaneously, as linear functions of 

reciprocal temperature. Also, two parameters were simultaneously 

determined as functions of reciprocal temperature based only on experi­

mental vapor pressures. 

BWR parameters giving exact fit to critical point conditions were 

determined from volumetric properties for the pure components methane 

and hydrogen sulfide. Finally, pure component BWR parameters deter~ 

mined in this study were used with a modified mixing rule for the para­

meter Ao to make vapor-liquid equilibria calculations for methane­

hydrogen sulfide mixtures. 

I wish to express my thanks and appreciation to my adviser, Dr. R. 

L, Robinson, Jr,, for his guidance and encouragement throughout the 

course of this study. I am indebted to :Mr. Charles J. Mundis for his 

aid in certain areas of this investigation and to all fellow graduate 

students from whom I received assistance. Finally, I am deeply grate­

ful to my parents for their constant encouragement during my work. 
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CHAPI'ER I 

INTRODUCTION 

A very general method for calculating the thermodynamic properties 

of pure components and their mixtures is by means of equations of 

state. The equation of state is an analytic expression that relates 

pressure, temperature, molar volume, and composition. Since thermo-

dynamic properties are functions of state, an equation of state repre-

sents an analytic tool .from which these properties may be derived. Many 

equations of state have been proposed, but of the most widely used 

equations, none can reproduce experimental data over a wide range of 

pressure and temperature as well as the Benedict-Webb=Rubin (BWR) 

equation. 

The BWR equation of state is an empirical equation, specifically 

formulated to describe the volumetric and phase behavior of hydro= 

carbons and their mixtures for reduced temperatures exceeding·0.6. The 

equation has proven to be accurate at densities up to twice the criti-

cal density. 

Low temperature applications of the BWR equation have been. a sub~ 

ject of much concern. The original equation is limited to temperatures 

above about O. 6, of the critical temperature. · : Below reduced tempera= 

tures of 0.6, predicted vapor pressures deviate considerably from 
,· 

experimental values. However, the equation can be improved by adjust-

ing one or more of the coefficients with temperature. 
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Another shortcoming of the BWR equation that has attracted much 

interest is its inabil~ty to accurately predict vapor-liquid equilibria 

for mixtures containing wide boiling range hydrocarbons or mixtures of 

hydrocarbons and non-hydrocarbons. To improve equilibrium calculations 

for mixtures, an empirical interaction constant oan be introduced into 

the mixing rule of the parameter A0 . 

One purpose of this investigation was to develop BWR,parameters 

such that the equation could be extrapolated to low temperatur~s with­

out introducing serious error. Another goal was to develop a technique 

for determining BWR parameters that can be used to accurately predict 

p-v-T properties and also fit the critical point. The final objective 

of this study was to apply improved pure component parameters to mix­

tures in order to test the mixture rules and to improve them if 

necessary. 

The particular system chosen for test applications was the methane­

hydrogen sulfide system. The methane-hydrogen sulfide system presents 

a rigorous test since molecules of the two compounds are not alike. 

Also, methane-hydrogen sulfide mixtures occur in many industrial 

processes. 



CHAPI'ER II 

REVIEW OF PREVIOUS WORK 

Since its development, the Benedict-Webb-Rubin equation (4, 5) has 

been the object of some very extensive studies. A complete review of' 

all previous work would be too lengthy to present here. 1I'heref'ore, only 

a few selected references to reviews of' studies done on the BW11 equation 

will be given. 

'I'he equation was originally developed to represent thermodynamic 

properties of light hydrocarbons and their mixtures. 'I'he authors 

recormnended the equation for use at reduced temperatures greater than 

0, 6 and reducea_ d.ensi ties less than 2 .Q. However J the equa,tion has 

since been applied to a wider range of pure components and mixtures. 

P'.coperties of some non~hydrocarbons and mixtures of hydrocarbons and 

non-hydroca:r·bons have been calculated with the :mm equation, Also, the 

equation has been used to calculate properties for mixtures containing 

hydrocarbons as heav--y as C22H46 (26), Comprehensive reviews of appli .. 

cetions and extensions of the BW11 equation are presented "by B.8.rner and 

Adler (2), Ellington (14)) and Starling (27), Cooper and Goldf'rank (9) 

recently compiled BWR coefficients for thirty-eight compOlmds and gave 

:cef'erence to their origin. 

In order to improve the BWR equation at low temperatures, previous 

investigators have adjusted a single parameter with temperature. Most 

workers chose to adjust C0 (3) 6, 7) 18, 28, 32) while some modified '6' 

3 



4 

(3, 21, 25). Simultaneously using both p-v-T and enthalpy data for 

methane, Cox (10) modified C0 and 'a' to be linear functions of recip­

rocal temperature. 

Stotler and Benedict (28) suggested modification of the mixing 

rule of A0 to improve vapor-liquid equilibria calculations for binary 

mixtures. Several investigators (17, 30, 31) have since applied an 

empirical interaction coefficient to the mixing rule of A0 for various 

mixtures, especially those containing non-hydr0carbons. 



CHAPI'ER III 

PRELD1INARY INVESTIGATIONS 

Several preliminary studies were made in an attempt to determine 

which of the eight BWR parameters had the greatest effect on various 

properties. The effects of each parameter on pressure, liquid and 

vapor fugacity, and vapor pre~sure of methane were investigated. 

These investigations helped to provide a basis for modification of the 

BWR equation. 

Sensitivity of Pressure to Each BWR Parameter 

The effect of each parameter on the predicted pressure was deter-

mined for reduced densities in the range of 0.4 to 3.0 and reduced 

temperatures from 0.6 to 3.0. The measure of sensitivity used was the 

change in pressure per one per cent change in the parameter being con-

sidered, expressed as 

pressure sensitivity : k·(a-P) 
J. '"T.[f T' p 

'WJ:rere ~ is the parameter being considered; P, pressure; T, temperature; 

and E:_' is the density. Expressions for ( o Pp?J ki)T,e 

from the Benedict-Webb-Rubin equation (4), given as 

Co 2 
P :r.: RTE'+ (B0 ~T-A0 -T°2' )e + (bRT - a),(? 3 

+ a«(' 6 + (~) (1 + 0 € 2 ) exp (- ~ _(? 2 ) 
T 

5 

were derived 

(3-1) 
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whefe R is the gas constant and B0 , A0 , c0 , b, a, o<., c, and 'lf are 

the r''D3vffi constants11 \ The resulting equations for sensitivities are 

b(::)= bRT (> 3 

aQ!): a(-e 3 ... d..~6) 

( ~Pt 6 
ol TJ..r a ct~ 

(3-2) 

(3-3) 

(3 .. 4) 

(3-5) 

(3-6) 

(3-8) 

,In order to determine which of the parameters had the greatest 

effect, A0 was used as a baeiis for comparison. That is, the ratio of 

the pressure sensitivity to ki to the sensitivity to A0 was calculated. 

As a reference to the absolute sensitivity of pressure to each para-

meter, a plot of the absolute sensitivity of pressure to A,~ is shown 

in Figure 1. The general form of the relative sensitivity is 

k~) = ~.iG.!::_)·. 
A'l, vl:... . o . :i.. ~'.li.P) A ~k· 

o «\Ao 
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The above ratio can be described as the per cent change in Ao 
required to compensate for a one per cent change ink. to keep the cal­

J. 

culated pressure unchanged. The equations used to calculate relative 

sensitivities are 

(3-10) 

:: 1 (3-11) 

(3-12) 

(3-13) 

( 3 .. 14) 

(3 .. 15) 
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(3-17) 

The results of the relative pressure sensitivities are shown in 

Figures 2-8. Comparisons of these figures show which parameters have 

the greatest effect on pressure. Over the range of reduced temperatures 

and reduced densities studied, the parameters /lo, b, and o{ proved to 

be the most significant. Figure 9 shows the regions in which each of 

these parameters had the greatest effect on pressure. 

This preliminary investigation of effects on pressure indicated 

that A0, b, and ex. may be best suited for modification to predict 

pressures since the equation is most sensitive to changes in these 

parameters. However, Benedict (4) stated that the equation is not 

suitable for use at densities above twice the critical density. In the 

range of densities less than twice the critical, only A0 and bare most 

significant, with A0 being most important over most of this region. 
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Sensitivity of Fugacity to Each BWR Parameter 
at Saturation Conditions 

15 

The effect of each parameter on predicted fugacities for pure 

methane at saturated conditions was calculated in a manner similar to 

the procedure used to find the sensitivity of pressure. That is, the 

basis for sensitivity of fugacity was the relation 

fugacity sensitivity: ki~:!i) T,e 

where f is the pure com;ponent fugacity. The derivative ( ~ f/o ki)T,~ 

is the rate of change in fugacity with ki at the saturated temperature 

and density. The derivatives of fugacity were determined from the 

equation for pure component fugacities presented by Benedict (4). 

(3-18) 

Equation (3-18) ~pplies to both liquid and vapor phases. The effects 

of each parameter on liquid and vapor fugacities were calculated from 

the following equations. 

(3-20) 

C {. ~ f)= - ga,_.:. C e Ll 
o~ac0 ~ o (3-21) 

(3-22) 
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(3-23) 

(~f, 6 6 U. 
ol T~ 5 f a(e (3-24) 

l "lJ f) c ie 3 '(. r 1 1 1 e:. 4 21 ~\TI: ;2 e L?? + ( "i +i2e2 + 2 -'l(l )exp(-¥(? )J (3-26) 

In Equations (3-19) tbru (3-26) u is given by 

Co i:, 
u :: 2(BoRT - A0 - 2 ) ...,_ + 

<T RT 

2 5 
l (bRT-a) .e..:. + 6 ~ 
2 RT , 5 RT 

+ ~ r 1 - (-1- -l - OP 2)ex ( _ y 2)1 
:eyT3 ~~ 1 e 2 2 , p u e 'J 

Calculations were made over a range of reduced temperatures from 

0.5 to 0.95 for liquid and vapor phases. Saturated liquid and vapor 

densities used in Equa.tions (3-19) thru (3-26) were calculated with 

the BWR equation. 

Again A0 was used as a basis for determining relative sensiti-

vities of fugacities. Figure 10 shows the absolute sensitivity of 

fugacity to A0 . The equations for relative sensitivities are as 

follows. 

-RT (3-27) 



0 {·Jt) _ 1 

A (-~f )- T2 
o oAo 

Results of the relative fugacity sensitivities are shown in 

17 

(3-29). 

(3-30) 

(3-31) 

(3=32) 

(3-33) 

(3-34) 

Figures 11-14. A comparison of these results indicate that liquid 

fugacity is most sensitive to the parameter cover the entire range 
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of reduced temperatures investigated. The parameter A0 has the greatQ 

est effect on vapor fugacities at all but very low reduced temperatures 

and at temperatures near the critical point. Below a reduced tempera~ 

ture of about O. 55 ct becomes the most significant parameter for the 

vapor fugacity. Above a reduced temperature of about o.88 vapor 

fugacity is most affected by c. Therefore, results of this preliminary 

investigation indicated that c and A0 may be most suited for modifi= 

cation when fugacity calculations are involved, 

I 
J.mprovement of Parameters to Predict Vapor Pressures 

In general, a set of BWR parameters determined from p-v~T pro-

perties of a pure component can be used to predict saturated phase 

properties of that component at reduced temperatures down to about 

0.6. However, at reduced temperatures below 0.6, the equation must be 

modified in order to satisfactorily predict saturated phase properties. 

Benedict (6) suggested that the prediction of pur!e component vapor 

pressures at low temperatures could be improved by adjusting C0 at 

every temperature so that agreement with observed vapor pressures is 

obtained. 

In this investigation each BWR parameter, in turn, was studied to 

determine its variation with temperature to fit vapor pressures at low 

temperatures. Ahn's (1) parameters for methane were used along with 

vapor pressure data on methane presented by Din (11). Ahn's parameters 

were evaluated using the data of Vennix (29) using non=linear 

regression techniques with compressibility factor as the dependent 

variable. The procedure used was to hold seven parameters constant 

and calculate the eighth parameter at each temperature so that the 
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calculated vapor pressure was equal to the experimental value. 

Eighteen data points covering a range of temperatures from 100° to 

185° Kelvin (T : 0.52 to 0.97) were used. 
r 

Calculation of pure component vapor pressures involves a trial 

and error procedure and included satisfaction of the following 

criteria: 

P(~ L) : P( e v) 

f(~ L) : f(~ v) 

L 
where~ is the saturated liquid density and ~vis the saturated vapor 

density. A detailed explanation of the trial and error methods used to 

calculate pure component saturated phase properties is given in 

Appendix A. 

The method used to calculate a parameter at each temperature was 

as follows: 

1. Calculate vapor pressure with original parameters. 

2. Calculate error in vapor pressure. 

error:: 
p - p 

obs calc 

pobs 

3. Calculate per cent change in pressure per per 

cent change in ki. 

per cent change• 

4. Calculate the correction factor, ~ ki/ki. 
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5. Calculate the new value for ki. 

Steps 2 thru 5 were repeated until 

Peale = pobs 

A new value for the constant ki was calculated at each temperature; 

this procedure was repeated for each parameter. The results of these 

calculations are shown in Figures 15 thru 18. 

The results indicate that any of the eight parameters may be fit 

to a polynomial curve as a function of temperature and accurately pre-

diet vapor pressures at low temperatures. An interesting discovery 

made during vapor pressure calculations using 'a' was the failure of 

this parameter to converge on a value that resulted in calculated vapor 

pressures equal to observed vapor pressures at temperatures less than 

125° K ('rr = 0.654). A plot of pressure versus 'a' at 100° K showed 

that the vapor pressure passed through a maximum value less than the 

observed vapor pressure. 

Sensitivity of Vapor Pressure to Each BWR Parameter 

The final preliminary investigation for pure methane was to 

determine how the predicted vapor pressure was affected by each BWR 

parameter. Vapor pressure sensitivities were determined by calculating 
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the per cent change in vapor pressure per per cent change in each 

parameter. 

vapor pressure sensitivity 

where P1 is the vapor pressure calculated with unchanged ki; ki 1 , the 

unchanged ki; P2, vapor pressure calculated with ki change one per cent; 

and ki 2 is ki changed one per cent . 

Calculations were made for each parameter at reduced temperatures 

from 0,5 to 0.95. Ahn's parameters for methane were also used in these 

calculations. 'I'he results are shown in Figure 19, These results 

indicate that A0 has the largest effect on predicted vapor pressures 

over the entire range of temperatures studied except below a reduced 

temperature of about 0.54 where the sensitivity to C0 becomes more 

significant. 

Since A0 has the greatest effect on predicted vapor pressures, it 

may be best suited for modification to a function of temperature at 

subcritical temperatures. However, if extrapolation to extremely low 

temperatures is required, C0 may be more suitable for modification 

since it has the greatest effect on vapor pressure at reduced tempera~ 

tures less than 0.54. 
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CHAPTER "N 

SIMULTANEOUS MODIFICATION OF TWO BWR PA.i.~TERS 

TO PREDICT SATURATED PHASE PROPERTIES 

Benedict (6) indicated that the BWR equation was not satisfactory 

when extrapolations were made to temperatures below which the equation 

has been fitted. Since a substantial error in vapor pressures predicted 

by the equation occurs at low temperatures, fugacities in rdxtures eval-

uated at such temperatures would also be expected to be in error. 'I'here-

fore, Benedict suggested that the parameter C0 be adjusted at low tem= 

peratures so that agreemen,t with observed vapor pressu:res is obtained. 
\ 

The preliminary investigations previously discussed indicated 

that C0 would have to be fitted to a polynomial function of temperature 

if accurate vapor pressures are to be calculated at low temperatures. 

The same would also hold true if any of the other seven parameters 

were to be made temperature dependent. For example) Chao (7) found 

that an equation of the fifth degree in absolute temperature was re= 

quired to adequately represent C0 for methane over the temperature 

range from =288° F to the critical point (~116° F), Cox (10) recently 

modified c0 and 'a 1 to be linear f'unctions of reciprocal temperature 7 

but he gave no explanation for his choice of such a functional form. 

The desired goal of this study was to examine the actual temperature 

dependence of pairs of parameters, and to determine which pairs, if any, 

could be represented by simple functional dependence on temperature. 

30 
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Two tecbniques were used for adjusting the two BWR parameters 

simultaneously. The first method involved the use of experimental 

vapor pressures and saturated liquid densities, The second procedure 

involved only experimental vapor pre'ssures. In both cases the two 
! 

parameters were calculated in 'order', to .determine their temperature 

variation. 

Modification to Predict Vapor Pressure 
And Saturated Liquid Density 

The data for methane presented by Din (11) were used to calculate 

two parameters as functions of temperature over the temperature range 

of 100° K to 185° K which corresponds to a reduced temperature range 

from 0.52 to 0.97. The following diagram briefly describes the 

calculations made at each temperature. 

L 

L G 
'~ 

YeS 

I p calc~ p obs Jt--N_o __________ , 

Yes 

Go To Next Temperature 

Simultaneous Fit of Vapor Pressure and Liquid Density 
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The saturated phase properties were calculated by the trial and 

error procedure explained in Appendix A. These properties were first 

calculated with unmodified constants. fJ:'hen the observed and calculated 

vapor pressures were compared. If the pressures did not agree, one 

parameter was changed by the following technique. 

(4-1) 

p - p obs , calc 
Pobs (4-2) 

In Equation (4~2), dP/6ki is the rate of change of vapor pressure 

with ki. The parameter ki was adjusted until the calculated vapor 

pressure equaled the experimental vapor pressure. 

After agreement of vapor pressures was obtained, calculated and 

observed saturated liquid densities were compared. If the two densi-

ties were not equal, a second parameter was changed until good agree= 

ment was obtained, The method used.to adjust the parameter for con-

vergence on a saturated liquid density was as follows, 

kj :a: kj+.6kj (4-3) 

D. kj ::: ~6~ (4-4) 

!::::,. f :;: e obs -~calc (4-5) 

The derivative (dkj/d~) was estimated by dividing (dP/dkj )T, f by 

(dP/dE> )T,k' 
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The two derivatives on the right side of Equation (4-6) were evaluated 

from the BWR equation. 

2 
3(bRT-a) e 

5 er:/ 2 'i2 4 + 6a °'-t' + ~ ( 3 + 3 Of ~2 LJ p ) ex:p 
){ 2 

(-op ) 
R 

(4-7) 

The derivative (dP/dkj)T,\2 was evaluated for each :parameter from the 

following equations. 

dP 
:.: RTf 2 

dB0 

dP :;;; ~p2 
a.Ao 

dP ~r2 
dC 

::;: 

0 T2 

dP :e; RTf3 
db 

.d'P 3 ...J 6 
~ .. ~ e +vi. p 
da \ 

dP .. ae 6 
dQ. 

3 2 
dP : e.:. (1 + c{p ) ex:p 
de T2 l 

(4~9) 

(4=10) 

(4-11) 

(4-13) 

/ \ 



dP -~§7 y 2 a] = T exp (-o~ ) 

After a value of liquid density equal to the observed saturated 

liquid density was calculated, the calculated vapor pressure was 

again compared with the observed value. If the pressure did not 

agree, the entire procedure was repeated. If the pressures were equal, 

the routine was continued to the next temperature, and the two para-

meters were recalculated to predict the observed values of vapor 

pressure and liquid density at that temperature. Values for both 

parameters were calculated at each temperature. 

Calculations were made with several pairs of parameters using 

Ahn's (1) and Chao's (7) constants for methane. Results of comparable 

accuracy were obtained with four different pairs of parameters using 

Ahn's constants. The four pairs of parameters were A0 and~, 6 and 

O( , CO and O , and c and O 
The temperature dependence of both parameters was found as a 

function of the form 

which seemed as adequate as any other functional form. Exact fit 

would require expressions of considerable complexity. The constants 

A and B were determined by simple linear regression of the calculated 

parameters, In his study, Cox (10) assumed that linear functions of 

reciprocal temperature were adequate. He then utilized p-v~T and en~ 

thalpy data to fit C0 and 'a' to such a function. Figures 20, 21, 22, 

and 23 give comparisons of the parameters = A0 and~, t and o(., C0 and'){, 

c and 'l{ ~ calculated to give exact vapor pressures and saturated 
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liquid densities with the results of curve fitting the parameters to 

a function of reciprocal temperature. Tables I, II, III, and IV show 

the results of calculations with the four pairs of constants calcula= 

ted from the equations 

(a) Ao :: 1. 1040920 + 22 T ~ 312 

0 ::: 6.62319oox10~3 .2451300 
T 

(b) 0 - 6. 10934oox10-3 
.1398400 - [fl 

-"-

0( ~ 8 , 10 lOOOxlO ~ 5 +- .001080 
T 

(c) co :a: 17871, 440 +· 246550.0 
T 

0 ;:;: 6, 62342oox10"'3 ~ 
.2453.100 

T 

( d) c :: 2281.7705 ~ 23$94.062 
111 
.L 

0 ::: 6.4228885xl0~3 ~ 0.218149 
'r 

Each pair of constants was calculated with Ahn 1 s parameters and 

should not be used with another set of parameters. Ahn's constants 

for methane are listed in 1rable V. 

Although the modified parameters were adjusted for vapor pressures 

and liquid densities, saturated vapor densities were also accurately 

predicted. ThusJ a single set of parameters can be used for both 

phases. 

The preliminary investigations previously discussed indicated. 

that the parameters c and A0 may be most suitable for modification. 

Results of varying -.A0 and c simultaneously did not result in accurate 



predicted properties, but the two parameters were successfully modif~ed 

in separate cases; 
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Temperature, Vapor 
Degrees Pressure, 
Kelvin Atmospheres 

100 0.355 
105 0.562 
110 0.862 
115 1.283 
120 1.853 
125 2.604 
130 3.569 
135 4.782 
14o 6.279 
145 8.096 
150 10.269 
155 12.836 
16o 15.837 
165 19.312 
170 23.306 
175 27.865 
180 33.044 
185 38.906 

Maximum a/a Deviation 
Absolute Average Deviation 

TABLE I 

CALCULATED SATURATED PHASE PROPERTIES OF METHANE 
WITH TEMPERATURE DEPENDENT A0 AND t 

Liquid Volume, Vapor Volume 
a/a Deviation* liters/gm-mole a/a Deviation* liters/gm-mole 

-J.24 0.03630 0.29 22.6700 
o. 56 0.03689 0.31 14.9400 
2.13 O .03753 .. 0.27 10 .1100 
2.76 0.03821 0.19 7.0270 
2.75 0.03893 0.14 5.0110 
2.44 0.03970 -0.05 3.6570 
1.98 0 .04052 -0.20 2.726o 
1. 50 0.04140 -o. 35 2.0690 
0.94 0.04236 -o.44 1.596 
o.44 o.o434o -o .44 1.248 
0.01 0.04456 -o. 33 0.9872 

-0.36 o .04585 -0.18 0.7881 
-0.62 0.04734 -0.06 0.6336 
-0.90 0.04907 0.02 0.5116 
-1.33 0.05116 o.o4 o.4136 
-1.36 0.05380 -0.21 0.3335 
-1.64 0.05734 -0.50 0.2662 
-1.98 0.06272 -0.58 0.2076 

3.24 0.58 
1.50 0.26 

* % D . i· _ exp-calc X 100 a evia uJ.On - exp 

a/a Deviation* 

3.26 
0.01 

-1. 51 
-2.25 
-2.28 
-1.81 
-1. 55 
-l.12 
-1.27 
-0 .32 
-0.58 
-o.45 
-o.45 
-0.23 
-o.42 
o. 52 

-0.24 
1.09 

3.26 
1/08 

+ ---·- I-' 



Temperature, Vapor 
Degrees Pressure, 
Kelvin Atmospheres 

100 0.335 
105 0.555 
110 0.873 
115 1.316 
120 1.911 
125 2.686 
130 3.671 
135 4.898 
14o 6.396 
145 8.197 
150 10. 334 
155 12.838 
16o 15.746 
165 19.088 
170 22.909 
175 27.237 
180 32.128 
185 37.631 

Maximum% Deviation 
Absolute Average Deviation 

TABLE II 

CALCULATED SATURATED PHASE PROPERTIES OF METHANE 
WITH TEMPERATURE DEPENDENT 'K AND o{ 

Liquid Volume, Vapor Volume, 
% Deviation* liters/gm-mole % Deviation* liters/gm-mole 

2.49 0.03623 o.47 24.035 
1.78 0.03690 0.28 15.139 
0.89 0.03759 0.10 9.985 
0.23 0.03830 -0.05 6.848 

-0.29 0.03904 -0.14 4.855 
-0.63 0.03981 -0.33 3.541 
-o.84 0.04062 -o.46 2.645 
-o.88 0.04149 -0. 56 2.017 
-0.90 0.04242 -0.59 1. 565 
-o.80 0.04343 .. (J.50 1.231 
-0.'62 0.04454 -0.30 0.9809 
-0.38 0.04578 -0.01 0.7890 
-0.04 0.04718 0.28 0.6392 
~·0.27 0.04880 0.57 o. 5205 
o.41 0 .05073 0.80 o.4248 
0.92 0 .05312 1.05 O. 3463 
1.18 0 .05622 1.46 0.28Q4 
1.36 O .OE:(364 2.76 0.2234 

2.49 2.76 
0.83 0.59 

*%Deviation= exp-calc X 100 
exp 

% Deviation* 

-2.58 
-1.34 
-0.27 
0.37 
0.90 
1.42 
1.44 
1.41 
0.72 
1.01 
0.06 

-o. 55 
.. 1.34 
-1.98 
.. 3.14 
-3.30 
~5.57 
-6.42 

6.42 
1.88 

+ 
I\) 



Temperature, Vapor 
Degrees Pressure 
Kelvin Atmosphere 

100 0.338 
105 0.553 
110 o.866 
115 1. 304 
120 1.894 
125 2.666 
130 3.652 
135 4.882 
14o 6.388 
145 8.202 
150 10.357 
155 12.886 
160 15.823 
165 19.203 
170 23.066 
175 27.448 
180 32.4o3 
185, 37.969 

Maximum% Deviation 
Absolute Average Deviation 

'I'ABLE III 

CALCULATED SATURATED PHASE PROPERTIES OF METHANE 
WITH TEMPERATURE DEPENDENT CO AND. 6-

Liquid Volume, Vapor Volume, 
% Deviation* liters/gm-mole o/o Deviation* liters/gm-mole 

1.66 0.03622 o. 50 23.815 
2.08 O .03687 o. 38 15.177 
1.68 O .03754 0.24 10.060 
1.17 0.03825 0.09 6.910 
o. 59 0.03899 -0.02 4.896 
0.11 0.03978 -0.24 3.565 

-o. 30 O .04060 -o.41 2.658 
-o. 55 0.04149 -o. 56 2.022 
-0.77 0.04244 -o.64 1. 565 
-0.87 0.04348 -0.62 1.229 
-0.85 0.04462 -o.47 0.9771 
-0.75 0.04589 --0. 25 0.7843 
--0 · 53 0.04733 -0.05 0.6343 
-0.33 0.04900 0.16 0.5155 
-0.29 O .05099 0.29 o.4199 
0.15 0.05346 o.41 0.3415 
0.33 0.05669 0.63 0.2757 
o.48 0.06137 1. 58 0.2188 

2.08 1. 58 
0.75 o.42 

* o/o Deviation: exp~calc X 100 
exp 

% Deviation* 
__ ,_.,..._;_----, ..... 

-1.64 
-1.60 
-1.03 
-o. 53 
0.06 
0.74 
0.97 
1.17 
0.69 
1.19 
o.45 
0.04 

-0.57 
-1.01 
-1.94 
-1.89 
-3.82 
-4.26 

4.26 
1.31 

_,,,,.....,,.,__ -!=='" 
w 



Temperature, Vapor 
Degrees Pressure 
Kelvin Atmospheres 

100 0.336 
105 o. 553 
110 o.868 
115 1.308 
120 1.901 
125 2.676 
130 3.664 
135 4.894 
14o 6.400 
145 8.212 
150 10 .362 
155 12.887 
160 15.814 
165 19.183 
170 23.031 
175 27.399 
180 32. 325 
185 37.876 

Maximum o/o Deviation 
Absolute Average Deviation 

TABLE IV 

CALCULATED SATURATED PH.A.SE PROPERTIES OF METHANE 
WITH TEMPERATURE DEPENDENT c AND lf 

Liquid Volume, Vapor Volume, 
% Deviation* liters/gm-mole o/o Deviation* liters/gm-mole 

2.44 0.03627 0.36 24.026 
2.18 0.03692 · 0.23 15.205 
1.45 0.03760 0.08 10.046 
0.81 0.03831 -0.07 6.890 
0.20 O .03906 -0.18 4.881 

-0.27 0.03984 -o.40 3.555 
-0.62 0.04067 -0. 56 2.652 
-0.81 0.04155 -0.71 2.019 
-0.96 0.04251 -o. 79 1.564 
-0.98 0.04355 ~0.77 1.229 
-0.89 0.04469 -0.63 0.9777 
-0.76 0.04597 -o.43 0.7851 
-o.47 0.04742 -0.23 O .6354 
•0.23 0.04911 -0.05 o. 5167 
-0.13 0 .05112 o.o4 o.4210 
0.33 0 .05362 0.11 0. 3425 
o. 57 0.05691 0.24 0.2767 
0.72 0.06167 1.11 0.2195 

2.44 1.11 
0.82 0.39 

* o/o Deviation= exp-calc X 100 
exp 

o/o Deviation* 

-2. 54 · 
-1.79 
..;o.88 
-0 .25 
0.36 
1.02 
1.18 
1.32 
0.77 
1.20 
0.38 

..0 .07 

... 0.74 

.. 1.23 

.. 2.22 
-2.18 
-4.19 
... 4.57 

4.57 
1.49 

+ + 
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a 

c 

b 

a 

c 

TABLE V 

BWR PARAMETER$(- FOR METHANE IN TWO PHASE REGION 

0.038997200 

1. 7040920 + 22. 4 31200 
T 

19317.440 

0.00406537 

0.05767643 

0.00008638 

2154.o 

6.623190x10-3 _ 0.245130 
T 

0.038997200 

1.841062 

17871.440+ 246550.0 . 

0.00406537 

0.05767643 

0.00008638 

T 

2154.o 

6.62342ox10=3 ~ 0 ·245310 
T 

0.038997200 

1.841062 

19317.440 

0.00406537 

0.05767643 

8 .10100:xio-5 + o .001080 
T 

6 .10934ox10~3 - 0 ._ 139840 
T 

o.q38997200 

1.841062 

19317.440 

0.00406537 

0.05767643 

0.00008638 

2281. 770 5 - 23894 .g§g 
'I' 

6.4228885x10-3 - 0.218149 
T 

* Consistent with metric units: 

temperature in degrees Kelvin 
pressure in ati;nosphere$ 
density in gm..;moles/liter 
R • 0.08207 
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Modification to Fit Vapor Pressures 

Often, particularly at low temperatures, saturated liquid density 

data are unavailable while vapor pressure data can be found, 'I'herefore, 

the technique devised to calculate the temperature dependence of two 

parameters simultaneously using vapor pressures and saturated liquid 

densities cannot always be used. 

A method for finding the temperature dependence of two parameters 

from vapor pressures only was developed and consisted of the following 

steps. 

1. Curve fit two parameters to vapor pressures at two 

consecutive temperatures, and repeat over the complete 

temperature range desired. 

2. Fit the calculated parameters to equations of the form 

k· l 

A non-linear curve fit program (15) was used to do the calcula~ 

tions in step 1. Din's (11) vapor pressure data for methane at 

temperatures from 100° to 185° K were again used. Two parameters were 

fitted to vapor pressure at 100° and 105° J 105° and 110° J 110° and 

0 115, etc. Thus, one value of each parameter was calculated for every 

two adjacent vapor pressures. These calculated parameters were then 

fitted to the linear equation in step 2. 

Calculations of the temperature dependent parameters derived from 

vapor pressures were made for several pairs of constants. The best 

results were obtained with the parameters C0 and ( using Ahn's para~ 

meters. Calculated vapor pressures deviated less than two per cent 

from observed vapor pressures. The temperature dependence of C and 'lf 
0 



were calculated by the equation 

c = 11755.086 + 1313422.1 
o T 

~ :.: 9.0851799x1.0-3 _ 0.67982177 
T 

Results of calculations with the above temperature dependent 
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parameters are shown in Table VI, and their temperature dependence is 

shown in Figure 24. Although vapor pressures were calculated within 

reasonable accuracy, the calculated saturated liquid densities showed 

increasingly large errors at low temperatures, 

A comparison of' the :functions of C0 and~ determined from vapor 

pressures only with C0 and~ found £rom vapor pressures and saturated 

liquid densities reveals that the values of the constants A and Bare 

significantly different in each case. This difference in the values 

of C0 and O may explain why saturated lig_uid densities were not 

accurately predicted for the case in which only vapor pressures were 

used, 
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TABLE VI 

CALCULATED SATURATED PHASE PROPERTIES OF METHANE WITH TEMPERATURE 
DEPENDENCE OF C0 AND l DETERMINED WITH VAPOR PRESSURE DATA 

Temperature, Vapor 
Degrees Pressure, Liquid Volume Vapor Volume, 
Kelvin Atmospheres % Deviation* liters/gm-mole % Deviation* liters/gm-mole 

100 0.340 1.11 O .05027 -38.11 23.624 
105 0.576 ... 1.96 0.04737 -27,99 14.515 
110 0.899 ... 1.99 0.04500 -19, 58 9.650 
115 1.238 --0.69 0.04355 -13.77 6.748 
120 1.895 0.54 0.04289 -10 .01 4.871 
125 2.633 1.34 0.04274 - 7.70 3.596 
130 3.580 1.68 0;04292 - 6.14 2.703 
135 4.770 1. 75 0;04334 - 5.05 2.065 
140 6.241 1. 55 0;04395 = 4.22 1.599 
145 8.029 1.27 0.04471 - 3.48 1.254 
150 10.170 0.97 0.04564 - 2,76 0.9942 
155 12.702 0.69 0.04672 - 2.07 0.7952 
160 15.664 o.49 0.04800 = 1.45 o. 6403 
165 19.093 0.25 0.04951 = 0.87 0. 5181 
170 23.034 ...Q,15 0.05134 = 0.39 o.4199 
175 27.539 -0.18 0.05363 0.09 0.3396 
180 32.662 -o.47 0.05665 0.71 0.2723 
185 38 ,1+63 ...Q.82 0.06105 2.10 0.2142 

Maximum% Deviation 1.99 38.11 
Absolute Average Deviations 0.99 8.19 

*%Deviation= exp-calc X 100 
exp 

% Deviation* 

-0.83 
2.83 
3.10 
1.82 
0.57 

...Q.11 
-0.72 
-0.91 
-1.47 
-0.82 
-1. 30 
.. 1. 35 
... 1. 53 

. -1. 51 
... 1.95 
-1.30 
-2, 53 
-2.04 

3.10 
1.48 

~~~==== +-
\0 



CHAPI'ER V 

:awR PARAMETERS DETERMINED FROM VOLUMETRIC 

DATA USING NON-LINEAR REGRESSION 

Regression of thermodynamic or p-v-T data to determine BWR equation 

parameters is a problem in non-linear regression because the parameter~ 

is involved in the exponential term of the equation. However, the prob­

lem can be linearized by assuming values oft. Values of~ must be 

assumed and the other seven parameters determined by linear regression 

until some error function is a minimum. If non~linear regression tech­

niques are used, all eight parameters can be calculated in one :regrem;;ion. 

A non-linear curve fit computer program (15) was used for regression 

of' Vennix's (29) low temperature volumetric data on methane to determine 

all eight :parameters in the BWR equation. Two methods were used, One 

method imposed no rest~r.ictions on the regression while the second 

method employed c:~d ti cal point constraints so that the critical region 

of methane would be accurately represented, 

Regression With No Constraints 

One hundred and twenty-six points were selected from the p-v-'I' 

data of Vennix. These included data at densities up to twice the 

critical density. No densities greater than twice the critical 

density were included because the BWR equation is generally considered 

to be accurate only to a reduced density of about two. Temperatures 

50 
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ranged f'rom 170° to 290° Kelvin, corresponding to reduced temperatures 

of 0.89 to 1. 52. 

The eight parameters - B0 , A0 , C0 , b, a, ol , c, lf ~ that resulted 

in the minimum sum of the squares of the errors in predicted com= 

pressibility factor were determined. The sum of squares of errors 

was calculated as follows. 

Compressibility factors were calculated by the equation 

+ Ao Co 
(b = ~T) ~ 

2 
Zcalc,i 

g 1 (B = ~ -- ) f + o RT RT3 

ad, 5 2 
tf (' 2 ) exp ( = (J p 2) + (' -j- ~ (1 + (5~1) 

RT 

Compressibility was chosen as the variable because of the relatively 

small range in Z as compared to pressure or density. The input data 

included compressibility factors, temperatures, and densities. 

Since the non~linear program used required reasonable initial 

guesses for the BWR parameters, two sets of parameters were determined. 

In one case, constants determined by Chao ( 7 ) were used as initial 

values while Ahn's (1) constants were used as initial values in the 

second case. The final results were the same in each case. The eight 

parameters determined with no constraints are given in Table VII. Of 

the 126 calculated compressibility factors, the largest per cent 

error was 2.66 and occurred in the liquid region (T = 190° K, P ~ 

44.8 atm., and Z ~ 0.2225), The absolute average per cent error was 

0.31, and the sum of squares was 4.72303x10=4, giving a root mean 

square error of 0.0019. 
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Regression with Critical Point Constraints 

Conditions of interest are often near the critical region of a 

:particular component, As conditions approach the critical point the 

:properties undergo a rapid change, For the BWR equation to be of 

maximum use for engineering calculations, it should accurately represent 

the critical region, Therefore, critical point relations with which 

to obtain an exact fit at the critical point were derived, 

The critical point relations were derived from Equation (3=1) and 

conditions which exist at the critical point, At the critical tern~ 

:perature, :pressure and density, Equation (3-1) becomes 

Other conditions which must be satisfied at the critical point are 

The first and second derivatives of :pressure with respect to density 

obtained from the B"WR equation are 
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(5-4) 

Equations (5-2), (5-3), and (5-4) were used to obtain expressions for 

cJ.. , b, and A in terms of the remaining parameters. The resulting 
0 

expressions were substituted into Equation (5-1), resulting in an 

equation containing only five unknown parameters. 'I'he five unknown 

parameters were found by regression of p-v-T data. The equations 

derived for d. , b, and A0 were 

6 
2aec 

(5-5} 

a 3 1 2P c c y 2 y 2 4 '1f g 
b l!I m (1-4olfc )+ p 2 - I . j - -.-3 (l+of>c -2o f'c )exp(-oeC) 

c c Rrc(' c RTc 

4 
+ a '*t'c + 

(5-6) 

(5-7) 

A detailed derivation of Equations (5-5), (5-6), and ("5-7) is given in 

Appendix B, 

Equations ( 5-5), ( 5-6), and ( 5-7) were used to express o( , b, and 



A0 in Equation ( 5-1), and Vennix 's pE·v-T data were regressed to obtain 

values for the remaining five parameters. The non-linear regression pro­

gram was used to fit the data. The same ~26 data points previously 

used to determine parameters with no constraints were applied to deter­

mine B0 , C0 , a, c, and 'lf. Chao's and Ahn's parameters were used as 

initial values in two separate regressions. The final results were 

the same for each case. The resulting parameters, and ct, b, and A0 

calculated from Equations (5-5), (5~6), and (5-7), are presented in 

Table VII. The largest per cent error in compressibility factors was 

5.06 and occurred in the liquid region (T~ 18o° K, P= 36.4 atm., and 

Z ~ 0.1394). The absolute average per cent error was 0.63, and the 

sum of squares of error was 2.0901x10-3, giving a root mean square 

error of O .0041. 

In order to check how well the critical point was represented, the 

critical temperature, pressure, and density were calculated. The pre-

dieted critical pressure deviated from the experimental value by 0.31 

per cent. The predicted critical density deviated by 0.01 per cent, 

and the predicted critical temperature was in error by 0.37 per cent. 

The first and second derivatives of pressure with respect to density 

were also calculated with the predicted critical properties. The 

results were 

~ -Q.000226 liter atm/gm~mole 
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These results indicate that the parameters determined with critical 

point relations give a satisfactory representation of the critical 

point. 

Bo 

Ao 

co 

b, 

a 

~ 

c 

t 

TA:QLE VII 

BWR PARAMETERS* FOR METHANE 

No Constraints 

0.038072727 

1.7726941 

22103 .202 

0.0040435676 

O .061906551 

8, 52283llxlo-5 

2411.7510 

O .co 50606757 

Critical Point 
Constraints 

0.053535034 

2.2053264 

18419.350 

0.0031464092 

0.036962871 

1. 4 324446x10-4 

2458.8853 

0.0061359898 
____________________________ ,..,_ ___ ,,,":,:'<$<¢l'S,w.,<~<:,~ 

* Consistent with metric units 

Use of BWR Parameters to Predict Vapor Pressures 

The two sets of parameters for methane determined,as described 

above, were used to predict vapor pressures in the temperature range 

of 133,73 to 188.801 (Tr~ 0,7 to 0.988) degrees Kelvin, The cal-

culated vapor pressures were compared with the experimental data of 
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Vennix {29); the comparisons are shown in Table VIII . nest result• 

were obtained -with the p9.rameters determined bytbe W!e> of·cr1tical point 

constraints. However, below 144.417 degrees the erro~3 begin to in• 

crease oubstantinlly, indicating the need for modified parr.oetera et 

low temperatures, The pa.rametero determined with no conotrninto give 

good results at temperatures down to 154.309 degrees. O=low that tem­

perature the errors increase as temperature decrease~. 

BWR Para.meters For Hydrogen Sulfide 

The p-v-T data of Reamer, Sage, and I.a.cey (23) were used to deter­

mine BWR parameters for hydrogen sulfide, Ninety-seven data points 

were selected, The data included densities up to twice the critical 

density. Temperatures ranged from 40° to 340° F {Tr : 0,74 to 1.19) 

and pressures from 100 to 10,000 psia were included, Parameters were 

determined using critical point constraints as previously described 

and with no constraints. The non-linear curve fit program was used 

in both ca.sea· to fit-the data. . The ·para.meters- thus 'determined ere . 
presented in Table X, Maximum deviation, average deviation, error sum 

of aqua.res, and root mean square errors for each set of pa.rAJneters are 

listed in Table IX, In each case the largest deviations appeared in 

the liquid region with the error becoming less ao compressibility 

factor increased, The parameters determined with critical point con• 

straints were used to calculate the critical temperature, pressure, 

and density. The predicted critical temperature and denoity we~e the 

same as the experimental values, and the critical pressure we.a in 

error by 0,02 per cent. The first and second derivatives of pressure 

with density were 
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Previously, Kate (17) fitted the same hydrogen sulfide data as 

those used in this study.to determine the eight BWR parameters with no 

constraints. Kate's parameters resulted in a maximum error in com-

pressibility of 1.91 per cent. The absolute average per cent error 

was 0.44 and the sum of squares o;f" error was l.2526xl0~3. Vapor 

pressures were calculated using Kate's parameters and the parameters 

determined in this investigation'using critical point constraints. In 

Table XI the calculated vapor pressures are compared with the experi-

mental vapor pressures of Reamer, Sage, and Lacey (23). The two sets 

of parameters yielded only slightly different results. The values 

calculated with the parameters having critical point constraints are 

slightly more accurate near the critical temperature and the lower 

tenrperatures. Thus, the critical point constraints improve the BWR 

equation for calculations in the critical region, and extend its use-

fulness to lower temperatures without further improvements. 



Temperature, 

TABLE VIII 

COMPARIS.ON OF CALCULATED VAPOR PRESSURES WITH 
EXPERIMENTAL DATA FOR METHANE 

Experimental Per Cent Deviation 
Vapor Pressure, (29) Critical Point 

Degrees Kelvin Atmospheres No Constraints Constraints 

133.730 4.493 7.64 2.05 
136.409 5.218 6.37 1.61 
138.726 5.904 5.30 1.19 
144.417 7.886 3.45 0.71 
148.821 9.714 2.33 o.44 
154.309 12.395 1.29 

I 0.23 
158.213 14.6ol 0.77 0.16 
161.861" 16.903 o:.41 0.12 
165.876 19.728 0.14 ! 0.11 
166.017 19.764 ... 0.22 ..Q.24 
170.4o7 23.221 --0 .41 -0.27 
174.332 26.722 --0 .26 --0 .10 
176.443 28.775 ...0.09 0.06 
177.953 30 .278 .. ,c;.07 o.o4 
180.688 33.061 ...0.27 ...0.30 
182.179 34.719 --0 .16 -0.29 
184.703 37.712 0.15 ...0.20 
186.524 39.950 0.28 ..Q.28 
188.113 42.oi6 o.49 ..Q.33 
188.593 42.651 0.54 -0.37 
188.Bol 42.988 0.69 ...(J'.26 



Maximum% error 

TABLE ··rx 

DEVIATION OF PREDICTED COMPRESSIBILITY 
FACTOR OF HYDROGEN SULFIDE 

No Constrainte; 
Critical Point 
Constraints 

Absolute average <fa error. 

7.79 

0.92 
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Sum of squares of error 

2.13 

0.30 

3.8936x10-4 2. 3454x10-3 

0 .0050 Root mean square 0 .0020 

TABLE X 

BWR PARAMETERS* FOR HYDROGEN SULFIDE 

No Constraints 

Bo 0.033090020 

Ao 2.7278084 

co 256409.65 

b 0.004(,()59900 

a 0.17896812 

0( , 6.4931218x10-5 

c 23902.765 

1 0.0043076199 

* Consistent with metric units 

Critical Point 
Constraints 

0.065229021 

4.4758284 

170631.89 

o.0028o82480 

0.078536646 

L 4294689x10=4 

21123. 3(,o 

0.0058352116 



TABLE XI 

COMPARISON OF CALCULATED VAPOR PRESSURES WITH 
EXPERIMENTAL DATA FOR HYDROGEN SULFIDE 

60 

-
Experimental Per Cent Deviation 

Temperature, !Vapor Pressure (23), Kate's 
Degrees Kelvin, Atmospheres Parameters 'I'his Study 

~ ~=== 

283.61 13.609 2,85 0.85 
299.33 20.414 1.04 0.72 
311.61 27.218 0.28 0.75 
321.88 34.023 -0.16 o.66 
330.77 40.827 -0.27 0.63 
338.66 47.632 ~0.30 o. 51 
345.72 54.437 ~0.13 o.45 
352.05 61.241 0.26 o.49 
358.11 68.046 0.21 0.16 
363.61 74.850 0.65 =0.11 

~~:Jt~l"f:«w."~~ .. ~tn= 



CHA.PI'ER VI 

SECOND AND THIRD VIRIAL COEFFICIENTS 

IN THE BWR EQUA'rION 

McMath (20) suggested that an improved BWR equation could be de= 

veloped by proper use of experimental data on second and third virial 

coefficients. McMath stated that the second and third virial co= 

efficients should be fitted to experimental data to determine the 

parameters B0 , A0 , C0 and b, a, and c, respectively. The remaining 

two parameters, D( and ~ , could then be found using experimental 

p=v=T data. 

The BWR equation has the following form explicit in compressi= 

bility factor. 

(Bo = Ao = Ca ) a 2 z ~ l+ + (b - -)(' 
RT RT3 e RT 

5 2 

+ ~ + .:.£_ c1 ..-x r2) exp ( =X'f 2) (6=1) 
RT RT3 

The exponential term in Equation (6=1) may be expanded into an 

infinite power series. 

J 

V 2 y 2 
exp ( =~r ) ;';: 1-u r + ~4 -~6 + 

2 6 

Equation (6-1) may be written in an open=ended virial form by sub= 

stituting Equation (6-2) into Equation (6-1) and rearranging according 
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to increasing powers of density. 

Ao Ca 
Z : 1 + (B0 - - - - ) ~ + 

RT RT3 

5 ~ 2 6 +a~g - c~ e + 
2RT3 

2 
(b - ~ +--c- )(J 

RT RT3 \ 

The virial equation of state may be written as 

Z : 1 + B(T) f +- e(T) e 2 + 

62 

(6-3) 

(6-4) 

where f(T) and C(T) are the second and third virial coefficients, 

respectively. Comparing corresponding terms of Equations (6-3) and 

(6-4), the second and third virial coefficients are given by the BWR 

equation as 

~T) 

c(T) = b - !:-. + _c _ 
RT RT3 

(6-5) 

(6-6) 

The second virial coefficient, Equation (6-5), was fitted to 

experimental pure component methane virial coefficients presented by 

Hoover (16) in order to evaluate the parameters B0 , A0 , and C0 . The 

experimental second virial coefficients represented the temperature 

range from 131.93 to 273.15 degrees Kelvin. The curve fitted equation 

gave values of the second virial coefficients that were within 0,29 

per cent of the experimental values. The three parameters thus ob-

tained were 

B "'0.078919 
0 

A0 = 2.86532 

C0 = 7203,32 



The second virial coefficients are shown in Table XII. 

The third virial coefficient, Equation (6-6), was fitted to 

experimental data of Hoover (16). Experimental third virials also 

covered the temperature range of 131.93 to 273.15 degrees K. However, 

Equation (6-6) could not be made to give a good fit of the data. The 

third virials were then fitted to the followihg equati-on; which was~sug­

gested by Chueh and Prausnitz (8): 

(6-7) 

where V c is the critical volume; 'I'r, the reduced temperature; and a1 , 

a2 , and a3 are constants determined by non-linear regression of the 

experimental third virial coe~ficients. The third virials thus cal-

culated had maximum error of 3.67 per cent and an absolute average 

per cent error of 1.87. These errors in calculated third virials 

were within the range of expected experimental uncertainty claimed 

by Hoover. The results are shown in Table X+II. 

Equations (6-5) and (6-7) were then substituted into the follow-

ing form of the BWR equation. 

Z:;: l+ B(T)O + (c(T) - _c~ )t) 2 + actr5 
\ RT3 \ RT 

The volumetric data for methane of Vennix (29) were then fitted to 

Equation (6-8) in order to determine values of a, c, and i that gave 

the lowest possibJ,.e sum of squares of error in compressibility factor. 

The 126 data points used included densities up to twice the critical 
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density and covered the temperature range of 170° to 270° K. 1rhe non-. 

linear curve fit program was used to fit the data. The absolute 

average per cent error in predicted compressibility factors was 7.24 

with a maximum error of 67 per cent. The sum of squares of error was 

0.383558. 

Although the use of virial coefficients to improve the BWR 

equation was not satisfactory, some trends were noted. The largest 

0 errors in compressioility factor occurred at temperatures of 190 and 

lower. These temperatures correspond to the range of temperatures not 

represented in the experimental virial coefficients. No data on the 

virials at temperatures between 131.93 and 191.06 degrees K were avail-

able. Table XIII shows that Equation (6~7) fits the experimental data. 

However, the region between 131.93 and 191.06 degrees may not be 

satisfactorily represented since the third virial undergoes a drastic 

change. 

Figure 61 compares experimental third virial coefficients with 

those calcuhted with Equation (6~7) and values predicted from the 

usual expression for C(T) [Equation (6=6U from the BWR equation. The 

differences calculated from both expressions at low temperatures could 

explain why the calculated compressibility factors showed considerable 

error at the lower temperatures. At reduced temperatures below about 

0.95, the third virial calculated from the usual equation does not 

give the correct qualitative behavior. 



TABLE XII 

COMPARISON OF CALCULATED SECOND VIRIAL COEFFICIENTS 
OF METHANE WITH EXPERIMENTAL DATA 

Experimental Data (16) 
Temperature, B(T) 1fo Maximum 

Degrees, Kelvin cc/gm-mole Probable Error % Deviation 

<,'~',>'J~ 

131,93 -224. 9.0 o.oo 
191.06 -116.31 1.0 0.11 
200.00 -106.68 1.0 0.03 
215.00 - 92.51 o.4 0.28 
240.00 - 72.72 0.3 0.29 
273.15 - 53,28 0.2 0.09 

·-

TABLE XIII 

COMPARISON OF CALCULATED THIRD VIRIA.L COEFFICIENTS 
OF METHANE WITH EXPERIMENTAL DATA 

~"""'."""~"'~·--',;•.x. 

Experimental Data (16) 
Temperature, '/a Maxirrnun: 

Degrees, Kelvin 
C(T) 2 

(cc/gm~mole) Probable Error % Deviation -~-
131.93 =13600. 90.0 o.oo 
191.06 4741. 10.0 1.69 
200.00 4351. 10.0 3.67 
215.00 4169. 4.o 1.28 
240.00 3508. 3.0 2.39 
273.15 2669.6 2.0 2.19 
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Figure 25. Third Virial Coefficients For Methane 



CHA.PI'ER VII 

VAPOR-LIQUD) EQUILIBRIA FOR METHANE-HYDROGEN 

SULFD)E MIXTURES US ING -'THE BWR EQUATION 

Although the BWR equation can be modified to accurately predict 

pure component behavior, previous investigations have indicated that 

the results for mixtures are not always satisfactory. In particular, 

mixtures containing hydrocarbons with a wide boiling range or mixtures 

of non-hydrocarbons with hydrocarbons could not be fully represented 

by the BWR equation without further modification. Stotler and 

Benedict (28) suggested that one of the interaction constants [corres­

ponding to the parameter A0 in Equation (7-121 be fitted to experi-

mental data for mixtures. The suggestion that A0 be modified indicated 

that the simple mixing rules which were set up to compute the inter~ 

action constants may not be applicable to all cases. In this investi-

gation, vapor-liquid equilibria calculations were made for methane= 

hydrogen sulfide mixtures in order to test the mixing rules for this 

particular system. 

Basic BWR Equation 

Equation (3--1) may be applied to mixtures as well as pure 

components. 
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6 co 3 y 2 \I 2 
+ a°'f + ~ (l+o~ ) exp (~oe ) 

Mixing rules suggested by the original authors of the EWR 

equation (5) give the parameters as functions of composition and pure 

component parameters. These rules, listed below, were used in the 

present work. 

Bo ~ LxiBoi 

Ao g I. .l 2 ( x1A~1) 

~ 1 2 co g (- XoC2 .) 
1 01 

b :';! (L Xo b ~/3) 3 
l 1 

a !,'! ([x.a~/3)3 (7-1) 1 1 

d,. g cI x1ol ~/3 )3 
]. 

c :::: I 1/3 3 ( x.co ) 
J. J. 

t I 1 2 
:';! ( x. x ?) 

J. 1 

The mixing rules are applied to both liquid and vapor phases. 'rhe 

Lorentz mixing rule for B0 was suggested by Benedict (5) as a possible 

alternative for the linear mixing rule. The Lorentz mixing rule is 

(7=2) I 

Benedict stated that results obtained using the two mixing rules were 



only slightly different. Therefore, the linear mixing rule was used 

for this investigation because of its simplicity and ease of 

application. 

The criteria applied for vapor~liquid equilibria calculations of 

binary mixtures were the following. 

L 0 v Temperature and pressure were specified and e , \ , x1 , y1 , 

y2 were found by trial and error. 

and 

Liquid and vapor densities were calculated from Equation (3~1) 

using the Newton-Raphson convergence technique. Fugacities were 

calculated from the following equation. 

(7-3) 

In Equation (7-3), the non~subscripted parameters were calculated with 

the mixing rules, and the subscript i refers to pure component 

parameters. 
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The procedure used for calculating equilibrium compositions is 

shown in the following simplified outline. 

Given T, P 

Y,oL Calculate , 

Calculate 
L Y. 

f1 f{ i------.::i.iK. :;: 
J. 

No iY 111 ~ 
. J. ? i 

- ' Yes 

K1· ;a y./x. 
J. J. 

Vapor-Liquid Equilibria Calculation Scheme 

The first step was to assume values of the equilibrium ratios, 

K1 and~· The liquid and vapor compositions were then calculated 

from the equations 



71,, 

Using the mole fractions thus calculated the mixture parameters for 

both phases were determined from Equations (7-1). Next, liquid and 

vapor densities were calculated using Equation (3-1). Finally, liquid 

and vapor fugacities for both components were calculated. If the 

liquid and vapor fugacities were not equal, new K~values were cal-

culated by the equation 

(7 ... 4) 

The procedure was then repeated. When the vapor and liquid fugacities 

of both components were the same ·ca tolerance of O .1 ·per·--·ne:nt was used). 

Equation (7-4) reduced to 

Thus, the final K-values were determined. 

vapor-liquid equilibria calculat'ions were made for methane-

hydrogen sulfide mixtures at 277.78, 310,96, and 344.26 degrees Kat 

pressures up to 119.08 atmospheres, Initially, no modifications were 

applied to the BWR equation and two sets of parameters were used. In 

one case, the parameters used for both components were those deter-

mined with no constraints. In the second case, the pure component 

parameters were those determined with critical point constraints. 

Best results were obtained using the parameters with critical point 

constraints. However, the liquid phase compositions were not satis-

factory in either case. These results indicated that some modification 

was needed in order to improve the BWR equation for the methane• 

hydrogen sulfide mixtures. 
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Since the temperatures considered were above the critical tempera= 

ture of methane, the use of temperature dependent parameters for pure 

methane was not considered, Although the temperatm·es were below the 

critical temperature of hydrogen sulfide, temperature dependent para~ 

meters for hydrogen sulfide were not needed. The results in Table XI 

showed that the unmodified parameters accurately represent the sub= 

critical region of hydrogen sulfide at temperatures as low as 283.6 

degrees K. 

Modified Mixing Rule for A0 

Since there was no need to modify the pure component parameters, 

indications were that the mixing rules needed to be adjusted. An 

empirical interaction coefficient, 6 , was introduced into the usual 

mixing rule for A0 . The modified rule for a binary mixture was 

2 ~ 2 
is: xi A01-+ 2x.xJ. G (A .,A .) 2 + x .A 

J. Oi OJ J oj 

When G :: 1, Equation (7=5) reverts to the usual rule, Equation (7=1). 

When the interaction constant was applied to A0 , the equation for 

fugacity, Equation (7~3), had to be modified also. The term 

in Equation (7~3), which was derived from the usual mixing rule, was 

replaced by 

for component i. Derivation of the modified fugacity equation is given 

in Appendix C. 
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The value of~ that resulted in the most accurate vapor-liquid 

equilibria calculations was found, by trial and error calculations, to 

be 0.898 for the parameters with critical point constraints and 0.892 

for the parameters having no cons train ts. Phase compo;e; t tic;ms calcula t-
' '·· \ 

\.;' '. 
ed using parameters with constraints are compared with experimental 

data (24) in Figures 29, 30, and 31. Figures 26, 27, and 28 show the 

results obtained using parameters with no constraints. The use of an 

empirical interaction coefficient improved the equilibrium calculations 

considerably. Compositions of both phases were accurately predicted 

with each set of parameters using their respective value of E3 

However, best results were again obtained using the parameters with 

critical point constraints. Predicted liquid and vapor compositions 

are compared with the experimental data of Reamer, Sage, and Lacey (24) 

in Table XIV. 

Recently, Masuda and Yorizane (19) determined BWR parameters 

specifically for prediction of vaporaliquid equilibrium of hydrogen 

sulfide. They then used their parameters for hydrogen sulfide in 

conjunction with Benedict's constants (6) for methane to calculate 

equilibrium compositions of the methane-hydrogen sulfide system. The 

same constants used by Masuda and Yorizane were applied in this study 

to predict equilibrium compositions at 277.78, 310.96, and 344.26 

degrees K. The results are compared with the data of Reamer, Sage, 

and Lacey in Table XIV. Although the vapor phase was well represented, 

the liquid phase compositions deviated considerably. 

Kate (17) applied th~ BWR equation with the modified mixing rule 

for A0 to experimental data on gas phase partial volumes of hydrogen 

sulfide in methane at infinite dilution at 100° F and pressures of 



100 to 2,000 psia. Using his parameters for hydrogen sulfide and 

Douslin's (12) methane parameters, Kate found the value of E:1 to be 

0.8673. Kate's hydrogen sulfide parameters and E7 and Douslin's 

methane parameters were used to predict phase compositions. The 

results are shown in Table XIV. Vapor phase calculations showed small 

deviations, but predicted liquid phase compositions varied considerably 

from experimental compositions. 



0 Temp. K 

277.78 

310.96 

344.26 

TABLE XIV 

PHASE COMPOSITIONS OF METHANE-HYDROGEN SULFIDE MIXTURES 

Comparison of Parameters With Critical Point Constraints And Parameters With 
No Constraints for Phase Equilibria Calculations 

Experimental (24) 
Hydrogen Sulfide 

Pressure Mole Fractions 
-Atm Liquid Vapor 

13.61 0.9943 0.8629 
27.22 0.9646 o.4874 
68.05 O .8750 0.2768 
88.46 0.8132 0.2694 

108.87 0. 7202 0.2925 
119.08 0.6508 0.3172 

27.22 0.9993 0.9883 
40.83 0.9745 0.7312 
68.05 0.9172 0.5393 
88.46 0.8610 o.4818 

108.87 0.7808 o.4805 
119.08 0.7275 O, 5053 

54.44 0.9969 o.98o4 
61.24 0.9833 0,905~-
68.05 0.9691 o.8447 
81.66 0.9378 0.7633 
95.26 0.8979 O. 7189 

108.87 o.8453 0.7420 

Calculated Hydrogen Sulfide Mole 1 

Fractions With A l 2=0.898(A lA 2 )2 
and Critical P8int Constr~in~s 

Calculated Hydrogen Sulfid 
Fractions With A012=0.898(A 

and No Constraints 

e Mole 1 

olA02) 2 

j Error 
Liquid 1exp-calc Vapor 

f Error 
exp-calc 

; 

I .t!;rror 
Liquid !exp-calc 

=~ --- -·~---··-r=- .,,... __,,, Vapo~I:~ 
rrdr ~~­

p-calc 

0.9947 -0.0004 O .8600 0.0029 0.9909 0.0034 
O .96o8 0.0038 o.4825 0.0049 O .9570 0.0076 
0.8534 0.0216 0.2744, 0.0024 0.8514 0.0236 
0.7944 0 .0188 0.2612 ! 0.0082 0.7948 0.0184 

,0.7300 -o .0098 0.2714. 0.0211 0,7353 -0 .0151 
0.6954 =0 .0446 0.2834, 0.0338 o. 7020 -0.0512 

l 
I I 

,0.9988 O .0005 1 O. 9832 : O .0051 0.9950 0.0043 
.0.9688 0.0057. 0.7232 0.0080 0,9636 0.0109 
10.9073 0.0099 0,5277 0.0116 0.8975 0.0197 
0.8574 0.0036 o.4751 0.0067 o.8440 . 0.0170 
o.8o26 -o .0218 o.4607 0-.0198 0.7842 -0.0034 
0.7736 -0.0461 o.4642 0.0411 o. 7486 -0,0211 

0.9962 0.0007 0.9779 0.0025 0.9927 0.0042 
0.9828 0 .0005 O. 9130 . -0 .0076 0.9771 0.0062 
0.9691 0 .0000 ·• 0 .8615 ~0.0168 O .9610 0.0081 
0.9393 -0.0015; 0.7865 : -0.0232 ,0.9277 0.0101 
0.9077 -o .0098 ! o. 144 3 1 -o .0254 o. 8891 0.0098 
0.8706 -0.0251~7242 J 0.0178 10.8413 0.0040 

0.7529 
o.4183 
0.2336 
0.2209 
0.2297 
0.2415 

0.9344 
0.6835 
o.4911 
o.4390 
o.4245 
o.4291 

0.9599 
0.8899 
0.8353 
0.7593 
0.7115 
o.6886 
~-

0.1100 
0.0691 
0.0432 
0.0485 
0.0628 
0.0757 

0.0539 
0.0477 
0.0482 
0.0428 
0.0560 
0.0762 

0.0205 
0.0155 
0.0094 
0.0140 
o.001~-
0.0534 
_,_, _____ ----~·· 

Absolute Avg. Deviation=0.0131 Absolute Avg. Deviation=G.0303 
--.;J 
\Jl 



TABLE XIV (Continued) 

Comparison of Kate's (17) and Masuda's (19) .BWR Parameters for Phase Equilibria Calculations 

Pressure 
0 Temp, K Atm 

277.78 13.61 
27.22 
68.05 
88.46 

198.87 
119.08 

310.96 27,22 
40.83 
68.05 
88.46 

108.87 
119.08 

344.26 54.44 
61.24 
68.05 
81.66 
95.26 

108.87 

Calculated Hydrogen Sulfide Mole 1 

Experimental (24) Fractions With A0 12=0.8673(A0 1A0 2)2 
Hydrogen Sulfide • And Kate's Parameters 

Mole Fractions i Error Error 
Liquid Vapor 1! Liquid exp-calc Vapor exp-calc 

Ii 
0.9943 o . 8629 I o . 9988 -o .0045 o.84o4 0.0225 
0.9646 o.4874 
0.8750 0.2768 
0.8132 0.2694 
0.7202 0.2925 
0.6508 0.3172 

0.9993 0.9883 
0.9745 0.7312 
0.9172 o. 5393 
0.8610 . o.4818 
0.7808 O .4805 
0.7275 o. 5053 

0.9969 0.9804 
0.98331 0.9054 
O. 9691 1 O .8477 -
0.9378 0.7633 
0.8979 0.7189 
o.8453 0.7420 

• 

0.9924 -o·.0278 o.48o2 0.0072 
0.9743 -0.0993 0.2825 -0.0057 
0.9661 -a.1259 0.2631 0.0063 
0.9568 -0.2384 0.2561 0.0364 
0.9550 -0.3042 0.2549 0.0623 

-

0.9997 -0.0004 0.9873 0.0010 
0.9916 -o .0171 0.7377 -0.0065 
0.9754 -0.0582 o. 5493 -0.0100 
0.9633 -0.1023 o.4954 ,-0.0136 
0.9515 -0.1707 o.4703 0.0102 
0.9455 -o.21So I o.4632 0.0421 

! 

0.9989 -o .0020 i O. 9849 l -0 .0045 
0.9933 -0.0100 1 0.9205 I -0.0151 
0.9877 -0 .0186 0.8708 -0.0261 
0,9760 -0 .0382 o.8oo7 -0.0374 
0.9640 -0.0661 0,7577 -0.0388 
0.9514 -0.1061 0, 7310 1 -0 .0110 

l 
Absolute Average 
Deviation= 0,0553 

I 

- . ,.....,.~.,.-.-........-..._-~_,__,,.,......_.__ ,_ 

Calculated Hydrogen Sulfide M£le 
Fractions With A0 12=(A0 1A0 2)2 

And Masuda's Parameters 
.ti.;rror 

Liquid exp-calc Vapor 
--

0.9957 -0 .0014 0.9287 
0.9399 0.0247 0.5152 
0.7455 0.1295 0.2875 
0.6243 0.1889 0.2776 

-- ---- --
0.9997 _ -0.0004 0.9966 
0.9576 0.0169 0.7273 
0.8625 0.0547 0.5262 
0.7758 0.0852 o.4766 
0.6620 0.1188 o.4854 

-- --
0.9921 0,0048 O .9625 
0.9737 0.0096 0.8929 
0.9538 0.0153 0.8375 
0.9079 0.0299 0.7852 
0.8587 0.0412 0,7201 

-- --
Absolute Average 
Deviation= 0.0326 

.ti.;rror 
exp-cal 

-.. ~-----, 

-0.0658 
-0.0278 
-0.0107 
-0.0082 

-0.0083 
0.0039 
0.0131 
0.0052 

.. 0.0049 

0.0179 
0.0125 
0.0072 
0.0051 

-0.0012 

=-.,._,,, 

c 

~ 
()'\ 



. 
:a: 
E-t 
< 
~ 

'"~ r~ 
I=> 
Cl) 

tJ:J 
H 
fJ::j 
r:i~ 

130 

120 

110 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

I 

I 
I 
l 

I O 
I 
I 
I 
I 
I 
I 
I 
I O 
I 
I 

0 

0 

\ 

\ 
\ 
\ 

\ 
~ 
~ 
~ 0 
~ 

o Experimental Data(24) 

Ao12 = (Ao1Ao2)~ 

--- Ao12 = o.892(A0 1A0 z)~ 

:--.. 
~ 

0 \ 
\ 
\ 
\ ·. 

o' \ 
\ 
\ 
\ 
\ 
\ 
\ 
\o 
\ 

\ 
\ 

\ 
\ 

\ ,o 
\ 
\ 

\ 
\ 
\ 

77 

\ 
\ 
\ 

\ 
\ 

- .o_ ---

_I 

I 

ol L-----11---LI ---'IL-_ __J_( ---!IL-___ J___ L_ ___ _ 

0 0.1 0.2 0.3 o.4 0.5 o.6 0.7 o.8 0.9 1.0 
MOLE FRACTION HYDROGEN SULFIDE 

Figure 26. Equilibrium Compositions Of Methane­
Hydrogen Sulfide Mixtures At 277.78°K 
Calculated With BWR Parameters Having 
No Constraints 
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Figure 27. Equilibrium Compositions Of 
Methane-Hydrogen Sulfide 
Mixtures At 310.96° K 
Calculated With BWH Param­
eters Having No Constraints 
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Mixtures At 344.26° K 
Calculated With BWR Param­
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uilibrium Compositions Of Methane­
Hydrogen Sulfide Mixtures At 277.78°K 
Calculated With BWR Parameters Having 
Critical Point Constraints 
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Figure 31. Equilibrium Compositions Of 
Methane-Hydrogen Sulfide 
Mixtures At 344.26° K Calc­
ulated With BWR Parameters 
Having Critical Point Constraints 



CHAPrER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

This study was concerned with several possible modifications of 

the Benedict-Webb.-Rubin equation. Specific investigations included 

(a) preliminary investigations to determine the effects of each of the 

eight BWR parameters on calculated pressure, saturated phase fugacity, 

and vapor pressure for methane, (b) simultaneous fit of two BWR para= 

meters to predict saturated phase properties, (c) non~linear regression 

of p-v-T data to determine pure component BWR parameters for methane 

and hydrogen sulfide, and (d) vapor~liquid equilibria calculations 

with the BWR equation for methane-hydrogen sulfide mixtures. 

The major conclusions of this investigation are 

1. Pressure and vapor pressure are most sensitive to 

changes in the parameter A0 , while c had the greatest 

effect on saturated phase fugacities, thus indicating 

that these para.meters may be best suited for modification. 

2. The simultaneous fit of two constants to vapor 

pressures or vapor pressures and saturated liquid 

densities reveal a temperature dependence of the 

parameters which is not of an apparent simple 

functional- form. 

3. Two BWR parameters can be fitted simultaneously to 

vapor pressures and saturated liquid densities. 
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Specifically, four pairs of parameters - A0 and 't, 
C0 and ~ , O and 9- , c and O gave results of 

comparable accuracy when fitted as linear functions of 

reciprocal temperature to vapor pressures and liquid 

densities for methane. 

4. Although the simultaneous fit of two BWR parameters 

to vapor pressures only could be made, the results 

were not satisfactory with respect to prediction of 

saturated liquid densities. 

84 

5. The use of experimental second and third virial 

coefficients to determine six BWR parameters did not 

result in satisfactory representation of p=v-T behavior, 

especially in the region below the critical temperature 

where the third virial .predicted by the BWR equation does 

not give the correct qualitative behavior. 

6. BWR parameters which yield exact fit to the critical 

point conditions were determined for the pure components 

methane and hydrogen sulfide. 

7. Predictions of vapor~liquid equilibria using the BWR 

equation with the usual mixing rules and parameters 

for hydrogen sulfide and methane determined in this 

study did not yield satisfactory results. 

8. The use of BWR parameters constrained to critical 

point behavior for the heavy component, hydrogen 

sulfide, in the methane-hydrogen sulfide system gave 

improved results relative to unconstrained parameters 

when basic mixing rules were used, 



9. An empirical interaction coefficient applied to the 

mixing rule of A0 improved the vapor-liquid equilibria 

calculations for the methane-hydrogen sulfide system, 

with the most accurate results being obtained using pure 

component parameters satisfying the critical point 

conditions. 

The results of this investigation have led to the following 

recormnendations: 

1. A study should be made to see if the empirical inter­

action coefficient in the mixing rule of A0 based on 

vapor-liquid equilibria can be applied to p-v-T and 

enthalpy-entropy calculations. 

2. The BWR equation could be modified for three binary 

mixtures and the results applied to a ternary system 

to see if calculated ternary data is better predicted. 
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METHOD FOR CALCUIATilJG PURE COlVIPONENT SATURATED 

PHASE PROPERTIES WITH THE Fvffi EQUATION 

The calculation of saturated phase properties involves a rather 

lengthy trial and error procedure, Only one variable needs to be 

specified. In this case the known variable is te1ri.perature, A vapor 

and liquid phase will be in equilibrium if and only if the following 

conditions are satisfied: 

PL v 
:a: p 

TL ~ TV 

fL :;:: fv 

Equation (3~1) was used to calculate vapor pressures. 

(3=1) 

and Equation (3-18) was used to calculate liquid and vapor fugacities. 

(3=18) 

90 
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The following is a simplified flow diagram of the procedure used to 

calculate the saturated phase properties at a known temperature. 

l Assume 1: eL J 

r--·------ ----- ---~~~f Calculate 

( L) · No L P T, = p assumed Adjust p 
Yes 

Calculate P(T, pV) r I ....----~r--t- -N - · 

IP(T, ~~-1~ Passumed ___ J~~djust~v l 
_Yes 

I 

j Calculate fL, fv -, 1;-
Fr-rv Yes J 

-----1vapor pressure: P 

L No 

-------- .--p-a_s_s_um_e __ d_:_P_a_s~~~ vL ~T vv 11~~) I 
Flow Diagram for Calculation of Pure Component 

Saturated Phase Properties 



The following equation was used to estimate the vapor pressure. 

P - p (5.39 - 5T·3.2) .. c exp 
r 

Equation (A-1) was derived from a plot of 1/Tr versus P/Pc (13). 

saturated liquid volume was estimated by the equation (22) 

(A-1) 

The 

(A-2) 

Equation (3-1) was then used to calculate the pressure. If the cal-

culated pressure did not equal the assumed pressure, the liquid density 

was changed by way of the Newton-Raphson technique as follows: 

(A-3) 

where 

(A-4) 

(A-5) 

Equation A-5 is the derivative of the BWR equation with respect to 

density. 

(A-6) 

Saturated vapor density was estimated from an assumed compressibility 

factor. 

v _ Passumed e -RT Zassumed 
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Pressure was then calculated with the estimated vapor density. If the 

calculated pressure was not equal to the assumed pressure, the Newton-

v Raphson technique was again used to change e , 
When values off v and ~L that resulted in the assumed pressure 

were found, Equation (3-18) was used to calculate liquid and vapor 

fugacities. If the fugacities were not equal, a new assumed pressure 

was calculated from Equation (A-7), 

Equation (A-7) was derived as follows. 

or 

Fugacity is given by the equation 

RTdlnf::: VdP 

dlnf - y_ dP 
RT 

Equation (A-8) can be written for liquid and vapor phases 

L 
dlnfL::: :!_ dP 

RT 

dlnfv::: V:, dP 
RT 

Division of Equation (A-9) by Equation (A-10) results in 

(A-7) 

(A-8) 

(A-11) 

L v 
Equation (A-11) can now be integrated assuming that the change V ~v 

is negligible. 



0 

RT ( dln(r1/rv) 
', 

\ 

ln(f1 /rv) 

or 

Rearranging Equation (A-12) gives 

::: ~2 

pl 

p ) 
1 

(v1 -vv)dP 

The pressure thus calculated becomes the new aDSllllled vapor 

(A-12) 

(A-13) 

pressure, and the trial and error procedure is repeated. Iterations 

were repeated until the liquid and vapor fugacities were equal. 
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APPENDIX B 

DERIVATION OF CRITICAL POINT RELATIONS 

The critical point relations used in the non-linear curve fit of 

the BWR equation with exact critical point behavior were derived from 

Equation (3-1) as follows. 

At the critical point, Equation (3-1) becomes 

Pc :: RTc('c + (B0 RTc-A0 - : 0 2 ) f ~ + (bRTc=a) e ~ 
c 

+aot(>:+ 0!~ (i+~f>~l exp H'e~l 
c 

Also, at the critical point 

The first and second derivatives were given by Equations (5~5) and 

(5~6), respectively. By multiplying Equation (5-2) by 2/(.! c and sU:b"' 

tracting Equation (5-5), the following equation is obtained. 

(B-2) 
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In Equation (B-2), A0 , B0 , and C0 have been eliminated. The same 

parameters can be eliminated from Equation (5-6) by multiplying 

Equation (5-2) by 2/f>~ and subtracting Equation (5~6), The resulting 

equation is 

Pc = RTcf c - 2(bRTc"'a)~ cl - 14ao\.~g 

3 
- c~c (2+2lf E>~ - 9~ 2 (?~+ 26 3f~) exp (-~~~) 

Tc 

Then Equation (B-3) was multiplied by 1/2(:c and subtracting from 

Equation (B-2) to obtain 

Equation (B-4) was solved for c:J. to obtain Equation (5~7). 

Equation (B~2) was then solved for b to obtain Equation (5-8) 

Equation (B-1) was then rearranged to obtain Equation (5-9) 

A0 :.: B RT - ~ - pc + RTc + (bRT -a) O 
o c Tc 2 D c \ c 

c e c ,c 

(B-3) 

(5-9) 
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DERIVATION OF FUGACITY EQUATION FOR 

MIXTURES WITH MODIFIED A0 

The fugacity of component i in a mixture is obtained from the 

residual work content as follows: 

RTlnfi RTln~RTxi (C-1) 

where ni is the number of moles of component i and Ng ~ ni. The 

residual work content is obtained from the equation 

(c-2) 

Equation (3-1) is substituted into ~uation (C-2) to obtain 

.-. c ' 02 5 
A ::: (B RT-A - .-.£)e + (bRT-a) c + adp -

0 0 2 2 5' 
T 

(c-3) 

Equation (C-3) is substituted into Equation (C-1) to arrive at 

Equation (7-7). 

In order to derive the fugacity equation with modified A0 , only 

the first group of parameters in Equation (C-3) will be discussed. 

99 



-With~= N/V, NA becomes 

where 

1 
A : -

o N2 

....... Co N 
NA II N(B0RT-A0 - 2 ) - + ... 

T V 

Equation (c-4) becomes 

100 

(c-4) 

( c .. 5) 

(c-6) 

(C-7) 

(c-8) 

The derivative of NA with respect to ni at constant nj, V, and Tis 

(~:.) • i [<n,,i + I niB0 i)RT-2(niAoi 
\ 1 T,V,nj 

A~er rearranging 

(:::) = ~B0 i+ B0 )RT-2~1A0 1+ xj e (A0 1A0 /)-
2(c~oil}+· ·• 

T,V,nj 
( C-10) 

Substitution of (C-10) into Equation (C-1) results in the equation for 
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fugacity with modified A0 . 

RTlnfi :: RTlnf>RTxi .j.-[(B0 i.:,. B0 )RT 

-2(xiAoi-!-xj 9(AoiAol)- 2(c~oi)"I, J ~ + 
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c 
c 
c 
c 
c 
c 
c 
c 
r 
~ 

c 
c 
c 
c 
c· 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

G 
c 
c 
c 
c 
c 
c 

COMPUTER PROGRAM FOR CALCULA.TING PURE COMPONENT SAT"lJRATED PH.A.SE 
PROPERTIES AND SIMULTANEOUSLY DETERMINING TEMPERATURE 
DEPENDENCE OF TWO :S-vffi PARAMETEijS FROM VAPOR PRESSURES 

AND LIQUID DENSITIES 
COMMON/COM/NC,NON 
Dll>'ENSION Tl50i ,PEXl501 ,VLEl501 ,CISI ,VVEXf501 ,VL1501 ,DLl50.J ,Pll501 

l,Pl501 ,CORRIS,50 I ,TRl501 ,DVl501 ,COl 1501 ,(021501 ,VLEXI 501 ,Sf501 ,TTI 
2501 

DOUBLE PRECISION C,DL,S,TT,DV 

SUBROUTINES 
VPRESS 
DEVI AT 

CON SON 
CUJ:;?V 

CURVFT 

VARIABLES 

CALCULATES VAPOR PRESSURES, LIQUID DENSITY, AND VAPOR DENSIT 
CALCULATES DEVIATIONS O~ CALCULATED VARIABLES FROM EXPER]M 
ENTAL 
CALCULATES TWO BWR CONSTANTS(SPECIFIEDI AT EACH TEMP, 

PqEPARES VARIABLES FOR CURVE FIT 
FITS THE TWO BWR CONSTANTS AS A LINEAR FUNCTION OF 1/T 

N NUMBER OF EXPER1MENTAL DATA POINTS 
NC NUMBER OF PAIRS OF CONSTANTS TO BE USED 

TC CRITICAL TEMPERATURE 
PC CRITICAL PRESSURE 
DC CRITICAL DENSITY 

ZMAX COMPRESSIBILITY USED TO BEGIN VAPOR DENSITY CALCULATIONS 
Till TEMPERATURE 

PEXIII OBSERVED VAPOR PRESSURE 
VLEIIJ OBSERVED SATURATED LIQUID VOLUME 

VVEXlll OBSERVED SATURATED VAPOR VOLUME 
((JI BWR CONStANTS 
KA,KB CONSTANTS TO MODIFfED 
R GAS CONSTANT 
VLIII SATURATED LIQUID VOLUME 

DLI I I SATURAED LlO.UiD DENSITY 
Pllll CALCULATED VAPOR PRESSURE !UNMODIFIED CONSTANTS! 

NN CONTROL INDEX 
K CONTROL INDEX 
LET CONTROL INDEX 

DIMENSIONS 
. PRESSURE ATMOSPHERES 

DENSITY GRAM-MOLES/LITER 
TEMPERATURE DEGREES KELVI~ 

GAS CO~STANT LITER-ATM/GM-MOLEK 
VVEXfll CC/GM-MOLt 
VLE<li CC/GM-MOLE 

FORMATf2I5,2Fl0.3,F6.3,F8.4l 
FORMAT(7Fl0.3l 
FORMAT 14El5,Bl 

4 FORMAT(l81,8X,2HB0,12X,2HA0,13X,2HC0,14X,1HB,14X,lHA,l4X,2HAL,l3X, 
llHC,13X,lHG/l . 

5 FORMATl1X,8El5.B///I 
6 _ F OR/-1A T ( 2 I 5 J 

READl5,11N,NC,TC,PC,ZMAX,DC 
READl5,l1NO,NON. 

C NO CONTROLS WHICH DATA IS TO.BE READ 
c NO=l TEMPERATURE ONLY rs READ 
C N0=2 TEMPERATURE AND EXPER!MINTAL VAPOR PRESSURE 
C N0=3 TEMP, PR.ESSURE,AND LIQUID VGLUME 
~ N0=4. TEMP, PRESS, LIQUID VOLUME, AND VAPOR VOLUME 
C IF NON =l, TEMPERATURE DEPENDENCE CALCULATIONS ARE BY PASSED AND ONLY 
C P-V-T CALCULATIONS ARE MADE 

RE AD f 5, 2 I I T I I I , I= l , NI 
IFiNO,EQ,llGO TO 1000 
READl5,21 IPEXI l i ,l=l,NJ 
IFINO,EQ,21GO TO 1000 
READl5,21 (VLEI I I ,l=l,NI 
!FINO,EQ,3)GO TO 1000 
READ15,211VVEXIIl,l=l,NI 

1000 CONT !NUE 
1019 CONTINUE 
l02v READ15,311Clll,l=l,81 

ioJRITE(6,4) 
1,RITE16,51 !Cf I I ,I=J,81 
IFINON,EQ,llGO TO 1026 

1025 READl5,61KA,K8 
1026 R=,08207 

NN=O 
K=O 
LET=O 
CALL VPRESS{DC,PC,TC,R,N,NN,K,LET,C,T,DL,S,ZMAX,DV,TT1KA,K~,M,AA,B 

lA,A!:3,88) 
DO l O 15 I= l , N 
PI! I =SI I I 
TRIIJ=TTIIJ 
VLI l i=l,/DLI I I 

1015 Plill=Plll 
CALL DEVIAT(KA,KB,N,PEX,P,TR,T,VLE,DL,VVEX,DV,VLEXJ 
!FfNON,EQ.11 GO TO lc3Q 
DO 800 .J=l,8 
00 800 1=1,N 

Svc CCRRfJ.Jl=O 
CALL CCNSON(KA,Kb,C,N,?l,CORR,PEX,T,VLEX,DC,PC,TC,R,NN,K,L~T,ZMAX, 

1TR,VLE,VVEX,C01,C02} 
CALL CURVE(N,T,C01,C02,AA,bA,Ab,ci8l 
LET=! 
NN=O 

·CALL VPRESS(DC,PC,TC,R,N,NN,K,LET,C,T,DL,S,ZMAX,DV,TT,KA,K3,McAA,8 
lA,Ab,66) 

~C 200C I=l,N 
Pt I I =SI I I 

20~0 TRI I l=TTI l J 
CALL DEViAT(KA,Kb,~,PEX,P,TR,T,VLE,DL,VVEX,~V,VLEX) b 

w 



1030 NC=NC-1 -
IFINC.EQ.O)GO TO 1040 
GO TO 1020 

l04U CONTINUE 

c 
c 
c 
c 
c 
( 

c 
c 
c 
c 
c 
c 
c 
c 
c 
~ 

c 
c 
c 
c 

100 

CALL EXIT 
END 
SUBROUTINE VPRESS(DC,PC,TC,R,N,NN,K,LET,C,H,DL,P,ZMAX,DV,TR,KA,KB, 

lM,AA,BA,AB,BBl 
DIMENSION Cl81 ,TISO) ,TR15U) ,DLl50) ,Pl501,DVl501 ,FLl50) ,FVl50),PRl5 

101 ,Hl50) 
DOUBLE PRECISION C,DL 
DOUBLE PRECISION AA,bA,AB,BB,VOL,CON1,CON2,P,PA,FPD 
DOUBLE PRECISION VC,DC,ZC,PC,R,TC,T,TR,FD 
DOUBLE PRECISION ZMAX,ZV,DV,DOC 
DO 100 l=l,N 
TI I l=Hl-1 I 

VARIABLES 
vc 
zc 
M 
K 
NOC 
CON! 
CON2 
AA,BB 

AB,BB 

TRI 11 
PA 
VOL 
FL I I l 
FVI 11 

CRIT !CAL VOLUME 
CRITICAL COMPRESSIBILITY FACTOR 

CONTROL INDEX 
CONTROL INDEX 

CONTRCL INDEX 
FIRST BWR <ONSTANT TO BE MODIFIED 
SECOND BWR CONSTANT TO BE MODIFIED 

CONSTANTS IN TEMPERATURE DEPENDE~T FORM OF FIRST 
CONSTANT,CIKAl 
CONSTANTS IN TEMPERATURE DEPENDENT FORM OF SECOND 
BWR CONSTANT, CIKBI-
REDUCED TEMPERATURE 

FIRST ASSUMED PRESSURE 
FIRST ESTIMATE OF LIQUID VOLUME 

LIQUID FUGACITY 
VAPOR FUGAC!TY 

VC=.lOD 01/DC 
ZC=PC*VC/IR*TC) 
NO=N 
IFINN.EQ,OJK=l 
IFINN.GToOJK=~. 
IFINN.GT,O)NO=NN 
NOC= o 
DO 505 l=K,NO 
!FILET.EQ.OIGO TO 200_ 
CONl=CiKA) 
CON2=CIKBI 
CI KA I =AA+BA/T I I I 
CI KB I =AB+BB/T I I I 

200 TRll)=TIII/TC 
PA=PC*DEXPl.539D 01-,5390 01/TRI I 11 

C EQUATION FOR PA IS DERIVED FROM FIGURE 18,3, PAGE 195 OF 
C APPLIED HYDROCARBON THERMODYNAMICS BY W, C. EDMISTER 

VOL=VC*ZC**llo!OD Ol-TR1lil**l2ol7•ll 
280 DLlli=l•/VOL 
290 PU! l=R*TI I l*DLI I l+ICI ll*R*TIJ J-Cl2l-Ci3)/TI I 1**2• l*DLI I 1**2.+ICl41 

l*R*TI I )-Cl 51 l*DL I l l**3•+Ci5 l*C 16) *DL 11 l**6o+IC I 7l*DLI 11 **3,ITI I l** 
22• l*(elD Ol+CfSl*DL( I )**2. )*DEXP(-C(B)*DLCI l**Z .. l 

C CHECK TO SEE IF CALCULATED PRESSURE=ASSUMED PRESSURE 
IFIDABSIIPA-Pllll/PAl-.lD-02)300,3C0,310 

( ASSUME NEW DENSITY IF PRESSURES DO NOT AGREE 
C NEWTON RAPHSON ITERATION IS USED TO CONVERGE ON DENSITY 

310 FD=Pi'Il-PA 

FPD=R*Tlll+o2D Ol*IClll*R•TII)-Cl2l-Cl3l/Tlll**2•l*DLlli+•3D Ol*!C 
ll41*R*Tlll-Cl5ll*DL(J 1**2•+.60 Ol•Cl51*Cl6l*DLIJl**5•+(Ci7l*DLlll* 
2*2.ITlll**2•1*1•3D Ol+.3D Ol*Cf8l*DLl!l**2•-·20D Ol*Cf81**2•*DLl!l 
3**4•1*DEXP(-C(Bl*DL(ll**2.·l 

FPD IS DERIVATIVE OF PRESSURE WITH RESPECT TO DENSITY 
IFIFPDJ305,305,315 

C IF FPD IS NEGATIVE; EQUATION WILL NOT CONVERGE 
305 DLll)=ollD Ol*DLIII 

GO TO 290 
315 DU!l=DUIJ-FD/FPD 

GO TO 290 
30U CONTINUE 

: C CALCULATE VAPOR DENS I TY 
ZV=ZMAX 
DVlll=PA/IZV*R*TIIII 
IF I NOC• EQ. ll DV I I I = DOC 

C DOC IS DENSITY CALCULATED IN PREVIOUS TRIAL 
IF I NOC• EQ • 2 l DV I I l = DV I 1-1 l 

390 PU! l=R*TI l i*DV 11 i+IC 11 l*R*T I I 1-C( 2 l-Ct3 J IT! I 1**2• l*DVI 11**2.+(C 141 
1 *R*T I I )-C 15 l l*DVI I l**3o+Cf 5 l•C 16 l*DVI I 1**6•+f C 17 l*DVI I I **3o/T (II** 
22Cl*l,10D Ol+CISl*DVII1**2•1*DEXP(-CISl*DVlll**2•l 

DOC= DVIIJ . 
IFIDABSI IPA-Pl I I )/PA)-.lOD-03)400,400,410 

410 FD=Pll)-PA -
FPD=R•TIIJ+.2D Ol*1Clll*R*TIJJ-Cl2l-Ct3l/Tf ll**2•l*DVIIJ+o30D 01*1 

1CU4l*R*Tl!)-Cl5l l*DVl11**2•+•6CD Ol*Cl5l*Cl6l*DVfll**5•+(Cf7l*DVII 
2lM*2.IT(l)**2•)*C•30D Ol+.300 Ol*C<8)*0V(ll**2•-•20D Ol*C<Bl**2•*D 
3Vlll**4•l*DEXPI-Cl6l*DVl!l**2•l . 

IFIFPD)405,405,4l5 
C IF FPD IS NEGATIVE, EQUATION WILL NOT CONVERGE 

405 DVill=o99D OO*DVl!l 
GO TO 390 

415 DVl!l=DVll)-FD/IFPDl 
GO TO -390 

400 CONTINUE 
C CALCULATE LIQUID AND VAPOR FUGAC!TIES 

RFL=R•Tlll*DLOGIR*Tlli•DLllll+2o*ICill*R*Tf I)-C(21-Cl3l/(Tf!l**211 
l*DLI I l+l.5•HCl41*R*TI ll-Cl5l l*DLI I 1**2+lo2•Cl5l*Cl6l•DU! 1**5+1 ICI 
27D*DLI I 1**2 l/1 Tl I 1**2 l 1*111,/ I Ct 8 l *DU I 1**2 l i-1 lo/ !Cl Bl*Dlf I 1**21-
3, 5-CIS l*DL I I 1**21*DEXPI-Cl8l*DLI 11**21 l 
RFV=R•TCIJ•DLOGIR*Tlll*DVl!ll+2•*1Clli*R*Tlll-Cf2l-Cl3J/(Tfll**21l 

l*DVII l+l•5*1Cl4l*R*TI I J-Cl51 l*DVI I l**2+lo2*Cl51*Cl6l*DVII 1**5+i IC! 
27D*DVI I 1**21 I I Tl 11**2 l l*l 11./ !Cl 8 l*DVI I 1*"211-l lo/!Cf 8l*DVI I 1**21-
3·5-Cl 8 l*DVI I 1**21*DEXPt-CISl*DVI I 1**21 I 

C RFL=R*T*LNIFLl FL IS LIQUID FUGACITY 
C RFV=R*T*LNIFVI FV IS VAPOR FUGAC!TY 

CHECK=RFL/IR*Tiill 
IF ICHECK-8501401,401,402 __ CHECK 

C IF CHECK IS GREATER THAN 85, COMPUTER WILL NOT CALCULATE THE 
C EXPONENT IN STATEMENT 401, AND CALCULATION IS BYPASSED TO ASSUME 
C A NEW PRESSURE 

402 F_LOFV=IDEXPIRFL/19,*R*TI ll l I/DEXPIRFV/19o*R*TI I 11 I 1**9 CHECK 
WRITE16,10JCHECK 

lU FORMATC1X,El5.Sl 
PA=PA-IIR*Tlll/11./DLlll-lo/DVlllll*ALOGIFLOFVJl CHECK 
GO TO 280 CHECK 

401 FLI I l=DEXPIRFL/IR*TI Ill I 
FVlll=DEXPIRFV/IR*Tlllll 

C CHECK TO SEE IF LIQUID AND VAPOR FUGAC!TIES ARE EQUAL 
IFIABSIFVI I 1-FLI I I l-.Ql0CJ430,430,440 

43C IFIABSIIFVIII-FLllll/FVllll-·0001)450,450,440 
'C IF LIQUID AND VAPOR FUGAC!TIES ARE EQUAL, ASSUMED PRESSURE IS OK 

C OTHERWISE A NEW PRESSURE IS ASSUMED 

1--' 
0 
-[: 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ASSUME NEW PRESSURE 
440 PA=PA-C CR*T{! 1/C lo/Dl{ I )-1.IDV{ 11 l )*ALOGCFLC I )/FV{ 11 l l 

NOC= 1 
GO TO 280 

450 TRC!J=T{II/TC 
NOC= 2 
IF{LET.EQ.O)GO TO 505 
CCKA)=CONl 
CCK8>=CON2 

505 PRC!)=P{li/PC 
RETURN 
END 
SUBROUTINE DEV!ATCKA,KB,N,PEX,P,TR,T,VLE,DL,VVEX,DV,VLEXJ 
COMMON/COM/NO,NON 
DIMENSION PEX{50),P{50),ERROR{50),TRC50),TC50),VLEX{50),VLE{50),VL 

1(50) ,DUSO) ,ERRORVC50) ,VVEX{50l ,VVl501 ,DVl501 
DOUBLE PRECISION C,DL,DV 

VARIABLES 
SUMP SUM OF VAPOR PRESSURE DEVIATIONS 

SUMVL SUM OF LIQUID DENSITY DEVIATION 
SUMVV SUM OF VAPOR DENSITY DEVIATIONS 
ERRORC!I VAPOR PRESSURE DEVIATION 
ERRORV{ll LIQUID DENSITY DEVIATION 
ERR VAPOR-DENSITY DEVIATION 
AVGP AVERAGE DENSITY DEVIATION 
AVGL AVERAGE LIQUID DENSITY DEVIATION 
AVGVV AVERAGc VAPOR DENSITY DEVIATION 

FORMAT{5X,29HAVERAGE VAPOR PRESSURE ERROR=,F8.4/5X,28HAVERAGE L!QU 
l!D VOLUME ERROR=,F8.4/5X,27HAVERAGE VAPOR VOLUME ERROR=,F~.41 

6 FORMATC10X,2HTR,10X,3HT,K,10X,7HPEX,ATM,10X,7HPCA,ATM,10X,9HPCT ER 
lROR/1 

1 FORMAH5X·olHC,!1,6H AND C,!1,29H ARE FUNCTIONS OF TEMPERATURE> 
7- FORMAT{7X,F6.3,6X,FB.3,BX,F7.3,10X,F7o3,16X,Fllo3l 
8 FORMAT(7X,F6·3,6X,FS.3,12X,F9.5,12X,F9.5,llX,FlOe4l 
9 FORMAT{///lOX,2HTR,lUX,3HT,K,15X,4HVLEX,13X,4HVLCA,13X,9HPCT ERROR 

1 /) 
10 FORMATC///lOX,2HTR,IOX,3HT,K,15X,4HVVEX,13X,4HVVCA,13X,9HPCT ERROR 

1 /I 
SUMP=O• 
SUMVL=O• 
SUMVV=O• 
!FCNON.EQ.llGO TO 50 
~!RJTEl6,IIKA,KB 

50 WRJTEl6,61 
DO 1000 I=l,N 
ERROR( I l=CPEXC I I-Pl I tl*IOOo/PEX( 11 
SUMP=SUMP+A~SCERRORIIII 

1000 WRITE{6,71TR{li,Tlli,PEXCll,Pill,ERRORC!I 
!F(NOoLTo3)GO TO 75 
<vRJTE{6,91 
DO 1005 I=l,N 
VLEX{Ii=VLE{ll/1000. 
VLC I l=l·IDLCl 1 
ERRORV ! I I= C VLE X C I 1-VL I I I I* 100. /VLE X C I I 
SUMVL=SUMVL+ABS{ERRORVIIIJ 

1005 WRJTEl6,81TRC!i,Tl!l,VLEX{!J,VLC!l,ERRORVl!l 
75 !F{NO.LT.4iGO TO 85 

\lo.lRITEr6,10J 
DO 1010 l=l,N 
VVEXCll=VVEX{ll/1000• 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

c 

VVI I l=lo/DVC 11 
ERR=CVVEXI I 1-vvc I 11*100·/VVEX{ 11 
SUMVV=SUMVV+ABSIERRI 
WRJTEC6,81TRC1i,Tlll,VVEXC!i,VVlll,ERR 

IOIU VVEXlll=VVEXCli*lOOO. 
85 IFINO.LTo4)GO TO 95 

TOT=N 
AVGP=SUMP/TOT 
AVGVL=SUMVL/TOT 
AVGVV=SUMVV /TOT 
WRITE{6,2JAVGP,AVGVL,AVGVV 

95 CONTINUE 
RETURN 
END 
SUoROUTINE CONSONIKA,KB,C,N,Pl,CORR,PEX,T,VLEX,DC,PC,TC,R,NN,K,LET 

l,ZMAX,TR,VLE,VVEX,C01,C021 
DIMENSION (CS) ,Pl(50) ,P{50) ,P(TCC8,501 ,CORR18,50J ,VLC501,DLl50J ,VV 

ll50J,DV{50),ERRORC50i,PEXC501,COMPC5,501,VLEXC501,DPDKl8,501,DPDVC 
28T501,DELTAVC8,501,DKC8,5Ui ,DKCIB,501,TCSOi ,TRC501,VVEXC501,C01{50 
31,C02150),VLEC501,5{50),TTC50J 

DOUSLE PRECISION C,DL,S,TT,CONS,DV 

VARIABLES 
DELP VAPOR PRESSURE CALCULATED WITH UNMODIFIED CONSTANTS-

PRESSURE CALCULATED WITH CCKAl CHANGED ONE PER CENT 
PCTCIJ,IJ PER CENT OF PRESSURE/PER CENT CHANGE OF CEKAI 
CORR{J,J) TOTAL CORRECTION FACTOR FOR CCKAI 
COMPIJ,ll CORRECTION FACTOR FOR ONE TRIAL OF CIKAI 
DPDK{KB,IJ DERIVATIVE OF PRESSURE WITH RESPECT TO CCKBI 
DPDVIJ,11 DERIVATIVE OF PRESSURE WITH RESPECT TO DENSITY 
DELTAVCKB,ll OBSERVED- CALCULATED LIQUID DENSITY 
DKCCKB,II CORRECTION FACTOR FOR CCKBI 

FORMATC1Hl,21H RESULTS OF VARYING C,Il,6H AND C,11,42H ~y CORRECT! 
lNG THROUGH PRESSURE AND VOLUME//lOX,3HT,K,lOX,5HP,ATM,lOX,2HVL,lOX 
2,1HC,11,12X,IHC,II/I 

2 FORMATC7X,F8.3,6X,F7.3,6X,FB.5,1X,El5o8,1X,El5.8,5X,Fl2.4J 
WRITEC6,l}KA,K6,KA,KB 
J=KA 
C {KAI ! S CHANGED TO CALCULATE OBSERVED VAPOR PRESSURE 
CIJl=,99*CCJI 
CALL VPRESS(OC,PC,TC,R,N,NN,K,LET9(,T,DL,S,ZMAX,DV,TT,KA,KB,M,AA,8 

IA,AB,BBJ 
DO 50 I =1,N 
P {II =SC I I 
TRC I l=TTC 11 
DELP=PI 111-PC I) 

50 PCTCIJ,IJ=lOOo*DELP/P{!) 
CIJl=CIJJl.99 
I= 1 
M=l 
NN=NN+l 

8C CCJl=Cl.+CORR(J,1)/lOOol*(IJl 
CONS=CIJI 
CALL VPRESSCDC,PC9TC,R,N,NN,K,LET,C,T,DL,S,ZMAX,DV,TT,KA,K8,M,AA,B 

l.~ ,AB,BB I 
PC I I =SC l 1 
TRI I l=TTC I I 
VLC I 1=1,/DLI 11 
VV C 11 =Io I DV C I I 

1315 ERROR{ I l=IPEXI I I-Pl I l l*lOLlo/PEXII I 
1325 !F(A3SIERRORClll-·1011400,l400,l350 

,-, 
0 
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1350 (OMP!J,IJ=ERRORl!J/PCTCIJ,!J 
10 FORMAT!lOX,El5o6,El5o8J 

WRITEf6,10JPIIJiCIKAJ 
1300 C(JJ=CIJJ/llo+CORRIJ,IJ/100.J 

CORR!J,!J=CORR!J,IJ+COMP!J,!J 
GO.TO BO . 

90 CALL VPRESSIDC,PC,TC,R,N,NN,K,LET,C,T,DL,S,ZMAX,DV,TT,KA,Kd,M,AA,~ 
lA,AB,BBJ 
PIIJ=Slll 
TR I I I =TT I l J 
VLI l J=lo/DLI l J 
VVl!J=lo/OVl!J 
CORR!J,11=0 
CO~P!J,11=0 
ERROR(IJ=IPEXl!J-PIIJJ*lOU,/PEXl!J 
GO TO 1325 '. . 

l4CO CONHNUE 
200 !FIABS!IVLEXl!J-VLl!JJ/VLEXl!JJ-,OG5J350,350,250 

CIKBJ IS CHANGED TO CALCULATE oaSERVED LIOU1D DENSITY 
250 l FI KB,EOol J DPDK I K~, ! J =R*T I l l*DLI I 1**2 

IFIK6,EOo2JDPDKIK8,!J=-DLIIJ**2 
IF I KB,EQo3 JDPDK I Kl:i, I J =-DLI l 1**2/T I l 1**2 
!FIKB.EQ,4JDPDKIK8,IJ=R*Tlll*DLl!J**3 
!FIKB,EOo5JDPDKIKB,IJ=-DLIIJ**3+C!6J*DLl!J**6 
IFIKB.EQ.6JDPDKIKB,l J=Cl51*DLI I >**6 
IFIKB.EQ,7JDPDKIKB,IJ=IDLlll**3/T!Il**2l*llo+Cl8J*DLII>**21*DEXPl-

1C!81*DLIIJ**21 
IFIKB.EQ.BJDPDKIKS,IJ=-IClil*Cl8J*DLIIJ**7/TIIJ**2>*DEXPl~CliJ*DLI 

11 I **2 J . 
J=Kb 
DPDVIJ,ll=R*Tl!J+2,*IC!ll*R*TIIJ-Cl2J-Cl3J/ITII1**211*DLl!J+3.*ICI 

l4D*R*TIIJ-Cl511*DLIIJ**2+6o*Cl51*Cl6J*DLl!J**5+1Cl7J•IDLl!J**2J/(T 
21Il**211*13o+3,*Cl8J*DLl1J**2-2•*1Cl8J**2l*DLl11**41*DEXPI-Cl8J*DL 
l(lJ**21 

J=KA 
100 DELTAVIKB,IJ=VLEXIIJ-VLIIJ 
110 DK!KB,IJ=DPDKIKB,IJ/DPDVIKB,!J 

·-DKC IKB, I J = I l, /VLEX I I J-DLI I I J /DK! KB, I J 
255 CIKBJ=CIKBJ-DKCIK8,IJ 
27G CALL VPRESSIDC,PC,TC,R,N,NN,K,LET,C,T,DL,S,ZMAX,DV,TT,KA,KB,M,AA,B 

lA,AB,BBJ . . 
Pl l J=Sl I J 
TR!IJ=TTl!J 
VLIIJ=l•/DLiIJ 
VVI I J=l,/DVI I J 
ERVL=lo/VLEXIIJ-DLIIJ 
WR!TE16,l0JERVL,C!KBJ 
IF I ABS! IVLEX I I 1-VL I I l J /VLEX ( l l J-.001 I 300·,300,250 

300 IFIABS! IPEXI ll-P!I J J/PEXII I J-.00101350,350,1315 
350 WRITE16,2JT!Il,PIIJ,VLIIJ,CONS,CIKBJ,VVIIJ 

COlllJ=CIKAJ 
C021ll=CIKBJ 
NN=NN+l 
I=!+l 
M=M+l 
IF!I-NJS0,80,400 

400 NN=O 
CALL OEVJAT(KA,Ko,N,PEX,P,TR,T,VLE•DL,VVEX,DV,VLEX} 
RETUR~ 
END 
SUBROUTINE CURVEIN,T,COl,C02,AA,cA,AB,BBJ 
DIMENSION Tl50>,CO!l50J,C02150J,X!50l,Yl50J 
DOUBLE PRECISION C,DL 

J 

c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

c 

c 

VARIABLES 
XI I J 
coll,> 
G021 l I 

!/TEMP 
C<KAJ AT °Tl I J 
CIKBJ AT Tl I I 

CONSTANTS ARE REPRESENTED BY CIJf•A+B/T 
DO JOO l=l,N 
XIIJ=l,/TIIJ 

100 YII J=COll I J 
CALL CURVFTIX,Y,BETAO,BETAl,NJ 
AA=BETAO 
BA=tiETAl 
DO 200 I=l,N 

200 Y(IJ=C02(1J 
. CALL CURVFTIX,Y,BETAO,BETAl,NJ 

AB=BETAO 
BB=BETAl 
RETURN 
END 
SUBROUTINE CURVFTIX,Y,BETAO,BETAl,NJ 
DIMENSION XISOJ,YISOJ 
DOUBLE PRECISION C,DL 
THIS IS A SIMPLE LINEAR REGRESSION ONLY 
THIS PROGRAM DOES SIMPLE LINEAR REGRESSION USING THE DOOLITTLl METHOD 
Y IS THE DEPENDENT VARIAbLE . 

l FORMAT! JS.I 
2 FORMAT12El5,8J 
3 FORMATl5X,27HFOR AN EQUATION OF THE FORM/lOX,6HY=A+oX/5X,6HFIT TO, 

115,39H DATA POINTS, THE CONSTANTS A AND B ARE/1CX,3HA= ,El5.8/~0X, 
23HB= ,El5.8J 

SUMX=O. 
SUMY=O, 
SUMXSQ=O. 
SUMXY=O, 
DO 100 I=l,N 
SUMX=SUMX+XIIJ 
SUMY=SUMY+YIIJ 
SUMXSQ=SUMXSQ+X!Il**2 

lOv.SUMXY=SUMXY+XIIJ*Y(lj 
EL=N 
A=cSUMX/EL 
B=SUMY/EL 
CC=l,/EL 
EL IS THE LEADING ELEMENT 
D=SUMXSO-A*SUMX 
E=SUMXY-A*SUMY 
A IS THE PIVOT 
F=-A 
EL2=D 
G=E/D 
H=F/D 
0=1./D 
BETAl=G 
BETAO=B.,:BETAl*A 
WRITE16,3JN,BETAO,BETAJ 
RETURN 
END 

b 
0\ 
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COMPUTER PROGRA.M FOR BINARY MIXTURE VAPOR-LIQUID EQUILIBRIA CALCULATIONS 
·'y'"·/-:: ,, ~{.~:,J·· 

EOUILIBRIUM CALCULATIONS FOR BINARY MIXTURES USING B-W-R EQUATION 

SUBROUTINES 
COMPOS CALCULATES LIQUID AND VAPOR COMPOSITIONS FROM K. VALUES 
CONST CALCULATES BWR CONSTANTS FOR THE MIXTURE IN LIQUID 
AND VAPOR PHASES 
EQUIL CONTROLS EQUILIBRIUM CALCULATIONS 
DENS! CALCULATtS SATURATtD LIQUID AND VAPOR DENSITIES 

FUGAC CALCULATES LIQUID AND VAPOR FUGACITIEo 

VAR I ~.9LES 
NCP-NUMBER OF COMPONENTS 

N-NUMBER OF ISOTHERMS 
NCO-CONTROL INDEX ~ 

O BASIC BWR EQUATION WITH NO MODIFICATIONS TO CONSTANTS 
l TWO CONSTANTS OF COMPONENT l ARE TEMPERATURE DEPEN~ENT 
2 TWO CONSTANTS OF COMPONENT 2 ARE TEMPERATURE DEPENDENT 
3 TWO CONSTANTS OF bOTH COMPONENTS ARE TEMPERATURE DEPENDtNT 

NTO-CONTROL INDEX 
O BASIC BWR EQUATION WITH NO MODIFICATIONS TC MIXING RULES 
l INTERACTION COEFFICIENT 15 ADDED TO MIXTURE RULE.OF AO . 

ZMAX-JNITIAL GUESS FOR COMPRESSIBILITY FACTOR USED TO CALCULATE 
VAPOR DENSITY 

R-GAS CONSTANT L-ATM/G-MOLE K 
TC CRITICAL TEMPERATURE 
PC CRITICAL PRESSURE 
DC CRITICAL DENSITY 
C PURE COMPONENT CONST ANTS FOR BWR EQUA Tl ON 
JA,JB NUMBERS CORRESPONDING TO THE TWO CONSTANTS OF COMPONENT 

l THAT ~RE TEMP~RATURE DEPENDENT 
KA,KB NUMBERS CORRESPONDING TO THE TWO CONSTANTS OF COMPONENT 

2 THAT ARE TcMPcRATURE DEPENDcNT 
THE CONSTANTS ARE NUMBERED AS THEY APPEAR THE EQUATION 

TEMPERATURE.DEPENDENCE IS OF THE FORM C=A,6/T 
Cl INTERACTION COEFFICIENT FOR MODIFIED MIXTURE RULE 
T TEMPERATURE,K 
MO NUMBER OF MIXTURES AT TEMPERATURE T 
S EQUILIBRIUM RATIO 
PO OoSERVED PRESSURE 
KK CONTROL INDEX 
X LIQUID MOLE FRACTION 
Y VAPOR MOLE FRACTION 

CV CONSTANT FOR MIXTUR~ IN VAPOR PHASE 
CL CONSTANT FOR ~IXTURE IN LIQUID PHASE 
DL SATURATED LIQUID DENSITY 
DV SATURATED VAPOR DENSITY 

DIMENSIONS 
TEMPERATURES DEGREES KELVIN 

c 
c 

-,~··-, 

PRESSURE$ READ IN AS PSIA THEN CONVERTED TO ATM, FOR CALCULATIONS 
DENSITY$ GRAM-MOLES/LITtR 

DIMENSION TCl3*,PC)3*,DCJ3*,C)3,8*,XJ3,20*•YJ3,20*,CV)8*,CLJ8*•S)3 
l,20*,FY)3*,FX)3* 

COMMON NCO,JA,JB,AA,AB,eA,~8,KA,KB,CA,Cb,DA,D6,NTO,CI 
l FORMAT)415,5Fl0,3* 
2 FORMAT)8Fl0,3* 
3 FORMATJ5El5.8* 
4 FORMAT!Fl0.3,15* 
5 FORMATJ5X,F8e2,3X,F6.4,2X,F6,4,3X,F8,3,4X,F6,4,2X,F6,4,3X,FB,3,3X, 

1FB,4,2X,F8,4* 
6 FORMAT)lHl,5X,9HPRESSURE,,7X,l2HLIQUID PHASE,lSX,llHVAPOR PHASE,15 

lXTllHEQUILl~RIUM/7X,4HAT~.,7X,13HMOLE FRACTtON,3X,7HDENSITY,6X,13H 
2MOLE FRACTION,3X,7HOtNSITY,10X,5HRATI0/24X,2A4,2X,8HGM-MDLE/,llX,2 
3A4,2X,8HGM-MOLE/,l2X,2A4,/loX,2A4,lX,2A4,3X,5HLITER,4X,2A4,lX,2A4, 
44X,5hLITER,4X,2A4,lX,2A4/* 

7 FORMAT)5X,8El5,8* 
B FORMAT)6A4* 
9 FORMAT>38X,2HT=,F7,2,2H K/* 

11 FORMAT)215,4El5,8* 
READ>51~3•CJ 

13 FORMAT)Fl0,4* 
~EAD>5,8*C01,C02,C03,C04,C05,C06 
READIS,l*NCP,N,NCC,NTO,ZMAX,R 
WRITE)6,l*NCO,NTO 
READ>5,2*>TC>J*,J=l,NCP* 
READ>5,2*>PClJ*,J=l,NCP* 
READl5,2*lDCIJ*,J=l,NCP* 

C NCP=NUM8ER OF COMPONENTS 
C R IS THE GAS CONSTANT L-ATM/G-MOLE K 
C ZMAX IS THE FIRST GUESS FOR VAPOR COMPRESSltilLITY FACTOR 
C TC IS CRITICAL TcMP 
C PC IS CRITICAL PRESSURE 
C DC IS CRITICAL DENSITY 
C DIMENSIONS ARE TEMP,DEGREESS KELVIN PRE~S,ATM DENSITY,G-MOLE/LITER 

REAOl5,3*l)ClJ,L*,Lel,B*,J=l,NCP* 
IF)NCO,EQ.O*GO T6 15 
JFINCO.E0.3*GO TO 14 
IFJNCO.~Qol*RCADJ5,ll*JA,J8,AA,A~,CA,80 
IF>NCQ.EOo2*READJ5,ll*KA,K5,CA,CO,UA,Db 
GO TO 15 

14 READ15,ll*JA,JB,AA,AB,BA,3~ 
READJS,ll*KA,KB,Ch,Cb,DA,00 

15 WRITE16,7*)J(lJ,L*,L=l,B*,J=l,NCP* 
C N IS THE NUMBER OF lSOTrlERMS 

r-...!0=".l 
N=l 
WRITE>6,6*C03,C04,C03,C04,C03,C04,COl,C02,C05,C06,COl,C02,C05,C06, 

1co1,co·2 ,cos ,CC6 
10 READ)5,4*T,MO 

WRITE)6,9*T 
C MG IS THE NUMBER OF MIXTURES AT THIS ISOTHERM 

i--' 
0 
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'1= l 
ZU READJ5,2*lSlJ,M*,J=l,NCP* 

REA.D l 5 ,2*PO 
PO=P0/14.696 
KK=C 

25 CALL COMPOS)S,X,Y,M* 
30 CALL CONSTlX,Y,C,NCP,S,CV,CL,M,T,TC* 

SIS THE FIRST K-VALUt GUESS 
C CV AND CL ARE CONSTANTS FOR THE MIXTURE IN VAPOR AND LIQUID PHASES 

PO IS THE OBSERVED VAPOR PRESSURE 
CALL EQUILJPC,TC,DC,X,Y,CV,CL,NCP,T,R,ZMAX,C,PO,FY,FX,KC,S,M,KK,DL 

l,DV* 
IFlKC.EQ.l*GO TO 25 

50 WRITE16,5*Pb,X)l,M*,Xl2,M*,DL,Yll,M*,Y)2,M*,DV,Sll,M*,Sl2,M* 
M=M.l 
IFJM.LEoMO*GO TO 20 
N=N•l 
IFJN.LE.NO*GO TO 10 
CALL EXIT 
END 
SUBROUTINE COMPOSJS,X,Y,M* 
DIMENSION Sl3,20*,Xl3,20*,YJ3,20* 
COMMON NCO,JA,JB,AA,AB,6A,ti8,KA,KB,CA,CB,DA,DB,NTO,CI 
XEl,M*=lS)2,M*-l•*/lS)2,M*-Sll,M** -
Xl2,M*=l.-XJ1,M* 
DO 10 J=l,2 

10 YIJ,M*=XIJ,M**SJJ,M* 
RETURN 
END 
SUBROUTINE CONSTJX,Y,C,NCP,5,CV,CL,M,T,TC* 
DIMENSION XJ3,20*,Yl3,20*,Cl3,8*,Sl3,20*,CLl8*,CVJ8*,TC}3* 
COMMON NCO,JA,JB,AA,AB,BA,~B,KA,KB,CA~C~,DA,DB,NTO,CI 
IFJNCO.EQ.O*GO TO 5 
JFJNCO.cQ.l*GO TO 3 
IFJNCO.EQ.2*GO TO 4 
IFlT.GT.TCJl**GO TO 
CI l ,JA*=AA.AB/T 
CI l ,JB•=bA.BB/T 
IFJT.GT.TCJ2**GO TO 5 
(12,KA*=(A.CB/T 
C I 2 ,KS•=DA. DB IT 
GO TO 5 
IFJT.GT.TC)l**GO TO 5 
()l,JA*=AA.AB/T 
Cl l ,Jt:l*•bA.66/T 
GO TO 5 

4 IFJT.GT.TCJ2**GO TO 5 
CJ2,KA*•CA.Cl:3/T 
()2,KB*=DA.DB/T 
DO 10 L=l,8 
CLJL•=O. 

10 CVIL*=O• 
DO 50 J=l,NCP 
CLJl*=CLll*·XlJ,M**C)J,l* 
CVll*=CVll*.YlJ,M•*C)J,1* 
DO 30 L=2,3 
CLIL*=CLlL*,XlJ,M**ClJ,L***•5 

3U CVll*=CV)L*,YlJ,M**(JJ,L***•5 
DO 40 L::4,7 
CLlL*=CL)L*,XlJfM**CJJ,L***ll~/3,* 

40 CVJL*=CVlL*oY)J,M**ClJ,L***ll.13~* 
CLlB*=CLl8*•XlJ,M**CJJ,8***o5 

5C CV)S*=CVJB*·YlJ,M**CJJ,S***oS 

DO 6C L=2,3 
CLlL*::(LlL***2 

60 CVIL*=CVIL***2 
DO 70 L:;::4,7 
CLlL*=CllL***3 

70 CVlL*=CV)L***3 
CLIB•=CLl8***2 

80 CVlS*=CVl8***2 
IFINTO.EQ.O*GO TO 90 
CLl2*=Xll,M***2*Cllt2*.Xl2,M***2*Cl2,2*•2•*Xll,M**Xl2,M**SORT)CJl, 

12**(12,2***(1 
CV)2*=Y)l,~***2*Cll,2*.Yl2,M***2*Cl2,2*•2•*Yll,M**Yl2,M**SQRTJCJ1, 

12**()2,2***(1 
90 CONT!~UE 

RETURN 
END 
SUciROUTINC EQUILJPC,TC,DC,X,Y,CV,CL,NCP,T,R,ZMAX,C,PO,FY,FX,KC,S,M 

l,KK,DL,lJV* 
DIMENSION PCl3*,TCl3*,DCJ3*,XJ3,20*,Yl3,20*,CVl8*,CLl.8*,Cl3,8*,FXl 

13*,fYl3*,SJ3,20* 
COMMON NCO,JA,JB,AA,AB,bA,Bb,KA,KB,CA,Cb,DA,DB,NTO,CI 
KK=KKol 
KC=O 
IFJKK.GT.l*D=DL 
IFJKK.GTol*GO TO 20 
PCR=O. 
TCR=O. 
DCR=O. 
DO 10 J=l,NCP 
PCR=PCR.XJJ,M**PCJJ* 
TCR=T(R.XJJ,M**TCIJ* 

10 DCR=DCR.XlJ,M**DClJ* 
C PSEUDOCRITICAL CONSTANTS USED TO ESTIMATE LIQUID DENSITY 

TR=T /TCR 
15 D6DCR*)l.,lo75*JA6S)l.-TR****lle/3•*••75*11~-TR** 
17 DD=D 
20 CALL DENSI )PO,D,T,R,CL,1.1,PL* 

DL=D 
IFIKK.GT.l•D=DV 
IFIKK.GT.l*GO TO 30 
Z=ZMAX 
D=PO/IZ*R*T* 

30 CALL DENSI )PO,D,T,R,CVu99,PV* 
DV=D 
IFlABS)OL-DV*-01*35,35,40 

35 KK=l 
D=l•2*DD 
GO TO 17 

4C DO 50 J=l,NCP 
CALL FUGAC)DLiR,T,CL,C,J,FOX,M,X* 

C FUGAC CALCULATES F/X 
CALL FUGACJDV,R,T,CV,C~J,FOY,M,Y* 
FX)J*::X)J,M**FOX 
FY)J*::Y)J,M**FOY 

5G IFIABSIFXlJ*-FYlJ**-•0020.GT.O&*KC=l 
IFJKC.EO,O*GO TO 80 
DO 60 J=l,NCP 

60 SJJ,M*=)FX)J*/X)J,M**/)FY)J*/Y)J,M** 
BC RETURN 

END 
SUBROUTINE DENSIJPO,D,T,R,C,A,P* 
DIMENSION (JS• 
COMMON NCO,JA,J8,AA.A6,BA,ci8,KA,KB,CA,CB,DA,D8,NTO,CI 

I-' 
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IL P6R*T*D•lC!l**R*T-C)2*-CJ3*/T**2**D**2•lCJ4**R*T-Cl~**~)**~·Cl5**C 
ll6**D**6.J(l7**D*«3/T**2**ll••Cl8**D**2*~EXDJ-()S**)**2* 

IFJAciS) )PO-P*/PO*-.OU1*50,50,20 
NEWTO~ RADHSCN ITERATION rs USED TC CONVERGE QI~~ l_iUUl) DE~~J1Y 

20 FD=P-FO 
FPD=R*T.2.*lCll**R*T-C)2*-Cl3*/T**2**D·3·*lCl4**R~T-C)5***D**2•6•* 

1CE5**Cl6**D**5.JC)7**D**2/T**2**)3 •• 3.*Cl8**D**2-2.*Cl8***2*D**4** 
2EXPJ-Cl8**D**2* 

FPO IS THE DERIVATIVE OF BWR EON WITH RFSPECT 1·c D~NS]T\ 
IFlFPD*30,30,40 

30 D=A*D 
GO TO 10 

40 D=D-FD/fPD 
GO TO !O 

SL RETURN 
END 
SUBROUTINE FUGAClD,R,T,CL,C,J,FOX,M,X* 
DIMENSION CLl8•·Cl3,8*•Xl3,20• 
COMMON NCQ.JA,JB,AA,AB,BA,BB,KA,KB,CA,CB,DA,D8•NTO,CI 
IFJNTO.EO.O*GO TO 10 
JFJJ.EQ•l*BB=IJCLll*·ClJ,l***R*T-2.*lXJJ,M**CJJ,2*.Xl2,M**SORTJClJ 

1,2**CJ2,2***CI*-2•*lCLJ3**ClJ,3****•5/T**2**D 
IFlJ.EQ.2*6B=l JCLll*.ClJ,l***R*T-2•*lX)J,M**CJJ,2*.Xll,M**SQRTJCJJ 

l,2**Cll,2***CI*-2·*1CLJ3**ClJ,3****•5/T**2**D 
GO TO 20 

l~ bb=JlCLll*.C)J,l***R*T-2.*)CL)2**CJJ,2****·5-2•*lCLJ3**CJJ,S****·5 
l/T**2**U 

20 CC=l.5*l)CLJ4***2*CJJ,4****ll.t3.**R*T-JCLJ5***2*CJJ,5****ll.13.** 
l *'.:i**2 

DD=·6*JCll5**JCLl6***2*C)J•6****llo/3•*•CLJ6**lCLJ5***2*CJJt5****J 
11.13.***D**S 

EE=l3.*D**2/T**2**JCL)7***2*CJJ,7****ll./3.**) )1.- EXP)-Cll8**D**2 
l**/ICL)8**0**2*- .5*EXPJ-Cll8**D**2** 
FF=-J2.*CL)7**D**2/T**2**JClJ,8*/CL)8****•5*) )1.- EXP)-CL)8**D**2* 

l*l)Cll8**D**2*- EXPJ-Cll8**D**2*- ·5*Cll8**D**2*EXP)-CLJB**D**2** 
FOX=R*D*T*EXP) )86.cc.oo.EE.FF*/)P.*T** 
RETURN 
END 

i"~-' 
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APPENDIX F 

NOMENCLATURE 

a - BWR equation parameter 

A = constant in linear function of BWR parameter 

A0 = BWR equation parameter 

A ~ residual work content 

b - BWR equation parameter 

B = constant in linear function of BWR parameter 

B0 :.: BWR equation parameter 

B(T) :2 second virial coefficient 

c ~ BWR equation parameter 

C0 ~ BWR equation parameter 

c(T) ~ third virial coefficient 

f ::;: fugacity 

ki ~ general BWR parameter 

Ki - phase equilibrium ratio of component i 

ni - moles of component i 

N :: total number of moles 

P : pressure, atm. 

Pc : critical pressure 

R = universal gas constant 

T - absolute temperature 

Tc = critical temperature 
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Tr ::: reduced temperature 

v ::::: volume, liters/gm~mole 

Ve :::: critical volume 

vL :;: saturated liquid volume 

vv - saturated vapor volume 

xi :;: liquid mole fraction of component i 

Yi :::: vapor mole fraction of component i 

z - compressibility factor -
Greek S:ymbols 

°'- :: BWR equation parameter 

o ~ B"ti\lR equation parameter 

e ~ molar density, gm~mole/liter 

c :: critical density 

L :: saturated. liquid density 

v : saturated vapor density 

8 - empirical interaction coefficient in modified mixing rule of A0 

Abbreviations 

atm ~ atmospheres 

ITWR &'I Benedict=Web: .. b-Rubin 

calc :: calculated value 

exp - experimental values 

gm-mole= gram molecular weight 

obs = observed value 

psia = pounds per square inch absolute 
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