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CHAPTER I 

INTRODUCTION 

Stannic oxide has been the object of research since the early 

1900's, but as yet a thorough understanding of its electrical and opti-

cal properties does not exist. Studies have been made of several forms 

of stannic oxide, including single crystals, ceramics, thin films, 

pressed powders, a~d natural crystals. A recent extensive bibliography 

1 of the research done on this metal oxide is given.by Peterson. Pure 

stannic.oxide in thermodynamic equilibrium at room temperature is an 

electrical insulator. However, a study of its electrical properties 

shows that it can exhibit some.properties of.a semiconductor. It is, in 

fact, these semiconducting properties and their implications which have 

engaged the attention of a group at Oklahoma State University. The work 

reported here is part of a continuing study being carried out by that 

group. 

Since World War II a series of experimental methods under the gen-

eral heading of "photoelectronic analyses" has been applied to semicon-

ductors to identify significant parameters. Two pertinent·studies which 

are carried out on photoconducting semicondu~tors involve the thermal 

release of electrons trapped in defect states in the forbidden energy 

gap. These.are the thermally stimulated currents method (TSC) and the 

thermally stimulated luminescence method (TSL), both of which have been 

used in this laboratoryo The TSC method in particular has been effec-

1 



tively used to determine electron trapping parameters. A recent paper 

on cadmium sulfo-selenide by Bube 2 indicates that in addition to trap 

energies, such things as capture cross sections, trap densities and the 

Fermi level can be determined if certain models are accepted. Trap 

3 depths have also been. investigated in cadmium sulfide by Kulp using a 

range of wavelengths in the TSC measurements. The general validity of 

2 

the initial rise method of TSC analysis applied in the present study has 

been questioned by some authors and several recent papers 4 ' 5 ' 6 ' 7 have 

appeared comparing various methods of analyzing TSC curves. 

8 9 10 Locally, Houston' and Matthews have used the TSC method to in-

vestigate the defect states in single-crystal and zinc-doped polycrys-

0 0 
talline stannic oxide respectively, between -160 C and +100 C and each 

provides an extensive bibliography of studies employing this method. 

11 Eagleton has recently completed work on thermally stimulated lumines-

cen.ce of several forms of stannic oxide and has attempted to correlate 

his results with TSC data. A bibliography of past TSL studies is given 

in his reporto 

The work reported here was an extended investigation of the defect 

states of 0.7% zinc-doped stannic oxide from -180°C to 0°C. The methods 

of thermally stimulated currents and two modifications of this method, 

to be described later, were used, It was hoped that quantitative values 

of the activation energies and the physical location, whether near the 

surface or in the bulk, of defects in stannic oxide could be determined. 

A further concern was the temperature at the TSC peaks. An attempt was 

also made to correlate these findings with the TSL results of Eagleton. 

Chapter II presents the necessary theoretical background and the 

experimental apparatus is described in Chapter III. The experimental 



results are given in Chapter IV and the conclusions are presented in 

Chapter V, 
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CHAPTER II 

THEORETICAL BACKGROUND AND· EXPERIMENTAL TECHNIQUES 

A simple picture of the possible .energy states of a solid comes 

from a quantum mechanical analysis of the behavior of an electron in the 

field of a periodic lattice. From this comes the idea that the energy 

states in.pure semiconductors and insulators fall into a series of quasi-

continuous bands. Of main importance to the electrical conduction proc-

esses are two of these, one(valence band)filled with electrons and the 

other (conduction band) empty at absolute zero. These are separated by a 

"forbidden" energy gap which for a perfect crystal has no electronic 

states. 

A convenient way to visualize these two main bands is the flat-band 

picture shown in Figure L For purposes of illustration, it is assumed 

there exist in the forbidden gap Nd donor states per unit volume with an 

activation energy Ed and an occupation density of electrons nd' plus Na 

acceptor states per unit volume with an occupation density of electrons 

na. It is assumed that Nd;:., Na and that those electrons contributing to 

the conduction process come from the donor levels. Such donor levels 

can act as traps or recombination centers depending on the occupancy of 

the conduction band by electrons, their capture cross section S and the 
n 

average electron velocity \{: A complete discussion differentiating 

traps and recombination centers for non-equilibrium processes such as 

4 
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are of prime interest in the work reported here is provided by Bube(l2). 

The following analysis will emphasize the kinetics of trapping and re-

combination for the purpose of deriving basic expressions of a type 

which can be used in the consideration of experimental data and the 

identification of important parameters. Electrons can be thermally ex-

n 
a 

p 

N 
a 

= 0 

Figure 1, Simple Band Model of an n-Type Semiconductor 

cited out of traps at a rate given by 

(1) 

where vis the attempt-to-escape frequency. As can be shown(lZ), there 

exists a relation, independent of the model chosen, which involves,), S 
n 

and V: 

where Ne = 2 r:tj ~ 
N S V = 'J 

c n 
(2) 

and M is the effective mass for electrons. 
e 

In the present work, the method of thermally stimulated currents 
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(TSC) is used, This involves the photo-excitation of electrons from the 

valence band to the conduction band at a low temperature, followed by a 

decay time during which the light is turned off and the electrons are 

allowed to recombine with holes or become trapped in energy states in 

the band gap, This establishes a non-equilibrium density of electrons 

in these traps which is then relieved by raising the temperature, The 

density of conduction electrons, as indicated by the sample current, in-

creases and passes through a maximum under the influence of the compet-

ing processes of detrapping and recombination during this temperature 

rise. The rate of thermal excitation is assumed to follow the equation: 

or using equation (2), 

dn 
t 

dt 

nt \1 exp (-E/KT) (3) 

where nt is the density of trapped electrons and Et is their activation 

energy measured from the bottom of the conduction band. Taking into ac-

count the recombination process, the differential equation for the 

change in the density of conduction electrons (n) with time is expressed 

in terms of equation (3) and their average lifetime (recombination para-

meter) c, giving 

dn 

dt 

dnt 

dt 
- D./'t (4) 

This equation neglects the retrapping which could occur during time 'f • 

It is generally assumed that dn 
dt 

is much smaller than the other rates 
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for rates of temperature rise normally used. Therefore, equation (4) 

becomes 

~ I n t .. (5) 

The activation energy Et can be determined in a number of ways( 6), 

The most widely used approach is that of Garlick and Gibson(l3) using 

the fact that the TSC rises exponentially on the low temperature ap-

proach to its peak. 

T(t) = T + bt 
0 

If a linear 

dnt and = 
dt 

Using equation (3 1) this becomes: 

heating rate (b) is used then 

b dnt so equation (5) becomes 
dT 

n(T) 

-
n(T) ~b T nt (T) Nc Sn V exp (-E/KT). 

As long as the coefficient b T n (T) N S V varies slowly with tem
t c n 

perature, a plot of log n(T) versµs 1/T has a slope equal to (-Et/K). 

In practice either the conductivity ( o) or the sample current (i) is 

known where: 

(J = neµ = 
il 
VB 

(6) 

(7) 

(8) 

where e is the charge of an electron, µ is the free electron mobility, 

Vis the applied voltage and 1 and Bare the length and cross-se~tional 

area of the sample. Therefore, a plot of log(i) versus 1/T will have a 

slope essentially equal to (-Et/K) if the mobility remains constant or 

varies slowly with temperature. 

This analysis can be applied to individual trapping levels when 
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several are present if these levels·are widely-spaced in energy. When 

two or more levels are close in energy, however, overlapping peaks can 

occur. Special experimental techniques (DTSC) asdescribed below can 

be used to provide data in a form such that the "initial rise" analysis. 

can still be used. 

Experimental Techniques 

The data in this study resulted from the application of three ex

perimental techniques: (1) Thermally stimulated currents (TSC); (2) Ex

citation while cooling-thermally stimulated currents (EWC-TSC), and (3) 

Decayed thermally stimulated currents (DTSC). 

The thermally stimulated current measurement consisted·of several 

minutes of sample irradiation with ultraviolet light near liquid nitro

gen temperature, followed, after the photoconductivity was allowed to 

decay, by a constant rate of temperature rise. A Sargent strip chart 

recorder was used to·monitor the temperature which was maintained within 

5% of linearity by reostatically varying the heater current, Simultan

eously, on a second Sargent strip chart recorder, the sample current was 

monitored. Following the TSC run the sample was heated to about l00°c 

and allowed to come to thermal equilibrium to essentially free all trap

ped electrons from higher-lying donor levels. Thereupon the sample was 

recooled and a runwas made without illumination to obtain the dark cur

rent versus temperature. The final analysis of the TSC data·involved 

the subtraction of the dark current from the current obtained in the 

TSC run to get the true thermally stimulated current. 

The excitation while cooling-thermally stimulated currents·tech

nique is nearly self-'explanatory. The procedure was the same as in a 
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TSC run except excitation was initiated during the cooling process. The 

sample was thereby irradiated for about thirty minutes prior to a run 

and the sample currents were increased accordingly. 

The decayed thermally stimulated current technique involved ther

mally decaying out those peaks below the desired peak by raising the 

temperature, after illumination 9 to a value about 10°C below this peak. 

After allowing time for all lower energy traps to empty, the sample was 

recooled and a normal TSC run made, The Garlick and Gibson method was 

then used to calculate the energy. This method circumvents the problem 

of overlapping peaks. 



CHAPTER III 

APPARATUS 

The appafatus consisted of four main parts: The gas handling sys-

tem, the cryostat-sample holder, the illumination system, and the elec-

tircal measurements and heater system. A block diagram of the gas 

handling system is shown in Figure 2. This system allowed evacuation 

of the cryostat to about 10 microns pressure and provided a means of 

letting dry ambient gas into the sample chamber. One drying trap and 

one silica gel drying tube were used to insure extraction of water from 

the entering gas. The two-way glass valve allowed the cryostat and sam-

· ple holder to be evacuated by the fore pump or to be filled with a dry 

ambient. After either of these actions, the valve could be rotated a 

quarter of a turn to leave the cryostat and sample holder completely 

isolated from the fore pump and gas inlet section. During the sample 

0 fixing process (heating at 100 C), the pressure was monitored by the 

thermocouple gage (T.G, in Figure 2) and the Veeco Vacuum Gage meter. 

The cryostat-sample holder, made following suggestions by Matthews 

(10) i , s shown in Figure 3. The two main parts were (1) the brass vac-

uum chamber with a quartz optical port and a gas port, and (2) a stain-

less steel dewar with a sample and heater chamber and a guard tube. 
\ 

These two parts were joined using an 11 011 ring and C-clamps. All joints of 

·the vacuum chamber were soldered and the quartz window was sealed in 

the optical port with Apiezon W vacuum wax. A thermocouple gage was 

10 
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mounced in the side of this chamber to monitor·the pressure. 

The stainless steel dewar was designed to cool the sample chamber 

as well as to allow for the illumination of the sample wi.th light. 

Liquid nitrogen was introduced into the reservoir and with the aid of a 

copper base plate (shown in Figure 5) mounted on the bottom of the dewar, 

heat could be conducted away from the sample. A second thermal path was 

provided by introducing a gas such as helium, nitrogen, or air into the 

cryostat. Two ports from the sample and heater chamber to the outer 

walls of the liquid nitrogen reservoir allowed for the evacuation of 

this chamber and provided a path for light from an external source to 

fall on the sample. The stainless steel guard tube extended 24 inches 

above the sample and heater chamber to allow the "hot" lead to be brought 

out of the dewar at a position which was thermally and electrically is

olated. An additional brass shield was mounted with screws to a brass 

cap atop the stainless steel guard tube. A quartz capillary rod was 

vacuum-sealed with epoxy into a hole in the brass cap and further sup

ported at the bottom of the guard tube by a teflon sleeve. This quartz 

capillary provided an insulated path for the "hot" lead which was brought 

out at the BNC shielded connector, All joints of the stainless steel 

dewar were .welded to reduce the chance of the joints cracking during 

the thermal cycling of the system. Four feedthroughs were placed in 

the side of the dewar to allow the heater and thermocouple leads to be 

brought to the outside. These feedthroughs were positioned as far from 

the liquid nitrogen chamber as possi,ble to reduce the temperaturegra

dient in their vicinity. 

The circuit for the electrical measurements and heater system is 

shown in Figure 4. Two thermocouple connectors, Type #040433, made by 
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Leeds and Northrup and Type #22708(9)-3, made by the Thermo-Electric 

Co., were provided for convenience in demounting the sample holder. The 

heater current was monitored with an ammeter placed between the 25 Q and 

500 S1 potentiometers. Using a 30 volt D.C. source, the power dissipated 

in the heater could be varied from 0-30 watts. A 90 volt floating bat

tery was used to produce a current through the sample using the copper 

side of the thermocouple as ground~ The thermocouple output voltage 

was monitored on a Sargent Model SR strip chart recorder. The positive 

side of the floating 90 volt battery was connected to the input of the 

Keithley 610B electrometer to monitor the sample current. The electro

meter output was fed to a second Sargent Model SR strip chart recorder. 

The sample holder shown in Figure 5 provided a means of constantly 

changing the sample temperature and monitoring this temperature change~ 

The sample holder was made of copper tubing which during construction 

was heated to allow the insertion of the heater wound on a copper spool. 

The heater wire was asbestos-covered number 28 gage nichrome wire and 

was grounded to the copper tubing. The "hot" lead to the heater was 

attached to a vacuum feedthrough to eliminate outgassing effects. The 

sample was isolated from the copper tubing with a teflon insert and a 

glass tube was used to support the thermocouple at the lower end of the 

sample. The copper-constantan thermocouple was run through the glass 

tubing and a tinned copper cap was soldered to the junction at the base 

of the sample. A bead of epoxy provided a stop for the spring-loaded 

glass tubing. Various sizes of samples could thus be accommodated in 

the sample holder. The upper sample contact was a fixed platinum disc 

with a fine platinum wire passing through a hole in the teflon insert. 

The male portion of a miniature connector was attached to this platinum 
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wire and the female part·was ·attached to the "hot11 lead·wire ·emerging 

from the quartz capillary described earlier. The copper base plate, to 

which the sample holder was attached with screws, was screwed to the 

base of the stainless steel dewar to provide a good therma,1 path to the 

sample. 

The illumination system·consist~d of a Hg-light source shielded 

from the eyes by a cylindrical.container equipped with an optical port. 

The optical.port could be mounted with·screws to-the similar port.on the 

outer wall of the cryostat. No lens system was used to concentrate the 

light since sufficient.intensity was obtained by shining the light di-

rectly on the sample. Two filters made by Baird-Atomic, Inc., were 
0 0 

used to provide the two wavelengths, 3131 A and 2536 A,-used·inthis in-

vestigation. 

Samples 

The- samples studied were rectangular specimens of -o~.:7% · z·inc-doped 

polycrystalline stannic oxide cut f.rom sintered pellets. These pellets 

were prepared using reagent-grade stannic oxide powder plus 0.7% zinc 

oxide powder by weight. Specimen pellets were pressed and fired at 

o (14) 
1460 C for 4 hours as described by Matthews • Samples a few milli-

meters on a side were.cut from the center of these pellets and cleaned 

using the method described by Rozeboom(lS). · Silver paint* was applied 

to the ends of all samples to provide good electrical contacts. These 

contacts have previously been shown(lO) to be ohmic in the range Oto+ 

100 volts. 

* Dupont Silver Preparation, electronic grade #4817. 



CHAPTER IV 

RESULTS ·' 

The discussion of results will be given in two main parts. First 

the results of the TSC and EWC-TSC will be givenand second, the DTSC 

data will be examined, Prior to each data run, the samples were treated 

by heating them in a vacuum of 10 microns .or in air at one atmosphere 

pressure for a number of hours at about l00°c. Such treatments are;re-

ferred to as "fixes". Significant differences were observed in the data 

from samples fixed for more than 100 hrs when compared with data from 

samples fixed for less than 100 hrs. For brevity, the former fixing 

process will be called Fix-A and the latter will be called Fix-B. 

A recurring shape was observed in the 0,7% zinc-doped stannic oxide 

TSC curves for those Fix-B samples heated in a vacuum. When light.of 

0 
A = 3131A was used for excitation, two low temperature peaks as shown 

in Figure 6 were always observed; however, a third peak appeared in some 

of the data as shown in Figure,7. These three peaks will henceforth be 

called peak (1), peak (2) and peak (3) respectively,. starting with the 

peak nearest liquid nitrogen temperature. As noted in Figures 6 and 7, 

peak (1) is greater than peak (2) with peak (2) occurring as.a shoulder 

on the high temperature side of peak (1). 

Results similar to those in the las·t paragraph were observed when 

the Fix-B samples were heated in air using excitation 71. = 0 
3131A as shown 

in Figure 8. Here only peak (1) and peak (2) appear, with peak (2) 

18 
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being enhanced relative to peak (1) as compared to samples fixed in a 
cl 

vacuum using, the sam~ wavelength (Figure 6 and 7). It should be noted 

that peak (l) is still greater than peak (2) in this case. 

'.the TSC curves. of F:i,.x,-B samples heated in .a vacuurri us.ipg excitatimi 
0 

A = 2536A ,!exhibited three peaks as shown in Figure .9. As can be seen, 

peak (2) is greater than peak (1) with peak.(1) appearing as a shoulder 

on the low temperature; side of peak (2). The results bf heatini .in air 

are shown in Figure 10, where again peak (2) is great~r than peak (1). 

Here it was found that peak (1) wa.s enhanced relative to peak (2) as 

compared with Fix-B samples heated in a vacuum using the same wavelength 

(Figure 9). 

Fix-A samples, heated in a vacuum, produced TSC c,urves which dif
o 

fered slightly from those of the Fix-B samples. When >.. - 3131A was 

used, as noted in Figures 11 and 12, itwo or three peaks existed but peak 

(2) was greater than peak (1). Using A = 
0· 

2536A, it was noted that peak 

(1) was enhanced relative to peak (2) when compared with Fix-B samples ' 

(Figure 9) although peak , (2) still remained greater 'than peak (1). This 

is shown in- Figure 13. No samples were heat~d in air for more than 100 

' ' hrs, so no data exists. for comparii=;~n with Fix-A samples heated in a 

vacuum. 

The EWC-TSC curves exhihited the same general shape as the normal 

TSC curves. The prominent difference'was that the saniple current was 

increased above that of the normal TSC run due to the longer excitation 

time. Fix-B samples heated in a vacuum produced three peaks. Afte~ ex
o 

citation with A= 3131.A, peak (1) was greater than peak (2) with peak 

(2) appearing as a shoulder on the high temperature side of peak (1) as 
0 

shown in Figures 14 and 15. Using A.= 2536A, three peaks again appeared 
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with peak (2) being greater than peak (1) as shown in Figure 16. These 

results are therefore in general agreement with those of the correspond-

ing TSC data. 

Fix~A samples heated in a vacuum produced three peaks. Figure 17 

illustrates that, in comparison with Fix-B samples (Figure 14), a change 

0 
in the relative height of peak (1) and peak. (2) occurred when J... = ... 3131A. 

was used • 
. -~~-: 

Here peak (.2) was higher tha~: peak (1) .. ·•Figure 18 shows the 
,: 

·~',. . 
results when J.. = 

0 
2536A was used. In this. instanc~:, · peak (1) was en-. 

hanced relative to peak (2) as· compared with Fix-B.·'saµiples >(Figure 16), 

but peak (2) was still greater than peak (1). 

Some general observations can be made about all the TSC and EWC-TSC 

data. The peak temperatures for the salient peaks were variable, but 

0 . 0 were found to lie within the ranges of -159 to -145 C for peak (1), 

0 0 0 0 · -96 to -82 C for peak (2) and -27 to -7 C for peak (3), It should be 
0 

noted that when A= 2536A was used for excitation, peak (2) was always 
0 

greater than peak (1), whereas when ?1 = 3131A was used, peak (1) was 

found to be above or below peak (2) depending upon the fixing process. 

The DTSC data for peak (1) and peak (2) will now be examined. All 

determinations of trap activation energies were made using DTSC data. 

As can be seen from the TSC figures, there was appreciable peak overlap 

which required thermally decaying away contributions from lower tempera-
. . 

ture.peaks in order to effectively apply the initial rise cal~ulation 

method. The DTSC method was not applied to peak (3) since preliminary 

work indicated that a linear plot of log i versus 1/T could not be ob-

tained, presumably because the peak's low current magnitude did not allow 

sufficient sensitivity for calculation. The data to be discussed first 

were from Fix-B samples heated either in a vacuum or air. 
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The DTSC data for peak (1) consistently gave a linear plot of log i 

versus:1/T as shown in Figure 19. The activation energy of peak (1) as 

found from the slope of such lines ranged from 0.09 ev to 0.12 ev. This 

spread in the value of the activation energy was primarily a result of 

decaying to different temperatures prior to the TSC run. A spread in 

the value of the activation energy was also observed for peak (2) and it 

was found that for both peaks the activation energies tended to increase 

as the decay temperature.increased. Plots of log i versus 1/T for peak 

(2) gave an unexpected result. A break in the curve was found in all 

the data producing two linear portions as shown in Figure 20. Two acti-

vation energies were therefore calculated for this peak. A listing of 

peak temperature, activation energies and decay temperatures for peak 

(1) and peak (2) is presented in Table lo It should be noted that the 

TABLE I 

FIX-B ACTIVATION ENERGIES (DTSC) AS A FUNCTION OF DECAY TEMPERATURE 

Temperature Energy Decay Temperature 
oc ev oc 

Peak (1) 

-144 0.09 -170 
-144 0.09 -165 
-134 0.09 -163 
-133 0.12 -158 (air) 
-111 0.12 -141 (air) 

Peak (2) 

-93 0.12, 0.09 -117 
-89 0.141, 0.105 -108 
-87 00144, 0.107 -102 
-86 0.195, 0.134 -105 (air) 

.-80 0.214, 0.158 - 89 (air) 
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apparent peak temperatures listed have been shifted by the decay process 

to higher values than the ranges set for peak (1) and peak (2) in the 

discussion of the TSC and EWC-TSC data. This is more noticeable for 

peak (1) since the placement of peak (2) was less certain due to over-

lap. 

The break temperature between the two linear portions of the log i 

. 0 0 
versus 1/T plot for peak (2) ranged from -150 to -131 C and was ob-

served to increase as the decay temperature increased. This is shown in 

Table II. 

TABLE II 

BREAK TEMPERATURES FOR PEAK (2) AS 

A FUNCTION OF DECAY TEMPERATURE 

Decay Temperature 
oc 

-117 
-106 
-105 
-102 
- 89 

Break Temperature 
oc 

-150 
-143 
..;143 
-141 
-131 

Very little DTSC data was taken on Fix-A samples heated in a vac-

uum, but preliminary runs produced activation energies of 0.104 ev for 

peak (1) and 0.101 ev and 0.124 ev for peak (2) as shown in Figures 21 

and 22 respectively. It should be noted that both these runs were made 
0 0 

using ). = 2536A. It was found that excitation with A =, 3131A failed 

to give data which provided straight lines from which activation energies 

could be calculated~ 
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CHAPTER V 

DISCUSSION .AND CONCLUSIO~S 

Stannic oxid,e has been shown to·be·an n-type s-emiconductor16 and 

the effect of doping it wi'th zinc oxide is to stabilize 'its properties 

and increase the sample density.· A flat band picture is assumed to 

apply to this oxide with trapping"states whose activation· energies lie 

in the band gap. Such trapping-·state·s are.assumed to ·be caused by de-

fects either near the surface or in the ·bulk of· the sample.. To investi-

o O 
gate these trapping states, two excitation wavelengths (2536A 0 and 3131A) 

10 0 
have been used. As noted by Matthews , radiation of wavelength A=3131A 

penetrates deeper into the sample than the radiation of wavelength 
0 

A=2536A. It is therefore assumed that those trapping sta•tes near the 
0 

surface are affected more by 71.=2536A than. the trapping st·ates in the 
0 

bulk whereas all trapping states are affected by X=3131Aj;-

As noted in the previous chapter, at least three peaks were ob-

served in most of the TSC data. These peaks are assumed·to be produced 

by electrons released from trapping states whose activation energy is 

below the conduction band edge. The determination·of where·physically 

these traps are and what. produces them has ·been the obj ec·t· of the re-

search in this· lab and this study is also d,irected toward-·that end. An 

attempt to answer.these questions wili·be based on·the results·presented 

in.Chapter IV. 

Discussion of Results in Fix~B ·samples 

40 
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Certain conclusions can· be drawn c.once·rning:-·rtre ··re1.ative peak 

heights in the TSC datao·' As no·ted in Figures 6, 7·, and. 8~-· peak (1) was 

0 
greater than peak (2) when wavelength 71.=3131A was us·ed. 'fhe most ob-

vious causes ·of this difference in peak height would be either a greater 

density of traps associated with ·peak· (1) · or· a difference in carrier 

· 10 
lifetime in the temperatur~ ranges ·of the two peaks. Work by Matthews 

and by this investigator using the method of continut:11;1s· thermal. quench"'.' 

ing, indicates that the lifetime of the majority-.. carri-e·r· -does appear to 

change sharply with temperature in the temperature·· range ··of· peak (2). 

Therefore, it will here be assumed that a lifetime changa, has· the domin-

a ting effect upon the peak heights but··an effect. due to a difference in 

trap density is not completely ruled out. 

For future reference, Table III is here pr~sented list:ing the peak 

photocurrent attained prtior to a TSC run and the ratio of ·the maximum 

current for peak (1) to the maximum current for ·peak (2) for those per.,. 

tinent figures in Chapter IV. 

Figure 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

TABLE III 

RELEVANT DATA FOR THE FIGURES IN CHAPTER IV 

Ratio of Height .of Peak .(1). to Peak .(2) 

3.53 
L24 
1.14 
0.67 
0.74 
0.27 
Oo82 
0.83 
2.81 · 
2.61 
0.79 
0.95 
0.86 

Peak Photocurrent 
(lo-6 amperes) 

6.20 
8.24 
0.096 
3.16 
0.036 
000009 
7 .68 · 
0.54 . 
3.20 
4.67 
4. 32 · 
7.20 
0.78 
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Comparing Figure 8. with Figures 6 and 7, one is· tempted ... to relate 

the slight.enhancel!lent of peak (2) mentioned in Chapter IV to the pre-

sence of air during the fixing process; but referring to Table III, it 

is noted that the peak photocurrent for Figure 8 is almo·st two orders of. 

magnitude less than for Figures 6···and·"7. · This smaller photocurrent 

means that fewer electrons have ·b'een ex·dted int·o the col'l.'duetion band 

and, therefore, fewer can drop· into· .trapp:tng ·stat-es. Those" d-ropping in-

to trapping states will prefere·nt'ially fall to the deepes·t compensated 

traps. With more electrons· in ·the ·tr-a.p--or· traps ass·ociated with peak 

(2), peak (1) will be diminished· rela·t'ive to peak (2') duri.ng the TSC 

run. This effect of low peak photocurrent has been noted·by,Houston17 • 

He showed that, using decreaS'ing' light int·ens·ities to··preduce different 

peak photocurrents, a low temperature· .. p·eak co·uld be depressed relative 

to higher iying peaks. In the present study shorter-- excitation times 

were used to achieve the low peak photocurrent-s. Also noted in Figure 

8, there is better resolut·ion of peak (1) and peak (2) compared with 

the previous figures. This too agrees-w:i,th Houston's observation and is 

tentatively attributed to fewer electrons ·1.n total being--released from 

the. traps with a consequent reduction o·f ·the area under the TSC curve 

ass.ociated with each trap. 

The most striking observation when. comps-ring· Fix·B. samples having 
0 0 

been excited with /\=3131A and .\=2536A is that· there is a re.versa! in 

height of peak (1) and peak (2) in goi.ng from ·the· longer wavelength to 

the _shorter wavelength ·as shown ·in .Figures 6 and 9. This:'might be ex-:-

plained by assuming that ·peak (2). is associ.ated·wfth a trapping state 

0 
near the surface which i.s then·more affected hy the i\=2536A radiation. 

11 
Eagleton reached a similar conclusion f9r two ·glow peaks occuring at 
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-140°c and -"88°C in his heat treat:ment·-.s·tud±e.s-·of' thermolmminescence in 

stannic. oxide ceramics. He inferred that ·rrigher temperatt:rre. glow peaks 

were associated with trapping-·cente·rs·tha:t·iay-·physicaliy closer to the 

surface· because they were more· af f-ected tr·neat· trea·tment::p·.:r:qpedures. 

The enhancement of· peak· (l)·relative·to .. p·eak (:2:) noted :tn· Chapter 

0 
IV for Fix--B samples heated in .. .air us:tn·g exc·itation A=2536A (compare 

Figure 10 to Figure 9) again cannot be·unambiguousiyattributed to the 

ambient air. Referring to Table III it· is noted· that the· enhancement 

is small (peak height ratioof 0.67 for a fix in vacuum and 0.74 for a 

fix in air) and that the peak photocurrent is extremely low. Such low 

-13 
currents are comparable with the sample dark current ( "'-'10 amperes) . 

Again the main effect may be thatpeak (1} and peak (2) are better re-

solved as a result of the low peak photocurrent. 

The EWC-TSC data for Fix-B samples seem to indicate at least three 

traps as did the normal TSC data. The mainsignificance..:of using the 

EWC-TSC method is to·investigate the possibility of activated traps 

which can be filled most easily by shining light· on the sample at higher 

temperatures. Associated with thehighertemperatures al."a phonons which 

could supply the electrons excited·into the conduction band by the in-

cident light with enough energy to ·overcome the repulsive barrier asso-

ciated with the activated traps. Sinc·e· no·new peaks appear in the EWC-

TSC data it is assumed that such traps are nonexistent in the trap-

energy range studied or are unobservable using present· m1:thedR. Further 

confirmation of the association of peak (2) with a near-surfac·e trapping 

state is given by the reversal of peak (1) and peak (2) in going from 

0 0 
excitation >-=3131A to 11=2536Ao This can be seen .by comparing Figure 16 

with Figures 14 and 150 
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Discussion of Results ... in ·Fi~:-:-A:.Samples 

The ':!:'SC 13t,ructure. for Fix"."A sample:s eonf1:rms0• the exis·tence of at 

least th7ee trapping levels but the shape of the· curves ha·s· been altered. . 

Figure li exemplifi·es · the· most drastic effect · ob·served when a· low peak 

photocurrent was used~ The·peakheight·ratio of·0~27 is the lowest 

listed in Table III. This ·.eff·ec:t··has · been· discus·sed· p·reviously. 

Fig1,1re 12 presents the first· case in··-which· p·eak (l), which for 

Fix-B samples had been always· above· peak (2), was· below peak (2). The 
., .... ' -6 ' 

large peak photocurrent for this sample (7 .68 x 10 · amperes) appears 

to.rule out explanations based ori low photocurrents given earlier. Com-

paring Figure 12 with Figure 7, all variables being nearly·the same in 

these two cases, except for fixing time, it is noted that the shift in 

the peaks is very slight. The use of l.ong fixing times isthought to 

produce a cleaner sample surface, "cleaner" in the sense that more ad-

sorbed gases are removed. This cleaning·effectmight have caused the 

shift in the peak heights but the evidence for such an assumption is in-

sufficient at this time. 
0 

The enhancement of peak (1) using ex·citati.on X=2536A-·for Fix-A 

samples (Figure 13) compared to · t:he· corresponding · Fix-B samp:l·es (Figure. 

9) does not fall into the picture presented thus far. Again· this effect 

is small (peak height ratio of 0.83 for ·Fix-A sampl·e and 0.67 for Fix-B 

sample) but the sux:face cleaning effect· of the long-fixing times might 

be related. Further study is needed· to c·larify this point. 

The EWC-TSC data for Fix-A samples also substantiat·e.t:he existence 

0 of at least three trapp·ing leveJ,.s· below O· e and again do. net· indicate 

the existence of activated trapping states~ · The change· o·f _p·eak height 

noted when comparing Figure 17 with· Figure 1·4 (Fix-B) is not small; but 
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the comparison can· be discoun·ted since· the- peak photocurrent and the 

sample current ·are near:1:y- an order·of-magn±tude greater fn--'Figure 17 

than in Figure 14. · A reversal of··the ·p·eak heights, however, has occur-

red in.the same fashion-as· noted·in·Figure12·earlier although·the long 

fixing time again cannot· definitely-- be related to this effect. 

The EWC-TSC data sh6wn-±n·Figure·i8·indicates·enhancement of peak 
0 

(2) using excitation· A=2536A-when··compared with TSC data·using excita-
o 

tion :\=3131A. This was noted· before and ·the association· of peak (2) 

with trapping state near the· surface· was suggested~·· The previously 

noted (Chapter IV) enhancement· of peak ·(1) relative to peak· (2) as com-

pared to Fix-B samples (Figure 16) could be unfound·ed since· the specif i-

cation of the peak currents for peaks appearing as shoulders on other 

higher current peaks is somewhat indefinite. The two peaks··are again 

well resolved as has been observetl·previously for· samples whose TSC cur

-6 rents were below 10 ampereso 

Comparison with TSL Peaks 

The range in temperature given for the·three peaks ·in the TSC data 

· · 11 
is in substantial agreement with Eagle-ton's work · on the thermolumines-

cence of doped and undoped stannic oxide·ceramics. He found that 0.7% 

zinc-doped stannic oxide produced T5L glow·peaks at about -155°c, -138°c 

0 0 0 and -90 C and an undoped sample produced peaks at -160 C, -135 C and 

-85°c. The highest and lowest values given in his data correspond well 

to the ranges, -159°c to -145°c and -96°c to -82°c, given previously for 

peak (1) and peak (2). He was·unable to observe peak (3) in these sam-

ples possibly because of the low light intensity·. A peak lying in the 

temperature range between peak (1) and peak (2) was observed by Eagleton 
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', 

as.notec:i above, but the TSC measurementsdi-d nut reveal sue-ha peak. 

Possibly, this peak was masked·by· peak (1) and peak (2) and could not be 

resolved. 

Discussion of DTSC Results 

The DTSC data indicates that as·the decay temperature increases, 

the calculated activation en~gy-i:m:reases for those· peaks in the tern-
. ' 0 0 

perature range from -160 C to ..-80 G. This:is generally·truefor al:!. 

three groups of energy· values given in Tabie I. . Such increases couJ.d 
' ' 

be caused by contributions from lower lying peaks that gradually decayed 
' ' 

out as the true peak is revealed. · lt could alternately be inferred that 

one or more non-discrete bands of trapping states exist below the con-

duction.band edgeo By decaying deeper into these bands; higher activa-
. I 

tion energies would be obtained for the different temperature regions. 

· . 11 
Such an explanation was proposed by Eagleton who found·that the acti-

vation energies for TSL glow peaks· i-q. this temperatµre range extended 

from 0.08 ev to 0.10 ev and from 0~18 ev to 0.30 ev. 

The break in the DTSC curves for peak (2) ·· suggests · that· two . traps 

or bands of trapping states exist in this temperature rang·e. This break 
' ' 

could be caused by the· emptying ·o·f tpe trap or traps associated with the 

linear portion below the· break .. in··the DTSC curve. As the:temperature 

increases beyond the break temperature,' the major contribution of elec-

trons to the conduction band would then come from the trap or traps 

associated with the linear portion of the DTSC · curve above· ·the break. 

Following this picture, the largest activation energies (0.214 ev and 

0.158 ev) would correspond to· the deepest·trapping states··in the two 

bands associated with the two· groups of activation energies; for peak (2). 



The small amount of DTSG·data-··ta:ken···on···Ftx'"'k·-s·amp·:1:es:·'.indicated no 

deviations from the ·results··on .. ttre··Fix._B ·sampl·es·~ · The a-etivatidn 

energies fell with the three · groups· o·f values given··in Table I. 

Additional Comments and Suggestions f·or ·Further Study 
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As in any study of this nature, many- variables are involved· which 

have.a bearing on the results. An attempt was made ·to restrict the num

ber of variables so that conclusions could be drawn·about the parameters 

related to the conductivity properties of· stannic oxide, but·a more 

limit~d study seems to be indicated. 

The major problem encountered in this inv·estigati·on. was resolving 

overlapping peaks so that the initial rise method could be used to cal

culate activation energies. An extension of this· work could involve 

using lower peak photocurrents which might cause the TSC peaks to be 

better resolved and might disclose peaks· unseen before. Of prime im

portance in the study of stannic ·oxide is the effect of gase·s · adsorbed 

on the surface. More work needs to be done to specify the nature of the 

adsorbed gases. By adding different dopants·andusingvarious heat 

treatments, knowledge of the phys±cal location of·the trapping states 

and their chemical origin might be gained. The heating rate used in 

this study ( ... 0.05 °c/sec} could have affected the structure and the 

temperature of the TSC peaks. Studies using different heating rates 

mightindicate the nature of these effects. 
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