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PREFACE 

~The bulk of· all frequency modulation theory was developed by 1940 • 

. However, a frequency modulation theory was presented to me that indicated 

that a noise component had been neglected in the accepted analysis. I 

then committed myself to a thesis that would explore this contention. 

Experimental investigation coupled with subsequent re ... examination 

of the mathematical analysis proved that the earlier work was not in 

error •. Although the original premise of this investigator was disproved, 

the·resulting thesis contains ·a unified treatment of the spectral anal~ 

ysis of a function that is the product of two or more time functions, 

and the·resultant when this function is passed through a differentiator. 

I wish to acknowledge my indebtedness to Dr. Bennett L. Basore of 
• 

Oklahoma State University for his guidance and help when the theoretical 

obstacles seemed insurmountable •. I wish to thank Van Schallenberg of 

Oklahoma State University for many valuable and illuminating conversa-

tions- regarding the practical aspects· of communication equipment as well 

as his making available·personal equipment that greatly expedited pro-

. gress. many times. 
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CHAPTER I 

INTRODUCTION 

The specific topic to be examined by this thesis is the noise spec

trum at the output of the limiter~discrirninator of a frequency modulation 

receiver under large signal-to~noise ratio conditions. At the time ex

perimental work began on this·thesis, the author believed the output 

noise spectrum to be composed of independent contributions from the in

phase as well as the quadrature component of the input noise phasor. 

However, subsequent mathematical and experimental analysis proved the 

initial assumption invalid. The output noise was ·found to be an exact 

differential form of only the quadrature component of the input.noise. 

Therefore, special emphasis is placed on the result obtained when a func

tion of the form z(t) • sin(wt) is passed through a differentiator. 

The concept of frequency modulation was·present even prior to 1920. 

But it was· in 1922 that Carson (1) published an analysis which showed 

the need for greater bandwidths with frequency modulation than with am

plitude modulation. At that time all emphasis was placed on finding 

methods·by which bandwidth requirements could be diminished. Consequent

ly, FM as a possibly useful system was discarded.· In 1936 Armstrong {2) 

demonstrated the·phenomenon of noise suppression with wide band frequency 

modulation. This was made possible by the use of very high frequency 

carriers which allowed him many times the bandwidth needed for AM. In 

1937 Carson and Fry (3) used an approach involving variable frequency 

1 



circuit theory to· arrive at an· analysis of FM. They applied themselves 

to the question of. noise discrimination with and without amplitude limi

tation. They concluded that· frequency modulation in combination with 

severe amplitude limiting of the received wave results· in substantial 

suppression of the output noise. The work of the 1940 's and 50 's has 

been given unified treatment in the text by Schwartz (4). 

The·experimental equipment used by the author consisted of Army

Navy radio receiver R-237B/VR, bridge oscillat0r, spectrum analyzer and 

oscilloscope. The input signal was inserted into the converter stage of 

the receiver. The IF noise spect:rnm was examined at the grid input to 

·the first limiter stage •. The mean carrier power was determined at·the 

· input to· the discriminator. · The output noise ·spectrum ·was measured at 

the output of the discriminator. 

2 

The experimental results verified that the output noise spectrum of 

the discriminator was· indeed w2 times• the IF "noise· spectrum shifted· in 

center frequency from 455 KHz to.OHz. Specifically.it was·shown that the 

output noise power at zero frequency was actually zero under the experi

mental restriction of high carrier to noise ratio. . It was· further dem

onstrated that the·presence of a modulating signal did not·affect the 

output noise statistics. 



CHAPTER II 

MATHEMATICAL ANALYSIS 

A balanced ideal FM detector has been defined as one which provides 

··~· as its output, where gi is the instantaneous phase of the combined sig

nal and noise phasor. The FM signal is represented by A cos[w0 t + bJ 

s{t)dt] where w is the unmodulated carrier frequency, s(t) is the modu
o 

lating signal and b is· a constant of proportionality •. Therefore, it is 

noted that in the absence of noise, ~ reproduces b s (t) as it desired. 

~ is now to be examined when noise as well as modulated carrier is 

present • 

. Referring to the phasor diagrams of Figure 1 it is·readily ascer-

tained that 

i.li = D + tan-1 r sin(9 - D) 
A+ r cos(9 - D) 

Taking the derivative with respect to time of both sides of the equation 

yields: 

2 
t=D + [ (A+ r cos~e-D~) 2 J [CA+ r cos(e~D)) 

(A+ r cos(9-D)) + r sin (6-D) 

Q e o o • • 

_{:r:_s in(8.:fil+(9-D)r cos ( 8-D)} .;r sin (8"'D)(r cos (9-D) -( 8-D )r sin ( 8"'Dll J 
2 

(A+r cos ( 8-D)) 

• • • ·2 • • 2 2 . 
i.li""D + [Ar sin(9-D)+A(§-ll)r cos{8--D) + r (8-D)(cos (9-D) + sin (9 .. D)l] 

i + 2Ar cos(9-D) + r 2 (cos 2 (e-D) + sin2 (e-D)) 

3 
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;;;=D + _A_;_s_i_· n...;( ..... e_-_D.._) _+_A_( .... e_ ... _D,.._) ~r_c_o_s __ · { .... @ __ --_D,._) _+_· _r_2_.c .... e_-_D.._) 
~ 2 . 2 

A + 2Ar cos(6-D)+ r 

Once again referring to Figure 1, it is noted that the resultant phasor 

1, 

[ -2 2 2 ] 2 
G- [A+rcos(8-D)] +rsin (9-D)· 

c2 = i + 2Ar · cos (9"'D) + r 2[cos2{e-D) + sin2(8-D)] 

Therefore, 

2 • • 

. ~=D + L [r sin(e--D) + (6-"D)r cos(e.-n)] + r (e-D) 
G2 G2 

At this point in the analysis high carrier-to-noise ratio is assumed. 

2 2 • For this assumption G >> r and A = G yielding 

~;0 + r sin(6-D) ~ (6-D)r cos(0-D) 

It was here· that the first analysis· ran into difficulty. Those original 

steps·are now retraced in order to clarify an important point regarding 

the autocorrelation function of the sum of two seemingly independent 

. 
time·functions. When given a generalized function a sin b + b a cos b 

where a and bare functions of time and further it is known that a and a 

are independent, one is led to conclude that since sin band cos bare 

independent, ~· sin b and b a cos b must be independent. Beciause a sin 

b and b a cos b are obviously orthogonal, the next conclusion is that the 

autocorrelation function of the sum of these "two independent functions" 

is simply the sum of the two autocor:relati.on functions. And finally it 

could be concluded that the power density spectrum of the sum was simply 

the sum of the two individual power density spectra. 

The point to be emphasized is that the preceding conclusions do not 



. 
hold because a sin b + b a cos .b'is the total derivative of a sin b. 

Returning now to 

. . . 
• . • + r sin(9~D) + (9~D)r cos(9-D) 
@ D G 

realizing y == r sin(9"'D) and, therefore, y r sin(9-D) + (9-D)t cos . 
• ·.,.! • . x. 

(9-D) · leads· to . ~ - D + G" 

Since the modulating signal D and the noise r(t) are independent, 

• r 2 (e-n) 
. D is the modulating signal contribution to ~ and, (ignoring the ------

term) theri Z. is· the noise contribution to ;;.. . G 'I! 

G2 
Since.it has been shown 

that y(t) = r(t) sin(0-D) is the only noise component·making a signifi-

. 
cant contribution to@ under the assumption of high carrier-to~noise 

ratio, this time function will be examined now. y(t) is• the product of 

two time functions,· r(t) ·· and sin(9-D). Accordingly the power spectrum 

S (w) of y(t) is the convolution of the power spectra of r(t) and sin 
YY 

* (S"'D), i.e., S . (w) = S (w) s . (w). 
,yy rr ss 

Referring to Figure 2, r(t) is 

idealized as. band· limited noise with S . (w)=l, I w j < B and the sin w1t 
rr 

has ~ss(W) = 11[6 (w+ w1 ) + 6 {w- (1)1)] •. Upon convolving,, (Figure 2c), 

5 

[s .(W) + S .. (w)] is obtained. Since a differentiator is a system whose · rr ss 

outputis·the derivative of the input·and its·transfer function is H(jw) 

=jw, it is·obvious that s .. (w) 
yy 

- -jw s {w) and s •• (w) = w2s (w). 
YY " n 

Therefore, Figure 2d, w2[s (w) rr * S {w)] represents s .• (w). In general, 
SS YY 

it is seen that the power spectrum of the derivative of a continuous 

time function is always zero at w = O. 

As was previously mentioned, D .., bf s(t)dt so D = b s(t) and for 

the assumption of a sinusoidal modulating signal, b s(t) = Aw cos wt 
m 

where AW is the frequency· deviation. It is then seen that the mean-

- (AW)_2 
squared signal output is S0 2 .-. 
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Returning now to the noise contribution, since .A :,, G, as a further . 
. simplification ~ is replaced by i· 

Assuming a flat band-limited IF noise spectrum of constant magnitude 

_ l] ·. (Figure 2e), the discriminator output rtoise spectrum can be calculated 
0 

easily. 

s (£) = Tl 
yy · l]o 

s (f) = _£ 
ll A2 
AA 2 

Tl w 
0 s .. (£) 

Y:L 
AA 

=7 

f - B < f < f + B 
0 0 

f -B<f<f +B 
o ·o 

-B .< f < B 

This .spectrum is represented in Figure 2f. 

Since the total IF noise is 2T] B = N and the mean-squared carried 
2 0 

voltage is !.... = S , substitution yields, 
2 c 

svv<:1;) = Brr2 £\!L), ... B < f < B 
J.J.. s c 
AA 

· The total output noise is simply the integration of S •• (f) from 
ll 

. •f . to +f .• AA 
m m 

The modulation index=~=~= .A...2L. 
Ulm . .2TTf O 

Substituting, 
m 
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f 
.Also, Nc = N Bm, where Ne is the equivalent noise in the modulation 

bandwidth. Therefore, 

This result derived for. FM under conditions of high carrie+-to-noise 

ratio, and with modulation present, goes beyond m0st treatments of FM, 

but confirms the results published prior to 1940. 



CHAPTER , I II 

QUANTITAtIVE EXPERIMENTAL RESULTS 

· The reader is referred to Chapter' IV for a det,ailed discussion of 

the experimental set-up of the test equipment. 
A2 

Referring to Figure 3b, S ·= ··-2-, the mean-squared 
'C 

carrier voltage, 

is seen to be--8dB'with-60dB of attenuat;ion yielding a net value of 52dB. 

2w2 
Previously it was· stated that the output noise power spectrum is---

A2 

times the input noise power spectrum for frequencies between± B. This 

theoretical conclusion wiU now be tested for first 5.KH:z, then lO·KHz 

and finally 2 KHz. 

Consider first 5 KHz. The input noise power at (455 ± 5) I<Hzis 

approximately -25dB'with 5dB of attenuation or a net of -20dB. (Figure 

3a). Therefore, the output noise power spectral density at 5KHz·should 

be 

.· Reference to Figure 3c shows -32dB · with 50dB · attenuation. So, 

Syy(f) I f=5000 = ( .. 32 + 50)dB = 18dB 

Next at. (455 + 10) KHz the input noise spectral density is again -25dB 

'with 5dB attenuation for a net of -20dB. 

2 
~yy(f) I f=lO,OOO = [;.;20 + 10 log10 (6.28x104) ;.; 52 J dB = 24dB 

8 
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Referring to Figure 3c, 

sYY (f) I f:::;lO, 000 = < ... 26 + 50)dB = 24dB 

However, at (455 ± 2) KHz where the output noise spectral density should 
3 2 

be.[-20 + 10 log10 (12.56 x 10) - 52]dB or lOdB reference to Figure 3e 

shows •38dB with 50dB attenuation or a net of 12dB. The error here at 

2000 Hz is attribµted to difficulty in determining exact zero vertical 

position for spectrum analyzer trace and nonlinearity of scale at small 

readings. 

For zero frequency the output noise spectral density by theory must 

be zero. Reference to Figure 3f verifies that the noise spectrum den-

sity is indeed zero for zero frequency. 

It is easily ascertained from Figure 3c that the bandwidth is ap-

proximately 26 KHz. 



·CHAPTER IV 

DESCRIPTION OF TEST EQUIPMENT 

The FM receiver used in the experiment was an Army-Navy receiver. 

Its. model number is Rw237B/VR. Its schematic is· labeled Figure 4. (The 

squelch circuit was disconnected throughout the·experiment.) Early ex-

perimental work indicated that the output noise spectrum was not zero 

for zero frequency when modulation was present. After a re~examination 

of the mathematical analysis revealed that the output noise spectrum 

should have been zero at zero frequency determining why experimental re-

sults did not bear this out was of paramount interest. The solution 

was found in the initial alignment of the receiver for a flat response 

across the passband under modulation. The noise was at saturation level 

and, consequently, as a result of apparent alignment, the signal power 

was decreased by an approximate power of ten at either end of the pass-
2 • • 

r (8·D) band versus the center frequency. The - - term was now a factor 
G2 

near center frequency. To correct the problem the alignment was re-

established while the tube of the first IF amplifier was removed to 

greatly decrease the noise present. 

The GR 1330A bridge oscillator was used as a signal source. While 

the GR 1330A is supposedly an amplitude modulated instrument, it was de-

termined in the laboratory that it was actually frequency modulated in 

the frequency range of interest. 

A Tektronix oscilloscope type 585 with type G plug-in was used •. The 

10 
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Singer model FM.5 pana1yzer was used to determine all power spectra. "The 

test equipment interconnection diagram is illustrated in Figure 4. 

Referring to Figure 5, the input signal from the bridge oscillator 

was inserted into the first converter stage. The IF noise spectrum 

generated in the receiver front end was fed to the spectrum analyzer 

from the grid, pin 4, · of the first ·limiter. The mean carrier power was 

determined at the plate, pin 3, of V9, the discriminator. The output 

noise spectrum was measured at pin 4 of the discriminator. 



·CHAPTER V 

CONCLUSIONS 

· Given that f(t) = x(t) + y(t), x and y linearly independent and 

orthogonal are necessary but not sufficient conditions for the·power 

density spectrum Sff(W) to equal the sum of the power density spectra 

S (w) + S (w). It was shown in Chapter II that a third condition is 
xx · yy 

that x(t) + y(t) cannot represent a total derivative. 

Any output of a differentiator that is the total derivative of a 

particular time function or product of time functions must have a power 

spectrum that is zero at zero frequency • 

. With the restriction of high carrier~to-noise ratio, it· is experi-

mentally concluded through prolonged observation that the noise spectrum 

at the output of the discriminator, in the vicinity of zero frequency, 

is not affected by the presence of a modulating signal. 

12 
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· Figure 1. Phas'or Diagrams 
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Figure 2. Graphical Convolutions 
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(a) 5dB Atten. 100 KHz Sweep Width (b) 60dB Atten. 50 KHz Sweep Width 

(c) 50dB Atten. 50 KHz Sweep Width 

Sweep Width ( £) 50dB At t en. 10 KHz Sweep Width 

Figur e 3 •· No ise .. spectr a 
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GR 
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·Singer 
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Figure 4. Test Equipment-Interconnection Diagram 
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