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M  EVALUATION OF A LATERALLY CONFINED ISOTHERMAL TEST TECHNIQUE TO 

ESTIMATE THE SHOCK BEHAVIOR OF LOW-STRENGTH MATERIALS

CHAPTER I.

INTRODUCTION

This investigation was concerned with the feasibility of using 

isothermal pressure-volume data from laterally confined compression 

tests to obtain the low-pressure (< 10 kbar) shock Hugoniots of low- 

strength polymeric materials. Results of laterally confined compres­

sion tests on polymethylmethacrylate (FMMA) specimens were expressed 

in terms of the pressure increase, P - Pq , the initial isothermal

bulk modulus, Bjo , the pressure derivative of the initial .isothermal 
!

bulk modulus, , and the ratio of the initial to the final specific 

volume, vo/v, with the isothermal Murnaghan equation of state,

P - Po = (Bro/Bio) [(vo/v)®'°- l] (l.l)

1 2and then transformed with a technique described by Duvall, ’ to 

obtain the shock Hugoniot. Attention was concentrated on the effects

Ĝ. E. Duvall and B. J. Zwolinski, Entropie Equations of State 
and Their Application to Shock Phenomena in Solids, J. Acoust. Soc. 
Am., (1955), 1054-58.

2G. E. Duvall, Pressure-Volume Relations in Solids, J. Appl. 
Phys., 26 (1957), 235-38.
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of test specimen geometry and the friction forces due to lateral 

constraint.

The interest in determining the shock Hugoniot of a material by 

transforming isothermal pressure-volume data was prompted by the need 

for a simple screening test that could be used to evaluate the shock 

response of large groups of low-strength materials. Such a screening 

test could be used to determine the two or three most likely candidates 

from a large group of materials for a particular shock environment 

application. Then the difficult and extensive shock measurements nec­

essary to define the candidate's shock behavior would be made,

An indirect technique of obtaining the isothermal equation of
o

state has been outlined by Overton and Anderson, and utilized the 

ultrasonic ally determined isothermal bulk modulus and its pressure 

derivative to establish the constant coefficients of the equation of 

state. The Hugoniot states could then be obtained with the Mie- 

Gruneisen equation of state or the Duvall transformation.

The two commonly used methods of measuring the pressure-volume 

behavior of solid materials have been well documented by Bridgman^ and

C. Overton, Jr., Relation Between Ultrasonically Measured 
Properties and the Coefficients in the Solid Equation of State,
J. Chem. Phys., 37 (1962) ,  II6-19.

k
0. L. Anderson, The Use of Ultrasonic Measurements Under Modest 

Pressure to Estimate Compression at High Pressure, J. Phys. Chem. 
Solids, 27 (1966), 547-65.

M̂. H. Rice, R. G. McQueen, and J. M. Walsh, Compression of Solids 
by Strong Shock Waves, in Solid State Physics, Vol. 6 edited by Seitz 
and Turnbull. New York: Academic Press, 1956.

P̂. W. Bridgman, The Physics of High Pressures. London, England: 
Bell and Sons, I949.
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others. In one method, the specimen was contained in a high-pressure

cell and the specimen's volume change and the corresponding pressure

was measured. The pressure cell method was used hy Bridgman to make 

accurate pressure-volume measurements. The laterally confined com-
7

pression test method has been used by Stevens after calibration \d th  

gold as the standard material. The specimen volume and the applied 

pressure were determined by measuring the loading ram force and the 

relative displacement between the loading rams. Both methods are 

limited to pressures less than 30 kbar. This study concentrated cn 

the laterally confined compression test method since it was potential­

ly the simplest and least expensive of the three prominent methods of 

determining the isothermal equation of state.

7
D. R. Stephens and Et M. Lilley, Compression of Isotropic 

Lithium Hydrides, J. Appl. Phys., ^  (1968), 177-80.



CHAPTER II.

PROBLEM BACKGROUMD

The description of the propagation of plane shock waves through 

solids is similar to the ideal fluid description. Because the solid 

material can support shear, the shock pressure, P, must be replaced by
g

the stress, P̂ , normal to the shock front. Jump conditions represent­

ing conservation of mass, momentum and energy, relate the initial state, 

density po , pressure %  , and specific internal energy Eq , to the 

shocked state, density p, pressure P, and specific internal energy E, 

give

P = fb U/(U-u) (mass conservation) (2.l)

P - Pq = Pj U u  (momentum conservation) (2.2)

(v  - Pojn = poU |e - Eq + /2 j . (energy conservation) (2.3)

The shock velocity is U and the particle velocity imparted to the 

material by the shock wave is u. These equations are called the 

Rankine-Hugoniot relations and assume a strain-rate-insensitive, 

single-phase material without shear strength. Elimination of the 

shock velocity an.d the particle velocity from equation (2.3) gives a

g
G. E. Duvall, Some Properties and Applications of Shock Waves, in 

Response of Metals to High Velocity Deformation, edited by Shewmon and 
Zackay. New York: Interscience, I96I.
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useful form 

E Eo = ( V 2 ) ( P  + , Vo = l/po, V = l/p (2.4)

where Vq and v are the specific volumes of the material's initial and 

shock states.

Since five unknovm parameters, p, P, E, U and u are present in the 

three Rankine-Hugoniot relations, another independent equation is 

required if the measurement of one of the parameters is to permit the 

calculation of the other four parameters. A relationship between the 

shock velocity and the particle velocity can be determined experimen­

tally by measuring the shock and particle velocities at a sufficient 

number of points in the shock velocity-particle velocity plane. The

relationship usually has the linear form''

U = U(u) = Uo + s u (2.5)

VJhen this linear shock velocity-particle velocity relation, equation 

(2,5), is combined vd-th the Rankine-Hugoniot equations, the shock and 

particle velocities become

U = Uq/|i - s p̂ - Poj/p “ Ho/ 1̂ - sTlj

u ~ I Ho ̂p - Po)/ p]/ 1 - s^p - po)/p sri

(2.6)

(2.7)

and the momentum and energy equations are

P - Po PoHq ̂ p - po)/pj/|l - s /p - poj/p 

PoH§Tl/(l - sTl)̂ (2.8)

G. E. Duvall and G. R. Fowles, Shock Waves, in High Pressure 
Physics and Chemistry, Vol. 2, edited by R. S. Bradley. New York: 
Academic Press, I962,
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E  - Eo = (i /2) u q [(p - Po)/p] /[l - s (p - po)/pj =

(l/2)[uoTl/(l - (2.9)

with the dimensionless volime variable, T], determined hy

T| = àv/vo = (vo -  vj/vo = - poj/p (2.10)

Equation (2.8) is the locus of the pressure-specific volume states 

obtainable by shock transition from the initial pressure-specific 

volume state and is defined as the Hugoniot. The change in specific 

internal energy accompanying the shock transition from the initial 

state is given by equation (2.9). Figure 2.1 shows the Hugoniot states 

and a typical shock loading path (Rayleigh line) prescribed by

(p - ?o)/(vo - v) = lf/v§ . (2.11)

This equation of the Rayleigh line is obtained by combining equations

(2.1) and (2.2).

Q:ZD
(/)
toLU
ÙiCL

H U G O N IO T
P1 S H O C K  L O A D I N G  PATH 

. ( R A Y L E I G H  LINE)

V,V
VOLUME

Figure 2.1 Typical Shock Loading Path
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Shock interactions resulting from shock waves striking interfaces 

or other shock waves will change the state of the material. Additional'

shock loading is governed by the Rankine-Hugoniot relations and the 

shock velocity-particle velocity relation. Since rarefaction waves 

cannot exist in single-phase materials,unloading occurs gradually 

along an isentropic path. The shock state changes can be observed in 

the pressure-particle-velocity plane. Alternate forms of the Rankine- 

Hugoniot equations are
X/ 2

U - %o = - Po) (vo - v)| (2.12)

U = Vo[(p - Po) (vo - v)P^ (2.13)

E - Eo = (1/2)(P + Po) (vo - v) (2.14)

When the shock velocity is a function of the particle velocity, 

the pressure-particle velocity representation of the Hugoniot can be 

expressed as

P - Po = Po^ U(u) • (2.15)

The loci of states in the pressure-particle velocity plane that can

be reached from a state, (Pi, û ) are shown in Figure 2.2. Curve E B

is the reflection Hugoniot, the mirror image of the Hugoniot, curve

E C. The rarefaction isentropes are the curves E A and E D and are

obtained from the Riemann integral 
P .1/2

u - Ui = ± I  I - ôv/ôp) dP. (2 .16)f  (- av/Bp)g

E. Drummond, Explosive Induced Shock Waves, Part I. Plane 
Shock Waves, J. Appl. Phys., ^  (l957)> 1437.
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B / R E F L E C T I O N C
y  H U G O N I O T

\  H U G O N I O T v

\ V R A R E F A C T IO N
y / I S E N T R O P E S

1 . . D

P A R T I C L E  V ELO C ITY

Figure 2.2 Shock States in the Pressure-Particle Velocity Plane

A good estimate of the rarefaction isentrope,can he obtained by extend­

ing the reflection Hugoniot to negative values of the pressure (P - Pi) 

so that the reflection Hugoniot-isentrope is very nearly the mirror

image of the Hugoniot through point (Pi, %) about a straight line
11through the point and normal to the particle velocity axis.

The essential difference between the Hugoniot and the isentrope is 

that during the shock loading irreversible thermodynamic processes 

occur in the shock front and produce more heat than if a reversible 

isentropic loading process was used (see Figure 2.3). Both the initial 

state and the final Hugoniot state resulting from the shock transition 

are equilibrium states; therefore, the increase in entropy associated 

with the Hugoniot must occur in a unique manner. Since the initial

^^uvall, "Some Properties ajnd..."
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and. final states of the shocked material defined by the Rankine- 

Hugoniot equations are equilibrium states, the locus of these equilib­

rium states form a reversible path. The Hugoniot is this path; 

therefore, reversible thermodynamics applies to the Hugoniot as well 

as the isentrope.

Q£.
=3
CO
(/)LU
ÛC
CL.

I S E N T R O P I C  L O A D IN G  P AT H
P 1 H U G O N I O T  L O A D IN G  

PATH ( R A Y L E IG H  LINE)

V,V
VOLUME

Figure 2.3 Comparison of Hugoniot and Isentropic Loading Paths

Combining and applying the first and second laws 

dE = TdS - Pdv, 

to the Hugoniot and the isentrope gives 

TdS =CvdT + T(v/v)

and

12

Cydv

(2.17)

(2.18)

dT/T = - I y A  j dv. (2.19)

Where Cv is the specific heat at constant volume and y is the

^^uvall and Zwolinski, "Entropie Equations of..."
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Grüneisen ratio,

Y = V (ôP/ôe )̂  . (2.20)

Measurement of a material's shock response can he made with a variety

of experimental techniques.

The shock measurements must be made in the plane-wave region and

must not affect the parameters that are to be measured. The plane-wave

condition can be maintained at material interfaces if the geometry of

the experiment is carefully designed. Shock waves can be produced in

a material by the detonation of an explosive that is in direct contact

with the material^^"’̂ ^ or by impacting the material with a flying 
17projectile plate. The shock parameters that are measured usually 

are the shock velocity and the particle velocity. Such measurements 

are made over a finite area of a material interface; therefore, 

certain material surface and shock wave conditions must be met if the 

measurements are to be accurate. These conditions are: the material 

surface must be flat and parallel to the shock front and the shock 

front in the measurement area must be plane.

The shock velocity is determined by time required for the shock

11J. C. Slater, Introduction to Chemical Physics. New York: 
McGraw-Hill, 1939.

M. Born and K. Huang, Dynamic Theory of Crystal Lattices.
Oxford: Clarendon Press, 1954.

^^Rice, Mc^een and Walsh, "Compression of Solids ..."

S. Koehler and G. E. Duvall, Shock Wave Data and the Closed 
Shell Repulsive Potential in the Noble Metals, Bull. Am. Phys. Soc.
Ser. II, 4 (1959), 283.

17L. M. Barker and R. E. HoUenbach, System for Measuring the 
Dynamic Properties of Materials, Rev. Sci. Instrum., 35 (1964), 742-6.
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wave to travel a known distance in the material. Shorting pins, 

optical devices and contact transducers'are used to signal the shock 

arrival at the different points in the material. Measurement of the 

particle velocity at a free surface requires knowledge of the inter­

action of the shock wave with the free surface interface. Figure 2.4 

illustrates two typical shock wave interface interactions that are 

encountered in shock wave experiments: the free surface interaction 

and the interface interaction between two different materials.

IDto to
ëa.

to
CL

H U G O N I O T
R E F A C T I O N  H U G O N I O TP 1

FREE
S U R F A C E
V ELO CITY

P A R T I C i f  V E L O C IT Y

R E F l f C T I O N  H U G O N IO TP2
H U G O N I O T  
M A T 'L  n

MAT'L n
P 1

H U G O N IO T  
M AT 'L  I

P A R T I C L E  V E L O C IT Y
Figure 2.4 Shock Wave Interactions
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Figvire 2.4a is the basis of the free surface approximation of the 

particle velocity which gives

U = Ufa/2 . (2.21)

The free surface approximation of the particle velocity, (ufg/2), 

will usually exceed the particle velocity, u, by less than 0.5^ due 

to the thermal expansion resulting from irreversible heating, except
18,19when melting occurs. ’

20Among the free surface measurement techniques are shorting pins, 

capacitor microphone, slanted resistance wire, impedance match, high­

speed photography and the interferometric techniques. Direct contact 

pressure transducers of material.s which have pressure dependent elec­

trical properties such as charge generation and resistance can be used. 

These transducers create an interface of two different materials; thus, 

the pressure-particle velocity Hugoniot of the material must be known

as well as the pressure-electrical property change relation. The
21 22 quartz and manganin gages are examples of interface transducers.

18Rice, McQueen and Walsh, "Compression of Solids ..."
19J. M. Walsh and R. H. Christian, Equation of State of Metals 

From Shock Wave Measurements, Phys. Rev., 97 (l955), 1544.
20D. G. Doran, Measurement of Shock Pressures in Solids. Poulter 

Laboratories TR 002-63 (April 1963).

A. Graham, F. W. Neilson and W. B. Benedick, Piezoelectric 
Current from a Submicrosecond Stress Gage, J. Appl. Phys., (1965)j
1775-83.

220. E. Williams, An Etched Manganin Gage System for Shock 
Pressure Measurement in a High Noise Environment. ISA Preprint 
Number P7-2-PHYMMID-67 (Sept. 1967).
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2p.The interferometric technique is the best technique in terms of 

resolution, accuracy and frequency response and provides a free surface 

velocity history of both the loading and unloading behavior. Addition­

al information about the material's shock behavior can be extracted 

from the free surface velocity history.

Shock wave data on materials are available and the principal
2I4reference is the Compendium of Shock Wave Data. Principal sources 

of the data are the Los Alamos Scientific Laboratory, Lawence Radia­

tion Laboratory and Stanford Research Institute's PoifLter Laboratories. 

Considerable data are available from the United Kingdom (Atomic Weapons 

Research Establishment) and Russian investigators such as Al'tshuler. 

The value of such data is dependent on the experimental technique and 

the abilities, experimental and theoretical, of the particular investi­

gator.
•* 25 26 27The Mie-Gruneisen equation of state ’ ’ is used extensively in

interpreting shock wave data and is based on partition of the specific

internal energy into two components.

E = Ev(v)+ Et(v ,t) (2.22)

23L. M. Barker, Fine Structure of Compressive and Release Wave 
Shapes in Aluminum Measured by the Velocity Interferometer Technique, 
Proceedings of the lUTAM Conference on High Dynamic Pressures, Paris, 
France, September I967, (1968), W 3-505.

pk
Van Thiel, et al.. Compendium of Shock Wave Data. University of 

California Lawrence Radiation Laboratory, Vol. 1 and II, June 1966.

^^Rice, McQueen and Walsh, "Compression of Solids ..."

^^Slater, "Introduction of Chemical ..."
27Born and Huang, "Dynamic Theory of ..."
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The first component is volume dependent and is the lattice potential

energy and the second component is the thermal lattice vibrational

energy. Separation of the pressure associated with a particular

volume-specific internal energy state into lattice and thermal pres-
28sure components, Py and P-y , results in the Mie-Grüneisen equation

P - Pv = (y/v) (e - Ey) (2.23)

where y is the Griineisen ratio defined by equation (2.20). Useful 

alternate definitions of the Griineisen ratio are

P B / ^ p C y  j a V ^ d P / a p j y  =  -  | v / C y J  ( ô P / Ô v ) t (  Ô v / c

= - (v/Cp)(ôp/ôv)s ( ôv/ ôt| p (2.24)

The thermal coefficient of volume expansion, the isothermal bulk 

modulus and the specific heats at constant volume and constant pres­

sure are P, B-p, Cy and Cp. A general form is obtained by considering 

any known thermodynamic path for the reference path states (P, , Ep). 

then

P - Pr (v )= (y/vj E - Er(v ) . (2.25)

When the Hugoniot is used as the reference path, comparisons in terms 

of pressure or energy offsets can be made with other thermodynamic
29processes.

Experimental evaluation of a material's shock behavior in a 

series of shock wave experiments is a difficult, time consuming and

costly process. Isothermal equations of state, theoretical and

20Rice, McQueen, and Walsh, "Compression of Solids ..."
29A. L. Ruoff, Linear Shock-Velocity-Particle-Velocity Relation­

ship, J. Appl. Phys., 38 (1987), 4976.
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empirical, have been developed to describe material behavior. Some of 

the equations developed by different investigators are
1/2

P = [bto/(i + b'J]{ 1 - [l - (l + Br’o)(vo - v]/(2Vo)j } (2.26)
OQ

, ( Bridgman'̂  )

P = (bto/Bto)[(vo/v ) l] (Murnaghan^^) (2.2?)

7/3 S/3.

P = (3BT0/2 j [(vq/v) - (vo/v) ] (Birch^^) (2.28)

2/3

P =  [Bto/(3 + b;o)](vo/v )
1/3,

|e exp - 3 (3 + ®To)[^ “ (^oA) ) -11 (2.29)
(Pack-Evans-Jaraes^^)

In the equations (2.26), (2.27), (2.28) and (2.29), the constant 
coefficients are defined in terms of the isothermal bulk modulus and 

the pressure derivative of the bulk modulus, B and Bjo» The iso­

thermal and adiabatic bulk moduli are related in the following 
■3I+fashion

B:o = Bso/(l + iPg Bso/pCp) (2.30)

Bridgman, "The Physics of ..."

D. Murnaghan, The Compressibility of Media under Extreme 
Pressures, Proc. Natn. Acad. Sci., ^  (1944), 244.

•apF. J. Birch, The Effect of Pressure Upon the Elastic Parameters 
of Isotropic Solids, According to Murnaghan's Theory of Finite Strain,
J. Appl. Phys., 2 (1938), 279.

C. Pack, W. M. Evans, and H. J. James, The Propagation of 
Shock Waves in Steel and Lead, Proc. Phys. Soc., ^  (1948), Part I.

34Overton, "Relation Between Ultrasonically ..."
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(2.31)

(2.32)

(2.33)

(2.3%)

where

Bio = - v(o)(aP/8v(o))^

Bso = - v(o)(ap/av(6))

Po = (l/v(0))(av(0)/3T)^

and

Slo = (sBso/Bp)^ + (Tv(0)P§ BTo/Cp)

[l - 2(95 0̂ /aT)yPoB;o - 2 (sBso/Bp)^

+ Tv(0)pgBTo/Cp ^9Bso/9p) - 1 -(spo/aï) /Pg

Values of the adiabatic bulk modulus and its dérivâtes, ,

^ôBso/ôpj and ^aBgo/aij , can be determined from ultrasonic 

ments^^’̂ ^ and combined with thermophysical property data in equations 

(2.30) and (2.3 )̂ to evaluate the isothermal bulk modulus and its 

pressure derivative. If experimental isothermal pressure-volume data 

are available, the constant coefficients of the different equations 

of state can be evaluated directly. The Bridgman equation is an 

empirical form resulting from experimental observation. The Murnaghan 

equation is based on the assumption that the bulk modulus increased 

linearly with pressure. A three-term strain-energy expansion in powers 

of linear strain and an assumed isothermal bulk modulus derivative 

value of four determines the Birch equation. The Pack-Evans-James

measure-

35D, Lazarus, The Variation of the Adiabatic Elastic Constant of 
KCl, NaCl, CuZn, Cu, and AL vnth Pressure to 10,000 Bars, Phys. Rev.,
76 (1949), 545.

J .  McSkimin and P. Andreatch, Jr., Analysis of the Pulse 
Superposition Method of Measuring Ultrasonic Wave Velocities as a 
Function of Temperature and Pressure, J. Acoust. Soc. Am., 3̂ (1962),609.
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equation is aji exponential form based on the Femi-Thoraas model of the 

atom.

An extension of a crystalline solid atomic model'

E = - a r"° + b , m > n,
18was used by Furth to obtain the equation of state

,7

P = 1/v A H (?) + R T g(ç)

where

n(?) = (m n E/3 s) (1 + ?)'

1 + ? = ( v/vo)̂ ^̂  .

g(?) = c + b [ (1 + ? 1 + Kc

b = K!S/2 

c = 1 + m/2

K =

S = n - m

)/ 7 -/ 7n m+2

/_ \5/3
1 + 0̂ = (̂ o/Xd) •

m n+2

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

The specific volume v in cm^/mole at pressure P and teraperature T, the 

specific volume Vq at P = T = 0, the specific volume Vq at room 

temperature and zero pressure, the heat of sublimation A in k cal/mole, 

the gas constant R in k cal/mole degree, the exponents ra and n, and

M. Bradburn, The Equation of State for a Face-Centered Cubic 
Lattice., Proc. Camb. Phil. Soc., ^  (19^3), 113.

R. Furth, On the Equation of State for Solids, Proc. Roy. Soc.,
AI83 (1944), 87.
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the lattice sums { I  > tabulated by Misra^^ define the parameters of4/1
the equation. ^

The equations of state by Bridgman, Murnaghan, Birch, PacK-Evans- 

James and Furth have been successfully applied to metallic solids and 

geological materials. These equations are applicable to polymeric 

solids even though the polymeric structure is not crystalline and the 

volume changes are more sensitive to pressure and temperature varia­

tion, however, care must be exercised. A generalized pressure-volume- 

temperature equation of state,

V = (o .01205/po°'̂ ^̂ )̂p "'’-(t/T,)“'*'̂+ R (2.45)

has been developed by Whitaker and Grisky.̂ *̂  The variables of the

equation are the initial density %, the glass transition temperature 

, the universal gas constant R, the pressure P and the two pressure

dependent constants m and n. Other equations of state have been
4l 42 4ldeveloped by Spencer and Gilmore, Fiery et al, and DiBenedetto.

D. Misra, On the Stability of Crystal Lattices. II, Proc. 
Camb. Phil. Soc., 36 ( l 9 4 o ) ,  175.

L. Vfhitak.er and R. G. Griskey, A Generalized Equation of 
State for Polymers, J. Appl. Polymer Sci., U  (1967), 1001-8.

4 1 R. S. Spencer and G. P. Gilmore, Equation of State for Poly­
styrene, J. Appl, Phys., 20 (1949)5 504.

42P. J. Flory, R. A. Orw-all, and A. Vrijo, Statistical Thermo­
dynamics of Chain Molecule Liquids - I. An Equation of State for Formal 
Paraffin Hydrocarbons, J. Am. Chem. Soc., %  (1964), 3507.

43A. T. DiBenedetto, Molecular Properties of Amorphous High 
Polymers - I, A Cell Theory for Amorphous High Polymers, J. Polymer
Sci. A., 1 (1963), 3459.
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I4I4 1|.5Duvall has shown that the isothermal state path can he trans­

formed to the Hugoniot path if the specific heat at constant volume is 

independent of temperature and the specific internal energy is portion­

ed into distortional and thermal vibrational components. The energy
k6partition is based on Born's model of a crystalline solid and permits a 

similar separation of the pressure components such that

P (v ,t) = Vi(v) + T Vg (vj . (2.46)

When the isothermal and Hugoniot pressures, Pi and Pĵ , that can be 

reached from an initial state (%, Vo , Tq) are expressed by

Pi (v) = Vx(v] + ToV2 (v] (2.46a)

Ph(v)  = ^ ( v )  + T,V2(v ) (2.46b)

the equating of the two alternate energy expressions gives
v̂

Eh - Eq - C y  ̂Tjj - To j  + ^  4̂ ("v ] dv -
Vo

(1/2) (p̂  + Po) (vo - v) . (2.47)

Substitution of the equivalent temperature difference,

Jpĵ v̂j - Pi (vj 3 that is obtained from equations (2.46a) and

(2.46b), in equation (2.4?) and rearranging terms yields

Ph (v) = Pi (v) - (vs (v)/Cy) j  Vl (v)dv /[l - 
L J'Vq j

- (v2 (v)/2Cy) (vo - v)] . (2.48)

^^Duvall and Zwolinski, "Entropie Equations of ..."

^^Duvall, "Pressure-Volume Relations ..."

^^Born and Huang, "Dynamic Theory of ..."
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Figiire 2=5 illustrates the path prescribed by equation (2.48) to arrive 

at the Hugoniot pressure .

ÜJa:ZD
(/)
C/)ÜJCK:
Q.

(Vl)

P R E S S U R E
O FFSET

(Vl)

V

VOLUM E
Figure 2.5 Pressure Offset Between Isothermal and Hugoniot States

The isothermal pressure Pj (v) can be obtained from any of the previous 

equations of state, equations (2.26), (2.27), (2.28) and (2.36), and 

the remaining pressure increment, P̂  (v) - Pi (v), is the result of an 

increase in temperature from %  to I4 at a constant volume value of 

Vl; therefore,

(2.49)%  (v) = % (v) + [ (t/v ) - Ao)

Then the first and second volume functions, %  (v) and % (v) are

\i(v) = Pj|vj - To P^to (2.50)

V2 (v j = PSyoVo/v . (2.51)
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M  alternate method of evaluating the pressure offsets between the 

Hugoniot and isothermal paths utilizes the Mie-Gruneisen equation with 

the Hugoniot as the reference such that

Ph(v) = [pi [ y ) + (yA) r  p (v)dv]/ [i -
%

- (y/v)(vo - v) /2 ] . (2.52)

The experimental techniques for isothermal pressure-volume measure­

ments have been documented by Bridgman and others. A high-pressure 

cell containing the test specimen is subjected to high fluid pressure 

with a fluid and the pressures and the accompanying specimen volume 

changes are measured carefully. Another technique used by Stevens 

utilized a zero-clearance constraint cylinder about the test specimen 

which was loaded by close-fitting guided rams. Measurements were made 

of ram force and relative displacement of the loading rams to obtain 

the specimen pressure and volume. Both methods are pressure limited 

(< 30 kbar). The pressure cell method does not subject the specimen 

to the friction forces which are present in the laterally confined 

specimen test method. Appreciable stress and strain gradients in the 

laterally confined specimen are due to the friction forces. Stevens 

compensated for the friction effects by using a correction factor 

obtained from the compression of a known material, gold. Both methods 

are limited in pressure (< 30 kbar) but do not require a substantial 

amount of raw material for the specimen. The laterally confined com­

pression method is simpler and less expensive than the high-pressure 

cell technique.
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The ultrasonically determined isothermal bulk modulus and the

pressure derivative of the isothermal bulk modulus, ond j can

be used to evaluate the constant coefficients of the various isothermal

equations of state (see equations (2.26), (2.27), (2.28) and (2.2$) ).

This indirect method is detailed by Overton and Anderson and a good

description of the experimental techniques used to evaluate the bulk
kYmodulus and its pressure derivative is described by McSkimin.

Ultrasonic test equipment, aa environmental test cell with temperature 

and pressure variation capabilities and considerable ability in inter­

preting ultrasonic records is needed to make the necessary measure­

ments.

• Isothermal equations of state have been determined by direct 

measurement^^; ̂9 ; 50 the indirect ultrasonic method^^ ; 52,53, 5^ for 

a number of metals and some non-metallic materials. Evaluation of the 

isothermal equation of state of low strength single-phase polymers by

ir y
McSkimin and Andreatch, "Analysis of the ..."

UftBridgman, "The Physics of ..."
iiQ —  ■■R. W. Warfield, Compressibility of Bulk Polymers, Poly. Engr. 

and Sci., 6 (l$66), 176-80.

W. Warfield, The Compressibility of Polymers to 20000 
Atmospheres, Naval Ordnance Laboratory NOLTR-66-45 (June 1$66).

^^Overton, "Relation Between Ultrasonically ..."
52Anderson, "The Use of ..."

^^Ruoff, "Linear Shock-Velocity ..."
5kC. A. Rotter and 0. S. Smith, Ultrasonic Equation of State of 

Iron - I. Low Pressure, Room Temperature, J. Phys. Chem. Solids,
27 (1966), 267-76.
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the direct pressure-volrme measurement methods and the indirect ultra­

sonic technique, appears to be feasible. The overall sûnplicity of 

the laterally confined compression method has considerable appeal.



CHAPTER III

THE MURNAGHAN F0RI4 AND TRANSFORMATIONS

The Murnaghan equation of state is oased on tne assumption that 

the isothermal bulk modulus of a material increases linearly with 

pressure, i.e.

By = - v(àP/âv)y = Bjo + Byo? . (j.l)

Integration of the linear pressure vs. bulk modulus relation gives

t n  (vo /v )  = (l/By'o) t n  |Byo(P/Byo) + 1 (3 .2 )
t

which can be manipulated to yield the standard Murnaghan form

P = (Byo/̂ io) l(Vo/v)®'° - 1 I . (3.3)

A more general expression is a MacLaurin series expansion in terms of 

pressure so that

B = Bo + Bo P + (1/2) B̂' P̂  + (1/6 ) Bo" P^ + (l/24) b/'" P̂  +...
(3 .4 )

where the primes represent differentiation with respect to pressure 

and the bulk modulus, B, can be either the isothermal value By or the 

adiabatic value Bs . The relationship betvreen the isothermal and the 

adiabatic bulk moduli and their pressure derivatives can be obtained 

from the established thermodynamic formulas

^^Murnaghan, "The Compressibility of Media . . . ."
-2A-
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Cp - c, = T V 3^Bj . (3 .5)

(i/Bt) - (l/Bs ) = T V eVCp • (3.6)

The thermodynamic variables, Cv the specific heat at constant volume,

Cp the specific heat at constant pressure, 3 the thermal coefficient of 

volume expansion. By the isothermal bulk modulus, and B5 the adiabatic 

bulk modulus, have the following thermodynamic definitions

Cp = (SE/^T)p (3 .Ta)

Cv = (dE/^T)v .(3.Tb)

3 = (l/v)(av/dT)p (3.7c)

By = - v(dP/av)T (3.7d)

Bs = - v(BP/^v)s (3 .7e)

Equation (3.6) identifies the isothermal bulk modulus as

BT=Bs(Cv/Cp)=Bs/(l + T v 8^Bs/Cp) . (3.8)

The isothermal bulk modulus pressure derivative is

B( = Bs + (T v 3^BT/Cp) 1 - 2(dBT/^T)p/9BT - 2(dBs/dP)T

+ ( T v 3̂ BT/Cp)=[(BBs/BP)T-l(B3AT)p/3̂ | . (3 .9 )

The role of the bulk modulus and its pressure derivatives in the iso­

thermal equation of state can be seen when the pressure derivatives 

of the volume are evaluated for the following general MacLaurin series 

representation of an isothermal equation of state

v(p) = v(0) + v'(0)P + (1/2 ) v"(0)p: + (1/6) v'"(0)P^

+ (1/24) v""(0)P^ + . . . . (3.10)

Rearranging equation (3.7d), the thermodynamic definition of the 

isothermal bulk modulus, to obtain

v'(0) = - v (0 ) /B to (3.11)

and evaluating the next three pressure derivatives of the initial
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volume gives

v"(0) = (v(0)/B^To) (l + B(o) = v(0)m/B|o (3.12)

v"(0) = (v (0 )/B % )|l + 3B|o+ 2(Bjo)^- BToB"o= -v(o)n/F^o (3.13)

v""(0) = (v(0)/B%))[l + 6Bjo+ ll(B ;o )^ -  (^BToBm+ 6(B)o)''

= v(0)q/B% . (3.1'+)

Now the first five terms of equation (].10) can be expressed as

v(p ) = v(0) ( 1 - 1/Bto + m/Bro - n/sfo + q/^o + ... ) (3.15)

The Murnaghan equation can be transformed from the isothermal fonri 

(equation (3.3)) to obtain the isentrope and Hugoniot pressures by 

a method described by D u v a l l . T h e  method is based on partitioning 

the specific internal energy into distortional and thermal vibrational 

components such that the pressure is related to the volume and the 

temperature in the following fashion

P =V, (v) + TVs (v) , (3.16)

Figure 3.1 illustrates the isothermal, isentropie and Hugoniot paths.

Duvall evaluated the isentrope and Hugoniot in terms of the iso­

thermal pressure and the corresponding constant-volume pressure 

offset to the isentrope and Hugoniot.

^^Duvall and Zwolinski, "Entropie Equations of State . . . ."
57Duvall, "Pressure-Volume Relations . . . ."
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Figure 3«1 Pressure Offsets Betiveen the Isotherm, Isentrope and 

Hugoniot States

Expressing the Murnaghan equation in the form of equation (3.16) gives

P = (Bto/Bto ) (vo/v)'\B TO -  1 (T/v) - (%/vo ) 3BT0V0 (3.17)

such that the functions Vi(v) and V a ( v )  are

Vl (v) = (Byo/Bro) [ 

Va(v) = 3BtoVq/v .

- %3B TO (3.18)

(3 .19)

The increase in entropy from point b on the isotherm to point c on 

the isentrope is

J  fl/Cv)dS = J ' "  (l/T)dT (3.20)

if the specific heat of constant volume, Cv, is independent of entropy. 

By using the Maxwell relation,

(0S/3v)t = (ôP/âT)v , (3.21)

the change in entropy from point a to point b along the isotherm can 

be identified as



r® r '  r  '(l/Cv)dS = (aS/^v) (l/Cv)dv = (âP/dT)y@To (l/Cv)dv
s: i  4. (3.22)

Substituting the derivative of the pressure with respect to tempera­

ture at constant volume that is obtained by differentiating equation

(3.17), into equation (3.22) permits equation (3-20) to be written as
r o -V -Vq

(l/Cy)dS = (l/T)dT = - Va(v)/Cy dV = V2(v)/Cy dV
s T: < i (3.23)

Integration of equation yields

to(T/To) = (SBtoVo/Cv ) tn(vo/v) . (3.24)

Equation (3.24) expressed in the desired alternate form gives the 

temperature at point c on the isentrope as

T = To exp (BBtoVo /Cv) . (3.25)

Substituting equation (3.25) for the temperature T, in equation

(3 .17) defines the pressure, P», on the isentrope at point c as

P a  = B t o / b ’to [ ( v o / v ) ® ' °  -  1 J + % 8BT0 [ (Vo / v ) ^ ^ ' I  1
(3.26)

Transformation from point b on the isothermal path to point d 

on the Hugoniot utilizes the Rankine-Hugoniot energy conservation 

equation,

Eh-Eo = (1/2 ) (Ph + Po)(vo - v) , (3 .27)

and the equivalent energy expression

Eh - Eo = J Vi(v)dv + Cv (Th - To) . (3.28)
'̂0

The temperature difference, Th - Tq , is obtained from the following 

equations

Pi = Vi(v) + ToVs(v) . (3.29)

Ph = Vi(v) + ThVs(v) ■ . (3 .30)

such that



r® r' r'(l/Cv)dS = (aS/^v) (l/Cv)dv = (ôP/9T)y@T0 (l/Cy)dv
s: -l (3.22)

Substituting the derivative of the pressure with respect to tempera­

ture at constant volume that is obtained by differentiating equation

(3 .17), into equation (3.22) permits equation (3>20) to be written as

I (l/Cv)dS = r (l/T)dT = - f Vg(v)/Cv dV = f °V2(v)/C, dV
s*' ^ (3 .23)

Integration of equation yields

t n ( T / T o )  = (0BtoVo/Cv ) tn(vo/v) . (3.24)
Equation (3.24) expressed in the desired alternate form gives the 

temperature at point c on the isentrope as

T = To exp (bB toVo /Cv) . (3.2$)

Substituting equation (3.2$) for the temperature T, in equation

(3 .17) defines the pressure, P,, on the isentrope at point c as

Pa = Bto/B ô [(vo/v)®'° - i ]+ 1
(3.26)

Transformation from point b on the isothermal path to point d 

on the Hugoniot utilizes the Rankine-Hugoniot energy conservation 

equation,

Eh - Eo = (1/2) (Ph + Po)(vo - v) , (3.27)

and the equivalent energy expression

Eh - Eo = J Vi(v)dv + Cv (Th - To) . (3.28)
''o

The temperature difference, Th - Tq , is obtained from the following 

equations

Pi =Vi(v) + ToVa(v) . (3.29)

Ph =Vi(v) + ThVs(v) ' . (3 .30)

such that
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Th = To = (Ph - Pi )/Va(v) . (3.31)

Substituting equation (3*3l) in equation (3.28) and equating the two 

energy expressions gives

(l/2)(P,+ Po)(vo - v) = f Vi(v)dv + Cv (Ph - Pi )/V2 (v)| (3.32)
•̂Vo

which can he arranged to obtain

Pi - (V2 (v)/Cv) j* Vi(v)dv j  1 - Va(v)(vo - v)/2Cv .(3.33)

Replacing the functions V]_(v) and Vg (v) with the equivalent Murnaghan 

values, equations (3.18) and (3 .19) and integrating yields

Ph =Pi+ (Va(v)/Cv) |(PiVo/2 |l - (v/vo)] -v|y/ 

|l - (Va (v )v q /2C V ) I 1 - (v /vq ) | .

where Pj and V are

P i =  (B t o/Bt o )[(v q /v )®^ % g B TO 1 - (vo/v)

(3.34)

(3.35)

= [BtoVq /b Io Ib 'to - l)]| (\h/v)^^'° " - 1

- (Bto/Bjo SBto Iq) I 1 - (v/vq ) (3.36)

When the value of the adiabatic bulk modulus in the thermodynamic 

definition of the bulk modulus is replaced by a MacLaurin series ex­

pansion, the resulting differential equation is

-  V  ( d P / d v ) s  =  B s o  +  B ^ o  P  + (1/2 ) B s o  P ^  + . . . • (3.37)

Integration of equation (3.37) leads to the isentropic equation of

state58

P = (v/vo f j  a j - aa(v/vq ) (3 .38)

where the constants â , â  and ag are

58.Ruoff, "Linear Shock-Velocity . . . . "
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30 (3.38a)

= B s o / | b  so  ( B s o )  -  ^BgoBsoj  j  = B s o / ( B s o  ^o) ( 3 »38b )

3-g =Bso/|bso"[(Bso)^“ 2BsoBso I = Bso /(B$o "Sq) (3-38c)

By using the Mie-Grüneisen equation of state, 

Ph - P = (y/v)(Eh - E) 

and the Hugoniot and isentrope energies,

Eh = (Ph + Po )(vo- v)/2

J P d V

(3.39)

(3.40)

(3.41)

the Hugoniot pressure can be expressed as

Ph = p + (y/v) jT P d V I y  |l - (y/v)(vo - v)/2 (3.42)

where the isentrope pressure, P, is obtained from equation (3>38) and

the Gruneisen ratio is y . When equation (3.42) is evaluated and 

combined with the first two Rankine-Hugoniot conservation.equations, 

Vo/v = U/(U - u) (3 .43)

Ph - Po = U u/vo (3.44)

the coefficients of an assumed second-degree shock velocity-particle 

velocity relationship.

U = bo + biU + bgu 

can be expressed as

(3 .45)

bo = (BsoVo) (3 .45a)

bi = (Bso + l)/4 (3 .45b)

bs = ||(b 'so + 1)/4](T - Bio + 4y) + 2BsoBso|/2l|.(Bsô b)'̂ ^

= |bi(7 - b U  + 4y)+ 2BsoBioJ/24bo (3.45c)
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59The Grüneisen ratio, Y, is assumed to be a function of volume of the 

form

Y = Yo + | ( v o / v )  -  1  + As ( v o / v )  -  1

Equation (3.^6) can he expressed in an alternate form as

Y = Yo + Ai |uy'(U - u) -4- As Uy/(U - u)

(3 .46 )

(3 .4 7 )

since

Vq/v - 1 = U/(U - u) - 1 = u/(U - u) , (3.48)

The value of the second-degree coefficient, bg, in equation (3.45) can 

now be vnritten as

bs = [ b i ( 7  - b 'so + 4 Yo) + SBsoBso /24bo • (3 .4$d)

The isentropic equation of state, equation (3.38), obtained from equa­

tion (3 .37), assumes that the adiabatic bulk modulus pressure deriva­

tives beyond the second pressure derivative are negligibly small and 

the value of the constant, ao, is positive definite. Ruoff^^ has found 

the effect of the second-degree term in the shock velocity-particle 

velocity relationship (equation (3.45)) as did Dttvall̂  ̂and Adler^^ 

in determining that the shock velocity-particle velocity relation of 

single-phase materials is linear.

Proceeding on the premise that the shock velocity-particle 

velocity relationship is linear, i.e.

59

60

61

62

Rice, McQueen and Walsh, "Compression of Solids . . . ." 

Ruoff, "Linear Shock Velocity . . . . "

Duvall and Fowles, "Shock Waves in High Pressure . . . ."

B. J, Adler, Physics Experiments with Strong Pressure Pulses, 
in Solids Under Pressure. Edited by ¥. Paul and D. W. Warschauer.
Hew York; Mc-Graw Hill, I963.
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U = bo + biU = U q + bi u, (3.49)

the Murnaghan equations of state for the isentrope and the Hugoniot in

terms of an experimentally determined isothermal Murnaghan equation of 

state,

P = (Bto/Bto) (vo/v)^'° - 1 , (3.3)

are

P = ( B s o / B s o )  (vo/v)^^° - 1 (isentrope)

where

and

where

Bso - Bto/(1 - Btô oVo B /Cp )

b'so = BTO - (ToVoB%o/Cp) [1 - (2/3Bto)(0Bto/BT)

- 2(ôBso/ôP)r] + (ïbVoB^BTo/Cp)®[(ôBso/ôP)T - 1

- (l/^^)(a8/BT)p| ,

Vo - V

|l - (Vg(v)/2 Cv) 1 - (v/vo)| Vo I  (Hugoniot)

lb BBto 1 - (vo/v) j

(3.50)

(3.5C6)

(3.50b)

Ph =Pi + (V8(v)/Cv)<(P,/2) 1 - (v/vo)

Pi = (Bt o / B t o ) (v q /v ) - 1 

V = |btoVo/Bto(b'to - 1)| [ (vo/v)®'° - 1 

- (Bto/B to + 8Bto To) I 1 - (v/vo )

(3.34)

(3.35)

(3.36)



CHAPTER IV 

THE EXPERIMENTAL PROGRAM AND PROCEDURE

The experimental program was designed to investi^te the role of 

specimen geometry and specimen-constraint cylinder friction in the lat­

erally confined isothermal compression tests of low-strength polymers 

over a pressure range from 0 to 10 kbar. A series of laterally confined 

isothermal compression tests were run on six groups of polymethylmetha­

crylate (PMMA) specimens of different length-to-diameter ratios. The 

specimen deflection, the axial friction force between the specimen and 

the constraint cylinder wall, and the total load applied to the speci­

men were measured, A minimum of 15 specimens were tested in each of 

the six groups having length to diameter ratios of L/d = l/8, l/L, l/2, 

1, 2, 4.

In addition to the constraint cylinder and the closely-fitting 

loading rams, a Baldwin subpress, a Kistler cylindrical load cell, a 

Baldwin deflectometer, a 30,000-pound capacity Tinius Olsen universal 

test machine, a Dymec digital data system, and force and deflection 

calibration equipment were used in the test setup. A detailed list 

of the commercial equipment that was used in the test program is 

presented in Table 4.1. Figure 4.1 shows the setup.
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BALDWIN
DEFLECTOMETER r-B A L D W IN  SUBPRESS

CONSTRAINT 
CYLINDER 
TEST SPECIMEN 
AND LOADING 
RAMS ASSEMBLY

KISTLER LOAD CELL ASSEMBLY
Figure 4.1 Test Set Up 

The axial friction force was transferred from the base of the con­

straint cylinder to the bottom subpress platen by the cylindrical load 

cell and the force applied to the bottom loading ram by the specimen was 

transferred to the bottom subpress platen by the load button. (See 

Figure 4.2).
TOTAL APPLIED FORCE 

CONSTRAINT C Y L IN D E R \ i  -LOADING RAMS

FRICTION FORCE

KISTLER 
LOAD CELL

LOAD BUnON

\\\\i

TEST SPECIMEN

  NET SPECIMEN
FORCE

Figure 4.2 Test specimen-constraint cylinder-load cell assembly
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The total force applied to the upper loading ram vas measured with the 

testing machine's force measuring system and the axial friction force 

was measured with the cylindrical load cell. The test specimen deforma­

tion was determined hy measuring the relative displacement of the 

subpress platens with a deflectometer. A digital data system was used 

to record the relative platen displacement, axial friction force, and 

the total applied force. The deflectometer was calibrated before and 

after testing each group of specimens with an Instron extensiometer 

calibrator. Doall gage blocks were used to check the calibration be­

fore each test. Since both force measuring systems, the cylindrical 

load cell and the testing machine's force measuring system, could be 

electronically stepped to cover different force ranges, calibration of 

the force measuring systems was carried out in 15-pound load increments 

over the 150-pound force range with Instron calibration weights. Cal­

ibration of the force and displacement measuring systems included the 

digital data system. The average overall errors of five calibration 

runs for the relative platen displacement, axial friction force and 

total applied force measuring systems were 0.52, 0.89 and 0.47 per 

cent, respectively. (See Table 4.2.)

The constraint cylinders and the loading rams were fabricated of 

4340 steel heat treated to a hardness of 52 Rockwell C with ground 

surfaces. Two constraint cylinders, 2.000 and 4.000 inches in length, 

with outside and inside diameters of 2.000 and 0.5046 inches were 

used. The 0,5034 inch diameter of the two loading ram sets, 2.000 

and 0.500 inches in length, was selected to provide minimum clearance 

under maximum load (150,000 pounds). Details of the constraint
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cylinders and the loading rams are shown in Figure !+.3. The test 

specimen dimensions are detailed in Figure k . h . Figure 4 shows the 

cylindrical load-cell fixture details.

The step-by-step test procedure that was used in the individual 

tests is:

1) carefully clean each of the specimens, constraint cylinder, 

and loading rams with alcohol.

2) measure and record the diameter and length of the specimen.

3) coat the specimen, loading rams and the internal diameter of 

the constraint cylinder with a molybdenum disulfide solution 

and let the parts dry.

4) cool the test specimen to 50°F.

5) assemble the test specimen, constraint cylinder, and loading 

rams, place the assembly in the subpress; and properly posi­

tion the assembly on the cylindrical load cell with the bottom 

loading ram in contact with the load button.

6) wait until thermal equilibrium is achieved (approximately 15 

minutes); then check the loading ram and reposition to remove 

any clearance between the bottom loading ram and the load 

button.

7) check the deflectometer calibration by placing a Doall gage 

block between the deflectometer-upper platen connection.

8) zero the force measuring systems.

9) start the testing machine's continuous force-deflection 

recorder.

lO) begin loading the specimen at a rate of 0.010 inch per minute.
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11) stop the testing machine and read with the digital data 

system the output of the deflectometer and the load cells 

as loading on the specimen begins and at each of ten load 

values; 3000 to 30,000 pounds in 3000 pound increments.
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4 .000

I 0.5046

M l » ?
2.000
2.010

J  L M Q 4 6

zoio T '
2.000

LONG CONSTRAINT CYLINDER

4.0 10

2.000
SHORT CONSTRAINT CYLINDER

0.5036 0.510
0.5034 2 .000

LONG LOADING RAM

0.5034 0.500

SHORT LOADING RAM
Notes; 1. Material 43^0 heat treated to $2 R.C.

og___
2. All surfaces y or better
3. Ends of cylinders and rams must be flat and parallel within .0005
4. All dimensions in inches

Figure 4.3 Constraint Cylinder and loading ram details
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a  5048
0 3 O 4 é

Notes:
1. Ends of cylinder must be flat and parallel within .0005
2. All purfaces y or better
3. All dimensions in inches

SPECIMEN DIMENSIONS
SERIES LENGTH. IN.

100 0.063 + 0 .000  -  0.001
200 0.125 + 0 .000  -  0.001
300 0.250  + 0 .000  -  0:001
400 0.500  + 0 .000  -  0.001
500 1.000 + 0 .000  -  0.001
600 2.000  + 0 .000  -  0.001

Figure d .4 Test specimen dimensions
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$

e /

PRELOADING FIXTURE  
FOR THE KISTLER 
C Y LIN D R IC A L LOAD CELL

•KISTLER MODEL 907 LOAD CELL

^  DIA. - 2 4 N F  BOLTS

7  THICK 4 1 3 0  STEEL PLATE 
* HEAT TREATED TO 52R.C. 

SURFACE F I N I S H  3 ^ ON
3 |  X 3 |  SURFACES

■ 4  HOLES ^  -  2 4  NF
1 ^  DIA.

y 1 .2 3 3

J
0 . 6 2 0  —  

T

1 . 125
- 0 . 4 7 5

u n T T c  LOAD B U n O N  NOTES:
1. 4 3 4 0  STEEL HEAT TREATED TO 5 2  R .C .
2. 3 ^  OR BETTER SURFACE F I N I S H
3. ENDS OF LOAD B U H O N  M U ST BE 

FLAT AND PARALLEL W ITHIN . 0 0 0 5
4 .  ALL D IM E N S IO N S  IN INCHES

Figure 4.5 Load-Cell Fixture Details
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table 4.1

TABLE OF COMMERCIAL EQUIPMENT

1. 30,000 pound Tinius Olsen, Model X-Y 8, universal test machine,

2. Baldwin Model PDIM Multiple Range Deflectoraeter.

3. Doall Precision Gage Blocks, Set 35-S.

4. Instron Extensiometer Calibrator

5. Instron Class "C" Calibration Weights

6. Kistler Model 9OT Load Cell, 60, 000 pound capacity

7. Kistler Model $68 Charge Amplifier

8. Digital Data System

a. Dymec Model 2401C Integrating Digital Voltmeter

b. Hewlett-Packard J66 $62a Digital Printer

c. Dymec Model 29OIA Input Scanner

9. Molybdenum lubricant number 369 dry lubricant manufactured by 

Imperial Oil and Grease Company.
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TABIiE 4.2

TEST SYSTEt-î CALIBRATION

Ca1Ibratlon Values, %

Reading
Number

1
2
3
4
5
6
T
8
9
10

Displacement 
% of 

Total Output

10.526
21.053
31.579
42.105
52.632
63.158
73.684 
84.211
94.737
100.000

Overall Force 
Reading, ^ of 
Total Output

10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000

Friction Force 
Reading, of 
Total Output

10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
100.000

Reading
Number
Run Number 1 

1 
2
3
4
5
6
7
8 
9

Average Error
Run Number 2 
1 
2
3
4
5
6
7
8 
9

Average Error

Displacement 
Error,

- 2.47
- 0.89
- 0.24
-  0.01 
0.29 
0.16 
0.07
0.09

- 0.15
0.48

- 2.71
-  1.12 
- 0.46
0.26
0.38
0.33
0.29
0.21
0.02
0.64

Overall Force 
Error, ’jo_

- 0.36 
0.24
0.85
1.05
1.01
0.38
0.68
0.34
0.31
0.58

- 0.08
0.93
0.59
0.63
0.97
0.73
0.44
0.17
0.23
0.53

Friction Force 
Error,_____ %

1.52 
-  1.02 
-  1.86 
-  1.02
- 1.52
- 0.17
- 0.65
- 0.38
- 0.17

0.92

- 1.48
0.99
0.16

- 0.25 
0.49

- 0.66
- 0.07
- 0.25
- 0.38

0.52
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TABLE 4.2 
(Continued)

Reading
Number

Displacement 
Error, %

Overall Force 
Error, %

Friction
Error,

Run Number 3
1 - 1.93 - 0.62 - 0.50
2 - 0.75 0.83 1.99
3 - 0.22 0.21 1.16
4 0.l4 l.l4 0.75
5 - 0.04 0.79 1.49
6 0.57 0.62 1.16
7 - 0.13 0.56 0.21
8 - 0 .l6 0.83 - 0.12
9 - 0.13 0.62 0.61

Average Error 0.45 0.69 0.89

Run Number 4
1 - 3.94 - 0.08 3.45
2 - 1.18 - 0.08 3.45
3 - 0.13 0.06 0.16
4 0.49 0.44 0.99
5 0.24 0.42 0.49
6 - 0.07 0.4o 0.99
T - 0.11 0.93 0.63
8 - 0.20 0.23 0.37
9 - 0.09 0.29 0.16

Average Error 0.72 0.32 1.19

Run Number 5
1 - 0.99 0 2.94
2 0.38 - 0.41 0.49
3 0.32 0.55 1.31
4 0.48 0 1.72
5 0.19 0 0
6- 0.06 0.48 - 0.33
7 - 0.04 0.12 0.84
8 - 0.21 0.47 0.49
9 - 0.16 0.05 0.22

Average E rro r 0.31 0.23 0.93

dL r---  (Reading Value - Calibration Value) 1 r\r\
Calibration Value

9
Average Error 1

" 9 2^ Error 
J =1

J (Absolute Value )
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TABLE 4.2 
(Continued)

SUMMARY

Average Displacement Error, ^ 0.52

Average Overall Force Error, io 0.4?

Average Friction Force Error, io 0 .89



CHAPTER V 

THE DATA REDUCTION PROCEDURE

The raw experimental data were in digital form and corresponded 

to the total applied force, the friction force and the specimen deform­

ation at ten points, taken at equal increments of the total applied 

force. The total and friction forces and the deformation were obtained 

by subtracting the "zero" digital count from the digital reading and 

then multiplying the result by the conversion constant, i.e.

T = (T* - %  ) ct (5.1a)

F =(F*-Fo*)cf (5.1b)
/ * * X , \D = (D - Db ) CD (5.1c)

where T , F and D are the digital values in counts corresponding to

the total applied force, the friction force and the specimen deforma-
■X" -X" •X’tion; To , Fq , and D o are the digital values in counts at zero total 

applied force, friction force and specimen deformation and the conver­

sion constants are Cj , pounds/count, Cf, pounds/count, and % , inches/ 

count.

A correction was made for the lateral specimen deformation due to 

expansion of the constraint cylinder since the specimen was assumed to 

be in a state of one-dimensional strain. Another correction was made 

for the elastic deflection of the loading rams because the specimen 

deformation measurement included ram deflections. Figure 5*1 shows the
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deforrnations of the specimen, constraint cylinder and loading rams due 

to the applied loads.

Assuming that the diametral strain at the inner diameter of the 

constraint cylinder is

g = Pdi/Ê(do - d? )j[(l - v) + (1 + v)(d% M  ) J  (5.2)

where di, do , E and v are the internal diameter, external diameter, 

Young's modulus and Poisson's ratio of the constraint cylinder. The 

internal pressure change, P, was assumed to he the average normal stress, 

(4T - 2F ) / t t  dî  . Loading ram deflections were determined from

ALi = i+TLi/nd^E (5.3a)

ALs = 1̂ (T - F)L2/nd^f (5.3h)

where d, Li, Lg and E are the diameter, lengths and Young's modulus of 

the loading rams. Specimen volume after the corrections for elastic 

deflections of the constraint cylinder and loading rams are included 

is

V* = (ttA )  (di (l + e)]^ (Lo . D + ALi + ALs) . (5-4)

Then the one-dimensional-strain deformation of the specimen becomes

AL = Lo - { l  + c f  (Io - D + ALi + ALs ) (5.5)

where D is the measured deflection obtained from equation (5.1c).

Because the distribution of the friction force along the length 

of the test specimen is unknown, the effective stress acting through­

out the test specimen was assumed to be the average of the stresses 

acting on the specimen,

P = (4T - 2F)/ndi^ . (5.6)

The friction forces were normalized with respect to specimen length
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and expressed as a per cent of the total applied force such that the
**

normalized friction force ratio, F , is

F** = 100 F/TLo . (5-T)

The Murnaghan representation of the experimental isothermal data was 

determined hy a least-squares fit of the experimental data points. The 

volume ratio, vo/v, of the Murnaghan equation can be expressed as

Vq/v = 1 /(1 - AL/Lq) = 1/(1 - s) (5*8 )

for the one-dimensional-strain state. A Murnaghan equation of the form

P = (b/A 1/(1 - e)|A _ 1 (5.9)

was used to obtain the least squares residual, C of n experimental data 

points, (Si ,Pi), vdth respect to the Murnaghan equation such that

C = 2  (B/A) 1/(1 - ei)
i=l

- P, (5.10)

A minimum value of the least squares residual, C, can be obtained by 

minimizing the residual with respect to the Murnaghan constants, A and 

B; therefore,

(B/A^)j[l/(1 - ej
n lA" 1

(dC/^A) = E  2 B 1/(1 - ej 
i=l

- 1

I (B/A) I |l/(l - -

(ÔC/0B) = ^  2 I (1/A) [1 - /(I - ejp - 1
n-1 ' I ‘

- P, j = 0  

A

(5 .11)

i=l

(B/A) 1/(1 - e j = 0 (5 .12)

Because an explicit simultaneous solution of equations (5.11 ) and (5-12) 

could not be obtained, an iterative process was used to determine the 

A and B values. The iterative procedure utilized equation (5.IO) and 

a rearranged version of equation (5.12) ,
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B = A ^  P̂ l [l/(l - e j p  - l]/ I [1 /(1 - e j p  - if (5.12a)

to converge on the A and B values in the following manner. A value of 

A less than the correct value was assumed and B was computed with 

equation ($.l2a), then she least squares residual, C, was computed 

with equation (5.IO). The exponent A was increased by an increment,

AA, and the new values of B and C were computed. This procedure was 

repeated until a minimum residual value, Cx, was obtained, then the 

increment AA was reduced to AA/lO and the iterative process was re­

peated starting with A set equal to Ay._z . Successive tenfold decreases 

in the increment AA, followed by the application of the iterative 

minimization process permitted the value of A to be determined within 

- AA^^ . The tolerance on the Murna^an exponent. A, was ±0.0001 for 

each individual test. The iterative computations were carried out on 

a GE 235 time sharing digital computer for the isothermal data and 

the transformed Hugoniot data. A listing of the computer program is 

contained in Appendix A.

The least-squares fitting technique for discrete data points was 

used to detennine the Murnaghan constants, A and B, for each test spec­

imen. A composite Murnaghan equation for each series of specimens of 

the same nominal length was obtained by a least-squares fit of the 

series' individual Murnaghan equations. The fit was made to the indiv­

idual Murnaghan equations rather than the discrete data points so that 

convergence difficulties could be minimized.

A least-squares residual, Cj, for each specimen's Murnaghan 

equation with respect to the composite Murnaghan equation over the 

interval, [O, Sq], was expressed as



c ,  =

Il 1/(1 - ei)

1/(1 - e)
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R

- 1 (Bj/Aj)

‘J - 1 d e (5.13)

where R and S are the constants of the composite Murnaghan equation.

Integration of equation (5.13) yielded

.1-2RI /, . \ , 1-R- (1 - ejCj = (8=/R=) 1 - (1 _ e j - 2R) - 2 1

Go - (2SBj/RA J ) j 1 - (l - /(l - R - Aj)- 1 -(1 -

R)

-R

1-A
/(l-12)- 1 - (l - Eq) /(l"Aj)+eo + (Bj/Aj)

jl - (l - Eq) j /(l - 2Aj) - 1 - (l - %)

/ ( I  - A j )  + Eo I (5.14)

Therefore, the least-squares residual, C, for n different individual 

Murnaghan equations became

c = ); c, . (5.15)

,1-A,

Minimization of the least-squares residual, C, was obtained by requiring 

(ôC/ôS) = - (2/R) E  |(Bj/Aj)|ui - Us - U3 + Eo + (2S/R̂  )
J=l'

U4 - 2 U3 + Gg = 0 . (5.16)

and

(ôC/ôR) = (2S/R®) f  I (Bj(Aj)fui - Us - U3 + eoll- (2S/R)
J = 1 ‘ j=]

(Bj/Aj) (u5 - ug) tn (1 - So) + u, - %  - (2Ŝ /R̂ ) E
j=l

j=l
n

U4 - 2 U3 + Eq
n r

+ (2^ /R^ ) ^  (uii - Ug) tn (1 - %)+ Ug - Ug
j=l
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where

- (2/ r ) ( ô S / ô R )  E ^ | ( B j / A j ) 1% - Ug - U3 + Eq 1 + (2S/R^)

n ,
(ôS/ôR) E  U4 -  2u3 + E (5.17)

J=1 '■
1

Ui = /  (1 - R - Aj) ( 5 .1 8 a )

Ug = 1 - (1  - ^ o / " ^ ' ] / ( 1 - A j ) (5.18b)

U3 = 1 -  (1 - e J ^ " ^  ] / ( l  - R) (5 . 1 8 c )

U4 = 1 - (1 -  Go ) ^ " ^ ^ ]  / ( 1 -  2R) (5.l8d)

Us = 1 - (1 /(I - R -  A j ) (5.l8e)

Us = (1  -  e J ^ ' ^ / ( i  - R) (5 . l 8f )

U? = U g / ( l  - R - Aj ) (5.18g)

Us = 113/(1 - R) (5.l8h)

U9 = U 4 / ( l  - 2R) (5 .l8i)

Uio = 1 - (1 -eo)^"^'|/( 1 - 2A J ) (5 .l8j)

U u  = .1 - Go )̂  ' ̂  / (1 - 2R) (5 .1 8 k)

Equation (5.I6) was solved to obtain the composite constant, S, such 

that

S = RIJ u%- Us - Us + Eq 1/  ^  1̂ 4 -  2ua + Eq (5«19)

and the derivative, (ôS/ôR), was determined to be

(ôS/âR) = ^  |(Bj/Aj) 
J=l‘

Ui - Ug - Ua + Eq I^  U4 - 2ua + Eq

+ R I (Bj /Aj ) (us -  u g ) t n  (1  - Eg) + U7 - Ue|
J=l'

/ N *  - 2 U3 + Eq (5.20)
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Substitution of equivalent expressions for S and (3S/^R) defined by 

equations (5.19) and (5.20) into equations (5-15) and (5.17), permitted 

the least-squares residual, C, and its derivative, (ôC/ôR), to be ex­

pressed as functions of R but they were independent of S. Since 

equations (5.19) and (5.20) define S and (ôS/ôR) as functions of R, the 

least-squares residual, C, could be minimized simultaneously with 

respect to R and S by variation of only R.

An iterative procedure was used to evaluate the constants, R and

S, of the composite Murnaghan equation. The initial value, R i, was

assumed for the composite Murnaghan exponent and the least-squares

residual, C, and the partial derivative, (âC/âR),’were computed after 

S and (ô S/SR) were determined with equations (5.19) and (5.20). An 

increment AR, equal to Ri/lO, was used to obtain the next R value,

(ac/aR)/(ac/^R)| (5.21)

and then the residual, C, and the partial derivative, (oC/SR), i^re 

computed. The iteration m s  stopped when the difference between two 

successive R values was less than 0.0001. Composite Murnaghan equa­

tions were determined for the isothermal and Hugoniot sets of individual 

Murnaghan equations for each specimen series. Computations were made 

with a GE 235 time sharing digital computer. The computer program, 

LSMF-5, is presented in Appendix B.

All friction force values were adjusted to the nearest of ten normal 

force values, 3000, 6000, 9000, 12,000, 15,000, l8,000, 21,000, 24,000,

27,000 and 30,000 pounds, by assuming the friction force-normal force 

relationship in the vicinity of the ten normal force values to be linear.

Rm = R«-i+ AR
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Table 5-1 contains the polymethylmethacrylate property values, 

density, specific volume, coefficient of thermal expansion, and specific 

heat values that were used to compute the pressure offsets between the 

isothermal and Hugoniot states.
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table 5.1

POLYMETHÏLMETHACRYIATE (PMMA) PROPERTY DATA

Rohm and Haas Plexiglas Type lA UVA 
%-Density
*
Specific Gravity
t
Specific Volume

Coefficient of Thermal Expansion 

Specific Heat at Constant Volume*

Temperature

0 . C 4 2 5 4  Vo/ir?

1 . 1 8

23.66  i n M / l b .

0.000135 li^/in3 °F

0.33  BTU/lb °F 

3079 in-lb/lb

75 “F

534.7 °R

**Longitudinal Velocity

Shear Velocity

Bulk Velocity

109500 in./sec 

55120 in./sec. 

89050 in./sec.

Data from Rohm and Haas

**Data from Laboratory Measurements



CHAPTER VI 

TEST RESULTS

The composite isothermal and the transformed Hugoniot stress- 

strain curves under one-dimensional strain conditions for each of the 

six specimen series are presented in Figure 6.1 and the corresponding 

Murnaghan constants are tabulated in Table 6.1. The isothermal compos­

ite cum^e and the data points from each test specimen series' individ­

ual tests are plotted in Figures 6.2, 6.3, 6.4, 6.5, 6.5 and 6.7- The 

specimen stress was assumed to be the average of the normal stresses 

acting on the two specimen boundaries. Results of the individual 

tests of each specimen series are summarized in Tables 6.4, 6.5, 6 .6,

6.7, 6.8, and 6.9. Specimen geometry, expressed as the length-to- 

diameter ratio, affected the stress-strain curves. An increase in the

specimen length produced a decrease in the specimen strain. The spec-
2

imen strain of the isothermal composites at a stress of 150,000 lb/in , 

varied from 0.2848 for the l/l6-inch long series to O.II38 for the 

2-inch long specimen series. These values are plotted in Figure 6.8.

The scatter of the individual test specimens is also shown in Figure 6.8.

A normal stress gradient was present in the test specimen due to 

the axial friction forces caused by the lateral constraint of the 

specimen. The magnitude of the friction force acting on an individual 

test specimen was dependent on the specimen length and the normal force

-54-
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acting on the specimen. Observed minimum and maximum friction forces 

were 63 pounds produced by a 3000-pound normal force acting on a 1/16- 

inch long specimen, and 11,122 pounds produced by a 30,000 pound normal 

force acting on a 2-inch long specimen. A consistent relationship 

existed between the normalized friction force, F , and the applied 

normal force, T, for each of the test specimen series. Figure 6.3 shows 

the average normalized friction of each specimen series and the average 

value of all specimen series as the applied normal force was increased 

from 3000 to 30,000 pounds. Values of the average normalized friction 

forces and the minimum and maximum variation of the individual normal­

ized friction forces are listed in Table 6.2.

Since the friction force distribution along the length of the 

specimen was not determined, the distribution of the normal stress 

gradient throughout the specimen was unknown and the specimen deforma­

tion could not be related to a specific normal stress. The range in 

the isothermal Murnaghan constants associated with the normal stress 

uncertainty is illustrated by Figures 6 .h and tabulated in Table 6.3 .
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t a b l e  6 .1

POLYMETHYIMETHACRYLATE (PMMA ) COMPOSITE SUMMARY

PMMA
Specimen
Series

Murnaghan
Constant
Bo

Murnaghan 
Constant 
Bo ; Ibŷ in®.

Eo, Strain at 
a = 1$0;000 

Ib/in^

Isothermal Composites
100 l.L$8 366000 0.28L8
200 2.286 $11700 0.2010
300 2.97L 6$9800 0.1$9L
Loo L.LoL 717200 0.1378
$00 L.996 776000 0.126$
6oo 6.997 792300 0.1136

Hugoniot Composites
100 I.87L 36L700 0.2628
200 3.391 $11000 O.I8L3
300 3.667 679100 O.IL9L

Loo $.101 717100 0.1327'
$00 5.732 776$00 0.1219

600 7.71L 793L00 0.1101
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TABLE 6 .2

POLYMETHÏIMETHACRYLATE (PMMA) FRICTION SUNMARY

PMMA
Specimen
Series 100 200 300 4 00 500 600 Average

Total 
Normal 
Force, lb

Average
Normalized
Friction

- i 6 . c e  
11.9t

^5.1
-l4.i
8.8

40.8
-29.7
19.6

45.4
-17.3
17.7

29.$
-24.1
10.8

32.A 
-24.5

6.3

4 o . 4 3000

Force*,F**
33.9
-15.8
16.0

27.1 
-10.2
12.1

24.7
-17.1
22.1

32.4 
- 7.1 
16.8

23.9
-18.5
21.3

25.3
..20.3
6.7

27.9 6000

27.7 
- 8.8 
18.3

21.0
- 9.9

? . 8

18.4
-11.8
9.^

24.9 
- 9.8 
15.2

21.0
-15.0
20.3

20.4
-16.1

7.5

22.2 9000

24.1
-13.3
18.2

18.3
-10.1

9.5

15.5 
- 9.3
8.4

21.3  
- 7.6 
13.5

19.5 
-12.7
18.6

17.8
-13.8
7.0

19.4 12000

22.1
-12.4
16.5

16.9 
- 7.0

9.5

13.7 
- 7.5

8.5

19.3 
- 6.3
13.3

18.7
-10.3
16.2

16.4
-12.3

7.3

17.9 15000

21.0
-13.4
15.7

16.2
-10.1

9.5

12.8 
- 7.3 

8.5

18.3 
-  6 . 6  
11.0

18.4
-10.4
l4.l

15.5
-11.4
4.5

17.0 18000

20.8
-13.0
15.2

16.2
-10.5
9.3

12.6 
- 7.6

8.7

18.3 
- 6.6 
9.8

18.6 
- 8.6
11.6

15.1
-10.8

5.2

16.9 21000

21.3
-12.5
12.2

16.6
-10.5
9.3

12.9 
- 8.2

6.7

19.1 
- 6.2 
8.8

18.9 
- 9.8 
9.6

l4.8
-10.4
4.8

17.3 24000

22.6
-11.8
14.6

17.6
-10.6

9.1

13.8 
- 9.1

8.7

19.8
- 5.0
8.4

19.4 
- 9.8
6.1

14.5 
- 9.8
4.6

18.0 27000

24.9 
-11.5
13.9

19.1
-10.3
8.8

15.0 
- 9.6

8.9

20.8
- 4.5 

7.3

19.9 
- 9.8 
6.2

13.9
- 9.0

4 .6

18.9 30000

* F =100 A V
TL

a Minimum variation from average 

b Maximum variation from average
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TABLE 6 .3

POLYMETHYmETHACRYLATE (PMMA) ISOTHERMAL SUMMARY

PMMA
Specimen
Series

Murnaghan
Constant
b ' to

Murnaghan 
Constant 
B t o ,  Ih./in^

. eo,Strain at
a = 150000
Ih. /in̂

Assumed 
Normal 
Force, lb.

200 2.2T7 517800 0.1995
T

300 2.928 673200 0.1576

4 00 4.396 75C200 0.1337
' 500 4.760 870600 0.1182

6oo 5.126 1C26000 0.1034 f

200 2.286 511700 0.2010 i
; 300 2.974 659800 0.1594

1
2T - F !

4 00 4.4o4 717200 0.1378 = 1
; 500 4.996 776000 0.1265 !1
' 6oo 6.997 792300 0.1136

200 2.338 474600 0.2107
T - F300 3.017 645100 0.1615

: 4 00 4.538 68o4oo 0.1417
500 5.000 692600 0.1365
600 9.160 582100 0.1239
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TABLE 6.k

POLYMETHYIJ.ÏETHACRYLATE (PMMA) 1 0 0  SERIES SPECIMEN SUMMARY

PMMA
Specimen
Number

Murnaghan
Constant

b 'o

Murnaghan 
Constant 
Bq ,lb./in̂

Least Sq 
Fit Erro 
Average

uares 
rs, %
Maximum

Gq, Strain at 
a = 150000 Ib/in̂

101
Isot

2.319
herraal

368200 5.4 31.8 0.2493

102 1.613 451900 2.3 15.3 0.2334

103 1.658 438700 2 .6 16.2 0.2373

10^ 2.065 4ii600 4.0 25.2 0.2379

105 2.814 356700 5.2 30.4 0.2423

106 0.686 382500 2.1 12.9 0.2934

107 1.158 298400 3 .0 19.4 0.3271
108 0.764 338300 1.9 9.3 0.3174

109 1.209 328900 3.9 23.0 0.3046
110 0.889 335300 2.4 14.3 0.3138

111 0.331 411200 1.5 5.7 0.2913

112 1.676 311200 4.6 26.3 0.2976

113 0.789 369000 2.3 12.2 0.2971

ll4 1.306 359600 3.3 18.2 0.2832

115 1.249 359000 2.7 14.3 0.2855
Isot

1.458

Hug
1.874

hermal Composite
366000 1 13.5

oniot Composite
364700 1

36.9 0.2848

0.2628



-70-
TABLE 6 .5

POLÏMETHYIMÎÏÎACRYLATE (PMMA) 2 0 0  SERIES SPECIMEN SUMMARY

PMMA
Specimen
Number

Murnaghan
Constant

b 'o

Murnaghan 
Constant 
Bq , Ib./inu

Least Sc 
Fit Erro 
Average

uares 
rs; ^
Maximum

Gq, Strain at 
a = 150000 ib/in^

201
Isoth

1+.605
ermal

1+70100 4.3 27.2 0.1782

202 1+.822 1+51600 4.3 26.5 0.1799
203 1+.021 1+66600 l+.l 25.7 0.1864
20!+ ^.358 1+51900 3.7 23.8 0.1856
205 ^.551 1+2 31+00 l+.l 26.3 0.1902
206 2.891 1+31700 2.2 1I+.9 0.2138
207 2.719 1+69100 2 .1+ 15.1 0.2055
208 2.791 ' 1+1+1+100 3.1 16.6 0.2117
209 2.1+61 1+82700 3.0 15.5 0.2061
210 2 .1+16 I+6I+8OO 2 .1+ 1I+.8 0.2122
211 2.781 1+92100 2.1 13.9 0.1981

212 2.1+71 1+91100 2.5 1I+.1+ 0.2035
213 3.051 1+38600 1+.2 2I+.0 0.2088
211+ -2.197 5O7I+OO 2.3 13.8 0.2037
215 2.1+26 1+70300 2.0 13.4 0.2104

Isothermal Composite
2.286 511700 1 8.6 36.0 0.2010

Hugoniot Composite
3.391 511000 0.1843
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ta ble  6 .6

POLYMETHYLMETHACRYLATE (PMMA) 300  SERIES SPECIMEN SUMMARY

PMMA
Specimen
Number

Murnaghan
Constant
B'o

Murnaghan 
Constant 
Bo,lb./in.

Least Sq 
Fit Erro 
Average

uares 
rs, i  
Maximum

Eg, Strain at 
a = 150000 Ib/ir?

301
Isoth

3 .1̂ 03
ermal

658200 0.6 1.9 0.1552
302 ^ . o 8 l 616000 0.6 5.1 0.1556
303 4.050 616600 0.5 2.3 0.1558
30!̂ 4.351 575500 0.8 5.3 0.1599
305 3.278 557000 0.5 2.4 0.1755
306 3.851 607700 0.9 7.2 0.1593
307 3.587 643000 0.4 1.6 0.1559
308 3.501 637400 1.1 8 . 6 0.1577

309 3.605 633000 0.7 5.1 0.1574
310 3.813 602300 0.7 5.2 0.1606
311 3.470 644100 0.9 5.0 0.1569
312 3.525 630000 0.9 5.4 0.1588
313 4.161 626500 0.8 4.7 0.1531

31^ 4.504 596600 1.1 9.2 0.1548

315 4 . l 4 o 593700 1.0 3 .8 0.1588
Isothermal Composite

2.974 659800 3.8 17.3 0.1594
Hugoniot Composite

3.667 679100 0.1494
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TABLE 6.7

POLYMETHYLMETHACRYLATE (PMMA) LOO SERIES SPECIMEN SUMMARY
PMMA
Specimen
Nxunber

Murnaghan
Constant

b 'o

Murnaghan 
Constant 
Bo, lb./ in̂.

Least Sq 
Fit Erro 
Average

uares 
rs, % 
Maximum

Gq, Strain at 
a = 150,00 Ib/in̂

Loi
Isoth

5.319
ermal

667500 1.2 L.O O.137L
Lee 5.610 675100 0.7 2.3 O.I3L3
Lo3 5.559 659100 0.7 2.8 0.1368
LoL 5.7LI 65L7OO 1.0 L.I 0.1360
L05 5.610 656000 0.8 3.0 0.1368
Lo6 5.037 686300 2.0 6.0 0.1370
Lot 5.181 701000 1.9 6.L O.I3L1
Lo8 5.L21 677000 0.7 2.7 O.135L
Log 5.308 673800 l.L 5.0 0.1367
Lio 5.L19 683100 0.8 2 .8 O.I3L7
Lli 5.Lot 677500 l.L L.2 0.1355
Li2 L.987 696100 0.9" 3.7 0.1361

L13 5.171 696100 1.8 6.9 O.13L8

LiL L.730 706500 1.6 6.2 0.1367
L15 5.171 692700 1.9 6.5 0.1352

Isothermal Composite
L.LoL 1 717200 1 2.0 11.5 0.1378

Hugoniot Composite
5.101 1 717100 1 0.1327
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TABLE 6.8

POLYMETHYLMETHACRYLATE (PMMA) 500 SERIES SPECIMEN SUMMARY
PMMA
Specimen
Nuiriber

Murnaghan
Constant

b 'o

Murnaghan 
Constant 
Bo,lb./in.

Least Sq 
Fit Erro 
Average

uares 
rs, %
Maximum

, Strain at 
a= 150000 Ib/in^

501
Isothe

5.919

rmal
715200 3.5 19.0 0.1275

502 5.818 725800 3.5 17.0 0.1269

503 4.684 812800 4.6 20.9 0.1245

501̂ 6.145 705200 1.9 6.0 0.1272

505 5.955 706600 1.4 5.3 0.1282

506 6.21̂ 3 723800 2.1 9.1 0.1245

507 5.895 764400 1.9 7.6 0.1222

508 5.985 725200 1.5 5.4 0.1259

509 5.995 746500 1.7 6.7 0.1235
510 6.385 694600 2.4 9.8 0.1269

511 6.305 736400 2.4 9.3 0.1228

512 5.823 752900 1.7 6 .0 0.1239

513 5.575 775600 2 .9 11.1 0.1230

514 5.985 737900 2.1 6.6 0.1245

515 5.885 743800 1.5 5.4 0.1245
Isothermal Composite

4.996 1 776000 1 3.0 25.8 0.1265
Hugoniot Composite

5.732 j 776500 0.1219



TABLE 6 .9

POLYMETHYLMETHACRYLATE (PMMA) 600 SERIES SPECIMEN SUMMARY
PMMA
Specimen
Number

Murnaghan
Constant

b 'o

Murnaghan
Constant
Bo,lb./iiu

Least Sq 
Average

uares
Maximum

Go,Strain at 
0 =  150,000 I b / i i f

6 01
Isoth

10.501
ermal

638300 1.9 7.7 0.1117
602 8.501 743500 2 .5 10.5 0.1109

603 7.401 796600 4.1 14.8 0.1112

6ch 9.291 664500 1.6 6.4 0.1146

605 8.581 708400 1.6 6.2 0.1137

6o6 7.297 727900 1.0 3.8 0.1182

607 8.481 766600 1.9 6 .5 0.1089

608 8.329 765200 2.4 12.5 0.1097

609 6.324 845800 3.-1 1 6 .0 0.1121

610 6.316 851200 4.1 25 .1 0.1117
611 7.511 753200 1.5 5.2 0.1146

Isoth
6 .997

ermal Composite
792300 1 5 .2 34 .6 0.1138

Hugoniot Composite 
7-714 1 793400 | 0.1101

___



CHAPTER VII 

DISCUSSION

The stress-strain Hugoniot relations for one-dimensional strain 

that were obtained by transformation of the isothermal stress-strain 

results do not agree with the Hugoniot relations determined by shock 

measurements. Results of the investigations of Schmidt and Evans, 

Liddiard, and Halpin and Graham, as.compiled by Van Thiel et al 

gave the following strain values, O.O87, O.O85, and O.O87, at a stress 

of 150,000 lb/in®. A recent investigation by Schuler^^ found the 

shock Hugoniot strain at a stress of 150,000 Ib/in^ to be O.O85. The 

transformed Hugoniot strain at an average normal stress of 150,000 

Ib/in^ was 0.110.

Possible sources of the discrepancy are;

1. A constant error in measuring the specimen force and deform­

ation.

2. A specimen deformation error due to the radial compression of 

the surface imperfection of the specimen and the molybdenum 

disulfide lubricant.

3 . The slow loading rate precluded any increase in material 

strength due to strain rate effects.

Van Thiel et al., "Compendium of Shock . . . ."
6kSchuler, Private Communication

-75-
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An error in computing the pressure offsets between the isotherm­

al and Hugoniot states.

5. A specimen deformation error resulting from flow of the specimen 

into the radial clearance between the constraint cylinder and 

the loading ram.

Observed force and displacement calibration errors were less than 

one per cent. The contribution to the axial specimen strain resulting 

from the radial compression of the specimen surface and the lubricant 

is estimated to be less than 0.1 per cent.

The stress-strain behavior of polymetliylmethacrylate is strain 

rate dependent. Holt, Green, Babcock and Krmar^^ showed that the 

yield strength of polymethylmethacrylate increased with the logarithm 

of the strain rate and the stress at strain values of 0.02 and O.C4 

increased with strain rate. Schuler^^ observed a time-dependent decay 

in the stress amplitude of shock waves. The effect of strain rate was 

not considered when the pressure offsets between the isothermal and 

Hugoniot states were computed.

The procedure that was used to transform the isothermal stress- 

strain curve to the Hugoniot state could have introduced an error if 

an incorrect material property value was used. The effect of variation 

of the material properties, the initial specific volume, the specific 

heat, the thermal coefficient of expansion and temperature, on the 

pressure offset from the isothermal to the Hugoniot state, can be 

evaluated by rearranging Equation (3.3^)

^^Holt, D. L., Green, S. J., Babcock, S.G., and Kumar, A.,General 
Motors Technical Center, Mars Technical Progress Report, July 1967•

^^Schuler, Private Communication
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G  TO -  1AP = (2Bto/b 'to)|[(vo/v ) - B;o/(b 'to - l)](vo/v)

+ 1/( b 't o - l) - BToB'to[i - (vo/v) / jsCyv/bBtoVq

|1 - (v/vo)

and then differentiating to obtain the following-equations 

(dAP/dVo ) = ( 2 B t o / v ) {  | ( v o / v )  -  1 ( v o / v f  ^ + 8Tq

(7.1)

|2Cvv/3BtoVo  ̂- I 1 - (v/vo )j + I (8Cv + 2BBtoVo )v /

PB’toVoH  I I (vo/v) - b 'to/Cb 'to -l)|(vo/v)®'°"^+ 1/

|B;o - l| - BTqB 70

- [l - (v/vo )

1 -  ( v o / v )  /  2 C v v / s Bto^

(7.2)

(ôAP/ôCv)= - I^VsB 70̂ 0̂ 1 I ("% V ) - B 70/(870 - 1) ("%/v]P̂

+ 1 / ( b ’to) - 8 T o B ' , o [ i  - ( v o / v ) | | /  | 2CvV /

-  1

BB 70 Vo 1 - (v/vo ) (7.3)

(SAP/̂ 8 ) = - 2%B7o |l - (vo/v) I  |2Cvv/8B7qVo^ - 1 - (v/vo)|

+ (ij-Cy v /8^BtoVo ) [(x j/v ) -870/(870-1) (vo/v)®^°

+ 1/(8'70 - 1) - 8ToB\o|i - (vo/v)]|/|2Cw/887oVo'

- |l - (v/vo) ^

) = - 2 8 B70 1 - (vo/v)j / 2 Cvv/8 8toVô

- 1 - (v/vo)]

(7.4)

(7.5)
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Effects on the pressure offset of a one per cent increase in the 

initial specific volume, the specific heat, the thermal coefficient of 

expansion and the temperature were evaluated using equations (7.2), 

(7.3 ); (7 .̂ ) and (7.5). Results presented in Table 7.I show the 

pressure offset to be sensitive to small variations in the initial 

specific volume. The average change in the pressure offsets was 17,

23, 27, 30, 33 and 36 percent for the 100, 200, 300, 400, $00, and 600 

series composites. The pressure offset was ten times more sensitive 

to a one per cent change in initial specific volume than any of the other 

properties, specific heat, thermal coefficient of thermal expansion or 

temperature.

Stress-strain curves should be independent of specimen geometry 

to insure a true representation of the material behavior. Specimen 

geometry affected the results of the laterally confined compression 

tests. When high stresses were applied, the specimen was extruded into 

the annular clearance between the loading ram and the constraint cyl­

inder. This could cause an error in the specimen strain unless the 

extruded volume was much less than the initial specimen volume. By 

examining each specimen after testing, an estimate of 0.000C2 in^ was 

obtained for the extruded volume. An undesirable normal stress grad­

ient in the specimen was produced by friction between the specimen and 

the constraint cylinder as the specimen deformed. Lengthening the 

specimen increased the normal stress gradient.

In the absence of friction effects, the strain, specimen deforma­

tion divided by initial specimen length, at a particular applied normal 

stress could be expected to decrease to a limiting and constant value
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as the specimen length increased. The friction forces resulting from 

the lateral constraint did not permit the test specimen geometry to 

he determined in such a fashion. (See Figure 6.2).

The normal strain gradient in the test specimen varied with the 

applied normal stress and the specimen length. Minimum and maximum 

normal stress gradients were 2.11 percent in a l/l6-inch long specimen 

at an applied normal stress of l4-,880 Ib/in^ , and 37-1 per cent in a 

2-inch long specimen at an applied normal stress of 150,000 Ib/in^.

Had the normal stress distribution,]^ (x), in the specimen been known, 

the specimen deformation, AL, could have been related to the stress dis­

tribution with the Murnaghan equation with the following equation,

Lq - AD Do " J
A L = J  e,dx = j |l - [ (BTo/BTo)Ph(x)+l]"^/®'° dx, (7.6)

where the initial specimen length is Lq . The normalized friction 

force-applied normal force relationship from specimen series to speci­

men series was similar but contained considerable scatter. Individual 

normalized friction force values varied from 55-5 to 137*5 per cent of 

the overall average curve of all specimen series. The average of the 

normal stresses acting on the specimen boundaries was assumed to be 

the effective stress throu^out the length of the specimen.

The work of Stevenŝ "̂  and Warfield^^ displayed two different 

approaches to problem of friction resulting from lateral constraint. 

Stevens placed a lead cover over the specimen and then applied a 

correction factor to the results. The correction factors were obtained 

Stephens, D. R. and Lilley, E.M., "Compressions of Isotropic..."

^^arfield, R.W., "Compressibility of Bulk
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by determining the corrections that must be made to the test results 

of a reference material to give the known isothermal stress-strain curve. 

Warfield apparently ignored the friction problem.

The average variation from the isothermal composite curve of each 

specimen series data points was 13. 8.6, 3.8, 2 .0, 3.0, and 5.2 per 

cent for the 100, 200, 300, 4-00, 500, and 600 specimen series. The 

isothermal composite curves gave a representative description of the 

experimental data. (See Figures 6.2, 6.3, 6 .̂ , 6.5, 6.6 and 6,7).
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table 7 .1

SENSITIVITY OF THE PRESSURE OFFSET TO CHANGES IN INITIAL SPECIFIC 
VOLUME, SPECIFIC HEAT, COEFFICIENT OF THERMAL EXPANSION AND 

INITIAL TEMPERATURE
PMMA PER CENT CHANGE IN THE SENSITIVITY RATIOS*
Composite AP ô ( A P )  Av o â ( A P )  A C v ô ( A P )  A 3 ô ( A P )  ATo

Series Ph ÔV0 Ph dC Ph ae Ph a T o  Ph

100 6.10 a 0.87 - 0.06 0.09 0.03
3.04 b 0.75 - 0.03 0.06 0.03
10.02 c 1.4o - 0.11 0.l4 0.03

200 6.62 1.30 - 0.07 0.10 o.o4

3.96 1.05 - 0.04 0.07 0.04
9.70 2.49 - 0.10 0.l4 o.o4

300 7.46 1.78 - 0.08 0.12 0.04
4.92 1.37 - 0.05 0.09 0.04

10.35 3.73 - 0.11 0.15 0.04

400 7.47 2.03 - 0.08 0.12 0.05
5.23 1.52 - 0.05 0.10 0.04

10.03 4.4l - 0.11 0.15 0.05

500 7.70 2.27 - 0.08 0.13 - 0.05
5.58 1.66 - 0.06 0.11 0.04

10.13 5.09 - 0.11 0.15 0.05

600 7.33 2.43 - 0.08 0.12 0.05
5.60 1.74 - 0.06 0.11 0.04
9.36 5.61 - 0.10 0.l4 0.05

For an assumed 1^ change in initial specific volume, specific 
heat, coefficient of thermal expansion and initial temperature

a - average value
h - minimum value
c - maximum value



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS

Further development of the laterally constrained compression test 

is necessary before the technique can be used to obtain accurate iso­

thermal data. The friction forces resulting from the lateral constraint 

of the specimen and the low maximum pressure limitation are the primary 

shortcomings of the laterally constrained compression test. The effects 

of friction resulting from the lateral constraint of the specimen can­

not be neglected. Additional work is required to determine the normal 

stress distribution in the specimen and the variation of the normal 

stress distribution from specimen to specimen.

The Hugoniot stress-strain curves obtained by transforming the 

experimentally determined isothermal stress-strain curves did not agree 

with those obtained by shock measurements. The discrepancy is believed 

to be the result of the absence of strain rate effects, the effect of 

friction and the possible errors in computing the press'ure offsets 

between the isothermal and Hugoniot states.

The material properties used to compute the pressure offsets be­

tween the isothermal and Hugoniot states must be known precisely if the 

pressure offsets are to be realistic. Small errors in the initial 

specific volume produce unacceptably large errors in the pressure 

offsets.
- 82-
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Care must be exercised in preparing the test specimen. All sur­

faces must be polished to a smooth finish that is free of scratches 

and machine tool marks. The ends of the specimen must be flat and 

parallel and normal to axis of the cylinder. Lubricants should not 

be used to coat the test specimen constraint cylinder or loading rams 

if the lubricant film is thick.
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APPUIffilX A 
C'./MPUTE!-; P P O i m !  L S ;.p-4 L IS T IN ';

LSMF-1

100
101
1101 1 1
120
1 3 0
1 3 5
136 
1 3  
1 3  
1Ü2 
1ÜÜ 
1 Ü 6  
1 Ü?  
1 5 0I160
162
léü 
166 
16K 
1 7 3  
190 
200 
210 
220 
2 3 0  
2ÜQ 
2 5 0  
3 7 0  
3M 
3 9 0
a  0 0
Ü10
a 2 o
Ü 3 0
llÜOÜ50570571

590
6 0 0
610
620630

01'-'  A | 1 2 5 ) , B ( 1 2 F ) , 0 ( 1 2 5 ) , 0 ( 1 2 ) , E ( 1 0 )
0 1 "  U ( 1 2 1 , V ( 1 2 ) , Y ( 1 0 ) , Y ( 1 0 ) , 7 (  1 0 )
9 E A D  X 0 , Y 0 , N , l
READ 0 0 , U O , V O
FOR J : 1  TO N+1
READ D ( J ) , U ( J ) , V ( J )
NEXT J
LET 0 ( 1 2 ) : D  
LET U ( 1 2 ) : U  
LET V ( 1 2 ) : V

1 )
1 )
1 )

FOR J : 2  TO N f 1
LET 0 ( J - 1 ) : ( D ( J ) - D ( 1 2 ) ) * D 0
LET U ( J - 1 ) :  U ( J ) - U ( 1 2 ) ) * U 0
LET V ( J - 1 ) : ( V ( J ) - V ( 1 2 ) ) * V 0
NEXT J
P R I N T
P R I N T  "P>*<A S P E C I ME N  I
P R I N T
P R I N T
P R I N T  " J " , " D ( J ) " , " U ( J ) " , " V ( J ) "
PR I NT
FOR J : 1  TO N
P R I N T  J , 0 ( J ) , l J ( J ) , V ( J )
NEXT J  
P R I N T
READ B 1 , B 2 , ' A ' , P , R 1 , R 2  
FOR J : 1  TO N
LET Y( J ) : ( 2 * U ( J ) - V ( J ) ) / ( 2 * Y 0 )
LET Q : Y ( J ) * R 1 t 2 * (  1 - P + ( 1 + P  ) * R 2  Î ? / R 1 t2 ) / ( ' / X R 2 T 2 - F 1 Î 2  ) )
LET X(  J ) : D ( J ) / X 0 - ( B 1 * U ( J )  + B 2 * ( U ( J ) - V ( J ) ) ) / ( f l * Y O * X O )
LET X ( J ) : 1 - ( 1 - X ( J ) ) * ( 1 + Q ) t 2
NEXT J
P R I N T
P R I N T
LET L=1
I F  L>1 THEN 1130
P R I N T  " I SOTHERMAL VALUES"
(Î0 TO aao
P R I N T  " HURONI OT VALUES "
P R I N T  
PR I NT 
READ AO
I F  L>1 THEN 5 ^ 0  
READ A(  1)
P R I N T  " K " , " A ( K ) " , " B ( K ) " , " C ( K ) "
P R I N T  
LET K : 1  
LET F 0 : O  
LET 0 0 : 0  
FOR J : 1  TO N

-8 7 -
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L S MF - l i  C ON T I N UE D

é U ü  LET U ( J ) = 1 / ( 1 - X ( J ) )
6 5 0  LET F 0 = F 0 + ( U ( J ) r A ( K ) - 1 ) * Y ( J )
6 6 0  LET G0 = S 0 + ( U ( J ) tA ( K ) - 1 ) t2  
6 7 0  NEXT J
6 M  LET B ( K )  : F O * A ( K ) / G O  
6 9 0  L ET  C 0 = 0  
7 0 0  FOR J : 1  TO N
7 1 0  LET C 0 : C 0 + I ( 3 ( K ) / A ( K ) ) * ( U ( J ) t A ( K ) - 1 ) - Y ( J ) ) T 2  
7 2 0  NEXT J  
7 3 0  LET C ( K ) : C 0  
7 Ü 0  LET K=K+1  
7 5 0  I F K > 2  THEN 7*'0 
7 6 0  LET A ( K ) : A ( K - 1 ) + A 0  

“ 0  GO TO 6 l O
0  I F  ( C ( K - 1 ) - C ( K - 2 )  ) > 0  THF.N M O  

' ° 0  LET A ( K ) : A ( K - 1 ) + A 0  
0 0  GO TO 6 l O  

? 1 0  LET A O : A O / i n  
? 2 0  I F  A O < . 0 0 0 1  THEN F 5 0
8 3 0  I F  K> 3  THEN 8 3 3
8 3 1  LET A ( K ) : A ( K - 2 ) + A 0
8 3 2  GO TO 6 l C
8 3 3  LET A ( K ) = A ( K - 3 ) + A 0  
8 Ü 0  GO TO 6 l C
8 5 0  LET A : A ( K - 2 )
8 6 0  LET B : B ( K - 2 )
8 7 0  P R I N T  ( K - 2 ) , A ( K - 2 )  , B ( K - 2 ) , C ( K , - 2 )
8 M  LET E : 0  
8 9 0  LET S : 0  
QOO FOR J = 1  TO N
9 1 0  LET Z ( J ) : ( B / A  * (  ( 1 / (  1 - X (  J )  1 ) TA-1 )
9 2 0  LET E ( J ) : 1 0 0 *  Y ( J ) - Z ( J ) ) / Z ( J )
9 3 0  LET E = E + A B S ( E  J )  )
9 DO LET S : S + ( A B S ( E ( J ) ) ) t2
9 5 0  f CXT J
960 FOR J = 1  TO N
9 7 0  FOR K= 1  TO N
980 LET G : A B S ( E ( K ) ) - A 8 S ( E ( J ) )
990 I F  G> 0  THEN 1 0 2 0  
1 0 0 0  NEXT K 
1 0 1 0  GO TO 1 0 3 0  
1 0 2 0  NEXT J  
1 0 3 0  LET E O : A B S ( E ( J ) )
1 0 Ü 0  P R I N T  
1050 P R I N T
1060 P R I N T  " J " , " X ( J ) " , " Y (  J ) " , " Z ( J ) " , " E (  J l "
1 0 7 0  P R I N T
1 0 8 0  FOR J : 1  TO N
1090 P R I N T  J , X ( J ) , Y ( J ) , Z ( J ) , E (  J )
1 1 0 0  NEXT J
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L S MF - l l  C ON T I N U E D

1 1 1 0  P R I N T
1 1 2 0  P R I N T  " E - M A X . : " ; E G  
1 1 3 0  P R I N T  " E - A V . : " ; ( E / N )
1 1 Ü 0  P R I N T  " E - S T 0 . 0 E V . : " ; ( ( S / N ) t . 5 )
1 1 5 0  I F  L > 2  THEN QOOQ 
1 2 R 0  LET L : L + 1  
1 2 é 0  READ C . S . T O . V O  
12  7 0  P R I N T  
1 2 ^ 0  P R I N T
1 2 QO P R I N T  " C " , " S " , " T O " , " V O "
1 3 0 0  P R I N T
1 3 1 0  P R I N T  C . S . T O . V O  
1 3 2 0  P R I N T  
1 3 3 0  P R I N T  
13110 FOR J : 1  TO N 
1 3 5 3  LET 0 : S * B / ( 1 - X ( J ) )
1 3 ^ 0  LET F 1 : B * V 0 / ( A * ( A - 1 ) ) * ( ( 1 / ( 1 - X ( J ) ) ) t ( A - 1 ) - 1 )  
1 3 7 0  LET F 2 : ( B / A + S * 3 * T 0 ) * V 0 * y ( J )
13 . ^0  LET F = F 1 - F 2
1 3 0 0  LET 0 r ( G * Y ( J ) * V 0 * X ( J ) / 2 - F ) / C  
m o o  LET [ : 1 - C * V 0 * X (  J ) / ( 2 * C )
111 TO LET v ( j ) r Y (  J ) + D / F
11120 NEXT J
1 H 3 0  LET L : L + 1
11135 LET A(  1)  :A
111'10 1 0  TO IlOO
1 5 0 0  DATA X O , Y O , N , l
1 5 1 0  DATA 0 3 , U 0 , V 0
1 5 2 0  DATA D ( 1 ) , U ( 1 ) , V ( 1 ) , . . . . . . . . . . . . . , D ( N + 1 ) , 0 ( \ ^ Î )  , V ( N + 1 )
1 5 3 0  DATA B 1 , B 2 , ' . ‘1 , P , =  1 , R ?
15113 DATA A 0 . A 1  
1 5 5 0  DATA C , S , T O , V O  
1 5 < 3  DATA AO 
QQpq END
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Program Input Parameters 
Statement Number
1500
___ XO = Initial specimen length, in.

YO = Specimen area, in.^
N = Number of data points minus one
I = Specimen identification

1510
DO = Displacement conversion constant, in./count 
UO = Normal force conversion constant, lb./count 
VO = Friction force conversion constant, lb./count

1520
D(j )= Digital value proportional to the specimen deformation, counts 
U(j)= Digital value proportional to the normal force, counts 
V(j)= Digital value proportional to the friction force, counts

1530
B1 = Length of upper loading ram, in.
B2 = Length of lower loading ram, in.
W = Young's modulus of constraint cylinder, lb./in.
P = Poisson's ratio for the constraint cylinder 
R1 = Internal radius of the constraint cylinder, in.
R2 = External radius of the constraint cylinder, in.

15^0
AO = Assumed initial Murnaghan exponent increment 
A1 = Assumed initial Murnaghan exponent (isothermal)

1550
C = Specific heat (constant volume) of the specimeni’̂-"^^/ib.- ° R

S = Coefficient of thermal expansion of the specimen in.3/in3.-°R
TO = Initial specimen temperature, ° R  

VO = Initial specific volume of the specimen, in.3/lh.
1560
AO = Assumed initial Murnaghan exponent increment



a p p s .'.'p d : .
COt-!PUTER PROGRAM L S W - S  L I S T I i l ':

LSMF-5

1 0 0  D I V  A ( 1 5 ) , B ( 1 S ) , C ( 1 0 0 ) , 0 (  1 0 0 )
1 0 1  DI M R ( 1 0 0 ) , S ( 1 0 0 ) , U ( 1 1 ) , X ( 1 0 0 ) , Y | 1 0 0 )  
1 1 0  R E A D X O , N , l
1 2 0  READ R I D
1 2 5  LET R O : A B S ( R ( 1 1 / 1 0 )
1 3 0  LET L : 1
1 Ü0  P R I N T  "PMMA C OMP OS I T E  S P E C I ME N  S E R I E S " ;  
1 5 0  P R I N T  
l é O  P R I N T
1 7 0  FOR J : 1  TO N 
1 M  READ tREAD A ( J ) , B ( J )
1 9 0  NEXT J
2 0 0  I F  L>1 THEN 2 3 0
2 1 0  P R I N T  " i s o t h e r m a l  VALUES"
2 2 0  GO TO 2 Ü 0
2 3 0  P R I N T  " HUQONI OT VALUES"
2 Ü 0  P R I N T  
2 5 0  LET M: 1
260 P R I N T  " K " , " A ( K ) " , " B ( K ) " , " C ( K ) "  '
2 7 0  P R I N T  
2 ? 0  LET F 1 : 0  
2 F I  LET F 2 = 0  
2̂ 2 LET F 3 : 0  
2 8 3  LET F U : 0
2 8 5  LET F 5 = 0
2 8 6  LET Z = L 0 G ( 1 - X G )
2 8 7  LET Q : R ( M )
290 FOR J : 1  TO N
291 LET T = A ( J )
3 0 0  LET U ( 1 ) : ( 1 - ( 1 - X 0 ) t ( 1 - T - 0 ) ) / ( 1 - T - 0 )  
3 1 0  LET U ( 2 ) : ( 1 - ( ' l - X 0 ) t ( 1 - T ) ) / ( 1 - T )
3 2 0  LET U ( 3 ) : ( 1 - ( 1 - X 0 ) î ( 1 - Q ) ) / ( 1 - G )
3 3 0  LET U( i J )  = ( 1 - ( 1 - X 0 ) î ( 1 - 2 * Q ) ) / ( 1 - 2 * q )  
3 U 0  LET U ( 5 ) = ( 1 - X 0 ) t ( 1 - T - Q ) / ( 1 - T - Q )
3 5 0  LET U ( 6 ) = ( 1 - X 0 ) î ( 1 - 0 )
3 6 0  l e t  U ( 7 ) : U ( 5 ) / ( i * : - Q )
3 7 0  LET U ( 8 ) : U ( 3 ) / (  1 - 0 )
3 M  LET U ( 9 ) : U ( Ü ) / ( l - 2 * 0 )
3 9 0  LET U ( 1 0 ) : ( 1 - ( 1 - X 0 ) t ( 1 - 2 * T ) ) / ( 1 - 2 * T )
Ü 0 0  LET U ( 1 1 ) : ( 1 - X 0 ) t ( 1 - 2 * 0 ) / ( 1 - 2 * Q )
m o  LET G 1 : U ( 1 ) - U ( 2 ) - U ( 3 ) + X 0
1420 LET G 2 : U ( U ) - 2 * U ( 3 ) + X 0
1430 LET G 3 : ( U ( 5 ) - U ( 6 ) ) * Z + U ( 7 ) - U ( ( ^ )
I4l40 LET Gl4:(U(11)-U(6))*Z+U(9)-U(n
1450 LET G 5 = U ( 1 0 ) - 2 * U ( 2 ) + X 0
1460 LET F 1 : F 1 + B ( J ) * G 1 / T
1470 LET F 2 = F 2 + G 2
14̂ 0 LET F 3 : F 3 + B ( J ) * G 3 / T
1490 LET Fl4=Fl4+GlJ
500 LET F 5 : F 5 + B ( J ) t 2 * f ^ / T T 2
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Program Input Parameters
Statement Number
810
XQ = Maximum specimen strain, in./in.
N = Number of specimen 
I = Specimen series identification number 

820
R(i)= Assumed initial Murnaghan exponent (isothermal) 

830
A(j )= Murnaghan exponent (isothermal)
B(j )= Murna^an constant, lb./in.2(isothermal)
81̂ 0
R(i )= Assumed initial Murnaghan exponent (Hugoniot) 
8$0
A(j )= Murna^an exponent (Hugoniot)
B(j )= Murnaghan constant, lb./in.^(Hugoniot)


