Ey

Bachelor of arts
Mount Harty College
Tankton, Somth Dakota
1965

[^0]
Wher spgces of cmanes

Thesis Approved:

ACWOLDNCEMES

The author gratefuly acknowedes the guidance and assistance of Dr. Bryan P. Glass during the consse of this stuay and the prem paration of tisis thesis.

Gratitude is also expressed to tho following: Drs. Koy U. Jones, Robert Snith and Wilton Curd for serving on the advisory comittee, Dr. Robert Horrison for guidance with the statistical malyeis, hr. Bobby Gene Whiteside for enstructive cxticisa and statistical ascistance and diss Darbara Garner for edting assistance. Pinally I would like to thank ny parents, Mr. and wrs. Frank Luken, for their moral support and fonancial assiatance.

Turs study was partially financed from a Mational Science Foundation Grant-in-aid.

Whble of Conmats

Chapter Page
2. आ आ
II. Camma dackration or spates. 3
LIL. AMRTMEAL TSCUBSION 5
IV. MTETALS ARD WHOQ 9
V. FeSURS AID DISCUSSIOM. 14
vi. SUmary 27
gELCCED MBLIOCHRMY 29
Table Page

1. Conidence Intervals for A. rhombifera monbifera 15
2. Confidence Intervals for H. Striatula 16
3. Conidence Intervals for A. contortrix Laticinctus 17
4. Percentages and Length of Liver in H. nombifera monbliera 19
5. Percentages and length of Liver in H. stritata 20
6. Bercentages and Length of Liver in A. contortrix laticinctus 21
7. Frequency Distribution for H Yhombiferamombitera24
8. Frequency Distribution for H. striatula 25
9. Freckency Distribution for A. contortpix
laticinctus 26
LIST GF FMURES
aigure Page
10. Determination of the First Ventral Scale 11
11. Detemination of the Last Ventral Scale 11
12. Internal Anatoray of A. contortxix 1atjcinctus 12

OMATER I

MTLEDUCTIOR

Snakes have been tho object of much research, especially in the area of venom and venom transaission. fowever, little has been pubinhed about the anatoaical arrangement and position of internal organs, particularly with reference to extemal landanhs thot can be used to indicate their position in the Livine animel. This papor wil present guidence that there is a relationship betwen the ruaber of ventrab scales ant tre position of soac of the visceral organs, and compare these rehationohips betwen species of different size and in different fanlies.

Yentral scale counts have often been used as a means of identification in makes. The taxonomic gignterance of this character is estam blished and accented by hompon, 3ehtrit, havis, Dowhing and others. Thctuson (194), Bchadt and Bavis (1441) and Dowint (1951) proposed standard systers of comnting ventral seates to eliminte the possibiLity of error, espectany in the troat region.

Giaber (1956) listed the zuasurenents in milumeters of the inge, Heart, Liver, stoach, golloladder, spleen, kidney and testis in Grotalus mitcheni pyrrus. He also listed in muluseters the position of those organs within the body canty and calculated the percentage lengths of these organs in relationsing to the maber of ventral scales.

Tyson, as cited in threnfeldt (1955), noted that the nuwber of
vertebrae and ribs of the rattlesmake equalled the number of scales on the underside from the neck to tho anus. If the relationship of vertebrae and ribs to ventral scales is consistent, one eould theorize that a relationship could also be denonstrated in the position of the visceral organs. The recognition of such a relationship is igportant, especianly in aninals without limbs or other extemal indications of division of the trunk into neck, thorax and whoren.

Fnowing the position of an orgen by scale number should prove more useful than knowing its position by percentage of bedy length for it is difficult to derive accurate linear measureants either from moving, Iive specimens or from hardened, preserved specimens that have been coiled in jars.

A system that permits precise location of the position of rarigus visceral organs cauld aid in studies of many sorts. With a knouledge of organ position, physiological, histological and morphological studies could be attempted with less possibility of death to the snake.

Chat TE II

The species of snakes used were datrix rhombifera riombitera, the Giamond-backed water snake, hylde striatuls, the rough earth sneke and Ancistrodon contortrix Laticinctus, the broad-banded copperhead.
4. rhombifera rhombifera, often mistaken for the cottomouth, ranges from southeast Iowa to the Gulf and from west central habama to central Texas. This snake Delongs to the fanily Colubridae, subfamily Natricinae. It is large and bulky, ranging up to 63 fnches in Length. It frequents varying types of aquatic habitats where it feeds nocturnally on itsh, frogs, small turtles and other aquatie animals. In late Auguct these gnalee give birth to live young averaging 30 young per intter.

The small secretive snake, H. atriatula belongs to the family of hamass enakes, Colubridae, subfamily Colubrinae. Its distribution extends frof Viginia to northern Fioxide and west to Kansas and Texas. It ranges from seven to ten inches in length, is nocturnal and hides in moist places under rocks and debris. Seing saall, it feeds on insects and other small invertebrates. It measures about four inches in length at birth and the average iitter size is seven.

A- contortrix laticinctua belongs to the family of verowous suakes, Viperidae, subfamily Crotalinae. It is Pound in southern Kansas through Oklahora and central Texas to the Gulf of lexico. Its length may reach

53 inches but averaye is 22 to 30 inches. This snake prefers moist areas but does not frequent ponds. Its det consists mainly of small manals and occasionally birds and insects. Two to ten live young per litter are born in late August to early Septenber.

These three species of snakes were chosen becsuse they difer from one another taxonomicaly, in size and in habitat. If a relationship does exist between the position of visceral organs and the number of ventral scales in each species of snake studied, the knomledge deriped froa it would be more valuable if based on widely separated taxa.

CHAPTER ITI

AMATOLOL DESCUSSLON

The visceral organs, heart, liver, gallbladder, pancreas, genads, and kidneys were considered in the order of their appearance in the snake (anterior to posterior). For clarity, a brief and general anatomical discussion of the organs considered follows.

The entire pleuroperitoneal covity and the relationship of the organs within it, is quite unique in snakes due to the attemated body form and the consequent necesstby ior a linear arrangenent of the organs. Thus there is a marked asymatry of the viscera, particularily of the paired organs, those of the right side being anterior to, as well as larger than those of the left (Smith, 1954).

Due to the compression of the organs within such a small, cylindrical space the organs are elongated, diminished in size or in some cases eliminated entrirely. For examp, one finds two lungs in the more priaitive snakes but the more advanced snakes have only one functionai lung, the right, and a rudimentary left lung.

The lung is divided into three ragions: the tracheal, bronchial and reservoir regions. The tracheal lung, which is the most anterior region, fills the anterior part of the body cavity and terminates opposite the center of the heart. This lung tissue is filled directly with air from the trachea that lies below it. The trachea is split dorsally froa the beginning of the tracheal lung to its entrance into the bron-
chial lung (Klauber, 1956).
The bronchus or terminus of the trachea supplies air to the bronchial lung tissue. The boundary between the posterior tracheal and anterior bronchial portions is often not precisely definable. The bronchial portion, also called the respiratory or vascular lung, terminates anterior to the gallbladder (Varde, 1951). Its total length depends upon the length of the snake.

The final section of the lung is a bladderlike tube with a thin, translucent wall which serves as an air reservoir. The length of the reservoir lung varies in different species, often extending as far as the anterior end of the gonads.

The heart is three-chambered in all snakes and lies in the anterior part of the body with the lung dorsal and to the right of it and the esophagus to the left of it. The muscular ventricle is the most apparent part of the heart when viewed ventrally. The ventricle is partially divided by an incomplete interventricular septum which extends from the apex toward the center. The conus arteriosus no longer exists as a separate part. The conus arteriosus, as well as the ventral aorta, is split into three main trunks.

The esophagus is a thin walled membranous tube lying to the left of the heart and opening into the cardiac part of the stomach at the level of the middle of the liver. The anatomical distinction between the esophagus and stomach is not easily seen unless the stomach is distended with food. The stomach which can be greatly distended, ends posteriorly with a small pyloric portion, much narrower than the body, and terminating with a sphincter. This sphincter divides the stomach from the coiled small intestine, with the small intestine leading into
a short large intestine which terminates in a cloaca.
The accessory organs of the digestive system, the liver and pancreas, are very distinctive. The liver is the most conspicuous organ, being reddish-brown in color. Its anterior and lies posterior to the heart and the posterior end is found in the middle of the body cavity some distance anterior to the gallbladder. The coman bile duct, which appears to divide the single lobe of the liver, lies in the ventral midline of the liver and courses through the mesentery to the gallbladder and pancreas posteriorly. After giving off a branch to the gallbladder, it opens into the anterior end of the small intestine.

A membranous, greenish gallbladder is found at the level of the entrance of the bile duct into the small intestine. It is posterior to and completely separate from the liver. The ducts of the pancreas, a globular gland adhering elosely to the posterior end of the gallbladder, enter the small intestine just anterior to the bile duct.

The gonads adhere to the lateral walls of the pleuroperitoneal cavity on either side of the small intestine. They are always found posterior to the pancreas but the exact position cannot be predicted precisely because the gonads vary in size and position depending upon the state of the sexual cycle, especially in the female. The gonads are solid structures with the right gonad being larger and situated farther forward.

The metanephric kidneys which are similar in both sexes and situated behind the gonads, are composed of a series of irregular lobes adhering to the lateral walls of the coelom. The kidneys, like the gonads, are asymmetrically placed. One kidney may lie entirely behind the other or they may overlap to a varying extent. The mesentery ex-
tendrag from the kiney to the colonic wall is the sane mesentery thet apports the zanads. In gravid feades the developing young tend to dsplece the kincys and goneds by stretching the wesentery. A urinary bladder is lacking in 3.1 snakes.

CHAPMER IV

MATERALS AND WETHODS

Twenty preserved specimons of W. hombifera manbisera, 30 specimens of E. striatula and 16 specimons of A. centortrix latucnctus Were obtatned from the Clahoma Stato Unversity fuseum. Ten 等. Fhombifera foobifera and five A. contortrix Laticinctug were collected alive near the University of Chlahom Biological Station at Lake Texona. All of the snakes wher coxsideration wero ferales. The snakes were chosen becuse of their diversity in size, babtat and tanonomic position.

Live specinens were killed with an injection of sodiua nebutal through the formen magman into the brain. This killed quickly and caused the ruseles to relax, thus insuring the natural position of the organs.

Athough the sample tostad was restricted to females the reletionchp could also be appled to males. Host vanability oceurs in females ecording to Saith (1954) wo noted that gigantien, the presence of abomally large animais in a population, is usually restricted to females.

Studies by Boyer (1957) and Kamber (1943) preant evidence that fealen have a preater number of ventral conles and fewer gubendils than males. The males have longer tails than the fegies and the retracted hempenes are accomotiated in the tall. Betng loxper the tail
regures more sealed to gheathe them. The females, on the other hand, must eary egs and young that represont a eonsidemble proportion of the body buik, ant so are favored with aditional wentral seaies (hianbes. 1956 .

Whaber found that the coefticiant of semal dimomhama in the ventrals, with the females invariably hener, varied fron 0.5 to 4.0%, wath an average of 2.3 . This indicated a higher count of about four or five ventral seiles in the feakles of most species. These ranges were fond to be constant, Thus, if there is a definte relationship of the ventrals to the postion of visceral organs in the feale population, one could by adjusting percentages, apply this relationship to male populations.

Schatat and Mavis' (1941) method os conting ventrals was erployed. They recomended starting the comin with the firgt ventral scale which is distinctiy wher than lone and proceeding to the scaie innedately before the anal plate (阝igs. I and 2). The ventrals were counted twice, once from anterior to posterior and once fra posterior to anterior, to eliminate error. The total length of the snake was measured to the nawest inch.

A midventral incision from threat to vent was made to reveal the organs of the pleuropertoneal cavity. Specific conts for the anterior and posterior ands of the heart, liver, gailblader, pancreas and the anterior ends of the gonads and kidneys were taken rawomly to lessen the poasibility of error (Ptg. 3). After the randon cont was taken for asch organ the cont was taken agan begiming at the anterior end of the body and progressing to the vent. To avoid bias, no two menbers of the same spectes were counted consecutively, except in unavoid-

First ventral

Figure 1. Determining the Pirst Ventral Scale

Figure 2. Determining the Last Ventral Scale

Fig. 3. Internal anatomy of A. contortrix laticinctus

1. heart. 2. liver. 3. body of stomach. 4. pyloric stomach. 5. gallbladder. 6. pancreas. 7. small intestine 8. oviduct. 9. kidney 10. large intestine.
circuustances. If the orgen in question was located ithin less than one heli of che scale lengti of the adjoining seale, the seaje was not included in the comb.
 were not cunted because the length and position of these organs in the colon varied due to difering degrees of sexual activity.

Wean ventrai scale positions of orems and their confinence intervels for each species of suake were calculatan asing methods given in steel and Torre (1960), by use of 7040 type IB data-processing machine.

OWhate y

MySum An Drsucston

It was presuaci frch the begiming of this study, that at birth
 Hacrease in lengti and whth at a rate proportionate to the increase Gn size of the viscesal orgas. Whe basis ror this ascauption was the fact that the nuber of ventral scaiks are relacively constant for a given spectos (Dowline, 2931), and Typara (163) observation that the number of qertebrae-bearing ribs of the rattlesmake equalied the muber of scales on the belly.

The data listed in Table I, III and II show the mean watues and conflence intervala as derived from the means and stardard deviations for the antexior and posterior ende of each organ in each species. A 90. confidencerinterval was derived uaing 30 obsswations for yetrix and kadea and 20 obscrvations for Ancistrolon. Accordne to the data obtaned, a ralationstip does axist betwen ventrab scole count and organ loction, but rawiation is greater in fatex than in Haldea and Anctstroton.

The relationstips, as foum in this sudy, nay not be appleable to cher snahes of the same syectes for several ressons. Khaber (1956) demonstrated variation in the number of yentrai scanea in anakes of the sane species hon different geographich regions. The snahes constored in thas study were taken fron a Lusited geograbical area, thos the data

TABLT I

MEAN VETRAL SGALE COUNTS FOR POSTTION OP ORGANS AND THEIR COIFIDEROE INTERVALS FOR 30 GPECMEMS OR MATRTX RHOMBIFERA RHOMBIFERA

	Abbrev.		90\% Confidence	Interval
Organ	of organ	Mean	Lower Iimit	Upper Iimit
Heart begins	HB	24.5	22.4	26.6
Heart ends	HET	30.2	27.7	32.5
Liver begins	LB	40.3	36.9	43.7
Liver ends	Le	69.9	66.6	73.0
Gallbladder begins	GBB	77.6	71.9	83.3
Gallbladder ends	GBE	80.1	73.8	86.2
Pancreas begins	PB	80.9	75.3	86.5
Pancreas ends	PE	82.4	76.0	88.0
Left gonad begins	LGB	107.9	102.0	113.8
Right gonad begins	RGB	99.2	92.6	105.8
Left kidney begins	IKB	117.3	111.2	123.2
Right kidney begins	RIKB	108.6	102.9	114.3

TPABIT II

MEAN VENTRAL SCALE COMNTS FOR POSTITON OF ORGATS AND THEIR CONTIDENCE IMTERVALS FOR 30 specimens OF Haldea striaqula

			Mean Confidence Intervals
Organ	Lawer limit	Upper Iimit	
Heart begins	20.7	19.2	22.2
Heart ends	24.6	23.1	26.1
Liver begins	31.0	29.6	32.4
Liver ends	66.2	62.5	69.9
Gallbladder begins	78.6	74.1	82.9
Gallbladder ends	79.6	75.3	83.9
Pancreas begins	80.6	76.3	84.9
Pancreas ends	81.6	77.3	85.9
Left gonad begins	97.4	92.9	101.9
Right gonad begins	89.3	82.9	95.7
Left kidney begins	106.8	102.8	110.8
Right kidney begins	101.5	97.5	105.5

TABLE III

mean ventral scale counts for posttion or organs and THEIR CONETDENGE INTERVALS FOR 20 SPEGMENS OF AHCISTRODON CONTORTPIX LATICDNCIUS

		Mo Confidence Intervals	
Organ	Lower limit	Upper limit	
Heart begins	46.3	44.6	47.9
Heart ends	51.0	49.0	53.0
Liver begins	52.1	49.8	54.4
Liver ends	81.9	78.9	84.9
Gallbladder begins	90.7	87.2	94.2
Gallbladder ends	93.8	90.5	97.1
Pancreas begins	94.2	91.0	97.4
Pancreas ends	95.8	93.0	98.6
Left gonad begins	109.5	107.3	111.7
Right gonad begins	101.8	99.0	104.6
Left kidney begins	120.8	118.4	123.6
Right kidney begins	116.5	113.8	119.2

may not apply perfectiy to snakes fros other localities.
Variablity in theae paticular data may be due to the fact that where was no way of detemining the condtions under which these brekes developed aboryclegicaly. Fox (194s) perfomed some imporvant expariments showing the effect of prenatal teraverature conditions on scale counta of poung. He procured grovid fomate gater makes from a Lheted heality, hat, have tivided them inte two gronpo, he subfected one groap to a higher temperature thsn the other durine the perm tod of enbryonic develoment of their young. the youx bom to the whers sn tho coolez row had atgnipontyy fever ventrals than those wose mother had been kept wamer ouring gestation.

At the وow levol of earidence one can expect to find the from gnd of the beat whin a three-scald range in fncistrodon and Haldea and a frax-scile range in Hexge. Tho heart in all spectes wos at least fons scoieg in Jengta. The means oftaned for hoth ends of the heart indicated that in the three species studed the hart thes adfacent to four of futw wontrai schas, regadess of age or sige of the make. The size of the organ theratore, seems to increase at a rate equal to the rate of incroase in the alze of the suales.

According to the data, the confluence invervals for the anterior and posterior ends of the Liver show variation ta the position of the oreans. Table $X V, V$, and if list the lencth of tho Liver in ventral seales taken up by the Liver. Sven though the placeant of the organ Is not consistent the dation thot the liver on the average, covers 29 beales in facestraton and getryx and 33 scales in haidea. This suggests a preaze lergh of the hiver wative to maber of ventral scales.

TABLE IV

THE LENGTH OF THE LIVER INT NUMBER OF SCACES AND PRRCEMTAGE OF TOTAL VEWTRAL SCALES IN IAATRIX RHOMBTFERA RFOMBIFERA

Total number of ventral	Total number of	Percentage of total ventral
scales under liver	ventral scales	scales under liver
30	146	20%
29	150	19%
26	145	18%
30	150	20%
33	149	22%
30	145	21%
28	149	19%
30	149	20%
35	149	23%
27	143	18%
32	143	22%
32	146	21%
27	143	18%
28	146	19%
33	145	22%
20	148	13%
32	143	21%
28	143	19%
27	146	18%
30	146	20%
31	146	20%
27	149	19%
30	150	20%
28	150	19%
30	146	20%
30	147	20%
31	145	21%
32	149	21%
30		20%
31		

TABLE V

THE LENGTIF OF THE LIVER IN NUMBER OF SCAIES AND PERCEMTAGE OF TOTAL VENTRAL SCALES IN HALDEA STRIATULS

Total number of ventral	Total number of	Percentage of total ventral
scales under liver	ventral scales	scales under liver
38	122	31%
35	120	29%
36	125	29%
33	120	28%
34	126	27%
36	121	29%
36	125	29%
34	120	28%
39	120	32%
36	120	29%
35	124	29%
34	120	27%
34	122	29%
38	120	31%
36	125	30%
34	125	27%
33	126	27%
38	124	30%
32	121	26%
32	120	26%
33	122	28%
35	123	29%
35	124	28%
32	123	25%
33	121	27%
37	128	31%
37	127	28%
36	124	28%
37	123	29%
36		

TABLE VI

The LengTh or the liver in Number of scales and PERCDTTAGE OF TOTAL VEMTRAL SCAIES IN ANCISTRODON CONTORTRIX LATICINCTUS

Total number of ventral	Total number of	Percentage of total ventral
scales under liver	ventral scales	scales under liver
25	149	18%
28	148	19%
33	151	21%
26	148	18%
29	150	19%
29	150	19%
29	148	19%
27	148	19%
30	151	20%
29	148	15%
31	149	20%
28	149	19%
31	147	20%
31	148	20%
32	149	21%
30	150	20%
31	148	20%
32	151	21%
30		20%
35		23%

for cach species.
The positions of the gallbladder and pancress are variable according to the confidence intervals values shown. Upon further analysis, It was found that the average position of the gallbladder was nine scales behind the posterior end of the liver in Ancistrodon, twelve scales in lialdea and eight scales in Hatrix. The average size of the gailbladder in Natrix was 2.46 scale lengths, 1.0 scale leneths in Haldea and 3.2 scale length in Ancistrodon with very little deviation from the mean. Several specinens had large galibladders due to distention with bile at the time of dissection. The gainlader increased in length, when distended, thas spanning more ventral scales.

In all cases the pancreas was found adhering closelty to the postemion end of the gallbladder, therefore its location was dopendent upon the position of the gallolader. The average size of the pancreas in Hatrix was 1.46 scale lengths, 1.0 scale lengths in Haldea and 1.6 scale lengths in Ancistrotion.

It was preswed at the beginning of this study that the gonads would vary in position because of differing degrees of soxal activity, especially since all of the specinens were female. It was presumed also that the added bulk of the developing young would push the kidneys out of their usual position. Both assuaptions were found to be true in Matrist and Haldea but not in Ancistrotion.

The range of varation in the pesition of the gonads and kidneys In hatrix and haldea studied was great, but not in the Ancistrodon (Table III), due to the fect that only two specinens of ancistrodon were gravid, while nost specmens of Matrix and haldea were.
the penads in Ancistrodion were 2.0 scales on either side of the mean for the left gonad (mean 109.5 acales) and 2.8 scales for the right gonad (taean 101.8 scajes). The lower snd upper limits of variation for the kidneys were 2.4 scales ion the anterion end of the left kidney (wean 120.8 sales) and 2.7 scales for the right kidney (neen 116.5 scales). The frequency distribution table for incistroton further indicater the lack of vaxiability in this area,

The frecuency distribution tables VII, Vix, and If also show a relationship between the stagered position of the right gonad and Lidney to the left gonal and kidney, with the right being situated anterior to the Iert.

From the anelysis of data, it was evident thet the relationshap of ventral semes to the position of visceral organs is proximate but not absolute. The relationship of the aiae of the organ to the nuaber of ventral scales is evident. The data support the theory that the scales increase in lergth at a rate proportionate to the increase in size of viscerai organs, and the size and wate is constant for a Given species.

An organ can be located with accuracy by number of ventrel scales and by percentage of total ventrai scales. The relationship of position of organs to number of ventral scales io constant as derived for each of the three species of snakes studied but can be applied only to that one species. It cannot be said, for axamle, that the heart begins at the 20% level of total ventral scsies in all species of snakes nor can this means of definition be used for other visceral oreans.

FREQUENCY DISTRIBUTION FOR POSITION OF VISCERAL ORGANS TN YATPTX RHOMBTFERA RHOMBTFERA

FRefer to Table I for abbreviation of organs

FREQUMCY DISTRIBUTION FOR POSTIION OF VISGERAL ORGANS IN HALDEA STRIATULA

No. scales	* HB	牫			GBB	GBEL	PB			RGB	LKB	RKP
185-20	11											
21-23	19	3										
24-26		27										
27-29			1									
30-32			28									
33-35			1									
36-38												
39-41												
42-44												
45-47												
48-50												
51-53												
54-56												
57-59												
60-62												
63-65				1								
66-68				12								
69-71				10								
72-74				7	3							
75-777					9	6	4	3				
78-80					10	12	11	9				
81-833					7	10	11	10				
84-86					1	2	4	7		7		
87-89								1		13		
90-92										4		
93-95									9	4		
96-98									11	1		2
99-101									8	1		14
102-104									2			11
105-107											12	2
108-170											11	0
111-113											0	1
114-116											1	
117-119												
120-122												
123-125												
126-128												

*Refer to Table I for abbreviation of orgens

TABLE IX

FREQUENGY DISTRTBUTION FOR POSTITON OF VISCERAL ORGANS IN ANCISTRODON CONTORTRIX LAFICINCTUS

No. Scales	${ }^{2} \mathrm{HB}$							PE				RKB
18-20												
21-23												
24-26												
27-29												
30-32												
33-35												
36-38												
39-41												
42-44												
45-47	18											
48-50	2	6	2									
51-53		13	16									
53-56		1	1									
57-59			1									
60.62												
63-65												
66-68												
69-71												
72-74												
75-77												
$78-80$				5								
81-83				12								
$84-86$				3								
87-89					7							
90-92					9							
93-95					4		11.	11				
96-98						3	4	7		1		
99-101								2		6		
102-104										12		
105-107									1	1		
108-110									14			
111-113									5			1
$114-116$												9
117-119											5	9
120-122											13	1
123-125											2	
126-128												

[^1]SUMMARY

Counts wore taken of the number of ventral scales and the position of the heart, liver, gallbladder, pancreas, gonads and kidneys relative to the ventral scales in females of three species of snakes. Thirty specimens of Natrix rhombifera rhombifera and Haldea striatula and 20 specinens of Ancistrodon contortrix laticinctus were examined.

The data were treated statistically to derive confidence intervals and to plot irequency distributions. From the analysis, it was evident that the relationship of ventral scales to the position of visceral organs while not absolute, is sufficiently precise to enable most organs to be located with considarable accuracy. The relationship of the size of the organs to the number of ventral scales is evident. The data indicate that during growth the scales increase in length at a rate proportionate to the increase in size of the visceral organs so that the relationship between scale size and organ stze is constant for a given species.

Conclusions

1. The position of visceral organs in relationship to the number of ventral scales can be located with considerable accuracy.
2. The position of these orgens is specific for a given species and cannot be applied to other species.
3. The maber of ventral scabse was constank then a five sctie range.
4. The ventral scales increase in lewth at a rate propoxtionate to the increase in gige of the viscaral organs, and the size ghat rate is constant for a given species.
5. Variation in the nuber of pentra sceles in snakes of the sase poecies frof diferent geograhicul regions was noted by kauber (1956). Whe andies ematadered in thes study were taken frow a Limited seoswancol ares, thus the data may not aply perfectiy to suakes from ther localuties.
6. Varablity in the mater of ventral scales in these particular data may be due to the fact that there mas no way of deteraining the conditions ander which these snakes developed edryolegically. Fox (194e) perromed an caperiment showing that toxperature effects the number of ventral schues turing edmyonic develomeat.
7. Wissection ard statistical data shored that the position of the gonads and tidneys varied in graval fomates. The position of these organs varied itutle in non-grayd females. Since a comon pesentery supports the gond and indney the eniarged stato of the gona coald iagplace the kitay by suretching the mesentery.
8. ALhoud the lidneys were found to vary in posit*on in feales, this may not be true in males, whin were not studied.
9. That the gallbiadder, in all snakes studied, was found to be com letely segarated from the liver. It was supported by a ligasent which extended froa the hiver to the gallblacier and pancreas.

SELCTMO DTBLTOCRAPY

Ahrenseldt, f. H. 1955. Two British anatorical studies on American reptiles (1650-1750). Harp. 11:49-65.

Boyer, D. R. 1957. Sexual diworphism in a population of the western dianond-backed rattlesnake. Herp. 13:213-217.

Conant, F. 1959. A field guide to amphibians and reptiles. Koughton袢ffin Company, Boaton.

Curran, C. W. 1937. Snakes and thexr ways. Warper and Brothers pubLishers, Wew Tork.

Dowhing, H. G. 1951. A proposed standard system of counting ventrals in snakes. Brit. J. Herp. 1:97-99.

Pox, W. 1948. Bifect oi temperature on developaent of scutulation in 4. the garter snake, Thamonils glegans atratus. Copeia. 4:252-262.

Goin, C. E. and Glve B. Goin. 1962. Introduction to herpetology. \%. H. Fraenan and Company, San Prancisco.

Mellicott, D. S. 1898. Dissection of the ophidean. Ham and Nair, Columbus, Onio.

Ramber, L. H. 1936. A statistical study of the rattionake: I. Introduction: II. Sea ratio; TIT. Birth rate. Occ. Papers San Diego soc. Matl. Hist. 1:1-24.
2._295. Rattlesnakes. Miv. Callf. Press, Berkeley and Los angeles.

McDonald, H. S. 1959. Respiratory functions of the ophidian air sac. Herp. 15:193-198.

Parker, H. 5. 1963. Snakes. W. W. Norton am Company, Wow York.
Schmidt, K. P. and D. D. Davis. 1941. Field book of snakes of the United States and Canada. G. P. Putnam's Sons, Wew York.

Saith, H. F. 1956. Handbook of amphibians and reptiles. State Frinter, Sopeka, Ransas.

Smith, 筑. 1954. The British amphibians and reptiles. Cojlins, London.
 statistics. Behraw-finll beok Cc., Tnc. New York,

Thompson, v.c. 1914. Furthor contributions to the anateny of the ophtian. Froc. Zool. Foc. London. 279-1,02.

Warde, U. R . 1952. The morohology and hatohog of the lung in snakes. Jour. Univ. Boabay. 19:79-89.

Wekenert, C.K. 1959. Wements of crordate anatory. Mccraw-Will Book Co., Inc. Mes tork.

VITA

Margatet Luken Aledatora

Candidate for the Degree of

Master of Science

THE VENTRAL SCALE NUMEER IN THRER SPECLES OF SNAKES
Majox Field: Zoology
Biographical:
Personal Data: Born in St. Clowi, Minnesota, October 27, 1943,the daughter of Frank C. and Olga k. Inken.
Education: Attended grade school in St. Gloud, Minnesota asdOklahoma city, Oklahoma; graduaced fron Yankton Senior HighScheol, Yankton, South Dalota in 1961; received Bachelor ofArta Degtee 4 a biology from Mount Marty College, Yankcon,South Dakota in 1965; completed the requirements for theMaster of Science Degree in August, 1969, at Oklahoma StateUniversicy.
Professional experience: Graduate Teaching Assistant, Oklakoma State University, 1965-1967.
Organizations:Nonorary: Phi Sigma

[^0]: Subabited to the faculty of the Graduate College of the Ghahona Btate Unversity La partial fulfilaent of the requirements for the degrge of Pasmex of cemmed August, 1969

[^1]: *Refer to Table I for abbreviation of organs

