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Abstract

The radar data assimilation is very important fampioving short-range
precipitation forecasts. Within the three dimenaiovariational (3DVAR) framework
which is still the prevailing method used for opgemaal regional and convective-scale
numerical weather prediction (NWP) systems, compmlexid analysis schemes have
been shown to be quite effective for assimilatiadar reflectivity data. However, due
to semi-empirical nature of such schemes, therst ebeficiencies. This study attempts
to gain a better understanding of the limitatiohshe complex cloud analysis system
within the Advanced Regional Prediction System (ARPand based on the results
propose improvements to the system. The sensitofitthe short-range precipitation
forecast to the accuracy of the initial state J#ga is also investigated to guide
improvements to the cloud analysis.

A general overview of various existing cloud anays/stems/algorithms is first
provided, followed by a detailed introduction toetleurrent version of the ARPS
complex cloud analysis system. A new version of thgrometeor analysis is
implemented based on the recently developed refigctoperators that include a
simple melting model. A hydrometeor classificatialgorithm based on polarimetric
radar variables is utilized to help determine tiidrbmeteor species. The impact of the
revised cloud analysis on very short range rairftakkcast is examined for a maritime
mesoscale convective vortex case. Only a smalitsgtysof the results to this revised
cloud analysis algorithm is found. Significant mbdegor is likely to be a contributing

factor.
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To unambiguously determine the sensitivity of mofigkecasts to the cloud
analysis procedure and to various treatments withanfocus the rest of our study on
experiments conducted in an observing system stroolaexperiment (OSSE)
framework, for a case of mesoscale convective sy$hCS) that occurred over central
United States. A degraded initial condition is ¢teelathrough smoothing a truth forecast
and by removing cloud fields. The simulation basedthis degraded initial condition
serves as a control, while sensitivity and datanakgion experiments try to improve
the degraded initial conditions, or examine theaotmf improved initial conditions.

The sensitivity of precipitation forecasts of upfémur hours to 1) model error
due to the use of different microphysics scheme Znalccuracy of model initial state
variables is first investigated. The sensitivitystate variables is examined by inserting
the perfect values of individual or a group of ahtes back into the smoothed initial
conditions. The forecast winds, temperatufg (noisture ¢,), total water-ice mixing
ratio Qu), and radar reflectivityZ) of sensitivity experiments are evaluated in teohs
the root mean square (RMS) error calculated agaémestruth. The results show that
compared to the initial state of hydrometeors, rtieelel microphysics has a relatively
small impact on the prediction of state variablesirelatively short range. However,
microphysics errors become significant for longarge forecasts, such after two hours,
when evaluated in terms of forecast reflectivityndng the model state variables
updated by the cloud analystg,is found to have the greatest impact on the ptiedic
of state variables and forecast reflectivity. Rsgation hydrometeors have the second
largest impact in terms of short-term prediction qpf and associated while the

importance of the non-precipitating hydrometeonglatively small.
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The other set of experiments is designed to exanthee impact and
effectiveness of the cloud analysis scheme. Inethegeriments, hydrometeor and
associated in-cloud state variables in the int@idition are obtained using the ARPS
cloud analysis scheme with varying configuratiasher than through direct insertion
as in the first set of experiments. When performihg hydrometeor analysis only
without updating any other in-cloud state variabteticeable and up-to-four-hours
positive impact on forecast can be found in congoariwith the hydrometeor-clear
control. However, whey, is adjusted to the value of saturation mixingaatie., the
relative humidity (RH) is adjusted to 100% withirepipitation region, as is done in the
current ARPS cloud analysis procedure, rapid fateearor growth is found in most
state variables and reflectivity is significantlyeo-forecasted. The in-cloud temperature
adjustment towards the moist-adiabat of low-levfgéd parcel in the cloud analysis is
found to work quite well.

Based on the results of the earlier OSSEs, eftmésmade to improve thg,
adjustment procedure in the cloud analysis to reduecipitation overforecast. The
effectiveness of a better specified in-cloud hutgifield, by direct insertion of the true
RH, is firstly demonstrated. A modifieq, adjustment procedure making use of the
vertical velocity information is further proposed.his procedure avoids over-
moistening in the downdraft regions, but the oJveeator in the adjustedj, is not
necessarily reduced quantitatively due to loosaticeiship between vertical velocity
and relative humidity. Still, the forecasts resudtifrom the modifiedy, adjustment is

significantly improved over that from the origirmdheme.
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Chapter 1: Introduction

1.1 Background and Motivations

Given the potential vital impact on human societypnvective-scale
precipitation systems and their forecasts using erigal weather prediction (NWP)
models initialized with real observations, since finst attention called by Lilly (1990),
have become an active field of research in the pastdecades (e.g., Johns and
Doswell 1992; Droegemeier et al. 1993; Lin et &93; Hohenegger and Schar 2007,
Stensrud et al. 2009; Xue et al. 2013). Howeveprawing the forecast of convective-
scale severe weather has still remained a gredeonba. This difficulty is owing to not
only the nonlinear dynamics and physics of the @ased systems (Lorenz 1963), but
also errors and deficiencies in the NWP modelsb@ia and Baumhefner 1988) and
data assimilation (DA) systems.

Radar measurements have been widely used as asdayge of data in
convective-scale DA for their fine temporal andtggdaesolutions. In the United States,
the establishment of the Weather Surveillance R4888 Doppler (WSR-88D; Crum
and Alberty 1993) operationaktwork in particular enable researchers and gstertb
conduct storm-scale studies with its nationwide erage. In these studies, radar
reflectivity and radial velocity data are assinglhtnto NWP model using various DA
techniques. Under the strong constraint of a ptiesicmodel, the four-dimensional
variational (4DVAR; Lewis and Derber 1985) dataimsation is able to effectively
assimilate observations within an assimilation weiwwd A number of studies that
assimilated either observational or simulated radiata using 4DVAR have been

reported in the literature with reasonable res(dtg., Sun and Crook 1997, 1998).



However, these results were typically based on nsumiplified model physics, such as
the warm rain microphysics. Due to the difficultiesdeveloping the required adjoint
model and convergence issues associated with hightyinear microphysics that are
essential for accurate predictions, the practipplieation of 4ADVAR to the convective-
scale DA have been limited (Xu et al. 1996a, b)e Bnsemble Kalman filter (EnKF;
Evensen 1994; Houtekamer and Mitchell 1998), ativelly new technique, has been
demonstrated to provide promising analyses anc#ste with radar data (Snyder and
Zhang 2003; Tong and Xue 2005). With a flow-depenhderor covariance obtained
from ensemble forecasts, the EnKF method has theyad accumulate information
through assimilation cycles to provide theoreticatiptimal initial conditions for
initializing ensemble forecasts. The EnKF methabdlas its issues, however, such as
covariance inflation and location, multiscale anddel error issues, which still require
much more research before the method becomes manoagh for operational
applications at the convective scale. The high adatpnal cost is also an important
consideration.

Compared with the theoretically more advanced Aesmes 4DVAR and
EnKF methods described above, the three-dimensioaahtional (3DVAR) DA
method is widely used at operational NWP centespeeally for regional models,
because of its lower computational cost and fewrteal difficulties associated with
high nonlinearity. Its reasonably effective use foonvective-scale radar data
assimilation has been demonstrated in many sty#ias et al. 2010; Rennie et al.
2011; Sun et al. 2012). Particularly, the efficigroé 3DVAR on analyzing radar radial

velocity data has also been demonstrated by Gab @002, 2004) using the Advanced



Regional Prediction System (ARPS; Xue et al. 198H)0, 2001)3aDVAR package.
Radar only observes few parameters, which arefiomrit by themselves to determine
a complete set of initial conditions (ICs) for NWiddel use. Furthermore, for the lack
of flow-dependent background error cross covariandee 3DVAR formulation, many
unobserved states cannot be directly analyzed BNAR from the limited observed
variables. The “complex cloud analysis,” such as dime available within the ARPS
3DVAR system, employs certain physical constrathtst create the linkage between
radar observations and model state variables tocowee the observation deficiency
problem. The cloud analysis is usually performedh ageparate step from the 3DVAR
analysis (Hu et al. 2006a, b).

In general, cloud analysis procedures construatetdimensional cloud and
hydrometeor fields making use of radar reflectiwdigta along with other satellite and
surface cloud observations when available. Infolwnatn the analysis background,
which in the ARPS case, is the result of the 3DV&RIlysis, is also used. In the ARPS
complex cloud analysis, in-cloud temperature andstue are also adjusted based on
semi-empirical rules. In many previous studies, ARPS complex cloud analysis has
been applied to various convective weather systamkjding tornadic thunderstorms
(e.g., Hu et al. 2006a), mesoscale convective syst@CSs; e.g., Dawson and Xue
2006), and hurricanes (e.g., Zhao and Xue 2009erGits effectiveness with relatively
low computational requirement, the ARPS cloud asialpas been used, along with the
3DVAR radial velocity and other observations, fealrtime storm-scale forecast over
the continental U.S. domain since 2008 (Xue e@08) for the NOAA Hazardous

Weather Testbed (HWT) Spring Experiments (Kainle2@10; Xue et al. 2013). With



cloud analysis, the typical precipitation spin-uplgem is mostly alleviated (illustrated
in FIG. 1.1, by the initial ETS difference betwee® without cloud analysis, and cn,

with cloud analysis; also addressed in Dawson amel 2006).

0.4_[ T 17 T 1T 1771 T T 1771 T T 1771 lllll_

~ — c¢n :

- —= c0 ]

0'3: — 2km ]

< 02: .
m T E
0.1 —
O‘O_VNM

0 6 12 18 24 30

Time (hour)
FIG. 1.1 Equitable threat score (ETS) of hourlycgpiation at 0.5

inch threshold averaged over the last 15 days @828pring
Experiment. Experiments with grid spacing of 4 knd & km are
denoted by blue and red color, respectively. Dasé indicates
experiment with no radar analysis. Adapted from Xtal. (2008).

Despite some successes as demonstrated by pretialiss, the cloud analysis
approach still has its issues. As stated by Aulignal. (2011), a summary paper of the
International Cloud Analysis Workshop (2009), “Seateloud analysis and nowcasting
systems are now operational, yet forecasts ataustiblly only useful for a few hours.”
The difficulties, or limitations, can be mainly r@uted to the inconsistency between
the semi-empirical based analysis result and timeptioated model physics: while the

analyzed states from the cloud analysis are nosistamt with the prediction model,

they usually undergo rapid adjustments, and aswtrehe impact of the cloud analysis



is eliminated quickly during the initial stage adrécast. This process is commonly
reflected by the verification of the forecast, Aswn in FIG. 1.1, with a rapid drop of
the ETS in the very first hour after the forecagialization.

Although the impact of the ARPS cloud analysis hasn examined in many
real case studies, because the truth of cloud gdbimeteor fields is little known, the
accuracy of analyzed fields are difficult to deteren In many cases (Dawson and Xue
2006; Hu and Xue 2007; Zhao and Xue 2009b), thedckmalysis was applied with the
3DVAR analysis through intermittent assimilatiorck®s, in which the accuracy of the
analyzed fields is further complicated by the madedgration involved. The impact of
individual analyzed cloud and hydrometeor fieldsweell as the associated adjustments
to temperature and moisture has not yet been digreftamined so far. It is our goal, in
this dissertation, to investigate the impact ofdheuracy of individual state variables in
the initial conditions, particularly those variablhat are adjusted by the cloud analysis,
on the subsequent forecasts. Such study is best dsimg Observing System
Simulation Experiments (OSSEs) where the truthllaftate variables is known, so that
the accuracy of the analyzed fields can be measquethtitatively. A study that
examined a similar issue is that of Ge et al. (20X®wever, in their study the
individual state variables were examined as paéemibservations available over the
entire model domain, and intermittent 3DVAR ana$yseere used. The main

differences between Ge et al. (2013) and our O$&Ey sare summarized in Table 1.1.



Table 1.1 Summary of the differences between Ge et al. (2013) and this study

This study Ge et al. (2013)

3D smoothed fields derived Homogeneous fields given by
Background fields from the truth simulation of an idealized sounding.
OSSE (real case based).

Direct insertion over entire 3DVAR (with mimicked
domain or from ARPS complex observation error) over entire
cloud analysis for in-cloud domain.

ICs construction
(DA) method and
effective area

regions.
Impacting 8, v, Ox (mixing ratios of cloud | Vy, w, 6, g, gr (rain water
variable examined and precipitation species). mixing ratio).
DA frequency One time. Cycled analysis for 90 masut
Double-moment ice Warn rain only.

Microphysics

microphysics scheme.

Questions addressed in this dissertation include:
* How accurate is the analysis required to be foumate predictions?
« What the role does the model error play? How lasgthe impact of model
error relative to initial condition error?
* How long can the benefit of cloud analysis lastthése an intrinsic limit?
* What is the relative importance of the differentriables in the initial
conditions on prediction?
By answering these questions through the investigat better understanding of
the potential and limitations of the ARPS cloudlgsia or other similar package can be
gained. In addition, this study can serve as a guor further cloud analysis

improvement.



1.2 An Overview of the Study

The rest of the dissertation is organized as WdloAt the beginning of Chapter
2, a brief overview of various existing cloud arsadysystems implemented by different
operational forecasting centers is provided. A naetailed introduction to the current
ARPS complex cloud analysis package is then giatng with the modifications to
the hydrometeor mixing ratio analysis procedurelemgented in this study. The revised
analysis procedure is applied to an observed maithonsoonal mesoscale convective
vortex (MCV), and the resulting very-short-rangendohour) rainfall forecast is
examined. In Chapter 3, after an introduction te MCS test case and the OSSE
framework, two sets of experiments are presentatlekplore the forecast sensitivity to
different control factors. The factors examinedude model error due to the use of a
different microphysics parameterization scheme ardrs in the model initial state
variables. The second set of experiment examirtiegptractical impact of the ARPS
cloud analysis and corresponding in-cloud statesadjents is presented in Chapter 4.
Experiment results are discussed and summarizédavitonceptual model of forecast
error evolution at the end of the chapter. In Ceaaft, based on the findings from
Chapter 4, the potential effectiveness of an atelyraspecified moisture initial
condition on the model forecast is firstly tested @emonstrated. A modified in-cloud
moisture adjustment procedure, making use of théicaé velocity information, is
further proposed, followed by the preliminary ewlan of its efficacy. Finally,
conclusions of the study are summarized in ChaptdPossible future work is also

discussed.



Chapter 2: Cloud Analysisand a Real Case Application

2.1 Existing Cloud Analysis Systems and Algorithms

A number of analysis and forecast systems haven béeveloped and
implemented operationally for nowcasting or sharige forecasting use at various
NWP centers or research organizations around thédvewer the past two decades.
These systmes include the Local Analysis and PiiediSystem (LAPS; Albers et al.
1996) developed by the National Oceanic and AtmespiAdministration’s (NOAA’S)
Forecast Systems Laboratory (FSL), the Nowcastimdy laitialisation for Modelling
Using Regional Observation Data Scheme (NIMROD;d#g 1998) by the United
Kingdom Meteorological Office (UKMO), and the Ragrefresh version of the Rapid
Update Cycling model (RUC/RR; Benjamin et al. 2004gd for current operations at
the National Center for Environmental PredictiorC@P). A brief overview of these
systems, in particular their cloud analysis componeill be provided as follows.

As one of the first systems that carry out thelyammsa of cloud-related fields,
LAPS was designed to incorporate a variety of a@asasncluding surface observations,
remote sensing observations (e.g., Doppler radats]lites), multiple layer data (e.g.,
wind and temperature profilers), and aircraft régofor NWP model use. The three-
dimensional cloud distribution is retrieved basedtbe prerequisite 3D temperature
analysis and the insertion of satellite and radda.dOther 3D cloud products of LAPS
include cloud type, mean volumetric drop (MVD) side-cloud omega field (i.e.,
vertical velocity), and cloud liquid water/ice cent derived using the Smith-Feddes
model (Haines et al. 1989). Besides, the radaectility data along with analyzed wet-

bulb temperature serves as input for diagnosingpB&ripitation type. Most cloud



analysis procedures described above are inhentedebARPS complex cloud analysis,
whose details are provided in the coming subsectidrpresent, LAPS is still widely
utilized in the weather agencies of several coast(e.g., China, Finland, Italy, Korea,

Serbia, Spain, and Taiwan. Refehttp://laps.noaa.qgoy/

For the UKMO'’s very short range forecasting nedtls, NIMROD has been
developed by integrating nowcasting and NWP tealesq Being one of the three
major components, precipitation, cloud, and vigjilof the NIMROD system, the
cloud analysis scheme utilizes the Meteosat saetihagery as the main observation
source, in conjunction with the surface reportssthy, the clear and cloudy regions are
identified with the available satellite observagso©loud top height is then calculated
based on the atmospheric structure from the NWPemaugtput, which processes the
infrared (IR) radiance temperature information usedccount for the relative location
of the cloud top to the boundary layer height. Fnahe multi-level cloud analysis is
obtained by applying a two-dimensional recursitterfialgorithm (Purser and McQuiqq
1982) to each model level that brings best agreemeong the satellite observation,
surface cloud report, and the forecast first guegermation of both cloud fraction and
rain rate analysis (derived from radar and sagetitbservation) can be further used for
humidity specification (Macpherson et al. 1996).

Since the first operational implementation in 1994e RUC system has
undergone a few updates, mainly in the aspectppfcation of finer model resolution
and higher frequency on data analysis. The moseguwrersion of RUC, launched
beginning in 2002, comes to a hourly assimilatipde with 20-km horizontal spacing.

Both the optimal interpolation (Ol) and 3DVAR teaipmes are available in the RUC



system for assimilating a large variety of obseorattypes (refer to Table 2 in
Benjamin et al. 2004 for a complete list). The diwydrometeor analysis component in
RUC was first designed mainly using the Geostatiprdbservational Environmental
Satellite (GOES) data, but was further modifiedrtdude the radar reflectivity data
(Kim et al. 2002). Cloud clearing (i.e., removat) luilding (i.e., insertion) is carried
out based on the GOES observation in comparisdmtiwé background cloud field (1-h
forecast from previous run). The water vapor mixiago is also adjusted throughout
this process. Further hydrometeor mixing ratio stifient has been proposed: the
background (predicted) hydrometeors are used fotitipaing the contribution on
reflectivity from each hydrometeor species, and dbeserved reflectivity is complied
with the reflectivity observation operators from gees and Yau (1989). A similar
concept on using the hydrometeor predictions (whexlable) is also adopted in ARPS
cloud analysis for the cycled analyses.

Efforts have been made by different groups of peedp assimilate radar
reflectivity data for hydrometeor analysis in ae@sh scenario. In Sun and Crook
(1997), assimilation of simulated reflectivity datigher directly or indirectly (witly, as
the control variable through Zq relation) was tested using 4DVAR technique. With
the sameZ observation operators used in Sun and Crook (199@p et al. (2007)
developed a 3DVAR scheme using the total water mgixiatiog; as the control that
realizes analyses of, g., and associated moisture and temperature fieloih & these
studies above, however, took only the warm raircgse into account. Zhao and Jin

(2008) introduced a variational approach in whidlaa factor, based on minimization
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of the cost function witlZ as the control variable, was used to update mixatigs of
multiple hydrometeor species (ice phase included).

Some algorithms, instead of realizing direct asialpf cloud/hydrometeor fields,
are designed for updating other associated modeésst such as temperature and
moisture. One example is posed by the 1D+3DVAR oeettf Application of Research
to Operations at Mesoscale (AROME; Seity et al.12Gdeployed in the Météo-France.
With the application of a unidimensional (1D) Bag@sinversion, the treatment for the
nonlinear moist processes is bypassed in favoeftéativity assimilation. The observed
reflectivity column is, at first, used to compute the relative humidity profile, which
is serving as a pseudo observation for the lateV/A® assimilation. One of the
advantages addressed for this two-step methoe igdksibility to control the quality of
the 1D Bayesian retrievals before they are asdedlain 3DVAR with other
observations.

Other non-variational based techniques, suchtasatl@eat nudging (LHN) and
diabatic digital filter initialization (DDFI), aralso applied in operational forecasting for
radar reflectivity assimilation. Based on the tleically proportional relation existing
between the resulting surface precipitation and ldtent heating profile aloft, the
model's temperature and moisture fields are “nutiged that the diagnosed
precipitation rate can better agree with the oletesa. Jones and Macpherson (1997)
introduced the implementation of the LHN technidgue the UKMO Mesoscale Model
through the use of the radar-derived precipitatiata is introduced. As the trend of
increasing DA cycling frequency is used for conwextcale forecasts, the issue of

imbalance among the analyzed fields, the spurioestial-gravity wave specifically,
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reveals and demands for appropriate treatments. DB&l technique was first
presented in Huang and Lynch (1993) as an ideatisal to this issue. In conjunction
with the cloud analysis procedure in the RUC, a madar reflectivity assimilation
procedure using the DDFI is proposed in Weygandtlet(2008). Basically, the
observed-reflectivity-based latent heating ratecanputed to modify the model-
calculated temperature tendency during the diabfateward integration part of the
digital filter.

More simple and straightforward methods can bdieghpo adjust the in-cloud
states. For example, a commonly used assumptianhtiraidity is saturated in the
cloudy regions is adopted widely in many studielbéps et al. 1996; Zhang et al. 1998;

Wang et al. 2013) for in-cloud moisture adjustnmsntply with the presence of echoes.

2.2 The ARPS Complex Cloud Analysis
2.2.1 An Overview of Current Complex Cloud Analysihe ARPS

Serving as a major part in the ARPS Data Analgsistem (ADAS; Brewster
1996), the complex cloud analysis module was desiga provide optimal analyses of
hydrometeor and other associated fields for NWPehade. Since the analysis module
was firstly developed by Zhang et al. (1998) basedhe LAPS (Albers et al. 1996),
several modifications and improvements have sulesdgtjubeen made, including the
important temperature and moisture adjustmentswes 2002). In the most current
version of ARPS (5.3.5), ADAS is able to incorperatformation from various sources
of observation, such as single layer measuremerds mesonet, airport report, buoy),
multi-layer measurements (e.g., radiosonde), amgote sensing observations (e.g.,

satellite and radar). In this study, the focus nsradar data, whose impact on model
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predictions has been demonstrated as primary iresept study for its relatively fine
spatial resolution (Schenkman et al. 2011).

The complete procedure of the current ARPS complmud analysis is
described step by step in detail below. Again, oobntents that use the radar
observation are addressed.

(1) State variables initialization:

All model state variables that will be used in ttleud analysis procedure,
including pressurep), potential temperaturé), moisture ¢,), vertical motion ), and
mixing ratios of various cloud and precipitatingdhgmeteorsdy), are firstly initialized
by reading from either analysis fields or forecésids from a previous model
prediction. Note that for most analysis dajdafields are usually unavailable.

(i) Cloud coverage analysis:

A background three-dimensional cloud cover fieldiist calculated from the
background relative humidity (RH) analysis. In gethethe cloud coverage is a function
of humidity and height. For details of the formidat please refer to Zhang et al.
(1998). After the background cloud cover field anstructed, a series of cloud insertion
is performed based on observations that are alailab

As the radar observed reflectivity is remapped dheomodel grids, the clouds
are directly inserted (i.e., 100% cloud fractiorsigsed) into grids above the lifting
condensation level (LCL), which can be determineainf background temperature and
humidity, or simply offered by the airport weathmeports (i.e., METARS) if available.

(i)  Cloud associated variables analysis:
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From the cloud distribution obtained in the prewatep, cloud base and cloud
top can be determined. Along with the backgrountbrmation of pressure and
temperature at the cloud base, the liquid wateterdr{i.e., cloud water mixing ratip,)
throughout the entire cloud extent can then beutatled based on an adiabatic
assumption. Another option adapted from the Smétees model (Haines et al. 1989)
is available. With this model, a prevailing stratdeud environment is assumed.
Ambient temperature from the background is useactmunt for the depletion process
of cloud water in forming cloud ice (i.eg). In addition, effects of entrainment and
dilution by glaciation are also included. Modifimats of the Smith-Feddes model
inherited in the ARPS cloud analysis are introducedibers et al. (1996),.

As the end of this these, other cloud-associatatiables, such as in-cloud
vertical motion {g) and icing severity index, are calculated withy is a function of
cloud thickness and cloud type. The cloud thicknessbtained from the cloud extent,
while the cloud type can be determined by tempegadnd stability. The icing severity
index is a function of temperature, liquid watentsmt, cloud type and precipitation
type. The determination of precipitation type ire thurrent cloud analysis will be
further described in the next subsection.

(iv)  Cloud mass limit 1:

When there is significant cloud water or cloud pcesent and their total mixing
ratio is larger than the local saturated water vapoisture (i.e.q, ), their summation is
limited toq,” by reassigning their values based on their origiag as

q.(original) .
q.(original) + g;(original) Qv

qc (new) =
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qi(original) i}
q.(original) + g;(original) Qv -

and g;(new) =

1)
(V) Precipitation mass analysis:

This step serves as the major part of the entwadclanalysis procedure that
directly links the model hydrometeor state with asadeflectivity observation. To
achieve the hydrometeor analysis, a set of radserghtion operators and their inversed
version are required. A number of observation dpesahave been developed for
simulating reflectivity from model predictions. Tdeoperators primarily depend on the
microphysical process and the associated featlives sets of observation operators are
currently available in the official version of ARPShe first set of operators is
relatively simplified based on the fitting resulistween model simulation and radar
observations. Empirical exponential relationshipgthis option are given by Kessler
(1969) for rain water and Rogers and Yau (1989) doow and hail. This set of
operators is denoted by KRY hereafter. The othieofseperators, given by Ferrier et al.
(1995), is constructed with more complicated foratioh that involves the melting
process of snow. Note that both sets of operatessribed above include only three
precipitation species: rain, snow and hail. Furtieme, both of them are currently
compatible with the single-moment (SM) bulk micrgpits parameterization scheme
only as the default constant intercept paranméjés used.

The process to retrieve the simulated radar obsens, such as reflectivity, is
usually relatively easy and straightforward: aft@rious hydrometeor mixing ratios
from the model output are inserted into their retipe reflectivity operators, the

reflectivities for different species are then conda (summed up) as the simulated
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reflectivity. The inverse process is, however, treédy complicated. As this problem
itself is under-determined with only one known aafte (i.e., observed reflectivity) but
multiple unknowns (i.e., mixing ratio of differerspecies) to be solved, additional
information is required. How to partition one oh&t gross reflectivity into several
portions corresponding to different precipitatigpesies that are present is a major
problem one will encounter while realizing the migiratio analysis. As noted earlier in
the first step, the hydrometeor fields are usuafigvailable in most analysis data, no
information about the presence of hydrometeorsbmanbtained from the background
fields. Consequently, a “mutual-exclusive-presenceridition is applied as a prompt
resolution. Under this condition, there is only @mminating species on each analysis
grid and the observed reflectivity is contributed ib completely. In other words,
mixing ratio of one and only species can be analylo each grid. More related
discussions are provided in the next subsection.
(vi)  Cloud mass limit 2:

After the precipitation mixing ratios are analyzledsed on radar reflectivity,
cloud mixing ratios in regions of precipitation agene through another limitation
process for avoiding double counting. For now,mapse five percent is taken upon the
total precipitation mixing ratio in representingetiotal cloud mixing ratio while the
amount of precipitation analyzed is found more siggnt than the amount of cloud.

(vii)  In-cloud temperature adjustment:

Before this point, the analysis of all hydrometesrgompleted. Following are

optional adjustments of in-cloud state variableseldaon the hydrometeor analysis and

background state.
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Two major in-cloud temperature adjustments arelavi in the current cloud
analysis package. One adjustment is based upolatdrg heat release associated with
the hydrometeors that have been analyzed (Zhang; 18frred to as the LH scheme),
and the other one is based on assuming moist dadiabenperature profile including
the dilution effect due to the entrainment prog&swster 2002; named herein the MA
scheme). The impact of two schemes on the prediaifoa tornadic thunderstorm is
discussed in Hu and Xue (2007).

(viii)  In-cloud moisture adjustment:

Currently, wherever there is radar echo presestnbisture for that local grid
is simply set as saturated. This adjustment iscbasean intuitive physical sense that
moisture should be saturated for forming precifmtat The process is completed by
assigning 100% RH, and then calculatigg along with information of saturated
moisture q,, which is a function of local pressure and tempee (after the
temperature adjustment if it was applied earlier).

For the case when the background hydrometeor irgtbom is available, a
different option of moisture adjustment that slighteduces the moisture can be
selected. The activation of this adjustment is metged by comparing the total
hydrometeor mass (all cloud species and precipitaspecies) from background and
from analysis. When the analysis value is foundddess than the background valge,
is set to 0.95, . This procedure is designed for intermittent asedy(i.e., cycling) to
avoid an over-moist environment and the resultwgrfmrecast of precipitation.

(ixX)  In-cloud vertical motion adjustment:
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As the final step of the cloud analysis procedthe,in-cloud vertical motion is
adjusted to the larger value of either backgroundr w4, which is analyzed in step
(iii) .

Table 2.1 is provided as a concise summary of thadcanalysis procedure

described above.

Table2.1 Summary ARPS complex cloud analysis procedure

State
Step Content variables
changed
1 State variables | Model state variable®(6, qv, w, gx) read from None.
initialization background files.
2 Cloud coverage | Cloud coverage and cloud distribution variables | None.
analysis (cloud base and cloud top) analyzed based,gn
Cloud associated 1) Cloud mass variables analyzed basegygthyg, Je» G-
3 variables and other cloud info (from step 2).
analysis 2) In-cloud vertical velocitywq) analyzed based or
cloud type and thickness.
4 Cloud mass limit| Cloud mass \fariables adjusted to confine to Je» G-
1" backgroundy, .
5 Precipitation Precipitation mass variables analyzed based,gn | g, gs, On.
mass analysfs | using radar simulator formulation selected.
Cloud mass limit| Cloud mass limited to 5% of precipitation mass in| qc, G;.
6| 2 avoiding double counting.
In-cloud Temperature adjusted in selected physical manner 6.
7| temperature (LH or MA).
adjustmerit
In-cloud 1) Moisture saturated for grid with observed echo.| q,.
8| moisture 2) o limited to 0.5}, for grids with analyzed total
adjustmerit mass less than background total mass.

In-cloud vertical | w reassigned to the larger value betweagmandweg. | w.
9| motion
adjustmerit
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2.2.2 A Modified Mixing Ratio Analysis Procedure

As introduced in the previous section, the mixiragio analysis procedure
available in the current ARPS complex cloud analysckage is relatively simple. In
other words, the physics involved are not suffitiendepicting realistic mechanisms
and therefore may provide unbalanced analysis teesiidit are incompatible with the
complicated model microphysics schemes. As a rethdteffect of analysis will not be
able to last long as the model goes through a ragjustment.

Our study has developed a more general procedulertve an analysis of the
mixing ratios. This procedure is based on the ragarator built by Jung et al. (2008;
referred to as JZX hereafter). Four major feattias distinguish our approach from the
currently utilized procedure are described below:

) Unlike the empirical fitting relationships used fdeveloping the KRY
operators, the JZX formulation includes the theafrglectromagnetic wave propagation
and scattering. Factors that affect the scattaesglts are considered in the derivation;
for instance, the dielectric factor and canting dabr as the particle falls. Since the
Rayleigh approximation is applied while formulatifagg the large sized particles such
as hailstones, this procedure is currently good assimilating radar data at long
wavelengths (i.e., S band) only.

(i) Compared to the simple exponential relation betwesdtectivity and
hydrometeor mixing used in KRY, the drop size disttion (DSD) parameters
corresponding to the hydrometeors are also includexkpressing the radar variables,
making this procedure more flexible and therefooenpatible with the model using

multi-moment (MM) microphysics schemes.
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(i) Although the melting process of snow is included the Ferrier
operators, this classifying criterion is purely &é&on temperature with an arbitrary
threshold of 0 °C. As much more complicated micygpts and various hydrometeor
phases can be expected for their existence ireileatmosphere, a melting ice model is
included in JZX to account for sufficient variety ghysical properties associated with
the melting process (e.g., density change). Wiih inodel, the radar variables are not
only contributed by the pure precipitating spe¢esg., rain, snow, hail), but also by the
mixing species (or mixtures, e.g., wet snow, wel ifgpresent.

(iv) Considering that different combinations of pretpng species can be
used in different NWP models and microphysics s@®mn equation set for graupel
species is added to the original published JZX atpes, which included only rain,
snow, and hail. This addition allows the cloud s sl procedure to handle situations
where both hail and graupel species are present.

As mentioned in the previous section, perquisitéormation about the
distribution of multiple hydrometeor species is uiegd before we can retrieve the
corresponding mixing ratios based on theperators. In the current cloud analysis
package, a simple strategy is used to classifytlier hydrometeor type based on
observedZ and background when no hydrometeor field is available in the baokgd:

If Z,ps = 50 dBZ — pure hail is classified,

If Ty, = 1.3°C - Pure rain is classified

If Zops < 50 dBZ, and{ If T, < 1.3°C = Pure snow is classified’

in which Ty is the wet bulb temperature. After the hydrometigpe is determined,
corresponding equations dfoperators is used to compute for the mixing rafibth

this strategy, only one type of hydrometeor caridoed for each analyzed grid, which
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is believed unrealistic compared to what is obsginethe real atmosphere. Since one
major advantage of our modified mixing ratio anadygrocedure is the allowance of
microphysical complexity (by implementation of theelting model), it is designed to
enable the analysis result of a more flexible hgukteor distribution. To realize our
analysis with this modified procedure, the ratiooagnqgy of each pure precipitation
species (i.e., rain, snow, graupel, and hail) qured in advance. As long as there is
hydrometeor information available in the backgroured (usually from previous
model forecasts), a more realistic hydrometeor ymmal and accompanying
microphysical features can be anticipated withraodified procedure.

Details about the formulation with associated pat@nms and coefficients, and
how to perform this modified procedure for mixingtio analysis in practice can be
referred to Appendix A. Although there are obseoratoperators built for other
polarimetric variables (e.gZpr, Kpp) in Jung et al. (2008a), only the reflectivity
operators are adopted in this study to analyzenihéng ratios for its robustness of
behavior to various hydrometeors, which also presids confidence in the analysis
results. Operators of other polarimetric variabesuld also be used; however,
comprehensive understanding about the sensitivitjthese variables to different
hydrometeors and a thorough data quality controcgss are highly recommended

before actual application.

2.3 The Use of Polarimetric Radar Measurementsin the Cloud Analysis
2.3.1 Mixing Ratio Analysis Using Polarimetric Rad&riables
Given the additional measurements that polarimetaidar can provide, its

advantage over the traditional Doppler radar indoetharacterizing the hydrometeor
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features and their corresponding microphysical ggees has been widely discussed and
demonstrated in numerous present studies, pantiguila the field of quantitative
precipitation estimation (QPE; Bringi and Chandkase2001; Vivekanandan et al.
1999; Zhang et al. 2001; Zrnic and Ryzhkov 199@ward the goal of improved short-
range forecasts of cloud, hydrometeor, and pretipit, a modified mixing ratio
analysis procedure that makes use of multiple po&tric radar variables is proposed.
The JZX reflectivity operator as described in poes section is used to carry
out the procedure. The major role of the extraqoletric variables, in addition t8, is
to partition the portions of multiple precipitatispecies required as the prerequisite for
the mixing ratio analysis. A fuzzy-logic based hyaeteor classification algorithm
(HCA) proposed by Park et al. (2009) is adoptedialdes used for the HCA procedure
includesZ, Zpr, Kpp, andpn,. These measurements are firstly interpolated eanbdel
gridded coordinate. For grids where all four vaesabare available, the aggregation

valueA for each possible defined class of radar echonspuited as

_ Zja WyPOW)

4_ )
j=1 Wij

A;

wherei represents théh class of echo that could be classified by thgorhm, |
represents thgh of radar variableﬂ?(i)(\/j) is a trapezoidal shape membership function
that characterizes the distribution of ftfevariable for theth class (shown as FIG. 2.1),
andWj; is a discriminating efficiency based weight betw@eand 1 assigned to thid
class and th@h variable. As a resulfy values ranging from 0 to 1 for ten classes: 1)
ground clutter (GC); 2) biological scatterers (B$)dry aggregated snow (DS); 4) wet
snow (WS); 5) ice crystals (CR); 6) graupel (GR);big drops (BD); 8) light to
moderate rain (RA); 9) heavy rain (HR); and 10nfia&il mixture (RH) are obtained.
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For specific values diV; or the X1, X2, X3, and X4 iR"(Vj), please refer to Park et al.

(2009).

P(X)

X1 X2 X3 X4

X
FIG. 2.1 Trapezoidal membership function, wheres>am

arbitrary radar variable. Adapted from Park e(2009).

In our adoption described above, couple simpliftces upon the (Park et al.
2009)’s original proposal have been taken in calind) the aggregation values. First,
two texture parameters SPH(and SD@pp) (along radial fluctuation oZ and @pp,
respectively) are excluded. As these two variablesmainly included to identify the
non-meteorological echo, the impact of this omissa the classification results can be
minimized by pre-processing radar data with somalityucontrol (QC) algorithms
(Hubbert et al. 2009). Second, Qe confidence vector, present in both numerator and
denominator of the origina; equation is also omitted. As tkg is designed to account
for the measurement error of each variable useel) eonfidence on each variable is
accordingly implied while this simplification iskean.

After the A; values are obtained, the results are further exasniby some
empirical hard thresholds (Table 2.2) to suppregpagently unrealistic class

designations. For example, the radial velo¥®tinterpolated on model grids is used to
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eliminate the likelihood of the occurrence of grdwiutter: whenV is greater than 1.0
m s*, A; (1 is the order number for GC class) is direcdyts 0. The rules are based on

both physical model and observations (Straka &tCf0).

Table 2.2 Empirical hard thresholds used to suppress apparently wrong
designations (reproduced from Park et al. 2009)

Variables Thresholds Suppressed class

V >10m§& Ground clutter (GC)

Phy > 0.97 Biological scatterers (BS)
Zpr >2dB Dry snow (DS)

Z <20dBZ Wet snow (WS)

Zbr <0dB Wet snow (WS)

Z > 40 dBZ Ice crystals (CR)

Z <10 dBZ or > 60 dBZ Graupel (GR)

Zbr <fy(2)-0.3* Big drops (BD)

Z > 50 dBZ Light to moderate rain (RA)
Z <30dBZ Heavy rain (HR)

Z <40 dBZ Rain/hail mixture (RH)

*f,(2) is a function oZ (in dBZ) that can be found in Park et al. (2009).

It has been indicated that additional routined #wount for factors such as
relative location of radar sampling volume withpest to the melting layer (ML) and
precipitation nature (i.e., convective versus #gtah) are required for better
classification results (Heinselman and Ryzhkov 2008 our procedure, the
background temperature is used for locating thetfL(where T begins to drop below
0 °C) and a constant depth of 500 m below the ML isoused for defining the layer.
Any non-meteorological class (GC or BS), WS, and&& excluded above the ML top
regions, where strict frozen condition is presunt@d.the other hand, the intensity of
observedZ profile is used to classify the precipitation typehe following simple

empirical strategy is used:
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if Z > 35 dBZ — Convective.

if Z < 35 dBZ — Stratiform.
if Z > 35 dBZ and Lower successive grid is Conv. — Convective.

otherwise — Stratiform.
if Z > 30 dBZ — Convective.

if Z < 30 dBZ — Stratiform.

For grids below ML bottom, {
For grids within ML,{

For grids above ML top,{

The condition to check the lower successive gridapgplied to prevent potential
contamination of bright band, which is known foegtZ intensity. Snow classes (i.e.,
DS and WS) are excluded for convective precipitatizvhile the convective
hydrometeor types such like BD, GR, and RH aredemain stratiform area.

After all despeckling processes described abowe gone through and all
physical unreasonable classes are avoided, thévalsnof A; are used for determining
relative portion of different precipitation hydroteers. All eight meteorological classes
are classified into three types as:

1) Rain type: BD, RA, and HR.

2) Snow type: DS, WS, and CR.

3) Hail/Graupel type: GR and RH.
The A maximum of each type is taken for representingpitréion of that specific type.
Specifically, the ratio among rain, snow, and lgadlpel is determined as:

max(@z, As, Ag) : max@s, As, As) : max@e, Aqo).

The mixing ratio of each type is then analyzed gidime JZX reflectivity operator to
comply with the Z observation. Refer to Appendix A for detailed nestiatical
formulation.

The principal assumption incorporated in this pdace is that the aggregation
values calculated from HCA are quantitatively pmejpmal to the hydrometeor content

(i.e., mixing ratio). One main feature of the ams&yresult from this HCA-based
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procedure is that coexistence of different hydr@oet is possible at a same location,
which is believed more realistic. Demonstrationghed analysis result will be shown
and discussed in the coming sections with a resd agplication.

2.3.2 A Mei-Yu Front Mesoscale Convective VortekMondel Configuration

During the intensive observing period (IOP) 6 (Q80TC 4 June to 1200 UTC 6
June) of the Southwest Monsoon Experiment (SOWMBEXJ the Terrain-influenced
Monsoon Rainfall Experiment (TIMREX), a joint TaiwdJnited States field
experiment (Jou et al. 2010) taking place in 2008-¥u season (Chen and Chang
1980), a MCV embedded in a quasi-stationary meirgat across the southern China
and middle Taiwan was observed. As the MCV-assediabnvective system moved in,
serious flood was resulted in the southwesterntabasea of Taiwan with nearly 200
mm precipitation in two hours (Lai et al. 2011)GFR.2 shows the track of the MCV.

In addition to the four S-band Doppler radars afest by the Central Weather
Bureau (CWB), the National Center for AtmospheriesBarch’s (NCAR'’s) S-band
polarimetric Doppler research radar (as S-Pol Hengawas deployed at southwest
coast of Taiwan for the SOWMEX/TIMREX project. Thedars locations are provided
in FIG. 2.3.

The ARPS model and its data assimilation systeenumed to examine the
impact of the mixing ratio analysis procedure basedpolarimetric variables (as
described in previous section) on the very shargea(l hour) precipitation forecast.
The domain, as marked by the red square in FIG.iRdesigned to cover the Southeast
Asia with Taiwan in the center of the domain (1, 24 °N). Although the MCV of

interest was located very close to Taiwan in oudgtperiod, our domain is created as
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large as this to avoid any potential over-streseding from the lateral boundary
conditions (LBCs). A northern hemisphere Lamberhf@amal map projection is used.
The domain has 803 (x-direction) x 803 (y-directien53 (z-direction) grid points in
total with 2.5 km horizontal spacing and an avedag20 m vertical resolution. Terrain-

following and stretching vertical coordinate is dis@th the lowest level of 50 m AGL.
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FIG. 2.2 Weekly averaged sea surface temperaturegd2-8 June 2008 and MCV
track. Gray dots and black dots are tracked byatlkte images and radar radial
velocity, respectively. Red square denotes the donw our simulation.
Reproduced from Lai et al. (2011).
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FIG. 2.3 Distribution of four CWB

operational radars and NCAR S-Pol

radar. Observing ranges are denoted by

circles in corresponding colors (200

km for CWB radars and 150 km for

NCAR S-Pol).

The simulation is initialized at 00 Z 5 June 20ABizing the CWB operational

WRF analysis after interpolating from the origimall5-km grid spacing to our 2.5-km
grids. The radial velocitiesV() observed by S-Pol are assimilated using the ARPS
3DVAR package. Two sets of experiment are performéti different mixing ratio
analysis procedures: one with current availableguare (based aaonly) using KRY
operator, and the other with the HCA procedure dbasn Z and other polarimetric
variables) using JZX operator. Under each experimetwo microphysics
parameterization schemes: Lin single-moment (Linakt1983) and MY double-
moment (Milbrandt and Yau 2005a, 2005b) are impleles a total of four

experiments are conducted (Table 2.3). To diststytihe impact purely owing to the
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different mixing ratio analysis procedures, theeotm-cloud field adjustmentsr( q.,
andw) are turned off for all experiments. Other mod®hfecgurations include: 1.5-order
turbulence kinetic energy (TKE) scheme, atmospheadiation transfer scheme, and

stability dependent surface scheme. No convectineutus parameterization is applied.

Table 2.3 Naming of experimentswith corresponding settings

Z-based hydrometeor HCA hydrometeor
Microphysics \gy analysis | classification with KRY classification with JZX
operator operator
Lin single-moment KRY_S JZX_S
MY double-moment KRY_D JZX_D

2.3.3 Results and Discussion

The radar reflectivity observed by the NCAR S-&000 Z 5 June 2008 are used
for cloud analysis at the initial time of the simtibn (FIG. 2.4). The leading convection
of the MCV is just entering the S-Pol observinggarmat this time. However, the
precipitating induced by MCV’s outer circulationsheeached the southwestern plain
area of Taiwan. A meridional oriented cross sectoross the leading edge of most

intenseZ is selected for illustrating the mixing ratio ayssé results.
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FIG. 2.4 (a) Composite reflectivity observed by NR&-Pol at 00 UTC 5
June 2008 and a (b) selected cross se&Rn
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Mixing ratio analysis results using different hgdreteor classification
procedures and reflectivity operators are showhl{. 2.5. Distinct differences can be
found between two algorithms. Qualitatively, innbasr of the rain distribution, it is
found that the JZX analysis, with the HCA appliad, able to characterize the
overshooting of the rain drops above the ML topjciwhs not available in the KRY
analysis result, in which a nearly uniform cap wn owing to the use of the
background temperature. For the snow mixing ratialysis, peak values show in the
KRY analysis right above the ML top while in theYdZnalysis these snow mixing ratio
peaks are replaced by the overshooting rain anditireficantgs values are located
slightly higher. A relatively broader distributiaf the gs analysis is found given by the
JZY procedure, which is due to the different analgzstrategies used for the JZY and
KRY procedures: in the KRY procedure, the mixingaanalysis is carried out only
when the observed exceeds 15 dBZ (for grids at 2 km or higher) whilehe JZY
procedure, the analysis of proceeds wherever tinerémlar variables (i.eZ, Zpr, Kpp,
andpn,) are available. A most significant difference beén the KRY and JZY analyses
is the presence of the hail. The complete absehite dail species in the KRY analysis
is mainly resulted from the simple strategy usedemtify hails in the current analysis
procedure: a 50 dBZ hard threshold (as describeédarprevious section). It is seen in
the selected cross section (FIG. 2.4b) the maximtithobservation is only around 45
dBZ, as a result, no hail is analyzed for the KR\ the contrary, with the HCA used,
higher likelihood of the hail occurrence is inclddi& the JZX procedure through the
introduction of the aggregation value calculatisome major presence of the hail is

found within the intense convective cores.
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FIG. 2.5 Mixing ratio (g/kg) analyses for hydromate(a)(b) rain, (c)(d) snow,
and (e)(f) hail, using KRY (left panel) and JZXgit panel) procedure.

Other than the hydrometeor distribution, significdifference is also shown on the
quantitative magnitude of the mixing ratio analyggsen by the KRY and JZX
procedure. In terms of analysis, despite the generally similar distribati the
magnitude ofg, maxima of the JZX procedure (~0.1 g*gs found about an order
smaller than that of the KRY procedure (~1.0 §)kg his magnitude difference can be
attributed to two main factors. First, as addressaedier, the key advantage of the
revised analysis procedure (i.e., JZX) is the isicin of HCA that enables the analysis

with coexistence of multiple hydrometeor speciesicW is also visualized by the
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analysis results shown in FIG. 2.5b, d, and f. kinkhe traditional analysis procedure
(i.e., KRY) that constructs mutually exclusive hgaireteor analysis and the only one
single species is in charge of contributing the lobserved, theZ observation in the
JZX procedure is partitioned by multiple hydrometepecies present one single grid
based on the HCA. As a specific example, becausheofcoexistence with the hail
above the ML, the snow mass content analyzed idZixeprocedure is smaller than its
counterpart given by the KRY procedure, in whicle $now is appointed with the
whole contribution to the observ@d The second factor is related to the melting model
incorporated in the JZX operators: whenever ligliid., rain) and iced species (i.e.,
snow or hail) coexist, the mixing ratios of thesartially-melted iced species (i.e.,
melting snow or melting hail, or mixture) is calatdd and their contribution to tizeis
taken into account (refer to Appendix A for detpildowever, the contribution of these
mixtures to the&Z is “implicit” and therefore not able to be seerour analysis results of
the pure species. Nevertheless, the impact of timeseires on reducing the magnitude
of the mixing ratio analysis for the pure specestill retained. One demonstration of
this effect can be found in FIG. 2.5b and f, whasexistence of the rain and falling hail
occurs under the ML, inferring the one order smmaiken mass analysis from the JZY
procedure in comparison with the counterpart frdra KRY procedure is partially

owing to the rain/hail mixture (or say, wet hail).
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The one-hour forecast of the hourly rainfall giviey all four experiments is
provided with the CWB Quantitative PrecipitationtiBgtion and Segregation Using
Multiple Sensors (QPESUMS) hourly surface rainfatbduct, which is mainly derived
from four CWB radar observation and ground check&é€ed) by the rain gauge

measurements (direct tbttp://gpesums.cwb.gov.tw/taiwan-eng-html/index.htfor

details). The use of an observation independenm fithe source used for data
assimilation (i.e., S-Pol) assures a more objecterdication. Generally speaking, most
experiments provide rainfall forecast coverage camalple to the observations except
for the JZX_S, which produces too isolated intepsecipitating cores with poorly-
captured stratiform precipitation. On forecastihg tajor significant rainfall area on
the open ocean (rainfall rate above 5 mih shaded by dark green), it is found the
experiments with the KRY procedure outperformsdhes with the JZX procedure by
forecasting adequately wide coverage. To summaheemajor difference between
KRY and JZX forecast results (by comparing FIG.b2té ¢ and FIG. 2.6d to e), it is
mainly shown on the prediction of the light rain.d word, the JZX procedure with the
HCA applied generally results in prediction of telaly weakened (in both intensity
and coverage) stratiform precipitation but keepsppr intensity for the major
convective precipitating cores. The rainfall forgiceesults of the similar distribution
and intensity within two groups of microphysics ekments imply a greater relative
importance of the microphysics scheme in comparisoth the mixing analysis
procedure applied. Furthermore, it is also foursl ékperiments with the MY double-

moment scheme are able to give prediction of thrdaih maximum much closer to the
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observation while the Lin scheme turns to overdast the maximum rainfall with an
over-100 mm exceedance.

From the one-hour forecast of the hydrometeorridigion in experiment
KRY_S and JZX_S shown in FIG. 2.7, the dominatibmerophysics scheme over the
mixing ratio analysis procedure can be further destrated. Quite similar results with
only slight differences in mixing ratio magnitudes dound for the two experiments just
one hour into the forecast. Moreover, even with plete absence of hail analyzed at
the initial time, the KRY_S can produce hail witloth distribution and amount
comparable to the JZX_S. Since the hydrometeoraliziation given by different
versions of analysis procedure fails to drive dieethydrometeor forecast results
through the model microphysics, we conclude a sswikitivity of the forecast to the
mixing ratio analysis procedure difference.

Given the result from the revised hydrometeor asialyprocedure does not
provide better one-hour precipitation forecastpitesof the qualitatively more realistic
hydrometeor analysis we believe it has provided, gbssible uncertainties that could
cause this result are further discussed. Firstlpthee central assumption used to build
up our analysis procedure needs careful valida#mthe aggregation values in the
fuzzy logic-based HCA was original designed foredetining a dominant (i.e., most
likely) echo class in a radar sampling volume figitt application, only the class with
largest aggregation value is confirmed), its appat@ness of quantifying the relative
magnitude among multiple hydrometeors is questilendixtra in-situ information such

as the surface hail report may be helpful to evaltize efficacy of the analysis.
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(c) IZX_S, (d) KRY_D, and (e) JZX_D valid at 01 UBCQune 2008. Hour rainfall
maximum is written at the lower right corner of legdot.
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FIG. 2.7 One hour forecast of mixing ratio (g/kg)abyses for hydrometeor:
(a)(b) rain, (c)(d) snow, and (e)(f) hail of expeent KRY_S (left panel) and
JZX_S (right panel).

Other than the uncertainty of the validity of thralysis procedure itself, another
issue could be its applicability on the case wenerad. Essential difference of the
precipitating mechanisms between the continentdlraaritime systems has been long
and widely discussed (e.g., Pestaina-Haynes andinA@976; Phillips et al. 2007,
Rosenfeld and Lensky 1998; Ulbrich and Atlas 200Mson et al. 2011). To study the

tropical MCV systems induced by the monsoonal flaxtra caution should be

addressed while applying an analysis procedurehichwecertain assumptions based on
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mid-latitude continental storm physics are applidés a specific example, in a
shallower developed (owing to the weaker updrafdyime system where the warm
rain mechanism plays a key role, excessive allowariche presence of either surface
hail or overshooting big drops could be unrealistic

Moreover, it is also found from the preliminary exaation that the sensitivity
of the hydrometeor forecast to the initial analydiference made by versions of
procedure is relatively weak. It brings our consadien of the criticality of the initial
hydrometeor accuracy. Since analyzing the hydroonetentent serves as a major part
of the ARPS complex analysis, a comprehensive wsta®ling of its actual
effectiveness can guide us toward an efficient paforecast improvements.

Many other error sources can result in the linotaf the hydrometeor analysis
on the model forecasts in this real case study. é&xample, the model errors (or
deficiency), in particular the microphysics scheran be responsible for the small
sensitivity of the forecast results to the chanfyhe hydrometeor initialization. On the
other hand, possible improvement given by the hyeteor fields through the analysis
can also be limited by the poor accuracy of staeables at the initial time (i.e., IC
uncertainty) of other non-hydrometeor fields sukh Wwinds, temperature, and moisture.

Motivated by the many remaining uncertainties réady this real case study
reported here, further works presented in the Walg of this dissertation are carried on
in the direction of better extracting and hopefuthaximizing the benefit of cloud

analysis on storm prediction.
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Chapter 3: Observing System Simulation Experiments based on Direct

Initial VariableInsertion

3.1 Introduction

Accurate quantitative precipitation forecasting?) is critical because of the
great impact on human lives and property. It i® @key input for models that predict
water-related hazards (e.g., flooding and drought) for monitoring near-future water
resource availability (Vasiloff et al. 2007). TheW¥ models, in spite of their
continuous advances, are still limited in providiagcurate QPF, particularly for the
warm season convective precipitation (Uccellini &t 1999). One fundamental
challenge can be attributed to the often poorahitonditions (ICs) of high-resolution
forecasting systems, as well as the highly nontipbgsics and dynamics, as it was first
pointed out by Lorenz (1963) and subsequently detnated by many studies based on
practical applications.

A variety of radar data assimilation (DA) technigquia different degrees of
complexity has been developed in recent decadesnijmroved short-term convective
storm predictions by providing more accurate IC€atter details. Among these many
DA methods, the cloud analysis is known for itsligbto construct three dimensional
cloud-related fields (e.g., hydrometeor conter@s)derature, moisture) from sources of
measurements with the application of physical m®delg., parcel theory) and semi-
empirical rules. Given its relative simplicity almv computational demand, the general
cloud analysis procedure, with variety in actuablimations, has been widely

implemented in many operational forecasting instguaround the world [e.g., NOAA

38



FSL's LAPS (Albers et al. 1996); UKMO’s NIMROD (Giihg 1998); NOAA’s Rapid
Refresh RUC (Benjamin et al. 2004)].

The ARPS complex cloud analysis, usually used mhioation with the ARPS
3DVAR wind analysis, has shown its effectivenesagsimilating radar reflectivity data
for improving short range forecasts of various gypéweather systems (Hu et al. 2006a,
b; Dawson and Xue 2006; Zhao and Xue 2009). Eveagihh some positive impacts of
the cloud analysis have been obtained in a numbease studies, particularly in the
alleviation of the typical precipitation spin-upoptem (Dawson and Xue 2006), its
benefit is found to reduce promptly within the védirgt hour of the forecast in terms of
a significant drop in the verification score (Xueat 2008). The limitation is greatly
associated with the semi-empirical nature and apsians involved, which can result in
analysis of model state variables that is not reardg consistent with the prediction
model. Accordingly, the impact of the informatiamtroduced by the cloud analysis is
mostly eliminated by a rapid self-adjustment durthg initial stage of the forecast.
Understanding the relative importance of the acgudd various related state variables
in the ICs can lead to an increased efficacy otig¢lanalysis and potential forecast
improvements.

In the past decade, a certain amount of efforég fi@en made to investigate the
relative importance of different state variablestba skill of convective scale storm
predictions. By performing a series of sensitivagt, Weygandt et al. (1999) found the
perturbation horizontal wind, among all fields theyamined, having the largest impact
on the evolution of a simulated convective stormre€ast errors on a supercell storm

simulation were examined, using 4DVAR, in termgh# response of the cost function
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by Park and Droegemeier (2000). It was found fdhbo-storm and out-of-storm (i.e.,
environment) perturbation, the cost function hag fjreatest sensitivity to the
temperature over either pressure or water vapowdygandt et al. (2002a, 2002b), a
study developing a single-Doppler parameter regtieeechnique for a short-range
prediction of a supercell thunderstorm, the strdegendence on the initial moisture
fields for the predicted storm evolution was codeld. By alternately removing the
perturbation in each of the initial fields, Sun @80 tested the sensitivity of a supercell
storm prediction and found its greater sensitiity the wind, water vapor, and
temperature (over the rain water and cloud watermgiratio).

Inconsistency among the conclusions is found Mer dtudies reviewed above.
Due to the variation of the contexts (e.g., weathgtem chosen, approach applied,
verification method) in these studies, their fimgincould be case dependent. As the
main goal of this study is to investigate the lemitn and the potential of the cloud
analysis on assimilating the radar reflectivityadad improve the model predictions, we
would like to “more unambiguously” examine the tela importance of these cloud-
related model state variables. For this purpose, @bserving System Simulation
Experiments (OSSEs) can serve as the best applaghoviding an absolute truth
simulation, and therefore the accuracy of bothysisland forecast can be assessed and
verified quantitatively. A relevant OSSE study wamnducted by Ge et al. (2013);
however, in their study the impact of individuahtst variables was examined as
potential observations, which are presumed compsbely available over the entire

domain and the intermittent 3DVAR analyses werdiagp
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In addition to the initial condition, another k&ctor that keeps the convective
scale prediction challenging is the prediction nicgteors. Among the many possible
deficiencies of the NWP model, the cloud micropbggparameterization scheme can
pose significant forecast errors owing to the utameties involved. For example, the
superiority of the microphysics schemes with mormusate and sophisticated
treatments involved (i.e., the multi-moment schenaes found to play a crucial role on
providing more realistic storm structure and coldolp strength of the supercell
thunderstorm simulation (Dawson 2009; Milbrandt afall 2006). The impact of the
microphysics error on the storm prediction willalse evaluated in this study within
our QSSE framework.

In the remainder of this chapter, the methodolofgthis study is first introduced
along with the design of the OSSEs in section [B.addition to the development of the
truth simulation and the control experiment, a nk@eor-containing experiment set is
conducted in section 3.3 to investigate the impédhe errors in model microphysics
on storm prediction. In section 3.4, we then penfoa set of model error-free
experiments in which the relative importance offedént individual model state

variables is examined by direct insertion from titogh.

3.2 The Truth Simulation and the Degraded Control Experiment

The linear mesoscale convective system (MCS) tpkitlace on the Central
Great Plains at the beginning of 19 May 2013 igael for conducting our study.
Given with strong synoptic forcing including theM@ressure center, associated front,
dry line, and southerly moist air flow suppliedting Gulf of Mexico at the near surface

level (Fig. 3.1) and the upper layer positive \@tyi advection (not shown) that provide
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favorable environment, the MCS first initiated la¢ leading edge of the low pressure
center around the west border of Kansas and Nedyraskl then developed into a north-
south oriented convective line across from Nortlk@a to Oklahoma as it propagated

northeastward with time.
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FIG. 3.1 Synoptic analysis at 925 mb valid at 00QUT9 May 2013. Geopotential
height, temperature, and dew point temperaturgrereded with black solid contours,
red dash contours, and green solid contours, régplsc Winds are provided in flags.
Courtesy to the Storm Prediction Center of NOAA&tiNnal Weather Service.
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3.2.1 The Model Configuration and Truth Simulation

From the collaborative Spring Experiment condudigdhe Center for Analysis
and Prediction of Storms (CAPS) and the NOAA HaaasdWeather Testbed (HWT),
one of the ensemble members, arps_cn at 00 UT® ddy 2013, is acquired for the

initial conditions (ICs) of our truth simulationh& analysis of arps_cn is generated by
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applying procedures of both ARPS 3DVAR and cloudlgsis to WSR-88D data and
other available surface and upper air observatiand,is available in 4-km grid spacing.
A physical domain of our interest that covers ni¢atsas and Nebraska of 803 x 803 x
53 grids with 1-km horizontal resolution (FIG. 3i8)then extracted from the arps_cn
analysis. In vertical, the resolution is stretcheih height from a minimum grid
spacing of 50 m near the surface. The ARPS modedesl to perform the forecast for
our experiments.

All interpolated model state variables includingeth wind components, v, w,
pressurep, potential temperatur@, water vapor specific humiditg,, mixing ratios of
cloud waterqg, cloud iceq;, rain waterg,, showgs, and hailg, are adopted to serve as
ICs, with which a six hour forecast is performeteTMilbrandt and Yau double-
moment microphysics parameterization scheme (theDMY scheme hereafter;
Milbrandt and Yau 2005a, 2005b) with six hydrometgoecies (cloud water, cloud ice,
rain water, snow, graupel, and hail) is selectedtsaasbility in giving microphysical
features of storm closer to observation has beemdstrated in many present studies
(e.g., Jung et al. 2010, 2012; Putnam et al. 20Rd}¥ides, the 1.5-order turbulence
kinetic energy (TKE) scheme, atmospheric radiaticansfer scheme, and stability
dependent surface scheme are included; however, dbevective cumulus
parameterization is omitted for the fine grid spgaused. For advection of model state
variables, a fourth order scheme is applied in bmthzontal and vertical direction for
the momentum variables while a multi-dimensionaisian of flux-corrected transport
(FCT) scheme is applied for scalar variables indoetvorking with multi-moment

microphysics scheme as recommended.
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From the North American Mesoscale Forecast SyghiM), the three and six
hour forecast fields of the 00 UTC run (same date)interpolated from their original
resolution of 12 km to our 1-km spacing domain floe lateral boundary condition
(LBC) use at 03 and 06 UTC of our truth simulatiocdote that six-hydrometeor-
included MYDM scheme is used for the truth run wtohly five hydrometeor species
are available in the IC. A spin-up period is therefrequired for the model to reach its
full complexity, at least in microphysics. Conseqflyg the first two-hour simulation is
retained and excluded for analysis and verificati@sulting in a four-hour studied
period from 02 to 06 UTC. FIG. 3.3 is provided #obetter understanding of the design

of our experiment.

L oy
( Q?N‘\\

FIG. 3.2 Computational domains used for the expental EnKF ensemble
in 2013 Spring Experiment (600 x 400 grids withm-&pacing denoted by
black rectangle) and our study (803 x 803 gridé\iHkm spacing denoted
by red square).
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19 May 2013

00 UTC o1 02 03 04 05 06
I 1 I 1 I 1 I 1 I 1 I 1 |
Truth
Simulation \ ; >
Y
Spinup
Output for generating Verification

1) background for experiments
2) error-free radar observation

Experiments

v

FIG. 3.3 Time line of the truth simulation and tegperiments. Main

studied period is marked by gray shading area.

The hourly simulated composite reflectivity of tiheth simulation using the JZX
operators is provided in FIG. 3.4, showing the M&/8lution during our studied period.
The surface wind fields are also plotted in demmaisty the cyclonic flow and the

associated low pressure center evolving along @t inorder of the states.
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3.2.2 Degraded Control Experiment from SmoothetbInCondition

After the truth simulation has been generatedneed to create a degraded IC
upon which improvement is sought through varioushmgs, including direct insertion
of accurate state variables or by using the clmalyais. The experiment starting from
the degraded IC serves as a baseline, or contperiement (CNTL hereafter) for our
sensitivity study. Considering that most ICs ofioegl NWP models do not contain
detailed convective scale information, we create diegraded IC by applying three-
dimensional smoothing to the 2-hour truth forededtls at 02 UTC, and by setting the
cloud and hydrometeor mixing ratios to zero thraugh

Model state variables, v, w, 6, andq, are smoothed horizontally on each model
level by applying a running-mean average over asgubox of @ width on each side.
Therefore, the value at the center of the boxpsaced by the average value of all grids
within the box. As the point gets close to the larny, reduced number of points is
involved in the averaging. Given the method uskd,wider is the averaging box, the
stronger is the smoothing. After the horizontal sthing is done, we then perform a
three-layer averaging in the vertical direction.

Four experiments with varying degrees of smoothing IC, SMT_d15,
SMT_d35, SMT_d55, and SMT_d75, are first perforntedfind the most suitable
candidates to use as CNTL. Different width of theosthing box is used to achieve
different degree of smoothing. In Table 3.1, fouperiments and their smoothing
configurations are listed along with simple statstof the smoothed fields, and the

truth simulation is also included as a referendee $tatistics show that in general, the
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extreme values are reduced as the smoothing dewgesmases (i.e., larger smoothing

area applied).

Table 3.1 List of the truth simulation, four smoothing experiments, and their
respective statistics

Truth SMT d15 | SMT d35 | SMT d55 | SMT d75
Grid
number in 0 31 x31 71x 71 111 x 111 151 x 15
smoothing
area
Smoothing 0 900 4900 12100 22500
area (km?)
Statistics, listed in form of maximum/minimum.
L (9 24.1220/ | 19.0819/ |18.3769/ |18.1717/ | 17.8410/
-17.1698|  -13.0527| -11.3160| -10.3630| -10.1474
v (9 32.5896/ | 28.4241/ |27.0882/ |26.3817/ | 25.7051/
-11.2516 -7.8982 -5.7812 -4.6936 -4.6351
W (ms) 12.1976/ | 1.2631/ 0.6581/ 0.5120/ 0.4093/
-7.5282 -0.7680 -0.3714 -0.1873 -0.1511
0 () 4983150/ | 498.1960/ | 498.1078/ | 497.9968/ | 497.8345]
297.4118| 297.5162] 297.5086  297.5296 297.5338
o 18.1776/ | 18.0348/ | 18.0575/ |18.1092/ | 18.0936/
o (g/kg) 0.0000 0.0017 0.0025 0.0026 0.0031

In FIG. 3.5, the perturbation potential temperati#¢ and wind fields at 6 km
AGL at the IC time are shown for the truth simwatiand for the four experiments after
applying different degrees of smoothing. The 6 k@LAs shown because the MCS is
found to initiate first around this level due to snecale convergence and the presence
of warm unstable air. The positi¥& in the central part of this region is due to hegti

associated with the MCS in the truth simulation3FB.4a).
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plotted in 40 km interval.
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Throughout this study, scaled root mean squard®&Rerror is computed as a
measure of the dissimilarity between the truth $athon and any experiment to be
verified. Model state variables including wind camngntsu, v, w, temperaturer,
specific humidityq,, and total water mixing ratiq, as the sum of all six hydrometeor
species (i.eqQc +q +q +0s + qq + () are examined. The SRMS is equal to the regular
RMS error scaled by the squared rootrgf, which is the variance the initial condition
error of X of the control experiment. The scaling non-dimenalized the errors of
different variables so that mean errors acros®wifft variables can be calculated. By
simply averaging the SRMS results of all six vaesblisted above, we introduce a
general measure of the overall forecast performaheeaverage SRMS (ASRMS) error.
For detailed formulations of SRMS and ASRMS erroefer to Appendix B.

FIG. 3.6a-e shows the SRMS errors of various metike variables and FIG.
3.6f shows the ASRMS errors of the forecasts offthe smoothing experiments. To
reduce impacts from the lateral boundary, the iation is confined to an inner portion
of the model domain that is 100 km away from therk boundaries (as denoted by the
dark blue square in FIG. 3.5a), and excludes baphand bottom model layers in the
vertical. Besides, the experiment with the strohgesoothing (i.e., SMT_d75) is used
to provide the scaling factor for the errors shawihe figure. As we can see, for most
variables includingvy, T, andq,, the difference between the truth simulation amel t
experiments is proportional to their degree of stning. Generally, the smoother is the
IC, the larger is the difference in the subsequergcasts. This is expected since a
smaller amount of smoothing will retain more fireake structures in the IC. However,

there are some exceptions wittandgy,.
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Forw (FIG. 3.6b), the increasing dissimilarity with tdegree of smoothing is
only maintained during the first half an hour araftly near the end of the 4-hour
forecast. Between 1 and 3 hours, the trend is snostiersed, with the experiment with
the least smoothing having the largest erraw fiorecast. This special behaviorwfcan
be mainly attributed to the general naturevdield. Unlike other fields that commonly
have gentle changes in spatial, Wihéeld could have a rather localized abrupt inceeas
or decrease due to isolated convective cores.dgpoms outside the convection, where
w is relatively small (varying slightly around O rj)/¢he magnitude ol value can be
significantly exceeded by the forecast error (idifference from truth). When the
updraft/downdraft in forecast has a displacemeritsinocation from the truth, double
penalty will occur, resulting in large RMS errohs.other words, the verification of the
RMS error calculation ofv is much more sensitive to small-scale displacensertrs
than other variables. Predictimgin wrong places will introduce double penalty. §ts
confirmed by looking at the errors ofwafield with constant zero values everywhere —
its SRMS errors calculated against the truth isiabt the lowest after 1 hour, and
decreases steady with time through the end of theu# forecast (FIG. 3.4f). The fact
that thew errors of SMT_d15 are the largest after half anrtemd 2.5 hours of forecast
suggests that smaller scale structures retaindteihC produce relatively large vertical
velocities in the forecast that do not match eyatttbse in the truth simulation, leading
to larger errors than in other experiments thaehagaker vertical motion.

As for gy (FIG. 3.6e), exactly the same initial SRMfg_is shared among all
experiments as all hydrometeors were removed inGke Within the first 1.5 hour of

forecast, the expected relationship between IC #mmess and forecast error is
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maintained. After that, irregular behavior of SRM occurs as SMT_d35 shows the
largest error from the truth. However, after 1.%utsp the differences among the errors
of the four experiments are relatively small. litspf the exceptional behaviors with
andqu, the overall forecast performance as measuretidASRMS errors (FIG. 3.6f)

still shows a clean relationship between the IC aimoess and the resulting forecast

errors.
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FIG. 3.6 SRMS error time series of (@), (b) w, (c) T, (d) qv, (€)qw, and (f) all

variables for four smoothing experiments. The egtay solid line in (b) is for a
uniform 0 m & w field.
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The non-scaled RMS errors are also computed toieeathe impact of initial
smoothness o prediction (FIG. 3a). Z is examined in particular because it is an
observed quantity and for real cases it is oftedusr forecast verification. Here, the
JZX reflectivity operators are again used for siainlg Z from the forecast state
variables. Beginning with completely clear air, flur experiments share the same
initial RMS error ofZ (RMS_Z). As the forecast is carried on, the experiments lgss
smoothed IC begin to outperform by giving smalldi® Z. All four experiments share
a decreasing trend of RM3 in general, owing to the gradual development efMCS.
Two other commonly used metrics, bias score andtédagje Threat Score (ETS), are
also calculated for Z verification (provided as FI&7b and c, respectively). An
arbitrary threshold of 30 dBZ that can be relatedrtoderate precipitation is used.
Similar to what has been seen in RMSa complete underforecast (i.e., bias score = 0)
is obtained at beginning for the initial clear fa@d. An increasing trend is showing up
as the storm gradually develops in the forecastodgnhe experiments, the ones with
less smoothed IC tend to be more efficient in stdewelopment as their bias scores are
getting closer to one (i.e., less underforecastlefa Generally, ETS is also increasing
with forecast time for all experiments, in whictetbne with least (most) smoothed IC
gets the highest (lowest) score.

The MCS evolution of the experiments with the sesdll(i.e., SMT_d15) and
the largest degree (i.e., SMT_d75) of smoothinifimre provided in FIG. 3.8 and FIG.
3.9, respectively, by which the verification resulliscussed above can be further
illustrated. After comparing the four experimentghathe truth simulation, it is found

even with the largest degree of smoothing (i.e.,TS8¥5), the storm can be rebuilt
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within one hour of forecast as certain importansaoseale features have been kept in
the smoothed initial condition (e.g., the warm cslnewing in FIG. 3.5e). The errors on
the convective scale are much larger though in SM. Since the goal of our study is
to examine the benefits of introducing convectigales information into the IC through
various procedures, too good a baseline forecastoisdesirable. For this reason,

SMT_d75 is chosen to serve as the CNTL or basebperiment.

——SMT_d75 —8-SMT_d55 —+~SMT_d35 —e-SMT_d15
., (a) RMS_Z
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FIG. 3.7 (a) RMSZ, (b) bias score, and (c) ETS calculated with thoés of 30
dBZ for four smoothing experiments.
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In FIG. 3.10, the averaged scaled energy differéd&A&ED) of four smoothing
experiments is shown. This index is calculated hasethree energy differences (EDs):
kinetic ED (KED, calculated upon, v, andw), thermal ED (TED, calculated updp,
and latent ED (LED, calculated upaor), and used for evaluating the accuracy of the
forecast results. These EDs of each experimentaaly everification time are scaled by
their own values at the initial time of the foretchsfore they are averaged into ASED.
The scaling process results in ASED values of aduayity at the initial time for all
experiments verified. With both dynamic and thergmainic structures are included in
the verification, the ASED is ideal for the evaloat of the overall model forecast
performance. In a word, the change of the ASEDeshklong with forecast time within
individual experiments represents the evolutiontte forecast error relative to the
initial error. Details about the formulation of ABEare provided in Appendix B. A
similar trend of the forecast error are found fbrfeur smoothing experiments (FIG.
3.10): the forecast errors are at first growinghwitne, reaching their peaks after 2 to
2.5 hour of the forecast, and then gradually destngian the later stage of forecast. It is
found that experiments with larger degree of smagthn IC result in larger error
growths in terms of a relatively sharper increaséASED (i.e., larger slopes) in the
beginning stage of the forecast. This result isstant with the ASRMS discussed
earlier. According to these results, we concludd the positive impact of the finer-
scale environmental features retained in the ICshenreduced forecast errors is not

only significant but also systematic.
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FIG. 3.10 ASED of four smoothing experiments.

3.3 Experiments with Model Error in Microphysics

Many sources can be responsible for the resultongcast errors of NWP
models. Other than the predictability limitationedio the nonlinear nature of the real
atmosphere which has been demonstrated significaethsitive to the ICs (Lorenz
1963), the prediction model itself can also introelerrors because of the deficiency in
its design. Various cloud microphysics parametéioma schemes (or shorten as
microphysics schemes) have been developed for WE Khodel use to characterize the
hydrometeor-associated microphysical processeaggilace in the spatial scale finer
than the model-resolved grids. Given that the degresophistication varies among
different microphysics treatments, the resultingeéasts can end with different
accuracy. As the critical role of the microphysschemes on predictions of the moist
convection has been reported by many present stidig., Dawson et al. 2010; Van
Weverberg et al. 2011), a better understandinghef relative importance of the
microphysics errors on storm prediction is favoeabéfore we move forward to other

model error-free experiments.
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3.3.1 Design of Experiments

A set of experiments have been designed unde©O&SE framework for us to
examine the forecast accuracy resulting from théeherror in microphysics schemes.
In addition to the CNTL experiment as introducedhe previous section, three other
experiments: MYDM, MYSM, and Lin, are performed. elmain difference among
these three experiments, as denoted by their nasnég microphysics scheme that has
been implemented. Similar to the MYDM scheme intiwed earlier, the MYSM is the
acronym for the Milbrandt and Yau single-moment esub. All six types of
hydrometeor included in the MYDM scheme are alsailable in the MYSM scheme.
Another experiment, with the application of a widelised single-moment ice
microphysics scheme developed by Lin et al. (1988)h only five types of
hydrometeor species (same as those in the MY schentewith graupel excluded) is
conducted as a contrast to the MYSM. Unlike thebdimmmoment scheme that allows
higher variability in drop size distribution (DSDYy predicting both mass conterk)(
and total number concentratioN() of hydrometeors, the single-moment scheme only
predicts the mass content with assumption of mdstigd DSD parameters, resulting in
limited microphysical complexity it can charactexiz

All three microphysics experiments inherit most sthed fields as used for the
CNTL, except the hydrometeor variables from théhtgimulation are remained in their
ICs. To enable a full complexity that can be dri\mnrespective microphysics scheme
for storm prediction, both mixing ratios and th&éat;mmumber concentration are kept for
the MYDM while the mixing ratios are kept for thether two single-moment

experiments. For all experiments, the same JZ>ec#flity operators are used for the

59



derivation of the simulated reflectivity, in whicthe DSD intercept parameteXy) is
derived from the predictetl; for the double-moment experiment while the fiXdgl
(default values) is used for the single-moment erpents. To compensate an
expectable underestimation of the simulated refliégtat the initial time for the Lin
experiment owing to the lack of graupel speciestsnmicrophysics, the graupel is
added into the hail category in the IC. Because M¥¢DM applies the same
microphysics scheme to the truth simulation, itvesras the only model error-free
experiment among the three microphysics experimédeswould like to note here the
MYDM scheme is also used by the CNTL, but the hyagteor fields are unavailable in
its ICs. The configuration of the CNTL and threecraphysics experiment is provided
in Table 3.2 for a better perception. As a quickimary, at the initial time, all three
microphysics experiments share the same error st model state variables but retain
perfect (i.e., error-free) hydrometeor informati@ensitivity of the model forecasts to
different impacting factors, such as the microptgserror and the accuracy of

hydrometeor and non-hydrometeor fields in ICs fisw interests for exploration.

Table 3.2 Configurations of microphysics experiments

Experiments and Number of Initial fields of Error-free

. : . hydrometeor
microphysics scheme hydrometeor type state variables | . .
. . information
implemented included u, v, w, 6, andgy,

included in IC

6 (cloud water, cloud

CNTL" ice, rain, snow, graupel,Smoothed None
and hail)

MYDM 6 (same as CNTL) Smoothed Ox andN

MYSM 6 (same as CNTL) Smoothed Ox

Lin 5 (graupel unavailable) Smoothed Ox

# is marked for CNTL to remark its application oiYRIM.
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3.3.2 Results and Discussion

In FIG. 3.11a-e, the SRMS errors of various madale variables are shown for
the CNTL and three microphysics experiments. On grediction of most variables
including the horizontal winds,T, and q,, the microphysics experiments with
hydrometeor fields in the IC, regardless of theropbysics scheme used, generally
outperform the CNTL in terms of the constantly deralorecast errors throughout the
entire four hours range. These outperformance$feinticrophysics experiments over
the CNTL, in terms of the SRMS error differencegdiae even more significant in the
later hours of the forecast. In fact, there isighslexception found on the, prediction
in the first hour of the forecast: the microphysesperiments have SRMS errors
slightly larger than the CNTL. This exception sugfgehe great sensitivity of the model
moisture prediction to the perfect initial hydroe@t fields introduced. It seems a
certain degree of imbalance on prediction can hesexh by the storm with convective
scale structure, if provided with a supporting eowment lacking the comparably fine
features. Also, a much closer linkage of the hydrtmor fields to the moisture field
than to other fields (e.g., winds or temperatues) be implied.

The same exception is also found on wherediction in the first two hours of
the forecast. However, the SRMS error differencéwben the CNTL and three
microphysics experiments is much more significamhpared to what is seen on tipe
prediction. A possible explanation for the largaoein the microphysics experiment is
that the load put by the perfect hydrometeors m D generates extrenwe values
which do not match exactly with the truth given thegraded environmental features.

As the forecast is carried on with time, the predic of w given by the microphysics
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experiments outperform that given by the CNTL ia tast hour, indicating the benefit
of the perfect initial hydrometeor fields finallw@comes the poor accuracy of other
non-hydrometeor fields in the IC.

Given the perfect initial hydrometeor fields, the&emphysics experiments show
an absolute advantage over the CNTL on prediaiipa terms of a zero initial error.
However, the error difference decreases quicklgratie forecasts are launched and

becomes barely discernible after two hours.
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FIG. 3.11 Same as FIG. 3.6, but for the CNTL amddghmicrophysics experiments.
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While comparing the forecast performance among ttiree microphysics
experiments, one may expect a systematic outpesiocengiven by the MYDM since it
is the only experiment with no microphysics errorgolved (i.e., model error-free).
However, it turns out the constant outperformarueughout the entire four hours
range of the MYDM is only found on the predictiaofsT andg,. On the prediction of
Vi andqy, the better performance of the MYDM over the ottvay microphysics error-
containing experiments is found limited in the lagbd hours and the first one and a half
hours, respectively. It can thus be conclude thectsts ofT and q,, compared to
forecasts of other state variables, have greatesitsaty to the microphysics error. The
better q,, forecast performance of the MYDM over the othem taingle-moment
experiments in the beginning stage can be attribtdeghe better details of the particle
size distribution given by the extra predicted matié. On the other hand, the forecast
error difference between two single-moment expenisiés relatively insignificant on
most state variables, suggesting no one of thensutastantial superiority to the other.

Overall, given by the ASRMS (FIG. 3.11f), the gaaldorecast performance of
the three microphysics experiments is significab#yter than the CNTL throughout the
four hours range of the forecast. This advantage, (error difference) is initially
provided by the introduction of the perfect hydréewes in the ICs, and then
maintained and continuously grown by the sequentigberformances of more accurate
Vi, T, andq, predictions. Among three microphysics experimetits, overall forecast
given by the MYDM surpasses the other two singlevyaot experiments throughout
mostly the four hours range, especially within tinst two hours. However, even the

MYDM, the microphysics error-free, experiencesgngicant forecast error growth due
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to the errors in the initial non-hydrometeor fielehich is also believed to be the key
impacting factor that limits the significance ottrelative advantage of the MYDM to
the other two single-moment experiments. No sigaifi relative advantage is found
between the MYSM and Lin, except for the last hofirthe forecast in which the
MYSM outperforms the Lin on predictions of most iadtes. Furthermore, in terms of
the overall trend of the forecast error evolutiinis found the three microphysics
experiments share a similarity on reaching theredast error maxima around 4:00
UTC while the CNTL shows its peak a little later 480 UTC, highlighting the
different efficiency on constructing the structuod the storm and associated
environment due to the availability of hydrometeiorshe ICs. Same trend is shown in
the ASED verification (FIG. 3.12): the model forsetarror growth of the CNTL is
steeper and lasts longer than that of the micraphysxperiments. With the contrast
between the CNTL and two single-moment experimeittss concluded the perfect
hydrometeors in the ICs, compared to the modelapltysics error, play a relatively
important role on giving more accurate predictiohthe model state variables.

——-CNTL -=-MYDM MYSM =e-Lin
, ASED
1.8
1.6

14

1.2

1 i i
2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00

FIG. 3.12 Same as 3.10, but for the CNTL and
three microphysics experiments.
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The composite reflectivity and surface wind fietafsthe truth run, CNTL, and
various microphysics experiments at the initialgi{2:00 UTC) and two hours forecast
range (4:00 UTC) are provided in FIG. 3.13 and FBA4, respectively. Note that
instead of the entire domain used for the simutati@nly the inner domain (as denoted
by the blue square in FIG. 3.5a) on which the ieifon indices are calculated is
focused and shown in the rest of our study. In BG3 we see that even the same JZX
reflectivity operators are applied on the samea$gierfect hydrometeor fields at the
initial time for all microphysics experiment, th&ensity of the simulated shown for
the MYDM is significantly higher than that of twdh@r single-moment experiments,
especially at the leading areas with the intensevective cores. On the contrary, the
two single-moment experiments show relatively digant stratiform precipitation.
These differences are mainly due to the differaagree of freedom on microphysical
process that can be characterized by the varioasphysics schemes. Specifically, as
the single-moment schemes only predict the hydreanrehass content, their variability
in DSD is reduced by the fixed intercept param@tlg) applied. On the contrary, extra
variability of the MYDM is provided by the variablsy, derived from the extra
predictable momenl;. More discussions about the variability d§ can be found in
following sections and next chapter.

For the surface winds at the initial time, it ®ihd most of the general features
such as the cyclonic circulation associated withltw pressure center at the southwest
corner of the domain are still kept in the smootHedds for the microphysics
experiments. However, certain features at smatlalesassociated with localized storm

developments are smoothed out. For example, teemeconvergence line (as shown in
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FIG. 3.13a) located behind the north tip of the vamtive line present in the truth
simulation. Its occurrence can be attributed to ghevailing southerly winds and the
northerly flows associated with the storm downwardtions, which is localized but
significant in its intensity. After the 3D smoothinthese storm-related flows are greatly
weakened, and so is the associated convergenceldmehown in FIG. 3.13b-e).
Unfortunately, small scale features like this ubugllay a critical role on storm
evolution and large errors can be caused on theesuient forecasts as a result. As a
demonstration in our case, in the truth simulatioight at the location of the
convergence line there is a convective line initain the later hours (as shown in FIG.
3.14a). On the contrary, the formation of this castive line, however, is not seen in
other experiments with smoothed ICs. Even withgldect initial hydrometeor fields
and perfect model microphysics as provided in théDWl (FIG. 3.14d), the convective
line is still not able being regenerated for theklaf the required kinetic feature.

A qualitative idea about the impact of differencrophysics schemes on storm
prediction is given by FIG. 3.14, the two hoursefmast of the reflectivity. Generally,
similar storm distribution is shown among all thmegcrophysics experiments. The
major difference is seen in the intensity of theeéast convection: the MYDM tends to
give storm prediction with more dominant intensewrction, which is most close to
the truth simulation, while the MYSM tends to geatermore stratiform precipitation
with less organized convective cores embedded nviffine Lin, compared to the two
MY schemes, is an intermediate case. On the whwe&e of the single-moment
experiments is able to provide storm predictiorhwittensity comparable to the truth.

Underforecast in the storm intensity is also fododthe MYDM, but it is relatively
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small. As the key driver of the storm movement/piggtion played by the horizontal
wind fields has been reported in existing studiles,small sensitivity of the horizontal
wind forecast to the microphysics scheme used eaimplied by the similar predicted
storm location/distribution among different micrggits experiments shown in FIG.
3.14c-e. This implication is also consistent withr earlier SRMS error verification.
Even with no hydrometers at the initial conditiime, the CNTL can build up

the storm with intensity comparable to the trutlaioonsiderable efficiency (within two
hours, specifically, as shown by FIG. 3.14) throtigh use of the perfect microphysics
treatment. The advantageous application of the-éree model microphysics (i.e., the
MYDM) on spinning up the moist storm from a dry Wl be further demonstrated by

the quantitative verification of reflectivity later
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FIG. 3.15, the verification of simulated reflectii provides qualitative insight
into the overall performance of the storm predictgiven by the CNTL and three
microphysics experiments. In terms of the genedrallarity, given by the RMS error,
between each experiment and the truth simulatleaMYDM is found to be the only
one that keeps performance better than the CNTL thveentire four hours range. On
the contrary, the other two single-moment experisidooth have their performance
surpassed by the CNTL at 3:30 UTC and beyond. Simdsult is also seen in the ETS
verification that evaluates the experiment perfaroga on predicting storms with
moderate intensity (here, 30 dBZ and above). Inditdy the result, even with the
benefit of the perfect hydrometeor fields in ICBe toutperformance of the single-
moment experiments over the CNTL can only lastdoe hour in presence of the
microphysics errors. The difference between thedleativity verification results and
those of the model state variables discussed eanmtplies a greater impact of the
microphysics error on th2 prediction than on the other model state varialiles the
comparison between the two single-moment experishatthough the MYSM is found
to outperform the Lin witlZ prediction generally closer to the truth (in teroismaller
RMS errors, provided in FIG. 3.15a) at most timeoughout the four hours range
(with only one slight exception at 3:30 UTC), #&htlency of producing fast-dissipating
storms, as illustrated by FIG. 3.14c with relatyveleak stratiform precipitation as well
as demonstrated by the significantly low bias ssdflG. 3.15b), makes it no better
than the Lin after 3:30 UTC on predicting intensaection (also demonstrated by

FIG. 3.15¢).
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Because the hydrometeor mixing ratios are the ni@put to calculate the
simulated reflectivity, one may expect similar leswvith theq, andZ verifications
among the experiments using different microphysidsemes. However, we find that
noticeable differences ig, prediction among different experiments is limitedthe
very first hour of forecast, while MYDM outperfornagher microphysics schemes in
terms ofZ throughout the 4 hours of forecast and the diffees are quite significant.
The seemingly inconsistency can be explained byatiethatZ depends on many more
variables tham,. For one thinggy is a simple sum of all hydrometeor mixing ratis;
is therefore not sensitive to the distribution chter and ice among the individual
species while the actual species with the existehdoee and water mass matters to the
Z calculation. In additionZ is also a function of the intercept parametdysfor each of
the species, which are assumed fixed values inesmgment schemes but derived from
predicted total number concentratioNg in the case of a double moment scheme.
Therefore, compared to thq,, Z is much more sensitive to the details of the
hydrometeor species, including their mass distidiouamong the species and their
particle size distributions. As a resutdifference provides a more stringent measure of
the differences among experiments. For these reashe better performance of
MYDM in the later forecast was not seen in termsypibut could still be seen i,
indicating better prediction of microphysics detail MYDM.

One thing we would like to point out here that ilGF3.15c, the ETS of the
MYDM is able to remain above the CNTL as long asrftnours. Given the key
difference between the CNTL and MYDM, the advantagerformance of the MYDM,

therefore, suggests potential improvements onttirenspredictions can be theoretically
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achieved by the accurate hydrometeors in the I@sventer, this length of advantage is
rarely found in the practical experience of reabecasimulation, which could be
attributed to the limitations of 1) the analysisoerin initial hydrometeor fields, and 2)

the imperfectness of the microphysics schemes.
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FIG. .3.15 Same as FIG. 3.7, but for the CNTL andedghmicrophysics

experiments.
3.3.3 Summary

Impact of model errors due to the incorporatedrapibysics schemes on storm

prediction has been investigated. The MYDM sengetha model error-free experiment
as the same scheme is used for carrying out thle simulation. Two other single-
moment microphysics schemes with different degreesomplexity, the Lin and
MYSM, are also tested. Compared to the CNTL thebiporates perfect microphysics

but hydrometeor-free ICs, three microphysics expents are initialized with perfect

12



hydrometeor fields. The relative importance betweabe availability of initial
hydrometeors and the model microphysics accuraeyasined.

Among the individual model state variables we exea, the advantage of
perfect microphysics (i.e., MYDM) over two othengie-moment schemes in providing
constantly better forecast throughout the entitg fwours verification period is found
on prediction ofT andq,. Overall, no significant advantage is found gilmneither the
MYSM or the Lin. Positive impact of perfect microgics on predictingy, is limited
in a very short forecast range (about 1.5 houthasvaluation of hydrometeor number
concentration is not included in this verificatidiodel microphysics accuracy appears
to have relatively small impact on predicting kindtelds (i.e.,V, andw) according to
the irregular forecast error behavior found amohg éxperiments. In general, the
impact of the microphysics errors is relativelyigmficant compared to the initial
errors. In spite of the microphysics scheme saleceven with perfect initial
hydrometeor fields, large forecast error of modatesvariables grows quickly within
the first two hours of the forecast. The significarror growth is most likely owing to
the IC uncertainty introduced by the smoothed ngadrémeteor fields. In contrast to
the microphysics error, the impact of the perfadtal hydrometeor fields is significant.
Systematically better forecast of most state végmbver the CNTL is ensured by the
perfect initial hydrometeor information equippedtire microphysics experiments. In
other words, the deficiency of model microphysickesnes could possibly be expected
compensated through an accurate hydrometeor inétain.

A much more crucial impact of the microphysicoesris found on prediction of

reflectivity, in which greater sensitivity to theiarophysics details is granted. While all
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experiments suffer the inaccuracy of the non-hydteor fields, due to the smoothing,
at the initial condition time, the MYDM is found forovide the systematically best
forecast with the least under-forecast&d intensity. Two other single-moment
microphysics experiments, compared to the MYDMdtempredict too much stratiform
precipitation and fail to maintain desirable cor@t intensity. Even launched from a
completely clear air (i.e., CNTL), forecast withcdat storm intensity can be achieved
efficiently within two hours (i.e., spin-up timeylihe use of the perfect microphysics
scheme. Furthermore, after this spin-up time regllithe CNTL is able to outperform
two single-moment microphysics experiments thatehgerfect initial hydrometeor

fields, again highlighting the importance of thecrophysics errors on storm prediction.

3.4 Experiments with Direct Insertion of State Variables

Beginning at this point, the model microphysicsoes are completely excluded
in our following experiments by applying the MYDMteme as implemented in the
truth simulation. By ensuring a perfect model, thgacts purely due to the IC
uncertainty can be distinguished. As more and reffeets have been made in the field
of data assimilation toward the goal of improvihg {Cs for improved model forecasts,
a deeper investigation of the relative impact of d€uracy on storm prediction is
valued and useful.

Before we explore further to the impact directlywegi by the cloud analysis
process, we would like to first examine the impatatifferent individual state variables,
particularly those are taken care of in the clondlysis, by alternately inserting their

perfect values from the truth simulation back te k8s. Through this set of experiments,
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the relative importance of these cloud-relatecestatiables will be revealed and further
discussed.
3.4.1 Design of Experiments

In our OSSE framework, five experiments: Pt, QelJd) Qpcp, and Qall, are
performed in addition to the CNTL in examining tensitivity of model prediction to
the accuracy of five respective sets of state bbesa 1)0, 2) g,, 3) cloud hydrometeors
(Qeigs including cloud water and cloud ice), 4) preafin hydrometeors gfcp,
including rain, snow, graupel, and hail), and 3)ngkdrometeors (i.eqcid + Opcp) IN the
IC. Again, most smoothed fields are directly inteti from the CNTL for all
experiments; however, for each experiment, onefsgpecified variable, as denoted by
the experiment name, from the truth simulationiredly inserted back into the ICs.
For example, the experiment Pt has the error-ceingiwind andg, fields, cleared
hydrometeor fields, but the error-frédield. For three hydrometeor experiments Qcld,
Qpcp, and Qall, both mixing ratio and total numbencentration are included in the
perfect insertion for the application of the MYDMh&me in our simulation. Table 3.3
is provided in the form of a checklist, with whitie configuration of each experiment
is shown. We would like to point out that the exypemt Qall here is in fact, identical to

the experiment MYDM in the previous section.
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Table 3.3 Configurations of direct insertion experiments

Perfect Perfect Perfect Perfect Perfect
. (non- non- non- un-removed) (un-removed
Experiments smoothed) émoothed) émoothed) E:Ioud : E)recipitation)
wind field | @ field g field hydrometeorg hydrometeors
CNTL X X X X X
Pt X \% X X X
Qv X X \Y X X
Qcld X X X \% X
Qpcp X X X X \
Qall X X X \ \%

3.4.2 Results and Discussion

Again, for each experiment, a four hours rangéécast is performed and the
results are ouput every 30 minutes for quantitatiesfications. The SRMS errors on
predictions of various model state variables amshin FIG. 3.16.

On the prediction of horizontal winds (FIG. 3.16@pst of the experiments are
able to provide forecasts better than the CNTL uphmut the four hours range.
However, there is one notable exception occurrsmgxperiment Qv in the first hour.
This slightly larger prediction error could be #gtited to the nonlinear interactions
between the perfeaty, field and other error-containing fields. Also, thelatively
efficient impact of the initiaty, accuracy on horizontal wind prediction is suggeste
spite of the larger dissimilarity from the truth time first hour of the forecast, the Qv
shows an abrupt decrease of the prediction ermsgnificantly outperforms all other
experiments beginning at 4:00 UTC. Based on thmdifig, we further conclude the
significant impact of the perfect initiaj, on horizontal wind prediction is not only
instant but also systematic with the forecast ramgeontrast to the Qv, the Pt firstly
shows an overwhelmingly best performance within fitre¢ one and a half hours, but

experiences a sudden increase in the prediction after then. Besides the Qv, the Qall
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is found to give the second best performanceVgrprediction in terms of better
forecasts in longer ranges.

A similar trend of forecast error is found owm prediction (FIG. 3.16b): a
significantly large error growth in the first 1.®urs is given by the Qv, but the error
then decreases to the smallest in the later sthdbeoforecast. Unlike most of the
experiments maintaining forecast errors in a lithriation in the last hour of the
forecast, the Pt shows a dramatic peaking-up ofvtleeror, resulting in a performance
seriously worse than that of the CNTL. The veryrsihange negative impact of
introducing finer resolved environmental featur@swoprediction, as discussed earlier
in the experiment with different degree of IC sniiog provided in section 3.2, is
again presented by the contrast of the performabeggeen the CNTL and the perfect
state variable insertion experiments in the fingi hours of the forecast.

On theprediction of T (FIG. 3.16c¢), it is found generally, all experin®mnesult
in giving forecasts better than the CNTL throughthg entire four hours range. An
exception is found given by the Pt with an unusigtificant error growth in the last 30
minutes of the forecast, resulting in a forecastgpmance even slightly worse than that
of the CNTL in the end. On the contrary, no othguegiment, even beginning with the
imperfect initial T field, is found to have this later stage errorvgtoon T prediction.
Among all perfect state variable insertion expentse the Qv and Qall perform
competitively best in the first 1.5 hours, but afteen the Qall is significantly surpassed
by the Qv. On the other hand, no significant fos¢earor difference is found among

the Pt, Qcld, and Qpcp until the Pt shows the saddersen performance at last. It is
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worth noting that the perfect initiad field does not necessarily end with the best
temperature prediction, but actually the worst.

A great sensitivity of the}, prediction to the introduction of any of the petfe
state variables at the initial time is suggestedhmir relatively larger forecast error
compared to the CNTL within the first one and & halrs range (FIG. 3.16d). A quick
forecast error growth is again found for the Qwufeng in a largest forecast error
among all experiments at 3:00 UTC even though girkee with the prefect initiaby
field. Afterward, the forecast error of Qv holdsarlg constant with time and eventually
becomes the smallest when all other experimentsraqre significant error growth.
Other than the Qv, the Pt also shows a relativiglgificant instant error growth in the
first hour of the forecast and ends with the sedoest performance. On the other hand,
the Qall is able to keep a fairly good performatasting as long as two hours before
getting significantly surpassed by the Pt.

Among the three experiments with no hydrometeorthe ICs (i.e., CNTL, Pt,
and Qv), the Qv exhibits the largest storm-reboddiefficiency in terms of a
significantly reducedy,, prediction error in the first hour of the forecéstG. 3.16e).
Regardless of the various magnitudes of the totaemwmixing ratio error at the initial
time owing to the different degree of the hydrometeompleteness, all experiments
have their errors converged, with the hydrometepigped experiments (i.e., Qcld,
Qpcp, and Qall) increase their errors and the hyeéteor-free experiments (i.e., CNTL,
Pt, and Qv) decrease their errors, after one hbtlvedforecast. A noticeable larger error
is found given by the Qv between 3:30 and 5:00 Uwkich could be possibly related

to the significant error on the prediction present beforehand since the closetjak
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between the vertical motion and hydrometeor loadmag been discussed in the
previous section.

Finally, the general performance of each expertnoenpredicting model state
variables can be represented by the ASRMS errowsha FIG. 3.16f. Overall,
experiments with direct insertion of perfegiq, Qocp, Or gar could provide forecasts
constantly better than the CNTL. Other than tHs, Qv experiences an instant forecast
error increase, mainly from the winds adredictions, making its performance worse
than the CNTL in the first hour. However, after first hour, the error of Qv rapidly
decreases and becomes the lowest among all expesiineginning at 4:00 UTC. The
Pt is found to perform competitively with the Qaahid Qpcp for most of the times
before it experiences an abrupt error increasdtmegudrom thew andT predictions in
the last hour. The impact of the unique significambr growth in the later stage of the
forecast caused by the perfect initial temperattd calls for deeper investigation on
the interaction among individual state variableboteewe can determine whether it is
universal-existing or case-dependent. As a commh)she accurate initia), is found to
have the largest impact on giving better prediciohstate variables, while a complete
set of initial hydrometeor fields is secondarilynbécial. Our finding is generally
consistent with the results in Ge et al. (2013) dgamining the impacts of different
state variables as potential observations.

For discussions about the forecast error trendfogas on the ASRMS error
(FIG. 3.16f) again. The results of the ASED are ttedi here because of the
unavailability of Pt and Qv: the scaling factors the initial time for these two

experiments are zero for TED and LED due to thewrefree §# andq, fields, making
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the subsequent scaled results end in infinity. dnegal, experiments Pt, Qcld, Qpcp,
and Qall share a quite similar forecast error tragdhey all have the error growing to
their maxima at 4:00 UTC, which is 30 minutes earthan the CNTL. An exceptional
error increase is found for the Pt in the last hé&unmong these four experiments, the
Qall is found to have forecast errors in the snsalleagnitude. The Qv its own shows a
peculiarly quicker error increase that maximize8:80 UTC, which is one hour earlier
than other four experiments and 1.5 hours eartian tthe CNTL. After reaching the
peak, the forecast error of the Qv rapidly decreasesignificantly high efficiency
overwhelming all other experiments. According te thend, the greatest impact of the

initial g, accuracy on model prediction is again demonstrated

80



——~CNTL —8-Pt —4-Qv =<Qdd —+=Qpcp -e-Qall
(a) SRMS_Vh (b) SRMS_w

0.71
0.69 -
0.67
0.65 -

~
063 - AN 1.2
: NN Ll

0.57 \\ \V\‘/ = =
T ] 0.8 T i

0.55 T T T T T T T T T T !
2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00
(c) SRMS_T (d) SRMS_qv

7 14

6 /——-‘*\

15 4 / e \

1.4 4

1.3 +

1.2 —

1.1 I
2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00
(e) SRMS_qw (f) ASRMS

12 047 A
1! 0.45 <

0.8 -

043 +———

0.6

// 0.41 4

0.4 //

0.2 0.39 - \\
0 T T T T T T T ! 0.37 ¥ T T T T T T T '
2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00

FIG. 3.16 Same as FIG. 3.6, but for the CNTL an¢k fdirect insertion
experiments.

To verify how the experiments perform on predigtgtorm structure, evolution,
and related microphysical process, their simulateflectivity is quantitatively
evaluated and provided in FIG. 3.17. In terms efdissimilarity of the forecaa from
the truth (i.e., the RMS error, shown in FIG. 3)1the experiments with any perfect
fields specified is able to providé prediction systematically better than the CNTL
throughout the four hours range of the forecasggesting improvement o
predictions of different degree can be achievethbgducing perfect fields of any state

variables in the ICs. The best performance is eusby both the Qpcp and Qall at the
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beginning as they have the perfect precipitatingrbmeteors, which are the key inputs
used for derivin@. No significant RMS error difference is found betm the Qpcp and
Qall in the entire four hours range, suggestingaiheence of initial cloud hydrometeors
does not have as critical impact on #hprediction as it does on the prediction of other
variables (e.g.Vh, T). With no precipitating hydrometeors at the iditiene, the CNTL
and three hydrometeor-free experiments (i.e., R{,aQ@d Qcld) begin with a large RMS
error (nearly 10), and then have the error gragiuatiuced as the storms begin to
rebuild in their forecasts. Among these three erpemts, the Qv shows the most
remarkable efficiency on developing the storms fitben completely clear air while the
error difference between the other two experimgnts, Pt and Qcld) is not as
significant. After only one hour of the forecaste@nning at 3:00 UTC), the Qv
overwhelms all other experiments, even those ba&wgnmvith perfect precipitating
hydrometeors, in terms of significantly lowest RMB8ors continuing to the end. The
outperformance of the Pt and Qcld over the CNTlwdneer, is relatively insignificant
and only limited in the first two hours.

On predicting the intense convection (30 dBZ abadva), the experiments with
any of the perfect fields can develop the storms idecent intensity faster than the
CNTL, although underforecast of different degreesidl seen for all experiments
throughout all times (FIG. 3.17b). Also, it is falurihe perfect initialg, field can
significantly improve the underforecast issue aftee hour of the forecast. On the
contrary, all other experiments suffer more serionderforecast, which could possibly
be attributed to the failure on maintaining the cgg#ating hydrometeors from

unfavorable evaporation owing to the smoothed (weeH) initialg,. Even beginning
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with a perfect set of precipitating hydrometerstheut the support of the favoralidg
field, the Qall and Qpcp soon significantly undeeftast theZ intensity and have their
bias scores worse than the Qv only after one Hiamilar results are also shown in the
ETS verification (FIG. 3.17c): the performancesied Qall and Qpcp are competitively
well and also the best among all experiments withafirst hour of the forecast, but
then significantly surpassed by the Qv at 3:00 W@ afterward. Performances of the
Pt and Qcld are relatively indistinctive compared dther experiments, but their
advantage over the CNTL can still be seen. One farecast of the composit for
five direct insertion experiments are shown in F8al8 for qualitative illustration of
the discussions above. Check back to FIG. 3.4bFd&d 3.9b for the corresponding
results of the truth simulation and CNTL, respediy 3:00 UTC is selected as it is
when the Qv begins to exhibit its significant oufpemance over other experiments.
The distribution of the convective storms with rekadly similarity to the truth
simulation given by the Qv distinguishes itselfrfrany of other experiments, again
highlighting the great importance of the inittgglaccuracy on storm predictions.

It is also found the values of these verificatiogices for all experiments tend to
converge together as the forecast range gets lomper phenomenon can be explained
by the domination of the model physics which inse=awith forecast length over that
of the IC fineness which is believed to have thrgdaimpact limited in the beginning
stage of the forecast. Besides, the mesoscaleomnvantal features retained in the
smoothed ICs for all experiments also have contisugffect that gradually contributes
to the storm development. Based on the findingsutiinout this set of experiments,

better storm prediction can be ensured by imprdCealccuracy through direct insertion
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of perfect values. Since the perfect ICs are noessible in practice, further study is
devoted to an investigation into the practical ¢épgg of the complex cloud analysis

system on improving the cloud-related ICs and syt forecasts.
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FIG. 3.17 Same as FIG. 3.7, but for the CNTL amk fdirect insertion
experiments.
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3.4.3 Summary

Relative importance among the accuracy of varadosd-related state variables
in the ICs, including temperaturd)( moisture €,), cloud hydrometeorsqfs) and
precipitation hydrometeorsy), is examined. Experiments are initialized withedt
insertion of alternately specified perfect fielderh the truth simulation, which are
universally available over the entire modeling dom&lodel errors are excluded in all
experiments by the application of the presumedegeiYDM microphysics scheme.

On predicting most of the state variables we eramihe accuracy of initiaj,
is found to have the largest impact in terms of agpects: 1) instant very-short-range
(within the first hour, specifically) forecast errgrowth, and 2) significantly absolute
advantage on the forecasts at the later stage (tmwos and later). The former
phenomenon is inferred to be associated with alanhg$orecast imbalance induced by
the perfect and finer resolvegifield interacting with other error-containing filsl while
the latter is attributed to the essential critiyadif theq, accuracy required for favorable
predictions of the storms and their supportive emment. Other thau,, the initial
availability of the hydrometeor appears to be tkeosd greatest impacting factor,
particularly on giving bettef forecasts of a longer range, with which the imgoce of
the hydrometeors on developing reasonable coldspsatuggested. Accurate initial
field is found to be relatively crucial on givinget bestv}, prediction of a very-short-
range (first 1.5 hours, specifically). Benefit dktinitial precipitation hydrometeors is
more significant than that of the cloud hydromeseor

The great positive impact of the initigl accuracy is again found, and appears to

be even more significant on tleprediction. Even initialized with no hydrometeaisg
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experiment with perfect initiad, can quickly build up the storms in favorable irgieyn
and distribution in only one hour (i.e., spin-umé), when the benefit of the perfect
hydrometeors initialization is significantly surgad by it. Significant improvement on
the underforecast issue is also promised by the perfect inijghfter the spin-up time.
Impact of the inclusion of cloud hydrometeors appda be even indistinctive as the
storm forecast given by the precipitation hydroroetealone is competitively good as

that given by the all hydrometeors (i.e., cloudreqggpitation).
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Chapter 4: Cloud Analysis Experiments

4.1 Introduction

Given the importance of the initial condition (IGccuracy on numerical
weather prediction (NWP) modeling which is well demtrated in existing studies and
our earlier investigation, especially for the mesotective-scale systems that possess
highly nonlinear nature, continuous efforts haveerbenade in the current couple
decades on developing a variety of data assimildf\) techniques toward the goal of
a better initialization of model states throughimgily combining information from the
available observations and background. Howeverngwo increased complexity in
utilization of these modern DA techniques, such fagr dimensional variational
(4DVAR; Lewis and Derber 1985) DA, the ensembleridah filter (EnKF; Evensen
1994; Houtekamer and Mitchell 1998), and the hylendemble/variational approaches
(Hamill and Snyder 2000), the considerably expenstomputational requirement
makes them barely affordable for the real-time apens but only limited within the
research scenario.

Several cloud analysis systems/algorithms hava beplemented operationally
in many weather forecasting/nowcasting institutesldwide (Auligne et al. 2011): the
Local Analysis and Prediction System (LAPS; Albersl. 1996) first developed by the
National Oceanic and Atmospheric AdministrationOAA’s) Forecast Systems
Laboratory (FSL), the Nowcasting and Initialisatifor Modelling Using Regional
Observation Data Scheme (NIMROD; Golding 1998) ubgdthe United Kingdom
Meteorological Office (UKMO), and the Rapid Refregérsion of the Rapid Update

Cycling model (RUC/RR; Benjamin et al. 2004) used turrent operations at the
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National Center for Environmental Prediction (NCEPhe main goal of these cloud
analysis systems, in spite of various approacle$ ispecify the hydrometeor (i.e.,
cloud and precipitation) fields and adjust relategtloud thermodynamic fields (i.e.,
temperature and moisture) for the use of NWP modelCompared to those advanced
DA algorithms described earlier, most of these dlanalysis procedures are realized in
a relatively efficient way with the employment ample physical models or semi-
empirical rules.

The complex cloud analysis in the Advanced RedidPiediction System
(ARPS; Xue et al. 1995, 2000, 2001) was at firstetigoed by inheriting procedures of
the LAPS (Zhang et al. 1998). Since then, a nuroberodifications (or extension) has
been made (added) to improve its efficacy. In aolddl to the currently available
hydrometeor analysis that applies the empiricahfit equations from Kessler (1969)
and Rogers and Yau (1989) for rain water and icecisg (i.e., snow and hail),
respectively, a new procedure, based on the raflactivity operators built by Jung et
al. (2008), is developed and adopted in this stiide theory of electromagnetic wave
propagation that accounts for scattering effectshsas dielectric factor and canting
behavior of various particles is included in theriviion of these operators.
Furthermore, a simple melting model was also ing#dlvn charge of the physical
feature changes due to the melting process. Aaogridi these additional features, the
new hydrometeor analysis procedure, with relativelyher complexity, is considered
more generally applicable and capable of providimge realistic results. For detailed
information about the practical realization of thi®cedure, please refer to Appendix A.

In addition to the original in-cloud temperaturgustiment based on the hydrometeor-
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associated latent heat release, a new versionjudtatent that adjusts the temperature
profile towards the moist-adiabat of a low-levéied parcel with the dilution effect due
to the entrainment process included is introducg@iewster (2002) and available in
the current cloud analysis package. The impacefice between these two methods is
examined and discussed in Hu and Xue (2007) byahgication to a tornadic
thunderstorm case study. For the in-cloud moisadgistment, a simple saturation
strategy of the cloudy regions, which has been Widdopted in many studies (Albers
et al. 1996; Zhang et al. 1998; Wang et al. 204 3)piplied.

In the previous chapter within our OSSE framewarkrecursory investigation
on the impact of IC accuracy through direct insertof various sets of perfect (i.e.,
error-free) state variables is performed. The nedatmportance of these state variables,
in particular the cloud-related ones, is examined @discussed. With these preliminary
findings, the room for potential improvement thauld be achieved by the cloud
analysis is revealed. Since the perfect IC is pralky unaccessible, the previous
experiments can stand for a set of highest stasdandthis chapter, aiming to the
ultimate goal of this study, the experiments aredlly initialized by the ARPS cloud
analysis procedure. Same truth simulation and obniin as the previous chapter are
used. Besides the hydrometeor mixing ratio anglyses impacts of two other in-cloud
field adjustments, temperature and moisture, asritbesl earlier, will also be examined.
The improved ICs, obtained from the cloud analyare, expected to lead to forecasts
better than the CNTL (the baseline) and more ingmtly, as closer to the standards set
by the previous direct insertion experiments assipdes. All potential analysis errors

will also be listed and described in details.
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This chapter is organized as follows. In sectioB, 4he setup of the cloud
analysis experiments with different configuratioage introduced. The comparison
among experiments and the independent impact adpgpbed procedures, including the
hydrometeor analysis, temperature, and moistureisadent, are presented with
discussions. At last, a conceptual model of fore@sor evolution is provided in
section 4.3 based on the findings of our experinset$ from both previous and this
chapter. Detailed discussions about various pateatror sources and their impacts are

provided.

4.2 Experiments with Different Configurations of Cloud Analysis
4.2.1 Design of Experiments

Based on the degraded ICs as used for the CNTLcamduct four additional
experiments which are initialized using the ARPSmptex cloud analysis with
configurations of different completeness, listeahirlow to high as: 1) NoAdj, mixing
ratio analysis only, without any in-cloud fieldsjagtment, 2) PtAdj, mixing ratio
analysis, with in-cloud potential temperature atpent, 3) QvAdj, mixing ratio
analysis, with in-cloud moisture adjustment, andB&fhAdj, mixing ratio analysis
along with both9 andq, adjustments.

For the mixing ratio analysis of various precipdat species, the modified
procedure, based on the JZX reflectivity operatassintroduced in subsection 2.1.2 is
applied. The radar reflectivity observation useddarrying out the analysis is derived
directly from the hydrometeors output of the trgtmulation (bothgx andNy). Thus
the observation error is excluded. As pointed ausubsection 2.1.2, the ratio among

the mass contents (or mixing ratios) of differergqgipitation species (i.eq, gs, g, and
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gn) is required as the prerequisite for realizing timodified mixing ratio analysis. We
reserve this information directly from the truthmsilation for more realistic analysis
results. However, to emulate the utilization ingtice, the constant default values of the
intercept parametey of 8x1@, 3x10, 4x10, and 4x16 (in m™) are used for rain,
snow, graupel, and hail, respectively in our analyd/ith the application of defauly,
certain analysis errors are introduced as Mheis actually variable in the truth
simulation.

For the in-cloud temperature adjustment, the MAesth (refer to subsection
2.1.1 for detailed descriptions) is applied. Theeg®n of MA scheme over the LE
scheme is owing to its better consistency with phgsics of convective storms and
corresponding improved forecasts that have beerodstmated in Hu et al. (2006a).
Besides, the final in-cloud vertical motion adjustihis omitted for all experiments
here since the impact of the thermodynamic vargble of our main interest in this
study.
4.2.2 Results and Discussion

An arbitrarily selected 300-km wide cross sectiamroas over the intense
convective core of the storm denoted by a blue dam&hin FIG. 3.4a is shown to
exhibit the result of mixing ratio analyses. Mixingtios of four different precipitation
species, rain, snow, graupel, and hail, are pravidd-IG. 4.1 and FIG. 4.2 for the truth
simulation and the cloud analysis experiments, aetdgely. In Table 4.1, the mixing
ratio maxima of each precipitation species in ls#tected cross section and the entire
modeling domain are listed, from which the genemabnitude difference between the

truth and the cloud analysis results (i.e., analgsiors) can be discerned intuitively.
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First of all, in the truth simulation, the hail gpes is found in a significant
minority with magnitudes two orders smaller complai@ other species. It is also seen
that the hydrometeors in the truth has wider spabaerage than the cloud analysis
results, especially for the snow and graupel inupper air (9 km AGL and above).
This difference is mainly due to an artificial aysé thresholds set upon the
observation, under which the analysis will not beried out while zero valued mixing
ratios are directly assigned instead. These thldshare originally designed to
eliminate possible contamination from either ingigant precipitation or non-
meteorological objects (as described in Hu et @062). In our cloud analysis
experiments, specifiZ thresholds of 20 dBZ and 15 dBZ are set for thérbmeteor

analysis under 2 km AGL and above 2 km AGL, respelt.
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FIG. 4.1 Cross section of truth mixing ratio in g/'ifor (a) rain water, (b) snow,
(c) graupel, and (d) hail.
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FIG. 4.2 Same as FIG. 4.1, but for the cloud anskysperiments.

Table4.1 Mixing ratio maxima of thetruth and analysis

Ox maxima (cross section/entire domain) in g/kg
Rain Snow Graupel Hail

Truth

simulation 1.256/3.228 2.099/3.614 4.969/8.133 0.01220

Cloud
analysis 19.429/20.000 0.326/1.75( 0.832/2.856 0.02233
experiments

Noticeable analysis errors on mixing ratio are fbun our experiments: in
contrast to the truth simulation which has rainpvgnand graupel mixing ratios in
nearly comparable magnitudes, the analysis resiithe experiments is mostly
dominated by the rain species which has magnitimeeto two order(s) larger than that

of the snow or graupel. In other words, the clondlgsis produces a more warm rain-
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like result. The main reason that causes this réiffee is theNy values used in our
analysis procedure. As mentioned in the previoussacttion, defaullNy of constant
values is used in our experiments for their solaeMailability and the readily
convenience in most practical applications. Howgasrthe DM microphysics scheme
is applied, additional freedom of the spatial MVaitiy of Np is granted by the
predictableN;, which has been demonstrated in several obsenvhtised studies (e.g.,
Dennis et al. 1971; Federer and Waldvogel 1975gKinet al. 1982). The spatially
variableNo, in logarithmic forms for displaying conveniencé rain, snow, and graupel
from the truth simulation is provided in FIG. 4@& better interpretation of the analysis
errors. The hail species is omitted here becausts ohinority. The default values of
different precipitation species used for the analgse marked in their respective color
bars. According to the formula used for carrying the mixing ratio analysis, as
provided in details in Appendix A, the final valwé the analyzed mixing ratio is
positively-proportional to th&l. It can be seen in FIG 4.3a that for most regivitb
presence of significant rain water, for exampleobethe freezing level (FL; around 4
km AGL in our case), th&lp values are mostly overestimated by the defaulhesa
compared to the true values. As a result, positibesed analysis result (i.e., analysis
errors) ofq, is led. Similarly, the negative biased analysi®rmsr of gs andgy can be
explained by the underestimated conshywalues compared to the true ones.

Other than the issue regarding theusage discussed above, there are two other
sources of analysis errors we would like to addrEsst, due to the essential limitation
on algebraic formulation, there is incomplete reimlity between the reflectivity

forward operators and the mixing ratio analysiscpdure. Specifically, this limitation
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is owing to the different exponents possessed byréfiectivity operators of rain and
non-rain species. Because of this difference, cedpproximation has to be made
before the contribution of different species on th#lectivity can be combined for
retrieving the mixing ratios. Details about thismquutational error and the practical
implementation of approximation can be found in Apgix A. The second error source
is from a post-screening process, realized by afspteset thresholds, applied to the
analyzed mixing ratios. To avoid any potential haom the subsequent forecasts
resulted from unrealistic mixing ratio analysessed of artificial thresholds is used to
screen out analysis result with unreasonably laedees. In our study, 20 g Rgs used
for all species, which also explains the maximung,afeen in Table 4.1.

Both analysis error sources described above cowlkienthe post-simulated
field, computed from the analyzed hydrometeor 8ehdth Z operators, slightly differ
from the originalZ observation originally used for carrying out tmalysis. In FIG. 4.4
the composite reflectivity simulated from our migimatio analysis result (valid at 2:00
UTC; FIG 4.4b) is provided along with the truth siation (also the error-free
reflectivity observation; FIG. 4.4a). Overall, tla@alysis result matches the truth in
decent similarity except for some misses on thekveefioes (as shaded in light blue) at
certain regions, mainly the edge of the storm, wuthe artificialZ thresholds set for
realization of the analysis as described earliesi@es, some spotted extreme echoes in
the truth are absent in the analysis as a resuliepost-screening process. Given its
relatively minor magnitude compared to the analyssilt (~12% negative bias based
on theZ maxima), the analysis errors are considered aabkptand believed from

resulting in unfavorable impacts on the forecasts
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FIG. 4.4 Composite reflectivity and surface wind2#®0 UTC for (a) truth
simulation and (b) experiments with cloud analysis.
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FIG. 4.5 Same as FIG. 3.6, but for the CNTL and fdoud analysis experiments.
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In FIG. 4.5, the SRMS error of various model stadables along the forecast
range is shown for the CNTL and four cloud analgsiperiments. On the prediction of
winds (FIG. 4.5a-b), throughout the entire four tsowange, the experiments with
moisture adjustment (i.e., QvAdj and BothAdj) aparid to result in significantly larger
error compared to the CNTL, except for an relayivielsignificant error difference
occurring at 4:30 UTC. It is also noticeable thag¢ significant error growth of the
QVAdj and BothAdj is considerably rapid after thtial time once the forecasts are
launched. In contrast to the moisture adjustmepegments, experiments without the
application of moisture adjustment (i.e., NoAdj di\dj) have relatively small errors.
Specifically, onV,, prediction, the forecast errors of these two expents are smaller
than the CNTL throughout the entire forecast ranvgale onw prediction, they are
larger than the CNTL within the first two hours atiten the error difference turns
indiscernible later. By comparing the PtAdj to NgAd the BothAdj to QvAdi, the
impact of the temperature adjustment is discusBetlveen the QvAdj and BothAd;,
the BothAd) gives even larger error on predictidrboth Vi, andw, which may imply
certain negative impact associated with the tentperadjustment. However, between
the NoAdj and PtAdj, the PtAd] is able to resultsystematically smaller forecast error
even though their error difference is not as sigaift as that between the BothAdj and
QVAd]. As a conclusion, the benefit of the temperatadjustment on the wind
prediction remains valid only in absence of theligpfion of moisture adjustment.

On the prediction of temperature (FIG. 4.5c), st found the temperature
adjustment causes slightly larger SRMS errors atitiitial time for both PtAdj and

BothAdj), indicating this moist-adiabatic profile 48 temperature adjustment applied
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here does not necessarily provide quantitativaljuced analysis error. The QvAdj and
BothAdj again, are found with rapid error growthiglhmakes their errors significantly
greater than the other two non-moisture-adjustgxkments within the first two hours
of the forecast. While comparing with the CNTL, theisture adjustment experiments,
with the significant error growth in the beginnistage, are even surpassed by the
CNTL in the first 1.5 hours. However, after one hai the forecast, the moisture
adjustment experiments runs into a quick error deopl have their forecasts
outperforming the CNTL beginning at 4:00 UTC. TheAdj even outperforms the two
non-moisture-adjusted experiments during 4:30 af@ HTC with the lowest forecast
error. For the other two experiments without applymoisture adjustment, the error
grows more gently and slowly. Compared with the CNglightly worse forecast of the
temperature adjustment experiments is found onlthatvery beginning stage of the
forecast (2:30 UTC) while significantly better foests are ensured constantly after
then. Similar to what is found on the wind predinti the QVvAdj outperforms the
BothAdj while the PtAdj outperforms the NoAdj evdrough the PtAdj has a slightly
larger error due to the analysis at the beginninggeneral, the group of experiments
without moisture adjustment performs better thas dgloup with moisture adjustment,
except for a short period between 4:30 and 5:00 du@itihg which the QvAd] has the
smallest error of all.

On the performance aj, prediction (FIG. 4.5d), remarkably large RMS errors
are found at the initial time given by the two eppeents with moisture adjustment,
indicating significantg, analysis errors can be resulted from the curreaisture

adjustment based on a simple saturation strategghightly larger initial analysis error
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of the BothAdj, however, is found compared to thiathe QvAd). This difference is due
to procedure for applying these in-cloud field a&tijnents: as the temperature
adjustment is designed to be applied before theston@ adjustment, its effect has also
been included in the later-realizggladjustment, in which the, is retrieved based on
the adjusted field. Beginning with large errors at the initiaine, the QvAdj and
BothAdj go through a significant error drop in thiest 30 minutes, and then show a
nearly constant error trend afterward. As the CNsSHow an error trend generally
growing with the forecast range, the QvAdj and BRath outperform the CNTL
beginning at 4:00 UTC and their advantage ovelQN&L becomes even significant in
the later stage of the forecast. On the other hsimaking a similar error growing trend
with the CNTL, the NoAdj and PtAdj have errors blig larger than the CNTL in the
first hour, but after then, they outperform the @NWith a significantly slower error
growing trend. The four cloud analysis experimeptgn beginning with large initial
error differences, have their error converged gallguwith the forecast range and
ended with significantly reduced error differencggstematic outperformance provided
by the group with moisture adjustment over the graithout moisture adjustment is
found beginning at 4:30 UTC. The impact of the temafure adjustment oy
prediction is found, by comparing NoAdj with PtAdy QvAdj with BothAdj, on
providing better forecasts at the later stage lfbi&rs and later).

On prediction of the total water mass content (F4Ge), the great and abrupt
error growth is again found given by the experimentth moisture adjustment (i.e.,
QVAd] and BothAd)). Because of the error growthtliese experiments, their initial

advantage from the hydrometeor analysis over th&lC8uickly reduces in terms of
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significantly larger forecast errors. Even thoubk errors significantly decrease after
one hour of the forecast, the QvAdj and BothAdjl stannot outperform the CNTL
within the entire four hours range. On the contréng group without application of the
moisture adjustment is able to maintain the iniéidlantage by providing forecasts no
worse than the CNTL throughout most of the foretastrs (a slight exception occurs
at 4.00 UTC). Similar impact of the temperatureuatipent as seen earlier for the wind
prediction is again shown here: with the applicatiof moisture adjustment, the
temperature adjustment significantly increasesfénecast errors throughout the entire
four hours range, while in absence of the moistadgustment, the temperature
adjustment shows positive impact, but mostly lichite the very first hour.

On the general forecast performance (FIG. 4.88,dignificant error growth at
the beginning stage of the forecast is once aghows in the experiments with
moisture adjustment (i.e., QvAdj and BothAd)), het demonstrating the sensitivity of
the model prediction to the introduction of storoaleq, features as it has been shown
in the earlier experiment set with direct insertadrperfect state variables. According to
the similar forecast error trend shared, four clandlysis experiments can be divided
into two groups: 1) NoAdj and PtAd], and 2) QvAdpda BothAd]. Without the
application of moisture adjustment (i.e., the figgbup), the experiments are able to
keep a slower error growing trend and earlier edexreasing timing compared to the
CNTL, indicating the initial benefit from the hydreteor analysis is successfully kept
in these experiments. When there is no moisturasaadgent applied, the temperature
adjustment itself, even with a slightly increasemhperature analysis error at the initial

time, is able to ensure systematically better faset¢hroughout the entire four hours
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range of the forecast. However, while the moistadjustment is included, the
additional application of temperature adjustmentdseto further increase the forecast
error which is originally found significant. It iworth noting that the experiment with
application of moisture adjustment only (i.e., QyAid able to outperform the CNTL
with betterT and g, forecasts in the later 1.5 hours after going thhothe stage of
significant error growth, suggesting the moistudgustment is not necessarily harmful

to the prediction of model state variables.

~—CNTL —#-NoAdj —+- PtAdj =<QuAdj —BothAd]
ASED

FIG. 4.6 Same as 3.10, but for the CNTL and
four cloud analysis experiments.

Similar result of the forecast error trend is lfiert demonstrated by the ASED
shown in FIG. 4.6. Significantly more rapid erreogth in terms of steeper slope of the
ASED is found in experiments with the applicatidnnmisture adjustment; however,
after reaching the forecast error maxima at 3:00CUTelatively sharper error
decreasing rates are also shown for them. For empets without applying moisture
adjustment, the forecast errors both increase auledse in a much slower rate.
Among the four cloud analysis experiments, the Ptfas the smallest error growing

rate while the BothAdj has the greatest.
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On the Z prediction (FIG. 4.7a), it is found the initial \ahtage from the
hydrometeor analysis in the two non-moisture-agjigtxperiments can be maintained
throughout the entire four hours range in termspafviding forecasts significantly
better than the CNTL. The advantage is also seethdnexperiments with moisture
adjustment, but only limited in the first hour, eftwhich their performances are
significantly surpassed by the CNTL. Within the stare-adjusted group, a relatively
advantaged performance is given by the QvAdj attrabthe forecast times, except for
3:00 and 6:00 UTC, at which the QVAdj is slightlyrgassed by the BothAdj with
relatively insignificant RMS error differences. Thetter performance of the QvAd;
over the BothAdj is consistent with the earlierdiimgs on the prediction of most model
state variables. On comparison within the non-miogsadjusted group, relatively
significant outperformance of the PtAdj over theAdpoccurs only between 4:00 and
5:00 UTC, other than which both experiments provaempetitive forecasts with
similar RMS errors.

While evaluating experiment performances on ptediche intense convection,
it is seen that improvements to the underforecemid (i.e., bias scores significantly
smaller than one), which is found serious in theTCNcan be achieved in different
degree by four cloud analysis experiments. Howetrer, experiments with moisture
adjustment are found to result in overforecast (FI@b) throughout the entire forecast
range. The overforecast issue is even more signifitor the BothAdj compared to the
QVAd). On the contrary, without applying moisturdjsstment, both PtAdj and NoAd;]
tend to underforecast the intensity of the conwectiAdditional application of the

temperature adjustment (i.e., PtAd)), however, a&infl capable of significantly
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mitigating the underforecast, which is more seriomughe NoAdj. One hour forecast of
the composite reflectivity of four experiments ateown in FIG. 4.8, from which the
overforecast of the QvAdj and BothAdj on storm irgiey with extreme echo values
(red shaded) is illustrated. Please check backl@n &4b for the comparison with the

truth.
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FIG. 4.7 Same as FIG. 3.7, but for the CNTL and fdaud analysis experiments.

(b) BIAS_Z (30 dBZ) (c) ETS_Z (30 dBZ)

In terms of the ETS (FIG. 4.7c), the experimentugravith moisture adjustment
appear to give higher scores within the first tHrears of the forecast. Within the group,
the BothAdj scores higher than the QVAdj, which tcadicts the general better
performance of the QvAdj oA prediction found in the RMS error. The advantafe o
the BothAdj on the ETS verification is mostly resdl from the design of the ETS
calculation (Schaefer 1990). Based on the contiogéaible used for the statistics of the

forecast result in association with the standash (@e either observation or the truth as
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in our case), binary result of either “hit” or “msis (corresponding to the preset
threshold) is given. Therefore, no penalty is gedrfor those hits with over-forecasted
magnitudes. In our case, as the cloud analysistepdhe cloud-related variables only
within the cloud regions, given the perfect refigty observation, the overforecast of
reflects mainly on its intensity, but not the spi¢see FIG. 4.8 for demonstration). As a
result, even with significantly over-forecast&dintensity, by providing an in-cloud
environment which is highly conducive to the statevelopment, the BothAdj is able
to assure least misses and provide the highest EB8clusions on judging thg
forecast performance, therefore, have to be matteaxtra caution while verified with
the ETS. The issue of the overforecast tendenaytineg from the current}, adjustment

is also reported in Schenkman (2012); however sitaddressed for the repeated
applications in a manner of high frequent cyclim@lgsis. In his study, this issue is
indicated to be associated with the unrealisticdhetdroposphere warming, which can
be linked with the rapid error growth inprediction we found earlier (FIG. 4.5c).

The impact of the hydrometeor analysis erroZgrediction can be assessed by
comparing the results between the NoAdj and Qadingfthe previous chapter). Recall
that all hydrometeors in Qall’'s ICs are directihénited from the truth, which is error-
free. Note that the differences between these twaerements include not only the
errors in precipitation species analysis (as showrRIG. 4.1, FIG. 4.2, and Table 4.1),
but also the errors in cloud species analysis. dnegal, two experiments share the
similar trend in terms of both the RMS error andsbscore. Specifically, compared to
the NoAdj, the Qall has smaller RMS error by leasgler-forecasting (i.e., higher bias

scores) the convection intensity throughout th&@embrecast range. A more significant
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impact of the analysis error is seen on the ET8iwithe first 1.5 hours: the ETS of the
NoAdj drops more seriously compared to that of @adl, which can be also related to
the greater underforecast. As a conclusion, thenwain-like analysis errors generally
keep the forecast storms from maintaining proptmisity. We found this deficiency on
hydrometeor analysis, however, can be compensatedigh the application of the

moist-adiabatic-based temperature adjustment.
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FIG. 4.8 Same as FIG. 3.18, but for four cloud gsial experiments (a)
NoAd;j, (b) PtAdj, (c) QvAdj, and (d) BothAd,|.
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4.2.3 Summary

Experiments are initialized using the ARPS compiud analysis procedure.
Hydrometeor mixing ratios are analyzed with thedated reflectivity from the truth
simulation based on the JZX reflectivity operatanswhich the defaultNy values of
different precipitation species are applied. Owiaghe analysis errors introduced by
the constantNy, the analysis shows a quasi-warm rain result witbrestimated rain
water mass content and underestimated ice-phasdtbrhgteor mass contents in
comparison with the truth. Besides the hydrometsalysis, the impact of other in-
cloud field adjustments, including the simple satimn moisture adjustment based on
the presence of observed radar echo and the tetuperdjustment based on moist-
adiabatic ascent, are also examined.

It is found the simple saturation in-cloud moistwadjustment results in @
analysis with significantly large analysis errddgginning with these errors, instant and
great forecast error growth, which usually peakhiwithe first hour, can be resulted on
the prediction of most state variables (e\y,,w, T, ). While being applied alone, the
additional application of in-cloud temperature atfijnent is able to provide improved
forecast results, especially on the prediction wfds andT. Based on the hydrometeor
analysis, the additional application of the tempe® adjustment is found capable of
reducing the forecast error growing rate while @dditional application of the moisture
adjustment tends to increased error growing ratavev¥er, while both adjustments are
applied, an even significantly enlarged forecasiregrowing rate can be resulted.

On the prediction of the reflectivity, the greatempact of the moisture

adjustment is shown on over-forecasting Zhiatensity with nearly unrealistic extreme
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values. Under-forecasted intensity, on the contrary, is found for the expents
without applying moisture adjustment. However, tds@perature adjustment appears to
work well on alleviating the underforecast issuehiMy/ evaluating the experiment
performance on predicting intense convection (32 @dBd above), higher ETS can be
achieved by the experiments with moisture adjustmieecause their significant
overforecast tendency. Based on our findings, welcde that further improvements
on the current moisture adjustment based on a sisgiiuration strategy are required
for avoiding unfavorable precipitation forecasteshles, the under-forecasted result
given by our error-containing hydrometeor analysiésso calls for potential
improvements on this procedure, from which morepprly maintained precipitation
intensity is expected to be achieved through a nacwirately specified hydrometeor

fields.

4.3 Conceptual Model of Forecast Error

Based on the findings from the experiment setsdeoted in this and the
previous chapters, we construct a conceptual motiébrecast error that enables a
general understanding of the relative importanceaoius individual impacting factors
as discussed earlier. General forecast performancleding the predictions of winds,
temperature, moisture, and hydrometeors, is assaessdeveloping this model, from
which the storm predictability, both intrinsic apdactical (Lorenz 1995), is revealed
and discussed.

Before looking into the conceptual model, we wdikd to provide an overview
of a relevant study on the scale dependence giremictability of precipitation patterns,

conducted by Surcel et al. (2015). In their studyquantitative measure of the
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precipitation predictability, realized with a dew#ation scale, was proposed and
applied to examine various forecasting methodsciBpally, the decorrelation scalg
is defined as an upper scale limit, below which ftvecasts show no predictability. It
was concluded from their results, based on 22 pitation cases during the 2008 HWT
Spring Experiment, they always increases with forecast lead time, regasdigsthe
forecasting methods. Furthermore, they found timgédo-than-two-hours predictability
of the model state at mesoand mesgr scales can be introduced by the radar data
assimilation, while comparing to those non-raddadesimilating ensemble members.

The study reviewed above focused on predictahiiggnly at the mesoscale. In
addition, because of the practical forecastingesystused for conducting their study,
the practical predictability, which is defined withe inclusion of the model errors
(Lorenz 1995), was referred. Compared with theirdgt the predictability at up to
convective-scale is included in the object of axpleration with the set-up of the 1-km
model spacing, and the forecasts in a four-housst sange are examined. Furthermore,
within the OSSEs framework, most of our experimseits are performed under the
assumption of perfect model, from which the intiensredictability can be investigated
with the specifiable IC errors. In addition to timrinsic predictability, the practical
predictability is also available for discussionaar study through certain experiments
with microphysics errors (presented in section.3.3)

Discussions upon the forecast error conceptual tr{pdevided as FIG. 4.9) and
associated impacting factors for the storm preagiicare summarized point by point as

follows:

110



Forecast Error Evolution
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FIG. 4.9 Conceptual model of the forecast errodian corresponding to IC

accuracy (including the resolution fineness of mwes field and hydrometeor

availability) and model perfectness. Details abdle arrow marks are

provided in the context.

(i) Initial condition error (shorten as IE, denoted the gray double headed
arrows in the conceptual model):

While the model perfectness is assumed, the irgbaldition error is the major
source that causes the subsequent forecast €Ffossis also the scenario under which
the intrinsic predictability has been discussede Thtical impact of the IC uncertainty
on the NWP model forecasts was first addressed oreriz (1963) and all the
subsequent data assimilation studies were dedi¢atdte improvements of this issue.

For most regional forecasts, the initial conditi@nrors usually come from the

application of the global model outputs or globablgses, which are coarse in their
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spatial resolution insufficient for characterizitige critical features at finer scales.
Besides, the unavailability of the hydrometeor infation, which is common in these
global-based ICs, also introduces the uncertaihiyt tcan significantly limit the
predictions of moist convection. In our OSSE stutlg, uncertainty described above is
emulated by a degraded IC. In the conceptual mduelotal IC error magnitude of the
black curve featured by the summation of IE1 an@ IBcludes both 1) spatial
resolution deficiency and 2) hydrometeor unavaligbi This great error can be
significantly reduced in a magnitude of IE2 aftee tnclusion of either perfect moisture
field (as the blue curve) or hydrometeors (as & curves). These improvements,
theoretically, can be expected by utilizing reasdad&ydrometeor mixing ratio analysis
or in-cloud thermodynamic field (i.ed, or g,) adjustments through the cloud analysis
procedure. However, the magnitude of the improvemsay not be as large as the IE2
owing to the analysis errors in practice.
(i) Impact of the initial condition error

While observing the forecast error evolution of tegious experiments, we
always see a trend of error growth showing at #ggrining of the forecast regardless of
the IC variety, from which the impact of the init@ndition errors is inferred. In other
words, as long as there is initial error presdmns general behavior of the forecast error
can always be expected. When the NWP model reaishisl physical complexity and
with which a reasonable storm-associated environnsebuilt, the negative impact of
the initial error is eventually overcome and asesault, the forecast error begins to
decrease. We simply refer the beginning error gnopdriod as the “initial-condition-

error-dominated stage” and the later period as“thedel-physics-dominated stage”.
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Another reasonable explanation for the error desered the later stage of the forecast in
our OSSE experiments can be associated with thgyrdes the smoothed initial
condition. As shown earlier in section 3.2.2, derteritical mesoscale environmental
features are still kept in the background for negteriments. Along with the forecast
range, these mesoscale signals continuously catdriio force and eventually develop
a mesoscale structure of the storm comparableedrtith. The longer impact on the
forecast given by the larger-scaled features in@hee find here is consistent with the
predictable scale which is concluded in Surcel.ef2815) to increase with the forecast
lead time.
(i)  Length of the initial-condition-error-dominated g&a

With different informative IC (denoted by curvesdifferent colors), the length
of the initial-condition-error-dominated period PEperiod, hereafter) varies. The end
of the IED period is marked with arrow in respeeticolor for each experiment. It is
seen the least informative IC (black curve) resulta longest IED period (~2.5 hour).
Compared to that, the additional hydrometeor infaran in the IC (red curves) appears
to shorten the IED period for nearly an hour. Thtvantage, mostly in terms of
alleviating the model spin-up time, is also whae @an expect from the utilization of a
reasonable hydrometeor analysis. Again, the picticagnitude of the advantage
would be dependent on the fineness of the analy&s analysis errors). An even
shorter IED period of only one hour is found foe texperiment with perfect initial
moisture field (blue curve), even though no hydrteoeinformation is included in the
IC. The advantage of the moisture accuracy on @uick) the forecast error decrease is

relatively significant since no other state varésblve examine (i.ef, Qcig, OF Qpcp, NOL
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shown in the conceptual model) is able to shorten IED period in a competitive
efficiency.
(iv)  Forecast error magnitude

The impact of the IC uncertainty also reflects ba forecast error magnitude.
Beginning with a largest IC error given by the tesdormative initial condition, the
experiment denoted by the black curve is most yikel be expected to show the
forecast error greater than other experiments irout the forecast range. However, a
larger forecast error is found given by the expentrwith perfect initial moisture field
but no hydrometeors in its IC which is denotedhey blue curve within the first 1 to 1.5
hours. This large error magnitude at the very b@gmstage of the forecasts suggests a
great sensitivity of the model forecast to the mues accuracy in the IC, which induces
certain forecast imbalance through its interactiaith other error-containing fields.
However, as soon as its IED period is passed, éneqt initial moisture experiment
turns to drop its forecast error rapidly in a megjnificant efficiency (i.e., with a
steepest slop) and ends up with a smallest finadr gfFE) magnitude among all
experiments. For the experiments with perfectahitiydrometeors denoted by the red
curves, their forecast errors remain in relativatyaller magnitudes compared to the no
initial hydrometeor experiment (the black curve)he entire four hours of the forecast
range. Around 1.5 to 2 hours of the forecast, tedegt initial moisture experiment
begins to surpass the perfect hydrometeor expetimiém significantly smaller forecast
errors, suggesting the greater positive impachefinitial moisture accuracy over the
hydrometeors. The final forecast error differerae denoted by the FE1 and FE2 in the

conceptual model) is also found mostly associategd the IC uncertainty: the FE1 is
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attributed to the benefit of initial hydrometeowdile with the perfect initial moisture
field alone (hydrometeor is not even included)yeatly reduced magnitude of the final
forecast error as large as FE1+FE2 can be obtained.

(v) Impact of the model error

The model error we discuss here is mainly causedth®y microphysics
treatments. The forecast performance differenceltegs from the applications of
perfect and imperfect microphysics schemes isrjatshed by the solid and dash line
(both in red). The general trend of the forecasirezvolution, in terms of the length of
the IED period, remains quite similar for the twgeriments. Beginning with the same
IC, the experiment with perfect microphysics teridsgive smaller forecast errors
throughout the entire four hours range in compariaith the imperfect microphysics
experiment. However, the impact of the model mibygics errors on the prediction of
model state variables (in terms of the forecasiratifference between two experiments
here) is not as significant as that caused byrtiti@li condition error. On the other hand,
in terms of providing a systematically better po#&idn of reflectivity in up to four hours
range, the perfectness of microphysics is foundhhmmore crucial (not shown here;
Refer to section 3.3 for details).

The significance of the forecast error conceptuatleh we propose above is
further discussed here. Since the model is cortstlugased on the findings of a single
case study using one specific forecasting systasnumiversal validity has to be
addressed. Besides, it is worth noting that in tteaceptual model, instead of the
absolute values such as the SRMS errors showreesrleach experiment set, only the

relative magnitudes among the curves (i.e., expate) are valid. Quantitative
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variations in the properties described above, sigcthe initial errors, length of the IED
period, and error growth magnitude, may be founragndifferent cases studied or
different forecasting systems applied (i.e., caee-system-dependent); however,
according to the general trend of the predictabilarying with forecast range
concluded with various forecasting methods anddhiaset of a reasonable size (22
cases) in Surcel et al. (2015), these variatioms expected to stay in a relatively
insignificant magnitude that would not alter théatee positions appearing among our
experiments. As a result, we conclude our concéphadel should be robust in a

gualitative sense and its significance is thusrassu
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Chapter 5: Improving Moisture Adjustment in Cloud Analysis

5.1 Impact of Moisture Accuracy

From the experiment sets presented in the previahapters, it has been
established that among the various state variathlescloud analysis attempts to
improve, the moistureq() plays the most important role in terms of itsrppd and
significant impact on storm prediction. Even with arrors included, the insertion of
hydrometeor fields can only provide limited bendifitthe presence of initial moisture
error. The impact of the initial moisture accurasyfound even more critical on
predicting reflectivity.

Realizing the importance of moisture accuracy avdeh predictions and the
limited efficacy of the current in-cloud moisturdjastment, efforts are made in this
chapter to examine the validity of the simple saion strategy and an optimally-
specified in-cloud moisture field, upon which a nfiedl procedure making use of the
vertical velocity information is proposed and iféeetiveness on providing improved
forecasts is preliminarily demonstrated.

5.1.1 Validity of Current Moisture Adjustment

As described earlier in subsection 2.1.1, in theezu ARPS complex cloud
analysis a simple empirical rule-based strategysisd to adjust the in-cloud moisture
field: 100% relative humidity (RH) is assigned fime cloudy regions based on both
LCL analysis and the presence of significant ragleioes. Under this strategy, it is
likely that the background moisture field is aclpabone through a one-way

enhancement process instead of a so-called “adpngtmin our OSSE framework with
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the availability of the truth, it is possible fos w0 further examine the validity of the
simple saturation strategy.

In FIG. 5.1 the cross section, selected same dssti@avn in the previous
chapter, is used for the demonstration of the Ritl$l. Both the background RH field
and the counterpart adjusted using the currentlsisgiuration strategy are exhibited as
FIG. 5.1b and 5.1d, respectively. By comparing ¢htego fields, an instant visualization
of the effect of they, adjustment can be gained. Moreover, if one loaks the true RH
field (FIG. 5.1a), the dissimilarity of a considela degree between it and the adjusted
result can be discerned. In the truth simulatibe, gaturation is found to occur mostly
above the height of 0 °C (i.e., the freezing le\dl). Below the FL, the RH field
exhibits relatively high spatial variability; withithe regions with significant radar
echoes, even though the high RH values (80% andealsbaded in red) are found as
the majority, RH value as low as 40% (as shaddayimt blue) may exist as well. The
differences between the true and adjusted RH figlgdy the inconsistency existing
between the model microphysics and the empiricked amployed; most likely, the
empirical rule is too simplified to characterize thature of RH variability and thus has
its deficiency. By comparing with the true RH figitlis shown the simple saturation
strategy is generally valid well above the FL, wharost of the cold cloud formation
anad sourced. Furthermore, according to the equatioposed by Goff and Gratch
(1946), it is easier for the air parcels to reaaturation under a colder environment
since less water vapor is required. On the contrnamgre water vapor is needed for
reaching saturation under the FL. On the other hasda certain amount of the

rainwater appearing under the FL is not formedtuin griginally but converted from the
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iced phase precipitation aloft, the presence ofcipitation under the FL is not
necessarily contradictive to the unsaturation.det,fthe existence of the “unsaturated
downdraft” driven by the evaporation of falling manas been drawn attention to and
discussed in many early studies (Betts and Dia9;18¥ers and Braham 1949;
Emanuel 1981; Leary 1980) in both observation- sintlilation-based approaches. In
addition, it is also indicated that entrainmenttioé¢ relatively dry air from the non-
precipitating area can result in reduced liquid ewatontent (Wagner et al. 2013),
particularly at the areas of the storm edge.

The difference between the true and the backgrdtiddields as used for the
CNTL (FIG. 5.1c) gives us an idea about how mudhstthent (in either enhancement
or reduction direction) has to be done indeed foroae accurate moisture initialization.
Note that the background RH field is derived asuacfion of the three-dimensional
spatially smoothed field (refer to section 3.2). Within the boundaof/ the cloudy
regions denoted by the significant radar reflettiziontours (15 dBZ), we find a large
amount of underestimated RH values (i.e., negatifference shaded in blue), which
requires moisture enhancement, are given by thkegbaend; on the contrary, a certain
amount of significant RH overestimation (i.e., @@ shaded in warm colors) in the
magnitude up to 40% that needs to be reduced sarbal seen appearing mostly under
the FL. Consequently, given the bi-directional moy of the RH difference between
the truth and background as illustrated and digtlissove, our concern upon the
validity of the enhancing-only strategy utilizedthre current moisture adjustment (FIG.

5.1d) is brought.
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FIG. 5.1 Cross section of RH field (%) for (a) trusimulation, (b)
background (CNTL), and (d) QvAdj. The RH differermetween the truth and
CNTL (CNTL-truth) is given as (c). The height of°Q is denoted by white
solid lines in (a) and (b). 15 dBZ echo boundargrgwn by gray contour in
(c) and (d) for a rough illustration of cloudy regs. The LCL is denoted by a
blue dash line in (d).

The quantitative moisture analysis error resuftech the currenty, adjustment
has been presented in terms of the SRMS errorantitial time in FIG. 4.5d. Overall,
by comparing with the non-adjusteg field given by the CNTL (or other experiments
without applying moisture adjustment), an extraeup to 35.5% is found introduced
by the application ofy, adjustment alone, as denoted by the QVvAdj. An daeger
analysis error is found to be introduced by apgyboth temperature and moisture

adjustments (Refer to subsection 4.2.2 for relatsgussions). In other wordshe

currentq, adjustment does not improve the initial moistueddfbut actually harm it by
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dragging the background field father away from thee field. In FIG. 5.2, the along
height g, dissimilarity from the truth, in terms of the RMSror, of the background
(CNTL), perfect direct insertion experiment Qv (@eated in section 3.4), and cloud
analysis experiment QvAd] (presented in sectior) 4r2 shown. The RMS errors are
calculated within the verification domain as desed in Chapter 3. With a universal
(i.e., entire domain wide) insertion of the perfegt the Qv results in zero error
throughout the entire vertical layers. Beginningtted surface, the CNTL and QvVAd|
share quite similar RMS errors with no significdifference. The QvAd;j is then found
with an abrupt error increase shown at the ninttdehdevel, from where its error
begins to greatly diverge from the CNTL, which slscawrelatively gentle error increase
with height. of the CNTL and QvAdj begin to diverge the ninth model level. The
model level 9, as denoted by the blue dash lineyfesred as the bottom boundary of
the g, adjustment application. The height of this moégEl is generally consistent with
the LCL denoted in FIG. 5.1d. On the contrarysitelatively hard to declare an exact
level where the CNTL and QvAdj have their error gest since it appears to be a
gradual process occurring with the height (abowerttodel level 25); however, it can
still be told to be generally coincident with theeeage height of the significant echo
top, which is also where the application of qv athuent ends at. Within the layersgpf
adjustment application, a considerably great amaodirgnalysis error, in terms of the
RMS error difference between the CNTL and QvAdghewn with a maximum located
around the level 20 (~2.2 to 3.0 km AGL), which asifid consistent with the regions

where the greatest RH overestimation occurs (shawrFIG. 5.1c). Given the
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examination results shown here, the questionablelityaof the simple saturation

moisture adjustment is further affirmed.

d, (Analysis) Error vs. Height
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FIG. 5.2 RMS error ofy, as a function of height (in terms of model level)
at forecast initial (2:00 UTC). Experiments withdawithout hydrometeor
analysis are represented by solid and dash liespectively. The ninth
level is marked with a horizontal blue dash linee &ontext for detailed

description.
5.1.2 Design and Test of a Potential Modified MaistAdjustment

After a thorough examination of the validity oktlurrent moisture adjustment
on providing moisture analysis, its room for potanimprovements is revealed. In this
subsection, we propose an optimally improved mogsadjustment based on the true

RH variability and test its impact on the resultingisture analysis and forecasts.
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Through this investigation in which the validity dfis optimally specified in-cloud
moisture field is demonstrated, the potential eifeness and value of a practically
modified adjustment procedure, which will be preednn the next section, is assured.
Given that the simple saturation strategy utilizedthe current moisture
adjustment tends to overestimate the moisture, feddecially for regions under the FL,
certain modification on the strategy has to be hodigr a more accurately specified
moisture field with which the undesired analysi®es can be avoided. Complying with
the convention adopted for executing the currentgdure that the direct adjustments
are actually made on the RH field from which theafimoisture filed is derived, an
instinctively modified procedure is proposed toedity insert the true RH values into
the background in the cloudy regions. The expertmath this “optimally” modifiedq,
adjustment is named “RHInsrt” and its analyzed Reéldfis illustrated in the cross
section shown in FIG. 5.3c. Since the direct ingerof the perfect RH is limited only
within the cloud regions, the analyzed RH filed wecsome noticeable discontinuities
at the cloud/precipitation boundary. Furthermonegantrast to the forecast verification
which is conducted in a relatively larger domaiattmcludes both precipitating and
non-precipitating areas, the quantitative impact tbhis cloudy region-limitedq,
improvement on the subsequent forecasts is ther@four interests for investigation.
It is worth noting that in spite of the perfectnedsthe true RH values inserted, the
RHInsrt still suffers errors in its final, analysis of. The analysis errors mainly result
from the smoothed field in the background used for the RHgoconversion. They,
analysis result of the RHInsrt is provided in FB33d, along with the true field (FIG.

5.3b) for comparison. Visualized with the crosstisecas presented, the modifieg
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adjustment generally captures most fine featurabetruth and accurately specifies a
comparabley, field. Some minor differences, mostly occurringab the FL, are found:
the analysis of the RHInsrt seems to fail on depictsome convective-scalg,
fluctuations that are present in the truth, whidn doe mostly attributed to the
horizontally homogeneous background temperatuteltlision (as demonstrated by the
0 °C lines shown in FIG. 5.3) and the nature of ltve water vapor content at high
levels. Another difference is found to occurr née surface: with the in-cloud area
limit, the analyzedy, field of the RHInsrt shows some significant undéraations
under the LCL, which is known as the lowest bouwdaf the clouds (i.e., cloud
bottom).

Quantitative improvement of thg, analysis provided by the RHInsrt can be
evaluated by the RMS error shown in FIG. 5.2. Bynparing with the backgroungl,
(denoted by the black dashed line), significandigluced errors throughout the entyie
adjusting layer are seen for the RHInsrt (denotgdhe blue solid line) while the
general trend of the vertical error distribution ristained. Provided for a general
perception, at the level 18, where most of thedsigerrors occur, the optimally
modified g, adjustment (i.e., RHInsrt) makes a 9% error radaabver the background
(i.e., CNTL) while the simple saturatiaR adjustment (i.e., QvAdj) results in a 40%

error increase over the background.
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FIG. 5.3 Cross section of RH field (%) for (a) trusimulation and (c)
RHinsrt. Cross section aj, field (g/kg) for (b) truth simulation and (d)
RHInsrt. Corresponding 0 °C levels are denoted bytavsolid lines. 15
dBZ echo boundary is drawn by gray contour. The li€tdenoted by blue
dash line for experiment RHInsrt indicating the tbot boundary of
adjustment.

Other than the modified), adjustment, the same hydrometeor analysis as
performed for all the cloud analysis experimentsspnted in the previous chapter is
realized for the RHInsrt. The in-cloud temperatadgustment, however, is turned off to
distinguish the individual impact of thg, adjustment, which is the aim of our
investigation. Besides, while discussing the impHdhe optimally modified moisture
adjustment by looking into the forecast performantehe RHInsrt, we also reprise

certain experiments from the previous chapters dikeh the Qv (from the direct

insertion experiments), QvAdj and NoAdj (from thlud analysis experiments) in
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addition to the CNTL for comparison. In the followji discussion, the Qv and QvAdj

will be termed as the TrueQv and SatAdj, respelgtjier a better clarity.
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FIG. 5.4 Same as FIG. 3.6, but for the CNTL, TrueRQuAdj, SatAdj, RHInsrt,
and UpdftAd;.

Quantitative verification of various predicted staariables are provided in FIG.
5.4 for the CNTL and moisture-associated experisel@scribed above. Since most
experiments have been discussed in the previoydarsathe focus here will be put on
the RHInsrt and its relative performance in comgaariwith others.

On the prediction of horizontal winds (FIG. 5.4#)e instant error growth as

shown in the TrueQv resulted from the perfectahdj, field is also seen in the RHInsrt.
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Similar to its impact on the TrueQv, this error\gtb also causes the RHInsrt to show a
forecast error larger than the CNTL at the veryif@gg of the forecast. However, the
length of the impact for the RHInsrt is shorterttie first 30 minutes only, after which
the RHInsrt even has its forecast error droppinigvehe TrueQv for about an hour
(between 3:00 and 4:00 UTC). As the impact of ghdeatures at the fine scales on
inducing the very short range forecast error grohdls been established through the
previous experiment sets, the shortened error dropdriod of the RHInsrt, as
compared to the Qv, could be most likely attributedhe limited area of the improved
gv field. Besides, the additional information of thgdrometeor fields in the RHInsrt's
IC could also be responsible for the very-shomrat@utperformance over the TrueQuv.
Eventually after a longer forecast range (2.5 hospscifically), the above factors start
to have their effect diminished as the initiglaccuracy brings back its domination and
the TrueQv significantly outperforms the RHInsrt asesult. While comparing with
other two cloud analysis experiments (SatAdj andAdyp the RHInsrt generally
performs better at most times.

On the prediction of vertical velocity (FIG. 5.4khe RHInsrt performs better
than the TrueQv (the one with the perfect initjgl but worse than the NoAd;j (the one
with the backgroundy, and hydrometeor analysis) in the first 1.5 hourse Tnstant
impact of the fine scaled initig), field at the very beginning as described earhertitie
horizontal winds is again confirmed by the relatigesition of thew prediction
performances among the experiments. Beginning #®@0 UTC, the RHInsrt turns to

give the second begt prediction, which is only worse than that of theidQv.
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On the prediction off (FIG. 5.4c), the RHInsrt maintains a trend of fasc
error evolution very similar to the TrueQv. Overadlt most times, the RHInsrt
outperforms all other experiments except for theieQv. However, the RHInsrt
performs slightly worse than the CNTL at 2:30 UT&ven the differences in their ICs,
the disadvantaged performance of the RHInsrt imsptiee strict criticality of the
accuracy of they, field corresponding to the present hydrometeorsawniding the
instant imbalance on the forecdst

An overall improvement org, analysis (~10%) given by the RHInsrt is
demonstrated again as shown at the initial timel@®. 5.4d. A very short term instant
forecast error growth that causes the performaraserthan the CNTL as occurring in
the TrueQv also happens to the RHInsrt within tinst hour of the forecast range.
Besides, similar to thé&/, prediction, the RHInsrt at first outperforms theudQv
between 3:00 and 3:30 UTC, and then gets surpdssdide TrueQv after 4:00 UTC.
Overall, the RHInsrt provides the begtforecasts among all cloud analysis experiments
throughout the entire four hours range.

Relatively insignificant forecast error differesceare shown among the
experiments on the total water prediction (FIG.e}.4Overall, the RHInsrt shows
forecast errors larger than both the TrueQv and dja#ithin the first hour, and then
outperforms the TrueQv with relatively significaaetror difference after 4:00 UTC
while shows indistinctive errors to the NoAd;.

On the overall performance of the state variahledigtions given by the
ASRMS error (FIG. 5.4f), the instant error growth seen on most state variables

discussed above is shown for the RHInsrt at 2:3C However, owing to the localized
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(in-cloud regions only) improvement of thg accuracy and the benefit of initial
hydrometeor analysis, the RHInsrt is able to odtper the TrueQv for a very short
period (from 3:00 to 3:30 UTC). After 4:00 UTC, thReueQv returns to provide
forecasts significantly better than the RHInsrsgathe best among all) as the critical
initial g, accuracy regains its dominant impact. As a commhjghe optimally specified
in-cloud RH field (i.e., RHInsrt) is capable of prding significantly improved
forecasts over either the CNTL or any other clomdlysis experiments which are
conducted either with or without the curreptadjustment.

In both the previous chapter and here, it is fotimel significantly grean,
analysis errors resulted from the simple saturatimisture adjustment can lead to
instant great forecast error growth on most stateables. Further exploration of the 30
minutes forecast errors is proposed by looking ther vertical distribution (FIG. 5.5).

On the predictions of andq, (FIG. 5.5b and 5.5c, respectively), the significant
error growth of the SatAd] mainly occurs within tleboudy layers, where the,
adjustment is in effect, indicating the close liggabetween the initial moisture field
and the immediate forecasts of the thermodynamiest On the contrary, the localized
moisture adjustment of the SatAd) results in sigaifit forecast errors of horizontal
winds (U in FIG. 5.5a and/ not shown here) vertically spreading over therenmodel
layer, suggesting the high and quick sensitivityhe#V, forecast to the initiady, field.
On theq, prediction (FIG. 5.5d), besides the errors witthe cloudy layers, another
significant error is found at the level 30 and abow the SatAdj. Furthermore, tight
interaction among th¥}, 6, andq, can be inferred given the relatively similar veati

location of the significant error they share. Weuldolike to point out the significant
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betterq, forecast (i.e., less error) near the surface ekbgnup to the cloud base given

by the experiment TrueQv. This advantage over agkperiments is contributed by the

perfect g, insertion at the cloud-free low levels, where tgeimprovement is not

achievable in practice owing to the in-cloud regi¢imitation.
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FIG. 5.5 RMS error of (a), (b) 6, (c) g, and (d)gw as a function of height (in
terms of model level) at 30-min forecast (2:30 UTEXxperiments with and
without hydrometeor analysis are represented kg sold dash lines, respectively.

In FIG. 5.6, the verification of reflectivity predtion by the CNTL andy-

associated experiment set is shown. In terms ofditeeast dissimilarity from the truth

(FIG. 5.6a), the RHInsrt is able to provide foresasgnificantly better than the SatAd;

for the entire four hours forecast range. Spedlficafter the one hour spin-up period
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required for the TrueQv to develop a decent stommuctire and provide the
significantly best performance, the RHInsrt continsly keeps its second best
performance. While comparing with the NoAdj, thediéidnal application of this
optimally modifiedq, adjustment also shows positive impact ensurechby¢latively
better forecasts it provides. On predicting thense convection, the RHInsrt results in
a slightly larger underforecast, in terms of theédo bias score (FIG. 5.6b), compared to
the TrueQv; however, its significant advantage owlee NoAd] is still valid.
Furthermore, according to the ETS (FIG. 5.6¢),Rinsrt generally provides forecasts
systematically better than the SatAdj (only wittmanor exception occurring at 4:00
UTC) throughout the four hours range. After two amdhalf hours of the forecasts
(beginning at 4:30 UTC), the performance of the il appears to be quite
competitive with that given by the TrueQv, the besecast. As a conclusion, based on
our examination results presented above, the aftetss of the optimally specified in-

cloud RH field is demonstrated by its significaospive impact on the storm prediction.
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FIG. 5.6 Same as FIG. 3.7, but for the CNTL, TrueRQuAdj, SatAdj, RHInsrt,
and UpdftAd|.
5.2 A Modified Moisture Adjustment and its Impact

As demonstrated in the previous section that tlwenstprediction can be
significantly improved through an accurately spedfinitial RH field within the
cloudy regions, even if there exist minor analyaisors. Further efforts are made, in
this section, to propose an improveg adjustment procedure, from which better
forecasts are expected.

Since there is no easy relationship existing betwiecloud moisture and
available observations, some empirical rules aedee to help improve the in-cloud
moisture adjustment. In the previous section, tineloud RH field from the truth
simulation is shown to have certain unsaturatedonsg which is found mostly
corresponding with the downdrafts as it has beedelyi observed in the real

atmosphere. In FIG. 5.7, the true RH field is pded again, along with the contour of
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truew equal to -0.2 m’§ which is arbitrarily selected for representing general areas
of the downward motion. It is seen that the ocoweeof the unsaturation, especially
that under the FL, generally coincides well withke tdlownward motion areas. The
capability of our presumed perfect model, usedctorducting the truth simulation, on
depicting the real observed phenomenon is thusesu

Based on the investigation of the truth simulattiown above, the usefulness
of vertical velocity ) on helping determine in-cloud moisture is consde Here in
our OSSE framework, we introduce tiaeinformation, borrowed from the truth, to
develop a modifiedg, adjustment. The impact of this modified procedure the
forecasts will also be examined and discussed. rGive ability of the 3DVAR
approach on providing accurate wind analysis asotsirated in a number of present
studies (Gao et al. 1999; Potvin et al. 2012), poéential of this newly proposed

procedure on real case application, at least maeaf its easy applicability, is assured.
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FIG. 5.7 Same as FIG. 5.1a, but with black contofitsue w = -0.2 m/s overlaid.
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5.2.1 Development of a Vertical Motion Based Moes#djustment

Our goal is to find the potential relationshipsiig between the true RH ang
with which the moisture field can be adjusted maczurately and hopefully the
improved forecasts can be obtained. Considering itheloud RH field shows
significantly different features in above-the-FLdamnder-the-FL regions, our retrieval
of the truth-based R+ relation is performed separately for the two regidivided by
the O °C isotherm as follows:

0] Regions above the FL (T <0 °C):

It has been seen in the truth simulation (FIG. @aB8d b) that most in-cloud
regions above the FL are saturated or nearly-datli@e. with RH> 90%). Besides,
the water vapor content (i.e},) appears to be relatively low (in this case, ngdathan
7.5 g kg") primarily owing to the attraction of gravity. Tiedore, a relatively simple
strategy is sought for performing tggadjustment in these regions.

A binary-classified strategy is applied, under wh&constant RH value will be
assigned over the sub-saturated regions, whichsedon the setting ofvathreshold.
There are two central questions that need to beexes before the adjusting procedure
can be practically realized:

1) What specificw value, which will serve as a bottom threshold, ldobe
representative enough to cover most unsaturateoinsd)
2) In those unsaturated regions, what constant RHeyalich can best match the

true state, should be used?
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Table 5.1 Contingency table used for statistics abovethe FL

w < threshold w> threshold
RH = 100% Miss 1 Hit 1
RH < 100% Hit 2 Miss 2

w < threshold

RH < 100%
RH=100%
RH = 100%
Hit 1
RH=100%
RH = 100%

FIG. 5.8 Diagram of w and RH fields used for statssabove the FL.

Area within the blue and black ellipses denates threshold and RH <

100%, respectively. Hits and misses correspondintpé contingency

table test (Table 5.1) are shaded in gray andwetldor, respectively.

To answer the first question, we perform the diaisofw and its corresponding
RH values using a contingency table (as shown bi€la.1). The population (or sample)
used for our statistics are the model grids with titue values that match the following

conditions: 1)T < 0 °C for ensuring above the FL, and 2)> 15 dBZ for ensuring

within the cloudy regions. FIG. 5.8 is provided fbe illustration of a sample of w and
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RH distribution that used for carrying out our sti#ts. By varying thev threshold, we
calculate every resulting hit-miss ratio (HMR) as:

Hit1 + Hit2

HMR = .
Miss 1 + Miss 2

The bestw value is then determined by the presethreshold which results in the
largest HMR. Thew threshold is chosen given that it is capable ofedog most
unsaturated areas and avoiding most saturated areas

The statistics results (in terms of HMR) of varymghresholds are plotted and
shown as FIG. 5.9. The values ranging from -5 mi'¢o 5 m & are tested in an every 1
m s' interval. However, within the range between -0.5hand 0.5 m $ where the
HMR maximum is approached, the HMR are calculated finer interval of 0.1 m's
As a resultw of 0 m & is found to be the best threshold that gives #ngelst HMR

(~3.75), suggesting that the negative w valuesrmitinost unsaturated in-cloud regions

above the FL.
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FIG. 5.9 HMR as a function of varyingthreshold.
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After thew threshold considered most representative of tlsatunated areas is
found, we further look for an arbitrary RH valuedssign for these areas. The criterion
for determining what RH value should be used issasn the calculation of thg,
analysis error: a minimized RMS error of the figglanalysis is searched through the
varying RH value. Specifically, while 100% RH ispkefor all positivew areas,
different constant RH values are tested for bgstesenting the negatiwe areas and
the corresponding RMS errors are calculated. FIG0 Showsg, analysis results in
terms of the SRMS error varying with different Rpesified, in which the RH values
ranging between 80% and 99% are tested in an é%rinterval. As a result, a SRMS
error minimum of 0.99718 is found shared by 90% afhé RH. Note that in ouy,
analysis upon which the SRMS error is calculatady ahe in-cloud moisture field
above the FL is adjusted while the background ramsvalues are kept for the regions
below the FL. By comparing this analysis resulthwithat provided by other previous
discussed cloud analysis experiments (as liste&#l@® 5.10), it is shown that this
modified above-the-Flg, adjustment strategy indeed provides an imprayeahalysis
result over both the CNTL (i.e., the backgroundl &atAdj (i.e., the curreng,
adjustment). Note that the improvement over thé&&as even more significant with a
26% error reduction. However, a relatively largemoe provided by this modified),
adjustment in contrast with that of the RHInsrt cha seen. This discernible

disadvantage is mainly due to the unimproved bamkgt moisture field below the FL.
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FIG. 5.10 SRMSE ofy, as a function of varying constant RH

value specified for negativev areas. For reference purpose,

SRMSEs of some other associated experiments ae ligt

upper right corner of the plot.

(i) Regions below the FL & 0 °C):
Different from what is seen for the regions above EL, significantly higher

RH variability, both spatially and quantitativelig, found within the in-cloud regions
under the FL. Given the presence of the majoritgignificant (i.e., relatively highen,
content, the validity of they, adjustment in these regions is thus suggestedeto b
relatively crucial to the subsequent forecasts. ehable a better depiction of the

intrinsic complexity of the moisture distributionnder the FL, a corresponding

complicated adjustment strategy is required.
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Again, the relationship between the tww@nd RH is sought for constructing the
adjustment strategy. Given the RH variability, tbeatter plot and regression are
performed. The population for the statistics isfowd to the following conditions: 1)
> 0 °Cfor ensuring below the FL, 2) Z 15 dBZ for ensuring within cloudy regions,
and 3) above the cloud base provided by the clovdrage analysis procedure (refer to
2.1 for details). In FIG 5.11, the scatter plotiué truew and RH is presented. It is seen
the overall distribution of the scatters rangesnfrt0% to 100% for the RH and from -8
m s’ to 10 m & for thew. Furthermore, a major amount of scatters are fmemdering
around the 0 m’s A relatively vague trend of the generally postiproportion
between thev and RH is found among the scatters.

In order to find a relationship between theand RH that is best representative,
in terms of characterizing most scatters and progidesulting analysis of a least error,
we perform the regression upon the scatters dig&ib around the neutral
(i.e., 0 m &) where most scatters are located. For the regmesaiv range centering at
0 m s with a two-way expansion of 3 m‘¢as denoted by the black dashed lines in
FIG. 5.11) is selected given the 99% of the totatistics population it contains. For
scatters within this range, first- to third-ordeslymomial regressions are tested. The
results of the regression are shown in FIG. 5.12oteel by the solid blue lines in
addition to the scatters. The fitting equationlsdgrovided in the respective figure. For
the scatters outside of the range of the regressimnple constant RH values are
assigned given their minority. Generally, thesestant RH values are determined by
inserting the terminalv values (i.e., -3 and 3) into the respective fifteguations. For

example, the constant RH values specifiedvidess than -3 m™sare 57.7%, 47.0%,
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and 53.5% in the first-, second-, and third-ordegression, respectively (as listed and
denoted by the horizontal blue dash lines in FIG2h However, there are exceptions
in the second- and third-order regressions ocayiatirthe positive terminav value (i.e.,

3 m sY: the RH value derived from corresponding fittiaguation appears to decrease
with the increasingv after reaching a RH maximum. To avoid the decrepsiend for
our adjustment strategy, we truncate the fittingaggpn around the location where the
RH happens. As a result, in the second- (thirddeomregression, the constant RH
values of 84.8% (84.4%) is specified for regionthwi above 2.0 m5(1.6 m &Y.

The resulting moisture fields (under the FL) adgdstvith these three different
order regressions are evaluated with the SRMS ealoulation. Again, the background
RH values are kept for regions above the FL. Tlseltdas denoted at the bottom left
corners in FIG. 5.12) shows that the second- aird-trder regressions providg,
analyses comparable to each other (the second-zrdéghtly better), while the first-
order gives a relatively worse analysis with a eliatble larger error. It is also shown
that none of these regressions is able to prowidatitatively improvedy, analysis over
the CNTL (i.e., the background). The improvementhaf overallg, analysis is limited
to 1) the unadjusted regions above the FL, 2)dkk bf accuracy of the backgrouid
used for the RHy, conversion, and most primarily 3) the intrinsiode relationship
existing between the and RH. Nevertheless, the analyses gained withetipession-
based adjustments are still found significantly aadageous over those given by the
simple saturation}, adjustment (i.e., the SatAd)).

Upon the second-order regression (the one givmegléastqg, analysis error),

further efforts are made to minimize the SRMS enbthe g, analysis. To do so, we
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tune the specified constant RH values used atvtheundary of both sides (i.av,of -3

m s* and 2 m $at the left boundary and right boundary, respelytjv&Vith the bottom
threshold ofw < -3 m & and top threshold of > 2 m $'set, the RH values are then
tested in an every 1% interval ranging from 40%®86 for the bottom threshold and
from 85% to 99% for the top threshold. For eachngnest, theg, SRMS error of the
corresponding analysis is calculated (detailed ltesaf the examination are omitted
here). As a result, it is found when RH of 45% 8b6éb6 are specified for the bottom and
top threshold, respectively, a SRMS error minimuini1.02920 can be obtained (FIG.
5.11). The finaWw-RH relationship used for thg adjustment in the regions below the

FL is denoted by the blue line shown in FIG. 5.11.
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FIG. 5.11 Scatter plot of the true and RH within the cloudy
regions below the FL. Scatters between two blachdiaes are
used to fit for polynomial relations. Blue curve tise final
relation used as the modifigg adjustment.
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FIG. 5.12 Retrieval oiv-RH relationship using (a) first order, (b) secamder, and (c)
third order polynomial regression. Regression tesarle plotted with blue solid line or
curves in the middle of the figures, along with #guations written. Constant RH
values used fow exceeding terminal thresholds are marked withZootal dashed
blue lines at both sides. SRMS error gpfanalysis using corresponding equation is
listed at the bottom left corner of each plot.
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With all retrieving processes exhibited above @oth above and below the FL
regions), the modified in-cloug|, adjustment strategy is finalized as:

w>0ms 1, RH = 100%

ForT <0 C(abovetheFL):{W<0mS_1’ RH = 90% ,and
w>2ms™}, RH = 85%

for T > 0°C (belowthe FL):{—3ms™ ! <w <2ms™},RH = —1.29w? + 6.28w + 77.43 .
w<—-3ms}, RH = 45%

In practical application of the startegy above,lthekground temperature is used.

5.2.2 Impact of the Modified Moisture Adjustment

In this subsection, the effectiveness of tiiasedq, adjustment is examined
through the verification of both the analysis andisequent forecasts it provides. In FIG.
5.13, the analyzed RH ang|, fields provided by both the current adjustment and
modified adjustment are shown for a qualitative parson.

By comparing with the true RH field (FIG. 5.3a)etsignificant advantage of
the modifiedq, adjustment over the curregf adjustment is shown on providing a RH
analysis with spatial variability, which is much raacomparable to the truth. However,
some extreme values as seen in the truth, pantigikeose under the FL, are blunted by
the w-based procedure, resulting in a RH field relativ@hoother than its counterpart
in the truth. As two significant examples, the |B\M values (~40% in light blue) in the
area at the horizontal distance between 325 km3&@dkm (around 3 km high) is
overestimated and the high RH values (above 90%edl) in the area at 375 km is
underestimated. On thg analysis, significanty, discontinuity occurring between the
cloud edge and its adjacent environmental (i.eudifree) regions is found caused by
the currentqg, adjustment (FIG. 5.13b), form which the in-clogdfield appears to

experiences a horizontally homogeneous enhancegnamt the only information of the
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general evenly layered background temperature fieddd for theq, retrieval. In
contrast with that, the, analysis provided by the modified procedure shoslatively
smootherq, changes at the cloud edge. On the other hand, thigh additional
information ofw introduced, the localized updraft/downdraft-inddicg fluctuations,
which is completely absent in the analysis of timep$e saturation adjustment, are also
characterized by the modifieg, adjustment. Still, some underestimations on dghe
analysis, occurring mostly at low levels arounddloaid base, are shown caused by the
modified procedure because of the blunted extreah@eg in the preceding RH analysis

as discussed above.
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FIG. 5.13 Same as FIG. 5.3, but for the SatAdj @ngganel) and UpdftAd
(lower panel).

500.0

In addition to the qualitative improvements on theisture analysis provided by

the modifiedqg, adjustment as discussed above, the quantitatividicadon of the
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moisture analysis in terms of the SRMS error atithial condition time (i.e., 2:00
UTC) can be accessed in FIG. 5.4d. Note that thedcanalysis experiment performed
with the modifiedq, adjustment is named as the UpdftAd] hereafteremithat thisw-
based procedure generally addresses moisture mdjotst at the updraft areas instead
of making an overall enhancement at both updradt @gmwvndraft areas as done in the
current adjustment. Given that the SRMS error efghanalysis of the UpdftAd; is
1.026 and the counterpart of the SatAdj is 1.356, modified moisture adjustment
significantly reduces about 24% analysis errorhaift the simple saturation adjustment
has caused, which is inferred mostly by reducirggdber-moistening in the downdraft
regions. A further examination of the modified adjuent procedure is provided in FIG.
5.2, in which the vertical distribution of tlyg analysis error is shown. Generally, within
the layer where they, adjustment is in effect, the UpdftAd) appears tavéh a
significantly improvedy, analysis in comparison with the SatAdj (termeda#\dj in
the figure) although a minor error increase is dsond to be introduced by the
additional application of this modified proceduogthie background (i.e., CNTL).

Impact of the modified), adjustment on predicting model state variablesbzan
discussed by referring to FIG. 5.4. Given the hgghstandard of the forecast
performance set by the RHInsrt, which utilizes aptimally” specified moisture field
in its IC, we thus expect the performance of thelftAdj to be as close to that of the
RHInsrt as possible in the following verificatior®n the horizontal wind prediction
(FIG. 5.4a), the UpdftAdj shares a forecast errend quite similar to the RHInsrt.
Generally, the UpdftAdj performs not as good asRIkHnsrt throughout the entire four

hour range, and the forecast error difference batvteem is found to increase with the
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forecast range. The systematic outperformance ef RilInsrt over the UpdftAd]
highlights the importance of the initial moisturecaracy, specifically in the cloudy
regions, onV;, forecasts. Besides, the positive impact of the ifireablg, adjustment is
also assured by the systematic outperformanceeoUtidftAd] over the NoAd;j in the
entire four hours of the forecast (relatively imsfgcant within the first hour). On the
prediction (FIG. 5.4b), again, the UpdftAdj is falno provide forecast quite
competitive with that of the RHInsrt. With the rl@ly smoother moisture analysis
compared to that of the RHInsrt, the Updraft shoglatively smallemwv forecast error
within the first two hours, highlighting the impaat the finer scaled moisture features
on inducing the largew forecast error in the very short beginning range.

Similarly, forecast error of the UpdftAdj similé but slight larger than that of
the RHInsrt is found on thE prediction (FIG. 5.4c¢) throughout the entire f@sicrange.
Besides, the slightly worse than the CNTL perforogaat 2:30 UTC shown in the
RHInsrt (as discussed in the previous sectionlsis found in the UpdftAd;.

On the prediction of}, (FIG. 5.4d), even beginning with a quantitatividyger
analysis error compared to the NoAdj, the UpdftAdjound to quickly outperform the
NoAdj in one hour. The qualitative improvement & ftnitial g, field, introduced by
the additional information olv is attributed to be the key factor of this advgetaln
general, the forecast error of the UpdftAd; stickssely to the RHInsrt for the entire
four hours range. However, in the end of the fosecne UpdftAdj is found slightly

outperformed by the SatAdj, which calls for furtlh@restigation.
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Upon the insignificant diversity of thg, prediction performance (FIG. 5.4e)
among different experiments as discussed earherfdrecast error of the UpdftAdj is
found to nearly overlay on that of the RHInsrt aisttimes.

The overall performance on the state variable iptiet, in terms of the
ASRMS error (4.4f), provided by the UpdftAd;) is fadito stay similar with but slightly
worse than that of the RHInsrt. According to theifieation results shown above, the
w-basedq, adjustment is found promising on providing impréerecasts comparable
to that achieved by the direct perfect in-cloud Ridertion. Our earlier statement
regarding the instant negative impact of the fio@lexdq, feature in the IC occurring at
the beginning stage of tive prediction is further affirmed here by the relaty better
performance of the UpdftAdj compared to that of Ri¢insrt.

The verification ofZ prediction by the UpdftAdj is provided in FIG. 50n the
dissimilarity between the truth and the experimi@nécast (i.e., the RMS error, FIG.
5.6a), the UpdftAdj performs as good as the RHIwitin the first 1.5 hours, and then
runs into relatively larger error, which is in theagnitude similar to that given by the
NoAdj. The later stage divergence of the RMS estuwwn between the UpdftAd] and
RHInsrt can be attributed to their bias score d#ffiee occurring at the corresponding
time. Most likely, the perfect RH insertion at thatial time is beneficial for the
forecast (i.e., RHInsrt) to maintain proper intéysof Z by avoiding unfavorable
evaporation for a relatively longer range. Nevddbg the UpdftAdj is still able to
distinguish itself from the NoAd] with the greatdteeed underforecast over the entire
forecast range. The ETS of the UpdftAdj (FIG. 5.8c¥ignificantly better than that of

the NoAdj at all times, but is found not that cortmpes if compared with the SatAd;.
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Since the high ETS of the SatAdj is mostly bendfitem the unrealistic overforecast
of Z as discussed in the previous chapter, we belibee merit of the modified
adjustment for improving th2 forecast, mostly through reducing the underforeaas
still valid.

According to the examination presented abovegeffextiveness of the modified
gv adjustment procedure basedwmand background has been demonstrated in terms
of providing qualitatively improved), analysis which is beneficial for both accurate

prediction of state variables and properly mairgdistorm intensity.
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Chapter 6: Summary and Future Work

6.1 Summary and Conclusions

Improving the convective-scale storm forecastsegianal NWP models still
remains an ongoing challenge, toward which thetéitiins and potential of the ARPS
complex cloud analysis system for radar reflectidiita assimilation has been explored
in this dissertation. By using OSSEs in which theéh of all model state variables is
known, the accuracy of the analyzed fields candsessed quantitatively. This study is
also valued for its first attempt of using OSSE<aory out an in-depth investigation
into the effectiveness of cloud analysis.

A detailed introduction to the current official rg@n of the ARPS complex
cloud analysis system is provided first in thisséigation. With a step-by-step flow
chart, key procedures including analysis of preatpig and non-precipitating
hydrometers, update of in-cloud temperature andstu@ fields, as well as the
empirical assumptions involved are reviewed. A nesvsion of the hydrometeor
analysis scheme is proposed and implemented isytstem. Compared to the official
version which simply uses background temperaturé albserved reflectivity as a
guidance to determine one dominant hydrometeorispethe new scheme employs a
hydrometeor classification algorithm based on pwiatric radar variables, enabling co-
existence of different hydrometeor species thaeigeved more realistic. In addition to
the use of polarimetric radar variables that agldbtermination of hydrometeor species,
the radar reflectivity operators used in the cloamhlysis are also improved. A
commonly used option (i.e., the KRY scheme) in ARPS cloud analysis is based on

empirical power-law relationship between the rdflety and hydrometeor mixing
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ratios that were originally derived based on fgtiobservational data. In the modified
version, we use a set of reflectivity operatorsed@yed by Jung et al. (2008), which
were derived based on scattering by hydrometeorgledftromagnetic waves. The
operators also include a melting model that enablese accurate calculations of
scattering by water-coated wet hail and graupel.

The revised cloud analysis with the above two mcdlifons is applied to a
maritime mesoscale convective vortex case in Taiveggion, and the impact of the
revised cloud analysis is assessed in terms ofathiforecast. It is found that even
though the differences in the hydrometeor analpsegided by the versions of scheme
are significant, the forecast hydrometeor and &dliifecome similar just one hour into
the forecast. Only small sensitivity to the cloutalgsis algorithm differences is found,
and for this real case, the rainfall forecast ersasignificant. Significant model errors
as well as errors in the storm environment areebell to be the contributing factors;
such errors can quickly overwhelm any improvemémtfie analyses of in-cloud model
states at the initial condition time.

To more unambiguously determine the sensitivitynafdel forecasts to the
cloud analysis procedure and to various treatmetiten, we shifted our focus in the
rest of this dissertation to an OSSE framework whitve truth and possible model
errors are known. The 19 May 2013 mesoscale coneesystem over central United
States is selected for conducting the OSSE studysixhour long free forecast,
initialized at 00 UTC, is performed using the ARR®del with a 1-km grid spacing.
The initial condition was created by assimilatiglar data using the ARPS 3DVAR

and cloud analysis on a 4-km grid, using the opmrat 12-km NAM analysis as the
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background. The 1-km spun-up forecast between 26amors is used as the truth for
the OSSEs. By smoothing the model state variabfléfsectruth forecast at 02 UTC and
removing the cloud fields, a degraded initial ctiodi is created. A baseline control
forecast is created starting from this degradeihlrsondition, which will be improved
by introducing more accurate initial conditionsaingh sensitivity and data assimilation
experiments.

In the first set of the OSSESs, the relative sengjtio 1) model error due to the
use of different microphysics scheme and 2) ermorshe initial state variables, is
investigated. The forecast winds, temperatiie oisture ¢,), total water-ice mixing
ratio Qu), and simulated radar reflectivity)(of sensitivity experiments are evaluated in
terms of the root mean square (RMS) error calcdlafgainst the truth. In examining
the model error, different microphysics schemesuaezl in experiments having perfect
hydrometeor initial conditions. Compared to the toon in which the same
microphysics scheme as the truth run is used bilit the initial hydrometeors cleared
out, the differences due to the model microphysmsd appear to be overwhelmed by
forecast errors due to IC errors, even though #reylimited to non-hydrometeor state
variables. However, in terms of the forecast reiflety field, errors due to microphysics
difference become more significant for longer rafagecasts.

Subsequently, forecast sensitivity to errors inlef individual state variables
is examined by alternately inserting perfect valaemdividual or a group of variables
back into the smoothed initial conditions. Among thodel state variables that can be
updated by the cloud analysis (i.e., potential terafure 4, moisture q,, and

hydrometeor mixing ratio)y, is found to have the greatest impact on the ptiediof
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state variables and forecast reflectivity. On tlleeo hand, precipitation hydrometeors
are found to have the second largest impact ingerhshort-term (two hours and less)
prediction ofq, and associated, which are most likely helped by more accurate
hydrometeor and cold pool predictions. Lastly, itnportance of the non-precipitating
hydrometeors is relatively small. Generally comsistfindings about the relative
importance among different model state variabled@und in Ge et. al (2013).

The second part of the OSSE study is designedxamime the impact and
effectiveness of the cloud analysis scheme. Diftefrom the direct insertion of perfect
values that is done in the previous set of expartmenydrometeor and associated in-
cloud state variables in the initial condition atgained using the ARPS cloud analysis
scheme with varying configurations. In additiontihe hydrometeor analysis, impact of
adjustment of two in-cloud state variables (temppgeaand moisture) is also examined.
When the hydrometeor analysis is performed alorteout updating any other in-cloud
state variables, noticeable and long lasting, ujeto hours, positive impact on forecast
can be found in comparison with the hydrometeoasctntrol. However, it is found
whenever the currert, adjustment, which saturates the entire precipmategion by
setting 100% relative humidity (RH), is appliedpicahforecast error growth occurs in
most state variables and reflectivity is signifittarover-forecasted. Same issue has also
been reported in Schenkman (2012) when frequeningyanalysis strategy was used.
On the other hand, when tlyg adjustment is off, the in-cloud temperature aadnesit
itself, which adjusts the temperature profile todgathe moist-adiabat of a low-level
lifted parcel, is found to work quite well in ternog giving consistently improved

forecast in both state variables and reflectivitgrathe four-hour forecast range.
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Based on the results of the earlier OSSEs, effvganade in the last part of the
dissertation to improve thg, adjustment procedure in the current cloud analisis
mitigate precipitation overforecast. Firstly, wendact an experiment by directly
inserting the perfect relative humidity values frédme truth in the precipitation region to
document the impact of in-cloud moisture analy$lse water vapor mixing ratio field
is then derived from the perfect RH and error-coirtg temperature filed. The positive
impact of this in-cloud humidity field is demongtd by its improved forecasts in
comparison with those using simple saturaipmdjustment. Furthermore, a modified
gv adjustment procedure making use of the verticidoity information is proposed.
Based on the observed physics of the “unsaturategndraft” driven by the
evaporation of falling rain, the potential relaship between the vertical velocity and
RH is examined. It is found according to our sintiola results, this newly-proposed
procedure is able to significantly reduce over-iemislg in the downdraft regions.
However, because of the loose relationship betwestical velocity and relative
humidity, the overall analysis error in the adjdstg is not necessarily reduced
guantitatively. Still, the improved state varialibeecast resulting from the modifieg
adjustment over that from the original scheme resaignificant throughout the entire
four hours range. In terms of predicting intensevextion, the superiority of the
modified g, adjustment still holds compared to the experime&ith no in-cloudq,
adjustment; however, with this scheme there is updediction of precipitation.
Further research on further improvement toghadjustment procedure is therefore still

warranted.
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6.2 Future Work

Given that our findings in this study are primatilased on one-time application
of the cloud analysis within the OSSE frameworkisiof our interest to explore how
their validity will maintain for a real case stuntythe following two aspects:

1) Inclusion of the 3DVAR wind analysis:

In this study, the impacts of only those varialddsusted in the cloud analysis
were examined (i.ed, q,, andgy, specifically). The 3DVAR wind analysis, howevey,
often applied along with the cloud analysis forraager positive impact (as pointed in
Hu et al. 2006a; Hu et al. 2006b; Zhao and Xue ap0%s it was stated in Ge et al.
(2013) that among all the state variables they exathV,, had the greatest impact in
terms of accurately constructing the storm strgttire relative importance of the cloud
analysis updated variables after the inclusionhef wind analysis can call for further
studies.

2) Intermittent application:

As proposed in Schenkman (2012), for better fotecasults the currend,
adjustment should be activated only for the firsalgsis if a cycled DA procedure is
performed. Similarly, upon our preliminary findingbout the relative importance of
each state variable we have examined, further edudan be conducted by applying
cycled (i.e., multi-time) analyses, in which comddion of different analysis
configurations (i.e., adjustment options) can denapted. Furthermore, the effect of
our modifiedq, adjustment combined with the current temperatajasément, which

has not been investigated in this dissertationylshalso be included in future works.
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The modified moisture adjustment we proposed is $iiidy is mainly based on
our OSSE framework, in which the true vertical rapt{i.e.,w) field is greatly relied.
Its practical effectiveness on real cases isrgtijuired for further exploration. Given the
critical role played by the quality and informatmess of thev, the performance of the
gv adjustment based on 3DVAR analysis of radial vglatata from dual (or multiple)
radars is planned for examination. On the otherdhamore sophisticated empirical
relations that make use of additional informationld be searched from present studies
(either observation based or numerical based)dgeldping a further improved, or say
robust,q, adjustment. Also with more information involvetietheavy dependence on
the w, which relation with moisture is found not complgt strict, can be partly

alleviated.
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Appendix A: Formulation of the Modified Mixing Ratio Analysis
Procedure

To obtain the analysis result of mixing ratio f@ch precipitating species (e.g.,
rain, snow, graupel, and hail) from a single raalagervation value, such as reflectivity,
additional information is needed since the probit®if is under-determined. The ratio
of gx (i.e., mixing ratio of species) among each precipitating species is the perguisit
information required for realizing the entire migirratio analysis procedure. The
complete procedure is provided step by step inildega follows.

A.1 Retrieving the Portions of Mixtures

According to the simple melting model included ung et al. (2008a) as they
built up the T-matrix method based radar obsermadiperators, radar variables (e4.,
Zor, Zdp, andKpp) are contributed not only by the pure species dikehrain, snow,
graupel, and hail, but also by their mixing phageg., wet/melting snow, mixed by rain
and snow). Therefore, the portion of these mixipgcges in terms of ratio to other pure
(dry) species is also required in advance.

As the mixture is assumed to exist only when raater (i.e.,q;) coexist with
any ice phase species (i.gs dg, Or 0n), here we take the rain-snow mixture as an
example for the demonstration.

In the melting model introduced in Jung et al.0&4), the fraction of rain-snow

mixtureF can be determined by

F = 0.5[min(qs/q,, qr/Qs)]Osi

(1)
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where the power of 0.3 is taken for depicting alged change of rain and snow amount
with height through the melting layer. With thitettotal mixing ratio of rain-snow

mixture can be calculated as

ars = F(qr + qs),
(2)
where the subscrips stands for mixture of rain and snow.

According to the equations above, the portionrof mixture can be determined
as long as the ratio between the rain water anddhresponding ice spices is known. It
is the first step of our procedure to calculategbeions of all present mixtures (i.€s,
Org, @andgm) from the pre-known information, the ratio amorigpaesent pure species.
A.2 Extracting the Coefficient in Radar Operator for Rain

From Jung et al. (2008a)he radar reflectivity for rain species is givbg

_ 4A4a$aN0r A—(z,[?m+1)
TomtKWE T

F2Bq +1),

3)
where/ is the radar wavelengtK,, = 0.93 is the dielectric factor for watet, = 4.28
x10* and . = 3.04 are factors of backscattering amplitudesnfithe T-matrix and
fitting results (Zhang et al. 2001No, and A, are the intercept and slope parameter,

respectively, of the drop size distribution (DSDB)iatroduced in Ulbrich (1983). By

introducing the relation

A= (ﬂprAhr)“zs

Palr
(4)

and inserting constapit,, equation (3) can be reformed as
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_ 42 aml’(708)
r 7T577|K |ZPr177N 077( Palr

)1 77

(5)
Note thatp, andp, are the density of rain water and air, respegtiviel equation (5), the
Nor is in unit of [km?] while Z, is of [mnT]. For simplicity and convenience in further
analysis process, two coefficients are added iregdizing Z, to the common used
linear unit of reflectivity [mMm m™] as

4 arar(7 08)pa 1.77
7-[5.77|KW|2 %77(10 12 X NOr)O.77 ar !

Z, = 10° X

(6)
in which No, is in unit of [m?.
In equation (6),g- is the only unknown variable. Thus, we extract ather
variables ahead and make them a coeffigiecbeffor our further derivation
Z, = r_coef X q.*77,

A a7 I (7.08)p, "
7-[5.77|KW|2 %77(10 12 « NOr)O.77 '

r_coef = 10° x

(7)
A.3 Extracting the Coefficientsin Radar Operator for Species Other than Rain
Similarly, we begin with the reflectivity equatidrom Jung et al. (2008a) for
other specieg (snow, graupel, hail, or any other mixtures)

28801*N,,

= R A7 (Aa2, + BaZ, + 2Cayqayy),
w

(8)

whereNox and/y again, are the DSD parameters, but for non-ragcispx.
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oxa anday, are polynomial fitting results as a function o€ tivater fraction of
mixturesf, = q/(g-+0x), which can be obtained as the ratios among eagtiespare
known at first. The functions are listed below

Rain-snow mixture:
Arsq = (0.194 + 7.094f,, + 2.135f,° — 5.225f,%) x 1074,
arsp = (0.191 + 6.916f,, — 2.841f,° — 1.160f,,°) x 107
Rain-graupel mixture:
rga = (0.081 + 2.040f,, — 7.390f,, % + 18.14f,,° — 26.02f,,* + 19.37f,°
—5.75f,,°) x 1073,
arga = (0.076 + 1.740f,, — 7.590f,° + 20.22f,° — 30.42f,* + 23.31f,°
— 7.06f,,°) x 1073.
Rain-hail mixture:
Arna = (0.191 + 2.39f,, — 12.57f, % + 38.71f,,° — 65.53f,,* + 56.16f;,”
—18.98f,,°) x 1073,
Arna = (0.165 + 1.72f,, — 9.920f,,* + 32.15f,,° — 56.00f,,* + 48.83f;,”
—16.69f,,°) x 1073,

A, B, andC are coefficients associated with the falling prtipe of different ice
particles such like canting angle. Refer to Jungl.e2008a) for more details. Here the
constant values used in our study are listed below
Snow and rain-snow mixture:

A=0.8140B = 0.0303, an€ = 0.0778.

Graupd, rain-graupel mixture, hail, and rain-hail mixture:
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A=0.4308B = 0.3192, an€ = 0.1250.
Reform equation (8) by inserting equation (4) as

;- 28801*(AaZ, + BaZ, + 2Cayqttp)pa "

1.75
X 0.75 )
5.75 2 : 1.75
T[ |KW| NOx px

X

)
As theZ, above is in [mim?], we extract all the known variables and constamis
make them a coefficiemt_coef.The equation (9) then is rewritten as
Z, = x_coef X q,*7°,
(10)
in which,

28801*(Aa2, + BaZ, + 2Cayq0ty,)pat”®

0.75
. 1.75
o 75|Kw|2N0x Px

x_coej =

A.4 Calculating for Final Analysis of Mixing Ratios

According to Jung et al. (2008a), the total mflaty Z is contributed by every
single precipitating species as

Z=2+2Zs+2Zis+2Zg+Zig+Zn+ Znn .
(11)

Noting that allZ above are in linear unit (i.e., Mimm™), a unit conversion is needed as
most reflectivity data provided are logarithmi@(j.in dBZ).

Again, we took a grid point with rain and snow xigéing on it as an example to
demonstrate our analyzing procedure. As we knowrdties amongy, gs, andds at
first, sayqr: 0s : s = @ : b : ¢, the unknowngs and g,s then can be represented by

unknowng, as
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b c
qs = —qr and grs = —qr.
(12)
As there are only rain and snow present on thid \ge are analyzing, equation (11) can
be simplified as
Zops=Zi + Zs+ Zss,
(13)
where the originakZ on the left hand side has been replaceddyto denote it is a
known variable. At the right hand side of equat{®8), by inserting equation (7) for the

first term and equation (10) for the last two terihsan be rewritten as

75

Zops = 1r_coef x q; 277 + s_coef X qs75 + rs_coef X qrs-
which can be further rewritten by applying relagdrom equation (12) as

b 1.75 c 1.75
Zops = T_coef X q;.177 + s_coef X <a qr> + rs_coef X (5 Qr)

\*"7? c\ 175
=r_coef X q,"77 + s_coef X <a) X q,17° + rs_coef X (E) X g, 175

(14)
Although all terms are represented by one unkngumow, it is noticeable terms of rain
species and non-rain species hold different powey;.QA unified substitute is therefore
applied to make the terms combinable. This unifiederp is determined by weighting
portions of all present species such as
p=(1.77a+ 1.75b + 1.75¢) /(a + b + ¢)

in this case. With the unified power, equation (&d) be simplified as

175
c\1.75

b
Zops = |r_coef + s_coef X (E) + rs_coef X (E) q,? .
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(15)
Finally, the analysis result of is obtained by

1/p

_ Zobs
qr = 1.75

r_coef + s_coef X (E) +rs_coef X (%)1.75

Mixing ratios of all other species can be furthedcalated by applying the ratio
relations [i.e., equation (12)].

Here we have to note that some analysis errorkl dmaiincluded by applying
the unified powep in the last step of the procedure: the analysslte of mixing ratio
would not necessarily compose an exactly sZnas the observed one; in other words,
the radar operator and the mixing ratio analysec@ss are not one hundred percent
mutual- revertible. Nevertheless, according to aémalysis results we have obtained
throughout our study, it is believed the errors iaggnificant and would not harm on

providing reasonable analysis results.
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Appendix B: Verification Indices

B.1 Scaled Root Mean Square Errors
Scaled root mean square (RMS) error of an arlyitvariable X between the
truth simulation (denoted by subscriptand the experiment to be verified (denoted by

subscript) is computed by

1
SRMS X = Z X, —X)?,
— \/NO_AZX D( e t)

whereN is the total grid number in the verification dom&inand the scaling factar?,
is the variance of the error between the truth &tman and control experiment at initial

(i.e., forecast time = 0), which can be obtained by
1 N
ok = NZ(A&- - XY,
=

whereAX; = (X, — X;); is the variable difference between the truth md the control
experiment at a specified grid pointhile AX is the mean value of the differences over
entire verification domain.

The averaged SRMS error is computed by

1 1 1 1
ASRMS =2 |- ) MuZ 4o 3 Av2 b AW

+1ZAT2+ 1ZA2+ 1ZA2
NO'AZT D NO—Azq,, D T NO_AZqW D T

whereu, v, andw are in [m 8], Tis in [K], g, andqy are in [kg kd].

Similarly, the averaging calculation above is ug@dSRMS of horizontal winds\t,)

presented in the context as

173



1] 1 1
SRMS,, == —ZA2+ ZAZ.
T2 \/Nﬁu o T NG Ly

B.2 Scaled Energy Differences
Following Ge et al. (2013), three energy diffeemare computed as follows.

Kinetic energy difference:
1
KED = —Z (Au? + Av? + Aw?) .
24ap
Thermal energy difference:

C
TED = —”Z AT?
2Tr D

wherec, is the specific heat equal to 1004 J kgt andT; is a reference temperature of
270 K.

Latent energy difference:

L 2
LED = —2 Z Ag,?,
ZCPT-,- D i

wherel, is the latent heat of vaporization of 2.58tkg".
The EDs at any arbitrary forecast tim¢hen can be scaled by their respective

values at initial as

ED,_,, TED,_,, LED,_,
o t=n = ——" and SLED,_, = .
=n = KED,_, =» = Tgp,_, ' " t=n = TED,,

The averaged scaled ED at forecast tme computed by

1
ASED;_, = 5 (SKED¢—y, + STED;—, + SLED;)
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