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Abstract 

The radar data assimilation is very important for improving short-range 

precipitation forecasts. Within the three dimensional variational (3DVAR) framework 

which is still the prevailing method used for operational regional and convective-scale 

numerical weather prediction (NWP) systems, complex cloud analysis schemes have 

been shown to be quite effective for assimilating radar reflectivity data. However, due 

to semi-empirical nature of such schemes, there exist deficiencies. This study attempts 

to gain a better understanding of the limitations of the complex cloud analysis system 

within the Advanced Regional Prediction System (ARPS), and based on the results 

propose improvements to the system. The sensitivity of the short-range precipitation 

forecast to the accuracy of the initial state variables is also investigated to guide 

improvements to the cloud analysis. 

A general overview of various existing cloud analysis systems/algorithms is first 

provided, followed by a detailed introduction to the current version of the ARPS 

complex cloud analysis system. A new version of the hydrometeor analysis is 

implemented based on the recently developed reflectivity operators that include a 

simple melting model. A hydrometeor classification algorithm based on polarimetric 

radar variables is utilized to help determine the hydrometeor species. The impact of the 

revised cloud analysis on very short range rainfall forecast is examined for a maritime 

mesoscale convective vortex case. Only a small sensitivity of the results to this revised 

cloud analysis algorithm is found. Significant model error is likely to be a contributing 

factor.      
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To unambiguously determine the sensitivity of model forecasts to the cloud 

analysis procedure and to various treatments within, we focus the rest of our study on 

experiments conducted in an observing system simulation experiment (OSSE) 

framework, for a case of mesoscale convective system (MCS) that occurred over central 

United States. A degraded initial condition is created through smoothing a truth forecast 

and by removing cloud fields. The simulation based on this degraded initial condition 

serves as a control, while sensitivity and data assimilation experiments try to improve 

the degraded initial conditions, or examine the impact of improved initial conditions.    

The sensitivity of precipitation forecasts of up to four hours to 1) model error 

due to the use of different microphysics scheme and 2) accuracy of model initial state 

variables is first investigated. The sensitivity to state variables is examined by inserting 

the perfect values of individual or a group of variables back into the smoothed initial 

conditions. The forecast winds, temperature (T), moisture (qv), total water-ice mixing 

ratio (qw), and radar reflectivity (Z) of sensitivity experiments are evaluated in terms of 

the root mean square (RMS) error calculated against the truth. The results show that 

compared to the initial state of hydrometeors, the model microphysics has a relatively 

small impact on the prediction of state variables in a relatively short range. However, 

microphysics errors become significant for longer range forecasts, such after two hours, 

when evaluated in terms of forecast reflectivity. Among the model state variables 

updated by the cloud analysis, qv is found to have the greatest impact on the prediction 

of state variables and forecast reflectivity. Precipitation hydrometeors have the second 

largest impact in terms of short-term prediction of qw and associated T while the 

importance of the non-precipitating hydrometeors is relatively small.   



xviii 

The other set of experiments is designed to examine the impact and 

effectiveness of the cloud analysis scheme. In these experiments, hydrometeor and 

associated in-cloud state variables in the initial condition are obtained using the ARPS 

cloud analysis scheme with varying configurations, rather than through direct insertion 

as in the first set of experiments. When performing the hydrometeor analysis only 

without updating any other in-cloud state variable, noticeable and up-to-four-hours 

positive impact on forecast can be found in comparison with the hydrometeor-clear 

control. However, when qv is adjusted to the value of saturation mixing ratio, i.e., the 

relative humidity (RH) is adjusted to 100% within precipitation region, as is done in the 

current ARPS cloud analysis procedure, rapid forecast error growth is found in most 

state variables and reflectivity is significantly over-forecasted. The in-cloud temperature 

adjustment towards the moist-adiabat of low-level lifted parcel in the cloud analysis is 

found to work quite well.    

Based on the results of the earlier OSSEs, efforts are made to improve the qv 

adjustment procedure in the cloud analysis to reduce precipitation overforecast. The 

effectiveness of a better specified in-cloud humidity field, by direct insertion of the true 

RH, is firstly demonstrated. A modified qv adjustment procedure making use of the 

vertical velocity information is further proposed. This procedure avoids over-

moistening in the downdraft regions, but the overall error in the adjusted qv is not 

necessarily reduced quantitatively due to loose relationship between vertical velocity 

and relative humidity. Still, the forecasts resulting from the modified qv adjustment is 

significantly improved over that from the original scheme.  
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Chapter 1: Introduction 

1.1 Background and Motivations 

Given the potential vital impact on human society, convective-scale 

precipitation systems and their forecasts using numerical weather prediction (NWP) 

models initialized with real observations, since the first attention called by Lilly (1990), 

have become an active field of research in the past two decades (e.g., Johns and 

Doswell 1992; Droegemeier et al. 1993; Lin et al. 1993; Hohenegger and Schär 2007; 

Stensrud et al. 2009; Xue et al. 2013). However, improving the forecast of convective-

scale severe weather has still remained a great challenge. This difficulty is owing to not 

only the nonlinear dynamics and physics of the associated systems (Lorenz 1963), but 

also errors and deficiencies in the NWP models (Tribbia and Baumhefner 1988) and 

data assimilation (DA) systems. 

 Radar measurements have been widely used as a key source of data in 

convective-scale DA for their fine temporal and spatial resolutions. In the United States, 

the establishment of the Weather Surveillance Radar-1988 Doppler (WSR-88D; Crum 

and Alberty 1993) operational network in particular enable researchers and scientists to 

conduct storm-scale studies with its nationwide coverage. In these studies, radar 

reflectivity and radial velocity data are assimilated into NWP model using various DA 

techniques. Under the strong constraint of a prediction model, the four-dimensional 

variational (4DVAR; Lewis and Derber 1985) data assimilation is able to effectively 

assimilate observations within an assimilation window. A number of studies that 

assimilated either observational or simulated radar data using 4DVAR have been 

reported  in the literature with reasonable results (e.g., Sun and Crook 1997, 1998). 
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However, these results were typically based on much simplified model physics, such as 

the warm rain microphysics. Due to the difficulties in developing the required adjoint 

model and convergence issues associated with highly nonlinear microphysics that are 

essential for accurate predictions, the practical application of 4DVAR to the convective-

scale DA have been limited (Xu et al. 1996a, b). The ensemble Kalman filter (EnKF; 

Evensen 1994; Houtekamer and Mitchell 1998), a relatively new technique, has been 

demonstrated to provide promising analyses and forecasts with radar data (Snyder and 

Zhang 2003; Tong and Xue 2005). With a flow-dependent error covariance obtained 

from ensemble forecasts, the EnKF method has the ability to accumulate information 

through assimilation cycles to provide theoretically optimal initial conditions for 

initializing ensemble forecasts. The EnKF method also has its issues, however, such as 

covariance inflation and location, multiscale and model error issues, which still require 

much more research before the method becomes mature enough for operational 

applications at the convective scale. The high computational cost is also an important 

consideration. 

 Compared with the theoretically more advanced DA schemes 4DVAR and 

EnKF methods described above, the three-dimensional variational (3DVAR) DA 

method is widely used at operational NWP centers, especially for regional models, 

because of its lower computational cost and few technical difficulties associated with 

high nonlinearity. Its reasonably effective use for convective-scale radar data 

assimilation has been demonstrated in many studies (Kain et al. 2010; Rennie et al. 

2011; Sun et al. 2012). Particularly, the efficiency of 3DVAR on analyzing radar radial 

velocity data has also been demonstrated by Gao et al. (2002, 2004) using the Advanced 
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Regional Prediction System (ARPS; Xue et al. 1995, 2000, 2001) 3DVAR package. 

Radar only observes few parameters, which are insufficient by themselves to determine 

a complete set of initial conditions (ICs) for NWP model use. Furthermore, for the lack 

of flow-dependent background error cross covariance in the 3DVAR formulation, many 

unobserved states cannot be directly analyzed using 3DVAR from the limited observed 

variables. The “complex cloud analysis,” such as the one available within the ARPS 

3DVAR system, employs certain physical constraints that create the linkage between 

radar observations and model state variables to overcome the observation deficiency 

problem. The cloud analysis is usually performed as a separate step from the 3DVAR 

analysis (Hu et al. 2006a, b).  

 In general, cloud analysis procedures construct three-dimensional cloud and 

hydrometeor fields making use of radar reflectivity data along with other satellite and 

surface cloud observations when available. Information in the analysis background, 

which in the ARPS case, is the result of the 3DVAR analysis, is also used. In the ARPS 

complex cloud analysis, in-cloud temperature and moisture are also adjusted based on 

semi-empirical rules. In many previous studies, the ARPS complex cloud analysis has 

been applied to various convective weather systems, including tornadic thunderstorms 

(e.g., Hu et al. 2006a), mesoscale convective systems (MCSs; e.g., Dawson and Xue 

2006), and hurricanes (e.g., Zhao and Xue 2009). Given its effectiveness with relatively 

low computational requirement, the ARPS cloud analysis has been used, along with the 

3DVAR radial velocity and other observations, for real-time storm-scale forecast over 

the continental U.S. domain since 2008 (Xue et al. 2008) for the NOAA Hazardous 

Weather Testbed (HWT) Spring Experiments (Kain et al. 2010; Xue et al. 2013). With 
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cloud analysis, the typical precipitation spin-up problem is mostly alleviated (illustrated 

in FIG. 1.1, by the initial ETS difference between c0, without cloud analysis, and cn, 

with cloud analysis; also addressed in Dawson and Xue 2006). 

 

 
FIG. 1.1 Equitable threat score (ETS) of hourly precipitation at 0.5 
inch threshold averaged over the last 15 days of 2008 Spring 
Experiment. Experiments with grid spacing of 4 km and 2 km are 
denoted by blue and red color, respectively. Dash line indicates 
experiment with no radar analysis. Adapted from Xue et al. (2008). 

 

Despite some successes as demonstrated by previous studies, the cloud analysis 

approach still has its issues. As stated by Auligne et al. (2011), a summary paper of the 

International Cloud Analysis Workshop (2009), “Several cloud analysis and nowcasting 

systems are now operational, yet forecasts are still usually only useful for a few hours.” 

The difficulties, or limitations, can be mainly attributed to the inconsistency between 

the semi-empirical based analysis result and the complicated model physics: while the 

analyzed states from the cloud analysis are not consistent with the prediction model, 

they usually undergo rapid adjustments, and as a result, the impact of the cloud analysis 
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is eliminated quickly during the initial stage of forecast. This process is commonly 

reflected by the verification of the forecast, as shown in FIG. 1.1, with a rapid drop of 

the ETS in the very first hour after the forecast initialization. 

 Although the impact of the ARPS cloud analysis has been examined in many 

real case studies, because the truth of cloud and hydrometeor fields is little known, the 

accuracy of analyzed fields are difficult to determine. In many cases (Dawson and Xue 

2006; Hu and Xue 2007; Zhao and Xue 2009b), the cloud analysis was applied with the 

3DVAR analysis through intermittent assimilation cycles, in which the accuracy of the 

analyzed fields is further complicated by the model integration involved. The impact of 

individual analyzed cloud and hydrometeor fields, as well as the associated adjustments 

to temperature and moisture has not yet been carefully examined so far. It is our goal, in 

this dissertation, to investigate the impact of the accuracy of individual state variables in 

the initial conditions, particularly those variables that are adjusted by the cloud analysis, 

on the subsequent forecasts. Such study is best done using Observing System 

Simulation Experiments (OSSEs) where the truth of all state variables is known, so that 

the accuracy of the analyzed fields can be measured quantitatively. A study that 

examined a similar issue is that of Ge et al. (2013); however, in their study the  

individual state variables were examined as potential observations available over the 

entire model domain, and intermittent 3DVAR analyses were used. The main 

differences between Ge et al. (2013) and our OSSE study are summarized in Table 1.1.  
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Table 1.1 Summary of the differences between Ge et al. (2013) and this study 
 This study Ge et al. (2013) 

Background fields 
3D smoothed fields derived 
from the truth simulation of 
OSSE (real case based). 

Homogeneous fields given by 
an idealized sounding. 

ICs construction 
(DA) method  and 
effective area 

Direct insertion over entire 
domain or from ARPS complex 
cloud analysis for in-cloud 
regions. 

3DVAR (with mimicked 
observation error) over entire 
domain. 

Impacting 
variable examined  

θ, qv, qx (mixing ratios of cloud 
and precipitation species). 

Vh, w, θ, qv, qr (rain water 
mixing ratio). 

DA frequency One time. Cycled analysis for 90 minutes. 

Microphysics 
Double-moment ice 
microphysics scheme. 

Warn rain only.  

    

Questions addressed in this dissertation include: 

• How accurate is the analysis required to be for accurate predictions? 

• What the role does the model error play? How large is the impact of model 

error relative to initial condition error? 

• How long can the benefit of cloud analysis last? Is there an intrinsic limit? 

• What is the relative importance of the different variables in the initial 

conditions on prediction?  

By answering these questions through the investigation, a better understanding of 

the potential and limitations of the ARPS cloud analysis or other similar package can be 

gained. In addition, this study can serve as a guide for further cloud analysis 

improvement.  



7 

1.2 An Overview of the Study 

 The rest of the dissertation is organized as follows: At the beginning of Chapter 

2, a brief overview of various existing cloud analysis systems implemented by different 

operational forecasting centers is provided. A more detailed introduction to the current 

ARPS complex cloud analysis package is then given, along with the modifications to 

the hydrometeor mixing ratio analysis procedure implemented in this study. The revised 

analysis procedure is applied to an observed maritime monsoonal mesoscale convective 

vortex (MCV), and the resulting very-short-range (one hour) rainfall forecast is 

examined. In Chapter 3, after an introduction to the MCS test case and the OSSE 

framework, two sets of experiments are presented that explore the forecast sensitivity to 

different control factors. The factors examined include model error due to the use of a 

different microphysics parameterization scheme and errors in the model initial state 

variables. The second set of experiment examining the practical impact of the ARPS 

cloud analysis and corresponding in-cloud state adjustments is presented in Chapter 4. 

Experiment results are discussed and summarized with a conceptual model of forecast 

error evolution at the end of the chapter. In Chapter 5, based on the findings from 

Chapter 4, the potential effectiveness of an accurately specified moisture initial 

condition on the model forecast is firstly tested and demonstrated. A modified in-cloud 

moisture adjustment procedure, making use of the vertical velocity information, is 

further proposed, followed by the preliminary evaluation of its efficacy. Finally, 

conclusions of the study are summarized in Chapter 6. Possible future work is also 

discussed. 
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Chapter 2: Cloud Analysis and a Real Case Application 

2.1 Existing Cloud Analysis Systems and Algorithms 

 A number of analysis and forecast systems have been developed and 

implemented operationally for nowcasting or short-range forecasting use at various 

NWP centers or research organizations around the world over the past two decades. 

These systmes include the Local Analysis and Prediction System (LAPS; Albers et al. 

1996) developed by the National Oceanic and Atmospheric Administration’s (NOAA’s) 

Forecast Systems Laboratory (FSL), the Nowcasting and Initialisation for Modelling 

Using Regional Observation Data Scheme (NIMROD; Golding 1998) by the United 

Kingdom Meteorological Office (UKMO), and the Rapid Refresh version of the Rapid 

Update Cycling model (RUC/RR; Benjamin et al. 2004) used for current operations at 

the National Center for Environmental Prediction (NCEP). A brief overview of these 

systems, in particular their cloud analysis component, will be provided as follows. 

 As one of the first systems that carry out the analysis of cloud-related fields, 

LAPS was designed to incorporate a variety of datasets, including surface observations, 

remote sensing observations (e.g., Doppler radars, satellites), multiple layer data (e.g., 

wind and temperature profilers), and aircraft reports, for NWP model use. The three-

dimensional cloud distribution is retrieved based on the prerequisite 3D temperature 

analysis and the insertion of satellite and radar data. Other 3D cloud products of LAPS 

include cloud type, mean volumetric drop (MVD) size, in-cloud omega field (i.e., 

vertical velocity), and cloud liquid water/ice content derived using the Smith-Feddes 

model (Haines et al. 1989). Besides, the radar reflectivity data along with analyzed wet-

bulb temperature serves as input for diagnosing 3D precipitation type. Most cloud 
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analysis procedures described above are inherited by the ARPS complex cloud analysis, 

whose details are provided in the coming subsection. At present, LAPS is still widely 

utilized in the weather agencies of several countries (e.g., China, Finland, Italy, Korea, 

Serbia, Spain, and Taiwan. Refer to http://laps.noaa.gov/).            

 For the UKMO’s very short range forecasting needs, the NIMROD has been 

developed by integrating nowcasting and NWP techniques. Being one of the three 

major components, precipitation, cloud, and visibility, of the NIMROD system, the 

cloud analysis scheme utilizes the Meteosat satellite imagery as the main observation 

source, in conjunction with the surface reports. Firstly, the clear and cloudy regions are 

identified with the available satellite observations. Cloud top height is then calculated 

based on the atmospheric structure from the NWP model output, which processes the 

infrared (IR) radiance temperature information used to account for the relative location 

of the cloud top to the boundary layer height. Finally, the multi-level cloud analysis is 

obtained by applying a two-dimensional recursive filter algorithm (Purser and McQuiqq 

1982) to each model level that brings best agreement among the satellite observation, 

surface cloud report, and the forecast first guess. Information of both cloud fraction and 

rain rate analysis (derived from radar and satellite observation) can be further used for 

humidity specification (Macpherson et al. 1996). 

 Since the first operational implementation in 1994, the RUC system has 

undergone a few updates, mainly in the aspects of application of finer model resolution 

and higher frequency on data analysis. The most current version of RUC, launched 

beginning in 2002, comes to a hourly assimilation cycle with 20-km horizontal spacing. 

Both the optimal interpolation (OI) and 3DVAR techniques are available in the RUC 
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system for assimilating a large variety of observation types (refer to Table 2 in 

Benjamin et al. 2004 for a complete list). The cloud/hydrometeor analysis component in 

RUC was first designed mainly using the Geostationary Observational Environmental 

Satellite (GOES) data, but was further modified to include the radar reflectivity data 

(Kim et al. 2002). Cloud clearing (i.e., removal) or building (i.e., insertion) is carried 

out based on the GOES observation in comparison with the background cloud field (1-h 

forecast from previous run). The water vapor mixing ratio is also adjusted throughout 

this process. Further hydrometeor mixing ratio adjustment has been proposed: the 

background (predicted) hydrometeors are used for partitioning the contribution on 

reflectivity from each hydrometeor species, and the observed reflectivity is complied 

with the reflectivity observation operators from Rogers and Yau (1989). A similar 

concept on using the hydrometeor predictions (when available) is also adopted in ARPS 

cloud analysis for the cycled analyses. 

 Efforts have been made by different groups of people to assimilate radar 

reflectivity data for hydrometeor analysis in a research scenario. In Sun and Crook 

(1997), assimilation of simulated reflectivity data either directly or indirectly (with qr as 

the control variable through a Z-qr relation) was tested using 4DVAR technique. With 

the same Z observation operators used in Sun and Crook (1997), Xiao et al. (2007) 

developed a 3DVAR scheme using the total water mixing ratio qt as the control that 

realizes analyses of qr, qc, and associated moisture and temperature fields. Both of these 

studies above, however, took only the warm rain process into account. Zhao and Jin 

(2008) introduced a variational approach in which a gain factor, based on minimization 
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of the cost function with Z as the control variable, was used to update mixing ratios of 

multiple hydrometeor species (ice phase included).    

 Some algorithms, instead of realizing direct analysis of cloud/hydrometeor fields, 

are designed for updating other associated model states, such as temperature and 

moisture. One example is posed by the 1D+3DVAR method of Application of Research 

to Operations at Mesoscale (AROME; Seity et al. 2011) deployed in the Météo-France. 

With the application of a unidimensional (1D) Bayesian inversion, the treatment for the 

nonlinear moist processes is bypassed in favor of reflectivity assimilation. The observed 

reflectivity column is, at first, used to compute for the relative humidity profile, which 

is serving as a pseudo observation for the later 3DVAR assimilation. One of the 

advantages addressed for this two-step method is the possibility to control the quality of 

the 1D Bayesian retrievals before they are assimilated in 3DVAR with other 

observations.       

 Other non-variational based techniques, such as latent heat nudging (LHN) and 

diabatic digital filter initialization (DDFI), are also applied in operational forecasting for 

radar reflectivity assimilation. Based on the theoretically proportional relation existing 

between the resulting surface precipitation and the latent heating profile aloft, the 

model’s temperature and moisture fields are “nudged” so that the diagnosed 

precipitation rate can better agree with the observation. Jones and Macpherson (1997) 

introduced the implementation of the LHN technique into the UKMO Mesoscale Model 

through the use of the radar-derived precipitation data is introduced. As the trend of 

increasing DA cycling frequency is used for convective-scale forecasts, the issue of 

imbalance among the analyzed fields, the spurious inertial-gravity wave specifically, 
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reveals and demands for appropriate treatments. The DDFI technique was first 

presented in Huang and Lynch (1993) as an ideal solution to this issue. In conjunction 

with the cloud analysis procedure in the RUC, a new radar reflectivity assimilation 

procedure using the DDFI is proposed in Weygandt et al. (2008). Basically, the 

observed-reflectivity-based latent heating rate is computed to modify the model-

calculated temperature tendency during the diabatic forward integration part of the 

digital filter. 

 More simple and straightforward methods can be applied to adjust the in-cloud 

states. For example, a commonly used assumption that humidity is saturated in the 

cloudy regions is adopted widely in many studies (Albers et al. 1996; Zhang et al. 1998; 

Wang et al. 2013) for in-cloud moisture adjustment simply with the presence of echoes. 

 
2.2 The ARPS Complex Cloud Analysis  

2.2.1 An Overview of Current Complex Cloud Analysis in the ARPS 

 Serving as a major part in the ARPS Data Analysis System (ADAS; Brewster 

1996), the complex cloud analysis module was designed to provide optimal analyses of 

hydrometeor and other associated fields for NWP model use. Since the analysis module 

was firstly developed by Zhang et al. (1998) based on the LAPS (Albers et al. 1996), 

several modifications and improvements have subsequently been made, including the 

important temperature and moisture adjustments (Brewster 2002). In the most current 

version of ARPS (5.3.5), ADAS is able to incorporate information from various sources 

of observation, such as single layer measurements (e.g., mesonet, airport report, buoy), 

multi-layer measurements (e.g., radiosonde), and remote sensing observations (e.g., 

satellite and radar). In this study, the focus is on radar data, whose impact on model 
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predictions has been demonstrated as primary in a present study for its relatively fine 

spatial resolution (Schenkman et al. 2011).  

 The complete procedure of the current ARPS complex cloud analysis is 

described step by step in detail below. Again, only contents that use the radar 

observation are addressed. 

(i) State variables initialization: 

All model state variables that will be used in the cloud analysis procedure, 

including pressure (p), potential temperature (θ), moisture (qv), vertical motion (w), and 

mixing ratios of various cloud and precipitating hydrometeors (qx), are firstly initialized 

by reading from either analysis fields or forecast fields from a previous model 

prediction. Note that for most analysis data, qx fields are usually unavailable.      

(ii)  Cloud coverage analysis: 

A background three-dimensional cloud cover field is first calculated from the 

background relative humidity (RH) analysis. In general, the cloud coverage is a function 

of humidity and height. For details of the formulation, please refer to Zhang et al. 

(1998). After the background cloud cover field is constructed, a series of cloud insertion 

is performed based on observations that are available.   

As the radar observed reflectivity is remapped onto the model grids, the clouds 

are directly inserted (i.e., 100% cloud fraction assigned) into grids above the lifting 

condensation level (LCL), which can be determined from background temperature and 

humidity, or simply offered by the airport weather reports (i.e., METARs) if available.     

(iii)  Cloud associated variables analysis: 
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From the cloud distribution obtained in the previous step, cloud base and cloud 

top can be determined. Along with the background information of pressure and 

temperature at the cloud base, the liquid water content (i.e., cloud water mixing ratio qc) 

throughout the entire cloud extent can then be calculated based on an adiabatic 

assumption. Another option adapted from the Smith-Feddes model (Haines et al. 1989) 

is available. With this model, a prevailing stratus cloud environment is assumed. 

Ambient temperature from the background is used to account for the depletion process 

of cloud water in forming cloud ice (i.e., qi). In addition, effects of entrainment and 

dilution by glaciation are also included. Modifications of the Smith-Feddes model 

inherited in the ARPS cloud analysis are introduced in Albers et al. (1996),. 

 As the end of this these, other cloud-associated variables, such as in-cloud 

vertical motion (wcld) and icing severity index, are calculated with. wcld  is a function of 

cloud thickness and cloud type. The cloud thickness is obtained from the cloud extent, 

while the cloud type can be determined by temperature and stability. The icing severity 

index is a function of temperature, liquid water content, cloud type and precipitation 

type. The determination of precipitation type in the current cloud analysis will be 

further described in the next subsection. 

(iv) Cloud mass limit 1: 

When there is significant cloud water or cloud ice present and their total mixing 

ratio is larger than the local saturated water vapor moisture (i.e., qv
*), their summation is 

limited to qv
* by reassigning their values based on their original ratio as 

���new	 = ���original	����riginal	 + ���original	 ��∗  , 
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and   ���new	 = ���original	���original	 + ���original	 ��∗  .           
                                                                                                                    (1) 

(v) Precipitation mass analysis: 

This step serves as the major part of the entire cloud analysis procedure that 

directly links the model hydrometeor state with radar reflectivity observation. To 

achieve the hydrometeor analysis, a set of radar observation operators and their inversed 

version are required. A number of observation operators have been developed for 

simulating reflectivity from model predictions. These operators primarily depend on the 

microphysical process and the associated features. Two sets of observation operators are 

currently available in the official version of ARPS. The first set of operators is 

relatively simplified based on the fitting results between model simulation and radar 

observations. Empirical exponential relationships in this option are given by Kessler 

(1969) for rain water and Rogers and Yau (1989) for snow and hail. This set of 

operators is denoted by KRY hereafter. The other set of operators, given by Ferrier et al. 

(1995), is constructed with more complicated formulation that involves the melting 

process of snow. Note that both sets of operators described above include only three 

precipitation species: rain, snow and hail. Furthermore, both of them are currently 

compatible with the single-moment (SM) bulk microphysics parameterization scheme 

only as the default constant intercept parameter N0 is used.   

 The process to retrieve the simulated radar observations, such as reflectivity, is 

usually relatively easy and straightforward: after various hydrometeor mixing ratios 

from the model output are inserted into their respective reflectivity operators, the 

reflectivities for different species are then combined (summed up) as the simulated 
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reflectivity. The inverse process is, however, relatively complicated. As this problem 

itself is under-determined with only one known variable (i.e., observed reflectivity) but 

multiple unknowns (i.e., mixing ratio of different species) to be solved, additional 

information is required. How to partition one observed gross reflectivity into several 

portions corresponding to different precipitation species that are present is a major 

problem one will encounter while realizing the mixing ratio analysis. As noted earlier in 

the first step, the hydrometeor fields are usually unavailable in most analysis data, no 

information about the presence of hydrometeors can be obtained from the background 

fields. Consequently, a “mutual-exclusive-presence” condition is applied as a prompt 

resolution. Under this condition, there is only one dominating species on each analysis 

grid and the observed reflectivity is contributed by it completely. In other words, 

mixing ratio of one and only species can be analyzed for each grid. More related 

discussions are provided in the next subsection. 

(vi) Cloud mass limit 2: 

After the precipitation mixing ratios are analyzed based on radar reflectivity, 

cloud mixing ratios in regions of precipitation are gone through another limitation 

process for avoiding double counting. For now, a simple five percent is taken upon the 

total precipitation mixing ratio in representing the total cloud mixing ratio while the 

amount of precipitation analyzed is found more significant than the amount of cloud. 

(vii) In-cloud temperature adjustment: 

Before this point, the analysis of all hydrometeors is completed. Following are 

optional adjustments of in-cloud state variables based on the hydrometeor analysis and 

background state. 
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Two major in-cloud temperature adjustments are available in the current cloud 

analysis package. One adjustment is based upon the latent heat release associated with 

the hydrometeors that have been analyzed (Zhang 1999; referred to as the LH scheme), 

and the other one is based on assuming moist adiabatic temperature profile including 

the dilution effect due to the entrainment process (Brewster 2002; named herein the MA 

scheme). The impact of two schemes on the prediction of a tornadic thunderstorm is 

discussed in Hu and Xue (2007).    

(viii)  In-cloud moisture adjustment: 

Currently, wherever there is radar echo present, the moisture for that local grid 

is simply set as saturated. This adjustment is based on an intuitive physical sense that 

moisture should be saturated for forming precipitation. The process is completed by 

assigning 100% RH, and then calculating qv along with information of saturated 

moisture qv
*, which is a function of local pressure and temperature (after the 

temperature adjustment if it was applied earlier). 

For the case when the background hydrometeor information is available, a 

different option of moisture adjustment that slightly reduces the moisture can be 

selected. The activation of this adjustment is determined by comparing the total 

hydrometeor mass (all cloud species and precipitation species) from background and 

from analysis. When the analysis value is found to be less than the background value, qv 

is set to 0.95 qv
*. This procedure is designed for intermittent analyses (i.e., cycling) to 

avoid an over-moist environment and the resulting overforecast of precipitation.     

(ix) In-cloud vertical motion adjustment: 
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As the final step of the cloud analysis procedure, the in-cloud vertical motion is 

adjusted to the larger value of either background w or wcld, which is analyzed in step 

(iii) . 

Table 2.1 is provided as a concise summary of the cloud analysis procedure 

described above. 

 

Table 2.1 Summary ARPS complex cloud analysis procedure 

Step Content 
State 

variables 
changed 

1 
State variables 
initialization 

Model state variables (p, θ, qv, w, qx) read from 
background files. 

None. 

2 
Cloud coverage 
analysis 

Cloud coverage and cloud distribution variables 
(cloud base and cloud top) analyzed based on Zobs. 

None. 

3 

Cloud associated 
variables 
analysis 

1) Cloud mass variables analyzed based on pbg, θbg, 
and other cloud info (from step 2). 
2) In-cloud vertical velocity (wcld) analyzed based on 
cloud type and thickness. 

qc, qi. 

4 
Cloud mass limit 
1# 

Cloud mass variables adjusted to confine to 
background qv

*. 
qc, qi. 

5 
Precipitation 
mass analysis# 

Precipitation mass variables analyzed based on Zobs 
using radar simulator formulation selected. 

qr, qs, qh. 

6 
Cloud mass limit 
2 

Cloud mass limited to 5% of precipitation mass in 
avoiding double counting. 

qc, qi. 

7 
In-cloud 
temperature 
adjustment# 

Temperature adjusted in selected physical manner 
(LH or MA). 

θ. 

8 
In-cloud 
moisture 
adjustment# 

1) Moisture saturated for grid with observed echo. 
2) qv limited to 0.5qv

* for grids with analyzed total 
mass less than background total mass. 

qv. 

9 
In-cloud vertical 
motion 
adjustment# 

w reassigned to the larger value between wbg and wcld. w. 
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2.2.2 A Modified Mixing Ratio Analysis Procedure 

 As introduced in the previous section, the mixing ratio analysis procedure 

available in the current ARPS complex cloud analysis package is relatively simple. In 

other words, the physics involved are not sufficient in depicting realistic mechanisms 

and therefore may provide unbalanced analysis results that are incompatible with the 

complicated model microphysics schemes. As a result, the effect of analysis will not be 

able to last long as the model goes through a rapid adjustment. 

 Our study has developed a more general procedure to derive an analysis of the 

mixing ratios. This procedure is based on the radar operator built by Jung et al. (2008; 

referred to as JZX hereafter). Four major features that distinguish our approach from the 

currently utilized procedure are described below: 

(i) Unlike the empirical fitting relationships used for developing the KRY 

operators, the JZX formulation includes the theory of electromagnetic wave propagation 

and scattering. Factors that affect the scattering results are considered in the derivation; 

for instance, the dielectric factor and canting behavior as the particle falls. Since the 

Rayleigh approximation is applied while formulating for the large sized particles such 

as hailstones, this procedure is currently good for assimilating radar data at long 

wavelengths (i.e., S band) only. 

(ii)  Compared to the simple exponential relation between reflectivity and 

hydrometeor mixing used in KRY, the drop size distribution (DSD) parameters 

corresponding to the hydrometeors are also included in expressing the radar variables, 

making this procedure more flexible and therefore compatible with the model using 

multi-moment (MM) microphysics schemes. 
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(iii)   Although the melting process of snow is included in the Ferrier 

operators, this classifying criterion is purely based on temperature with an arbitrary 

threshold of 0 °C. As much more complicated microphysics and various hydrometeor 

phases can be expected for their existence in the real atmosphere, a melting ice model is 

included in JZX to account for sufficient variety of physical properties associated with 

the melting process (e.g., density change).  With this model, the radar variables are not 

only contributed by the pure precipitating species (e.g., rain, snow, hail), but also by the 

mixing species (or mixtures, e.g., wet snow, wet hail) if present. 

(iv)  Considering that different combinations of precipitating species can be 

used in different NWP models and microphysics schemes, an equation set for graupel 

species is added to the original published JZX operators, which included only rain, 

snow, and hail. This addition allows the cloud analysis procedure to handle situations 

where both hail and graupel species are present. 

As mentioned in the previous section, perquisite information about the 

distribution of multiple hydrometeor species is required before we can retrieve the 

corresponding mixing ratios based on the Z operators. In the current cloud analysis 

package, a simple strategy is used to classify for the hydrometeor type based on 

observed Z and background T when no hydrometeor field is available in the background:  

If ���� ≥ 50 dBZ → pure hail is classified,  
If ���� < 50 dBZ, and , If -.� ≥ 1.3℃ → Pure rain is classified   If -.� < 1.3℃ → Pure snow is classified , 

in which Twb is the wet bulb temperature. After the hydrometeor type is determined, 

corresponding equations of Z operators is used to compute for the mixing ratio. With 

this strategy, only one type of hydrometeor can be found for each analyzed grid, which 
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is believed unrealistic compared to what is observed in the real atmosphere. Since one 

major advantage of our modified mixing ratio analysis procedure is the allowance of 

microphysical complexity (by implementation of the melting model), it is designed to 

enable the analysis result of a more flexible hydrometeor distribution. To realize our 

analysis with this modified procedure, the ratio among qx of each pure precipitation 

species (i.e., rain, snow, graupel, and hail) is required in advance. As long as there is 

hydrometeor information available in the background field (usually from previous 

model forecasts), a more realistic hydrometeor analysis and accompanying 

microphysical features can be anticipated with our modified procedure.    

Details about the formulation with associated parameters and coefficients, and 

how to perform this modified procedure for mixing ratio analysis in practice can be 

referred to Appendix A. Although there are observation operators built for other 

polarimetric variables (e.g., ZDR, KDP) in Jung et al. (2008a), only the reflectivity 

operators are adopted in this study to analyze the mixing ratios for its robustness of 

behavior to various hydrometeors, which also provides us confidence in the analysis 

results. Operators of other polarimetric variables could also be used; however, 

comprehensive understanding about the sensitivity of these variables to different 

hydrometeors and a thorough data quality control process are highly recommended 

before actual application. 

 
2.3 The Use of Polarimetric Radar Measurements in the Cloud Analysis   

2.3.1 Mixing Ratio Analysis Using Polarimetric Radar Variables 

Given the additional measurements that polarimetric radar can provide, its 

advantage over the traditional Doppler radar in better characterizing the hydrometeor 
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features and their corresponding microphysical processes has been widely discussed and 

demonstrated in numerous present studies, particularly in the field of quantitative 

precipitation estimation (QPE; Bringi and Chandrasekar 2001; Vivekanandan et al. 

1999; Zhang et al. 2001; Zrnic and Ryzhkov 1996). Toward the goal of improved short-

range forecasts of cloud, hydrometeor, and precipitation, a modified mixing ratio 

analysis procedure that makes use of multiple polarimetric radar variables is proposed. 

The JZX reflectivity operator as described in previous section is used to carry 

out the procedure. The major role of the extra polarimetric variables, in addition to Z, is 

to partition the portions of multiple precipitation species required as the prerequisite for 

the mixing ratio analysis. A fuzzy-logic based hydrometeor classification algorithm 

(HCA) proposed by Park et al. (2009) is adopted. Variables used for the HCA procedure 

includes Z, ZDR, KDP, and ρhv. These measurements are firstly interpolated to the model 

gridded coordinate. For grids where all four variables are available, the aggregation 

value Ai for each possible defined class of radar echo is computed as 

3� = ∑ 5�67��	�86	96:;∑ 5�696:; , 
where i represents the ith class of echo that could be classified by the algorithm, j 

represents the jth of radar variables, P(i)(Vj) is a trapezoidal shape membership function 

that characterizes the distribution of the jth variable for the ith class (shown as FIG. 2.1), 

and Wij is a discriminating efficiency based weight between 0 and 1 assigned to the ith 

class and the jth variable. As a result, Ai values ranging from 0 to 1 for ten classes: 1) 

ground clutter (GC); 2) biological scatterers (BS); 3) dry aggregated snow (DS); 4) wet 

snow (WS); 5) ice crystals (CR); 6) graupel (GR); 7) big drops (BD); 8) light to 

moderate rain (RA); 9) heavy rain (HR); and 10) rain/hail mixture (RH) are obtained. 
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For specific values of Wij or the X1, X2, X3, and X4 in P(i)(Vj), please refer to Park et al. 

(2009).  

 

 
FIG. 2.1 Trapezoidal membership function, where X is an 
arbitrary radar variable. Adapted from Park et al. (2009).  

 

 In our adoption described above, couple simplifications upon the (Park et al. 

2009)’s original proposal have been taken in calculating the aggregation values. First, 

two texture parameters SD(Z) and SD(ФDP) (along radial fluctuation of Z and ФDP, 

respectively) are excluded. As these two variables are mainly included to identify the 

non-meteorological echo, the impact of this omission on the classification results can be 

minimized by pre-processing radar data with some quality control (QC) algorithms 

(Hubbert et al. 2009). Second, the Qj, confidence vector, present in both numerator and 

denominator of the original Ai equation is also omitted. As the Qj is designed to account 

for the measurement error of each variable used, even confidence on each variable is 

accordingly implied while this simplification is taken.    

After the Ai values are obtained, the results are further examined by some 

empirical hard thresholds (Table 2.2) to suppress apparently unrealistic class 

designations. For example, the radial velocity V interpolated on model grids is used to 
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eliminate the likelihood of the occurrence of ground clutter: when V is greater than 1.0 

m s-1, A1 (1 is the order number for GC class) is directly set to 0. The rules are based on 

both physical model and observations (Straka et al. 2000). 

  

Table 2.2 Empirical hard thresholds used to suppress apparently wrong 
designations (reproduced from Park et al. 2009) 
Variables Thresholds Suppressed class 
V > 1.0 m s-1 Ground clutter (GC) 
ρhv > 0.97 Biological scatterers (BS) 
ZDR > 2 dB Dry snow (DS) 
Z < 20 dBZ Wet snow (WS) 
ZDR < 0 dB Wet snow (WS) 
Z > 40 dBZ Ice crystals (CR) 
Z < 10 dBZ or > 60 dBZ  Graupel (GR) 
ZDR < f2(Z) - 0.3 * Big drops (BD) 
Z > 50 dBZ Light to moderate rain (RA) 
Z < 30 dBZ Heavy rain (HR) 
Z < 40 dBZ Rain/hail mixture (RH) 
* f2(Z) is a function of Z (in dBZ) that can be found in Park et al. (2009). 
 
  
 It has been indicated that additional routines that account for factors such as 

relative location of radar sampling volume with respect to the melting layer (ML) and 

precipitation nature (i.e., convective versus stratiform) are required for better 

classification results (Heinselman and Ryzhkov 2006). In our procedure, the 

background temperature is used for locating the ML top (where T begins to drop below 

0 °C) and a constant depth of 500 m below the ML top is used for defining the layer. 

Any non-meteorological class (GC or BS), WS, and RA are excluded above the ML top 

regions, where strict frozen condition is presumed. On the other hand, the intensity of 

observed Z profile is used to classify the precipitation type. The following simple 

empirical strategy is used: 
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For grids below ML bottom, B if � ≥ 35 CD� → Convective.if � < 35 CD� → Stratiform.                                                         
For grids within ML, B if � ≥ 35 CD� HIC Lower successive grid is Conv. → Convective.   otherwise → Stratiform.                                                                               For grids above ML top, B if � ≥ 30 CD� → Convective.if � < 30 CD� → Stratiform.                                                                 

 

The condition to check the lower successive grid is applied to prevent potential 

contamination of bright band, which is known for great Z intensity. Snow classes (i.e., 

DS and WS) are excluded for convective precipitation while the convective 

hydrometeor types such like BD, GR, and RH are avoided in stratiform area. 

 After all despeckling processes described above are gone through and all 

physical unreasonable classes are avoided, the survivals of Ai are used for determining 

relative portion of different precipitation hydrometeors. All eight meteorological classes 

are classified into three types as: 

1) Rain type: BD, RA, and HR. 

2) Snow type: DS, WS, and CR. 

3) Hail/Graupel type: GR and RH. 

The Ai maximum of each type is taken for representing the portion of that specific type. 

Specifically, the ratio among rain, snow, and hail/graupel is determined as: 

max(A7 , A8 , A9) : max(A3 , A4 , A5) : max(A6 , A10). 

The mixing ratio of each type is then analyzed using the JZX reflectivity operator to 

comply with the Z observation. Refer to Appendix A for detailed mathematical 

formulation.   

The principal assumption incorporated in this procedure is that the aggregation 

values calculated from HCA are quantitatively proportional to the hydrometeor content 

(i.e., mixing ratio). One main feature of the analysis result from this HCA-based 
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procedure is that coexistence of different hydrometeors is possible at a same location, 

which is believed more realistic. Demonstrations of the analysis result will be shown 

and discussed in the coming sections with a real case application.        

2.3.2 A Mei-Yu Front Mesoscale Convective Vortex and Model Configuration 

 During the intensive observing period (IOP) 6 (1800 UTC 4 June to 1200 UTC 6 

June) of the Southwest Monsoon Experiment (SoWMEX) and the Terrain-influenced 

Monsoon Rainfall Experiment (TiMREX), a joint Taiwan-United States field 

experiment (Jou et al. 2010) taking place in 2008 Mei-Yu season (Chen and Chang 

1980), a MCV embedded in a quasi-stationary mei-yu front across the southern China 

and middle Taiwan was observed. As the MCV-associated convective system moved in, 

serious flood was resulted in the southwestern coastal area of Taiwan with nearly 200 

mm precipitation in two hours (Lai et al. 2011). FIG. 2.2 shows the track of the MCV. 

 In addition to the four S-band Doppler radars operated by the Central Weather 

Bureau (CWB), the National Center for Atmospheric Research’s (NCAR’s) S-band 

polarimetric Doppler research radar (as S-Pol hereafter) was deployed at southwest 

coast of Taiwan for the SoWMEX/TiMREX project. The radars locations are provided 

in FIG. 2.3.  

 The ARPS model and its data assimilation system are used to examine the 

impact of the mixing ratio analysis procedure based on polarimetric variables (as 

described in previous section) on the very short-range (1 hour) precipitation forecast. 

The domain, as marked by the red square in FIG. 2.2, is designed to cover the Southeast 

Asia with Taiwan in the center of the domain (121 °E, 24 °N). Although the MCV of 

interest was located very close to Taiwan in our study period, our domain is created as 
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large as this to avoid any potential over-stressed forcing from the lateral boundary 

conditions (LBCs). A northern hemisphere Lambert Conformal map projection is used. 

The domain has 803 (x-direction) × 803 (y-direction) × 53 (z-direction) grid points in 

total with 2.5 km horizontal spacing and an averaged 420 m vertical resolution. Terrain-

following and stretching vertical coordinate is used with the lowest level of 50 m AGL.       

 
 

 
FIG. 2.2 Weekly averaged sea surface temperature during 2-8 June 2008 and MCV 
track. Gray dots and black dots are tracked by IR satellite images and radar radial 
velocity, respectively. Red square denotes the domain of our simulation. 
Reproduced from Lai et al. (2011). 
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FIG. 2.3 Distribution of four CWB 
operational radars and NCAR S-Pol 
radar. Observing ranges are denoted by 
circles in corresponding colors (200 
km for CWB radars and 150 km for 
NCAR S-Pol). 

 

 The simulation is initialized at 00 Z 5 June 2008 utilizing the CWB operational 

WRF analysis after interpolating from the original in 15-km grid spacing to our 2.5-km 

grids. The radial velocities (Vr) observed by S-Pol are assimilated using the ARPS 

3DVAR package. Two sets of experiment are performed with different mixing ratio 

analysis procedures: one with current available procedure (based on Z only) using KRY 

operator, and the other with the HCA procedure (based on Z and other polarimetric 

variables) using JZX operator. Under each experiment, two microphysics 

parameterization schemes: Lin single-moment (Lin et al. 1983) and MY double-

moment (Milbrandt and Yau 2005a, 2005b) are implemented; a total of four 

experiments are conducted (Table 2.3). To distinguish the impact purely owing to the 
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different mixing ratio analysis procedures, the other in-cloud field adjustments (T, qv, 

and w) are turned off for all experiments. Other model configurations include: 1.5-order 

turbulence kinetic energy (TKE) scheme, atmospheric radiation transfer scheme, and 

stability dependent surface scheme. No convective cumulus parameterization is applied. 

 
Table 2.3 Naming of experiments with corresponding settings  

Microphysics \ qx analysis 
Z-based hydrometeor  
classification with KRY 
operator 

HCA hydrometeor 
classification with JZX 
operator 

Lin single-moment  KRY_S JZX_S 
MY double-moment KRY_D JZX_D 
    
2.3.3 Results and Discussion 

 The radar reflectivity observed by the NCAR S-Pol at 00 Z 5 June 2008 are used 

for cloud analysis at the initial time of the simulation (FIG. 2.4). The leading convection 

of the MCV is just entering the S-Pol observing range at this time. However, the 

precipitating induced by MCV’s outer circulation has reached the southwestern plain 

area of Taiwan. A meridional oriented cross section across the leading edge of most 

intense Z is selected for illustrating the mixing ratio analysis results. 

 

 
FIG. 2.4 (a) Composite reflectivity observed by NCAR S-Pol at 00 UTC 5 
June 2008 and a (b) selected cross section ��JJJJ. 
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 Mixing ratio analysis results using different hydrometeor classification 

procedures and reflectivity operators are shown in FIG. 2.5. Distinct differences can be 

found between two algorithms. Qualitatively, in terms of the rain distribution, it is 

found that the JZX analysis, with the HCA applied, is able to characterize the 

overshooting of the rain drops above the ML top, which is not available in the KRY 

analysis result, in which a nearly uniform cap is shown owing to the use of the 

background temperature. For the snow mixing ratio analysis, peak values show in the 

KRY analysis right above the ML top while in the JZY analysis these snow mixing ratio 

peaks are replaced by the overshooting rain and the significant qs values are located 

slightly higher. A relatively broader distribution of the qs analysis is found given by the 

JZY procedure, which is due to the different analyzing strategies used for the JZY and 

KRY procedures: in the KRY procedure, the mixing ratio analysis is carried out only 

when the observed Z exceeds 15 dBZ (for grids at 2 km or higher) while in the JZY 

procedure, the analysis of proceeds wherever the four radar variables (i.e., Z, ZDR, KDP, 

and ρhv) are available. A most significant difference between the KRY and JZY analyses 

is the presence of the hail. The complete absence of the hail species in the KRY analysis 

is mainly resulted from the simple strategy used to identify hails in the current analysis 

procedure: a 50 dBZ hard threshold (as described in the previous section). It is seen in 

the selected cross section (FIG. 2.4b) the maximum of Z observation is only around 45 

dBZ, as a result, no hail is analyzed for the KRY. On the contrary, with the HCA used, 

higher likelihood of the hail occurrence is included in the JZX procedure through the 

introduction of the aggregation value calculation: some major presence of the hail is 

found within the intense convective cores.                      



31 

 
FIG. 2.5 Mixing ratio (g/kg) analyses for hydrometeor: (a)(b) rain, (c)(d) snow, 
and (e)(f) hail, using KRY (left panel) and JZX (right panel) procedure.   

 
  

Other than the hydrometeor distribution, significant difference is also shown on the 

quantitative magnitude of the mixing ratio analyses given by the KRY and JZX 

procedure. In terms of qr analysis, despite the generally similar distribution, the 

magnitude of qr maxima of the JZX procedure (~0.1 g kg-1) is found about an order 

smaller than that of the KRY procedure (~1.0 g kg-1). This magnitude difference can be 

attributed to two main factors. First, as addressed earlier, the key advantage of the 

revised analysis procedure (i.e., JZX) is the inclusion of HCA that enables the analysis 

with coexistence of multiple hydrometeor species, which is also visualized by the 



32 

analysis results shown in FIG. 2.5b, d, and f. Unlike the traditional analysis procedure 

(i.e., KRY) that constructs mutually exclusive hydrometeor analysis and the only one 

single species is in charge of contributing the whole observed Z, the Z observation in the 

JZX procedure is partitioned by multiple hydrometeor species present one single grid 

based on the HCA. As a specific example, because of the coexistence with the hail 

above the ML, the snow mass content analyzed in the JZX procedure is smaller than its 

counterpart given by the KRY procedure, in which the snow is appointed with the 

whole contribution to the observed Z. The second factor is related to the melting model 

incorporated in the JZX operators: whenever liquid (i.e., rain) and iced species (i.e., 

snow or hail) coexist, the mixing ratios of these partially-melted iced species (i.e., 

melting snow or melting hail, or mixture) is calculated and their contribution to the Z is 

taken into account (refer to Appendix A for details). However, the contribution of these 

mixtures to the Z is “implicit” and therefore not able to be seen in our analysis results of 

the pure species. Nevertheless, the impact of these mixtures on reducing the magnitude 

of the mixing ratio analysis for the pure species is still retained. One demonstration of 

this effect can be found in FIG. 2.5b and f, where coexistence of the rain and falling hail 

occurs under the ML, inferring the one order smaller rain mass analysis from the JZY 

procedure in comparison with the counterpart from the KRY procedure is partially 

owing to the rain/hail mixture (or say, wet hail). 
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 The one-hour forecast of the hourly rainfall given by all four experiments is 

provided with the CWB Quantitative Precipitation Estimation and Segregation Using 

Multiple Sensors (QPESUMS) hourly surface rainfall product, which is mainly derived 

from four CWB radar observation and ground checked (GCed) by the rain gauge 

measurements (direct to http://qpesums.cwb.gov.tw/taiwan-eng-html/index.html for 

details). The use of an observation independent from the source used for data 

assimilation (i.e., S-Pol) assures a more objective verification. Generally speaking, most 

experiments provide rainfall forecast coverage comparable to the observations except 

for the JZX_S, which produces too isolated intense precipitating cores with poorly- 

captured stratiform precipitation. On forecasting the major significant rainfall area on 

the open ocean (rainfall rate above 5 mm h-1, shaded by dark green), it is found the 

experiments with the KRY procedure outperforms the ones with the JZX procedure by 

forecasting adequately wide coverage. To summarize the major difference between 

KRY and JZX forecast results (by comparing FIG. 2.6b to c and FIG. 2.6d to e), it is 

mainly shown on the prediction of the light rain. In a word, the JZX procedure with the 

HCA applied generally results in prediction of relatively weakened (in both intensity 

and coverage) stratiform precipitation but keeps proper intensity for the major 

convective precipitating cores. The rainfall forecast results of the similar distribution 

and intensity within two groups of microphysics experiments imply a greater relative 

importance of the microphysics scheme in comparison with the mixing analysis 

procedure applied. Furthermore, it is also found the experiments with the MY double-

moment scheme are able to give prediction of the rainfall maximum much closer to the 
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observation while the Lin scheme turns to over-forecast the maximum rainfall with an 

over-100 mm exceedance.  

 From the one-hour forecast of the hydrometeor distribution in experiment 

KRY_S and JZX_S shown in FIG. 2.7, the domination of microphysics scheme over the 

mixing ratio analysis procedure can be further demonstrated. Quite similar results with 

only slight differences in mixing ratio magnitude are found for the two experiments just 

one hour into the forecast. Moreover, even with complete absence of hail analyzed at 

the initial time, the KRY_S can produce hail with both distribution and amount 

comparable to the JZX_S. Since the hydrometeor initialization given by different 

versions of analysis procedure fails to drive diverse hydrometeor forecast results 

through the model microphysics, we conclude a small sensitivity of the forecast to the 

mixing ratio analysis procedure difference. 

Given the result from the revised hydrometeor analysis procedure does not 

provide better one-hour precipitation forecast in spite of the qualitatively more realistic 

hydrometeor analysis we believe it has provided, the possible uncertainties that could 

cause this result are further discussed. First of all, the central assumption used to build 

up our analysis procedure needs careful validation. As the aggregation values in the 

fuzzy logic-based HCA was original designed for determining a dominant (i.e., most 

likely) echo class in a radar sampling volume (in their application, only the class with 

largest aggregation value is confirmed), its appropriateness of quantifying the relative 

magnitude among multiple hydrometeors is questionable. Extra in-situ information such 

as the surface hail report may be helpful to evaluate the efficacy of the analysis.  
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FIG. 2.6 Hourly rainfall accumulation (mm) of (a) CWB QPESUMS, (b) KRY_S, 
(c) JZX_S, (d) KRY_D, and (e) JZX_D valid at 01 UTC 5 June 2008. Hour rainfall 
maximum is written at the lower right corner of each plot. 
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FIG. 2.7 One hour forecast of mixing ratio (g/kg) analyses for hydrometeor: 
(a)(b) rain, (c)(d) snow, and (e)(f) hail of experiment KRY_S (left panel) and 
JZX_S (right panel). 

   

Other than the uncertainty of the validity of the analysis procedure itself, another 

issue could be its applicability on the case we examined. Essential difference of the 

precipitating mechanisms between the continental and maritime systems has been long 

and widely discussed (e.g., Pestaina-Haynes and Austin 1976; Phillips et al. 2007; 

Rosenfeld and Lensky 1998; Ulbrich and Atlas 2007; Wilson et al. 2011). To study the 

tropical MCV systems induced by the monsoonal flow, extra caution should be 

addressed while applying an analysis procedure in which certain assumptions based on 
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mid-latitude continental storm physics are applied. As a specific example, in a 

shallower developed (owing to the weaker updraft) maritime system where the warm 

rain mechanism plays a key role, excessive allowance of the presence of either surface 

hail or overshooting big drops could be unrealistic. 

Moreover, it is also found from the preliminary examination that the sensitivity 

of the hydrometeor forecast to the initial analysis difference made by versions of 

procedure is relatively weak. It brings our consideration of the criticality of the initial 

hydrometeor accuracy. Since analyzing the hydrometeor content serves as a major part 

of the ARPS complex analysis, a comprehensive understanding of its actual 

effectiveness can guide us toward an efficient path to forecast improvements. 

Many other error sources can result in the limitation of the hydrometeor analysis 

on the model forecasts in this real case study. For example, the model errors (or 

deficiency), in particular the microphysics scheme, can be responsible for the small 

sensitivity of the forecast results to the change of the hydrometeor initialization. On the 

other hand, possible improvement given by the hydrometeor fields through the analysis 

can also be limited by the poor accuracy of state variables at the initial time (i.e., IC 

uncertainty) of other non-hydrometeor fields such like winds, temperature, and moisture.   

Motivated by the many remaining uncertainties revealed by this real case study 

reported here, further works presented in the following of this dissertation are carried on 

in the direction of better extracting and hopefully maximizing the benefit of cloud 

analysis on storm prediction.               
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Chapter 3: Observing System Simulation Experiments based on Direct 

Initial Variable Insertion 

3.1 Introduction 

 Accurate quantitative precipitation forecasting (QPF) is critical because of the 

great impact on human lives and property. It is also a key input for models that predict 

water-related hazards (e.g., flooding and drought) and for monitoring near-future water 

resource availability (Vasiloff et al. 2007). The NWP models, in spite of their 

continuous advances, are still limited in providing accurate QPF, particularly for the 

warm season convective precipitation (Uccellini et al. 1999). One fundamental 

challenge can be attributed to the often poor initial conditions (ICs) of high-resolution 

forecasting systems, as well as the highly nonlinear physics and dynamics, as it was first 

pointed out by Lorenz (1963) and subsequently demonstrated by many studies based on 

practical applications.  

A variety of radar data assimilation (DA) techniques in different degrees of 

complexity has been developed in recent decades for improved short-term convective 

storm predictions by providing more accurate ICs in better details. Among these many 

DA methods, the cloud analysis is known for its ability to construct three dimensional 

cloud-related fields (e.g., hydrometeor contents, temperature, moisture) from sources of 

measurements with the application of physical models (e.g., parcel theory) and semi-

empirical rules. Given its relative simplicity and low computational demand, the general 

cloud analysis procedure, with variety in actual realizations, has been widely 

implemented in many operational forecasting institutes around the world [e.g., NOAA 
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FSL’s LAPS (Albers et al. 1996); UKMO’s NIMROD (Golding 1998); NOAA’s Rapid 

Refresh RUC (Benjamin et al. 2004)].  

The ARPS complex cloud analysis, usually used in combination with the ARPS 

3DVAR wind analysis, has shown its effectiveness in assimilating radar reflectivity data 

for improving short range forecasts of various types of weather systems (Hu et al. 2006a, 

b; Dawson and Xue 2006; Zhao and Xue 2009). Even though some positive impacts of 

the cloud analysis have been obtained in a number of case studies, particularly in the 

alleviation of the typical precipitation spin-up problem (Dawson and Xue 2006), its 

benefit is found to reduce promptly within the very first hour of the forecast in terms of 

a significant drop in the verification score (Xue et al. 2008). The limitation is greatly 

associated with the semi-empirical nature and assumptions involved, which can result in 

analysis of model state variables that is not necessarily consistent with the prediction 

model. Accordingly, the impact of the information introduced by the cloud analysis is 

mostly eliminated by a rapid self-adjustment during the initial stage of the forecast. 

Understanding the relative importance of the accuracy of various related state variables 

in the ICs can lead to an increased efficacy of cloud analysis and potential forecast 

improvements. 

 In the past decade, a certain amount of efforts have been made to investigate the 

relative importance of different state variables on the skill of convective scale storm 

predictions. By performing a series of sensitivity test, Weygandt et al. (1999) found the 

perturbation horizontal wind, among all fields they examined, having the largest impact 

on the evolution of a simulated convective storm. Forecast errors on a supercell storm 

simulation were examined, using 4DVAR, in terms of the response of the cost function 
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by Park and Droegemeier (2000). It was found for both in-storm and out-of-storm (i.e., 

environment) perturbation, the cost function has the greatest sensitivity to the 

temperature over either pressure or water vapor. In Weygandt et al. (2002a, 2002b), a 

study developing a single-Doppler parameter retrieval technique for a short-range 

prediction of a supercell thunderstorm, the strong dependence on the initial moisture 

fields for the predicted storm evolution was concluded. By alternately removing the 

perturbation in each of the initial fields, Sun (2005) tested the sensitivity of a supercell 

storm prediction and found its greater sensitivity to the wind, water vapor, and 

temperature (over the rain water and cloud water mixing ratio).  

 Inconsistency among the conclusions is found for the studies reviewed above. 

Due to the variation of the contexts (e.g., weather system chosen, approach applied, 

verification method) in these studies, their findings could be case dependent. As the 

main goal of this study is to investigate the limitation and the potential of the cloud 

analysis on assimilating the radar reflectivity data to improve the model predictions, we 

would like to “more unambiguously” examine the relative importance of these cloud-

related model state variables. For this purpose, the Observing System Simulation 

Experiments (OSSEs) can serve as the best approach by providing an absolute truth 

simulation, and therefore the accuracy of both analysis and forecast can be assessed and 

verified quantitatively. A relevant OSSE study was conducted by Ge et al. (2013); 

however, in their study the impact of individual state variables was examined as 

potential observations, which are presumed comprehensively available over the entire 

domain and the intermittent 3DVAR analyses were applied. 
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 In addition to the initial condition, another key factor that keeps the convective 

scale prediction challenging is the prediction model errors. Among the many possible 

deficiencies of the NWP model, the cloud microphysics parameterization scheme can 

pose significant forecast errors owing to the uncertainties involved. For example, the 

superiority of the microphysics schemes with more accurate and sophisticated 

treatments involved (i.e., the multi-moment schemes) are found to play a crucial role on 

providing more realistic storm structure and cold pool strength of the supercell 

thunderstorm simulation (Dawson 2009; Milbrandt and Yau 2006). The impact of the 

microphysics error on the storm prediction will also be evaluated in this study within 

our QSSE framework. 

 In the remainder of this chapter, the methodology of this study is first introduced 

along with the design of the OSSEs in section 3.2. In addition to the development of the 

truth simulation and the control experiment, a model-error-containing experiment set is 

conducted in section 3.3 to investigate the impact of the errors in model microphysics 

on storm prediction. In section 3.4, we then perform a set of model error-free 

experiments in which the relative importance of different individual model state 

variables is examined by direct insertion from the truth. 

  
3.2 The Truth Simulation and the Degraded Control Experiment 

 The linear mesoscale convective system (MCS) taking place on the Central 

Great Plains at the beginning of 19 May 2013 is selected for conducting our study. 

Given with strong synoptic forcing including the low pressure center, associated front, 

dry line, and southerly moist air flow supplied by the Gulf of Mexico at the near surface 

level (Fig. 3.1) and the upper layer positive vorticity advection (not shown) that provide 
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favorable environment, the MCS first initiated at the leading edge of the low pressure 

center around the west border of Kansas and Nebraska, and then developed into a north-

south oriented convective line across from North Dakota to Oklahoma as it propagated 

northeastward with time. 

 
FIG. 3.1 Synoptic analysis at 925 mb valid at 00 UTC 19 May 2013. Geopotential 
height, temperature, and dew point temperature are provided with black solid contours, 
red dash contours, and green solid contours, respectively. Winds are provided in flags. 
Courtesy to the Storm Prediction Center of NOAA’s National Weather Service. 

 
 
3.2.1 The Model Configuration and Truth Simulation 

From the collaborative Spring Experiment conducted by the Center for Analysis 

and Prediction of Storms (CAPS) and the NOAA Hazardous Weather Testbed (HWT), 

one of the ensemble members, arps_cn at 00 UTC of 19 May 2013, is acquired for the 

initial conditions (ICs) of our truth simulation. The analysis of arps_cn is generated by 
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applying procedures of both ARPS 3DVAR and cloud analysis to WSR-88D data and 

other available surface and upper air observations, and is available in 4-km grid spacing. 

A physical domain of our interest that covers most Kansas and Nebraska of 803 × 803 × 

53 grids with 1-km horizontal resolution (FIG. 3.2) is then extracted from the arps_cn 

analysis. In vertical, the resolution is stretched with height from a minimum grid 

spacing of 50 m near the surface. The ARPS model is used to perform the forecast for 

our experiments. 

All interpolated model state variables including three wind components u, v, w, 

pressure p, potential temperature θ, water vapor specific humidity qv, mixing ratios of 

cloud water qc, cloud ice qi, rain water qr, snow qs, and hail qh are adopted to serve as 

ICs, with which a six hour forecast is performed. The Milbrandt and Yau double-

moment microphysics parameterization scheme (the MYDM scheme hereafter; 

Milbrandt and Yau 2005a, 2005b) with six hydrometeor species (cloud water, cloud ice, 

rain water, snow, graupel, and hail) is selected as its ability in giving microphysical 

features of storm closer to observation has been demonstrated in many present studies 

(e.g., Jung et al. 2010, 2012; Putnam et al. 2014). Besides, the 1.5-order turbulence 

kinetic energy (TKE) scheme, atmospheric radiation transfer scheme, and stability 

dependent surface scheme are included; however, the convective cumulus 

parameterization is omitted for the fine grid spacing used. For advection of model state 

variables, a fourth order scheme is applied in both horizontal and vertical direction for 

the momentum variables while a multi-dimensional version of flux-corrected transport 

(FCT) scheme is applied for scalar variables in better working with multi-moment 

microphysics scheme as recommended.  
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 From the North American Mesoscale Forecast System (NAM), the three and six 

hour forecast fields of the 00 UTC run (same date) are interpolated from their original 

resolution of 12 km to our 1-km spacing domain for the lateral boundary condition 

(LBC) use at 03 and 06 UTC of our truth simulation. Note that six-hydrometeor-

included MYDM scheme is used for the truth run while only five hydrometeor species 

are available in the IC. A spin-up period is therefore required for the model to reach its 

full complexity, at least in microphysics. Consequently, the first two-hour simulation is 

retained and excluded for analysis and verification, resulting in a four-hour studied 

period from 02 to 06 UTC. FIG. 3.3 is provided for a better understanding of the design 

of our experiment. 

 

 
FIG. 3.2 Computational domains used for the experimental EnKF ensemble 
in 2013 Spring Experiment (600 × 400 grids with 4-km spacing denoted by 
black rectangle) and our study (803 × 803 grids with 1-km spacing denoted 
by red square). 
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FIG. 3.3 Time line of the truth simulation and the experiments. Main 
studied period is marked by gray shading area. 

 

The hourly simulated composite reflectivity of the truth simulation using the JZX 

operators is provided in FIG. 3.4, showing the MCS evolution during our studied period. 

The surface wind fields are also plotted in demonstrating the cyclonic flow and the 

associated low pressure center evolving along the west border of the states. 
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FIG. 3.4 Hourly simulated composite reflectivity (Z) and surface winds (Vh) 
of the truth simulation at (a) 02 UTC, (b) 03 UTC, (c) 04 UTC, (d) 05 UTC, 
and (e) 06 UTC. Wind flags are plotted in 40 km interval. 



47 

3.2.2 Degraded Control Experiment from Smoothed Initial Condition  

 After the truth simulation has been generated, we need to create a degraded IC 

upon which improvement is sought through various methods, including direct insertion 

of accurate state variables or by using the cloud analysis. The experiment starting from 

the degraded IC serves as a baseline, or control experiment (CNTL hereafter) for our 

sensitivity study. Considering that most ICs of regional NWP models do not contain 

detailed convective scale information, we create the degraded IC by applying three-

dimensional smoothing to the 2-hour truth forecast fields at 02 UTC, and by setting the 

cloud and hydrometeor mixing ratios to zero throughout. 

 Model state variables u, v, w, θ, and qv are smoothed horizontally on each model 

level by applying a running-mean average over a squared box of 2d width on each side. 

Therefore, the value at the center of the box is replaced by the average value of all grids 

within the box. As the point gets close to the boundary, reduced number of points is 

involved in the averaging. Given the method used, the wider is the averaging box, the 

stronger is the smoothing. After the horizontal smoothing is done, we then perform a 

three-layer averaging in the vertical direction. 

 Four experiments with varying degrees of smoothing in IC, SMT_d15, 

SMT_d35, SMT_d55, and SMT_d75, are first performed to find the most suitable 

candidates to use as CNTL. Different width of the smoothing box is used to achieve 

different degree of smoothing. In Table 3.1, four experiments and their smoothing 

configurations are listed along with simple statistics of the smoothed fields, and the 

truth simulation is also included as a reference. The statistics show that in general, the 
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extreme values are reduced as the smoothing degree increases (i.e., larger smoothing 

area applied). 

 
 
Table 3.1 List of the truth simulation, four smoothing experiments, and their 
respective statistics 
 Truth  SMT_d15 SMT_d35 SMT_d55 SMT_d75 
Grid 
number in 
smoothing 
area 

0 31 ×31 71 × 71 111 × 111 151 × 151 

Smoothing 
area (km2) 

0 900 4900 12100 22500 

Statistics, listed in form of maximum/minimum. 

u (m/s) 
24.1220/ 

-17.1698 
19.0819/ 

-13.0527 
18.3769/ 

-11.3160 
18.1717/ 

-10.3630 
17.8410/ 

-10.1474 

v (m/s) 
32.5896/ 

-11.2516 
28.4241/ 

-7.8982 
27.0882/ 

-5.7812 
26.3817/ 

-4.6936 
25.7051/ 

-4.6351 

w (m/s ) 
12.1976/ 

-7.5282 
1.2631/ 

-0.7680 
0.6581/ 

-0.3714 
0.5120/ 

-0.1873 
0.4093/ 

-0.1511 

θ (K) 
498.3150/ 

297.4118 
498.1960/ 

297.5162 
498.1078/ 

297.5086 
497.9968/ 

297.5296 
497.8345/ 

297.5338 

qv (g/kg)  
18.1776/ 

0.0000 
18.0348/ 

0.0017 
18.0575/ 

0.0025 
18.1092/ 

0.0026 
18.0936/ 

0.0031 
 

In FIG. 3.5, the perturbation potential temperature (θ’ ) and wind fields at 6 km 

AGL at the IC time are shown for the truth simulation and for the four experiments after 

applying different degrees of smoothing. The 6 km AGL is shown because the MCS is 

found to initiate first around this level due to mesoscale convergence and the presence 

of warm unstable air. The positive θ’  in the central part of this region is due to heating 

associated with the MCS in the truth simulation (FIG. 3.4a). 
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FIG. 3.5 Perturbation potential temperature (θ’ ) and horizontal wind (Vh) 
field at 6 km AGL at 02 UTC for (a) the truth simulation, experiment  (b) 
SMT_d15, (c) SMT_d35, (d) SMT_d55, and (e) SMT_d75. Wind flags are 
plotted in 40 km interval. 
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 Throughout this study, scaled root mean square (SRMS) error is computed as a 

measure of the dissimilarity between the truth simulation and any experiment to be 

verified. Model state variables including wind components u, v, w, temperature T, 

specific humidity qv, and total water mixing ratio qw as the sum of all six hydrometeor 

species (i.e., qc + qi + qr + qs + qg + qh) are examined. The SRMS is equal to the regular 

RMS error scaled by the squared root of K∆MN , which is the variance the initial condition 

error of X of the control experiment. The scaling non-dimensionalized the errors of 

different variables so that mean errors across different variables can be calculated. By 

simply averaging the SRMS results of all six variables listed above, we introduce a 

general measure of the overall forecast performance, the average SRMS (ASRMS) error. 

For detailed formulations of SRMS and ASRMS errors, refer to Appendix B. 

 FIG. 3.6a-e shows the SRMS errors of various model state variables and FIG. 

3.6f shows the ASRMS errors of the forecasts of the four smoothing experiments. To 

reduce impacts from the lateral boundary, the verification is confined to an inner portion 

of the model domain that is 100 km away from the lateral boundaries (as denoted by the 

dark blue square in FIG. 3.5a), and excludes both top and bottom model layers in the 

vertical. Besides, the experiment with the strongest smoothing (i.e., SMT_d75) is used 

to provide the scaling factor for the errors shown in the figure. As we can see, for most 

variables including Vh, T, and qv, the difference between the truth simulation and the 

experiments is proportional to their degree of smoothing. Generally, the smoother is the 

IC, the larger is the difference in the subsequent forecasts. This is expected since a 

smaller amount of smoothing will retain more fine-scale structures in the IC.  However, 

there are some exceptions with w and qw.  
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For w (FIG. 3.6b), the increasing dissimilarity with the degree of smoothing is 

only maintained during the first half an hour and partly near the end of the 4-hour 

forecast. Between 1 and 3 hours, the trend is mostly reversed, with the experiment with 

the least smoothing having the largest error in w forecast. This special behavior of w can 

be mainly attributed to the general nature of w field. Unlike other fields that commonly 

have gentle changes in spatial, the w field could have a rather localized abrupt increase 

or decrease due to isolated convective cores. For regions outside the convection, where 

w is relatively small (varying slightly around 0 m/s), the magnitude of w value can be 

significantly exceeded by the forecast error (i.e., difference from truth). When the 

updraft/downdraft in forecast has a displacement in its location from the truth, double 

penalty will occur, resulting in large RMS errors. In other words, the verification of the 

RMS error calculation of w is much more sensitive to small-scale displacement errors 

than other variables. Predicting w in wrong places will introduce double penalty. This is 

confirmed by looking at the errors of a w field with constant zero values everywhere – 

its SRMS errors calculated against the truth is actually the lowest after 1 hour, and 

decreases steady with time through the end of the 4 hour forecast (FIG. 3.4f). The fact 

that the w errors of SMT_d15 are the largest after half an hour and 2.5 hours of forecast 

suggests that smaller scale structures retained in the IC produce relatively large vertical 

velocities in the forecast that do not match exactly those in the truth simulation, leading 

to larger errors than in other experiments that have weaker vertical motion.       

As for qw (FIG. 3.6e), exactly the same initial SRMS_qw is shared among all 

experiments as all hydrometeors were removed in the ICs. Within the first 1.5 hour of 

forecast, the expected relationship between IC smoothness and forecast error is 
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maintained. After that, irregular behavior of SRMS_qw occurs as SMT_d35 shows the 

largest error from the truth. However, after 1.5 hours, the differences among the errors 

of the four experiments are relatively small. In spite of the exceptional behaviors with w 

and qw, the overall forecast performance as measured by the ASRMS errors (FIG. 3.6f) 

still shows a clean relationship between the IC smoothness and the resulting forecast 

errors. 

 

 
FIG. 3.6 SRMS error time series of (a) Vh, (b) w, (c) T, (d) qv, (e) qw, and (f) all 
variables for four smoothing experiments. The extra gray solid line in (b) is for a 
uniform 0 m s-1 w field. 
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 The non-scaled RMS errors are also computed to examine the impact of initial 

smoothness on Z prediction (FIG. 3.7a). Z is examined in particular because it is an 

observed quantity and for real cases it is often used for forecast verification. Here, the 

JZX reflectivity operators are again used for simulating Z from the forecast state 

variables. Beginning with completely clear air, all four experiments share the same 

initial RMS error of Z (RMS_Z). As the forecast is carried on, the experiments with less 

smoothed IC begin to outperform by giving smaller RMS_Z. All four experiments share 

a decreasing trend of RMS_Z in general, owing to the gradual development of the MCS. 

Two other commonly used metrics, bias score and Equitable Threat Score (ETS), are 

also calculated for Z verification (provided as FIG. 3.7b and c, respectively). An 

arbitrary threshold of 30 dBZ that can be related to moderate precipitation is used. 

Similar to what has been seen in RMS_Z, a complete underforecast (i.e., bias score = 0) 

is obtained at beginning for the initial clear air field. An increasing trend is showing up 

as the storm gradually develops in the forecast. Among the experiments, the ones with 

less smoothed IC tend to be more efficient in storm development as their bias scores are 

getting closer to one (i.e., less underforecast) faster. Generally, ETS is also increasing 

with forecast time for all experiments, in which the one with least (most) smoothed IC 

gets the highest (lowest) score.  

The MCS evolution of the experiments with the smallest (i.e., SMT_d15) and 

the largest degree (i.e., SMT_d75) of smoothing in IC are provided in FIG. 3.8 and FIG. 

3.9, respectively, by which the verification results discussed above can be further 

illustrated. After comparing the four experiments with the truth simulation, it is found 

even with the largest degree of smoothing (i.e., SMT_d75), the storm can be rebuilt 
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within one hour of forecast as certain important mesoscale features have been kept in 

the smoothed initial condition (e.g., the warm core showing in FIG. 3.5e). The errors on 

the convective scale are much larger though in SMT_d75. Since the goal of our study is 

to examine the benefits of introducing convective scale information into the IC through 

various procedures, too good a baseline forecast is not desirable. For this reason, 

SMT_d75 is chosen to serve as the CNTL or baseline experiment. 

 

 
FIG. 3.7 (a) RMS_Z, (b) bias score, and (c) ETS calculated with threshold of 30 
dBZ for four smoothing experiments. 
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FIG. 3.8 Same as FIG.3.4, but for the experiment SMT_d15. 
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FIG. 3.9 Same as FIG. 3.4, but for the experiment SMT_d75. 
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In FIG. 3.10, the averaged scaled energy difference (ASED) of four smoothing 

experiments is shown. This index is calculated based on three energy differences (EDs): 

kinetic ED (KED, calculated upon u, v, and w), thermal ED (TED, calculated upon T), 

and latent ED (LED, calculated upon qv), and used for evaluating the accuracy of the 

forecast results. These EDs of each experiment at every verification time are scaled by 

their own values at the initial time of the forecast before they are averaged into ASED. 

The scaling process results in ASED values of always unity at the initial time for all 

experiments verified. With both dynamic and thermodynamic structures are included in 

the verification, the ASED is ideal for the evaluation of the overall model forecast 

performance. In a word, the change of the ASED values along with forecast time within 

individual experiments represents the evolution of the forecast error relative to the 

initial error. Details about the formulation of ASED are provided in Appendix B. A 

similar trend of the forecast error are found for all four smoothing experiments (FIG. 

3.10): the forecast errors are at first growing with time, reaching their peaks after 2 to 

2.5 hour of the forecast, and then gradually decreasing in the later stage of forecast. It is 

found that experiments with larger degree of smoothing in IC result in larger error 

growths in terms of a relatively sharper increase in ASED (i.e., larger slopes) in the 

beginning stage of the forecast. This result is consistent with the ASRMS discussed 

earlier. According to these results, we conclude that the positive impact of the finer-

scale environmental features retained in the ICs on the reduced forecast errors is not 

only significant but also systematic. 
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FIG. 3.10 ASED of four smoothing experiments. 

 

3.3 Experiments with Model Error in Microphysics 

 Many sources can be responsible for the resulting forecast errors of NWP 

models. Other than the predictability limitation due to the nonlinear nature of the real 

atmosphere which has been demonstrated significantly sensitive to the ICs (Lorenz 

1963), the prediction model itself can also introduce errors because of the deficiency in 

its design. Various cloud microphysics parameterization schemes (or shorten as 

microphysics schemes) have been developed for the NWP model use to characterize the 

hydrometeor-associated microphysical processes taking place in the spatial scale finer 

than the model-resolved grids. Given that the degree of sophistication varies among 

different microphysics treatments, the resulting forecasts can end with different 

accuracy. As the critical role of the microphysics schemes on predictions of the moist 

convection has been reported by many present studies (e.g., Dawson et al. 2010; Van 

Weverberg et al. 2011), a better understanding of the relative importance of the 

microphysics errors on storm prediction is favorable before we move forward to other 

model error-free experiments.          
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3.3.1 Design of Experiments 

 A set of experiments have been designed under our OSSE framework for us to 

examine the forecast accuracy resulting from the model error in microphysics schemes. 

In addition to the CNTL experiment as introduced in the previous section, three other 

experiments: MYDM, MYSM, and Lin, are performed. The main difference among 

these three experiments, as denoted by their names, is the microphysics scheme that has 

been implemented. Similar to the MYDM scheme introduced earlier, the MYSM is the 

acronym for the Milbrandt and Yau single-moment scheme. All six types of 

hydrometeor included in the MYDM scheme are also available in the MYSM scheme. 

Another experiment, with the application of a widely used single-moment ice 

microphysics scheme developed by Lin et al. (1983) with only five types of 

hydrometeor species (same as those in the MY schemes but with graupel excluded) is 

conducted as a contrast to the MYSM. Unlike the double-moment scheme that allows 

higher variability in drop size distribution (DSD) by predicting both mass content (qx) 

and total number concentration (Ntx) of hydrometeors, the single-moment scheme only 

predicts the mass content with assumption of mostly fixed DSD parameters, resulting in 

limited microphysical complexity it can characterize.   

All three microphysics experiments inherit most smoothed fields as used for the 

CNTL, except the hydrometeor variables from the truth simulation are remained in their 

ICs. To enable a full complexity that can be driven by respective microphysics scheme 

for storm prediction, both mixing ratios and the total number concentration are kept for 

the MYDM while the mixing ratios are kept for the other two single-moment 

experiments. For all experiments, the same JZX reflectivity operators are used for the 
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derivation of the simulated reflectivity, in which the DSD intercept parameter (N0) is 

derived from the predicted Nt for the double-moment experiment while the fixed N0 

(default values) is used for the single-moment experiments. To compensate an 

expectable underestimation of the simulated reflectivity at the initial time for the Lin 

experiment owing to the lack of graupel species in its microphysics, the graupel is 

added into the hail category in the IC. Because the MYDM applies the same 

microphysics scheme to the truth simulation, it serves as the only model error-free 

experiment among the three microphysics experiments. We would like to note here the 

MYDM scheme is also used by the CNTL, but the hydrometeor fields are unavailable in 

its ICs. The configuration of the CNTL and three microphysics experiment is provided 

in Table 3.2 for a better perception. As a quick summary, at the initial time, all three 

microphysics experiments share the same error in most model state variables but retain 

perfect (i.e., error-free) hydrometeor information. Sensitivity of the model forecasts to 

different impacting factors, such as the microphysics error and the accuracy of 

hydrometeor and non-hydrometeor fields in ICs, is of our interests for exploration. 

 
Table 3.2 Configurations of microphysics experiments 

Experiments and 
microphysics scheme 
implemented 

Number of 
hydrometeor type 
included 

Initial fields of 
state variables  
u, v, w, θ, and qv 

Error-free 
hydrometeor 
information 
included in IC 

CNTL# 
6 (cloud water, cloud 
ice, rain, snow, graupel, 
and hail) 

Smoothed None 

MYDM 6 (same as CNTL) Smoothed qx and Ntx 
MYSM 6 (same as CNTL) Smoothed qx 
Lin 5 (graupel unavailable) Smoothed qx 
# is marked for CNTL to remark its application of MYDM. 
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3.3.2 Results and Discussion 

 In FIG. 3.11a-e, the SRMS errors of various model state variables are shown for 

the CNTL and three microphysics experiments. On the prediction of most variables 

including the horizontal winds, T, and qv, the microphysics experiments with 

hydrometeor fields in the IC, regardless of the microphysics scheme used, generally 

outperform the CNTL in terms of the constantly smaller forecast errors throughout the 

entire four hours range. These outperformances of the microphysics experiments over 

the CNTL, in terms of the SRMS error difference, become even more significant in the 

later hours of the forecast. In fact, there is a slight exception found on the qv prediction 

in the first hour of the forecast: the microphysics experiments have SRMS errors 

slightly larger than the CNTL. This exception suggests the great sensitivity of the model 

moisture prediction to the perfect initial hydrometeor fields introduced. It seems a 

certain degree of imbalance on prediction can be caused by the storm with convective 

scale structure, if provided with a supporting environment lacking the comparably fine 

features. Also, a much closer linkage of the hydrometeor fields to the moisture field 

than to other fields (e.g., winds or temperature) can be implied. 

The same exception is also found on the w prediction in the first two hours of 

the forecast. However, the SRMS error difference between the CNTL and three 

microphysics experiments is much more significant compared to what is seen on the qv 

prediction. A possible explanation for the larger error in the microphysics experiment is 

that the load put by the perfect hydrometeors in the IC generates extreme w values 

which do not match exactly with the truth given the degraded environmental features. 

As the forecast is carried on with time, the prediction of w given by the microphysics 
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experiments outperform that given by the CNTL in the last hour, indicating the benefit 

of the perfect initial hydrometeor fields finally overcomes the poor accuracy of other 

non-hydrometeor fields in the IC. 

Given the perfect initial hydrometeor fields, the microphysics experiments show 

an absolute advantage over the CNTL on predicting qw in terms of a zero initial error. 

However, the error difference decreases quickly after the forecasts are launched and 

becomes barely discernible after two hours.  

 

 

 
FIG. 3.11 Same as FIG. 3.6, but for the CNTL and three microphysics experiments. 
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While comparing the forecast performance among the three microphysics 

experiments, one may expect a systematic outperformance given by the MYDM since it 

is the only experiment with no microphysics errors involved (i.e., model error-free). 

However, it turns out the constant outperformance throughout the entire four hours 

range of the MYDM is only found on the predictions of T and qv. On the prediction of 

Vh and qw, the better performance of the MYDM over the other two microphysics error-

containing experiments is found limited in the last two hours and the first one and a half 

hours, respectively. It can thus be conclude the forecasts of T and qv, compared to 

forecasts of other state variables, have greater sensitivity to the microphysics error. The 

better qw forecast performance of the MYDM over the other two single-moment 

experiments in the beginning stage can be attributed to the better details of the particle 

size distribution given by the extra predicted moment Nt. On the other hand, the forecast 

error difference between two single-moment experiments is relatively insignificant on 

most state variables, suggesting no one of them has substantial superiority to the other.  

Overall, given by the ASRMS (FIG. 3.11f), the general forecast performance of 

the three microphysics experiments is significantly better than the CNTL throughout the 

four hours range of the forecast. This advantage (i.e., error difference) is initially 

provided by the introduction of the perfect hydrometeors in the ICs, and then 

maintained and continuously grown by the sequential outperformances of more accurate 

Vh, T, and qv predictions. Among three microphysics experiments, the overall forecast 

given by the MYDM surpasses the other two single-moment experiments throughout 

mostly the four hours range, especially within the first two hours. However, even the 

MYDM, the microphysics error-free, experiences a significant forecast error growth due 
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to the errors in the initial non-hydrometeor fields, which is also believed to be the key 

impacting factor that limits the significance of the relative advantage of the MYDM to 

the other two single-moment experiments. No significant relative advantage is found 

between the MYSM and Lin, except for the last hour of the forecast in which the 

MYSM outperforms the Lin on predictions of most variables. Furthermore, in terms of 

the overall trend of the forecast error evolution, it is found the three microphysics 

experiments share a similarity on reaching their forecast error maxima around 4:00 

UTC while the CNTL shows its peak a little later at 4:30 UTC, highlighting the 

different efficiency on constructing the structure of the storm and associated 

environment due to the availability of hydrometeors in the ICs. Same trend is shown in 

the ASED verification (FIG. 3.12): the model forecast error growth of the CNTL is 

steeper and lasts longer than that of the microphysics experiments. With the contrast 

between the CNTL and two single-moment experiments, it is concluded the perfect 

hydrometeors in the ICs, compared to the model microphysics error, play a relatively 

important role on giving more accurate predictions of the model state variables. 

 

 
FIG. 3.12 Same as 3.10, but for the CNTL and 
three microphysics experiments. 
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The composite reflectivity and surface wind fields of the truth run, CNTL, and 

various microphysics experiments at the initial time (2:00 UTC) and two hours forecast 

range (4:00 UTC) are provided in FIG. 3.13 and FIG. 3.14, respectively. Note that 

instead of the entire domain used for the simulations, only the inner domain (as denoted 

by the blue square in FIG. 3.5a) on which the verification indices are calculated is 

focused and shown in the rest of our study. In FIG. 3.13 we see that even the same JZX 

reflectivity operators are applied on the same set of perfect hydrometeor fields at the 

initial time for all microphysics experiment, the intensity of the simulated Z shown for 

the MYDM is significantly higher than that of two other single-moment experiments, 

especially at the leading areas with the intense convective cores. On the contrary, the 

two single-moment experiments show relatively significant stratiform precipitation. 

These differences are mainly due to the different degree of freedom on microphysical 

process that can be characterized by the various microphysics schemes. Specifically, as 

the single-moment schemes only predict the hydrometeor mass content, their variability 

in DSD is reduced by the fixed intercept parameter (N0) applied. On the contrary, extra 

variability of the MYDM is provided by the variable N0, derived from the extra 

predictable moment Nt. More discussions about the variability of N0 can be found in 

following sections and next chapter. 

 For the surface winds at the initial time, it is found most of the general features 

such as the cyclonic circulation associated with the low pressure center at the southwest 

corner of the domain are still kept in the smoothed fields for the microphysics 

experiments. However, certain features at smaller scale associated with localized storm 

developments are smoothed out. For example, there is a convergence line (as shown in 
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FIG. 3.13a) located behind the north tip of the convective line present in the truth 

simulation. Its occurrence can be attributed to the prevailing southerly winds and the 

northerly flows associated with the storm downward motions, which is localized but 

significant in its intensity. After the 3D smoothing, these storm-related flows are greatly 

weakened, and so is the associated convergence line (as shown in FIG. 3.13b-e). 

Unfortunately, small scale features like this usually play a critical role on storm 

evolution and large errors can be caused on the subsequent forecasts as a result. As a 

demonstration in our case, in the truth simulation, right at the location of the 

convergence line there is a convective line initiating in the later hours (as shown in FIG. 

3.14a). On the contrary, the formation of this convective line, however, is not seen in 

other experiments with smoothed ICs. Even with the perfect initial hydrometeor fields 

and perfect model microphysics as provided in the MYDM (FIG. 3.14d), the convective 

line is still not able being regenerated for the lack of the required kinetic feature. 

 A qualitative idea about the impact of different microphysics schemes on storm 

prediction is given by FIG. 3.14, the two hours forecast of the reflectivity. Generally, 

similar storm distribution is shown among all three microphysics experiments. The 

major difference is seen in the intensity of the forecast convection: the MYDM tends to 

give storm prediction with more dominant intense convection, which is most close to 

the truth simulation, while the MYSM tends to generate more stratiform precipitation 

with less organized convective cores embedded within. The Lin, compared to the two 

MY schemes, is an intermediate case. On the whole, none of the single-moment 

experiments is able to provide storm prediction with intensity comparable to the truth. 

Underforecast in the storm intensity is also found for the MYDM, but it is relatively 



67 

small. As the key driver of the storm movement/propagation played by the horizontal 

wind fields has been reported in existing studies, the small sensitivity of the horizontal 

wind forecast to the microphysics scheme used can be implied by the similar predicted 

storm location/distribution among different microphysics experiments shown in FIG. 

3.14c-e. This implication is also consistent with our earlier SRMS error verification. 

 Even with no hydrometers at the initial condition time, the CNTL can build up 

the storm with intensity comparable to the truth in a considerable efficiency (within two 

hours, specifically, as shown by FIG. 3.14) through the use of the perfect microphysics 

treatment. The advantageous application of the error-free model microphysics (i.e., the 

MYDM) on spinning up the moist storm from a dry IC will be further demonstrated by 

the quantitative verification of reflectivity later.  
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FIG. 3.13 Composite reflectivity and surface winds at 02 UTC for (a) truth 
simulation, (b) CNTL, (c) MYSM, (d) MYDM, and (e) Lin. The 
convergent line is indicated by a red dash line in (a). Wind arrows are 
plotted in 30 km interval. 



69 

 
FIG. 3.14 Same as FIG. 3.13, but for 04 UTC. 
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FIG. 3.15, the verification of simulated reflectivity, provides qualitative insight 

into the overall performance of the storm prediction given by the CNTL and three 

microphysics experiments. In terms of the general similarity, given by the RMS error, 

between each experiment and the truth simulation, the MYDM is found to be the only 

one that keeps performance better than the CNTL over the entire four hours range. On 

the contrary, the other two single-moment experiments both have their performance 

surpassed by the CNTL at 3:30 UTC and beyond. Similar result is also seen in the ETS 

verification that evaluates the experiment performance on predicting storms with 

moderate intensity (here, 30 dBZ and above). Indicated by the result, even with the 

benefit of the perfect hydrometeor fields in ICs, the outperformance of the single-

moment experiments over the CNTL can only last for one hour in presence of the 

microphysics errors. The difference between these reflectivity verification results and 

those of the model state variables discussed earlier implies a greater impact of the 

microphysics error on the Z prediction than on the other model state variables. On the 

comparison between the two single-moment experiments, although the MYSM is found 

to outperform the Lin with Z prediction generally closer to the truth (in terms of smaller 

RMS errors, provided in FIG. 3.15a) at most times throughout the four hours range 

(with only one slight exception at 3:30 UTC), its tendency of producing fast-dissipating 

storms, as illustrated by FIG. 3.14c with relatively weak stratiform precipitation as well 

as demonstrated by the significantly low bias scores (FIG. 3.15b), makes it no better 

than the Lin after 3:30 UTC on predicting intense convection (also demonstrated by 

FIG. 3.15c). 
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Because the hydrometeor mixing ratios are the main input to calculate the 

simulated reflectivity, one may expect similar results with the qw and Z verifications 

among the experiments using different microphysics schemes. However, we find that 

noticeable differences in qw prediction among different experiments is limited to the 

very first hour of forecast, while MYDM outperforms other microphysics schemes in 

terms of Z throughout the 4 hours of forecast and the differences are quite significant. 

The seemingly inconsistency can be explained by the fact that Z depends on many more 

variables than qw. For one thing, qw is a simple sum of all hydrometeor mixing ratios; it 

is therefore not sensitive to the distribution of water and ice among the individual 

species while the actual species with the existence of ice and water mass matters to the 

Z calculation. In addition, Z is also a function of the intercept parameters N0x for each of 

the species, which are assumed fixed values in single moment schemes but derived from 

predicted total number concentrations Ntx in the case of a double moment scheme. 

Therefore, compared to the qw, Z is much more sensitive to the details of the 

hydrometeor species, including their mass distribution among the species and their 

particle size distributions. As a result, Z difference provides a more stringent measure of 

the differences among experiments. For these reasons, the better performance of 

MYDM in the later forecast was not seen in terms of qw but could still be seen in Z, 

indicating better prediction of microphysics details in MYDM.    

One thing we would like to point out here that in FIG. 3.15c, the ETS of the 

MYDM is able to remain above the CNTL as long as four hours. Given the key 

difference between the CNTL and MYDM, the advantaged performance of the MYDM, 

therefore, suggests potential improvements on the storm predictions can be theoretically 
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achieved by the accurate hydrometeors in the ICs. However, this length of advantage is 

rarely found in the practical experience of real case simulation, which could be 

attributed to the limitations of 1) the analysis error in initial hydrometeor fields, and 2) 

the imperfectness of the microphysics schemes.            

 

 
FIG. 3.15 Same as FIG. 3.7, but for the CNTL and three microphysics 
experiments. 

 
 
3.3.3 Summary 

 Impact of model errors due to the incorporated microphysics schemes on storm 

prediction has been investigated. The MYDM serves as the model error-free experiment 

as the same scheme is used for carrying out the truth simulation. Two other single-

moment microphysics schemes with different degrees of complexity, the Lin and 

MYSM, are also tested. Compared to the CNTL that incorporates perfect microphysics 

but hydrometeor-free ICs, three microphysics experiments are initialized with perfect 
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hydrometeor fields. The relative importance between the availability of initial 

hydrometeors and the model microphysics accuracy is examined. 

 Among the individual model state variables we examined, the advantage of 

perfect microphysics (i.e., MYDM) over two other single-moment schemes in providing 

constantly better forecast throughout the entire four hours verification period is found 

on prediction of T and qv. Overall, no significant advantage is found given by either the 

MYSM or the Lin. Positive impact of perfect microphysics on predicting qw is limited 

in a very short forecast range (about 1.5 hour) as the evaluation of hydrometeor number 

concentration is not included in this verification. Model microphysics accuracy appears 

to have relatively small impact on predicting kinetic fields (i.e., Vh and w) according to 

the irregular forecast error behavior found among the experiments. In general, the 

impact of the microphysics errors is relatively insignificant compared to the initial 

errors. In spite of the microphysics scheme selected, even with perfect initial 

hydrometeor fields, large forecast error of model state variables grows quickly within 

the first two hours of the forecast. The significant error growth is most likely owing to 

the IC uncertainty introduced by the smoothed non-hydrometeor fields. In contrast to 

the microphysics error, the impact of the perfect initial hydrometeor fields is significant. 

Systematically better forecast of most state variables over the CNTL is ensured by the 

perfect initial hydrometeor information equipped in the microphysics experiments. In 

other words, the deficiency of model microphysics schemes could possibly be expected 

compensated through an accurate hydrometeor initialization. 

 A much more crucial impact of the microphysics errors is found on prediction of 

reflectivity, in which greater sensitivity to the microphysics details is granted. While all 
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experiments suffer the inaccuracy of the non-hydrometeor fields, due to the smoothing, 

at the initial condition time, the MYDM is found to provide the systematically best 

forecast with the least under-forecasted Z intensity. Two other single-moment 

microphysics experiments, compared to the MYDM, tend to predict too much stratiform 

precipitation and fail to maintain desirable convection intensity. Even launched from a 

completely clear air (i.e., CNTL), forecast with decent storm intensity can be achieved 

efficiently within two hours (i.e., spin-up time) by the use of the perfect microphysics 

scheme. Furthermore, after this spin-up time required, the CNTL is able to outperform 

two single-moment microphysics experiments that have perfect initial hydrometeor 

fields, again highlighting the importance of the microphysics errors on storm prediction.                      

  
3.4 Experiments with Direct Insertion of State Variables 

 Beginning at this point, the model microphysics errors are completely excluded 

in our following experiments by applying the MYDM scheme as implemented in the 

truth simulation. By ensuring a perfect model, the impacts purely due to the IC 

uncertainty can be distinguished. As more and more efforts have been made in the field 

of data assimilation toward the goal of improving the ICs for improved model forecasts, 

a deeper investigation of the relative impact of IC accuracy on storm prediction is 

valued and useful.   

Before we explore further to the impact directly given by the cloud analysis 

process, we would like to first examine the impact of different individual state variables, 

particularly those are taken care of in the cloud analysis, by alternately inserting their 

perfect values from the truth simulation back to the ICs. Through this set of experiments, 
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the relative importance of these cloud-related state variables will be revealed and further 

discussed. 

3.4.1 Design of Experiments 

 In our OSSE framework, five experiments: Pt, Qv, Qcld, Qpcp, and Qall, are 

performed in addition to the CNTL in examining the sensitivity of model prediction to 

the accuracy of five respective sets of state variables: 1) θ, 2) qv, 3) cloud hydrometeors 

(qcld, including cloud water and cloud ice), 4) precipitation hydrometeors (qpcp, 

including rain, snow, graupel, and hail), and 5) all hydrometeors (i.e., qcld + qpcp) in the 

IC. Again, most smoothed fields are directly inherited from the CNTL for all 

experiments; however, for each experiment, one set of specified variable, as denoted by 

the experiment name, from the truth simulation is directly inserted back into the ICs. 

For example, the experiment Pt has the error-containing wind and qv fields, cleared 

hydrometeor fields, but the error-free θ field. For three hydrometeor experiments Qcld, 

Qpcp, and Qall, both mixing ratio and total number concentration are included in the 

perfect insertion for the application of the MYDM scheme in our simulation. Table 3.3 

is provided in the form of a checklist, with which the configuration of each experiment 

is shown. We would like to point out that the experiment Qall here is in fact, identical to 

the experiment MYDM in the previous section. 
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Table 3.3 Configurations of direct insertion experiments 

Experiments 

Perfect 
(non-
smoothed) 
wind field 

Perfect 
(non-
smoothed) 
θ field 

Perfect 
(non-
smoothed) 
qv field 

Perfect 
(un-removed) 
cloud 
hydrometeors 

Perfect 
(un-removed) 
precipitation 
hydrometeors 

CNTL x x x x x 
Pt x V x x x 
Qv x x V x x 
Qcld x x x V x 
Qpcp x x x x V 
Qall x x x V V 
 

3.4.2 Results and Discussion 

 Again, for each experiment, a four hours range of forecast is performed and the 

results are ouput every 30 minutes for quantitative verifications. The SRMS errors on 

predictions of various model state variables are shown in FIG. 3.16. 

 On the prediction of horizontal winds (FIG. 3.16a), most of the experiments are 

able to provide forecasts better than the CNTL throughout the four hours range. 

However, there is one notable exception occurring to experiment Qv in the first hour. 

This slightly larger prediction error could be attributed to the nonlinear interactions 

between the perfect qv field and other error-containing fields. Also, the relatively 

efficient impact of the initial qv accuracy on horizontal wind prediction is suggested. In 

spite of the larger dissimilarity from the truth in the first hour of the forecast, the Qv 

shows an abrupt decrease of the prediction error and significantly outperforms all other 

experiments beginning at 4:00 UTC. Based on this finding, we further conclude the 

significant impact of the perfect initial qv on horizontal wind prediction is not only 

instant but also systematic with the forecast range. In contrast to the Qv, the Pt firstly 

shows an overwhelmingly best performance within the first one and a half hours, but 

experiences a sudden increase in the prediction error after then. Besides the Qv, the Qall 
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is found to give the second best performance on Vh prediction in terms of better 

forecasts in longer ranges. 

 A similar trend of forecast error is found on w prediction (FIG. 3.16b): a 

significantly large error growth in the first 1.5 hours is given by the Qv, but the error 

then decreases to the smallest in the later stage of the forecast. Unlike most of the 

experiments maintaining forecast errors in a little variation in the last hour of the 

forecast, the Pt shows a dramatic peaking-up of the w error, resulting in a performance 

seriously worse than that of the CNTL. The very-short-range negative impact of 

introducing finer resolved environmental features on w prediction, as discussed earlier 

in the experiment with different degree of IC smoothing provided in section 3.2, is 

again presented by the contrast of the performances between the CNTL and the perfect 

state variable insertion experiments in the first two hours of the forecast.    

 On the prediction of T (FIG. 3.16c), it is found generally, all experiments result 

in giving forecasts better than the CNTL throughout the entire four hours range. An 

exception is found given by the Pt with an unusual significant error growth in the last 30 

minutes of the forecast, resulting in a forecast performance even slightly worse than that 

of the CNTL in the end. On the contrary, no other experiment, even beginning with the 

imperfect initial T field, is found to have this later stage error growth on T prediction. 

Among all perfect state variable insertion experiments, the Qv and Qall perform 

competitively best in the first 1.5 hours, but after then the Qall is significantly surpassed 

by the Qv. On the other hand, no significant forecast error difference is found among 

the Pt, Qcld, and Qpcp until the Pt shows the sudden worsen performance at last. It is 
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worth noting that the perfect initial θ field does not necessarily end with the best 

temperature prediction, but actually the worst.   

 A great sensitivity of the qv prediction to the introduction of any of the perfect 

state variables at the initial time is suggested by their relatively larger forecast error 

compared to the CNTL within the first one and a half hours range (FIG. 3.16d). A quick 

forecast error growth is again found for the Qv, resulting in a largest forecast error 

among all experiments at 3:00 UTC even though it begins with the prefect initial qv 

field. Afterward, the forecast error of Qv holds nearly constant with time and eventually 

becomes the smallest when all other experiments experience significant error growth. 

Other than the Qv, the Pt also shows a relatively significant instant error growth in the 

first hour of the forecast and ends with the second best performance. On the other hand, 

the Qall is able to keep a fairly good performance lasting as long as two hours before 

getting significantly surpassed by the Pt. 

 Among the three experiments with no hydrometeors in the ICs (i.e., CNTL, Pt, 

and Qv), the Qv exhibits the largest storm-rebuilding efficiency in terms of a 

significantly reduced qw prediction error in the first hour of the forecast (FIG. 3.16e). 

Regardless of the various magnitudes of the total water mixing ratio error at the initial 

time owing to the different degree of the hydrometeor completeness, all experiments 

have their errors converged, with the hydrometeor-equipped experiments (i.e., Qcld, 

Qpcp, and Qall) increase their errors and the hydrometeor-free experiments (i.e., CNTL, 

Pt, and Qv) decrease their errors, after one hour of the forecast. A noticeable larger error 

is found given by the Qv between 3:30 and 5:00 UTC, which could be possibly related 

to the significant error on the w prediction present beforehand since the close linkage 
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between the vertical motion and hydrometeor loading has been discussed in the 

previous section.       

 Finally, the general performance of each experiment on predicting model state 

variables can be represented by the ASRMS error shown in FIG. 3.16f. Overall, 

experiments with direct insertion of perfect qcld, qpcp, or qall could provide forecasts 

constantly better than the CNTL. Other than that, the Qv experiences an instant forecast 

error increase, mainly from the winds and qv predictions, making its performance worse 

than the CNTL in the first hour. However, after the first hour, the error of Qv rapidly 

decreases and becomes the lowest among all experiments beginning at 4:00 UTC. The 

Pt is found to perform competitively with the Qcld and Qpcp for most of the times 

before it experiences an abrupt error increase resulting from the w and T predictions in 

the last hour. The impact of the unique significant error growth in the later stage of the 

forecast caused by the perfect initial temperature field calls for deeper investigation on 

the interaction among individual state variables before we can determine whether it is 

universal-existing or case-dependent. As a conclusion, the accurate initial qv is found to 

have the largest impact on giving better predictions of state variables, while a complete 

set of initial hydrometeor fields is secondarily beneficial. Our finding is generally 

consistent with the results in Ge et al. (2013) for examining the impacts of different 

state variables as potential observations. 

For discussions about the forecast error trend, we focus on the ASRMS error 

(FIG. 3.16f) again. The results of the ASED are omitted here because of the 

unavailability of Pt and Qv: the scaling factors at the initial time for these two 

experiments are zero for TED and LED due to their error-free θ and qv fields, making 
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the subsequent scaled results end in infinity. In general, experiments Pt, Qcld, Qpcp, 

and Qall share a quite similar forecast error trend as they all have the error growing to 

their maxima at 4:00 UTC, which is 30 minutes earlier than the CNTL. An exceptional 

error increase is found for the Pt in the last hour. Among these four experiments, the 

Qall is found to have forecast errors in the smallest magnitude. The Qv its own shows a 

peculiarly quicker error increase that maximizes at 3:00 UTC, which is one hour earlier 

than other four experiments and 1.5 hours earlier than the CNTL. After reaching the 

peak, the forecast error of the Qv rapidly decreases in significantly high efficiency 

overwhelming all other experiments. According to the trend, the greatest impact of the 

initial qv accuracy on model prediction is again demonstrated. 
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FIG. 3.16 Same as FIG. 3.6, but for the CNTL and five direct insertion 
experiments. 

 

 To verify how the experiments perform on predicting storm structure, evolution, 

and related microphysical process, their simulated reflectivity is quantitatively 

evaluated and provided in FIG. 3.17. In terms of the dissimilarity of the forecast Z from 

the truth (i.e., the RMS error, shown in FIG. 3.17a), the experiments with any perfect 

fields specified is able to provide Z prediction systematically better than the CNTL 

throughout the four hours range of the forecast, suggesting improvement on Z 

predictions of different degree can be achieved by introducing perfect fields of any state 

variables in the ICs. The best performance is ensured by both the Qpcp and Qall at the 
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beginning as they have the perfect precipitating hydrometeors, which are the key inputs 

used for deriving Z. No significant RMS error difference is found between the Qpcp and 

Qall in the entire four hours range, suggesting the absence of initial cloud hydrometeors 

does not have as critical impact on the Z prediction as it does on the prediction of other 

variables (e.g., Vh, T). With no precipitating hydrometeors at the initial time, the CNTL 

and three hydrometeor-free experiments (i.e., Pt, Qv, and Qcld) begin with a large RMS 

error (nearly 10), and then have the error gradually reduced as the storms begin to 

rebuild in their forecasts. Among these three experiments, the Qv shows the most 

remarkable efficiency on developing the storms from the completely clear air while the 

error difference between the other two experiments (i.e., Pt and Qcld) is not as 

significant. After only one hour of the forecast (beginning at 3:00 UTC), the Qv 

overwhelms all other experiments, even those beginning with perfect precipitating 

hydrometeors, in terms of significantly lowest RMS errors continuing to the end. The 

outperformance of the Pt and Qcld over the CNTL, however, is relatively insignificant 

and only limited in the first two hours.  

 On predicting the intense convection (30 dBZ and above), the experiments with 

any of the perfect fields can develop the storms in a decent intensity faster than the 

CNTL, although underforecast of different degree is still seen for all experiments 

throughout all times (FIG. 3.17b). Also, it is found the perfect initial qv field can 

significantly improve the underforecast issue after one hour of the forecast. On the 

contrary, all other experiments suffer more serious underforecast, which could possibly 

be attributed to the failure on maintaining the precipitating hydrometeors from 

unfavorable evaporation owing to the smoothed (weakened) initial qv. Even beginning 
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with a perfect set of precipitating hydrometers, without the support of the favorable qv 

field, the Qall and Qpcp soon significantly underforecast the Z intensity and have their 

bias scores worse than the Qv only after one hour. Similar results are also shown in the 

ETS verification (FIG. 3.17c): the performances of the Qall and Qpcp are competitively 

well and also the best among all experiments within the first hour of the forecast, but 

then significantly surpassed by the Qv at 3:00 UTC and afterward. Performances of the 

Pt and Qcld are relatively indistinctive compared to other experiments, but their 

advantage over the CNTL can still be seen. One hour forecast of the composite Z for 

five direct insertion experiments are shown in FIG. 3.18 for qualitative illustration of 

the discussions above. Check back to FIG. 3.4b and FIG. 3.9b for the corresponding 

results of the truth simulation and CNTL, respectively. 3:00 UTC is selected as it is 

when the Qv begins to exhibit its significant outperformance over other experiments. 

The distribution of the convective storms with remarkably similarity to the truth 

simulation given by the Qv distinguishes itself from any of other experiments, again 

highlighting the great importance of the initial qv accuracy on storm predictions.   

 It is also found the values of these verification indices for all experiments tend to 

converge together as the forecast range gets longer. This phenomenon can be explained 

by the domination of the model physics which increases with forecast length over that 

of the IC fineness which is believed to have the larger impact limited in the beginning 

stage of the forecast. Besides, the mesoscale environmental features retained in the 

smoothed ICs for all experiments also have continuous effect that gradually contributes 

to the storm development. Based on the findings throughout this set of experiments, 

better storm prediction can be ensured by improved IC accuracy through direct insertion 
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of perfect values. Since the perfect ICs are not accessible in practice, further study is 

devoted to an investigation into the practical capability of the complex cloud analysis 

system on improving the cloud-related ICs and subsequent forecasts.   

 
FIG. 3.17 Same as FIG. 3.7, but for the CNTL and five direct insertion 
experiments.                                   
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FIG. 3.18 Composite reflectivity and surface winds at 03 UTC for (a) Pt, 
(b) Qv, (c) Qcld, (d) Qpcp, and (e) Qall. Wind arrows are plotted in 30 km 
interval. 
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3.4.3 Summary 

 Relative importance among the accuracy of various cloud-related state variables 

in the ICs, including temperature (T), moisture (qv), cloud hydrometeors (qcld) and 

precipitation hydrometeors (qpcp), is examined. Experiments are initialized with direct 

insertion of alternately specified perfect fields from the truth simulation, which are 

universally available over the entire modeling domain. Model errors are excluded in all 

experiments by the application of the presumed perfect MYDM microphysics scheme.    

 On predicting most of the state variables we examine, the accuracy of initial qv 

is found to have the largest impact in terms of two aspects: 1) instant very-short-range 

(within the first hour, specifically) forecast error growth, and 2) significantly absolute 

advantage on the forecasts at the later stage (two hours and later). The former 

phenomenon is inferred to be associated with an instant forecast imbalance induced by 

the perfect and finer resolved qv field interacting with other error-containing fields while 

the latter is attributed to the essential criticality of the qv accuracy required for favorable 

predictions of the storms and their supportive environment. Other than qv, the initial 

availability of the hydrometeor appears to be the second greatest impacting factor, 

particularly on giving better T forecasts of a longer range, with which the importance of 

the hydrometeors on developing reasonable cold pools is suggested. Accurate initial T 

field is found to be relatively crucial on giving the best Vh prediction of a very-short-

range (first 1.5 hours, specifically). Benefit of the initial precipitation hydrometeors is 

more significant than that of the cloud hydrometeors.     

 The great positive impact of the initial qv accuracy is again found, and appears to 

be even more significant on the Z prediction. Even initialized with no hydrometeors, the 
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experiment with perfect initial qv can quickly build up the storms in favorable intensity 

and distribution in only one hour (i.e., spin-up time), when the benefit of the perfect 

hydrometeors initialization is significantly surpassed by it. Significant improvement on 

the underforecast Z issue is also promised by the perfect initial qv after the spin-up time. 

Impact of the inclusion of cloud hydrometeors appears to be even indistinctive as the 

storm forecast given by the precipitation hydrometeors alone is competitively good as 

that given by the all hydrometeors (i.e., cloud + precipitation). 
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Chapter 4: Cloud Analysis Experiments 

4.1 Introduction 

 Given the importance of the initial condition (IC) accuracy on numerical 

weather prediction (NWP) modeling which is well demonstrated in existing studies and 

our earlier investigation, especially for the meso/convective-scale systems that possess 

highly nonlinear nature, continuous efforts have been made in the current couple 

decades on developing a variety of data assimilation (DA) techniques toward the goal of 

a better initialization of model states through optimally combining information from the 

available observations and background. However, owing to increased complexity in 

utilization of these modern DA techniques, such as four dimensional variational 

(4DVAR; Lewis and Derber 1985) DA, the ensemble Kalman filter (EnKF; Evensen 

1994; Houtekamer and Mitchell 1998), and the hybrid ensemble/variational approaches 

(Hamill and Snyder 2000), the considerably expensive computational requirement 

makes them barely affordable for the real-time operations but only limited within the 

research scenario. 

 Several cloud analysis systems/algorithms have been implemented operationally 

in many weather forecasting/nowcasting institutes worldwide (Auligne et al. 2011): the 

Local Analysis and Prediction System (LAPS; Albers et al. 1996) first developed by the 

National Oceanic and Atmospheric Administration’s (NOAA’s) Forecast Systems 

Laboratory (FSL), the Nowcasting and Initialisation for Modelling Using Regional 

Observation Data Scheme (NIMROD; Golding 1998) used by the United Kingdom 

Meteorological Office (UKMO), and the Rapid Refresh version of the Rapid Update 

Cycling model (RUC/RR; Benjamin et al. 2004) used for current operations at the 
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National Center for Environmental Prediction (NCEP). The main goal of these cloud 

analysis systems, in spite of various approaches, is to specify the hydrometeor (i.e., 

cloud and precipitation) fields and adjust related in-cloud thermodynamic fields (i.e., 

temperature and moisture) for the use of NWP modeling. Compared to those advanced 

DA algorithms described earlier, most of these cloud analysis procedures are realized in 

a relatively efficient way with the employment of simple physical models or semi-

empirical rules.    

 The complex cloud analysis in the Advanced Regional Prediction System 

(ARPS; Xue et al. 1995, 2000, 2001) was at first developed by inheriting procedures of 

the LAPS (Zhang et al. 1998). Since then, a number of modifications (or extension) has 

been made (added) to improve its efficacy. In additional to the currently available 

hydrometeor analysis that applies the empirical fitting equations from Kessler (1969) 

and Rogers and Yau (1989) for rain water and ice species (i.e., snow and hail), 

respectively, a new procedure, based on the radar reflectivity operators built by Jung et 

al. (2008), is developed and adopted in this study. The theory of electromagnetic wave 

propagation that accounts for scattering effects such as dielectric factor and canting 

behavior of various particles is included in the derivation of these operators. 

Furthermore, a simple melting model was also involved in charge of the physical 

feature changes due to the melting process. According to these additional features, the 

new hydrometeor analysis procedure, with relatively higher complexity, is considered 

more generally applicable and capable of providing more realistic results. For detailed 

information about the practical realization of this procedure, please refer to Appendix A. 

In addition to the original in-cloud temperature adjustment based on the hydrometeor-
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associated latent heat release, a new version of adjustment that adjusts the temperature 

profile towards the moist-adiabat of a low-level lifted parcel with the dilution effect due 

to the entrainment process included is introduced by Brewster (2002) and available in 

the current cloud analysis package. The impact difference between these two methods is 

examined and discussed in Hu and Xue (2007) by the application to a tornadic 

thunderstorm case study. For the in-cloud moisture adjustment, a simple saturation 

strategy of the cloudy regions, which has been widely adopted in many studies (Albers 

et al. 1996; Zhang et al. 1998; Wang et al. 2013) is applied.  

 In the previous chapter within our OSSE framework, a precursory investigation 

on the impact of IC accuracy through direct insertion of various sets of perfect (i.e., 

error-free) state variables is performed. The relative importance of these state variables, 

in particular the cloud-related ones, is examined and discussed. With these preliminary 

findings, the room for potential improvement that could be achieved by the cloud 

analysis is revealed. Since the perfect IC is practically unaccessible, the previous 

experiments can stand for a set of highest standards. In this chapter, aiming to the 

ultimate goal of this study, the experiments are directly initialized by the ARPS cloud 

analysis procedure. Same truth simulation and control run as the previous chapter are 

used. Besides the hydrometeor mixing ratio analysis, the impacts of two other in-cloud 

field adjustments, temperature and moisture, as described earlier, will also be examined. 

The improved ICs, obtained from the cloud analysis, are expected to lead to forecasts 

better than the CNTL (the baseline) and more importantly, as closer to the standards set 

by the previous direct insertion experiments as possible. All potential analysis errors 

will also be listed and described in details. 
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 This chapter is organized as follows. In section 4.2, the setup of the cloud 

analysis experiments with different configurations are introduced. The comparison 

among experiments and the independent impact of the applied procedures, including the 

hydrometeor analysis, temperature, and moisture adjustment, are presented with 

discussions. At last, a conceptual model of forecast error evolution is provided in 

section 4.3 based on the findings of our experiment sets from both previous and this 

chapter. Detailed discussions about various potential error sources and their impacts are 

provided. 

      
4.2 Experiments with Different Configurations of Cloud Analysis 

4.2.1 Design of Experiments 

 Based on the degraded ICs as used for the CNTL, we conduct four additional 

experiments which are initialized using the ARPS complex cloud analysis with 

configurations of different completeness, listed from low to high as: 1) NoAdj, mixing 

ratio analysis only, without any in-cloud fields adjustment, 2) PtAdj, mixing ratio 

analysis, with in-cloud potential temperature adjustment, 3) QvAdj, mixing ratio 

analysis, with in-cloud moisture adjustment, and 4) BothAdj, mixing ratio analysis 

along with both θ and qv adjustments.  

For the mixing ratio analysis of various precipitation species, the modified 

procedure, based on the JZX reflectivity operators, as introduced in subsection 2.1.2 is 

applied. The radar reflectivity observation used for carrying out the analysis is derived 

directly from the hydrometeors output of the truth simulation (both qx and Ntx).  Thus 

the observation error is excluded. As pointed out in subsection 2.1.2, the ratio among 

the mass contents (or mixing ratios) of different precipitation species (i.e., qr, qs, qg, and 
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qh) is required as the prerequisite for realizing this modified mixing ratio analysis. We 

reserve this information directly from the truth simulation for more realistic analysis 

results. However, to emulate the utilization in practice, the constant default values of the 

intercept parameter N0 of 8×106, 3×106, 4×105, and 4×104 (in m-4) are used for rain, 

snow, graupel, and hail, respectively in our analysis. With the application of default N0, 

certain analysis errors are introduced as the N0 is actually variable in the truth 

simulation. 

For the in-cloud temperature adjustment, the MA scheme (refer to subsection 

2.1.1 for detailed descriptions) is applied. The selection of MA scheme over the LE 

scheme is owing to its better consistency with the physics of convective storms and 

corresponding improved forecasts that have been demonstrated in Hu et al. (2006a). 

Besides, the final in-cloud vertical motion adjustment is omitted for all experiments 

here since the impact of the thermodynamic variables are of our main interest in this 

study. 

4.2.2 Results and Discussion 

An arbitrarily selected 300-km wide cross section across over the intense 

convective core of the storm denoted by a blue dash line in FIG. 3.4a is shown to 

exhibit the result of mixing ratio analyses. Mixing ratios of four different precipitation 

species, rain, snow, graupel, and hail, are provided in FIG. 4.1 and FIG. 4.2 for the truth 

simulation and the cloud analysis experiments, respectively. In Table 4.1, the mixing 

ratio maxima of each precipitation species in both selected cross section and the entire 

modeling domain are listed, from which the general magnitude difference between the 

truth and the cloud analysis results (i.e., analysis errors) can be discerned intuitively.  
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First of all, in the truth simulation, the hail species is found in a significant 

minority with magnitudes two orders smaller compared to other species. It is also seen 

that the hydrometeors in the truth has wider spatial coverage than the cloud analysis 

results, especially for the snow and graupel in the upper air (9 km AGL and above). 

This difference is mainly due to an artificial analysis thresholds set upon the Z 

observation, under which the analysis will not be carried out while zero valued mixing 

ratios are directly assigned instead. These thresholds are originally designed to 

eliminate possible contamination from either insignificant precipitation or non-

meteorological objects (as described in Hu et al. 2006a). In our cloud analysis 

experiments, specific Z thresholds of 20 dBZ and 15 dBZ are set for the hydrometeor 

analysis under 2 km AGL and above 2 km AGL, respectively. 

 

 
FIG. 4.1 Cross section of truth mixing ratio in g kg-1 for (a) rain water, (b) snow, 
(c) graupel, and (d) hail. 
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FIG. 4.2 Same as FIG. 4.1, but for the cloud analysis experiments. 

 

Table 4.1 Mixing ratio maxima of the truth and analysis 

 
qx maxima (cross section/entire domain) in g/kg 

Rain Snow Graupel Hail 
Truth 
simulation 

1.256 / 3.228 2.099 / 3.614 4.969 / 8.133 0.016 / 0.220 

Cloud 
analysis 
experiments 

19.429 / 20.000 0.326 / 1.750 0.832 / 2.856 0.028 / 0.233 

 

Noticeable analysis errors on mixing ratio are found in our experiments: in 

contrast to the truth simulation which has rain, snow, and graupel mixing ratios in 

nearly comparable magnitudes, the analysis result of the experiments is mostly 

dominated by the rain species which has magnitude one to two order(s) larger than that 

of the snow or graupel. In other words, the cloud analysis produces a more warm rain-
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like result. The main reason that causes this difference is the N0 values used in our 

analysis procedure. As mentioned in the previous subsection, default N0 of constant 

values is used in our experiments for their solely availability and the readily 

convenience in most practical applications. However, as the DM microphysics scheme 

is applied, additional freedom of the spatial variability of N0 is granted by the 

predictable Nt, which has been demonstrated in several observation-based studies (e.g., 

Dennis et al. 1971; Federer and Waldvogel 1975; Knight et al. 1982). The spatially 

variable N0, in logarithmic forms for displaying convenience, of rain, snow, and graupel 

from the truth simulation is provided in FIG. 4.3 for better interpretation of the analysis 

errors. The hail species is omitted here because of its minority. The default values of 

different precipitation species used for the analysis are marked in their respective color 

bars. According to the formula used for carrying out the mixing ratio analysis, as 

provided in details in Appendix A, the final value of the analyzed mixing ratio is 

positively-proportional to the N0. It can be seen in FIG 4.3a that for most regions with 

presence of significant rain water, for example below the freezing level (FL; around 4 

km AGL in our case), the N0 values are mostly overestimated by the default value if 

compared to the true values. As a result, positively biased analysis result (i.e., analysis 

errors) of qr is led. Similarly, the negative biased analysis errors of qs and qg can be 

explained by the underestimated constant N0 values compared to the true ones. 

Other than the issue regarding the N0 usage discussed above, there are two other 

sources of analysis errors we would like to address. First, due to the essential limitation 

on algebraic formulation, there is incomplete reversibility between the reflectivity 

forward operators and the mixing ratio analysis procedure. Specifically, this limitation 
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is owing to the different exponents possessed by the reflectivity operators of rain and 

non-rain species. Because of this difference, certain approximation has to be made 

before the contribution of different species on the reflectivity can be combined for 

retrieving the mixing ratios. Details about this computational error and the practical 

implementation of approximation can be found in Appendix A. The second error source 

is from a post-screening process, realized by a set of preset thresholds, applied to the 

analyzed mixing ratios. To avoid any potential harm on the subsequent forecasts 

resulted from unrealistic mixing ratio analyses, a set of artificial thresholds is used to 

screen out analysis result with unreasonably large values. In our study, 20 g kg-1 is used 

for all species, which also explains the maximum of qr seen in Table 4.1. 

Both analysis error sources described above could make the post-simulated Z 

field, computed from the analyzed hydrometeor fields with Z operators, slightly differ 

from the original Z observation originally used for carrying out the analysis. In FIG. 4.4 

the composite reflectivity simulated from our mixing ratio analysis result (valid at 2:00 

UTC; FIG 4.4b) is provided along with the truth simulation (also the error-free 

reflectivity observation; FIG. 4.4a). Overall, the analysis result matches the truth in 

decent similarity except for some misses on the weak echoes (as shaded in light blue) at 

certain regions, mainly the edge of the storm, due to the artificial Z thresholds set for 

realization of the analysis as described earlier. Besides, some spotted extreme echoes in 

the truth are absent in the analysis as a result of the post-screening process. Given its 

relatively minor magnitude compared to the analysis result (~12% negative bias based 

on the Z maxima), the analysis errors are considered acceptable and believed from 

resulting in unfavorable impacts on the forecasts 
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FIG. 4.3 Cross section of 10log(N0) from the truth 
simulation for (a) rain, (b) snow, and (c) graupel. The 
default N0 values are marked by black dash line on the 
color bar. 
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FIG. 4.4 Composite reflectivity and surface winds at 2:00 UTC for (a) truth 
simulation and (b) experiments with cloud analysis. 

 

 
FIG. 4.5 Same as FIG. 3.6, but for the CNTL and four cloud analysis experiments. 
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 In FIG. 4.5, the SRMS error of various model state variables along the forecast 

range is shown for the CNTL and four cloud analysis experiments. On the prediction of 

winds (FIG. 4.5a-b), throughout the entire four hours range, the experiments with 

moisture adjustment (i.e., QvAdj and BothAdj) are found to result in significantly larger 

error compared to the CNTL, except for an relatively insignificant error difference 

occurring at 4:30 UTC. It is also noticeable that the significant error growth of the 

QvAdj and BothAdj is considerably rapid after the initial time once the forecasts are 

launched. In contrast to the moisture adjustment experiments, experiments without the 

application of moisture adjustment (i.e., NoAdj and PtAdj) have relatively small errors. 

Specifically, on Vh prediction, the forecast errors of these two experiments are smaller 

than the CNTL throughout the entire forecast range, while on w prediction, they are 

larger than the CNTL within the first two hours and then the error difference turns 

indiscernible later. By comparing the PtAdj to NoAdj or the BothAdj to QvAdj, the 

impact of the temperature adjustment is discussed. Between the QvAdj and BothAdj, 

the BothAdj gives even larger error on prediction of both Vh and w, which may imply 

certain negative impact associated with the temperature adjustment. However, between 

the NoAdj and PtAdj, the PtAdj is able to result in systematically smaller forecast error 

even though their error difference is not as significant as that between the BothAdj and 

QvAdj. As a conclusion, the benefit of the temperature adjustment on the wind 

prediction remains valid only in absence of the application of moisture adjustment.  

 On the prediction of temperature (FIG. 4.5c), it is found the temperature 

adjustment causes slightly larger SRMS errors at the initial time for both PtAdj and 

BothAdj, indicating this moist-adiabatic profile based temperature adjustment applied 
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here does not necessarily provide quantitatively reduced analysis error. The QvAdj and 

BothAdj again, are found with rapid error growth which makes their errors significantly 

greater than the other two non-moisture-adjusted experiments within the first two hours 

of the forecast. While comparing with the CNTL, the moisture adjustment experiments, 

with the significant error growth in the beginning stage, are even surpassed by the 

CNTL in the first 1.5 hours. However, after one hour of the forecast, the moisture 

adjustment experiments runs into a quick error drop and have their forecasts 

outperforming the CNTL beginning at 4:00 UTC. The QvAdj even outperforms the two 

non-moisture-adjusted experiments during 4:30 and 5:00 UTC with the lowest forecast 

error. For the other two experiments without applying moisture adjustment, the error 

grows more gently and slowly. Compared with the CNTL, slightly worse forecast of the 

temperature adjustment experiments is found only at the very beginning stage of the 

forecast (2:30 UTC) while significantly better forecasts are ensured constantly after 

then. Similar to what is found on the wind prediction, the QvAdj outperforms the 

BothAdj while the PtAdj outperforms the NoAdj even though the PtAdj has a slightly 

larger error due to the analysis at the beginning. In general, the group of experiments 

without moisture adjustment performs better than the group with moisture adjustment, 

except for a short period between 4:30 and 5:00 UTC during which the QvAdj has the 

smallest error of all. 

 On the performance of qv prediction (FIG. 4.5d), remarkably large RMS errors 

are found at the initial time given by the two experiments with moisture adjustment, 

indicating significant qv analysis errors can be resulted from the current moisture 

adjustment based on a simple saturation strategy. A slightly larger initial analysis error 
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of the BothAdj, however, is found compared to that of the QvAdj. This difference is due 

to procedure for applying these in-cloud field adjustments: as the temperature 

adjustment is designed to be applied before the moisture adjustment, its effect has also 

been included in the later-realized qv adjustment, in which the qv is retrieved based on 

the adjusted θ field. Beginning with large errors at the initial time, the QvAdj and 

BothAdj go through a significant error drop in the first 30 minutes, and then show a 

nearly constant error trend afterward. As the CNTL show an error trend generally 

growing with the forecast range, the QvAdj and BothAdj outperform the CNTL 

beginning at 4:00 UTC and their advantage over the CNTL becomes even significant in 

the later stage of the forecast. On the other hand, sharing a similar error growing trend 

with the CNTL, the NoAdj and PtAdj have errors slightly larger than the CNTL in the 

first hour, but after then, they outperform the CNTL with a significantly slower error 

growing trend. The four cloud analysis experiments, even beginning with large initial 

error differences, have their error converged gradually with the forecast range and 

ended with significantly reduced error differences. Systematic outperformance provided 

by the group with moisture adjustment over the group without moisture adjustment is 

found beginning at 4:30 UTC. The impact of the temperature adjustment on qv 

prediction is found, by comparing NoAdj with PtAdj or QvAdj with BothAdj, on 

providing better forecasts at the later stage (1.5 hours and later).   

 On prediction of the total water mass content (FIG. 4.5e), the great and abrupt 

error growth is again found given by the experiments with moisture adjustment (i.e., 

QvAdj and BothAdj). Because of the error growth in these experiments, their initial 

advantage from the hydrometeor analysis over the CNTL quickly reduces in terms of 
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significantly larger forecast errors. Even though the errors significantly decrease after 

one hour of the forecast, the QvAdj and BothAdj still cannot outperform the CNTL 

within the entire four hours range. On the contrary, the group without application of the 

moisture adjustment is able to maintain the initial advantage by providing forecasts no 

worse than the CNTL throughout most of the forecast hours (a slight exception occurs 

at 4:00 UTC). Similar impact of the temperature adjustment as seen earlier for the wind 

prediction is again shown here: with the application of moisture adjustment, the 

temperature adjustment significantly increases the forecast errors throughout the entire 

four hours range, while in absence of the moisture adjustment, the temperature 

adjustment shows positive impact, but mostly limited in the very first hour.   

 On the general forecast performance (FIG. 4.5f), the significant error growth at 

the beginning stage of the forecast is once again shown in the experiments with 

moisture adjustment (i.e., QvAdj and BothAdj), further demonstrating the sensitivity of 

the model prediction to the introduction of storm-scale qv features as it has been shown 

in the earlier experiment set with direct insertion of perfect state variables. According to 

the similar forecast error trend shared, four cloud analysis experiments can be divided 

into two groups: 1) NoAdj and PtAdj, and 2) QvAdj and BothAdj. Without the 

application of moisture adjustment (i.e., the first group), the experiments are able to 

keep a slower error growing trend and earlier error decreasing timing compared to the 

CNTL, indicating the initial benefit from the hydrometeor analysis is successfully kept 

in these experiments. When there is no moisture adjustment applied, the temperature 

adjustment itself, even with a slightly increased temperature analysis error at the initial 

time, is able to ensure systematically better forecast throughout the entire four hours 
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range of the forecast. However, while the moisture adjustment is included, the 

additional application of temperature adjustment tends to further increase the forecast 

error which is originally found significant. It is worth noting that the experiment with 

application of moisture adjustment only (i.e., QvAdj) is able to outperform the CNTL 

with better T and qv forecasts in the later 1.5 hours after going through the stage of 

significant error growth, suggesting the moisture adjustment is not necessarily harmful 

to the prediction of model state variables.  

 

 
FIG. 4.6 Same as 3.10, but for the CNTL and 
four cloud analysis experiments. 

 

 Similar result of the forecast error trend is further demonstrated by the ASED 

shown in FIG. 4.6. Significantly more rapid error growth in terms of steeper slope of the 

ASED is found in experiments with the application of moisture adjustment; however, 

after reaching the forecast error maxima at 3:00 UTC, relatively sharper error 

decreasing rates are also shown for them. For experiments without applying moisture 

adjustment, the forecast errors both increase and decrease in a much slower rate. 

Among the four cloud analysis experiments, the PtAdj has the smallest error growing 

rate while the BothAdj has the greatest.                  
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 On the Z prediction (FIG. 4.7a), it is found the initial advantage from the 

hydrometeor analysis in the two non-moisture-adjusted experiments can be maintained 

throughout the entire four hours range in terms of providing forecasts significantly 

better than the CNTL. The advantage is also seen in the experiments with moisture 

adjustment, but only limited in the first hour, after which their performances are 

significantly surpassed by the CNTL. Within the moisture-adjusted group, a relatively 

advantaged performance is given by the QvAdj at most of the forecast times, except for 

3:00 and 6:00 UTC, at which the QvAdj is slightly surpassed by the BothAdj with 

relatively insignificant RMS error differences. The better performance of the QvAdj 

over the BothAdj is consistent with the earlier findings on the prediction of most model 

state variables. On comparison within the non-moisture-adjusted group, relatively 

significant outperformance of the PtAdj over the NoAdj occurs only between 4:00 and 

5:00 UTC, other than which both experiments provide competitive forecasts with 

similar RMS errors.  

 While evaluating experiment performances on predicting the intense convection, 

it is seen that improvements to the underforecast issue (i.e., bias scores significantly 

smaller than one), which is found serious in the CNTL, can be achieved in different 

degree by four cloud analysis experiments. However, the experiments with moisture 

adjustment are found to result in overforecast (FIG. 4.7b) throughout the entire forecast 

range. The overforecast issue is even more significant for the BothAdj compared to the 

QvAdj. On the contrary, without applying moisture adjustment, both PtAdj and NoAdj 

tend to underforecast the intensity of the convection. Additional application of the 

temperature adjustment (i.e., PtAdj), however, is found capable of significantly 
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mitigating the underforecast, which is more serious in the NoAdj. One hour forecast of 

the composite reflectivity of four experiments are shown in FIG. 4.8, from which the 

overforecast of the QvAdj and BothAdj on storm intensity with extreme echo values 

(red shaded) is illustrated. Please check back on FIG. 3.4b for the comparison with the 

truth. 

  

 
FIG. 4.7 Same as FIG. 3.7, but for the CNTL and four cloud analysis experiments. 

 

In terms of the ETS (FIG. 4.7c), the experiment group with moisture adjustment 

appear to give higher scores within the first three hours of the forecast. Within the group, 

the BothAdj scores higher than the QvAdj, which contradicts the general better 

performance of the QvAdj on Z prediction found in the RMS error. The advantage of 

the BothAdj on the ETS verification is mostly resulted from the design of the ETS 

calculation (Schaefer 1990). Based on the contingency table used for the statistics of the 

forecast result in association with the standard (can be either observation or the truth as 
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in our case), binary result of either “hit” or “miss” (corresponding to the preset 

threshold) is given. Therefore, no penalty is granted for those hits with over-forecasted 

magnitudes. In our case, as the cloud analysis updates the cloud-related variables only 

within the cloud regions, given the perfect reflectivity observation, the overforecast of Z 

reflects mainly on its intensity, but not the spread (see FIG. 4.8 for demonstration). As a 

result, even with significantly over-forecasted Z intensity, by providing an in-cloud 

environment which is highly conducive to the storm development, the BothAdj is able 

to assure least misses and provide the highest ETS. Conclusions on judging the Z 

forecast performance, therefore, have to be made with extra caution while verified with 

the ETS. The issue of the overforecast tendency resulting from the current qv adjustment 

is also reported in Schenkman (2012); however, it is addressed for the repeated 

applications in a manner of high frequent cycling analysis. In his study, this issue is 

indicated to be associated with the unrealistic middle-troposphere warming, which can 

be linked with the rapid error growth in T prediction we found earlier (FIG. 4.5c). 

 The impact of the hydrometeor analysis error on Z prediction can be assessed by 

comparing the results between the NoAdj and Qall (from the previous chapter). Recall 

that all hydrometeors in Qall’s ICs are directly inherited from the truth, which is error-

free. Note that the differences between these two experiments include not only the 

errors in precipitation species analysis (as shown in FIG. 4.1, FIG. 4.2, and Table 4.1), 

but also the errors in cloud species analysis. In general, two experiments share the 

similar trend in terms of both the RMS error and bias score. Specifically, compared to 

the NoAdj, the Qall has smaller RMS error by less under-forecasting (i.e., higher bias 

scores) the convection intensity throughout the entire forecast range. A more significant 
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impact of the analysis error is seen on the ETS within the first 1.5 hours: the ETS of the 

NoAdj drops more seriously compared to that of the Qall, which can be also related to 

the greater underforecast. As a conclusion, the warm rain-like analysis errors generally 

keep the forecast storms from maintaining proper intensity. We found this deficiency on 

hydrometeor analysis, however, can be compensated through the application of the 

moist-adiabatic-based temperature adjustment. 

 
FIG. 4.8 Same as FIG. 3.18, but for four cloud analysis experiments (a) 
NoAdj, (b) PtAdj, (c) QvAdj, and (d) BothAdj. 
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4.2.3 Summary 

 Experiments are initialized using the ARPS complex cloud analysis procedure. 

Hydrometeor mixing ratios are analyzed with the simulated reflectivity from the truth 

simulation based on the JZX reflectivity operators, in which the default N0 values of 

different precipitation species are applied. Owing to the analysis errors introduced by 

the constant N0, the analysis shows a quasi-warm rain result with overestimated rain 

water mass content and underestimated ice-phased hydrometeor mass contents in 

comparison with the truth. Besides the hydrometeor analysis, the impact of other in-

cloud field adjustments, including the simple saturation moisture adjustment based on 

the presence of observed radar echo and the temperature adjustment based on moist-

adiabatic ascent, are also examined.  

 It is found the simple saturation in-cloud moisture adjustment results in a qv 

analysis with significantly large analysis errors. Beginning with these errors, instant and 

great forecast error growth, which usually peaks within the first hour, can be resulted on 

the prediction of most state variables (e.g., Vh, w, T, qw). While being applied alone, the 

additional application of in-cloud temperature adjustment is able to provide improved 

forecast results, especially on the prediction of winds and T. Based on the hydrometeor 

analysis, the additional application of the temperature adjustment is found capable of 

reducing the forecast error growing rate while the additional application of the moisture 

adjustment tends to increased error growing rate. However, while both adjustments are 

applied, an even significantly enlarged forecast error growing rate can be resulted. 

 On the prediction of the reflectivity, the greatest impact of the moisture 

adjustment is shown on over-forecasting the Z intensity with nearly unrealistic extreme 
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values. Under-forecasted Z intensity, on the contrary, is found for the experiments 

without applying moisture adjustment. However, the temperature adjustment appears to 

work well on alleviating the underforecast issue. While evaluating the experiment 

performance on predicting intense convection (30 dBZ and above), higher ETS can be 

achieved by the experiments with moisture adjustment because their significant 

overforecast tendency. Based on our findings, we conclude that further improvements 

on the current moisture adjustment based on a simple saturation strategy are required 

for avoiding unfavorable precipitation forecasts. Besides, the under-forecasted result 

given by our error-containing hydrometeor analysis also calls for potential 

improvements on this procedure, from which more properly maintained precipitation 

intensity is expected to be achieved through a more accurately specified hydrometeor 

fields. 

                  
4.3 Conceptual Model of Forecast Error 

 Based on the findings from the experiment sets conducted in this and the 

previous chapters, we construct a conceptual model of forecast error that enables a 

general understanding of the relative importance of various individual impacting factors 

as discussed earlier. General forecast performance, including the predictions of winds, 

temperature, moisture, and hydrometeors, is assessed in developing this model, from 

which the storm predictability, both intrinsic and practical (Lorenz 1995), is revealed 

and discussed. 

 Before looking into the conceptual model, we would like to provide an overview 

of a relevant study on the scale dependence of the predictability of precipitation patterns, 

conducted by Surcel et al. (2015). In their study, a quantitative measure of the 
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precipitation predictability, realized with a decorrelation scale, was proposed and 

applied to examine various forecasting methods. Specifically, the decorrelation scale λ0 

is defined as an upper scale limit, below which the forecasts show no predictability. It 

was concluded from their results, based on 22 precipitation cases during the 2008 HWT 

Spring Experiment, the λ0 always increases with forecast lead time, regardless of the 

forecasting methods. Furthermore, they found the longer-than-two-hours predictability 

of the model state at meso-γ and meso-β scales can be introduced by the radar data 

assimilation, while comparing to those non-radar data-assimilating ensemble members. 

 The study reviewed above focused on predictability mainly at the mesoscale. In 

addition, because of the practical forecasting systems used for conducting their study, 

the practical predictability, which is defined with the inclusion of the model errors 

(Lorenz 1995), was referred. Compared with their study, the predictability at up to 

convective-scale is included in the object of our exploration with the set-up of the 1-km 

model spacing, and the forecasts in a four-hours short range are examined. Furthermore, 

within the OSSEs framework, most of our experiment sets are performed under the 

assumption of perfect model, from which the intrinsic predictability can be investigated 

with the specifiable IC errors. In addition to the intrinsic predictability, the practical 

predictability is also available for discussion in our study through certain experiments 

with microphysics errors (presented in section 3.3).   

Discussions upon the forecast error conceptual model (provided as FIG. 4.9) and 

associated impacting factors for the storm prediction are summarized point by point as 

follows:  
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FIG. 4.9 Conceptual model of the forecast error evolution corresponding to IC 
accuracy (including the resolution fineness of moisture field and hydrometeor 
availability) and model perfectness. Details about the arrow marks are 
provided in the context. 

 
 

(i) Initial condition error (shorten as IE, denoted by the gray double headed 

arrows in the conceptual model): 

While the model perfectness is assumed, the initial condition error is the major 

source that causes the subsequent forecast errors. This is also the scenario under which 

the intrinsic predictability has been discussed. The critical impact of the IC uncertainty 

on the NWP model forecasts was first addressed by Lorenz (1963) and all the 

subsequent data assimilation studies were dedicated to the improvements of this issue. 

For most regional forecasts, the initial condition errors usually come from the 

application of the global model outputs or global analyses, which are coarse in their 
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spatial resolution insufficient for characterizing the critical features at finer scales. 

Besides, the unavailability of the hydrometeor information, which is common in these 

global-based ICs, also introduces the uncertainty that can significantly limit the 

predictions of moist convection. In our OSSE study, the uncertainty described above is 

emulated by a degraded IC. In the conceptual model, the total IC error magnitude of the 

black curve featured by the summation of IE1 and IE2 includes both 1) spatial 

resolution deficiency and 2) hydrometeor unavailability. This great error can be 

significantly reduced in a magnitude of IE2 after the inclusion of either perfect moisture 

field (as the blue curve) or hydrometeors (as the red curves). These improvements, 

theoretically, can be expected by utilizing reasonable hydrometeor mixing ratio analysis 

or in-cloud thermodynamic field (i.e., θ or qv) adjustments through the cloud analysis 

procedure. However, the magnitude of the improvement may not be as large as the IE2 

owing to the analysis errors in practice.            

(ii)  Impact of the initial condition error 

While observing the forecast error evolution of the various experiments, we 

always see a trend of error growth showing at the beginning of the forecast regardless of 

the IC variety, from which the impact of the initial condition errors is inferred. In other 

words, as long as there is initial error present, this general behavior of the forecast error 

can always be expected. When the NWP model reaches its full physical complexity and 

with which a reasonable storm-associated environment is built, the negative impact of 

the initial error is eventually overcome and as a result, the forecast error begins to 

decrease. We simply refer the beginning error growth period as the “initial-condition-

error-dominated stage” and the later period as the “model-physics-dominated stage”. 
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Another reasonable explanation for the error decrease at the later stage of the forecast in 

our OSSE experiments can be associated with the design of the smoothed initial 

condition. As shown earlier in section 3.2.2, certain critical mesoscale environmental 

features are still kept in the background for most experiments. Along with the forecast 

range, these mesoscale signals continuously contribute to force and eventually develop 

a mesoscale structure of the storm comparable to the truth. The longer impact on the 

forecast given by the larger-scaled features in the IC we find here is consistent with the 

predictable scale which is concluded in Surcel et al. (2015) to increase with the forecast 

lead time.             

(iii)  Length of the initial-condition-error-dominated stage 

With different informative IC (denoted by curves in different colors), the length 

of the initial-condition-error-dominated period (IED period, hereafter) varies. The end 

of the IED period is marked with arrow in respective color for each experiment. It is 

seen the least informative IC (black curve) results in a longest IED period (~2.5 hour). 

Compared to that, the additional hydrometeor information in the IC (red curves) appears 

to shorten the IED period for nearly an hour. This advantage, mostly in terms of 

alleviating the model spin-up time, is also what one can expect from the utilization of a 

reasonable hydrometeor analysis. Again, the practical magnitude of the advantage 

would be dependent on the fineness of the analysis (i.e., analysis errors). An even 

shorter IED period of only one hour is found for the experiment with perfect initial 

moisture field (blue curve), even though no hydrometeor information is included in the 

IC. The advantage of the moisture accuracy on quickening the forecast error decrease is 

relatively significant since no other state variables we examine (i.e., θ, qcld, or qpcp, not 
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shown in the conceptual model) is able to shorten the IED period in a competitive 

efficiency.      

(iv) Forecast error magnitude 

The impact of the IC uncertainty also reflects on the forecast error magnitude. 

Beginning with a largest IC error given by the least informative initial condition, the 

experiment denoted by the black curve is most likely to be expected to show the 

forecast error greater than other experiments throughout the forecast range. However, a 

larger forecast error is found given by the experiment with perfect initial moisture field 

but no hydrometeors in its IC which is denoted by the blue curve within the first 1 to 1.5 

hours. This large error magnitude at the very beginning stage of the forecasts suggests a 

great sensitivity of the model forecast to the moisture accuracy in the IC, which induces 

certain forecast imbalance through its interactions with other error-containing fields. 

However, as soon as its IED period is passed, the perfect initial moisture experiment 

turns to drop its forecast error rapidly in a most significant efficiency (i.e., with a 

steepest slop) and ends up with a smallest final error (FE) magnitude among all 

experiments. For the experiments with perfect initial hydrometeors denoted by the red 

curves, their forecast errors remain in relatively smaller magnitudes compared to the no 

initial hydrometeor experiment (the black curve) in the entire four hours of the forecast 

range. Around 1.5 to 2 hours of the forecast, the perfect initial moisture experiment 

begins to surpass the perfect hydrometeor experiment with significantly smaller forecast 

errors, suggesting the greater positive impact of the initial moisture accuracy over the 

hydrometeors. The final forecast error difference (as denoted by the FE1 and FE2 in the 

conceptual model) is also found mostly associated with the IC uncertainty: the FE1 is 
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attributed to the benefit of initial hydrometeors, while with the perfect initial moisture 

field alone (hydrometeor is not even included), a greatly reduced magnitude of the final 

forecast error as large as FE1+FE2 can be obtained.       

(v) Impact of the model error 

The model error we discuss here is mainly caused by the microphysics 

treatments. The forecast performance difference resulted from the applications of 

perfect and imperfect microphysics schemes is distinguished by the solid and dash line 

(both in red). The general trend of the forecast error evolution, in terms of the length of 

the IED period, remains quite similar for the two experiments. Beginning with the same 

IC, the experiment with perfect microphysics tends to give smaller forecast errors 

throughout the entire four hours range in comparison with the imperfect microphysics 

experiment. However, the impact of the model microphysics errors on the prediction of 

model state variables (in terms of the forecast error difference between two experiments 

here) is not as significant as that caused by the initial condition error. On the other hand, 

in terms of providing a systematically better prediction of reflectivity in up to four hours 

range, the perfectness of microphysics is found much more crucial (not shown here; 

Refer to section 3.3 for details). 

The significance of the forecast error conceptual model we propose above is 

further discussed here. Since the model is constructed based on the findings of a single 

case study using one specific forecasting system, its universal validity has to be 

addressed. Besides, it is worth noting that in this conceptual model, instead of the 

absolute values such as the SRMS errors shown earlier in each experiment set, only the 

relative magnitudes among the curves (i.e., experiments) are valid. Quantitative 
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variations in the properties described above, such as the initial errors, length of the IED 

period, and error growth magnitude, may be found among different cases studied or 

different forecasting systems applied (i.e., case- or system-dependent); however, 

according to the general trend of the predictability varying with forecast range 

concluded with various forecasting methods and the dataset of a reasonable size (22 

cases) in Surcel et al. (2015), these variations are expected to stay in a relatively 

insignificant magnitude that would not alter the relative positions appearing among our 

experiments. As a result, we conclude our conceptual model should be robust in a 

qualitative sense and its significance is thus assured.   
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Chapter 5: Improving Moisture Adjustment in Cloud Analysis 

5.1 Impact of Moisture Accuracy 

 From the experiment sets presented in the previous chapters, it has been 

established that among the various state variables the cloud analysis attempts to 

improve, the moisture (qv) plays the most important role in terms of its prompt and 

significant impact on storm prediction. Even with no errors included, the insertion of 

hydrometeor fields can only provide limited benefit in the presence of initial moisture 

error. The impact of the initial moisture accuracy is found even more critical on 

predicting reflectivity.  

 Realizing the importance of moisture accuracy on model predictions and the 

limited efficacy of the current in-cloud moisture adjustment, efforts are made in this 

chapter to examine the validity of the simple saturation strategy and an optimally-

specified in-cloud moisture field, upon which a modified procedure making use of the 

vertical velocity information is proposed and its effectiveness on providing improved 

forecasts is preliminarily demonstrated. 

5.1.1 Validity of Current Moisture Adjustment 

As described earlier in subsection 2.1.1, in the current ARPS complex cloud 

analysis a simple empirical rule-based strategy is used to adjust the in-cloud moisture 

field: 100% relative humidity (RH) is assigned for the cloudy regions based on both 

LCL analysis and the presence of significant radar echoes. Under this strategy, it is 

likely that the background moisture field is actually gone through a one-way 

enhancement process instead of a so-called “adjustment”. In our OSSE framework with 
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the availability of the truth, it is possible for us to further examine the validity of the 

simple saturation strategy. 

In FIG. 5.1 the cross section, selected same as that shown in the previous 

chapter, is used for the demonstration of the RH fields. Both the background RH field 

and the counterpart adjusted using the current simple saturation strategy are exhibited as 

FIG. 5.1b and 5.1d, respectively. By comparing these two fields, an instant visualization 

of the effect of the qv adjustment can be gained. Moreover, if one looks into the true RH 

field (FIG. 5.1a), the dissimilarity of a considerable degree between it and the adjusted 

result can be discerned. In the truth simulation, the saturation is found to occur mostly 

above the height of 0 °C (i.e., the freezing level, FL). Below the FL, the RH field 

exhibits relatively high spatial variability; within the regions with significant radar 

echoes, even though the high RH values (80% and above, shaded in red) are found as 

the majority, RH value as low as 40% (as shaded in light blue) may exist as well. The 

differences between the true and adjusted RH fields imply the inconsistency existing 

between the model microphysics and the empirical rule employed; most likely, the 

empirical rule is too simplified to characterize the nature of RH variability and thus has 

its deficiency. By comparing with the true RH field, it is shown the simple saturation 

strategy is generally valid well above the FL, where most of the cold cloud formation 

anad sourced. Furthermore, according to the equation proposed by Goff and Gratch 

(1946), it is easier for the air parcels to reach saturation under a colder environment 

since less water vapor is required. On the contrary, more water vapor is needed for 

reaching saturation under the FL. On the other hand, as a certain amount of the 

rainwater appearing under the FL is not formed in situ originally but converted from the 
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iced phase precipitation aloft, the presence of precipitation under the FL is not 

necessarily contradictive to the unsaturation. In fact, the existence of the “unsaturated 

downdraft” driven by the evaporation of falling rain has been drawn attention to and 

discussed in many early studies (Betts and Dias 1979; Byers and Braham 1949; 

Emanuel 1981; Leary 1980) in both observation- and simulation-based approaches. In 

addition, it is also indicated that entrainment of the relatively dry air from the non-

precipitating area can result in reduced liquid water content (Wagner et al. 2013), 

particularly at the areas of the storm edge. 

The difference between the true and the background RH fields as used for the 

CNTL (FIG. 5.1c) gives us an idea about how much adjustment (in either enhancement 

or reduction direction) has to be done indeed for a more accurate moisture initialization. 

Note that the background RH field is derived as a function of the three-dimensional 

spatially smoothed T field (refer to section 3.2). Within the boundary of the cloudy 

regions denoted by the significant radar reflectivity contours (15 dBZ), we find a large 

amount of underestimated RH values (i.e., negative difference shaded in blue), which 

requires moisture enhancement, are given by the background; on the contrary, a certain 

amount of significant RH overestimation (i.e., regions shaded in warm colors) in the 

magnitude up to 40% that needs to be reduced can also be seen appearing mostly under 

the FL. Consequently, given the bi-directional tendency of the RH difference between 

the truth and background as illustrated and discussed above, our concern upon the 

validity of the enhancing-only strategy utilized in the current moisture adjustment (FIG. 

5.1d) is brought.  
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FIG. 5.1 Cross section of RH field (%) for (a) truth simulation, (b) 
background (CNTL), and (d) QvAdj. The RH difference between the truth and 
CNTL (CNTL-truth) is given as (c). The height of 0 °C is denoted by white 
solid lines in (a) and (b). 15 dBZ echo boundary is drawn by gray contour in 
(c) and (d) for a rough illustration of cloudy regions. The LCL is denoted by a 
blue dash line in (d). 

 

 The quantitative moisture analysis error resulted from the current qv adjustment 

has been presented in terms of the SRMS error at the initial time in FIG. 4.5d. Overall, 

by comparing with the non-adjusted qv field given by the CNTL (or other experiments 

without applying moisture adjustment), an extra error up to 35.5% is found introduced 

by the application of qv adjustment alone, as denoted by the QvAdj. An even larger 

analysis error is found to be introduced by applying both temperature and moisture 

adjustments (Refer to subsection 4.2.2 for related discussions). In other words, the 

current qv adjustment does not improve the initial moisture field but actually harm it by 
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dragging the background field father away from the true field. In FIG. 5.2, the along 

height qv dissimilarity from the truth, in terms of the RMS error, of the background 

(CNTL), perfect direct insertion experiment Qv (presented in section 3.4), and cloud 

analysis experiment QvAdj (presented in section 4.2) are shown. The RMS errors are 

calculated within the verification domain as described in Chapter 3. With a universal 

(i.e., entire domain wide) insertion of the perfect qv, the Qv results in zero error 

throughout the entire vertical layers. Beginning at the surface, the CNTL and QvAdj 

share quite similar RMS errors with no significant difference. The QvAdj is then found 

with an abrupt error increase shown at the ninth model level, from where its error 

begins to greatly diverge from the CNTL, which shows a relatively gentle error increase 

with height. of the CNTL and QvAdj begin to diverge at the ninth model level. The 

model level 9, as denoted by the blue dash line, is inferred as the bottom boundary of 

the qv adjustment application. The height of this model level is generally consistent with 

the LCL denoted in FIG. 5.1d. On the contrary, it is relatively hard to declare an exact 

level where the CNTL and QvAdj have their error merged since it appears to be a 

gradual process occurring with the height (above the model level 25); however, it can 

still be told to be generally coincident with the average height of the significant echo 

top, which is also where the application of qv adjustment ends at. Within the layers of qv 

adjustment application, a considerably great amount of analysis error, in terms of the   

RMS error difference between the CNTL and QvAdj, is shown with a maximum located 

around the level 20 (~2.2 to 3.0 km AGL), which is found consistent with the regions 

where the greatest RH overestimation occurs (shown in FIG. 5.1c). Given the 
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examination results shown here, the questionable validity of the simple saturation 

moisture adjustment is further affirmed. 

 

 
FIG. 5.2 RMS error of qv as a function of height (in terms of model level) 
at forecast initial (2:00 UTC). Experiments with and without hydrometeor 
analysis are represented by solid and dash lines, respectively. The ninth 
level is marked with a horizontal blue dash line. See context for detailed 
description. 

 

5.1.2 Design and Test of a Potential Modified Moisture Adjustment 

 After a thorough examination of the validity of the current moisture adjustment 

on providing moisture analysis, its room for potential improvements is revealed. In this 

subsection, we propose an optimally improved moisture adjustment based on the true 

RH variability and test its impact on the resulting moisture analysis and forecasts. 
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Through this investigation in which the validity of this optimally specified in-cloud 

moisture field is demonstrated, the potential effectiveness and value of a practically 

modified adjustment procedure, which will be presented in the next section, is assured. 

 Given that the simple saturation strategy utilized in the current moisture 

adjustment tends to overestimate the moisture field, especially for regions under the FL, 

certain modification on the strategy has to be sought for a more accurately specified 

moisture field with which the undesired analysis errors can be avoided. Complying with 

the convention adopted for executing the current procedure that the direct adjustments 

are actually made on the RH field from which the final moisture filed is derived, an 

instinctively modified procedure is proposed to directly insert the true RH values into 

the background in the cloudy regions. The experiment with this “optimally” modified qv 

adjustment is named “RHInsrt” and its analyzed RH field is illustrated in the cross 

section shown in FIG. 5.3c. Since the direct insertion of the perfect RH is limited only 

within the cloud regions, the analyzed RH filed shows some noticeable discontinuities 

at the cloud/precipitation boundary. Furthermore, in contrast to the forecast verification 

which is conducted in a relatively larger domain that includes both precipitating and 

non-precipitating areas, the quantitative impact of this cloudy region-limited qv 

improvement on the subsequent forecasts is therefore of our interests for investigation. 

It is worth noting that in spite of the perfectness of the true RH values inserted, the 

RHInsrt still suffers errors in its final qv analysis of. The analysis errors mainly result 

from the smoothed T field in the background used for the RH to qv conversion. The qv 

analysis result of the RHInsrt is provided in FIG. 5.3d, along with the true qv field (FIG. 

5.3b) for comparison. Visualized with the cross section as presented, the modified qv 
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adjustment generally captures most fine features of the truth and accurately specifies a 

comparable qv field. Some minor differences, mostly occurring above the FL, are found: 

the analysis of the RHInsrt seems to fail on depicting some convective-scale qv 

fluctuations that are present in the truth, which can be mostly attributed to the 

horizontally homogeneous background temperature distribution (as demonstrated by the 

0 °C lines shown in FIG. 5.3) and the nature of the low water vapor content at high 

levels. Another difference is found to occurr near the surface: with the in-cloud area 

limit, the analyzed qv field of the RHInsrt shows some significant underestimations 

under the LCL, which is known as the lowest boundary of the clouds (i.e., cloud 

bottom). 

 Quantitative improvement of the qv analysis provided by the RHInsrt can be 

evaluated by the RMS error shown in FIG. 5.2. By comparing with the background qv 

(denoted by the black dashed line), significantly reduced errors throughout the entire qv 

adjusting layer are seen for the RHInsrt (denoted by the blue solid line) while the 

general trend of the vertical error distribution is retained. Provided for a general 

perception, at the level 18, where most of the largest errors occur, the optimally 

modified qv adjustment (i.e., RHInsrt) makes a 9% error reduction over the background 

(i.e., CNTL) while the simple saturation qv adjustment (i.e., QvAdj) results in a 40% 

error increase over the background.    
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FIG. 5.3 Cross section of RH field (%) for (a) truth simulation and (c) 
RHInsrt. Cross section of qv field (g/kg) for (b) truth simulation and (d) 
RHInsrt. Corresponding 0 °C levels are denoted by white solid lines. 15 
dBZ echo boundary is drawn by gray contour. The LCL is denoted by blue 
dash line for experiment RHInsrt indicating the bottom boundary of 
adjustment. 
 
 

 Other than the modified qv adjustment, the same hydrometeor analysis as 

performed for all the cloud analysis experiments presented in the previous chapter is 

realized for the RHInsrt. The in-cloud temperature adjustment, however, is turned off to 

distinguish the individual impact of the qv adjustment, which is the aim of our 

investigation. Besides, while discussing the impact of the optimally modified moisture 

adjustment by looking into the forecast performance of the RHInsrt, we also reprise 

certain experiments from the previous chapters such like the Qv (from the direct 

insertion experiments), QvAdj and NoAdj (from the cloud analysis experiments) in 



126 

addition to the CNTL for comparison. In the following discussion, the Qv and QvAdj 

will be termed as the TrueQv and SatAdj, respectively, for a better clarity.   

 
FIG. 5.4 Same as FIG. 3.6, but for the CNTL, TrueQv, NoAdj, SatAdj, RHInsrt, 
and UpdftAdj. 

  

Quantitative verification of various predicted state variables are provided in FIG. 

5.4 for the CNTL and moisture-associated experiments described above. Since most 

experiments have been discussed in the previous chapters, the focus here will be put on 

the RHInsrt and its relative performance in comparison with others. 

 On the prediction of horizontal winds (FIG. 5.4a), the instant error growth as 

shown in the TrueQv resulted from the perfect initial qv field is also seen in the RHInsrt. 
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Similar to its impact on the TrueQv, this error growth also causes the RHInsrt to show a 

forecast error larger than the CNTL at the very beginning of the forecast. However, the 

length of the impact for the RHInsrt is shorten to the first 30 minutes only, after which 

the RHInsrt even has its forecast error dropping below the TrueQv for about an hour 

(between 3:00 and 4:00 UTC). As the impact of the qv features at the fine scales on 

inducing the very short range forecast error growth has been established through the 

previous experiment sets, the shortened error growth period of the RHInsrt, as 

compared to the Qv, could be most likely attributed to the limited area of the improved 

qv field. Besides, the additional information of the hydrometeor fields in the RHInsrt’s 

IC could also be responsible for the very-short-term outperformance over the TrueQv. 

Eventually after a longer forecast range (2.5 hours, specifically), the above factors start 

to have their effect diminished as the initial qv accuracy brings back its domination and 

the TrueQv significantly outperforms the RHInsrt as a result. While comparing with 

other two cloud analysis experiments (SatAdj and NoAdj), the RHInsrt generally 

performs better at most times. 

 On the prediction of vertical velocity (FIG. 5.4b), the RHInsrt performs better 

than the TrueQv (the one with the perfect initial qv) but worse than the NoAdj (the one 

with the background qv and hydrometeor analysis) in the first 1.5 hours. The instant 

impact of the fine scaled initial qv field at the very beginning as described earlier for the 

horizontal winds is again confirmed by the relative position of the w prediction 

performances among the experiments. Beginning from 4:30 UTC, the RHInsrt turns to 

give the second best w prediction, which is only worse than that of the TrueQv.            
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 On the prediction of T (FIG. 5.4c), the RHInsrt maintains a trend of forecast 

error evolution very similar to the TrueQv. Overall, at most times, the RHInsrt 

outperforms all other experiments except for the TrueQv. However, the RHInsrt 

performs slightly worse than the CNTL at 2:30 UTC. Given the differences in their ICs, 

the disadvantaged performance of the RHInsrt implies the strict criticality of the 

accuracy of the qv field corresponding to the present hydrometeors on avoiding the 

instant imbalance on the forecast T.  

 An overall improvement on qv analysis (~10%) given by the RHInsrt is 

demonstrated again as shown at the initial time in FIG. 5.4d. A very short term instant 

forecast error growth that causes the performance worse than the CNTL as occurring in 

the TrueQv also happens to the RHInsrt within the first hour of the forecast range. 

Besides, similar to the Vh prediction, the RHInsrt at first outperforms the TrueQv 

between 3:00 and 3:30 UTC, and then gets surpassed by the TrueQv after 4:00 UTC. 

Overall, the RHInsrt provides the best qv forecasts among all cloud analysis experiments 

throughout the entire four hours range. 

 Relatively insignificant forecast error differences are shown among the 

experiments on the total water prediction (FIG. 5.4e). Overall, the RHInsrt shows 

forecast errors larger than both the TrueQv and NoAdj within the first hour, and then 

outperforms the TrueQv with relatively significant error difference after 4:00 UTC 

while shows indistinctive errors to the NoAdj. 

 On the overall performance of the state variable predictions given by the 

ASRMS error (FIG. 5.4f), the instant error growth as seen on most state variables 

discussed above is shown for the RHInsrt at 2:30 UTC. However, owing to the localized 
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(in-cloud regions only) improvement of the qv accuracy and the benefit of initial 

hydrometeor analysis, the RHInsrt is able to outperform the TrueQv for a very short 

period (from 3:00 to 3:30 UTC). After 4:00 UTC, the TrueQv returns to provide 

forecasts significantly better than the RHInsrt (also the best among all) as the critical 

initial qv accuracy regains its dominant impact. As a conclusion, the optimally specified 

in-cloud RH field (i.e., RHInsrt) is capable of providing significantly improved 

forecasts over either the CNTL or any other cloud analysis experiments which are 

conducted either with or without the current qv adjustment. 

In both the previous chapter and here, it is found the significantly great qv 

analysis errors resulted from the simple saturation moisture adjustment can lead to 

instant great forecast error growth on most state variables. Further exploration of the 30 

minutes forecast errors is proposed by looking into their vertical distribution (FIG. 5.5). 

On the predictions of θ and qv (FIG. 5.5b and 5.5c, respectively), the significant 

error growth of the SatAdj mainly occurs within the cloudy layers, where the qv 

adjustment is in effect, indicating the close linkage between the initial moisture field 

and the immediate forecasts of the thermodynamic states. On the contrary, the localized 

moisture adjustment of the SatAdj results in significant forecast errors of horizontal 

winds (u in FIG. 5.5a and v not shown here) vertically spreading over the entire model 

layer, suggesting the high and quick sensitivity of the Vh forecast to the initial qv field. 

On the qw prediction (FIG. 5.5d), besides the errors within the cloudy layers, another 

significant error is found at the level 30 and above in the SatAdj. Furthermore, tight 

interaction among the Vh, θ, and qw can be inferred given the relatively similar vertical 

location of the significant error they share. We would like to point out the significant 
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better qv forecast (i.e., less error) near the surface extending up to the cloud base given 

by the experiment TrueQv. This advantage over other experiments is contributed by the 

perfect qv insertion at the cloud-free low levels, where the qv improvement is not 

achievable in practice owing to the in-cloud regions limitation. 

 
FIG. 5.5 RMS error of (a) u, (b) θ, (c) qv, and (d) qw as a function of height (in 
terms of model level) at 30-min forecast (2:30 UTC). Experiments with and 
without hydrometeor analysis are represented by solid and dash lines, respectively. 

 

In FIG. 5.6, the verification of reflectivity prediction by the CNTL and qv-

associated experiment set is shown. In terms of the forecast dissimilarity from the truth 

(FIG. 5.6a), the RHInsrt is able to provide forecasts significantly better than the SatAdj 

for the entire four hours forecast range. Specifically, after the one hour spin-up period 
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required for the TrueQv to develop a decent storm structure and provide the 

significantly best performance, the RHInsrt continuously keeps its second best 

performance. While comparing with the NoAdj, the additional application of this 

optimally modified qv adjustment also shows positive impact ensured by the relatively 

better forecasts it provides. On predicting the intense convection, the RHInsrt results in 

a slightly larger underforecast, in terms of the lower bias score (FIG. 5.6b), compared to 

the TrueQv; however, its significant advantage over the NoAdj is still valid. 

Furthermore, according to the ETS (FIG. 5.6c), the RHInsrt generally provides forecasts 

systematically better than the SatAdj (only with a minor exception occurring at 4:00 

UTC) throughout the four hours range. After two and a half hours of the forecasts 

(beginning at 4:30 UTC), the performance of the RHInsrt appears to be quite 

competitive with that given by the TrueQv, the best forecast. As a conclusion, based on 

our examination results presented above, the effectiveness of the optimally specified in-

cloud RH field is demonstrated by its significant positive impact on the storm prediction. 
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FIG. 5.6 Same as FIG. 3.7, but for the CNTL, TrueQv, NoAdj, SatAdj, RHInsrt, 
and UpdftAdj. 

 

5.2 A Modified Moisture Adjustment and its Impact 

As demonstrated in the previous section that the storm prediction can be 

significantly improved through an accurately specified initial RH field within the 

cloudy regions, even if there exist minor analysis errors. Further efforts are made, in 

this section, to propose an improved qv adjustment procedure, from which better 

forecasts are expected. 

Since there is no easy relationship existing between in-cloud moisture and 

available observations, some empirical rules are needed to help improve the in-cloud 

moisture adjustment. In the previous section, the in-cloud RH field from the truth 

simulation is shown to have certain unsaturated regions, which is found mostly 

corresponding with the downdrafts as it has been widely observed in the real 

atmosphere. In FIG. 5.7, the true RH field is provided again, along with the contour of 
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true w equal to -0.2 m s-1, which is arbitrarily selected for representing the general areas 

of the downward motion. It is seen that the occurrence of the unsaturation, especially 

that under the FL, generally coincides well with the downward motion areas. The 

capability of our presumed perfect model, used for conducting the truth simulation, on 

depicting the real observed phenomenon is thus assured. 

Based on the investigation of the truth simulation shown above, the usefulness 

of vertical velocity (w) on helping determine in-cloud moisture is considered. Here in 

our OSSE framework, we introduce the w information, borrowed from the truth, to 

develop a modified qv adjustment. The impact of this modified procedure on the 

forecasts will also be examined and discussed. Given the ability of the 3DVAR 

approach on providing accurate wind analysis as demonstrated in a number of present 

studies (Gao et al. 1999; Potvin et al. 2012), the potential of this newly proposed 

procedure on real case application, at least in terms of its easy applicability, is assured.  

 
FIG. 5.7 Same as FIG. 5.1a, but with black contours of true w = -0.2 m/s overlaid. 
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5.2.1 Development of a Vertical Motion Based Moisture Adjustment 

 Our goal is to find the potential relationship existing between the true RH and w, 

with which the moisture field can be adjusted more accurately and hopefully the 

improved forecasts can be obtained. Considering the in-cloud RH field shows 

significantly different features in above-the-FL and under-the-FL regions, our retrieval 

of the truth-based RH-w relation is performed separately for the two regions divided by 

the 0 °C isotherm as follows: 

(i) Regions above the FL (T < 0 °C): 

It has been seen in the truth simulation (FIG. 5.3a and b) that most in-cloud 

regions above the FL are saturated or nearly-saturated (i.e. with RH ≥ 90%). Besides, 

the water vapor content (i.e., qv) appears to be relatively low (in this case, no larger than 

7.5 g kg-1) primarily owing to the attraction of gravity. Therefore, a relatively simple 

strategy is sought for performing the qv adjustment in these regions. 

A binary-classified strategy is applied, under which a constant RH value will be 

assigned over the sub-saturated regions, which is based on the setting of a w threshold. 

There are two central questions that need to be answered before the adjusting procedure 

can be practically realized:  

1) What specific w value, which will serve as a bottom threshold, would be 

representative enough to cover most unsaturated regions? 

2) In those unsaturated regions, what constant RH value, which can best match the 

true state, should be used? 
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Table 5.1 Contingency table used for statistics above the FL 

 w < threshold w ≥ threshold 

RH = 100% Miss 1 Hit 1 

RH < 100% Hit 2 Miss 2 

 

 
FIG. 5.8 Diagram of w and RH fields used for statistics above the FL. 
Area within the blue and black ellipses denotes w < threshold and RH < 
100%, respectively. Hits and misses corresponding to the contingency 
table test (Table 5.1) are shaded in gray and yellow color, respectively. 

 

To answer the first question, we perform the statistics of w and its corresponding 

RH values using a contingency table (as shown in Table 5.1). The population (or sample) 

used for our statistics are the model grids with the true values that match the following 

conditions: 1) T < 0 °C for ensuring above the FL, and 2) Z ≥ 15 dBZ for ensuring 

within the cloudy regions. FIG. 5.8 is provided for the illustration of a sample of w and 
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RH distribution that used for carrying out our statistics. By varying the w threshold, we 

calculate every resulting hit-miss ratio (HMR) as: 

HMR =  Hit 1 +  Hit 2Miss 1 +  Miss 2. 
The best w value is then determined by the preset w threshold which results in the 

largest HMR. The w threshold is chosen given that it is capable of covering most 

unsaturated areas and avoiding most saturated areas. 

The statistics results (in terms of HMR) of varying w thresholds are plotted and 

shown as FIG. 5.9. The w values ranging from -5 m s-1 to 5 m s-1 are tested in an every 1 

m s-1 interval. However, within the range between -0.5 m s-1 and 0.5 m s-1 where the 

HMR maximum is approached, the HMR are calculated in a finer interval of 0.1 m s-1. 

As a result, w of 0 m s-1 is found to be the best threshold that gives the largest HMR 

(~3.75), suggesting that the negative w values outline most unsaturated in-cloud regions 

above the FL.  

 
FIG. 5.9 HMR as a function of varying w threshold. 
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 After the w threshold considered most representative of the unsaturated areas is 

found, we further look for an arbitrary RH value to assign for these areas. The criterion 

for determining what RH value should be used is based on the calculation of the qv 

analysis error: a minimized RMS error of the final qv analysis is searched through the 

varying RH value. Specifically, while 100% RH is kept for all positive w areas, 

different constant RH values are tested for best representing the negative w areas and 

the corresponding RMS errors are calculated. FIG. 5.10 shows qv analysis results in 

terms of the SRMS error varying with different RH specified, in which the RH values 

ranging between 80% and 99% are tested in an every 1% interval. As a result, a SRMS 

error minimum of 0.99718 is found shared by 90% and 91% RH. Note that in our qv 

analysis upon which the SRMS error is calculated, only the in-cloud moisture field 

above the FL is adjusted while the background moisture values are kept for the regions 

below the FL. By comparing this analysis result with that provided by other previous 

discussed cloud analysis experiments (as listed in FIG. 5.10), it is shown that this 

modified above-the-FL qv adjustment strategy indeed provides an improved qv analysis 

result over both the CNTL (i.e., the background) and SatAdj (i.e., the current qv 

adjustment). Note that the improvement over the SatAdj is even more significant with a 

26% error reduction. However, a relatively larger error provided by this modified qv 

adjustment in contrast with that of the RHInsrt can be seen. This discernible 

disadvantage is mainly due to the unimproved background moisture field below the FL.  



138 

 
FIG. 5.10 SRMSE of qv as a function of varying constant RH 
value specified for negative w areas. For reference purpose, 
SRMSEs of some other associated experiments are listed at 
upper right corner of the plot. 

 

(ii)  Regions below the FL (T ≥ 0 °C): 

Different from what is seen for the regions above the FL, significantly higher 

RH variability, both spatially and quantitatively, is found within the in-cloud regions 

under the FL. Given the presence of the majority of significant (i.e., relatively higher) qv 

content, the validity of the qv adjustment in these regions is thus suggested to be 

relatively crucial to the subsequent forecasts. To enable a better depiction of the 

intrinsic complexity of the moisture distribution under the FL, a corresponding 

complicated adjustment strategy is required. 
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Again, the relationship between the true w and RH is sought for constructing the 

adjustment strategy. Given the RH variability, the scatter plot and regression are 

performed. The population for the statistics is confined to the following conditions: 1) T 

≥ 0 °C for ensuring below the FL, 2) Z ≥ 15 dBZ for ensuring within cloudy regions, 

and 3) above the cloud base provided by the cloud coverage analysis procedure (refer to 

2.1 for details). In FIG 5.11, the scatter plot of the true w and RH is presented. It is seen 

the overall distribution of the scatters ranges from 10% to 100% for the RH and from -8 

m s-1 to 10 m s-1 for the w. Furthermore, a major amount of scatters are found centering 

around the 0 m s-1. A relatively vague trend of the generally positive proportion 

between the w and RH is found among the scatters. 

In order to find a relationship between the w and RH that is best representative, 

in terms of characterizing most scatters and providing resulting analysis of a least error, 

we perform the regression upon the scatters distributed around the neutral w              

(i.e., 0 m s-1) where most scatters are located. For the regression, a w range centering at 

0 m s-1 with a two-way expansion of 3 m s-1 (as denoted by the black dashed lines in 

FIG. 5.11) is selected given the 99% of the total statistics population it contains. For 

scatters within this range, first- to third-order polynomial regressions are tested. The 

results of the regression are shown in FIG. 5.12 denoted by the solid blue lines in 

addition to the scatters. The fitting equation is also provided in the respective figure. For 

the scatters outside of the range of the regression, simple constant RH values are 

assigned given their minority. Generally, these constant RH values are determined by 

inserting the terminal w values (i.e., -3 and 3) into the respective fitting equations. For 

example, the constant RH values specified for w less than -3 m s-1 are 57.7%, 47.0%, 
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and 53.5% in the first-, second-, and third-order regression, respectively (as listed and 

denoted by the horizontal blue dash lines in FIG. 5.12). However, there are exceptions 

in the second- and third-order regressions occurring at the positive terminal w value (i.e., 

3 m s-1): the RH value derived from corresponding fitting equation appears to decrease 

with the increasing w after reaching a RH maximum. To avoid the decreasing trend for 

our adjustment strategy, we truncate the fitting equation around the location where the 

RH happens. As a result, in the second- (third-) order regression, the constant RH 

values of 84.8% (84.4%) is specified for regions with w above 2.0 m s-1 (1.6 m s-1). 

The resulting moisture fields (under the FL) adjusted with these three different 

order regressions are evaluated with the SRMS error calculation. Again, the background 

RH values are kept for regions above the FL. The result (as denoted at the bottom left 

corners in FIG. 5.12) shows that the second- and third-order regressions provide qv 

analyses comparable to each other (the second-order is slightly better), while the first-

order gives a relatively worse analysis with a discernible larger error. It is also shown 

that none of these regressions is able to provide quantitatively improved qv analysis over 

the CNTL (i.e., the background). The improvement of the overall qv analysis is limited 

to 1) the unadjusted regions above the FL, 2) the lack of accuracy of the background T 

used for the RH-qv conversion, and most primarily 3) the intrinsic loose relationship 

existing between the w and RH. Nevertheless, the analyses gained with the regression-

based adjustments are still found significantly advantageous over those given by the 

simple saturation qv adjustment (i.e., the SatAdj). 

 Upon the second-order regression (the one giving the least qv analysis error), 

further efforts are made to minimize the SRMS error of the qv analysis. To do so, we 
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tune the specified constant RH values used at the w boundary of both sides (i.e., w of -3 

m s-1 and 2 m s-1 at the left boundary and right boundary, respectively). With the bottom 

threshold of w < -3 m s-1 and top threshold of w ≥ 2 m s-1 set, the RH values are then 

tested in an every 1% interval ranging from 40% to 60% for the bottom threshold and 

from 85% to 99% for the top threshold. For each tuning test, the qv SRMS error of the 

corresponding analysis is calculated (detailed results of the examination are omitted 

here). As a result, it is found when RH of 45% and 85% are specified for the bottom and 

top threshold, respectively, a SRMS error minimum of 1.02920 can be obtained (FIG. 

5.11). The final w-RH relationship used for the qv adjustment in the regions below the 

FL is denoted by the blue line shown in FIG. 5.11.      

 
FIG. 5.11 Scatter plot of the true w and RH within the cloudy 
regions below the FL. Scatters between two black dash lines are 
used to fit for polynomial relations. Blue curve is the final 
relation used as the modified qv adjustment. 
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FIG. 5.12 Retrieval of w-RH relationship using (a) first order, (b) second order, and (c) 
third order polynomial regression. Regression results are plotted with blue solid line or 
curves in the middle of the figures, along with the equations written. Constant RH 
values used for w exceeding terminal thresholds are marked with horizontal dashed 
blue lines at both sides. SRMS error of qv analysis using corresponding equation is 
listed at the bottom left corner of each plot. 
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 With all retrieving processes exhibited above (for both above and below the FL 

regions), the modified in-cloud qv adjustment strategy is finalized as: 

For - < 0 °S �above the FL	: ,U ≥ 0 m sV;,                        RH = 100%U < 0 m sV;,                        RH = 90%  , HIC                               
 for - ≥ 0 °S �below the FL	: Y U ≥ 2 m sV;,                        RH = 85%                                           −3 m sV; ≤ U < 2 m sV;, RH = −1.29UN + 6.28U + 77.43 .U < −3 m sV;,                     RH = 45%                                           

 

In practical application of the startegy above, the background temperature is used.  

5.2.2 Impact of the Modified Moisture Adjustment 

 In this subsection, the effectiveness of the w-based qv adjustment is examined 

through the verification of both the analysis and subsequent forecasts it provides. In FIG. 

5.13, the analyzed RH and qv fields provided by both the current adjustment and 

modified adjustment are shown for a qualitative comparison. 

 By comparing with the true RH field (FIG. 5.3a), the significant advantage of 

the modified qv adjustment over the current qv adjustment is shown on providing a RH 

analysis with spatial variability, which is much more comparable to the truth. However, 

some extreme values as seen in the truth, particularly those under the FL, are blunted by 

the w-based procedure, resulting in a RH field relatively smoother than its counterpart 

in the truth. As two significant examples, the low RH values (~40% in light blue) in the 

area at the horizontal distance between 325 km and 350 km (around 3 km high) is 

overestimated and the high RH values (above 90% in red) in the area at 375 km is 

underestimated. On the qv analysis, significant qv discontinuity occurring between the 

cloud edge and its adjacent environmental (i.e., cloud-free) regions is found caused by 

the current qv adjustment (FIG. 5.13b), form which the in-cloud qv field appears to 

experiences a horizontally homogeneous enhancement given the only information of the 
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general evenly layered background temperature field used for the qv retrieval. In 

contrast with that, the qv analysis provided by the modified procedure shows relatively 

smoother qv changes at the cloud edge. On the other hand, with the additional 

information of w introduced, the localized updraft/downdraft-induced qv fluctuations, 

which is completely absent in the analysis of the simple saturation adjustment, are also 

characterized by the modified qv adjustment. Still, some underestimations on the qv 

analysis, occurring mostly at low levels around the cloud base, are shown caused by the 

modified procedure because of the blunted extreme values in the preceding RH analysis 

as discussed above.        

 
FIG. 5.13 Same as FIG. 5.3, but for the SatAdj (upper panel) and UpdftAdj 
(lower panel). 
 

 In addition to the qualitative improvements on the moisture analysis provided by 

the modified qv adjustment as discussed above, the quantitative verification of the 
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moisture analysis in terms of the SRMS error at the initial condition time (i.e., 2:00 

UTC) can be accessed in FIG. 5.4d. Note that the cloud analysis experiment performed 

with the modified qv adjustment is named as the UpdftAdj hereafter, given that this w-

based procedure generally addresses moisture adjustments at the updraft areas instead 

of making an overall enhancement at both updraft and downdraft areas as done in the 

current adjustment. Given that the SRMS error of the qv analysis of the UpdftAdj is 

1.026 and the counterpart of the SatAdj is 1.356, the modified moisture adjustment 

significantly reduces about 24% analysis error of that the simple saturation adjustment 

has caused, which is inferred mostly by reducing the over-moistening in the downdraft 

regions. A further examination of the modified adjustment procedure is provided in FIG. 

5.2, in which the vertical distribution of the qv analysis error is shown. Generally, within 

the layer where the qv adjustment is in effect, the UpdftAdj appears to have a 

significantly improved qv analysis in comparison with the SatAdj (termed as QvAdj in 

the figure) although a minor error increase is also found to be introduced by the 

additional application of this modified procedure to the background (i.e., CNTL). 

 Impact of the modified qv adjustment on predicting model state variables can be 

discussed by referring to FIG. 5.4. Given the highest standard of the forecast 

performance set by the RHInsrt, which utilizes an “optimally” specified moisture field 

in its IC, we thus expect the performance of the UpdftAdj to be as close to that of the 

RHInsrt as possible in the following verifications. On the horizontal wind prediction 

(FIG. 5.4a), the UpdftAdj shares a forecast error trend quite similar to the RHInsrt. 

Generally, the UpdftAdj performs not as good as the RHInsrt throughout the entire four 

hour range, and the forecast error difference between them is found to increase with the 
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forecast range. The systematic outperformance of the RHInsrt over the UpdftAdj 

highlights the importance of the initial moisture accuracy, specifically in the cloudy 

regions, on Vh forecasts. Besides, the positive impact of the modified qv adjustment is 

also assured by the systematic outperformance of the UpdftAdj over the NoAdj in the 

entire four hours of the forecast (relatively insignificant within the first hour). On the w 

prediction (FIG. 5.4b), again, the UpdftAdj is found to provide forecast quite 

competitive with that of the RHInsrt. With the relatively smoother moisture analysis 

compared to that of the RHInsrt, the Updraft shows relatively smaller w forecast error 

within the first two hours, highlighting the impact of the finer scaled moisture features 

on inducing the larger w forecast error in the very short beginning range.  

 Similarly, forecast error of the UpdftAdj similar to but slight larger than that of 

the RHInsrt is found on the T prediction (FIG. 5.4c) throughout the entire forecast range. 

Besides, the slightly worse than the CNTL performance at 2:30 UTC shown in the 

RHInsrt (as discussed in the previous section) is also found in the UpdftAdj. 

 On the prediction of qv (FIG. 5.4d), even beginning with a quantitatively larger 

analysis error compared to the NoAdj, the UpdftAdj is found to quickly outperform the 

NoAdj in one hour. The qualitative improvement on the initial qv field, introduced by 

the additional information of w is attributed to be the key factor of this advantage. In 

general, the forecast error of the UpdftAdj sticks closely to the RHInsrt for the entire 

four hours range. However, in the end of the forecast, the UpdftAdj is found slightly 

outperformed by the SatAdj, which calls for further investigation.  
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Upon the insignificant diversity of the qw prediction performance (FIG. 5.4e) 

among different experiments as discussed earlier, the forecast error of the UpdftAdj is 

found to nearly overlay on that of the RHInsrt at most times. 

 The overall performance on the state variable prediction, in terms of the 

ASRMS error (4.4f), provided by the UpdftAdj is found to stay similar with but slightly 

worse than that of the RHInsrt. According to the verification results shown above, the 

w-based qv adjustment is found promising on providing improved forecasts comparable 

to that achieved by the direct perfect in-cloud RH insertion. Our earlier statement 

regarding the instant negative impact of the fine scaled qv feature in the IC occurring at 

the beginning stage of the w prediction is further affirmed here by the relatively better 

performance of the UpdftAdj compared to that of the RHInsrt. 

 The verification of Z prediction by the UpdftAdj is provided in FIG. 5.6. On the 

dissimilarity between the truth and the experiment forecast (i.e., the RMS error, FIG. 

5.6a), the UpdftAdj performs as good as the RHInsrt within the first 1.5 hours, and then 

runs into relatively larger error, which is in the magnitude similar to that given by the 

NoAdj. The later stage divergence of the RMS error shown between the UpdftAdj and 

RHInsrt can be attributed to their bias score difference occurring at the corresponding 

time. Most likely, the perfect RH insertion at the initial time is beneficial for the 

forecast (i.e., RHInsrt) to maintain proper intensity of Z by avoiding unfavorable 

evaporation for a relatively longer range. Nevertheless, the UpdftAdj is still able to 

distinguish itself from the NoAdj with the great reduced underforecast over the entire 

forecast range. The ETS of the UpdftAdj (FIG. 5.6c) is significantly better than that of 

the NoAdj at all times, but is found not that competitive if compared with the SatAdj. 
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Since the high ETS of the SatAdj is mostly benefited from the unrealistic overforecast 

of Z as discussed in the previous chapter, we believe the merit of the modified 

adjustment for improving the Z forecast, mostly through reducing the underforecast, is 

still valid. 

 According to the examination presented above, the effectiveness of the modified 

qv adjustment procedure based on w and background T has been demonstrated in terms 

of providing qualitatively improved qv analysis which is beneficial for both accurate 

prediction of state variables and properly maintained storm intensity.  
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Chapter 6: Summary and Future Work 

6.1 Summary and Conclusions 

Improving the convective-scale storm forecasts in regional NWP models still 

remains an ongoing challenge, toward which the limitations and potential of the ARPS 

complex cloud analysis system for radar reflectivity data assimilation has been explored 

in this dissertation. By using OSSEs in which the truth of all model state variables is 

known, the accuracy of the analyzed fields can be assessed quantitatively. This study is 

also valued for its first attempt of using OSSEs to carry out an in-depth investigation 

into the effectiveness of cloud analysis. 

 A detailed introduction to the current official version of the ARPS complex 

cloud analysis system is provided first in this dissertation. With a step-by-step flow 

chart, key procedures including analysis of precipitating and non-precipitating 

hydrometers, update of in-cloud temperature and moisture fields, as well as the 

empirical assumptions involved are reviewed. A new version of the hydrometeor 

analysis scheme is proposed and implemented in the system. Compared to the official 

version which simply uses background temperature and observed reflectivity as a 

guidance to determine one dominant hydrometeor species, the new scheme employs a 

hydrometeor classification algorithm based on polarimetric radar variables, enabling co-

existence of different hydrometeor species that is believed more realistic. In addition to 

the use of polarimetric radar variables that aid the determination of hydrometeor species, 

the radar reflectivity operators used in the cloud analysis are also improved. A 

commonly used option (i.e., the KRY scheme) in the ARPS cloud analysis is based on 

empirical power-law relationship between the reflectivity and hydrometeor mixing 
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ratios that were originally derived based on fitting observational data. In the modified 

version, we use a set of reflectivity operators developed by Jung et al. (2008), which 

were derived based on scattering by hydrometeors of electromagnetic waves. The 

operators also include a melting model that enables more accurate calculations of 

scattering by water-coated wet hail and graupel.  

The revised cloud analysis with the above two modifications is applied to a 

maritime mesoscale convective vortex case in Taiwan region, and the impact of the 

revised cloud analysis is assessed in terms of rainfall forecast. It is found that even 

though the differences in the hydrometeor analyses provided by the versions of scheme 

are significant, the forecast hydrometeor and rainfall become similar just one hour into 

the forecast. Only small sensitivity to the cloud analysis algorithm differences is found, 

and for this real case, the rainfall forecast error is significant. Significant model errors 

as well as errors in the storm environment are believed to be the contributing factors; 

such errors can quickly overwhelm any improvements to the analyses of in-cloud model 

states at the initial condition time.        

To more unambiguously determine the sensitivity of model forecasts to the 

cloud analysis procedure and to various treatments within, we shifted our focus in the 

rest of this dissertation to an OSSE framework where the truth and possible model 

errors are known. The 19 May 2013 mesoscale convective system over central United 

States is selected for conducting the OSSE study. A six-hour long free forecast, 

initialized at 00 UTC, is performed using the ARPS model with a 1-km grid spacing. 

The initial condition was created by assimilating radar data using the ARPS 3DVAR 

and cloud analysis on a 4-km grid, using the operational 12-km NAM analysis as the 



151 

background. The 1-km spun-up forecast between 2 and 6 hours is used as the truth for 

the OSSEs. By smoothing the model state variables of the truth forecast at 02 UTC and 

removing the cloud fields, a degraded initial condition is created. A baseline control 

forecast is created starting from this degraded initial condition, which will be improved 

by introducing more accurate initial conditions through sensitivity and data assimilation 

experiments.   

In the first set of the OSSEs, the relative sensitivity to 1) model error due to the 

use of different microphysics scheme and 2) errors in the initial state variables, is 

investigated. The forecast winds, temperature (T), moisture (qv), total water-ice mixing 

ratio (qw), and simulated radar reflectivity (Z) of sensitivity experiments are evaluated in 

terms of the root mean square (RMS) error calculated against the truth. In examining 

the model error, different microphysics schemes are used in experiments having perfect 

hydrometeor initial conditions. Compared to the control in which the same 

microphysics scheme as the truth run is used but with the initial hydrometeors cleared 

out, the differences due to the model microphysics used appear to be overwhelmed by 

forecast errors due to IC errors, even though they are limited to non-hydrometeor state 

variables. However, in terms of the forecast reflectivity field, errors due to microphysics 

difference become more significant for longer range forecasts. 

Subsequently, forecast sensitivity to errors in the IC of individual state variables 

is examined by alternately inserting perfect values of individual or a group of variables 

back into the smoothed initial conditions. Among the model state variables that can be 

updated by the cloud analysis (i.e., potential temperature θ, moisture qv, and 

hydrometeor mixing ratio), qv is found to have the greatest impact on the prediction of 
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state variables and forecast reflectivity. On the other hand, precipitation hydrometeors 

are found to have the second largest impact in terms of short-term (two hours and less) 

prediction of qw and associated T, which are most likely helped by more accurate 

hydrometeor and cold pool predictions. Lastly, the importance of the non-precipitating 

hydrometeors is relatively small. Generally consistent findings about the relative 

importance among different model state variables are found in Ge et. al (2013). 

 The second part of the OSSE study is designed to examine the impact and 

effectiveness of the cloud analysis scheme. Differing from the direct insertion of perfect 

values that is done in the previous set of experiments, hydrometeor and associated in-

cloud state variables in the initial condition are obtained using the ARPS cloud analysis 

scheme with varying configurations. In addition to the hydrometeor analysis, impact of 

adjustment of two in-cloud state variables (temperature and moisture) is also examined. 

When the hydrometeor analysis is performed alone without updating any other in-cloud 

state variables, noticeable and long lasting, up to four hours, positive impact on forecast 

can be found in comparison with the hydrometeor-clear control. However, it is found 

whenever the current qv adjustment, which saturates the entire precipitation region by 

setting 100% relative humidity (RH), is applied, rapid forecast error growth occurs in 

most state variables and reflectivity is significantly over-forecasted. Same issue has also 

been reported in Schenkman (2012) when frequent cycling analysis strategy was used. 

On the other hand, when the qv adjustment is off, the in-cloud temperature adjustment 

itself, which adjusts the temperature profile towards the moist-adiabat of a low-level 

lifted parcel, is found to work quite well in terms of giving consistently improved 

forecast in both state variables and reflectivity over the four-hour forecast range.    
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Based on the results of the earlier OSSEs, efforts are made in the last part of the 

dissertation to improve the qv adjustment procedure in the current cloud analysis to 

mitigate precipitation overforecast. Firstly, we conduct an experiment by directly 

inserting the perfect relative humidity values from the truth in the precipitation region to 

document the impact of in-cloud moisture analysis. The water vapor mixing ratio field 

is then derived from the perfect RH and error-containing temperature filed. The positive 

impact of this in-cloud humidity field is demonstrated by its improved forecasts in 

comparison with those using simple saturation qv adjustment. Furthermore, a modified 

qv adjustment procedure making use of the vertical velocity information is proposed. 

Based on the observed physics of the “unsaturated downdraft” driven by the 

evaporation of falling rain, the potential relationship between the vertical velocity and 

RH is examined. It is found according to our simulation results, this newly-proposed 

procedure is able to significantly reduce over-moistening in the downdraft regions. 

However, because of the loose relationship between vertical velocity and relative 

humidity, the overall analysis error in the adjusted qv is not necessarily reduced 

quantitatively. Still, the improved state variable forecast resulting from the modified qv 

adjustment over that from the original scheme remains significant throughout the entire 

four hours range. In terms of predicting intense convection, the superiority of the 

modified qv adjustment still holds compared to the experiment with no in-cloud qv 

adjustment; however, with this scheme there is under-prediction of precipitation. 

Further research on further improvement to the qv adjustment procedure is therefore still 

warranted. 
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6.2 Future Work 

 Given that our findings in this study are primarily based on one-time application 

of the cloud analysis within the OSSE framework, it is of our interest to explore how 

their validity will maintain for a real case study in the following two aspects:  

1) Inclusion of the 3DVAR wind analysis: 

In this study, the impacts of only those variables adjusted in the cloud analysis 

were examined (i.e., θ, qv, and qx, specifically). The 3DVAR wind analysis, however, is 

often applied along with the cloud analysis for a greater positive impact (as pointed in 

Hu et al. 2006a; Hu et al. 2006b; Zhao and Xue 2009a). As it was stated in Ge et al. 

(2013) that among all the state variables they examined, Vh had the greatest impact in 

terms of accurately constructing the storm structure, the relative importance of the cloud 

analysis updated variables after the inclusion of the wind analysis can call for further 

studies. 

2) Intermittent application: 

As proposed in Schenkman (2012), for better forecast results the current qv 

adjustment should be activated only for the first analysis if a cycled DA procedure is 

performed. Similarly, upon our preliminary findings about the relative importance of 

each state variable we have examined, further studies can be conducted by applying 

cycled (i.e., multi-time) analyses, in which combination of different analysis 

configurations (i.e., adjustment options) can be attempted. Furthermore, the effect of 

our modified qv adjustment combined with the current temperature adjustment, which 

has not been investigated in this dissertation, should also be included in future works.      
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The modified moisture adjustment we proposed in this study is mainly based on 

our OSSE framework, in which the true vertical motion (i.e., w) field is greatly relied. 

Its practical effectiveness on real cases is still required for further exploration. Given the 

critical role played by the quality and informativeness of the w, the performance of the 

qv adjustment based on 3DVAR analysis of radial velocity data from dual (or multiple) 

radars is planned for examination. On the other hand, more sophisticated empirical 

relations that make use of additional information could be searched from present studies 

(either observation based or numerical based) for developing a further improved, or say 

robust, qv adjustment. Also with more information involved, the heavy dependence on 

the w, which relation with moisture is found not completely strict, can be partly 

alleviated.        
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Appendix A: Formulation of the Modified Mixing Ratio Analysis 

Procedure  

To obtain the analysis result of mixing ratio for each precipitating species (e.g., 

rain, snow, graupel, and hail) from a single radar observation value, such as reflectivity, 

additional information is needed since the problem itself is under-determined. The ratio 

of qx (i.e., mixing ratio of species x) among each precipitating species is the perquisite 

information required for realizing the entire mixing ratio analysis procedure. The 

complete procedure is provided step by step in details as follows. 

A.1 Retrieving the Portions of Mixtures 

According to the simple melting model included in Jung et al. (2008a) as they 

built up the T-matrix method based radar observation operators, radar variables (e.g., Z, 

ZDR, Zdp, and KDP) are contributed not only by the pure species such like rain, snow, 

graupel, and hail, but also by their mixing phases (e.g., wet/melting snow, mixed by rain 

and snow). Therefore, the portion of these mixing species in terms of ratio to other pure 

(dry) species is also required in advance.  

 As the mixture is assumed to exist only when rain water (i.e., qr) coexist with 

any ice phase species (i.e., qs, qg, or qh), here we take the rain-snow mixture as an 

example for the demonstration. 

 In the melting model introduced in Jung et al. (2008a), the fraction of rain-snow 

mixture F can be determined by  

` = 0.5amin ��� �b⁄ , �b ��⁄ 	de.f, 

                                                                                                                                  (1) 
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where the power of 0.3 is taken for depicting a gradual change of rain and snow amount 

with height through the melting layer. With this, the total mixing ratio of rain-snow 

mixture can be calculated as 

�b� = `��b + ��	, 

                                                                                                                                      (2) 

where the subscript rs stands for mixture of rain and snow.   

 According to the equations above, the portion of any mixture can be determined 

as long as the ratio between the rain water and the corresponding ice spices is known. It 

is the first step of our procedure to calculate the portions of all present mixtures (i.e., qrs, 

qrg, and qrh) from the pre-known information, the ratio among all present pure species. 

A.2 Extracting the Coefficient in Radar Operator for Rain 

 From Jung et al. (2008a), the radar reflectivity for rain species is given by                                         

�b = 4g9hbiN jebk9|m.|N nbV�Nopqr;	s�2tbi + 1	, 
                                                                                                                                          (3) 

where λ is the radar wavelength, Kw = 0.93 is the dielectric factor for water, αra = 4.28 

×10-4 and βra = 3.04 are factors of backscattering amplitudes from the T-matrix and 

fitting results (Zhang et al. 2001), N0r and Λr are the intercept and slope parameter, 

respectively, of the drop size distribution (DSD) as introduced in Ulbrich (1983). By 

introducing the relation 

nb = ukvbjebvi�b we.Nx
 

                                                                                                                                          (4) 

and inserting constant βra, equation (3) can be reformed as 
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�b = 4g9hbiN s�7.08	kx.yy|m.|Nvb;.yyjebe.yy �vi�b	;.yy. 
                                                                                                                                          (5) 

Note that ρr and ρa are the density of rain water and air, respectively. In equation (5), the 

N0r is in unit of [km-4] while Zr is of [mm3]. For simplicity and convenience in further 

analysis process, two coefficients are added in generalizing Zr to the common used 

linear unit of reflectivity [mm6 m-3] as 

�b = 10z × 4g9hbiN s�7.08	vi;.yykx.yy|m.|Nv|;.yy�10V;N × jeb	e.yy �b;.yy, 
                                                                                                                                          (6) 

in which N0r is in unit of [m-4]. 

 In equation (6), qr is the only unknown variable. Thus, we extract all other 

variables ahead and make them a coefficient r_coef for our further derivation  

�b = }_���� × �b;.yy, 

}_���� = 10z × 4g9hbiN s�7.08	vi;.yykx.yy|m.|Nv|;.yy�10V;N × jeb	e.yy  . 
                                                                                                                                          (7) 

A.3 Extracting the Coefficients in Radar Operator for Species Other than Rain 

 Similarly, we begin with the reflectivity equation from Jung et al. (2008a) for 

other species x (snow, graupel, hail, or any other mixtures) 

�| = 2880g9je|k9|m.|N n|Vy�3h|iN + Dh|�N + 2Sh|ih|�	, 
                                                                                                                                          (8) 

where N0x and Λx again, are the DSD parameters, but for non-rain species x.  
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αxa and αxb are polynomial fitting results as a function of the water fraction of 

mixtures fw = qr/(qr+qx), which can be obtained as the ratios among each species are 

known at first. The functions are listed below 

Rain-snow mixture: 

hb�i = �0.194 + 7.094�. + 2.135�.N − 5.225�.f� × 10V9, 
hb�� = �0.191 + 6.916�. − 2.841�.N − 1.160�.f� × 10V9. 

Rain-graupel mixture: 

hb�i = �0.081 + 2.040�. − 7.390�.N + 18.14�.f − 26.02�.9 + 19.37�.x
− 5.75�.�� × 10Vf, 

hb�i = �0.076 + 1.740�. − 7.590�.N + 20.22�.f − 30.42�.9 + 23.31�.x
− 7.06�.�� × 10Vf. 

Rain-hail mixture: 

hb�i = �0.191 + 2.39�. − 12.57�.N + 38.71�.f − 65.53�.9 + 56.16�.x
− 18.98�.�� × 10Vf, 

hb�i = �0.165 + 1.72�. − 9.920�.N + 32.15�.f − 56.00�.9 + 48.83�.x
− 16.69�.�� × 10Vf. 

 A, B, and C are coefficients associated with the falling properties of different ice 

particles such like canting angle. Refer to Jung et al. (2008a) for more details. Here the 

constant values used in our study are listed below 

Snow and rain-snow mixture: 

A = 0.8140, B = 0.0303, and C = 0.0778. 

Graupel, rain-graupel mixture, hail, and rain-hail mixture: 
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A = 0.4308, B = 0.3192, and C = 0.1250. 

Reform equation (8) by inserting equation (4) as 

�| = 2880g9�3h|iN + Dh|�N + 2Sh|ih|�	vi;.yxkx.yx|m.|Nje|e.yxv|;.yx �|;.yx . 
                                                                                                                                        (9) 

As the Zx above is in [mm6 m-3], we extract all the known variables and constants and 

make them a coefficient x_coef. The equation (9) then is rewritten as 

�| = �_���� × �|;.yx , 
                                                                                                                                      (10) 

in which,  

�_���� = 2880g9�3h|iN + Dh|�N + 2Sh|ih|�	vi;.yxkx.yx|m.|Nje|e.yxv|;.yx  . 
A.4 Calculating for Final Analysis of Mixing Ratios 

  According to Jung et al. (2008a), the total reflectivity Z is contributed by every 

single precipitating species as 

Z = Zr + Zs + Zrs + Zg + Zrg + Zh + Zrh . 

                                                                                                                                    (11) 

Noting that all Z above are in linear unit (i.e., mm6 m-3), a unit conversion is needed as 

most reflectivity data provided are logarithmic (i.e., in dBZ). 

 Again, we took a grid point with rain and snow coexisting on it as an example to 

demonstrate our analyzing procedure. As we know the ratios among qr, qs, and qrs at 

first, say qr : qs : qrs = a : b : c, the unknown qs and qrs then can be represented by 

unknown qr as 
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�� = �H �b  and �b� = �H �b .  
                                                                                                                                       (12)  

As there are only rain and snow present on this grid we are analyzing, equation (11) can 

be simplified as 

Zobs = Zr + Zs + Zrs , 

                                                                                                                                      (13) 

where the original Z on the left hand side has been replaced by Zobs to denote it is a 

known variable. At the right hand side of equation (13), by inserting equation (7) for the 

first term and equation (10) for the last two terms, it can be rewritten as 

���� = }_���� × �b;.yy + �_���� × ��;.yx + }�_���� × �b�;.yx , 

which can be further rewritten by applying relations from equation (12) as 

���� = }_���� × �b;.yy + �_���� × u�H �bw;.yx + }�_���� × ��H �b�;.yx  
= }_���� × �b;.yy + �_���� × u�Hw;.yx × �b;.yx + }�_���� × ��H�;.yx × �b;.yx 

                                                                                                                                      (14) 

Although all terms are represented by one unknown qr now, it is noticeable terms of rain 

species and non-rain species hold different power on qr. A unified substitute is therefore 

applied to make the terms combinable. This unified power p is determined by weighting 

portions of all present species such as 

� = �1.77H + 1.75� + 1.75�	 �H + � + �	⁄  

in this case. With the unified power, equation (14) can be simplified as 

���� = �}_���� + �_���� × u�Hw;.yx + }�_���� × ��H�;.yx� �b� . 
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                                                                                                                                       (15) 

Finally, the analysis result of qr is obtained by 

�b = � ����}_���� + �_���� × ��H�;.yx + }�_���� × ��H�;.yx�
; �⁄

 . 
 

Mixing ratios of all other species can be further calculated by applying the ratio 

relations [i.e., equation (12)]. 

 Here we have to note that some analysis errors could be included by applying 

the unified power p in the last step of the procedure: the analysis results of mixing ratio 

would not necessarily compose an exactly same Z as the observed one; in other words, 

the radar operator and the mixing ratio analysis process are not one hundred percent 

mutual- revertible. Nevertheless, according to the analysis results we have obtained 

throughout our study, it is believed the errors are insignificant and would not harm on 

providing reasonable analysis results. 
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Appendix B: Verification Indices 

B.1 Scaled Root Mean Square Errors 

 Scaled root mean square (RMS) error of an arbitrary variable X between the 

truth simulation (denoted by subscript t) and the experiment to be verified (denoted by 

subscript e) is computed by 

SRMS_X = � 1jK∆MN � ��� − ��	N�  , 
where N is the total grid number in the verification domain D, and the scaling factor K∆MN  

is the variance of the error between the truth simulation and control experiment at initial 

(i.e., forecast time = 0), which can be obtained by 

K∆MN = 1j ��∆�� − ∆�JJJJ	N ,�
�:;  

where ∆�� = ��� − ��	� is the variable difference between the truth run and the control 

experiment at a specified grid point i while ∆�JJJJ is the mean value of the differences over 

entire verification domain. 

 The averaged SRMS error is computed by 

ASRMS = 16 � 1jK∆�N � ∆�N + 1jK∆�N � ∆�N +�
1jK∆.N � ∆UN�� … . 

… + 1jK∆�N � ∆-N + 1jK∆ ¡N � ∆��N +�
1jK∆ ¢N � ∆�.N��

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ  , 
where u, v, and w are in [m s-1], T is in [K], qv and qw are in [kg kg-1]. 

Similarly, the averaging calculation above is used for SRMS of horizontal winds (Vh) 

presented in the context as 
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SRMS£¤ = 12 � 1jK∆�N � ∆�N + 1jK∆�N � ∆�N��  . 
B.2 Scaled Energy Differences 

 Following Ge et al. (2013), three energy differences are computed as follows. 

Kinetic energy difference: 

KED = 12 � �∆�N + ∆�N + ∆UN	�  . 
Thermal energy difference: 

TED = ��2-b � ∆-N�  , 
where cp is the specific heat equal to 1004 J K-1 kg-1 and Tr is a reference temperature of 

270 K.        

Latent energy difference: 

LED = ©�N2��-b � ∆��N�  , 
where Lp is the latent heat of vaporization of 2.5×106 J kg-1. 

 The EDs at any arbitrary forecast time n then can be scaled by their respective 

values at initial as 

SKED�:ª = KED�:ªKED�:e  , STED�:ª = TED�:ªTED�:e  , and SLED�:ª = LED�:ªLED�:e . 
The averaged scaled ED at forecast time n is computed by 

ASED�:ª = 13 �SKED�:ª + STED�:ª + SLED�:ª	 . 
 


