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Abstract: Tar Creek Superfund Site (TCSFS) is highly contaminated by toxic heavy 

metals. Cd, Pb, and Zn concentrations in soil and kidney specimens of P. leucopus were 

analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS). The fourth 

lumbar vertebra (L4) of P. leucopus was used to assess heavy metal effects on bone 

density and fragility using micro-computed tomography (µCT). Metallothionein (MT) 

was measured by using an Enzyme Linked Immune Sorbent Assay (ELISA). The results 

showed significantly higher concentrations of Pb, Cd, and Zn in TCSFS soil than in the 

reference sites (Oologah Wildlife Management Area [OWMA] and Sequoyah National 

Wildlife Refuge [SNWR]). The soil Pb concentrations at the three sites were 1132±278, 

6.4±1.1, and 2.3 ±0.3 mg/kg, respectively. Concentrations of Cd were 48±4, 0.15 ±0.03, 

and 0.06±0.01 mg/kg. A similar pattern was seen for Pb and Cd concentrations in kidney 

specimens with TCSFS being higher than the reference sites. The kidney Pb 

concentrations were 0.57±0.10, 0.04±0.01, 0.05±0.01 mg/g, and Cd concentrations were 

4.62±0.71, 0.53±0.08, and 0.53±0.06 mg/g for TCSFS and two reference sites. In 

addition, micro CT analysis of L4 from TCSFS showed significant Pearson’s correlation 

coefficients between Cd concentrations and trabecular bone number (-0.67, p≤ 0.05) and 

trabecular separation (0.72, p≤ 0.05).The results showed no correlation between bone 

parameters and mineral concentrations at reference sites. MT-1 concentrations in P. 

leucopus did not show statistically significant differences between TCSFS and reference 

sites (P≥0.09). In conclusion, this study showed significant heavy metal contamination in 

kidney of small mammals from TCSFS and confirmed previous studies. However, the 

study added new physiological endpoints for assessment of the effects of environmental 

contaminants on small wild mammals used as indicators for human health.
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CHAPTER I 
 

INTRODUCTION 

Environmental science as a multidisciplinary field integrates physical, biological 

and information sciences that address environmental problems and find solutions to these 

problems. This project studied the toxicological effects of heavy metals and physiological 

alterations in a wild animal species (Peromyscous leucopus) captured from the 

contaminated Tar Creek Superfund Site (TCSFS) and other uncontaminated sites. The 

study combined several scientific disciplines that are concerned with toxic effects of 

heavy metals on cellular and bone physiological responses in humans. A wild small 

mammal species was an appropriate model to determine the effects of heavy metals as an 

environmental problem.  

TCSFS is a part of the Tri-state Mining District which includes Kansas, Missouri, 

and Oklahoma (Drake, 1999; ODEQ, 2003 ; United States Environmental Protection 

Agency USEPA, 2005). Environmental health issues are documented at TCSFS in 

Ottawa County more than at other superfund sites in the Tri-state mining district due to 

the large area and large human population, the large volume of mine tailings, and high 

levels of cadmium (Cd), lead (Pb), and zinc (Zn) (Health & Human Services, 1993; 

Neuberger, Hu, Drake, & Jim, 2009; Ostrowski et al., 1999).  
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There are many reasons to choose TCSFS for this study. Firstly, according to the 

National Priorities List of the U.S. Environmental Protection Agency (EPA), TCSFS was 

heavily mined for lead and zinc from the 1890s to 1970. This site is highly contaminated 

with lead, cadmium and zinc (United States Environmental Protection Agency USEPA, 

2005). Secondly, there is public and scientific concern regarding the presence of these 

environmental contaminants in soils, plants, and water. Thirdly, TCSFS provides a good 

field location to study how toxicity of heavy metal contaminants affects human health 

and biological systems and how physiological processes can tolerate these 

contaminations.  

The main goal of this study was to determine the concentrations of cadmium, lead 

and zinc in soil samples and kidney specimens of Peromyscous leucopus collected from 

Beaver Creek, TCSFS and two uncontaminated sites - Sequoyah National Wildlife 

Refuge (SNWR) and Oologah Wildlife Management Area (OWMA) (Hays, 2010; K. L. 

Phelps, 2006). The Cd, Pb, and Zn soil concentration in the contaminated site and in two 

reference (uncontaminated) sites are presented in chapter IV of this dissertation. Another 

goal presented in chapter IV was to determine relationships between tissue heavy metal 

concentrations and density and fragility of lumbar vertebra in P. leucopus. Correlations 

between mineral concentrations in kidney specimens with bone parameters are presented 

in chapter IV.  

In chapter V, heavy metal concentrations in kidney specimens were related to 

differences in metallothionein concentrations in kidney specimens of P. leucopus from 

contaminated and uncontaminated sites. The relationship between observed 

metallothionein induction and metal toxicity showed how P. leucopus responded to 
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environmental contamination. Their response can be compared to metallothionein 

induction caused by environmental contamination in the Old World species, Apodemus 

sylvaticus (Fritsch et al., 2010). This study compared the relationships among soil metal 

concentrations, tissue metal concentrations, bone fragility, and metallothionein-1 

induction of P. leucopus in contaminated and uncontaminated sites. This project aimed to 

understand the environmental contamination effects on the detoxification function in 

wildlife populations and extrapolate to humans. The project produced new information 

about how the population of P. leucopus at TCSFS responds to chronic exposure to heavy 

metals in soil. Metallothionein induction and bone microarchitectural features are the 

biomarkers that were used to identify the physiological functions in this species.  

From previous studies at TCSFS, we know that P. leucopus is able to maintain 

higher population levels at this highly contaminated site compared to other common 

rodent species (Phelps & McBee, 2009). We also know that P. leucopus collected from 

TCSFS showed no significant differences in mean minimum longevity or reproductive 

success compared to P. leucopus at the uncontaminated sites SNWR and OWMA (Phelps 

& McBee, 2010). This suggests that P. leucopus might demonstrate more resilience to 

heavy metal contaminants or may have enhanced detoxification capabilities compared to 

other species. This study provides evidence of tissue mineral residue levels of the primary 

contaminants at TCSFS and allowed me to determine if animals from TCSFS had 

increased MT-1 in comparison with animals from uncontaminated sites. My research has 

broad implications because responses to chronic exposure to heavy metals in P. leucopus 

may help predict impacts of such exposure on physiological processes of humans and 

other species. Although MT analysis has been conducted on numerous vertebrate and 
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invertebrate aquatic species, there has been little work done on metallothioneins in small 

mammals from contaminated sites in North America.  

This study opened more questions about metallothionein functions in humans and 

small mammals in contaminated sites. It may provide a basis for another project to 

resolve and reduce Pb and Cd exposure at TCSFS and other contaminated sites in the 

United States. Moreover, this study will add information to investigate the effects of Pb 

and Cd on different functions in humans and other mammalian species. 
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CHAPTER II 
 

REVIEW OF LITERATURE 

 

We are regularly exposed to metals through food, air and skin contact from many 

environmental sources. Heavy metals have toxic effects on biological cycles (Glanze, 

1996). Although we need a small amount of several metals for biological functions, large 

amounts or long exposure to any metal may be detrimental for health. In general, there 

are 35 metals, called heavy metals, that are of concern for human health. Common health 

problems that arise from exposure to heavy metals can be chronic or acute depending on 

the length of exposure and the dose.  

Health problems that can result from heavy metal toxicity include reduced 

function of the nervous system, alteration of blood cell counts, circulatory and respiratory 

problems, liver dysfunction, and reproductive and renal problems. Some kinds of chronic 

diseases such as Alzheimer’s, Parkinson’s, muscular dystrophy, multiple sclerosis, 

osteoporosis, and some kinds of cancers may be related to long-term exposure (Casarett, 

Doull, & Klaassen, 2008).
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Heavy metal in biological systems affects humans as well as domestic and wild 

animals (Mollazadeh, Esmaili, & Ghasempouri, 2011; Rajaganapathy, Xavier, 

Sreekumar, & Mandal, 2011). Studying bioindicator animals, such as the wild mice 

observed in this study, helps us to understand the effects of environmental pollution on 

human health.   

Description of Tar Creek Superfund Site (TCSFS) 

According to the National Priorities List of the U.S. Environmental Protection 

Agency, the TCSFS was heavily mined for lead and zinc from the 1890s to 1970.   As a 

result, this site is highly contaminated with lead, zinc, and cadmium (United States 

Environmental Protection Agency USEPA, 2005). Consequently, there is public and 

scientific concern about the presence of these environmental contaminants in soil, plants, 

and water. TCSFS provides an ideal field location to study how toxicity of heavy metal 

contaminants affects biological systems. TCSFS, located around the towns of Picher, 

Quapaw, and Miami in Ottawa County, Oklahoma, covers 104 km2 and is part of the 

historical Tri-State Mining District. The Tri-State Mining District (northeastern 

Oklahoma, southeastern Kansas and southwestern Missouri) covers 3,000 km2 and 

includes parts of Ottawa County, OK, Cherokee County, KS and Jasper and Newton 

counties, MO (Gibson, 1972). The area was mined for sulfide forms of Pb (galena), Pb 

carbonate, Pb phosphate (pyromorphite), Zn carbonate (smithsonite) and other plentiful 

minerals for more than 80 years. 

This mining and smelting produced several sources of contamination (Beyer et 

al., 2005). Both waste metals and rocky waste called chat were produced from milled ore 

(Oklahoma Department of Environmental Quality, 2003). 
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A study by the Environmental Protection Agency (EPA) found that chert is the 

main component of chat, and the siliceous rock mined with the ore chat samples from 

TCSFS contained high concentrations of Pb, 270-732 mg, Cd, 41-57 mg and Zn, 8,266-

11,086 mg per kg of chat (United States Environmental Protection Agency USEPA, 

2005). Another study found that Tar Creek itself is contaminated with water from mines; 

samples of surface sediments in Tar Creek contained 8,700 mg of Pb, 130 mg of Cd and 

35,000 mg of Zn per kg (Parkhurst, 1988). Soil samples are good indicators to determine 

levels of lead, cadmium, and zinc contamination at TCSFS.     

Toxic effects of Cd, Pb, and Zn 

Cadmium toxicity 

One of the common metals at TCSFS is cadmium. Small amounts of free 

cadmium ions are more toxic than bound cadmium ions, and cadmium can cause toxicity 

in different organs including the pancreas, testis, and nervous system. Elimination of 

cadmium by the kidneys is slow. Chronic exposures to cadmium ions can result in 

proteinuria and tubular dysfunction in the proximal tubules (Chang, Magos, & Suzuki, 

1996; Godt et al., 2006). Renal toxicity from cadmium exposure is correlated with the 

amount of cadmium ions in kidney tubule cells, reabsorption, degradation of cadmium 

metallothionein complexes, and excess production of metallothionein by renal tubules 

(Chang et al., 1996). Cadmium toxicity observed in the renal cortex of laboratory rats 

(Rattus rattus) resulted in cytosolic damage and renal malfunction after oral 

administration of cadmium chloride (CdCl2) (Siddiqui, 2010). Cadmium ions can bind to 

mitochondria, endoplasmic reticulum, and nuclei of the liver, causing hepatic toxicity 

(Chang et al., 1996). Cadmium ions have limited capacity to pass the blood-brain barrier, 
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but exposure to cadmium can cause central nervous system (CNS) lesions in neonates 

and peripheral nervous system (PNS) lesions in adults (Chang et al., 1996). In blood, 

cadmium is bound with albumin and other plasma proteins (Chang et al., 1996). 

The main effects of cadmium on the liver include hepatic failure, increased levels 

of plasma enzymes (asparatate amino transferase and sorbitol dehydrogenase), 

cytoplasmic eosinophilia, necrosis, and histological changes (Goering & Klaassen, 1984). 

Several studies demonstrated that cadmium exposure causes carcinogenic effects in 

humans including lung cancer, prostatic cancer, renal and hepatic cancer, and pancreatic 

tumors (Chang et al., 1996; Godt et al., 2006). Low doses of cadmium can stimulate 

DNA replication (Lohmann & Beyersmann, 1994) and may cause genotoxicity with 

spontaneously occurring DNA damage; however, high doses of cadmium cause direct 

damage to DNA and disrupt genetic material (Chang et al., 1996; Godt et al., 2006; 

Usuda et al., 2010). The cadmium chloride ion has been shown to induce sub-chronic 

effects on guinea pigs that result in immune toxicity expressed as T- and B-cell 

suppression in the lymphoid organ (Boroskova & Dvoroznakova, 1997). Overall, these 

studies indicate that Cd causes different effects at different levels such as cellular and 

tissue levels. 

Lead toxicity 

TCSFS is highly contaminated by lead. Lead has no known role in the normal 

physiological function of animals and humans, and it causes toxic effects on many 

different systems and processes (Chang et al., 1996; Goyer, 1990). Lead impacts 

development, IQ, and behavior in children at low levels of exposure (Chang et al., 1996; 

Schwartz, 1994).  
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Lead also may cause hypertension and neurotoxic effects in adult humans by 

influencing neurotransmitters and ion channels through calcium-sodium ATP pump 

processes that affect cellular energy production (Chang et al., 1996). Chang et al. (1996) 

found that lead damages myelin sheaths of nerves and disrupts electrochemical impulse 

transmission. Furthermore, it causes necrosis of small capillaries in the brain that can lead 

to hemorrhage, vaculation, necrotic foci, and edema; it damages the prefrontal cortex, 

cerebellum, and hippocampus on molecular, cellular, and intracellular levels in the 

human nervous system. Biomolecular studies have shown that lead has toxic effects on 

gene expression, signal transduction, and calcium’s function as a messenger system 

(Chang et al., 1996; Goyer, 1990). In two studies on lead ion, one focused on exposure to 

fumes during metal utilization by battery and pigment plant workers (Fu & Boffetta, 

1995) and another focused on plumbers (Chang et al., 1996). Stomach, lung, bladder and 

kidney cancer are recorded in  workers who  are heavily exposed to lead  from tobacco 

smoking and occupational carcinogens (Fu & Boffetta, 1995).  Lead toxicity causes 

carcinogenic and genotoxic effects in lung, kidney, and stomach tissues (Chang et al. 

(1996). 

Similar damaging effects were found in small mammals. For example, lead- 

induced kidney neoplasia was observed in mice after cutaneous exposure to lead 

naphthenate even though there were no skin tumors in the mice (Baldwin, Cunningham, 

& Pratt, 1964). Although some studies did not show significant mutagenic effects of lead, 

Amacher and co-workers determined a weak induction of mutation in mouse lymphoma 

cells caused by lead ions (Amacher, Paillet, & Zelljadt, 1982). Also, Razani-Boroujerdi, 

Edwards, and Sopori (1999) showed that only high-dose exposure to lead acetate caused 
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immunotoxic effects and induced lymphocyte proliferation in cultured rat spleen cells. 

Multiple effects of lead were observed in laboratory animals including biochemical, 

structural, and molecular changes in hepatic cells, liver hyperplasia (cell proliferation), 

and oxidative stress (Mudipalli, 2007). 

Zinc toxicity 

Zinc is another metal that is common in TCSFS. Zinc is an essential metal for 

humans and animals. Zinc toxicity is uncommon, but there is some experimental 

evidence that zinc overexposure has carcinogenic effects (Walsh, Sandstead, Prasad, 

Newberne, & Fraker, 1994).  

High zinc and copper concentrations in soil and vegetables were recorded in 12 

districts of England and Wales, and these records correlated with lethal gastric cancer in 

residents who lived in that area (Stocks & Davies, 1964). Zinc salt exposure can induce 

mutagenic effects in humans (Chang et al., 1996; Stocks & Davies, 1964; Walsh et al., 

1994). The zinc ion may cause lymphocyte proliferation (Chang et al., 1996; Walsh et al., 

1994). Even with short exposure, zinc can cause a disease called metal fume fever 

through inhalation of zinc fumes (Roney, Smith, Williams, Osier, & Paikoff, 2005). 

Ingestion of high amounts of zinc may inhibit copper absorption by the intestine through 

competition for metallothionein binding in the mucosal cells. This inhibition can cause 

copper excretion, and decreases copper in plasma (Roney et al., 2005).  

Toxic effects on humans at Tar Creek Superfund Site 

        Increased rates of human mortality and health problems, such as stroke and heart 

disease, have been reported at TCSFS associated with the exposure to heavy metals in the 

area (Neuberger et al., 2009). The Center for Disease Control and Prevention’s (CDC) 
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advisory committee on childhood lead poisoning prevention detected blood lead levels 

(BLLs) >10 µg/dL in children at TCSFS. As a result of lead contamination in Ottawa 

County, 40% of children in this area had high blood lead levels. The CDC reported that 

children’s mental and physical ability may be affected even by BLLs less than 10µg/dL.  

The Indian Health Service reported that 34% of 192 Native American children from 

TCSFS had BLLs in excess of 10 µg/dL, and 15% had higher than 20 µg/dL BLL 

(United States Environmental Protection Agency USEPA, 1994). Polluted water and soil 

were identified as sources of the high Pb and Zn. The exposure to Pb and Zn affected 

blood parameters as well as the nervous system and emotional of pregnant women, and 

intellectual development of infants and children in the TCSFS area (Hu, Shine, & Wright, 

2007).  

According to the Occupational Safety and Health Administration (OSHA), short 

term (acute) overexposure to lead can affect the brain and can cause seizures, coma and 

death (Occupational Safety & Health Administration, 1991). The acute exposure to lead 

can cause acute encephalopathy and several other health problems in a short time of 

exposure (Occupational Safety & Health Administration, 1991). OSHA is concerned with 

workers who are more exposed to lead, and it aims to protect people and remove those 

who had more than 50 µg/dL of blood lead from the workplace. Long term (chronic) 

exposure to lead causes severe health problems such as anxiety, nausea, insomnia, 

weakness, headache, nerve irritation, numbness, and muscle pain (Occupational Safety & 

Health Administration, 1991). Chronic exposure leads to kidney disease, reproductive 

system diseases and disrupted blood cell synthesis causing anemia and weakness 

(Occupational Safety & Health Administration, 1991).  
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 Industrial activities are the main sources of lead exposure. OSHA (2010) recorded 

elevation of blood lead in 804,000 workers in general industries and 838,000 workers in 

construction. Workers were exposed to lead through inhalation and ingestion during such 

work activities as transportation, maintenance, construction, painting and recycling 

materials. OSHA has developed a safety program to protect workers from lead exposure 

in accordance with Code 29 of Federal Regulations (CFR). Industrial employers are 

required to follow OSHA lead standards in general industry (29 CFR 1910.1025), 

construction (29 CFR 1926.62), and shipyards (29 CFR 1915.1025) to protect workers 

(OSHA, 2010).  

Industrial workers also are potentially exposed to cadmium through inhalation. 

The Agency of Toxic Substances and Diseases Registry (ATSDR) recorded that 500,000 

workers are exposed to cadmium annually in the United States (OSHA, 2010). Long term 

exposure to cadmium can cause severe health problems such as lung and prostate cancer, 

as well as kidney disease and dysfunction. Employers and workers who may be exposed 

to cadmium are required to receive training before being involved in the industrial works 

to understand safety and protection limits against cadmium exposure (OSHA, 2010).  

In addition to the EPA, the Agency for Toxic Substances, Disease Registry and 

OSHA expressed their concerns about the presence of zinc in the environment and its 

effects on human health (Roney et al., 2005). Food and water that contain amounts of 

zinc higher than the Recommended Dietary Allowances (RDAs), tolerable upper intake 

level (UL) of 40 mg/day for adults can cause severe health problems such as vomiting, 

nausea, anemia, pancreatic damage, and decreased high density lipoprotein levels (HDL) 

(Roney et al., 2005). OSHA states permissible exposure level limit (PEL) for airborne 
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zinc oxide fumes as 5 mg/m3, 15 mg/m3  for total dust, and 5mg/m3 for respirable dust in 

eight hours of exposure (OSHA, 2012). 

Heavy metal effects on wildlife at TCSFS 

 Studies at TCSFS have also reported the toxic effects of heavy metals on wildlife 

species. Human health and environmental risks have been estimated in the Tri-State 

Mining District by measuring concentrations of Pb, Cd, and Zn in crayfish (Orconectes 

spp.) and six species of fish frequently consumed by Native Americans living in the Tri-

State Mining District - common carp (Cyprinus carpio), channel catfish (Ictalurus 

punctatus), flathead catfish (Pylodictis olivaris), largemouth bass (Micropterus 

salmoides), spotted bass, (M. punctulatus) and white crappie (Pomoxis annularis) 

(Schmitt, Brumbaugh, Linder, & Hinck, 2006). Fish and crayfish samples were collected 

from the Spring River and Neosho River downstream from the Tar Creek drainage in 

northeastern Oklahoma and from a contaminated site in eastern Missouri. The samples 

were compared with reference fish including pond-raised largemouth bass and 

commercially raised channel catfish. The results showed high concentrations of Pb, Cd, 

and Zn in fish and crayfish from the Neosho and Spring rivers that were assumed to be 

from historical mining in the Tri-State Mining District (Schmitt et al., 2006) 

        Roark and Brown (1996) analyzed the genetic effects of Zn and Pb on three 

species of fish. The mosquito fish (Gambusia affinis), Bluntnose minnow (Pimephales 

notatus), and blackstripe topminnow (Fundulus notatus) were compared between Willow 

Creek (contaminated) and Brush Creek (reference) in the Tri-State Mining District in 

Kansas. The genetic structure and levels of variation within species were not different 

between the two communities of small fish sampled, showing no evidence of a selective 
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effect of zinc or lead on allozymic distributions. Additionally, experiments showed a 

difference in allozymic sensitivity to zinc for glucose phosphate isomerase (Gpi) and 

phosphoglucose dehydrogenase (Pgdh) loci but not for maltase dehydrogenase (Mdh). 

There was no apparent allozymic sensitivity to lead concentration.  

In contrast, Hays and McBee (2007) found significant differences in blood 

cadmium and lead levels in red-eared sliders (Trachemys scripta) collected at TCSFS as 

compared to turtles sampled at Sequoyah National Wildlife Refuge (SNWR).  They 

found no statistical difference in coefficients of variation for nuclear DNA content 

between turtles from TCSFS and SNWR, but did find a significantly higher frequency of 

aneuploidy in turtles from TCSFS compared to reference sites. Pb concentrations in 

tissues of American robins (Turdus migratorius), northern cardinals (Cardinalis 

cardinalis), and several species of waterfowl from TCSFS were higher in comparison 

with Pb concentrations in reference birds (Beyer et al., 2005). Also delta-aminolevulinic 

dehydrogenase (ALAD) activity in red blood cells of birds from TCSFS was less than 

50% of levels in reference birds (Beyer et al., 2005).  

Hays (2010) used amplified fragment length polymorphism (AFLP) analysis to 

determine differences in heterozygosity and population genetic structure of P. leucopus 

collected from two contaminated sites within TCSFS and six reference sites in 

Oklahoma. Although animals from TCSFS clustered separately from some reference 

sites, geographic separation has explained more of the observed variation than whether 

animals were from contaminated or uncontaminated sites. Metaphase chromosome 

analysis in P. leucopus from TCSFS and reference sites showed no significant elevation 

in frequency of chromosomal aberrations in animals from Beaver Creek, OK at TCSFS  
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(Hays, 2010). Coolon, Jones, Narayanan, and Wisely (2010) used sequence data to 

compare microbial communities in soil and in feces collected from deer mice 

(Peromyscus maniculatus) and P. leucopus trapped within the Tri-State Mining District. 

They found no difference in community diversity indices for feces or soil microbial 

communities, but samples showed altered abundances of intestinal microbes in relation to 

soil contamination.  This finding indicates that polluted soil increases microbial infection 

in these two species. Also, body mass and the amount of fat in P. maniculatus and P. 

leucopus were reduced in comparison with the community structure of small mammals 

from a reference site (Coolon et al., 2010). 

 Environmental contaminants may affect population size. K. L. Phelps and K. 

McBee (2010) studied the community structure of small mammals at a mining area and 

an ore processing area within TCSFS and compared that structure with the community 

structure at two uncontaminated sites to investigate ecotoxicological effects on 

community composition and population size at TCSFS. The population diversity of small 

mammals was less at TCSFS (Phelps & McBee, 2010).  

Bone tissue 

Bone is a supportive connective tissue consisting of osteoclasts, osteoblasts, and 

cellular matrix. The hard tissue of bone consists of collagen fibers and essential minerals 

including calcium, magnesium, and phosphate ions (Bilezikian, Raisz, & Rodan, 2002). 

Minerals deposited on flexible collagen make bone a hard tissue. The mineralized 

osseous tissue gives bone a three-dimensional internal structure, and this hard tissue gives 

bone rigidity. Bone also has soft tissues including marrow, endosteum, periosteum, 

nerves, blood vessels and cartilage. Bone tissue is divided into two major types: the 
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compact bone and the hard spongy bone tissues. The rigid tissue of bone constitutes part 

of the endoskeleton of vertebrates (Bilezikian et al., 2002). 

Physiologically, bone’s main functions are protection, support, movements, and 

transduction. Bone protects most organs of the body such as the brain, heart, lungs, and 

gut tissues. Bone marrow performs a significant function in the circulatory system: it 

produces red blood cells (RBC) and white blood cells (WBC) as well as platelets, and 

stores minerals (Bilezikian et al., 2002). In addition, bone moves skeletal muscles, 

tendons, ligaments and joints. Moreover, bone is an active tissue that is involved in 

metabolic processes for bone mineralization, osteoblast formation, and resorption 

(Youness, Mohammed, & Morsy, 2012).  

The bone resorption process is enhanced by reactive oxygen species (ROS) which 

are released by osteoclasts through oxidative-reductive processes (Youness et al., 2012).  

The excessive accumulation of ROS inhibits and suppresses bone formation and 

enhances bone resorption (Youness et al., 2012). ROS accumulation and antioxidant 

defense affect bone strength and metabolism (Youness et al., 2012). 

Youness et al. (2012) investigated the effects of cadmium on thirty female 

Sprague Dawley rats (Rattus norvegicus). The rats, 3 months old, ingested 50 mg Cd/L as 

CdCl 2 in drinking water for three months. Serum samples were used to analyze 

concentrations of calcium, phosphorus, parathyroid hormone (PTH), 1,25 dihydroxy 

Vitamin D3, osteocalcin, as well as alkaline phosphate activity. The results in this study 

showed significant elevation in serum phosphate, Ca, and PTH concentrations, and this 
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elevation was associated with significant reduction in osteocalcin, vitamin D3 

concentrations, and bone alkaline phosphatase activity (Youness et al., 2012).  

Markers of oxidative stress and bone mineral density were investigated in 

postmenopausal women 60-78 years old. Serum samples were taken to analyze 8-

hydroxy-2`-deoxyguanosine (8-OHdg) levels (Baek et al., 2010). The results showed that 

bone disease and fracture were enhanced by oxidative stress that resulted from the 

imbalance between the oxidative and antioxidative processes and bone mineral density 

(BMD) (Baek et al., 2010). Bone possesses metabolic processes, a mineralized bone 

matrix, and stores growth factors such as insulin-like growth factors. Also, bone  

transforms growth factor, morphogenetic proteins, and acts to buffer blood pH by 

balancing both absorbing and releasing alkaline salts (Steele & Bramblett, 1988).  

        Moreover, bone is involved in detoxification in multiple ways. Bone tissue stores 

heavy metals and other foreign elements, and the body has the ability to remove these 

elements from the blood stream and reduce the risk from these elements to other tissues 

by excreting them via excretion processes. Finally, bone regulates phosphate metabolism 

by releasing fibroblast growth factor –23 (FGF-23), which reduces phosphate 

reabsorption in kidneys (Bilezikian et al., 2002). 

Microarchitecture effects of bone tissue   

Cadmium effects on bone formation and resorption 

Cadmium toxicity is one of the environmental problems that affects human health. 

The risks of cadmium toxicity include bone dysfunction and osteoporosis (Youness et al., 

2012). Cadmium toxicity can cause a decrease in bone formation and an increase in bone 

resorption which are associated with imbalance in osteoblasts and osteoclasts (Åkesson et 
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al., 2006). Cadmium is an oxidant agent that produces ROS such as hydrogen peroxide, 

hydroxyl radicals, and superoxide ions that are involved in organ damage and oxidative 

stress. The organs damaged the most by cadmium include bones, liver, kidney, brain and 

testes (Chang et al., 1996; Ognjanović et al., 2010). Cadmium exposure disrupts 

enzymatic and non-enzymatic activity which inhibits the antioxidative enzymes and 

decreases non-enzymatic antioxidant activity (Ognjanović et al., 2010). The other effects 

of cadmium exposure include the depletion in bone mineral density (BMD) and 

acceleration of bone fracture (Järup & Åkesson, 2009).The mechanism of cadmium 

toxicity on bone can reduce renal function, Vitamin D activation, Ca absorption, and 

bone mineralization (Järup, 2002). Renal dysfunction results from cadmium exposure 

which decreases structure as well as function of renal proximal tubules such as 

mitochondrial and 1,25 (OH)2 D3 biosynthesis (Youness et al., 2012). Youness et al. 

recorded significant elevation of serum calcium, phosphorous, and parathyroid hormone 

levels of female laboratory rats (Sprague Dawley), which were administrated CdCl2. 

Significant depletion in vitamin D, osteocalcin, and alkaline phosphate levels were 

recorded.  

Moreover, cadmium toxicity affects bone metabolism by disrupting 

hydroxyapatite formation (Uriu et al., 2000). Disrupted bone metabolism impacts calcium 

metabolism and bone calcification (bone formation) (Brzóska & Moniuszko-Jakoniuk, 

2005). Cadmium combines with the hydroxyapatite crystals and bone proteins which 

results in bone weakness and fragility (Blumenthal, Cosma, Skyler, LeGeros, & Walters, 

1995; Oda et al., 2001). Cadmium exposure also disrupts Vitamin D metabolism and 

causes vitamin D deficiency and bone damage (Chang et al., 1996). 
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The elevation of  PTH and reduction of 1, 25(OH)2 D can be observed in renal 

failure patients (Nogawa et al., 1987). The exposure to cadmium induces acidosis with 

significant changes in bone mineralization and metabolism processes (Clarke, Wynne, 

Wilson, & Fitzpatrick, 1995). Furthermore, their results indicated that the decrease in 

bone formation and resorption damage can occur because of renal dysfunction and 

disruption in vitamin D and PTH metabolism (Chang et al., 1996). 

The histological investigation of Youness et al. (2012) showed reduction in wide 

bone thickness, width of central Haversian canals, erosive cavities, and low numbers of 

osteocytes. This study also recorded thinning and separation in trabecular bone. Youness 

et al. (2012) concluded that the administration of 2.0 mg/kg CdCl2 for 13 weeks caused 

depletion of bone mass and dilation of Haversian canals in laboratory rats. These findings 

are supported by the results of C. Wang et al. (2011) which recorded the elevation of 

bone resorption and reduction of bone formation resulting in osteoporosis, and noted 

reduction of trabecular bone thickness and increase in cortical width and porosity.    

Lead effects on bone formation and resorption 

Lead exposure is an environmental issue due to its effects on human health. Lead 

exposure affects bone formation and resorption in all age groups. Bone is one of the 

major tissues that accumulates and stores lead for long periods of time (Pounds, Long, & 

Rosen, 1991). Skeletal system formation and resorption regulation depend on signaling 

cascades. Lead prevents second messenger’s activity such as Ca2+ by blocking Ca2+ and 

Ca2+-ATPase binding which results in increase of intracellular Ca2+ concentration (Florea 

et al., 2013). The subcellular mechanism for effects of lead ion can be observed in its 

ability to compete and substitute for essential ions such as Zn2+ and Ca2+. This 
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mechanism occurs in the metal-binding domains of transcription factors and kinases 

(Bouton & Pevsner, 2000). Lead ions bind and activate cellular calcium signaling 

peptides such as calmodulin (Goldstein & Ar, 1983). Lead disrupts intracellular Ca2+ 

transport and release in adrenal chromaffin cells; lead toxicity results in decline in Ca2+ 

signaling processes in bone and cartilage tissues (Campbell, Rosier, Novotny, & Puzas, 

2004; Puzas, Campbell, O’Keefe, & Rosier, 2004; Sun, Tian, Tomsig, & Suszkiw, 1999). 

The results of lead on growth plate are skeletal dysfunction and reduced bone strength. 

Lead suppresses collagen I and II gene expression and mRNA synthesis. Also, lead 

disrupts second messenger signaling, decreases proliferation, and increases proteoglycan 

synthesis in chondrocytes of growth plate (Hicks et al., 1996). 

Histological changes can be seen in bone affected by lead toxicity. The 

histomorphometric analyses of rat and mice skeletal models showed unsystematic bone 

architecture and thickness of growth plate after exposure to lead (González-Riola et al., 

1997). In early adulthood, lead exposure disrupts growth plate function and delays bone 

growth rate (Campbell et al., 2004). The effects of lead exposure included decrease in 

bone density and increase in bone resorption, which inhibits long bone growth in mice 

and rats exposed to Pb (González-Riola et al., 1997). 

Besides the effects of lead exposure on Ca2+ second messenger signaling, lead 

disrupts parathyroid hormone (PTH)-like protein and transforming growth factor (TGF)-

β, as well as the function of AP-1, NF-kβ, and JNK signaling pathways (Puzas et al., 

2004). These signals participate in reduction in the chondrocytes matrix in addition to 

extracellular signal-regulated protein kinase (ErK-1) and mitogen-activated protein 

kinase (MAPK) signaling pathways that have a role in chondrogenesis (Mengshol, 
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Vincenti, Coon, Barchowsky, & Brinckerhoff, 2000). Puzas et al. (2004) reported that 

lead exposure increasesed chondrogenesis processes and inhibited endrochondral 

ossification processes, which inhibit bone formation and accelerate bone fracture by 

increasing early stages of differentiation and blocking late stages of bone transition.   

Lead causes toxic and carcinogenic effects on bone that disrupt osteoblast 

metabolism (Angle, Thomas, & Swanson, 1993). For example, osteonectin secretion was 

inhibited by lead ions in the osteogenic sarcoma 17/2.8 cells of rat models. In addition, 

lead had effects on gene expression for alkaline phosphatase and type I collagen (Klein & 

Wiren, 1993). Lead decreased  insulin-like growth factors, vitamin D, and calcium levels 

of transformed bone cells; this indicated  the alteration of calcium homeostasis (Puzas et 

al., 2004). Moreover, lead exposure affected osteoclast structure and function. These 

effects resulted from the accumulation of inclusion bodies in both the nucleus and 

cytoplasm of osteoclast cells. The presence of lead in bone matrix increased bone 

resorption, and a few in vitro studies recorded that the stimulation of osteoclast activity 

was increased by lead ion (Miyahara et al., 1995). 

Women’s estrogen status is a significant factor which makes them more sensitive 

to lead exposure. Elevations of blood lead levels were recorded in Hispanic women at 

early menopause age compared with women at late postmenopause. High blood lead 

levels in menopausal women caused bone loss (Symanski & Hertz-Picciotto, 1995). In 

addition to the  lead release from the skeletal system during  menopause and bone 

resorption in women, other systems such as nervous and circulatory systems release lead 

and contribute to high blood lead levels, which impact bone formation (Puzas et al., 

2004). Beier et al. (2013) found that long term exposure to Pb caused significant changes 
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in skeletal parameters of rats which included reduction in gene expression, reduction of 

bone mass, and osteoporosis. This study reported other effects which included reduction 

in gene expression such as osteoblastic genes Coll, alkaline phosphatase (ALP), and 

osteocalcin (OC) genes. In addition, the same study reported increased induction of cell 

differentiation to adipocytes (adipogenesis) and inhibition of bone nodule formation by 

lead exposure. 

Zinc effects on bone formation and resorption 

 Zinc is important for several biochemical pathways in the bone formation process. 

Zinc has significant effects on bone formation and mineralization (Yamaguchi & 

Weitzmann, 2011). Average zinc concentration in bone is 100-200µg/g which represents 

30% of  the total body zinc content (Hambidge, Casey, & Krebs, 1986). Zinc performs 

essential functions in the human skeleton system as a cofactor for multiple enzymes such 

as alkaline phosphatase, which is important for bone mineralization and collagen 

formation (Ryz, Weiler, & Taylor, 2009).  

Previous studies found that zinc had significant roles in bone formation during the 

fetal and postnatal periods (Yamaguchi, 2010). Zinc plays a significant role in human 

endochondral bone formation and mineralization (Leek et al., 1984). Zinc influences 

bone formation, resorption, and skeleton growth through osteoblast synthesis and bone 

formation, as well as suppression of osteoclast synthesis and bone resorption (Yamaguchi 

& Weitzmann, 2011).  

Zinc is involved in bone formation through signaling pathways and enhancing 

gene expression. Zinc increases the osteogenetic function that stimulates proliferation and 

osteoprotegerin (OPG) activity in osteoblast culture (Liang et al., 2012). OPG is one of 
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the tumor necrosis factor (TNF) receptors that are expressed in the skeleton system. OPG 

increases bone mineral density and decreases bone damage (Gori et al., 2000). The study 

by Liang et al. (2012) tested multiple zinc concentrations in mice cell culture at (0, 10, 

30, 50, 70, 110, 130, and 150 µM), after 24 and 48 hours. The study recorded that cell 

proliferation and OPG expression were optimal at 50 µM of zinc concentration treatment 

(Liang et al., 2012). Zinc and protein kinase C activator increased OPG expression. 

However, OPG expression was decreased when osteoblasts were treated with Protein 

Kinase C inhibitor (PKC) (Liang et al., 2012).    

Bone and metal detoxification 

Bone acts as an internal source of metals and accumulates heavy metals such as 

cadmium and lead (Chang et al., 1996). During certain physiological changes such as 

pregnancy, lactation, and menopause, bone accumulates toxic metals in the extracellular 

bone matrix. Bone’s ability to accumulate lead decreases blood lead concentration 

(Chang et al., 1996). Because bone removes toxic metals and foreign substances from 

circulation, it reduces damage to organs such as liver, kidney and pancreas. 

 Bone resists metal toxicity and degradation more than renal cells. Loss of  bone 

mineral density in humans increases with Cd, Pb, and Hg toxicity (Järup, 2002). There is 

an association between the induction of MT, renal failure, and depletion in bone density. 

Bone density decreases as a result of calcium, phosphate, and protein leakage from renal 

cells that are affected by metal toxicants (Alfvén, Järup, & Elinder, 2002). High MT 

concentrations, renal damage, and bone malformation have been recorded in adult 

bottlenose dolphins (Tursiops aduncus) in South Australia that were exposed to Cd, Cu, 

Zn, Hg, Pb and Se (Lavery et al., 2009).   
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Nutrient deficiency effects on bone formation     

  Nutrients are important for bone growth and development. Adequate nutrients 

supply bone with energy, amino acids, essential minerals, vitamins, proteins and ions that 

are required for bone formation (Prentice et al., 2006). Decreasing nutrients during 

childhood and adolescence can increase osteoporosis risk. Organic nutrients such as 

carbohydrates, proteins, lipids, and vitamins are important for bone formation. Inorganic 

nutrients include dietary minerals, water, and oxygen, which are considered to be 

essential elements due to their necessity in building human bone and the whole body. The 

essential minerals for bone formation include calcium, magnesium, zinc, copper, and iron 

(Okyay et al., 2013). These minerals represent the main contents of bone structure and 

they are important for collagen, protein, and matrix syntheses (Gulekli, Davies, & Jacobs, 

1994).  

Nutrient deficiencies can cause health problems such as osteoporosis, which is a 

common risk problem in postmenopausal women (Johnell & Kanis, 2005; Okyay et al., 

2013). Moreover, macroelements such calcium have significant roles in sustaining bone 

metabolism and mineralization (Nieves, 2005). Bone stores calcium as a crucial element 

which conjugates with phosphorous for bone formation and inhibits bone resorption 

(Prentice et al., 2006). There is a significant relationship between calcium intake and 

bone density in children and adults (Chevalley et al., 1994). Low dietary calcium can be a 

reason for bone weakness, and calcium supplementation is used to treat older people with 

bone weakness (Chevalley et al., 1994).  

Calcium deficiency can cause hypocalcemia, and inhibit matrix formation and 

mineralization.  Low calcium levels increase both bone resorption and parathyroid gland 



 

25 
 

size (Stauffer, Baylink, Wergedal, & Rich, 1973). Also, calcium deficiency has been 

shown to decrease bone density and increase parathyroid hormone secretion in laboratory 

female Sprague Dawley rats (Goldie & King, 1984).  

Vitamin D deficiency can increase bone resorption, and decrease intestinal 

calcium absorption  (Baylink, Stauffer, Wergedal, & Rich, 1970). Beside calcium, zinc is 

a crucial nutrient for human bone growth and development (Yamaguchi, 2010). Zinc 

increases osteoblast formation and osteoclast inhibition. There are other essential 

elements including iron, copper, and magnesium that  maintain  mineral metabolism 

(Yamaguchi, 2010). Zinc concentration is high in the osteoid layer which makes zinc 

content in the skeleton the major source of zinc for the whole body (Herzberg, Foldes, 

Steinberg, & Menczel, 1990).  

Recently, studies have documented that zinc plays a role in maintaining bone 

homeostasis, and it is used as a therapy for osteoporosis problems (Yamaguchi, 2010).  

Zinc is known as an anabolic factor for bone metabolism, and it stimulates fracture 

healing. Calcium concentration, alkaline phosphate activity, DNA contents, and  fracture 

healing were increased significantly in the femoral-diaphysis of laboratory rats that were 

orally administrated 100mg/kg zinc acexamate daily for 28 days (Igarashi & Yamaguchi, 

1999).   

Zinc deficiency decreases bone formation and mineral density. Zinc levels 

decrease in serum and bone in adolescence due to use for physiological functions 

(Walker & Black, 2004). Zinc depletion in osseous tissue may cause osteoporosis and 

bone fractures in adolescents (Ilich J, 2000). A study by Leek et al. (1984) recorded that 
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zinc deficiency was observed in monkeys during the early postnatal period. This study 

recognized significant depletion in bone formation, mineralization, and maturation in 

monkeys during the same period of time. Zinc deficiency was found to cause bone 

weakness and abnormal skeleton in fetal and postnatal development (Hsieh & Navia, 

1980). Adequate dietary zinc is essential in adolescence because it reduces osteoporosis 

risks (Ryz et al., 2009).  

Twenty-four nine-week old Sprague Dawley rats were used to test the correlation 

of zinc deficiency in bone and adolescent age. Rats were kept on <1 mg/kg Zn diet, 5 

mg/kg diet, and the control group was kept on 30 mg/kg diet for nine weeks. The study 

investigated serum minerals and femur morphometry, serum osteocalcin, C-terminal 

peptide, femur zinc, and skeleton densitometry of young adults (Ryz et al., 2009). 

Mineral density in spinal bone was 8% in the 1 mg/kg Zn diet group. Mineral density was 

14% lower in spine but not other skeleton parts such as tibia and femur. Serum 

osteocalcin was 33% lower with 5 mg/kg diet; femur zinc was 57%, and 56-88% lower 

with 5 mg/kg diet in comparison with the control group (Okyay et al., 2013; Ryz et al., 

2009).  Furthermore, zinc deficiency causes problems in immune function, bone growth, 

and many cellular enzymatic functions are coupled with zinc, including RNA and DNA 

synthesis (Chang et al., 1996).  Cook-Mills and Fraker (1993) found that the main effects 

of zinc deficiency were thymic atrophy and lymphopenia. Zinc did not decrease the effect 

of cadmium on blood parameters, liver, kidney, testes, or spleen function in rats treated 

with ZnCl2 and CdCl2 (Rhman, Bakhiet, & Adam, 2011).   

  Vitamins C, D, and K are involved in crystal and collagen formation in bone 

surface, cartilage, bone metabolism, and growth plate of long bones (Prentice et al., 
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2006). Vitamin D deficiency is common in children with little sunshine exposure. 

Maternal nutrients, such as Vitamin D, C, P, Mg, and K, are essential for maintaining 

bone mineral density during pregnancy (Prentice et al., 2006). In contrast, the study in 

pregnant Gambian and Indian women showed no correlation between Ca and Vitamin D 

intake and child bone mineral density (BMD), weight, and length (Raman, Rajalakshmi, 

Krishnamachari, & Sastry, 1978). According to the European Society for Clinical and 

Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO), vitamin D 

supplementation is recommended in the  range of 800-1000 IU/day for optimal health 

(Rizzoli et al., 2013). A deficiency in Vitamin D decreases calcium absorption and causes 

low circulatory calcium which results in high PTH levels. The elevation in PTH levels 

increases bone loss and fracture risks (Nieves, 2005). 

In addition to Vitamin D, Vitamin C, K, and A are essential cofactors for bone 

development which enhance collagen, hydroxyproline, and hydroxylysine synthesis. 

Vitamin C deficiency decreases bone mineral density, while a high amount of Vitamin C 

decreases bone loss and fractures (Nieves, 2005). Vitamin K is another cofactor for bone 

development, and it is a fat soluble vitamin. It has roles in bone metabolism, blood 

coagulation factors, and it reduces calcium excretion, bone resorption, and fracture risks 

(Booth, 1997; Nieves, 2005). 

Excess intake of Vitamin A from retinol increases hip fractures (Nieves, 2005). 

Phosphorous is important for bone formation and mineralization. However, high levels of 

phosphorous with low calcium intake cause bone loss and hyperthyroidism (Whiting, 

Boyle, Thompson, Mirwald, & Faulkner, 2002). Low phosphorus intake decreases 

osteoblasts’ function and increases bone resorption (Heaney & Nordin, 2002). 
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Potassium ion influences calcium homeostasis and excretion. Low potassium increases 

calcium excretion. Adequate potassium intake increases BMD and decreases bone 

resorption (Demigne, Sabboh, Remesy, & Meneton, 2004).  

Magnesium ions are involved in enzymatic reactions and protein synthesis. 

Magnesium deficiency is associated with low calcium, and Vitamin D resistance with 

health problems such as muscle cramp and irregular heartbeat. Fluoride is another 

element that is essential for bone and dental development. However, high fluoride intake 

increases the risk of hip fractures and causes fluorosis (Nieves, 2005).   

Toxic effects of heavy Metals on wildlife animals 

             Metals from natural sources and from human activities can cause serious damage 

on wildlife (McBee & Bickham, 1988; Ritchard F Shore 2001; Talmage & Walton, 

1991). Tissue samples of river fish including northern hog sucker (Hypentelium 

nigricans), river carpsucker (Carpiodes carpio), largescale sucker (Catostomus 

macrocheilus), and mountain sucker (C. platyrhynchus) were collected from four sites 

downstream of smelters in Trail, BC, Canada (reference sites) and E. Helena, MT; 

Herculaneum, MO; and Glover, MO to investigate the effects of lead on blood 

hemoglobin, and delta-aminolevulinic dehydrogenase (ALAD)  activity (Schmitt, 

Caldwell, Olsen, Serdar, & Coffey, 2002). Animals in this study showed low ALAD 

activity, and high Pb concentration downstream in all sites was higher than at reference 

sites. In addition, Pb and Zn concentrations in liver, blood, and whole carcass, 

hemoglobin levels, and ALAD activity showed differences among species from different 

sites (Schmitt et al., 2002). 
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  Macroinvertebrate samples were collected from lead-zinc mining areas in 

southeastern Missouri to investigate effects of heavy metal mining on aquatic 

invertebrates. In comparison with reference sites, macroinvertebrate biotic conditions and 

responses in mining sites correlated with downstream metal levels (cadmium, nickel, 

lead, and zinc) (Poulton et al., 2010).  

Immune response in the white-footed mouse (P. leucopus) from a site 

contaminated with heavy metals including cadmium, copper, lead, mercury, and zinc was 

compared to mice collected from three reference sites (Biser, Vogel, Berger, Hjelle, & 

Loew, 2004). The results showed that spleen weight differed among animals; however, 

age had a greater effect on the differences in this species than exposure to metals at the 

site of capture (Biser et al., 2004).  

Another study showed that relative body weight, plasma parameters (glutamic 

oxaloacetic transaminase, GOT; glutamate pyruvate transaminase, GPT; creatinine), and 

genotoxic parameters (frequency of micronuclei), along with bioaccumulation of heavy 

metals (Pb, Hg, Cd, Fe, Zn, Cu, Mn, Mo, and Cr), were all significantly different in wood 

mouse (Apodemus sylvaticus) specimens from a polluted landfill site in comparison with 

reference site specimens, although intensity of response varied among metals (Sanchez-

Chardi, Penharroja-Matutano, Oliveira Ribeiro, & Nadal, 2007). Sánchez-Chardi and 

Nadal (2007) found no difference in body masses of greater white-toothed shrew (C. 

russula) collected from the Garraf Landfill compared to reference site animals, but did 

see a significant increase in frequency of micronuclei in the blood of individuals from the 

landfill. Sánchez-Chardi and Nadal (2007) used histopathology, blood parameters (white 

blood cells, red blood cells, hemoglobin, and hematocrate), hepatic enzyme activity, and 
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genotoxicity (frequency of micronuclei) to assess physiological effects on the greater 

white-toothed shrew (Crocidura russula) collected from a deactivated pyrite mine in 

northeastern Spain. Histological alterations in hepatic tissue, such as apoptosis and 

necrosis, were evident in A. sylvaticus and C. russula that were collected from the Garraf 

Landfill, a site polluted with heavy metals in northeastern Spain. Tubular necrosis and 

inflammation were more apparent in A. sylvaticus than in C. russula. There were no 

histological changes observed in lungs, pancreas, spleen, gonads, esophagus, intestines, 

or adrenal glands in either species compared to reference site animals (Sánchez-Chardi, 

Peñarroja-Matutano, Borrás, & Nadal, 2009).  

Peromyscus leucopus as bioindicator species   

The most common species of small mammal at TCSFS is the white-footed mouse 

(Peromyscus leucopus) (Phelps & McBee, 2010), a species that also serves as a good 

model in research as a biomonitor (Husby, Hausbeck, & McBee, 1999; Husby & McBee, 

1999; Levengood & Heske, 2008; Phelps & McBee, 2010). Even though P. leucopus has 

been the subject of a number of different studies of effects of environmental 

contaminants, response of metallothioneins has not been investigated in this species to 

our knowledge. 

 The genus Peromyscus has a wide distribution in North America (King & 

Mammalogists., 1968; Langer & Giessen, 2007; Wozencraft, Wilson, & Reeder, 2005). 

Members of the genus Peromyscus are terrestrial, nocturnal, small mammals inhabiting 

both temperate and tropical regions of North America. P. leucopus, the white-footed 

mouse, is found throughout most of the eastern United States. White-footed mice are 

omnivorous, depending on grains, seeds, fruit, and insects for their nutrition (King & 
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Mammalogists., 1968). White-footed mice are brownish to grayish with a dark mid dorsal 

stripe, white ventral area, ears covered with short dark hair, white feet in dorsal view, and 

a relatively short tail (Lackey et al., 1985); their mass is 15- 25 g, averaging 23 g; length 

is 150-205 mm (Aguilar, 2002). White-footed mice typically live for six months to one 

year in the wild and can have 2 to 9 pups per litter with a gestation period of 22-28 days 

(King & Mammalogists., 1968; Lackey, Huckaby, & Ormiston, 1985). This species has 

been well studied in terms of its ecology, physiology, and biogeography (Montgomery, 

1989). Its near ubiquitous distribution in North America, relatively short generation time, 

high reproductive potential, and small home range give it excellent potential as a 

biomonitor (McBee & Bickham, 1988; Ritchard F Shore 2001; Talmage & Walton, 

1993).   

 Heavy metals’ effects on species of wild animals have been studied in Old World 

wildlife such as Apodemus sylvaticus. It is possible that P. leucopus and a similar but 

unrelated species such as A. sylvaticus will show similar responses to environmental 

contaminants. Wood mouse (A. sylvaticus) is distributed throughout Europe and Great 

Britain except in northern Scandinavia and Finland; throughout central and southwestern 

Asia; east of the Altai and Himalayan mountains; and in northwestern Africa (Nowak, 

1991). A. sylvaticus lives in grassy woodlands and forests. It is 60-150 mm in length, 14-

20 g in mass, and has a hairy tail.  Its fur is soft, grayish brown, or brown with yellow, 

red, or sandy color in the dorsal area, and the ventral area is white or light gray with 

yellow spots. This species has large ears and eyes and white feet. Females produce 4 to 7 

pups per litter, and the gestation period is 21-26 days. Similar to P. leucopus, the diet of 

A. sylvaticus includes roots, grains, seeds, berries, nuts, grasses, fruits, and insects 
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(Nowak, 1991). Members of the genus Apodemus have been used extensively in field 

studies of effects of environmental contamination in Europe (Fritsch et al., 2010; 

Ritchard F Shore 2001; Sánchez-Chardi & Nadal, 2007; Sánchez-Chardi et al., 2009). 

Organisms that have evolved independently in different parts of the world but occupy 

similar niches are considered ecological equivalents (Montgomery, 1989).  

Peromyscus leucopus and Apodemus sylvaticus are considered ecological 

equivalents because of their similar size, morphology, physiology, life-history strategies, 

habitat choices, and diet (Grant, 1970; Montgomery, 1989). Both Peromyscus and 

Apodemus have high densities in fragmented forests more than in large forests and 

respond in similar ways to food availability and decreased predator pressure (Diaz, 

Santos, & Telleria, 1999).   

Metallothioneins   

        Protein synthesis is one of the main functions in the biological cells. The liver 

produces multiple kinds of plasma proteins such as albumin and metallothionein (MT) 

(Šveikauskaitė, Šulinskienė, Sadauskienė, & Ivanov, 2014). The levels of circulating 

plasma and tissue proteins are used as indicators to the main cellular and physiological 

functions such as metallothionein synthesis (Dawson & Bortolotti, 1997; Marcotte et al., 

1999; Sonne et al., 2009).  

Metallothioneins are a group of essential proteins in biological cells. 

Metallothionein protein is a scavenger protein that binds with metals such as lead, 

cadmium and zinc. Metallothioneins are low molecular weight, cysteine-rich proteins that 

assist in metal detoxification. MT functions primarily in the liver and kidney, and these 

organs have a higher capacity for binding many metals and organic chemicals than other 
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organs. Blood circulation in these organs enhances this function by active transport and 

protein binding (Casarett et al., 2008). MTs have a high affinity to metal ions such as Zn, 

Cd, Cu, Pb, and Ag. MT synthesis is induced by high concentrations of metal ions 

(Chang et al., 1996).  

Heavy metal ions like Cd, Cu, and Zn increase MT synthesis by inducing 

transcription of the metallothionein genes (Chang et al., 1996); therefore, MT is one of 

the biomarkers often used to indicate exposure to heavy metals. MT is composed of 

sulfur and three protein subunits that strongly bind with Cd, Pb, Zn and other heavy 

metals. After heavy metals have been absorbed across the gut, lungs, or skin (Sorensen, 

Nielsen, & Andersen, 1993), they are sequestered by the liver and bound by MT, then 

transported through the circulatory system in plasma to the kidneys where the metals are 

cleared by renal tubules.  

The MT capacity can decrease the risk of high level of heavy metals. MT-Pb and 

MT-Cd complexes are formed in the liver and transferred to the kidney where they are 

filtered and reabsorbed in the proximal tubules of the nephrons (Chang et al., 1996; 

Sonne et al., 2009). Metallothionein is involved in detoxification function by binding 

with the metal ions and different enzymes of endothelial cells (Chang et al., 1996). The 

MT-Cd complex is broken in tubular cells by lysosomes, and the unbound Cd ions induce 

MT synthesis in renal tubules to bind with Cd ions (Chang et al., 1996). Cd accumulates 

in kidney tubules, where it inhibits Zn-dependent enzymes (e.g., leucine-aminopeptidase) 

that carry out renal proteins and release Cd ions in urine. Protein molecules are 

catabolized and excreted in the urine, or they are reabsorbed in the renal tubules, resulting 

in high proteinemia (Massaro, 1997). MT-Zn binding increases Zn distribution in the 
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liver and decreases Zn distribution in other tissues (Taubeneck, Daston, Rogers, & Keen, 

1994). 

 Although the majority of work on metallothionein in wildlife has been done on 

aquatic species including fish, mollusks, and invertebrates (Amiard, Amiard-Triquet, 

Barka, Pellerin, & Rainbow, 2006; Kito, Tazawa, Ose, Sato, & Ishikawa, 1982), 

metallothionein induction has been documented in wild mammals exposed to metal 

contaminants. Metal concentrations for Cu, Cd, and Zn and metallothionein-binding 

capacity in liver, kidney, and brain tissues were significantly different among three 

species of arctic seals: ringed seal (Phoca hispida), harp seal (Phoca groenlandic), and 

hooded seal (Cystophora cristata).  MT metal-binding capacity was highest in the 

kidneys compared to liver and brain for all species, indicating variable sensitivity among 

organs in these species (Sonne et al., 2009).  

Seven small mammal species—wood mouse (A. sylvacticus), bank vole (Myodes 

glareolus), common shrew (Sorex araneus), pygmy shrew (Sorex minutus), common pine 

vole (Microtus subterraneus), greater white–toothed shrew (C. russula), and field vole 

(Microtus agrestis)—were collected from an area heavily contaminated by Cd, Pb, Zn, 

and Cu in Northern France (Metaleurop-Nord smelter) to analyze the correlation between 

heavy metal concentrations in liver and kidney and metallothionein concentrations. Cd 

concentration increased in liver and kidney with age in all species. The relationship 

between concentrations of Cd and Pb in soils and in tissues of animals was not 

significant, but concentrations of metals in liver and kidney correlated with increasing 

metallothionein levels among species. The relationship between levels of metals in soils 

and metallothionein induction in liver and kidney was different among species. A. 
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sylvaticus showed a significant relationship between metallothionein concentration and 

soil contamination; however, metallothionein concentration increased with increasing soil 

metal levels in liver and decreased in kidney.  In M. glareolus, S. araneus, and S. 

minutus, metallothionein concentrations in both tissues were positively correlated with 

concentration of metals in soils (Fritsch et al., 2010). In wild species, total protein 

concentrations were analyzed in both female and male American kestrels (Falco 

sparverius) (Dawson & Bortolotti, 1997). The study showed higher significant plasma 

protein concentrations (g/dl) in females than in males (F[1,512]=67.41, P < 0.0001) 

(Dawson & Bortolotti, 1997). The authors in this study suggested that the variation in 

total protein concentrations between wild females and males is associated with the 

variations in their physical conditions such as the period of prelaying egg in females and 

the incubation period in males.         

In conclusion, heavy metals have an effect on environmental conditions in 

addition to human lives. The heavy metals mining at TCSFS was considered by the 

USEPA due to the health problems for humans and the risk effects on the wildlife 

populations. High concentrations of cadmium, lead and zinc in soil were recorded in 

TCSFS by the USEPA (ODEQ, 2003 ; United States Environmental Protection Agency 

USEPA, 2005). Heavy metals target nervous, respiratory, circulatory, and excretory 

systems and affect their functions. Bone is also influenced by heavy metals such as 

cadmium and lead. Exposure to lead and cadmium affects bone formation, resorption, 

and bone mineral density (Youness et al., 2012). Additionally, renal malfunction was 

recorded after exposure to heavy metals (Chang et al., 1996).  
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The white-footed mouse (Peromyscus leucopus) is one of the common species at 

TCSFS (Phelps & McBee, 2010). This species also serves as a good model in this kind of 

research and in this particular study as a physiological and ecotoxicological biomonitor 

(Husby et al., 1999; Husby & McBee, 1999; Levengood & Heske, 2008; Phelps & 

McBee, 2010). Metallothioneins have a high affinity for metal ions such as Cd, Pb, and 

Zn (Sonne et al., 2009). The study presented here analyzed the concentrations of the most 

common heavy metals in TCSFS in soil and kidney tissues. Bone microarchitectural 

evaluation and alterations of MT-1 in the common species P. leucopus at this area also 

were analyzed. Metallothionein is one of the appropriate biomarkers to investigate heavy 

metals exposure. 
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CHAPTER III 
 

 

METHODOLOGY 

 

The study included three different sites. Tar Creek Super Fund Site (TCSFS) at 

Beaver Creek and two reference sites, Sequoyah National Wildlife Refuge (SNWR) and 

Oologah Wildlife Management Area (OWMA). Soil samples were collected from these 

sites for metal analysis (lead, cadmium and zinc) in November and December, 2012. The 

TCSFS has a large population of white-footed mice (Peromyscus leucopus) which were 

used in this study to analyze the influence of heavy metals on the physiological alteration 

in kidney tissues. Both SNWR and OWMA are good sites to compare with TCSFS 

because no mining has been recorded in these sites. The use of two reference sites rather 

than just one provides a more accurate comparison to the highly contaminated TCSFS. In 

addition, these two sites are geographically distant. Other reasons to choose these sites 

were to compare relationships among soil metal levels, tissue metal levels, and 

metallothionein induction in P. leucopus species, which is present in all three sites.
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Soil sampling 

       Soil samples were collected from each site following the procedure that is 

described by USEPA (United States Environmental Protection Agency USEPA, 2005). 

Random design was used to collect soil samples in each site separately. The distances by 

meter between samples were selected by assessing random numbers and drawing from a 

selection of random numbers. The position of sites was detected with the help of Eterx 

Vista CX Garmin and Google Earth program using a personal i-Phone to detect the 

directions on Google Maps. Each sampling location was recorded (Appendix). A coin flip 

was used to choose direction, either east or west side, from the first soil sample site. 

Moreover, a meter scale was used to measure the distances between soil samples. Eight 

duplicate soil samples were collected from each site. Each sample was labeled as T1-1, 

T1-2, T2-1, T2-2, etc. where T identifies TCSFS, the first numeral (1-8) indicates the 

number of the sample, and the second numeral (1-2) points to the original or the 

duplicate. Samples were collected from each position with a 10% HCl acid–washed metal 

scoop to a depth of 18-20 cm. 

Soil samples were collected in labeled plastic bags and sealed for transfer to the 

lab. Samples were homogenized and weighed separately. Soil samples were dried in 

separate 10% HCl acid-washed and labeled polypropylene plates at room temperature for 

two weeks. Also, dried soil samples were sieved twice using first 1mm sieve size, No. 18 

(USA. Standard Test Sieve) followed by a second 250 µm opening sieve (Fisher 

Scientific Company, Pittsburgh, Pennsylvania). Samples were saved in labeled acid-

washed glass bottles.  
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Laboratory metal analysis 

Soil digestion 

   Soil samples were prepared in the trace mineral laboratory of the Nutrition 

Sciences Department using microwave digestion. All soil samples from Tar Creek Super 

Fund Site (TCSFS) and the two reference sites, Sequoyah National Wildlife Refuge 

(SNWR) and Oologah Wildlife Management Area (OWMA) were weighed separately 

using the same digital balance and labeled polypropylene plates. Soil samples were 

digested using microwave digestion (Milestone, Inc, Shelton, Connecticut) according to 

the EPA procedure. Following the protocol for microwave digestion, all soil sample sizes 

were 0.5 g. For all soil samples, 0.5 g of soil was put in the labeled microwave vessel. 

Double distilled trace element grade nitric acid (99.999%) was purchased from Fisher 

Scientific Company (Pittsburgh, Pennsylvania). Microwave vessels were transferred to 

the hood and 10 ml of HNO3 was added to the soil sample in each vessel. The soil and 

acid solution was swirled slowly to mix soil with acid. A teflon cover was placed on the 

teflon vessel, pushed down and an adaptor was placed on the flat part of the Teflon cover. 

Teflon indicator ring was placed on the cover and pushed shut. Vessels were then 

introduced into the polypropylene microwave rotor. Each indicator was closed tightly 

with a torque wrench. A thermo couple was placed into the reference vessel No.1 that 

contained a blank laboratory (control) sample, the microwave door was closed, and the 

machine was switched on.  

The program was set on the USEPA Method Number 5031A. Samples were 

heated for 50 minutes at 100° C. Next, the segments were pulled gently from the 

microwave after 5 minutes because they were hot and opened slowly using a torque 
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wrench to release the pressure from the vessels. Samples were transferred to the hood to 

open the vessels cover and yellow acid fumes evaporated from the vessels. Acid solution 

from vessels 10 ml was poured into a plastic 15 ml tube purchased from VWR. Vessels 

were washed with 5 ml double distilled water, and water was added to the first tube.  

All samples were digested following the same process. The digested soil samples 

were centrifuged at 1200 g for 10 minutes. The samples were decanted into a new tube 

(2nd tube) gently and slowly to avoid solution contamination. The first tube that contained 

the soil was disposed separately. The second tube for each digested sample was labeled 

as stock that was used for metal analysis.  

0.2 ml of the digested soil solution in 10 ml total volume samples were diluted by 

adding double distilled water (DDW) to 0.20 ml sample solution in the new tube (3rd 

tube). This tube of each sample was used for the Inductively Coupled Plasma-Mass 

Spectroscopy (ICP-MS) instrument (Perkin Elmer) to analyze metal (Pb, Zn, and Cd) 

concentrations in each sample separately.  

Instrument calibration 

ICP-MS dilution standard 

Analyses of Pb, Cd, and Zn concentrations in soil from both contaminated and 

uncontaminated sites were conducted in  the OSU Nutrition Science laboratory by ICP-

MS  according to USEPA method 6010 (United States Environmental Protection Agency 

USEPA, 1996). The ICP-MS instrument was calibrated to ensure stability and 

consistency of all results. Before running samples by ICP-MS, five standard dilutions for 

ICP-MS were diluted. Internal standard (Terbium) solution (Perkin Elmer, Shelton, 

Connecticut) and double distilled water (DDW) were used for calibration and dilutions. 
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All sample volumes were run in ICP-MS as 0.1 µl sample diluted to 10 ml (DDW) and 

add 20 µl (IS). Sample tubes were vortexed for 20 seconds before analysis.   

Tissue digestion  

Frozen kidney biopsies of Peromyscus leucopus were provided from the 

collection of vertebrates in the OSU Zoology Department. Kidney samples were saved in 

a liquid nitrogen tank before subsampling. The kidneys were subsampled into two parts: 

one part was cut in a plastic petri dish placed on wet ice using stainless-steel scalpel to 

one tenth of whole tissue and saved in plastic micro tubes for metallothionein-1 analysis 

and then returned back to the freezer at -800 C without thawing. The second part of the 

kidney was saved in plastic microtubes and refrigerated at -40C prior to digestion for 

metal analysis. 

Kidney samples were weighed using a digital balance. Small microwave tubes 

were used for kidney sample digestion (Milestone, Inc, Shelton, Connecticut). Each 

sample was weighed and put in small microwave tubes; 1 ml of concentrated (99.999) 

HNO3 was put in the tube and then 0.15 ml of H2O2 was added to the same tube. The 

program was set on USEPA Method Number 5031A. The microwave operation required 

50 minutes to finish digestion at the temperature of 100° C. Next, the vessels were pulled 

gently from the microwave after 5 minutes. The segments were opened slowly using a 

torque wrench to release the pressure from the vessels. Samples were transferred to the 

hood to open the vessels cover, and yellow acid evaporated from the vessels.  
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Metal Analysis 

ICP-MS 

An inductively coupled plasma-mass spectroscopy (ICP-MS) instrument (Perkin 

Elmer) was calibrated to ensure stability and consistency of all results. Before samples 

were run, five standard dilutions for ICP-MS were prepared. All sample volumes were 

analyzed by ICP-MS as 80 µl sample with 10 µl Internal standard (Terbium) solution 

(Perkin Elmer, Shelton, Connecticut) and complete volume by DDW up to 5 ml. Sample 

tubes were vortexed for 20 seconds before analysis by ICP-MS.  

Bone microarchitecture  

Bone skeleton samples of P. leucopus were provided from the vertebrate 

collection from the OSU Zoology Department. Eight useable skeletons of P. leucopus 

from each site were selected for bone analysis. 

The lumbar 2, 3, 4, 5 vertebra section of each skeleton was excised and the L4 was 

scanned using a high resolution computed tomography system or micro-CT scanner (µCT 

40, Scano Medical AG, Zurich, Switzerland). This section of L4 vertebra was scanned in 

approximately 3 hours in a 16 mm plastic tube sample holder. The lumbar 4 vertebra was 

detected in each skeleton sample and saved as a 3-D image. The trabecular bone in the 3-

D images of L4 was contoured in a 300-400 µCT slide image. L4 slices were contoured 

every 10 slices when the detection of spogiosa begins and ends from the growth plate 

(90-550). The threshold for evaluation was set as 350 (gray scale, zero-1000) for all 

slides. The trabecular bone was contoured to measure trabecular thickness (mm), 

trabecular number (mm-1), and trabecular volume as a bone volume fraction (bone 
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volume/tissue volume %) for individual lumbar vertebra. The 3-D images of results were 

evaluated, and the data set was exported to evaluate and analyze the results.  

 

Tissue homogenization  

Peromyscus leucopus kidney samples were homogenized using Invitrogen MT 

protocols. One tenth of each sample was crushed in liquid nitrogen and transferred into a 

plastic pre-chilled 5 ml culture tube. Ten µl of protease inhibitor (Sigma Aldrich, St. 

Louis, Missouri, Cat. No. P-88340) was mixed with 1 ml phosphate buffered saline 

(PBS) and cooled using wet ice. Tissues were sonicated at low speed for ~20 seconds, 

and transferred into micro centrifuge tubes and centrifuged at 14,000xg at 4°C for 15 

minutes. The supernatants were removed and four 80 µl aliquots were pipetted to vials 

for storage.  Samples were stored at -80°C for metallothionein-1 analysis using ELISA 

procedures.    

Total protein analysis  

 Total protein concentrations of kidney specimens were determined by Modified 

Lowry method using a commercial protein assay kit (Thermo Scientific, Waltham, 

Massachusetts) (Lowry, Rosebrough, Farr, & Randall, 1951). Homogentated kidney 

specimens were diluted 20X using Phosphate Buffer Saline (PBS). The standard curve 

was plotted for each bovine serum albumin (BSA) value. The concentrations of total 

protein (µg/ml) in homogenated kidney specimens were detected using a standard curve 

made with bovine serum albumin. The plot included the absorbance (nm) of the standards 

against the standards concentration (µg/ml). The concentrations (µg/ml) of diluted 

specimens were detected at OD 750 (nm) and were analyzed using Prism version 6.    
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Enzyme-linked immunosorbent assay (ELISA)   

An ELISA technique was used to determine metallothionien-1 (MT-1) 

concentrations in kidney samples from Peromyscus leucopus. A commercial mouse Mus 

musculus MT-1 kit (Uscn, Life Science Inc., Houston, Texas) was used following 

manufacture protocols general procedure. Samples were tested to determine appropriate 

dilutions for analyses. The MT-1 concentrations were detected in a microplate reader at 

an OD of 450 (nm). Metallothionein-1 concentrations were expressed as microgram per 

mg of protein  

Statistical analyses 

Data were first compiled using Excel (Microsoft) and were analyzed using PROC 

GLM, MEANSAND SMEANS with PROC CORR, SAS 9.3. Means and standard error 

of mean were calibrated in SAS. This study determined the correlation between heavy 

metal concentrations and the biomarkers of toxicity in kidney and bone tissue to detect 

the effects of heavy metals and detoxification function response. It also examined 

specimens collected from a contaminated site (TCSFS) and compared them with 

reference sites (SNWR & OMWA).  

A P value of < 0.05 was considered significant. Correlation between bone 

microarchitecture results and kidney mineral concentrations were analyzed using Pearson 

Correlation Coefficients. P values were ≤ 0.05, 005, 0.005.
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CHAPTER IV 

 

 

HEAVY METAL CONTAMINATION IN SOIL AND THE CORRELATION 

BETWEEN BONE MICROARCHITECTURE AND KIDNEY HEAVY METAL 

CONCENTRATIONS OF PEROMYSCUS LEUCOPUS FROM TAR CREEK 

SUPERFUND SITE  

Introduction  

Tar Creek Superfund site (TCSFS), Ottawa, OK is located in northeastern 

Oklahoma near the Kansas-Oklahoma border. TCSFS covers a 40-square mile area, and it 

is one of the Tri-State Mining District (Oklahoma, Kansas, and Missouri) sites. These 

sites include territories of  ten tribal nations and several communities such as Quapaw 

Nation, Picher, Cardin, North Miami, and Commerce (Agency for Toxic Substances and 

Disease Registry, 2013). Lead and zinc ores were mined at TCSFS from the early 1900s 

to the late 1970s. During World II, the Tri-State Mining District produced Zn ore which 

constituted 75% of the United States total Zn production (Weidman, Williams, & 

Anderson, 1932).
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The Oklahoma Department of Environmental Quality (ODEQ) recorded that 

TCSFS is the most challenging site in Oklahoma (Hughes, 2014). In 1983, the USEPA 

listed this site as a superfund site, and it received federal funding for research and health 

screening and for remediation (United States Environmental Protection Agency USEPA, 

2005). Flotation chat waste was disposed in tailing ponds or in piles; these piles 

sometimes contained high levels of lead and other heavy metals (Agency for Toxic 

Substances and Disease Registry, 2013). Mines were found under water tables, and the 

retention ponds received water that was pumped from the mines (United States 

Environmental Protection Agency USEPA, 2005).  

The U.S Army forces of Engineers and the U.S Geological Survey estimated that 

TCSFS contains 75 million tons of chat. Agency for Toxic Substances and Disease 

Registry (ATSDR) recorded the major pathways of exposure to lead contamination at 

TCSFS as contaminated air, contaminated water, contaminated food resources, and 

contaminated soil. Such human health problems as respiratory illness, liver dysfunction, 

and reproductive and renal failure can occur after exposure to these pathways (Agency 

for Toxic Substances and Disease Registry, 2013).    

Heavy metals such as cadmium, lead and zinc at TCSFS were studied because of 

their effects on human health and their accumulation in small mammals’ bodies 

(Sanchez-Chardi et al., 2007). Numerous human health issues have been documented 

after exposure to cadmium because of its ability to substitute other metals and nutrients 

such as zinc (Beyersmann & Hartwig, 2008). Cadmium, lead and zinc in soil sediments 

were measured at Beaver Creek and Douthat Settling pond within the TCSFS. Soil 
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sediments were 440-540 mg/kg for lead and 20-56 mg/kg cadmium and 3000-9300 

mg/Kg for zinc at TCSFS (Moeller, 2004).   

Cadmium disrupts protein synthesis, metabolism function, and other 

metalloenzymes (Chang et al., 1996). Cadmium accumulates in small mammals’ bodies 

in tissues such as liver and kidney in Apodemus sylvaticus, Clethrionomys glarelolus, 

Crocidura russula, and Microtus agrestis (Johnson, Roberts, Hutton, & Inskip, 1978; 

Sanchez-Chardi et al., 2007).  

Lead is a non-essential metal, and it is one of the abundant toxic metals at TCSFS. 

Lead exposure can result in acute and chronic toxic effects. Lead accumulates in wild 

mammals’ in tissues such as kidney, liver, and bone. In smelter and mining sites, lead and 

zinc were recorded in wood mice (A. sylvaticus); bank voles (C. glareolus), and field 

voles (M. agrestis). The results showed high lead concentrations in bones; 42-68% of 

total lead found in body tissues was contained in bone (Johnson et al., 1978). Johnson et 

al. (1978) concluded that bones accumulate more lead than liver and kidneys.  

Bone as a connective tissue has different sizes, shapes, and structures that serve 

important functions. Mineralized bone is the osseous tissue that gives bone rigidity. Bone 

includes blood vessels, nerves, cartilage, bone marrow, and endosteum. As a supportive 

tissue, bone works to protect different body organs such as brain, heart, and other organs. 

Bone tissue is one of the tissue markers that indicate xenobiotic and metal exposure. 

Bone tissue accumulates  heavy metals such as cadmium and lead (Chang et al., 1996). 

Studying bone microarchitecture helps to evaluate the toxic effects on bone after 

exposure to heavy metals. Bone dysfunction and osteoporosis are reported as toxic effects 
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of exposure to cadmium (Youness et al., 2012). Significant decrease in bone density and 

the presence of osteopenia has been recorded in women who are exposed to cadmium 

from environmental sources (Chang et al., 1996; Engström et al., 2012). Enzymatic and 

non-enzymatic activities in bone are disrupted by cadmium exposure (Ognjanović et al., 

2010). Bone damage and kidney problems can be caused by short and long term exposure 

to cadmium (Alfvén et al., 2002). Urinary and blood cadmium levels can be used as  

markers of cadmium exposure and cadmium body burden (Alfvén et al., 2002).  

Lead exposure decreases bone mineral density (BMD) which can cause 

osteoporosis (Campbell et al., 2004). High exposure to lead is associated with lower 

BMD and bone mass in children. Campbell and collagenous clarified how lead exposure 

targeted bone growth plates in children and inhibited parathyroid hormone related peptide 

(PTH rp) (Campbell et al., 2004). Another study recorded lower bone density in rats after 

exposure to lead for a long period of time (Puzas et al., 2004). Lead exposure inhibits 

osteoblast function (Chang et al., 1996; Puzas et al., 2004).  

Zinc is another trace metal which was considered in this study. Zinc has important 

function in bone formation, turnover, and metabolism (Bekheirnia et al., 2004; OSHA, 

2012). Most previous studies investigated zinc deficiency and bone growth. This study 

aimed to measure zinc concentrations in soil as an environmental source and bone 

microarchitecture of Peromyscus leucopus as a small mammal biomonitor species. Zinc 

as a cofactor plays essential roles in other tissue and enzyme functions that are important 

for bone mineralization and development such as alkaline phosphate and collagenase 

(Bekheirnia et al., 2004)       
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The objectives of the current study were 1- To determine the heavy metals 

concentrations (Cd, Pb, and Zn) in soil samples and kidney specimens of Peromyscus 

leucopus collected from TCSFS, BC and reference sites. 2- To determine the correlation 

between bone microarchitecture of L4 and heavy metals concentrations of kidney 

specimens of p. leucopus collected from TCSFS, BC and reference sites. 

Material and methods 

Study site 

Soil samples were collected from the beaver Creek of the Tar Creek Superfund 

site (TCSFS, BC) and  two reference sites, Sequoyah National Wildlife Refuge (SNWR) 

and Oologah Wildlife Management Area (OWMA) following the procedure that is 

described by USEPA (United States Environmental Protection Agency USEPA, 2005). A 

random design was used to collect soil samples in each site separately. Position of 

collection sites was detected with the help of Eterx Vista CX Garmin and a Google Earth 

program using a personal i-phone to identify the directions on Google Maps. Samples 

were collected to a depth of 18-20 cm from each position with a metal scoop which was 

rinsed with 10% HCl acid (Castaldi, Santona, & Melis, 2005), then sealed in plastic bags. 

In the laboratory, soil samples were dried in polypropylene plates at room temperature for 

two weeks. Dried soil samples were sieved twice using first a 1 mm and then a 250 µm 

sieve (Fisher Scientific Company, Pittsburgh, Pennsylvania). Samples were stored in 

acid-washed glass bottles.  
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Laboratory metal analysis 

Soil digestion 

   Soil samples were digested using a microwave digestion protocol (Milestone, 

Inc, Shelton, Connecticut) specified by USEPA Method Number 5031 A (Kingston, 

Walter, Chalk, Lorentzen, & Link, 1997; United State Environmental Protection Agency 

USEPA, 1986). All soil samples were weighed separately in polypropylene plates. 

Microwave vessel No.1 with a laboratory control sample was used as a standard for probe 

detection and drawing a standard curve. Subsequent soil samples were digested in vessels 

No. 2-8. Soil samples of 0.5 g were used and 10 ml of concentrated (99.999%) HNO3 

were added to the soil sample in each vessel. Samples were heated for 50 minutes to 100° 

C Vessels were decanted into plastic tube and rinsed with double distilled water. Tubes 

were centrifuged at 1200 g for 10 minutes, and supernants decanted gently and diluted for 

mineral analysis by ICP-MS.  

Instrument calibration 

ICP-MS dilution standard 

Soil analysis 

         Pb, Cd, and Zn concentrations in soil and kidney specimens from both 

contaminated and uncontaminated sites were determined by ICP-MS according to 

USEPA method 6010 (United States Environmental Protection Agency USEPA, 1996). 

Terbium was used as internal standard.  
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Bone microarchitecture 

µCT analysis  

Eight skeletons of P. leucopus from each site were provided from the vertebrate 

collection from the Zoology Department at OSU. The lumbar 2, 3, 4, 5 vertebra section 

of each skeleton was excised and the L4 was scanned using a high resolution computed 

tomography system or micro-CT scanner (µCT 40, Scano Medical AG, Zurich, 

Switzerland). The lumbar 4 vertebra was detected in each skeleton sample and saved as a 

3-D image. The trabecular bone in the 3-D images of L4 was contoured in a 300-400 µCT 

slide image. L4 slices were contoured every 10 slices when the detection of spogiosa 

begins and ends from the growth plate (90-550). The threshold for evaluation was set as 

350 (gray scale, zero-1000) for all slides. The trabecular bone was contoured to measure 

trabecular thickness (mm), trabecular number (mm-1), and trabecular volume as a percent 

of bone volume fraction (bone volume/tissue volume) for individual lumbar vertebra. The 

3-D images of results were evaluated, and the data set was exported to evaluate and 

analyze the results.  

Statistical analyses 

This study examined soil samples collected from a contaminated site, TCSFS, BC 

and compared with reference sites (SNWR & OMWA) and Metal concentrations in 

kidney were correlated with bone parameters. Pearson’s Correlation Coefficients were 

determined for all samples taken together and by individual sites using PROC GLM, 

MEANSAND SMEANS with PROC CORR, SAS, V 9, 3. Values of P<0.05 were taken 

as significant.  
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Results 

Soil samples from contaminated site, at Tar Creek Superfund Site (TCSFS, BC), 

and two reference sites were compared. Mean concentrations of Zn, Cd, Pb mg/kg in soil 

samples are presented in Table 4.1. The results showed that zinc concentrations 

(mean±SE) in TCSFS (14083±1826) were higher (P<0.0001) than in the two reference 

sites (20±2, 53±5) respectively.  

Cadmium concentrations in soil samples in TCSFS and the two reference sites 

were sharply different. In TCSFS, as a contaminated site, higher significantly cadmium 

concentrations (48±04 mg/kg) were recorded than those at the two reference sites, (0.06 

±0.01, and 0.15 ±0.03 mg/kg). 

As expected, Pb concentrations in TCSFS soil samples (1132±278 mg/kg) were 

higher (P<0.0001) than in the two reference sites (2.3±0.33, 6.4±1.1 mg/kg). In summary, 

the analysis of variance showed that there were significant (P≤0.0001) differences 

between the TCSFS site and the two reference sites’ dependent variables (Cd, Pb, and 

Zn)  

Bone microarchitecture relation to heavy metals for combined sites 

Trabecular bone microarchitecture parameters for the lumbar vertebrae (L4) and 

kidney metal concentrations (Cd, Pb, and Zn) in Peromyscus leucopus were analyzed to 

detect correlations (n=24) (Table 4.2). Microcomputed tomography evaluation results of 

bone total volume ratio (BVTV) showed correlations with kidney Zn (r=0.53, ≤ 0.05). 

Also, kidney lead concentration and bone connectivity density were correlated (r=0.46, P 

≤ 0.05) showing that lead affect bone parameters.  
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Bone microarchitecture relation to heavy metals by individual sites 

Correlation between bone parameters and kidney mineral concentrations by 

individual site also were examined and Pearson’s correlation coeffecients are presented in 

(Tables 4.3-4.5). In TCSFS (Table 4.3), cadmium concentrations were negatively 

correlated with trabecular bone number (r=-0.67, P ≤ 0.05), and Pb concentration was 

positively correlated with trabecular bone separation (r=0.72, P ≤ 0.05).  

The results showed no correlation between bone parameters and mineral 

concentrations. However, the results showed correlation between minerals. Cd and Zn 

(0.63, P≤ 0.05) and Zn and Pb (0.98, P≤ 0.0005) were correlated at OWMA (Table 4.4). 

The data from SNWR for L4 vertebra parameters and mineral concentration showed no 

significant correlations. The results analysis by site showed correlation between Pb and 

Zn (0.67, p≤ 0.05) at SNWR (Table 4.5).      

Discussion 

Environmental toxicology field studies showed several impacts and physiological 

alterations due to their contact with the contaminants. The present study used specimens 

collected from the TCSFS, BC contaminated area and two reference sites (OWMA & 

SNWR). As expected, the concentrations of heavy metals (Cd, Pb, and Zn) in soil at 

TCSFS, BC were higher than at the reference sites. This study also analyzed mineral 

concentrations (Cd, Pb, and Zn) of kidney and the correlations between metal 

concentrations and biomarkers such as bone parameters in the biomonitor species 

Peromyscus leucopus.  
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Several studies have determined that TCSFS is a highly contaminated site with 

Cd, Pb, and Zn. Mineral analysis of soil sample results showed the same findings of 

heavy metal contamination at TCSFS compared to reference sites (OWMA & SNWR) as 

other researchers. Moeller (2004) recorded the elevation of cadmium, lead and zinc in 

soil sediments at Beaver Creek and Douthat Settling pond at TCSFS. Lead concentrations 

were 440-540 mg/kg and cadmium concentrations were 20-56 mg/kg while zinc 

concentrations were 3000-9300 mg/kg. The Oklahoma Department of Environmental 

Quality (ODEQ) and USEPA recorded that TCSFS is the most challenging site in 

Oklahoma because of the extensive heavy metals contamination at that site (Hughes, 

2014; United States Environmental Protection Agency USEPA, 2005).  

 Large amounts of chat at TCSFS and extensive amounts of Cd, Pb, and Zn from  

mining and acid water were reported from the 1900’s through the 1960’s (Oklahoma 

Department of Environmental Quality, 2003). Heavy metals Cd, Pb, and Zn in tailings 

and yard soil at Tar Creek National Priorities list Superfund site in Oklahoma were 

analyzed in order to reduce metal and restore vegetation in this area (Brown, Compton, & 

Basta, 2007). Brown et al. (2007) recorded that Pb concentration in the tailing materials 

was higher (4003±2654 mg/kg) than yard soil (623±21 mg/kg). The total Cd 

concentration in yard soil was not significantly high (25.5±5.75 mg/kg) compared to 

tailing (28.7± 12.6 mg/kg). Also, they found no significant differences between Zn 

concentration in tailings (6830±3720 mg/kg) and yard soil (5308±1070 mg/kg). Schaider, 

Senn, Brabander, McCarthy, and Shine (2007) documented Cd, Pb, and Zn availability 

and bioaccessability in mine waste at TCSFS to determine heavy metals exposure, 
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transport, and bioavailability. The results showed high concentration of Cd (42±10 

mg/kg), Pb (650±360 mg/kg), and Zn (9100±2500 mg/kg). 

Soil as a large natural source can contain any contaminant in the environment. 

Soil samples are used to analyze metal concentrations in TCSFS and other reference sites. 

The use of soil in the current study is to determine the presence of environmental 

contaminants in biological source and to examine the alteration in physiological 

parameters of P. leucopus as a biomonitoring species.   

The present study observed high concentrations of heavy metals in soil samples 

that were collected from TCSFS. The lumbar vertebra L4 of P. leucopus evaluated by µ-

CT revealed some correlations between bone parameters and mineral concentrations in 

kidney specimens. The lack of significant differences could have resulted from a limited 

sample size (n=8 from each site). Correlations between bone microarchitecture variables 

appeared to be higher in TCSFS, BC samples than reference sites. 

 This study used adult mice, which are more exposed to the contaminants due to 

their age. We expect to observe variations in bone parameters, which may result from 

their habitat, environmental contaminants and variable ages. Previous studies have 

documented major effects on bone density and osteoporosis effects that resulted from 

cadmium and lead exposure in human (Puzas et al., 2004; Youness et al., 2012).  

  Lavery et al. (2009) investigated heavy metal effects on bone density, other bone 

parameters, renal damage, and metallothionein (MT) concentrations of South Australian 

bottlenose dolphins (Tursiops aduncus). The results showed Cd, Zn, and Cu in Tursiops 
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aduncus liver as well as renal damage. Bone parameters of two individuals of Tursiops 

aduncus showed dysfunctions, renal damage, and high levels of MT (Lavery et al., 2009). 

Bone is one of the most commonly targeted tissues by lead (Pounds et al., 1991). 

Lead toxicity effects on bone cellular levels cause alterations at the cellular level. These 

effects include changes in circulating hormone 1, 25-dihydroxyvitamin D3 that regulates 

bone functions (Pounds et al., 1991; Puzas et al., 2004). Significant heavy metal 

concentrations (Cd, Cu, Ni, Pb, Zn, and Fe) were observed in femoral bone of bank voles 

(Myodes glarelus) and voles (Microtus arvallis) from a polluted area in Slovakia 

(Martiniaková, Omelka, Jancova, Stawarz, & Formicki, 2011). The results showed 

significant correlation between Cd and Ni (r=0.52), a strong relation between Pb and 

bone weight (r=0.53), and significant relation between Fe and osteons’ vascular canal 

size (r=0.55). Martiniaková et al. (2011) concluded that heavy metal accumulation 

increased in femora bone of Myodes glarelus and Microtus arvallis at the Kolíňany 

polluted site in Slovakia. Also, Martiniaková, Omelka, Jancova, Stawarz, and Formicki 

(2010) recorded significant heavy metals concentrations in Apodemus flavicollis and 

Apodemus sylvaticus at another polluted site in Slovakia. Although slight heavy metal 

accumulations were recorded in femora, the study observed no changes in femora’s bone 

weight, and the length of both species.   

Exposure to CdCl2 may cause renal failure through renal proximal tubules such as 

mitochondrial and 1, 25 (OH)2 D3 biosynthesis (Youness et al., 2012). Bone resorption 

and negative health effects can increase in women after middle age due to exposure to 

low levels of cadmium in the diet (Åkesson et al., 2006). According to the a study of 

women in southeast China in an area heavily polluted by cadmium, cadmium affected 
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bone formation and turnover were affected through indirect effects on vitamin D3 

metabolism (H. Wang et al., 2003). Bone mineral density and other bone parameter 

changes can be influenced by age. Legrand et al. (2000) recorded several vertebra 

fractures in a male patient of 52 years of age with lumbar osteopenia. These findings are 

evaluated through X-ray absorptiometry and bone microarchitecture changes of L2 and L4 

trabecular bone. Bone resorption is associated with the inhibition of osteoblast function, 

and the studies reported this inhibition associated with the lead effects on cellular 

functions and regulation such as 1, 25–dihydroxyvitamin D3 (Pounds et al., 1991). Heavy 

metal toxicity reduces the function of micro and macro nutrients such as Zn, phosphate, 

and calcium which are the main components for bone strength and density. 
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Table 4.1: Zinc, cadmium and lead concentrations (mean±SE) of soil samples collected  

from Tar Creek Superfund site (Beaver Creek, BC), Oologah Wildlife Management Area 

(OWMA), and Sequoyah National Wildlife Refuge (SNWR). 

 

 

Mineral             n             SNWR                          OWMA                             BC      

 /Site                       

                                        

 

Zn (mg/kg)    16              20.0±1.9b                         52.6±5.0 b                 14083.9±1825.8a    

             

 

Cd(mg/kg)     16             0.06±0.01 b                     0.15 ±0.03 b                       48.04±3.98 a     

 

 

Pb(mg/kg)     16             2.3 ±0.3 b                        6.4±1.1 b                        1132 ±278 a 

                                                                               

 

Means in a row not sharing the same superscript are significantly different from each 

other (P<0.0001).  
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Table 4. 2: Pearson’s Correlation coefficents for trabecular bone microarchitecture 

parameters of L4 and kidney metal concentrations from Peromyscus leucopus collected at 

Tar Creek Superfund site (Beaver Creek, BC), Oologah Wildlife Management Area 

(OWMA), and Sequoyah National Wildlife Refuge (SNWR).  

 

Variable    1               2                 3              4                5              6            7           8 

1)BVTV     _              _               _               _               _              _            _            _ 

 

 

2)ConnD   0.49 *        _              _               _               _              _            _            _ 

 

 

3)TbN      0.67***  0.88***       _               _               _              _            _            _ 

 

 

4)TbTh    0.37         -0.41           -0.29          _              _             _             _             _ 

 

 

5)TbSp   -0.66***   -0.77***    -0.96***    0.25          _              _              _              _ 

  

 

6)Kid-Cd     -0.30        -0.02          -0.30        -0.16         0.39       _              _              _ 

     

 

7)Kid-Pb       0.12        0.46*         0.35          -0.14        -0.29        0.29       _              _ 

 

 

8)Kid-Zn     0.53**     - 0.05          0.04         -0.30         -0.14        -0.05     0.17         _ 

    P≤0.05*           P≤0.005**                            P≤0.0005*** 

 

Abbreviations:  BVTV=Bone Volume/Total Volume (bone volume fraction); 

ConnD=Connectivity  density; TbTh= Trabecular thickness; TbSp= Trabecular 

separation; and TbN= Trabecular number.    
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Table 4. 3: Pearson’s correlation coefficents for trabecular bone microarchitecture 

parameters of L4 and kidney metal concentrations from Peromyscus leucopus collected at 

Tar Creek Superfund Site (TCSFS) Beaver Creek. (n=8). 

Variables      1              2              3                4              5              6              7               8 

1)BVTV      _              _              _                _              _               _             _             _ 

 

 

2)ConnD   0.81*        _              _                _               _              _             _              _ 

 

 

3)TbN       0.87**    0.95***     _               _                 _              _            _               _ 

 

 

4)TbTh     0.19          -0.31        -0.28         _                _              _            _               _ 

 

 

5)TbSp     -0.82*      -0.89**   -0.98***   0.31           _                _             _              _ 

 

 

6)Kid-Cd   -0.49        -0.52       -0.67*      0.21          0.72*        _                 _             _  

 

 

7)Kid-Pb    0.58         0.21         0.41        0.46          -0.51          -0.43            _            _ 

 

 

8)Kid-Zn   -0.24       -0.21          0.01       -0.47         -0.14          -0.13            0.22        _ 

 

P≤0.05*           P≤0.005**                            P≤0.0005*** 

 

Abbreviations:  BVTV=Bone Volume/Total Volume (bone volume fraction); 

ConnD=Connectivity  density; TbTh= Trabecular thickness; TbSp= Trabecular 

separation; and TbN= Trabecular number.    
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Table 4.4: Pearson’s correlation coefficents for trabecular bone microarchitecture 

parameters of L4 and kidney metal concentrations from Peromyscus leucopus collected at 

collected from Oologah Wildlife Management Area (OWMA), (n=8). 

 

Variable     1             2              3              4              5             6               7             8 

1)BVTV    _             _              _               _              _              _              _              _ 

 

 

2)ConnD   -0.02      _               _              _               _             _              _              _ 

     

 

3)TbN        0.18     0.75*          _              _              _             _             _                _ 

 

 

4)TbTh       0.50     -0.78*      -0.67*        _              _             _            _                 _                                        

 

 

5)TbSp     -0.07      -0.62       -0.97***     0.70*       _             _              _                   _ 

 

 

6)Kid-Cd    0.25       -0.009      0.49          -0.21        -0.63       _             _                 _ 

  

 

7)Kid-Pb    -0.19      0.02         0.20          -0.16        -0.26       0.22          _                  _ 

 

 

8)Kid-Zn   -0.19       0.03         0.29           -0.25      -0.39         0.63*    0.98***        _ 

        

   P≤0.05*                  P≤0.005**                          P≤0.0005*** 

 

 

Abbreviations:  BVTV=Bone Volume/Total Volume (bone volume fraction); 

ConnD=Connectivity  density; TbTh= Trabecular thickness; TbSp= Trabecular 

separation; and TbN= Trabecular number.    
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Table 4. 5: Pearson’s correlation coefficents for trabecular bone microarchitecture 

parameters of L4 and kidney metal concentrations from Peromyscus leucopus collected at 

Sequoyah National Wildlife Refuge (SNWR) , (n=8). 

 

Variables       1               2                 3              4             5              6            7            8 

 

1)BVTV       _               _                _                _            _               _             _            _ 

 

 

2)ConnD     0.48            _                _               _            _               _             _           _ 

     

 

 

3)TbN         0.62        0.91***          _                _            _             _             _            _ 

 

 

 

4)TbTh       0.67*        -0.14             0.06            _             _           _              _             _ 

 

 

5)TbSp       -0.58       -0.92***            -0.98***    -0.04       _            _             _             _ 

 

 

6)Kid-Cd    0.10         -0.14             -0.06        0.27       0.05       _              _               _ 

  

 

7)Kid-Pb    -0.19        0.30              0.41          -0.34      -0.41     -0.0002      _              _     

  

 

8)Kid-Zn    -0.17        0.02              0.12           -0.46      -0.21       0.07       0.67*         _ 

 

P≤0.05*                P≤0.005**                          P≤0.0005*** 

 

 

Abbreviations:  BVTV=Bone Volume/Total Volume (bone volume fraction); 

ConnD=Connectivity  density; TbTh= Trabecular thickness; TbSp= Trabecular 

separation; and TbN= Trabecular number. 



 

63 
 

CHAPTER V 

 

 

 KIDNEY CONCENTRATIONS OF LEAD, ZINC AND CADMIUM WERE NOT 

CORRELATED WITH METALLOTHIONEIN-1 IN PEROMYSCUS LEUCOPUS 

FROM TAR CREEK SUPERFUND SITE  

Introduction  

Heavy metals are toxic ions that affect human organ functions such as liver and 

kidney functions (Shore & Rattner, 2001). With chronic exposure, lead and cadmium can 

accumulate in kidneys and cause renal dysfunction (Chang et al., 1996). When lead and 

cadmium accumulate in organs in vivo, they induce detoxification functions. Cadmium 

damages kidneys and reduces the reabsorption function in the proximal tubules (Damek-

Poprawa & Sawicka-Kapusta, 2003).  

Also, cadmium disrupts calcium metabolism which causes osteomalacia (Kido et 

al., 1993). Unbound cadmium is more toxic than bound cadmium (Chang et al., 1996). 

Cadmium has high binding capacity with metallothionein protein (Sonne et al., 2009).  

Lead ions accumulate primarily in kidneys and affect function of other metals 

such as zinc and iron (Damek-Poprawa & Sawicka-Kapusta, 2003). Previous studies 

defined heavy metals toxicity based on binding affinity to essential protein groups such 
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as amino and sulfhydryl groups (Durnam & Palmiter, 1981; Ishida, Stupp, Turcios-Ruiz, 

Williams, & Espinoza, 2012) 

Protein synthesis is one of the main functions used as a biomarker for heavy 

metals exposure, and metallothionein (MT) is one of the most common biological 

detoxification biomarkers. Metallothionein is measured in biomonitor mammals as a 

metal-binding protein (Fritsch et al., 2010). 

MT is a cysteine-rich, low molecular weight protein that is important in 

physiological functions (Ishida et al., 2012). MT protein was discovered in 1957 by 

Margoshes and Valee in horse renal cortex (Margoshes & Vallee, 1957). MT has seven 

metal binding sites with the α-domain region binding to four metals and the β-domain 

binding to three metals. The α-domain contains 11-12 cysteines and the β-domain 

consists of 9 cysteine amino acids. MTs mainly localize in cell cytoplasm and organelles 

such as the nucleus and lysosomes of kidney cells (Sigel, Sigel, & Sigel, 2009). 

MT is classified based on different characteristics such as molecular weight, 

encoding gene, chromosomes, amino acid sequences, metal binding, and other functions 

among different animal species (Thirumoorthy et al., 2011). 

 Historically, the first classification of MT was done by Fowler, Hildebrand, 

Kojima, and Webb (1987) based on the MT primary structure. MT is classified into three 

classes. Class I is based on the MT proteinaceous characteristic in the cysteine location, 

which is highly conserved in mammals such as the horse. Studies showed that there are 

some differences in mollusca and crustaceans which belong to this class such as crabs 

and lobsters. Class II involves proteinaceous MT in animal groups that lack the similarity 
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with the mammalian group. Class III classification involves non-proteinaceous MTs such 

as plant-metal-binding peptides (Phylochelatins).  

Another classification of MT isoforms classified MT into major and minor 

groups. The major group includes MT-1 and MT-2 which have identical structure and 

similar metal binding capacity for ions such as cadmium and zinc, while the minor group 

includes MT-3 and MT-4 which involve specific functions regarding cell type 

(Thirumoorthy et al., 2011). For example MT-3 is classified as unique in terms of its 

function in nerve cells as a Growth Inhibitory Factor. According to this classification, we 

can track the gene structures differentiation within MT isoforms.   

The final classification form discussed here is based on MT gene structure. 

Vertebrate MT is classified into 4 isoforms, which include MT1, MT2, MT3, and MT4 in 

addition to 13 MT-like proteins (Sigel et al., 2009). Human MT proteins are categorized 

based on gene structure such as MT1 isoform, which has many genes such as MT-1A, 

MT1B, MT1E, MT1F, MT1G, MT1H, and MT1X; MT2a and MT2b gene, MT3 gene 

and MT4 gene (Sigel et al., 2009; Sonne et al., 2009). Based on MT functions, both MT1 

and MT2 genes are expressed in liver and kidney tissues and are abundant in these tissues 

related to the main function for heavy metal detoxification (Sigel et al., 2009). 

       In addition to the liver and kidney, MT1 and MT2 genes are expressed in other 

soft tissues like testis, pancreas, and blood lymphocytes that involve detoxification 

functions. MT3, which exists in human and other vertebrates’ brain and nervous tissues, 

functions as an Inhibitory Growth Factor (IGF). MT4 is the most abundant protein in 
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keratinized epithelia tissues to maintain Cu homeostasis in these tissues (Sonne et al., 

2009).  

MT proteins have many crucial functions in human and other living organisms including 

heavy metals detoxification and protection against oxidative stress.  

 MT has a metal binding capacity in that MT has the ability to bind many metals 

including cadmium, zinc, mercury, copper, arsenic, silver, lead and other metals.  This 

binding mechanism occurs through a chronological, not a cooperative mechanism. The 

ability of MT to exchange other metals like Cd, Pb, and Cu with zinc explains how MT 

reduces metal toxicity (Davis & Cousins, 2000). Metals are absorbed through the 

respiratory and digestive system and are transported to other soft tissues via blood. MT 

has the ability to capture and bind with metals from the plasma (e.g. Cd ions), and due to 

the fact that the MT has low molecular weight, it is easily to be filtered by the kidney 

glomerular membrane; then Cd is released via urine and MT is reabsorbed by proximal 

renal tubules (Sigel et al., 2009). 

  Different studies show that MTs are able to repair Cd2+ poisoned proteins and 

keep homeostasis by metal ion exchange, and this function can protect protein from metal 

toxicity. Metal concentrations such as Cu, Cd, and Zn and MT-binding capacity in liver, 

kidney, and brain tissues were significantly different among three species of arctic seal 

(Sigel et al., 2009). MT metal-binding capacity was the highest in the kidneys compared 

to the liver and brain for all three species indicating variable sensitivity in these organs 

among these species (Sonne et al., 2009). MTs in marine animals respond differently to 

metals due to the role of metal biokinetics- MT binding, dissolving-uptake rate, diet, and 
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efflux rate (W.-X. Wang & Rainbow, 2010). The second main mechanism deals with 

homeostasis functions of MT including detoxification and metal storage mechanisms at 

the cellular level such as zinc metabolism and metal accumulation by MT protein. Cells 

produce apometalloproteins such as zinc finger proteins and enzymes which have metal 

binding capacity (Davis & Cousins, 2000).  

Moreover, MT protein has an antioxidant function related to its structure. MT has 

a protective function against oxidant and electrophile exposure that otherwise react with 

sulfahydryl groups in the MT molecule (Ruttkay-Nedecky et al., 2013). Cysteine residues 

in MTs can detect and capture oxidant radicals such as superoxide and hydroxyl radicals 

(Davis & Cousins, 2000). The cysteine will be oxidized to cystine, and metals that are 

bound to cysteine will be released to the cell cytoplasm. MT-Zn binding gives MT redox 

cycle properties, by which the cysteine can induce MT oxidoreductive properties 

(Ruttkay-Nedecky et al., 2013). Thornalley and Vašák (1985) observed that MT-1 in 

rabbit liver cells that contain Cd and Zn worked as a scavenger to reduce free hydroxyl 

(OH) and superoxide (O-2) radicals that are produced by the xanthine oxidase reaction. 

Moreover, MT structure has a cysteinyl thiolate group which gives MT protein the ability 

to scavenge hydroxyl radicals (Ruttkay-Nedecky et al., 2013).  

Another functional mechanism of MT discussed here has to do with its 

inducement by stresses like microbial infection and physical stress. In addition, MT 

works as an anti-tumor factor. Studies show that any problem of MT expression and 

function may lead to malignant transformation of cells and increase the expression of 

MTs in breast, colon, kidney, liver, skin (melanoma) and other cancers (Chang et al., 

1996). Davis and Cousins (2000) found low levels of MT expression in hepatocellular 



 

68 
 

carcinoma and liver adenocarcinoma. Conclusions derived from the findings of these 

studies highlight the fact that high MT expression explains MT resistance to 

chemotherapy drugs as anti-tumor factors. MT levels appear low in malignant tissue 

because of the influence of MT on zinc binding domain of the p53 tumor suppressor and 

because DNA methylation may suppress MT expression in tumors independently of MT 

factor (MTF) or other mediators of MT expression.  

MT gene structure includes three exons constituting, which includes, Cys-rich N-

terminal domain, the central spacer and the Cys-rich C-terminal domain. Number and 

position of Cys-residues inside the two terminal domains represent useful molecular 

regions to classify the MT genes into different types (Davis & Cousins, 2000). Therefore, 

the main differences in MT genetic organization between humans and other species 

include the presence of additional cysteine amino acids, number of exons and introns, 

DNA duplication, molecular weight and Cys residues. The promoter of specific 

sequences regulates MT expression, metal response elements (MRE), glucocorticoid 

response elements (GRE), GC-rich boxes, and basal level elements (BLE). These 

differences show MT diversity in taxonomic range which represents high-heterogeneity 

and less homology sequence; however, the homology is found within some taxonomic 

groups such as the differences among vertebrate species (Davis & Cousins, 2000). MT 

binds three Zn (II) ions in its ß- domain and four Zn ions in the ơ-domain. MT gene is 

regulated by metals through (MRE) sequence of DNA in the MT promoter. The 

Metallothionein Transcriptional Factor-1 (MTF-1) is a multiple finger protein which is 

stimulated by Zn ion presence (Davis & Cousins, 2000; Sonne et al., 2009).  
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Moreover, a number of studies show that Zn and Cd MT binding make MT more 

resistant to proteolysis (Davis & Cousins, 2000). MT synthesis is similar among species, 

but there are some differences in gene expression in tissues. For example, both MT1 and 

MT2 express in liver and kidney tissues and they are abundant in these tissues related to 

the main function for heavy metal detoxification (Sigel et al., 2009). MT proteins vary 

considerably among different species according to the cysteine residues, domains, and 

central structure (Tanguy, Mora & Moraga, 2001). The genomic differences between 

humans and other species result from the differences in gene organization (Sigel et al., 

2009). Some studies on the MT genes structure and functions compared results with 

previous studies and reported that cystein rich and metal binding make the conservation 

between all species with some differences (Sigel et al., 2009).   

Additionally, the variability among MTs function is based on the mechanism of 

the specific molecular structure and function of each one (Sigel et al., 2009; Sonne et al., 

2009). MT expression in response to metal exposure is regulated by the zinc finger 

transcription factor (MTF-1) that binds with MT MRE (Sonne et al., 2009). Metal 

exposure inhibits MRE and that disrupts MT transcription. However, MTF-1 can be 

activated by Zn ion and interact with other proteins that regulate MT transcription (Davis 

& Cousins, 2000). At the late G1 phase and early S Phase, MT expression is on the 

highest level and mRNAs for MT-1 and MT-2 genes remain stable by metal induction. 

However, MT gene transcription is inhibited by DNA methylation (Sonne et al., 2009).  

MT works as a reservoir for apometalloproteins that function as transcription 

factors. Acquired zinc exchanges faster to support zinc metabolism, storage and donation. 

This mechanism is supported by enzymatic activity like apo-carbonic anhydrase and apo-
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carboxypeptidase. Moreover, MT enhances metal exchange function by oxidized 

glutathione (GSSG) and 1:1 Zn-glutathione (GSH) complex. This mechanism enhances 

Zn transfer from MT to other apometalloproteins and this pathway implies MT induction 

and gene expression by metal oxidants and electrophiles and other cellular zinc sensitive 

processes, proliferations, and apoptosis events (Sonne et al., 2009). 

Beside metal exposure, MT transcription is induced by environmental oxidative 

stressors which modulate cellular signal transduction cascades (Sigel et al., 2009). Zinc 

activates and induces more MT expression to control oxidative stress. Anti-oxidant 

response elements (ARE) enhance MT expression in response to reactive oxygen species 

and they work as synergistic elements with (MRE). The elements are activated by signal 

transducers and activators of transcription proteins (STAT) by cytokine signaling (Davis 

& Cousins, 2000). 

Moreover, two GRE sequences 17 kb upstream in the 5′flanking region of mouse 

MT promoter regulate and induce MT expression in response to glucocorticoid hormones 

and cytokines through protein kinases in hepatocytes. MT promoter includes 1-2 

elements that start or enhance transcription rates like Sp1, AP-1, and AP-2. Cyclic-AMP 

regulation may be mediated through AP-2. Interleukins (IL)-1, cAMP and glucagon 

molecules increase MT mRNA levels and zinc metabolism in hepatocytes (Davis & 

Cousins, 2000).  

Material and methods 

Kidney sampling 

Frozen kidneys samples of Peromyscus leucopus species were provided from the 

vertebrate collection in the Zoology Department at OSU. Kidney samples were saved in a 
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liquid nitrogen tank before subsampling. The kidneys were subsampled into two parts: 

one part was cut in a petri dish on wet ice by stainless-steel scalpel to approximately one 

tenth of the whole tissue and saved in labeled micro tubes for metallothionein-1 analysis 

and then returned back to the freezer at -80°C without thawing. The second part of the 

kidney was stored in microtubes and kept in the refrigerator at -4°C for metal analysis. 

 Tissues digestion 

Microwave acid digestion 

Kidney samples were weighed using a digital balance. Small microwave tubes 

were used for kidney sample digestion (Milestone, Inc, Shelton, Connecticut). Each 

sample was weighed; 1 ml of concentrated (99.99) HNO3 was put in the tube and then 

0.15 ml of H2O2 was added to the same tube. The program was set for the USEPA 

Method Number 5031 A. The microwave operation took 50 minutes to finish digestion at 

a temperature of 100° C. One ml of acid solution was transferred into labeled microtubes 

for metal analysis.     

Metal analysis 

ICP-MS   

Pb, Cd, and Zn concentrations in kidney specimens from both contaminated and 

uncontaminated sites were determined by ICP-MS according to USEPA method 6010 

(United States Environmental Protection Agency USEPA, 1996). Terbium was used as 

internal standard.  
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Metallothionein-1 analysis 

Tissue homogenization  

Peromyscus leucopus kidney samples were homogenized using Invitrogen MT 

protocols (Uscn, Life Science Inc., Houston, Texas, 2015). Each sample was crushed in 

liquid nitrogen and transferred into a pre-chilled 5 ml culture tube. Ten µl of protease 

inhibitor (Sigma Aldrich, St. Louis, Missouri, Cat. No 78441B) was mixed with 1 ml 

phosphate buffered saline (PBS) and cooled using wet ice. Tissues were homogenized at 

low speed for ~20 seconds, and transferred into micro centrifuge tubes and centrifuged at 

14,000 xg at 4°C for 15 min. The supernatants were removed and four 80 µl aliquots were 

stored at -80°C for total protein analysis and for metallothionein-1 analysis using ELISA 

procedures.   

Total protein analysis 

Lowry method    

 Total protein concentrations in kidney specimens of Peromyscus leucopus were 

determined using a commercial modified Lowry protein assay kit (Thermo Scientific, 

No., 23240, Rockford, Illinois) (Lowry et al., 1951). Samples were diluted using 

Phosphate Buffered Saline (PBS). The concentrations (µg/ml) of diluted specimens were 

detected at OD 750 nm and were analyzed on Prism program, 6 (GraphPad Software) 

against a bovine serum albumin standard curve.     

Enzyme-linked immunosorbent assay (ELISA)   

ELISA was used to determine metallothionien-1 (MT-1) concentrations in kidney 

samples of Peromyscus leucopus. A commercial mouse (Mus musculus) MT-1 kit was 

used following the manufacturers, protocol (Uscn Life Science Inc, Huston, Texas). 
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Samples were diluted in PBS as appropriate for the standard curve dilutions and MT-1 

concentrations were measured with a microplate reader at 450 nm. MT-1 concentrations 

were expressed as microgram per mg of protein. The plot was based on the absorbance 

(nm) of the standards against the standard concentrations (pg/ml).     

Results 

Metal concentrations in kidney 

Kidney specimens of Peromyscus leucopus were provided from the OSU Zoology 

Vertebrate Collection. The samples were collected from a contaminated site, Beaver 

Creek (BC) at Tar Creek Superfund Site (TCSFS) (n=18), and two reference sites 

Oologah Wildlife Management Area (OWMA) (n=15), and Sequoyah National Wildlife 

Refuge (SNWR) (n=16). Metal concentrations (Zn, Cd, and Pb) in kidney samples 

(mg/gm) are presented in (mean±SE) Table (5.1). The zinc concentrations in kidney 

samples (mg/gm) were compared between contaminated TCSFS (BC) and reference sites 

(OWMA & SNWR), and the results showed no significant differences. 

Cadmium concentrations (mg/gm) in kidney samples in TCSFS and reference 

sites were significantly different. In TCSFS as a contaminated site, higher cadmium 

concentrations (4.62±0.71 mg/gm) were recorded than at the two reference sites 

(P≤0.0005), and the results showed no differences between the two reference sites, 

SNWR (0.53 ±0.06) and OWMA (0.53 ±0.10) mg/gm. As expected, Pb concentrations in 

kidney samples of TCSFS samples (0.57±0.10 mg/gm) were higher than in the two 

reference sites, SNWR and OWMA (0.05±0.01 and 0.04±0.01 mg/gm) respectively.  
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The body weight of P. leucopus was variable in this study. However, there were no 

statistically differences in body weight between contaminated and uncontaminated sites 

(Table 5.4).   

The statistical analysis (one way analysis of variance followed by mean 

separation test) showed that there are significant differences between TCSFS site and the 

reference sites’ dependent variables (Cd and Pb) mean) (P≤0.0005). Means were 

significantly different between contaminated site and uncontaminated sites (Table 5.1). 

Metallothionein-1 concentrations in kidney 

Kidney specimens of Peromyscus leucopus were used to determine total protein 

concentration. The results did not show a statistically significant correlation between 

heavy metal concentrations and metallothionein-1 in kidney specimens of P. leucopus 

from TCSFS or from reference sites. There were no significant differences in 

metallothionein-1 concentrations (µg/mg) at TCSFS and reference sites SNWR and 

OWMA as shown in Table 5.2. Variability in dose and length of exposure to the heavy 

metal in those three sites may be a reason that the metallothionein-1 concentrations did 

not show significant differences in this species of wild small mammals. MT-1 

concentration (µg/mg protein) in P. leucopus specimens from TCSFS and SNWR and 

OWMA showed high variability and this variability was analyzed in mineral 

concentration (Cd, Pb, and Zn) of these three sites. The statistical analysis showed no 

significant differences between MT-1 µg/mg protein at the contaminated site (TCSFS) 

(0.15±0.07) and reference sites (SNWR & OMWA) (0.08±0.02& 0.22±0.06) 

respectively. The results also showed no statistically significant correlation between 

kidney mineral concentrations and metallothionein concentrations (Table5.3). 
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Discussion 

Heavy metals (Cd, Pb, and Zn) accumulate in vital organs such as the liver and 

kidneys. Peromyscus leucopus is one of the biomonitor species that is used by 

environmental, physiological, and ecotoxicological studies to predict and assess the 

effects and alterations on human health. This study analyzed the heavy metals 

concentrations from frozen kidney specimens of P. leucopus that were collected from 

contaminated site and compared with reference sites. 

  Heavy metal concentration findings in this study were in agreement with previous 

studies. In Australia, an area highly contaminated with Cd, Cu, Hg, Zn, Pb, and Se caused 

severe problems of metal toxicity. The evidence showed renal damage in Australian 

bottlenose dolphins (Tursiops aduncus) that were collected from the contaminated site in 

south Australia (Lavery et al., 2009). Fritsch et al. (2010) studied the effects of heavy 

metals and accumulation in small wild mammals such as the wood mouse (Apodemus 

sylvacticus), bank vole (Myodes glareolus), common shrew (Sorex araneus), pygmy 

shrew (Sorex minutus), common pine vole (Microtus subterraneus), greater white–

toothed shrew (Crocidura russula), and field vole (Microtus agrestis) in North France 

surrounding the Metaleurop-Nord smelter, a contaminated area with Cd, Pb, and Zn. 

They reported a significant relationship between the presence of heavy metals in soil and 

the levels of heavy metals in small mammals’ liver and kidney in different species. 

Heavy metal accumulations were recorded in shrews more than the rodent species. 

Oxidative stress status, clinical markers, and blood lead, and zinc levels were 

examined in Zn-Pb mine workers and in a healthy control group (Malekirad et al., 2010). 
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Pb blood levels recorded in the worker group were within normal levels (0.9-3µg/dl). 

However, the Zn-Pb mine workers’ results showed elevation in blood Zn and Pb, activity 

of superoxide dismutase, myeloperoxidase, glutathione and reductase as well as lipid 

peroxidation comparing with the control group. Severe clinical problems were reported in 

the worker group such as memory impairment, insomnia, headache, fatigue, deafness, 

agitation, tremors, stress, and reduced concentration. However, the results showed lower 

DNA damage in Zn-Pb workers than in the control group. Malekirad et al. (2010) 

concluded that the exposure to the combination of Pb and Zn resulted in decreasing Pb 

toxicity in Zn-Pb workers. Some parameters of Peromyscus leucopus like tooth 

abnormalities, genetic structure, and ano-genital distance have already been examined for 

these animals (Hays, 2010), and another study investigated the population dynamics and 

demographics (Phelps & McBee, 2010).    

Small mammals are close to the environmental contaminants which may be 

related to their vegetation and habitat. Read and Martin (1993) found high heavy metal 

accumulation in shrews, low Cd accumulation in pygmy shrews (Sorex minutus), and 

high Cd accumulation in the common shrew (Sorex araneus). Their study analyzed the 

environmental conditions with physiological evidence and biomarker differences that 

were correlated to contaminant effects and bioaccessibility such as consumption, 

accumulation, and excretion.  

Metal levels such as Cu, Cd, and Zn were increased in liver of striped red mullet 

(Mullus surmuletus) and golden grey mullet (Liza aurata) that collected from Kastela 

Bay, Middle Damatia (Filipović & Raspor, 2003). The elevation of liver metal levels was 

significantly correlated with age and weight parameters in these species.     
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Physiological alterations and responses were recorded in the elevation of MT 

levels in small mammals. Although MT analysis has been conducted on numerous 

vertebrate and invertebrate aquatic species, there has been little work done on 

metallothioneins in small mammals from contaminated sites in North America.  

Exceptions are the Old World species, the greater white-toothed shrew 

(Crocidura russula), the bank vole (Myodes glareolus), and the wood mouse (Apodemus 

sylvaticus) (Fritsch et al., 2010). A. sylvaticus shows the greatest ecological similarity to 

P. leucopus and provides an important point of comparison with this study. Fritsch et al. 

(2010) found that metallothionein levels increased with increasing soil metal levels in the 

liver and decreased in the kidneys in M. glareolus, S. araneus, and S. minutus. Cadmium 

absorption and MT induction were increased in kidneys, liver and duodenum of 

laboratory mice during lactation (Solaiman, Jonah, Miyazaki, Ho, & Bhattacharyya, 

2001). Comparing with the control group, protein synthesis in the liver of mice treated in 

vitro increased after NiCl2 injection for 14 days, however, a Pb (CHCOO)2 injection 

group did not show any change in protein synthesis (Šveikauskaitė et al., 2014). This 

shows that the increase in protein concentrations in NiCl2 may relate to the elevation of 

metallothionein and other protein concentrations; the Pb (CHCOO)2 injection group may 

be adapted to the Pb (CHCOO)2 toxicity (Šveikauskaitė et al., 2014). 

Metallothionein protein has been analyzed in aquatic wild environment. 

Metallothionein and metal concentrations were analyzed in the liver, brain, and kidneys 

of wild fish species, striped red mullet (Mullus surmuletus) and golden grey mullet (Liza 

aurata) (Filipović & Raspor, 2003). The results in this study showed statistical 

differences in metallothionein concentrations in liver and kidney tissues, and the 
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metallothionein concentration results were higher in M. surmuletus kidney samples 

(31.1±8.0µg mg-1 protein). Filipović and Raspor (2003) concluded that there was a 

significant positive correlation between metal concentrations in M. surmuletus liver and 

metallothionein concentrations such as Zn value, and the liver results showed 69% 

correlation between Cu value and metallothionein induction. Their study recorded no 

statistically significant correlation between metal concentrations and metallothionein in 

brain and kidney samples of M. surmuletus and Liza aurata species. Liver has the main 

detoxification function more than other organs to produce metallothionein and reduce 

metal toxic effects (Filipović & Raspor, 2003; Olsson, Gerpe, & Kling, 1999).  

Alterations in populations’ genetic structure, mutation, or  reduction in fecundity 

may occur due to contaminant exposure (Bickham, Sandhu, Herbert, & Chikhi). Hays 

(2010) did not record an increase in the frequency of structure chromosomal aberrations, 

but the study recorded alterations in genetic structure in the P. leucopus population from 

TCSFS. 

 The present study did not record statistical differences in kidney metallothionein-

1 concentrations but did record some variations. In addition to the wild conditions and 

physical stresses, these differences may relate to animal, age, weight, and sex. It may be 

better to analyze metallothionein concentrations in both liver and kidney tissues because 

liver is the first organ to detoxify heavy metals.    

Metallothionein-1 and heavy metal concentrations did not show a significant 

correlation, and we assumed that the elevation in Zn concentration exposure decreased 

Cd and Pb toxicity and MT-1 induction at TCSFS.  
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Table 5.1: Kidney Zinc, cadmium and lead concentrations (mean±SE) from 

Peromyscus leucopus collected at Tar Creek Superfund site (Beaver Creek, BC), Oologah 

Wildlife Management Area (OWMA), and Sequoyah National Wildlife Refuge (SNWR). 

 

Mineral        n               SNWR                           OWMA                                   BC   

 /Site                                                   
 

  

Zn (mg/g)    18             28.4±4.6 a                      18.5±3.8 a                               23.1±3.3 a                

 

 

Cd(mg/g)     15             0.53 ±0.06b                  0.53 ±0.08 b                             4.62±0.71 a     

 

 

Pb(mg/g)     16              0.05±0.01 b                0.04 ±0.01 b                               0.57±0.10 a 

   

Means in a row not sharing a superscript are significantly different from each other 

(P<0.0001). 
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Table 5.2: Metallothionein concentration’s (mean±SE) of kidney from Peromyscus 

leucopus collected from Tar Creek Superfund site (Beaver Creek, BC), Oologah Wildlife 

Management Area (OWMA), and Sequoyah National Wildlife Refuge (SNWR).  

MT-1(µg/mg protein)         n            Mean±SE             Minimum                Maximum 

 

  

Beaver Creek (BC)             14             0.15±0.07a             0.02                          0.1 

 

 

Oologah Wildlife  

Management Area             15            0.08±0.02a              0.00                         0.3 

(OWMA) 

 

 

 Sequoyah National            14             0.22±0.06a             0.04                        0.7 

Wildlife Refuge 

 (SNWR)                                                                          

   

 

Abbreviations: Mt-1 /(µg/mg protein)= metallothionein-1 per mg protein (µg/mg).  

 

Means in a row sharing the same superscript are not significantly different from each 

 other. 
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Table 5.3: Pearson’s correlation Coefficients between kidney metal concentrations (Cd, 

Pb, and Zn) and Metallothionein-1 (µg/mg) in Peromyscus leucopus collected at Tar 

Creek Superfund site (Beaver Creek, BC), Oologah Wildlife Management Area 

(OWMA), and Sequoyah National Wildlife Refuge (SNWR). 

TCSFS (BC), and reference sites (n=43-44).  

 

Variable                      1                       2                       3                         4               

 

1) Kid-Zn                   _                       _                        _                          _                             

      

 

2) Kid-Cd               -0.00                     _                        _                          _ 

  

 

3) Kid-Pb              -0.06                     0.59***                  _                       _ 

   

 

4) Mt-1            -0.09                     -0.11                   -0.04                  _           

(µg/mg) 

 P≤0.05*                  P≤0.005**                          P≤0.0005*** 

 

 

Abbreviation: Mt-1= metallothionein-1 per mg protein (µg/mg). Kid= kidney.  
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Table 5.4: Body weight (g) (mean±SE) of Peromyscus leucopus collected from Tar Creek 

Superfund site (Beaver Creek, BC), Oologah Wildlife Management Area (OWMA), 

and Sequoyah National Wildlife Refuge (SNWR).  

Weight/g                                n            Mean±SE             Minimum                Maximum 

 

  

Beaver Creek (BC)             17             25.6±0.8a             19.0                     31.0  

 

Oologah Wildlife  

Management Area              16            23.6±1.3a              16.0                      32.0 

(OWMA) 

 

 

 Sequoyah National            16             23.4±1.2a             15.0                      34.0 

 Wildlife Refuge 

 (SNWR)                                                                          

 

Means in a row sharing the same superscript are not significantly different from each 

other. 
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CHAPTER VI 

 

 

SUMMARY AND CONCLUSIONS 

 

TCSFS is a highly contaminated site with heavy metals (Cd, Pb, and Zn), and the 

species that have been used in this study is one of the most common species at the site. 

This study found higher metal concentration in soil samples from TCSFS compared with 

the two reference sites. However, the bone microarchitecture analyses of Peromyscus 

leucopus L4 vertebra of contaminated and uncontaminated sites did not show high 

correlation between bone parameters and metal concentration in the kidney. The 

elevation of Zn concentration and the combination of heavy metals exposure may 

decrease Cd and Pb toxicity. This study raises the possibility that this species P. leucopus 

adapted to the heavy metal exposure.  

The body weight of P. leucopus as a wild mammal was variable in this study. 

However, there were no statistically significant differences in body weight between 

contaminated site and uncontaminated sites. In addition, the time and dose of exposure 

are difficult to determine in this species as a field animal. This study has wide 

implications because responses to chronic exposure to heavy metals in Peromyscus 

leucopus may help predict impacts on the physiological processes of other exposed 
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species and human health. Heavy metal accumulations at TCSFS impact both 

human and wildlife species. The increase of Cd, Pb, and Zn concentrations in TCSFS soil 

samples were the main reason for the elevation of these metals in kidneys of small 

wildlife mammals based on their habitat and food sources.  

This study showed a correlation between metals exposure, accumulation, 

physiological alterations, and responses in small mammals. The analysis of heavy metal 

and metallothionein concentrations in the kidney of small mammal’s tissues may 

compromises the picture on environmental quality and physiological alteration. Bone 

microarchitecture evaluation and kidney mineral concentrations clarified the relationship 

between environmental chronic exposure and effects on small mammal species.  

The metallothionein concentration assessment could be a great indicator to the 

metal contamination in the environment (Atli & Canli, 2007). In the current study, the 

contaminated site (TCSFS) showed significant elevation in metal concentrations in soil 

samples, kidney specimens, and L4 trabecular bone separations of P. leucopus. These 

findings confirmed the relationship between the physiological functions and 

environmental conditions. The measurement of a specific biomarker is a very important 

approach to determine the specific endpoint of concern and to reach conclusions that help 

human health and environmental sustainability. 

The present study established the contaminants’ effects on small mammals in the 

wildlife. The results of this study were unbiased and there were no constraints or 

limitations on the small mammals as with lab conditions. However, due to the field 
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conditions, this study had several uncontrolled variables such as field contaminant 

uptake, dose and length of exposure to the heavy metals, and animal age. 

For future studies, analyzing the bone microarchitecture and the heavy metal 

exposure of wildlife small mammals, it could be better to conduct a laboratory study to 

analyze control of uncontaminated small mammals and treat different groups by different 

heavy metal combinations such as Zn, Cd and Pb to determine the effect of combination 

exposures. Future research on heavy metal effects on the physiological alterations and 

detoxification functions might be better conducted under combined lab and field 

conditions using different tissues such as blood plasma, brain and liver. It may be 

beneficial for future research in environmental physiology and ecotoxicology to add more 

information about the antioxidant and homeostasis cellular functions. Little research has 

been conducted concerning other metallothionein inductions and functions such as MT3 

and MT4; therefore, analyzing these MTs will be an important future project using P. 

leucopus and human samples. To the best of my knowledge, this is the first study to 

provide information regarding MT-1 concentration and bone microarchitecture evaluation 

in P. leucopus. 
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APPENDICES 

 

Table 1: Shows soil samples collecting directions on google map 

TCSFS=Tar Creek Super Fund Site =Beaver Creek (BC) 

OWMA= Oologah Wildlife Management Area 

SNWR=Sequoyah National Wildlife Refuge  

 

Sample  Site  Date  Map 

T1-1  TCSFS(BC) 11/21/2012 36° 55 ́ 52 ̋ N, 

T1-2 TCSFS(BC) 11/21/2012 94° 45 ́44 ̋W 

TT2-1 TCSFS(BC) 11/21/2012 36° 56 ́ 22 ̋ N, 

T2-2 TCSFS(BC) 11/21/2012 94° 45 ́37 ̋W 

T3-1 TCSFS(BC) 11/21/2012 36° 55 ́ 37 ̋ N, 

T3-2 TCSFS(BC) 11/21/2012 94° 45 ́41 ̋W 

T4-1 TCSFS(BC) 11/21/2012 36° 55 ́ 37 ̋ N, 

T4-2 TCSFS(BC) 11/21/2012 94° 45 ́41 ̋W 

T5-1 TCSFS(BC) 11/21/2012 36° 56 ́ 19 ̋ N, 

T5-2 TCSFS(BC) 11/21/2012 94° 45 ́34 ̋W 

T6-1 TCSFS(BC) 11/21/2012 36° 56 ́ 18 ̋ N, 

T6-2 TCSFS(BC) 11/21/2012 94° 45 ́34 ̋W 

T7-1 TCSFS(BC) 11/21/2012 36° 56 ́ 18 ̋ N, 

T7-2 TCSFS(BC) 11/21/2012 94° 45 ́34 ̋W 

T8-1  TCSFS(BC) 11/21/2012 No service  

T8-2 TCSFS(BC) 11/21/2012 No service  

O1-1 OWMA 11/21/2012 36° 41 ́ 25 ̋ N, 

O1-2 OWMA 11/21/2012 95° 37 ́50 ̋W 

O2-1 OWMA 11/21/2012 36° 41 ́ 25 ̋ N, 

O2-2 OWMA 11/21/2012 95° 37 ́56 ̋W 

O3-3 OWMA 11/21/2012 36° 41 ́ 27 ̋ N, 

O3-2 OWMA 11/21/2012 95° 37 ́44 ̋W 
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O4-1 OWMA 11/21/2012 36° 41 ́ 18 ̋ N, 

O4-2 OWMA 11/21/2012 95° 36 ́29 ̋W 

O5-1 OWMA 11/21/2012 36° 41 ́ 25 ̋ N, 

O5-2 OWMA 11/21/2012 95° 37 ́50 ̋W 

O6-1 OWMA 11/21/2012 36° 41 ́ 18 ̋ N, 

O6-2 OWMA 11/21/2012 95° 36 ́29 ̋W 

O7-1 OWMA 11/21/2012 36° 41 ́ 2 ̋ N, 

O7-2 OWMA 11/21/2012 95° 37 ́44 ̋W 

O8-1 OWMA 11/21/2012 36° 41 ́ 18 ̋ N, 

O8-2 OWMA 11/21/2012 95° 36 ́29 ̋W 

S1-1 SNWR 12/8/2012 35° 26. 089` N, 

S1-2 SNWR 12/8/2012 049° 58. 429` W 

S2-1 SNWR 12/8/2012 - 

S2-2 SNWR 12/8/2012 - 

S3-1 SNWR 12/8/2012 35° 26. 884` N, 

S3-2 SNWR 12/8/2012 49° 58. 450` W 

S4-1 SNWR 12/8/2012 35° 26. 909` N, 

S4-2 SNWR 12/8/2012 049° 58. 470` W 

S5-1 SNWR 12/8/2012 35° 26. 885` N, 

S5-2 SNWR 12/8/2012 49° 58. 460` W 

S6-1 SNWR 12/8/2012 35° 26. 889` N, 

S6-2 SNWR 12/8/2012 49° 58. 472` W 

S7-1 SNWR 12/8/2012 35° 26. 893` N, 

S7-2 SNWR 12/8/2012 49° 58. 475` W 

S8-1 SNWR 12/8/2012 35° 26. 890` N, 

S8-2 SNWR 12/8/2012 49° 58. 480` W 
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FIGURES 

 

 

 

 

 
 

 

 

Figure 1: Study sites were labeled on Google Earth, Oolaga wild life management area 

(OWLA), Sequoyah national wildlife refuge (SNWR) and contaminated site at TCSFS, 

Beaver creek (BC).
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Figure 2: Beaver Creek in Ottawa County, Oklahoma Trapping site of Peromyscus 

leoucopus and soil sampling site (Polluted site). Eight random soil samples were 

collected from 100 m2 (K. L. Phelps, 2006). 
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Figure 3: Oologah Wildlife Management Area in Nowata County, Oklahoma. Eight 

random soil samples were collected from 100 m2 (K. L. Phelps, 2006). 
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Figure 4: Sequoyah national wildlife refuge (SNWR), Oklahoma. Eight random soil 

samples were collected from 100 m2 
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