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Abstract: Thermoplastics (plastics) have revolutionized human life due to their low cost 

and ease of fabrication. A common and effective approach to mechanical enforcement of 

thermoplastics is inclusion of micro- or nanofillers of higher strength and elastic 

modulus. Conventionally, the fillers are dispersed by shear mixing in molten polymer, 

where viscosity of the mixture is dramatically increased due to large interface area. 

Accordingly, the dispersion is not efficient and filler content is typically limited to below 

5% by weight. The present thesis work develops a novel technique for dispersing 

nanofillers in a thermoplastic polymer where polycondensation and dispersion of the 

nanofillers occur simultaneously via dynamic emulsion polycondensation at ambient 

temperature. The composite is manufactured in the form of a uniform powder, which can 

be molded into desired shape by melting. 

The technique is demonstrated for silver nanowire - Nylon 66 nanocomposites. In this 

demonstration, silver nanowires are synthesized by polyol process. Polyvinylprrolidone 

(PVP) is used to functionalize the silver nanowires. Composites with silver weight 

fraction of 1.49%, 3.28%, 6.74% are prepared and characterized by SEM, TEM, UV-Vis, 

Raman, FTIR, DSC and nano-indentation. The silver nanowires are found to be 

monodispersed and hydrogen-bonded to the Nylon 66 matrix through PVP. Glass 

transition temperature of the composites decreases from 61 to 48 ℃ with silver weight 

fraction increasing from 0 to 6.47%. The decrease of the glass transition temperature is 

owed to the plasticizer effect as well as heterogenous nucleation effect of the nanowires 

for polymerization leading to shorter chain length. Finally, mechanical properties of the 

composites show insignificant variation with the filler content. This absence of the 

composite effect is explained by Halpin-Tsai model, where the filler enforcement and 

decrease in matrix modulus counterbalance. 
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CHAPTER 1 

Introduction 

Thermoplastics (plastics) have revolutionized human life due to their low cost and ease of 

fabrication [1]. A thermoplastic can be molten or softened at relatively low temperatures and 

subsequently shaped to any shape. The downfall of thermoplastics is their poorer mechanical 

strength and stiffness [2]. This shortcoming is traditionally addressed by two approaches. The 

first is the crosslinking of polymer chains. The second is the composite approach, which involves 

inclusion of micro- or nanofillers of higher strength and elastic modulus in the plastic matrix. The 

fillers can also impart additional enhanced attributes to the composite such as fire-retardant [3, 4], 

diffusion-barrier [5, 6], antibacterial [7], anti-static [8] and thermal/electrical conduction [8-10] 

characteristics. 

With the invention of nanostructured materials in recent years (e.g., carbon nanotubes, 

metal/ceramic nanowires, graphene), the size of fillers in thermoplastics has gradually 

transitioned from micron to nanometer scale [11]. In terms of mechanical properties, the major 

benefit gained at the nanoscale is higher interface area per volume that increases the total 

crosslinking between the filler and polymer matrix phases. Consequently, the shear stress at the 

interface can be reduced by orders of magnitude that prevents slip and allows better strain (i.e., 

also stress and load) transfer. Second, in brittle materials such as ceramics, mechanical failure 

(i.e., crack) may start from a single defect or stress concentration site and propagate over the 

whole body of the material. In nanocomposites, dividing the fillers to much smaller 
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volumes decreases the number of defect and stress concentrator sites per filler (i.e., 

nanoparticle) and increases its survival rate under extreme loading. The nanometer size of 

the fillers also account for novel chemical, optical and other physical properties [12-14]. 

A major challenge in the production of nanocomposites is uniform dispersion of the 

nanofillers without aggregation (i.e., monodispersion). In case of excessive aggregation, the 

aggregates behave as larger particles and the advantages of the nanoscale are lost. Further, weak 

bonding between the aggregated fillers results in poor mechanical properties. Conventionally, the 

fillers are dispersed by shear mixing in either molten polymer or polymer dissolved in a solvent. 

In both cases, the viscosity of the mixture is dramatically increased due to large interface area 

between the polymer and fillers. Therefore, efficient dispersion is disabled. Increasing the 

temperature of the polymer melt lowers viscosity, but it also increases the tendency of the 

polymer to oxidize. Similarly, the polymer concentration in the solvent could be diluted to retain 

lower viscosity, but this occurs at the expense of increased burden of evaporating the solvent after 

the mixing process. Additionally, many common polymers are soluble in carcinogenic solvents 

and some have limited solubility. Thus, efficient dispersion of the nanofillers in polymer melts 

and solutions has consequences. Accordingly, the filler content is typically limited to below 5% 

by weight [15]. 

The present thesis work has developed a different and novel technique for efficient and 

low-cost dispersion of nanofillers in a thermoplastic polymer. In this technique, polycondensation 

and dispersion of the nanofillers occur simultaneously. Because the polymer precursors are 

dissolved in a low viscosity solution, the nanofillers are efficiently dispersed (i.e., suspension) 
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prior to polymerization. As the polymerization proceeds, the nanofillers get entrapped in the solid 

polymer, but they remain highly monodispersed. 

In particular, the present thesis demonstrates a silver nanowire - Nylon 66 (AgNW/N66) 

composite using interfacial polycondensation. Interfacial polycondensation is a well-established 

polymerization technique which takes place at the interface between two mutually immiscible 

solvents. Typically, one is polar dissolving a polar monomer, the other is nonpolar dissolving a 

nonpolar monomer. The two monomers react at the interface accounting for the condensation 

polymerization reaction. In a typical process, it is known that polar monomer can partially 

dissolve the nonpolar solvent while the nonpolar monomer is essentially not soluble in the polar 

solvent. Therefore, the reaction is believed to occur effectively in the nonpolar solvent but at 

close proximity of the interface. The polymer product accumulating at the interface in the form of 

a thin film has to be simultaneously removed, which otherwise blocks the monomer diffusion to 

the interface from polar to nonpolar side [16]. 

One major novel aspect of the present thesis work is the incorporation of AgNWs to the 

polymer during polycondensation. In the present case, the AgNWs are synthesized by polyol 

process and capped with polyvinylpyrollidone (PVP), a polar polymer. It is shown that the 

AgNWs are efficiently dispersed in N66 at room temperature. 

The second novelty in the developed technique is aggressive mixing of the two solvents 

by a vortexer during the reaction rather than keeping a static and flat interface between them. The 

aggressive mixing basically disperses the nonpolar solvent in the polar solvent in the form of 

microdroplets (i.e., emulsion) and hence dramatically increases the interface area between the two 

domains leading to a much faster polymerization rate. It is found that N66 polymerizes in the 
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form of microspheres with AgNWs entrapped in them. Once the condensation reaction is 

complete, the AgNW-dispersed N66 microspheres are centrifuged and dried to microparticles, 

which are subsequently molten and cast into a mold to achieve high filler content bulk 

nanocomposite without the need for any shear mixing. Accordingly, we adopt the terminology: 

Nanocomposites by Dynamic Emulsion Polycondensation (NCDEP). 

The present work has also modified the conventional interfacial polycondensation 

technique by using partially miscible solvents. Specifically, water and tetrahydrofuran (THF) are 

used. Partial solubility (albeit low) of the solvents allows a higher density of AgNWs transferred 

into N66 particles. It is inferred that the polycondensation occurs in microdroplets of THF, where 

the two monomers and AgNWs all come together. 

Another unique attribute of the developed technology is the strong binding of AgNWs to 

the N66 matrix via ultrathin PVP capping around the AgNWs (i.e., coupling agent) as 

corroborated by vibrational spectroscopy in the present thesis. PVP strongly binds to Ag surface 

selectively in the [110] directions and thereby leads to directional growth of the AgNWs in the 

[111] direction during the polyol process. Further it establishes conformal hydrogen bonding with 

N66 and thereby serves as the coupling agent. 

The organization of the present thesis is as follows. Chapter 2 reviews various properties 

and applications of N66. Additionally, the polyol synthesis of AgNWs and localized plasmon 

modes in AgNWs are reviewed. In Chapter 3, experimental procedures for AgNW synthesis and 

AgNW/N66 composite fabrication are detailed. Chapter 4 presents the material characterization 

results. In particular, SEM and UV-Vis are used to show the morphology and quality of AgNWs 

and composite microparticles. Raman and FTIR are used to corroborate the bonding between 
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AgNWs, PVP and N66. DSC is conducted to investigate the thermal behavior of the composites. 

The variation of mass ratio between AgNWs and N66 is determined by XRD. Mechanical 

properties are studied by nano-indentation and explained in the view of the Halpin-Tsai model. 

Finally, various conclusions are drawn as well as future research directions are suggested in 

Chapter 5.   
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CHAPTER 2 

Literature Review 

2.1. Studies on nylon composites 

Nylon was first synthesized by DuPont in 1938. Since then, it has become the most 

widely used thermoplastic. Nylon has been extensively utilized by automobile, electronic, 

chemical, medical and food industries due to its low cost, easy processing and good workability. 

However, among all the nylon products, pure nylon is rarely used due to three reasons. First, 

nylon (i.e., N66) shows strong polarity. It absorbs water in the ambient and therefore exhibits 

dimensional instability. Second, nylon has poor mechanical strength and stiffness. This 

shortcoming greatly limits its application as load/impact-bearing material. Third, nylon is 

sensitive to light, acids and oxidants. Therefore, development of modified nylon with improved 

mechanical and chemical properties and multi-functionalities has been a topic of interest for 

several decades.  

2.1.1. Studies on mechanical properties of the nylon composites 

Several groups have developed nylon composites to enhance the mechanical strength and 

modulus of pure nylon. Shiao et al. have investigated N66/glass-fiber composites. Their results 

showed that the elastic modulus of the composites increased from 2 to 6 GPa when the glass fiber 

weight fraction is increase from 0 to 45 % [17]. In addition to synthetic fibers like glass fibers, 
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natural fibers can also be used to reinforce polymers. Tremolite is a non-metallic mineral with 

length-to-diameter ratio of 24:1. Baji et al. have reinforced N66 fiber with 7.5 wt% CNT. Their 

results showed that at room temperature, the storage modulus of the nylon composite is 3.3 GPa 

which is 250% higher than the unfilled one [18]. 

With the advent of nanotechnology, carbon nanotubes (CNTs) have found applications in 

polymer-based composites due to their excellent mechanical properties. Zeng at al. have 

investigated the Nylon 1010/Multi-walled CNTs (N1010/MWCNTs) composites. Tensile tests 

showed that the Young’s modulus of N1010/MWCNT composites improved by 87.3% when 

MWCNTs weight fraction is 30%. DMA results showed that the storage modulus of the 

composite increased by 197% (at 0 ℃ ) [19]. In another study, Kang et al. have studied 

N610/MWCNT composites. Tensile tests showed a 170% increase in Young’s modulus, 40% 

increase in tensile strength and 35% elongation at failure when MWCNT weight fraction was 1.5% 

[20]. To the best of the Author’s knowledge, the enforcement of N66 by AgNWs has not been 

studied yet.  

Toughness is an important requirement for thermoplastic composites, especially when 

they are used as impact-bearing materials. Fillers, especially fibers in the nylon matrix, will 

greatly improve the impact resistance of the composites. First, the fibers in the matrix will stop 

the crack propagation and hold the matrix together. Second, fractures occurring by fiber pull-out 

or breakage consume more energy than the matrix breaking by itself. It has been observed by 

Akay et al. that crack initiation force and total energy fracture values were 25-37% and 300-600% 

larger in N66/glass fiber composite (50 wt%) than those in pure N66, respectively [21]. 

Surfactants are proved to be excellent coupling agents in composites. Surfactants may provide 
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copulations between the fillers and the matrices to improve their interface conditions. 

Furthermore, surfactants may impede the filler aggregation. Liu et al. have studied Nylon 

6/Polypropylene (N6/PP) composites using Maleic anhydride (MA) as a grafting agent. They 

found that the notched impact strength, the stiffness and the strength of the alloys were higher 

than those in N6. They also found that the PP-g-MA showed a more homogeneous morphology 

and dispersion than the MA-free counterparts [22]. Additionally, Tand et al. have studied the 

N6/Polyphenylene Sulfide (N6/PPS) blend using SEBS-g-MA as the coupling agent. Their results 

indicated that the impact strength increased with the weight fraction of SEBS-g-MA increase, 

especially when the fraction was between 20% and 50% [23]. Yang et al. have studied the 

fracture behavior of N66/TiO2 composites. They showed that the toughness increased by 69% and 

183%, when the volume fraction of TiO2 was 1% and 3%, respectively [24]. Later research 

showed the fracture toughness of the N66/TiO2 composites was highly sensitive to temperature 

[25]. 

2.1.2. Studies on crystallization behavior of the nylon composites 

Nylon (i.e., N66) contains polar amide bonds. Oxygen atom in the amide bond has high 

electronegativity and tends to form H-bonds with hydrogen-containing polar materials. H-bond 

can also form between N66 molecular chains, which make crystallization of nylon easy [26, 27]. 

The structure of N66 is shown in Fig. 2.1. Filler introduction affects the crystallization behavior 

of nylon and therefore affects the composite mechanical properties. Grain refinement is known to 

be helpful in improving the toughness.  
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Figure 2.1: Schematic illustrating the N66 structure. 

 

Bo et al. have studied the influence of different fraction of Montmorillonite (MMT) on 

N66 crystallization behavior. Their results showed that the MMT fraction between 2.04 wt% and 

4.76 wt% gave the best crystallization behavior. They also indicated that crystallization rate of the 

composite was higher than that of N66 regardless of the MMT fraction [28]. The crystallization 

temperature reflected the overall crystallization rate due to the combined effects of nucleation and 

growth. Higher crystallization temperature (Tc) would lead to lower super-cooling temperature 

(ΔT) and higher overall crystallization rate (Fig. 2.2). 

Wang et al. have studied the crystallization behavior of N66/poly 2-hydroxy 

propylmethacrylate-methyl methacrylate/SiO2 (N66/PHPMA-MMA/SiO2) composites using 

Differential Scanning Calorimetry (DSC). They made the conclusion that crystallization start 
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temperature of hybrid material was higher than that of pure N66 and the crystallization 

temperature range was narrower [29]. Cooling method also made a significant impact on the 

crystallization behavior of the composites. Lu et al. have compared three different cooling ways 

of N66/clay composites. The three ways were melt-quench, post-annealing and melt-slow cooling 

annealing. Fourier Transform infrared spectroscopy (FTIR) spectroscopy and wide angle X-ray 

diffraction (XRD) showed that the melt-slow cooling-annealing was the most favorable way for 

crystallization. It yielded the highest crystallinity [30]. 

2.1.3. Studies on performance of the nylon composites  

In recent years, studies on tribology, rheology, creep resistant and thermal degradation of 

nylon composites have gained increased attention. It is required that the composites can survive 

under harsh conditions such as oil-free lubrication, high-temperature ambient or overtime use. 

 

Figure 2.2: Schematic illustration of super-cooling. 
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As described by Wang et al., addition of calcium sulphate whiskers (CWS) can decrease 

the friction coefficient of N66/Polyvinylidene Fluoride (N66/PVDF) composites and improve 

their wear resistance. They also suggested that the composite contained 5 wt% CSW exhibited the 

best anti-wear ability [31]. In another study, Chen et al. have studied 

N66/PPS/Polytetrafluoroethylene (N66/PPS/PTEF) composites. They concluded that the friction 

coefficient of the composite minimized to 0.15 when the volume fraction of PTEF was 20% [32]. 

They also demonstrated that 80 vol% of N66 with 20 vol% of PPS yielded the lowest wear 

without PTEF [33]. Same group also studied the tribological behavior of N6/High Density 

Polyethylene (N6/DHPE) composites. They showed that the composites exhibited the best wear 

resistance when HDPE content reached 80% by volume [34]. 

Zhuang et al. have studied the tribology behavior of N66/MMT composites using cone 

and plate rheometers. They concluded that melt viscosity of the composite decreased with 

tremolite weight fraction increase from 10% to 50% [35]. Zhang et al. have studied the creep 

behavior of N66/TiO2 (TiO2: 21 nm particles) using static tension and tensile creep tests. They 

found the nanoparticles accounted for a remarkable reduction in the creep rate under constant 

loading. They thought fillers may restrict the slippage, reorientation and motion of polymer 

chains and influence the stress transfer [36]. 

Ribeiro et al. have monitored the weight loss of N66/CNTs composites using 

Thermogravimetric Analysis (TGA). They found that the composite had the best thermal stability 

when the weight fraction of CNT was 0.5% or less [37]. Furthermore, Tatameshlou et al. have 

studied the decomposition of N66/Organic MMT (N66/OMMT) composites and found the 
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decomposition temperature increased from 246 ℃ to 270 ℃ when weight fraction of OMMT was 

4.1% [38]. 

2.2. Localized surface plasmon resonance of silver nanowires 

Localized surface plasmon (LSP) modes are the collective oscillations of conduction 

electrons in nanostructures. These electron oscillations are due to restoring force of positive 

nuclei against displacement of the negatively-charged electrons. When the frequency of incident 

electromagnetic radiation matches the natural frequency of a LSP mode, the mode is excited in 

resonance (i.e., LSPR) [39, 40, 54]. The LSPR frequency shifts with nanostructure size/shape as 

well as the dielectric constant of the surrounding medium [40-42]. For a nanowire, symmetry is 

broken between longitudinal and transverse directions. Therefore, it has two SPR wavelengths: 

longitudinal and transverse. SPR occurs at a lower energy in longitudinal plasmon resonance 

because it is easier to polarize [43]. Both of the plasmon resonances are affected by the aspect 

ratio. However, the longitudinal plasmon resonance is more sensitive to aspect ratio change due 

to higher polarizability in the longitudinal direction [44]. When the aspect ratio of the AgNWs is 

sufficiently large, the plasmon resonances associated with the long and short axes are entirely 

decoupled. Therefore the peaks corresponding to LSPR of nanowires disappear [45]. It has been 

reported by Song et al. that no extinction peak associated with the longitudinal SPR is observable 

when the length of AgNWs is 2.5 μm or longer [46]. Figure 2.3 illustrates the dipolar plasmon 

mode in the transverse direction. In addition, multipolar modes of plasmons can occur (i.e., 

quadrupole mode) with increasing nanowire cross-sectional area [55]. 
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Figure 2.3: Schematic illustration of LSPR transverse electron oscillation for AgNWs.  

 

2.3. Polyol synthesis of AgNWs  

Polyol process involves reduction of an inorganic salt by a polyol at an elevated 

temperature. If polyol process also involves the use of a surfactant, which has selective coverage 

on different crystal planes, than directional growth can be achieved allowing the synthesis of 

NWs. For example, PVP is such a surfactant which selectively adsorbs to (100) atomic planes of 

Ag nanocrystals. Hence, it allows crystal growth only in the (111) atomic planes. As a result, 

directional growth of Ag nano-crystals occurs in the [111] direction leading to the formation of 

nanowires. Former researchers have proved that the PVP molecules are absorbed to the surface of 

the AgNWs through Ag:O coordination [47]. The key to the formation of wire-like nanometer 

sized structures is to form five-twinned nuclei though heterogeneous nucleation when Ag
+
 is 

reduced to Ag seeds. Regular Ag nanoparticles will grow up from single-crystal nuclei instead of 

five-twinned nuclei. Some seeds under homogenous instead of heterogeneous nucleation will 
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aggregate or be sintered to larger irregular nanoparticles [48]. Figure 2.4a illustrates the evolution 

process of various Ag nanocrystals ranging from Ag nanoparticles to nanowires. Figure 2.4b 

illustrates the growing mechanism of AgNWs.  

 

 

Figure 2.4: a) Schematics illustrating growth mechanisms of different Ag nanostructures. The 

sketch is inspired from Gao et al. [48]. b) Schematic illustration of the growing mechanism of 

AgNWs. The sketch is inspired from Mao et al. [47]. 
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The nucleation modes can be controlled by polyol synthesis conditions. For example, 

surfactant or chloride ions may be introduced to prevent agglomeration of the seeds and prevent 

the seeds become larger due to Oswalt ripening. Morphologies and aspect ratios of the 

nanometer-sized structures could be varied from nanoparticles to long nanowires by adjusting the 

reaction time or temperature. Therefore, polyol process provides a simple and versatile approach 

to prepare 1D metal nanostructure. Typical factors affecting AgNW polyol synthesis are: 

PVP/AgNO3 ratio, reaction temperature and seeding. Sun et al. have concluded that low 

PVP/AgNO3 ratio may lead to thicker but longer nanowires due to incomplete coverage of PVP 

on the side surfaces. They suggested that the optimum PVP/AgNO3 molar ratio was 1.5:1 [49]. 

They also found that the diameter of the AgNWs was reduced as the seed concentration in polyol 

solution was increased [50]. In addition, they indicated that the optimal temperature to yield 

maximum AgNWs was 160 ℃ [47]. Later, same group found that AgNO3 reduction time also 

affected the morphology of AgNWs. TEM results showed that reduction time of AgNO3 should at 

least be 1 h to achieve wire-like shape [51]. However, those results partly contradicted with Gao 

et al.. They indicated that the reduction time of AgNO3 should be 41 min at 170 ℃. They claimed 

that morphologies of AgNWs remained almost unchanged but only elongated after a certain time 

[48]. The seeding condition of Sun’s work was supported by Chen et al., as they demonstrated a 

relatively low concentration of nucleation is likely to result in more uniform nanowires than the 

high concentration case [52]. Later, Coskun et al. revealed that the factors which affected the 

morphologies of AgNWs were not comprehensive. They investigated the effects of Cl
−
 

concentration, stirring rate and AgNO3 injection rate. Based on their results, the optimum 
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parameters for AgNW synthesis are: 170 ℃ reaction temperature, 7.5:1 PVP/AgNO3 molar ratio, 

12 μM NaCl addition, 5 ml/h AgNO3 injection rate and 1000 rpm stirring rate [53].
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CHAPTER 3 

Methodology 

This chapter presents the details of the methodology employed in both the synthesis of 

AgNWs and preparation/characterization of AgNW/N66 composites.  

3.1. AgNW preparation 

In the present study, AgNWs were synthesized by polyol synthesis. In this procedure, 

AgNO3 is used as the source of silver ions, Ag
+
, which are reduced by ethylene glycol (EG) at 

170 ℃. EG also serves as the solvent as described in the paper of Coskun et al. [53]. The 

nanowires are washed and purified by centrifugation after the synthesis. 

3.1.1. Synthesis of AgNWs 

In this process, 4.995 g of PVP (MW=55,000, Sigma-Aldrich) was dissolved in 100 ml of 

ethylene glycol (EG) by vortex mixing for 2 min and stored in a plastic bottle with air tight seal 

for at least one day before use to make sure the PVP is completely dissolved. Next, 5 g of AgNO3 

is dissolved in 245 ml of EG at a concentration of 0.12 M. The AgNO3 solution was stored in an 

amber glass bottle in the refrigerator. After preparation, the solution was kept for at least one day 

before use. Subsequently, 20 ml of the PVP solution (in EG) was transferred to a 100 ml flask. 

The flask was pre-cleaned by DI water (50%) + isopropyl alcohol (IPA) (50%) mixture and ultra-

sonicated for 1 h. The flask was then blow-dried by argon. Next, 28 mg of NaCl was added into 
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the flask containing PVP dissolved in EG. The solution was ultra-sonicated for 2 min to dissolve 

the solid NaCl. Then, the flask was placed in a heating mantle having both heating and magnetic 

stirring capabilities. A condenser was assembled on the neck of the flask with cold water running 

from the bottom to the top. The condenser was supported by an iron stand. The setup for the 

synthesis of AgNWs is shown in Fig. 3.1. 

 

Figure 3.1: Photograph of the experimental setup for the synthesis of AgNWs (taken by 

Sriharsha Karumuri). 
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Prior to the initiation of Ag reduction, the PVP solution was kept at 170 ℃ for 1 h under 

continuous stirring using a star-head magnetic stir bar (0.68”×0.56”) at 1000 rpm. The solution 

temperature was monitored by a liquid thermometer. Subsequently, AgNW reduction was 

initiated by dropwise addition of 0.12 M AgNO3 into the PVP solution by Era NE-300 syringe 

pump at a rate of 20 ml/h. The injection was continued for 1 h. After AgNO3 injection is complete, 

the resulting nanowire suspension was further stirred at 170 ℃  for 30 min. Finally, the 

suspension was air-cooled to room temperature. 

3.1.2. Separation and washing of AgNWs 

AgNW suspension prepared by polyol process contains excess PVP. In order to remove 

the excess PVP and transfer the AgNWs into water, the suspension was dispersed in acetone + 

ethanol and centrifuged. Acetone and ethanol was purchased from Oklahoma State University 

Chemical Store and used without further purification. 

Five ml of AgNW suspension was put in a centrifuge tube and diluted 5 times by acetone 

and centrifuged twice at 3,500 rpm for 30 min. After the first centrifugation, three different layers 

formed. The supernatant was acetone. The middle layer being yellow was the excess PVP, which 

was removed by a pipette. Silver nanowires were separated from the suspension in the form of a 

precipitate. Subsequently, the supernatant was removed and the precipitate was dispersed in 30 

ml acetone and again centrifuged at 3500 rpm for 30 min. Next, the nanowires were dispersed in 

ethanol and centrifuged at 3500 rpm for 30 min. After three centrifugations, AgNWs were 

characterized by UV-Vis spectroscopy and the extinction spectrum was checked to assure 

reproducibility.  
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3.2. AgNW/N66 composite preparation 

3.2.1. Conventional interfacial polycondensation of N66 

In this section, interfacial polycondensation of N66 is described. The polycondensation 

reaction employs two monomers: 1,6-diaminohexane in water and adipoyl chloride dissolved in 

nonpolar organic solvent. A protonated amide is formed as soon as the two solutions are mixed. 

The proton is rapidly eliminated and combines with Cl
−
 forming HCl. The polymer forms near the 

interface but at the organic solvent side, because adipoly chloride is essentially not soluble in 

water while the diaminohexane is partially soluble in the organic solvent. Therefore, acylation 

reaction occurs in the organic solvent close to the interface. Figure 3.2 illustrates the relationship 

of reactants in interfacial polycondensation. Accumulation of the polymer product at the interface 

prevents diaminohexane transport and limits the reaction. Hence, in order to maintain 

polycondensation, the polymer accumulating at the interface must be continuously removed. 

 

Figure 3.2: Schematic illustration of interfacial polycondensation. The sketch is inspired from 

Morgan et al. [16]. 

Polar
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: Adipoyl Chloride
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3.2.2. AgNW/N66 composite synthesis 

Hundred g of 1,6-diaminohexane was dissolved in 1250 ml of water by stirring for 30 

min using a magnetic stir bar (8×15.9 mm
2
). Next, 0.065 g of AgNWs (based on the calculation) 

was dispersed in 120 ml of THF by vortex mixing for 5 min to form AgNW suspension. The 

AgNW suspension was stored in an amber bottle. Subsequently, 20 ml of this AgNW suspension 

was transferred to a 50 ml centrifuge tube and 1 ml of adipoyl chloride (as received) was injected 

to the suspension using a pipette. Next, 20 ml of 1.6-diaminohexane (prepared as above) solution 

was added to the suspension. The mixture was vortex mixed for 10 s. Polycondensation started 

once 1.6-diaminohexane was added to the suspension where AgNW/N66 composite 

microparticles formed. The mixture was left in the hood for 12 h to complete the 

polycondensation reaction. Experiment procedures of AgNW/N66 composite synthesis and 

separation are shown in Fig. 3.3.  

 

Figure 3.3: Schematic illustration of AgNW/N66 composite synthesis and separation. 

AgNWs in THF

Adipoyl chloride

1,6-diaminohexane in water

Vortex mixing Centrifugation
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1,6-diaminohexane (98+%) and adipoyl chloride (98%) were purchased from Alfa Aesar, 

USA. THF was purchased from Oklahoma State University Chemical Store. All the chemicals 

were used without further purification. 

3.2.3. Separation and cleaning of AgNW/N66 microparticles 

After the completion of polycondensation, the AgNW/N66 composite microparticles 

were separated from the liquid and dried. The separation was achieved by centrifugation at 2,600 

rpm for 10 min. After the centrifugation, supernatant was removed and the particles were 

dispersed in 30 ml of DI water by vortex mixing for 20 s. Subsequently, another centrifuge step 

was run as previously and the particles were transferred to a glass vial. Finally, the residual water 

was evaporated by placing the vial on a hot plate at 45 ℃ for 5 days.  

3.3. Theoretical calculation of silver weight fraction in N66 

In order to calculate the weight fraction of Ag in the composites, we assume all the Ag
+
 

in AgNO3 is reduced to Ag by EG at 170 ℃. Given the concentration and volume of the AgNO3 

solution, the weight of Ag is obtained. Subsequently, the weight of the composite is acquired by 

an electronic scale. Thus, Ag weight fraction is calculated by Ag mass divided by composite mass. 

Different Ag fraction composites are obtained by controlling the Ag weight in the composites. 

Complete incorporation of nanostructured Ag into N66 is checked by UV-Vis spectroscopy 

assuring no measurable Ag remains in the solvent after polymerization. 

3.4. Casting of AgNW/N66 samples 
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After dried, the composite microparticles were transferred into a glass vial. The glass vial 

was sealed by an aluminum cap with a Teflon septum. Subsequently, the vial was purged with 

argon and lowered into a melter by glass wire. The sample was melt at 265 ℃ for 20 min and 

then cooled to room temperature. A K-type thermocouple was used to monitor the temperature. 

The setup for the sample casting is shown in Fig. 3.4a. Figure 3.4b shows the glass vial sealed 

with an aluminum cap and Teflon septa. After solidification and cooling, the glass vial was 

broken to release the solid composite sample. For the nano-indentation measurements, the 

samples were grinded to squares (4×4×1.3 mm
3
) as shown in Fig. 3.5. 

 

Figure 3.4: a) Photograph illustrating the sample casting. b) Glass vial with aluminum cap and 

Teflon septum. 
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Figure 3.5: AgNW/N66 samples prepared for nano-indentation. Ag weight fraction from left to 

right is 0%, 1.49%, 3.28% and 6.74%, respectively. 

 

3.5. Characterization of the composites 

3.5.1. UV-Vis spectroscopy 

After the synthesis of AgNWs (Section 3.1.1), their extinction spectrum was acquired by 

UV-Vis spectroscopy. The scans were recorded using a Cary 300 UV-Vis spectrophotometer. 

Quartz optical cells with an optical length of 1 cm were employed. AgNWs were diluted 120 

times in EG before transferred into the optical cells. Pure EG was used as the reference. A typical 

scan was started at wavelength of 800 nm and ended at 200 nm with data intervals of 1 nm. Scan 

rate was set at 600 nm/min. The extinction spectrum of the AgNWs was used to assure 

reproducibility.  

3.5.2. Scanning electron microscopy 

The morphology of the AgNWs was studied by FEI Quanta 600 field-emission scanning 

electron microscope (SEM). SEM was operated at an accelerating voltage of 20 kV. 
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3.5.3. X-ray diffraction 

X-ray diffraction (XRD) was performed to determine the variation of mass ratio between 

Ag and N66. XRD patterns were recorded using a Philips Analytical X-Ray PW 3710 

diffractometer. The diffractometer was employed with CuKα radiation source, a tube voltage of 

40 kV and tube current of 40 mA. Spectra were scanned in the range of 2θ from 10° to 90° at a 

rate of 2°/min. 

3.5.4. Raman spectroscopy 

Raman scattering provides useful chemical information. Raman signal of the AgNWs and 

PVP were acquired with a Witec-alpha 300R Raman microscope with 532 nm laser as the 

excitation source. The dried AgNW/N66 composite microparticles and PVP powder were placed 

on a microscope slide and measured in dark environment at room temperature. The Raman 

spectra were collected under 0.5 mW incident laser power with 20 μm spot size. Graphical 

illustration of a Raman acquisition is shown in Fig. 3.6. 

3.5.5. Fourier transform infrared spectroscopy 

In addition to Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) was 

also conducted for chemical analysis. FTIR was performed using Nicolet iS50 in ATR mode with 

a diamond probe. The sample powders were loaded on the FTIR cell above the infrared detector 

by pressing using an applicator. We employed 2 cm
−1

 spectral resolution and 64 scans to average. 

The FTIR spectra were recorded in the range of 500-3500 cm
−1

. 



26 
 

 

Figure 3.6: Graphical illustration of a Raman acquisition. 

3.5.6. Differential scanning calorimeter  

Melting and crystallization profiles of the solid samples were derived using a TA Q2000 

differential scanning calorimeter (DSC) in nitrogen ambient. Powder samples of 10 mg were 

filled in standard DSC aluminum pans. Prior to the measurement, the temperature was elevated to 

285 ℃ at a ramping rate of 10 ℃ /min to release the heat residue of the samples. Then, 

measurement was started by cooling at 10 ℃/min to −30 ℃. Subsequently, the measurement was 

continued in the heating mode at a temperature ramp of 10 ℃/min to 250℃.  

3.5.7. Nano-indentation 

Mechanical properties of AgNW/N66 composites were studied using nano-indentation. 

An MTS Nano Indenter XP Elastic was employed in obtaining the modulus and hardness of 
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composites with a maximum load of 0.98 mN using a Berkovich indenter tip with a half angle of 

70.3°. Test performed on each sample constituted 36 indentations in a 6 x 6 matrix format.
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CHAPTER 4 

Results and Discussion 

4.1. Structural characterization of AgNWs 

Silver nanowires were synthesized as described in Sections 3.1.1 and 3.1.2. During the 

synthesis process, solution color changed from light yellow to orange and then to hazy greyish 

brown. The final product was a mixture of AgNWs and silver nanoparticles (AgNPs). 

Subsequently, the AgNWs were separated from the AgNPs using centrifugation. Therefore, the 

characterized suspensions had low fraction of AgNPs. The UV-Vis spectroscopy was conducted 

as described in Section 3.5.1. Figure 4.1 shows the average optical extinction spectrum of the 

AgNW suspensions. The spectrum exhibits two relatively sharp LSPR peaks at about 350 and 

390 nm with a broad tail towards longer wavelength. The broad tail is due to the distribution of 

different sizes and shapes [54]. The peaks at 350 and 390 nm are attributed to the out-of-phase 

quadrupolar and transverse dipolar LSPR in AgNWs, respectively [47].  

Morphology of the prepared AgNWs was studied by SEM as described in Section 3.5.2. 

The SEM image in Fig. 4.2 shows that the AgNWs are 5-10 μm long and have diameter of 43±15 

nm. The image also shows that AgNPs as well as the silver nanorods (AgNRs) cannot be 

completely removed by centrifugation. 
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Figure 4.1: Average optical extinction spectrum of the AgNWs after 8 batches with error bars. 

 

 

Figure 4.2: SEM image of the AgNWs synthesized by the polyol process. 

 

The AgNWs, which are functionalized by PVP were characterized by Raman 

spectroscopy as described in Section 3.5.4. Fig. 4.3a shows the Raman spectrum of the neat PVP 
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for comparison. Assignments of the Raman peaks in the PVP spectrum are as follows. The peak 

at 756 cm
−1

 corresponds to C─N bending [56]. The 934 cm
−1

 peak is assigned to C─C stretching 

in the pyrrolidone ring [57]. The band at 1233 cm
−1 

is due to C─N stretching. The 1429 cm
−1

 peak 

is assigned to C─H bending in the backbone chain [56, 57]. The band at 1670 cm
−1 

corresponds to 

C=O stretching. The 2927 cm
−1

 peak is attributed to C─H stretching in CH2 in the pyrrolidone 

ring [56]. A weak shoulder at 2983 cm
−1

 is due to asymmetric C─H stretching in CH2 in the 

backbone chain [57]. 

Figure 4.3b shows the Raman spectrum of the AgNWs (functionalized by PVP). 

Compared with the PVP, the AgNWs (functionalized by PVP) exhibit a distinguishing peak at 

239 cm
−1 indicative of Ag─O stretching [47]. This peak is significantly enhanced (due to surface-

enhanced Raman scattering (SERS)), implying coordination of the PVP with the Ag surface 

through the lone pair electrons of the oxygen atom in the carbonyl group. Meanwhile, the C=O 

stretching vibration shifts from 1670 to 1590 cm
−1

, verifying PVP molecules bind with AgNW 

through oxygen in the C=O group [47]. The enhanced peak at 2937 cm
−1

 is attributed to 

asymmetric C─H stretching in CH2 in the backbone chain of PVP. Accordingly, it is inferred that 

the CH2 chains are close to the surface of AgNWs [47] accounting for SERS. An additional 

attribute of the Ag is seen to be significant lowering of the fluorescence background of PVP due 

to resonant energy transfer from PVP to Ag nanostructures. 
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Figure 4.3: a) Raman spectrum of PVP. b) Raman spectrum of AgNWs (functionalized by PVP). 

a

b
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4.2. Physical characterization of AgNW/N66 composite microparticles 

The AgNW/N66 composite microparticles were prepared as described in Section 3.2.2. 

Representative particles are shown in Fig. 4.4. Darkening of the color is observed when weight 

fraction of Ag is increased in the composite samples. The morphology of the microparticles was 

first investigated using an optical microscope in bright field (Fig. 4.5). The particle shape is found 

to be approximately spherical with an average diameter of 7 μm.  

The morphology of the AgNW/N66 composite microparticles was further studied by 

SEM (Fig. 4.6). Insignificant amount of AgNWs as well as the AgNPs can be seen on the surface 

of the N66 microparticles. In addition, when polycondensation reaction was completed, the 

supernatant was transparent, implying no AgNWs were left in the supernatant. Therefore, we 

infer that majority of AgNWs are embedded in N66 during the polycondensation reaction. 

 

Figure 4.4: AgNW/N66 composite microparticles. Weight fraction of Ag from left to right is 0%, 

1.49%, 3.28% and 6.74%. 
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Figure 4.5: Optical microscope image of AgNW/N66 microparticles.  

 

 

Figure 4.6: SEM image of AgNW/N66 composite microparticles. 
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4.3. Fourier Transform Infrared Spectroscopy 

AgNW/N66 composite microparticles were studied by FTIR spectroscopy as described in 

Section 3.5.5. FTIR spectra of commercial N66 and N66 synthesized in the present work are 

shown in Fig. 4.7.  

Assignments of FTIR peaks in the spectra of N66 are as follows. The peaks at 3298 and 

2932 cm
−1

 are due to N─H and C─H stretching [58], respectively. The peaks at 1630 and 1534 

cm
−1

 corresponds to C=O and C─N stretching [58]. Finally, the peak at 1139 cm
−1 is assigned to 

C─C stretching [59]. The FTIR spectra of the commercial N66 and N66 in this work are 

essentially the same.  

FTIR spectra of the PVP and the AgNW/N66 composite particles are shown in Fig. 4.8. 

Assignments of the FTIR peaks in the spectra of PVP are as follows. The peak at 733 cm
−1

 

corresponds to the C─C stretching in the backbone chain [57]. The 843 cm
−1

 peak is assigned to 

C─C stretching in the pyrrolidone ring [57]. The peak at 1248 cm
−1 

is due to C─N stretching [60]
 
. 

The peak at 1421 cm
−1

 corresponds to C─H bending [57]. The peak at 1652 is assigned to C=O 

stretching [60]. The peak at 2886 cm
−1

 is due to C─H stretching in the backbone chain [57]. The 

peaks located at 2919 and 2948 cm
−1 are assigned to C─H stretching in CH2 in the backbone 

chain and pyrrolidone ring [57], respectively. The peak located at 3446 cm
−1

 is due to O─H 

stretching vibration [60]. It indicates the presence of hydroxyl groups in physisorbed water. This 

finding agrees with Giri et al. [60].  
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Figure 4.7: FTIR spectra of the commercial N66 and N66 in this work. 

 

 

Figure 4.8: FTIR spectra of the PVP and the AgNW/N66 composite particles. 



36 
 

Next, the spectra of AgNW/N66 composites are examined. We observe a systematic shift 

of the N─H stretching peak to higher wavenumbers with increasing Ag content (i.e., from 0 to 

6.47 wt%). We attribute this frequency shift to the cleavage of the hydrogen bonds between N─H 

and C=O in N66 as AgNWs are introduced. As a result, the average stiffness of the N─H bonds 

increases, and the N─H peak exhibits higher energy shift. 

We also find a peak intensity increase at 1710 cm
−1

 with an increased fraction of silver. It 

corresponds to the free C=O end groups in N66 [61]. The free end groups are not associated with 

truly amide groups, thus they exhibit their unique C=O stretching. We explain the intensity 

increase as follows. The AgNWs act as heterogeneous nucleating sites where polymer chains start 

to grow. With increased density of chains (per volume), the average chain length gets shorter and 

the density of chain-end-groups increases. Therefore, the 6.47 wt% Ag composite has the highest 

density of end-groups (as well as shortest average chain length) and exhibits the highest intensity 

1710 cm
−1

 peak. 

4.4. X-ray Diffraction 

XRD spectra of the AgNW/N66 composite particles were acquired as described in 

Section 3.5.3. The two strong reflections at 2θ = 20.1° and 24.0° are the (100) and (010,110) 

planes of N66 α phase crystals [30], respectively (Fig. 4.9). The four peaks at 2θ = 37.9°, 44.0°, 

64.2° and 77.1° conform to (111), (200), (220) and (311) planes of bulk silver. All the four 

reflections are assigned to face centered cubic (fcc) silver. In Fig. 4.9, all patterns are normalized 

by the intensity of the (100) peak.  
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The mass ratios between Ag and N66 are proportional to their XRD intensity ratios. The 

XRD intensity of Ag was calculated by integrating the highest silver peak. The XRD intensity of 

N66 was calculated by integrating the two N66 peaks. This work was done using Jade 5. First, 

background and CuKα2 scattering signal were removed by default setting of the software. Then, 

the curve was smoothened to reduce the noise. The Ag to N66 XRD intensity ratios were found as 

7.92%, 13.89% and 28.50% in the order of increasing Ag content. These ratios are proportional to 

the mass ratios calculated in Chapter 3 as shown in the inset of Fig. 4.9.  

 

Figure 4.9: XRD spectra of AgNW/N66 composite particles. The inset shows AgNW:N66 mass 

ratio versus AgNW:N66 XRD intensity ratio. 
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4.5. Differential Scanning Calorimetry 

Melting point (Tm), crystallization point (Tc) and glass transition temperature (Tg) of 

AgNW/N66 composites were derived from DSC measurements as described in Section 3.5.6. 

DSC thermographs of AgNW/N66 composites are shown in Fig. 4.10.  

In Fig. 4.10a, the Tg appears as a step in the baseline of the DSC signal. This is due to the 

sample undergoing a change in specific heat. DSC thermographs show that Tg of AgNW/N66 

composites decreases with increase of AgNW weight fraction. For example, Tg drops from 61 ℃ 

to 48℃ from control sample to 6.47 wt% Ag composite sample. 

We have two explanations for the reduction of Tg with increase of AgNW weight fraction. 

First is the plasticizer effect. The AgNWs embed themselves between the chains of N66 polymers, 

and space the chains apart. This placement increases the free volume (empty internal space 

available for the movement of the polymer chains) (Fig. 4.11) in the polymer matrix and therefore 

increases the segmental mobility [62]. It is generally accepted that Tg reduction for most 

polymers is proportional to the plasticizer concentration [63]. Second, as discussed in Section 4.3, 

the AgNWs act as heterogeneous nucleating sites and lead to shorter polymer chains. As a result, 

the segmental mobility of the chains increases accounting for lower Tg [64]. Figure 4.12 shows 

the negative Tg versus AgNW content. The curve exhibit super-linear behavior which indicates 

both plasticizer and shorter chain effects work at the same time. 
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Figure 4.10: a) Crystallization diagram for AgNW/N66 composites. b) Melting diagram for 

AgNW/N66 composites. 
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Figure 4.11: Schematic illustration of free volume formation in AgNW/N66 composite. 

 

 

Figure 4.12: Negative ΔTg versus AgNW content. 

 

The melting/crystallization temperature of AgNW/N66 composites as deduced from Fig. 

4.10 shows insignificant variation of Tm and Tc with silver content. The exothermic peaks of 
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AgNW/N66 composites decrease from 242.1 ℃ to 241.5 ℃ from 6.47 wt% Ag composite to N66. 

The endothermic peaks of AgNW/N66 composites are between 208 ℃ and 211.1℃ from 6.47 wt% 

Ag composite to N66. Silver nanowires act as heterogeneous nucleating sites. Generally, more 

nucleating sites will result in smaller crystals and higher crystallinity, thus lead to higher 

melting/crystallization temperature. However, in present work, we observe insignificant 

temperature variation. This situation could be due to the low amount of AgNWs in N66. The 

influence of AgNWs on the melting/crystallization behavior of the composites may be ignored.  

4.6. Mechanical properties by nano-indentation 

Mechanical properties of AgNW/N66 composites were investigated by nano-indentation 

as described in Section 3.5.7. Assuming a linearly elastic half-space and rigid conical indenter, 

Sneddon [65] found the load measured by the indenter can be expressed as F = δd𝑛, where δ and 

n are material constants and d is the displacement of the indenter. The load-displacement curves 

for AgNW/N66 composites are shown in Fig. 4.13. Then, using the load-displacement data, one 

can obtain the elastic modulus of the specimen using Eq. 4.1,  

c2 (d )
r

S
E

A


  (4.1) 

where S is the slope of the unloading curve in its initial regime, which is related to the combined 

modulus of indenter and material. A(dc) is tip geometry. Oliver and Phar approach [66] shows 

2

c c(d ) dA   where η depends on indenter tip geometry [66]. The hardness (H) is defined as 

effective maximum pressure imparted to the material during the indentation test. It is estimated 

from Eq. 4.2. 
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max

c(d )

F
H

A
  (4.2) 

Modulus and hardness of AgNW/N66 composites are shown in Fig. 4.14. It can be seen 

both the modulus and hardness show insignificant variation with AgNW content. Halpin and Tsai 

[67] showed that the overall composite modulus (Ec) could be expressed in terms of the 

corresponding matrix modulus (Em) and the reinforcing phase modulus (Ef) as in Equation 4.3. 
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Vf is the volume fraction of filler and ζ is the shape parameter, which is related to the filler 

geometry and loading direction.  

Given constant matrix modulus, the composite modulus is approximately linearly 

proportional to the Vf. as predicted from Equation 4.3. However, as inferred from DSC and FTIR 

results, the matrix modulus decreases when filler content increases due to shorter polymer chains. 

The author hypothesizes the decreasing matrix modulus, Em, obeys Em = Emo(1 − AVf) where Emo 

is the matrix modulus without fillers. Thus, considering a sufficiently low value of Vf, he 

conjectures the insignificant variation of modulus and hardness with AgNW content is due to a 

counterbalance between filler enforcement and decrease in matrix modulus (Fig. 4.15). 
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Figure 4.13: Load-displacement curve of AgNW/N66 composites. 

 

Figure 4.14: Modulus and hardness of AgNW/N66 composite samples. 
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Figure 4.15: Composite modulus for constant versus decreasing matrix modulus with AgNW 

content. The model parameters are: Ef = 83 Gpa; Emo = 2.57 Gpa; ζ = 10; A = 0.8. 
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CHAPTER 5 

Conclusions and Future Work 

5.1. Conclusions 

In this thesis, a novel technique for manufacturing of polymer-based nanocomposites is 

developed, where dispersion of nanofillers in the polymer occurs simultaneously during 

polycondensation at room temperature. In particular, N66 composites with AgNW fillers are 

demonstrated. The following conclusions are drawn: 

1) The mechanism of the simultaneous nanofiller dispersion and polymerization is understood to 

involve polycondensation in a nonpolar (but partially polar) solvent domain (e.g., THF). 

Present in this domain is at least one of the polymer precursors (monomer) as well as 

nanofillers. This nonpolar solvent domain has also boundaries with a polar one (e.g., water), 

which has dissolved at least one of the polymer precursors. During polymerization the 

precursor diffuses from the polar to nonpolar domain. Hence, the transport at the interface 

between nonpolar/polar solvent domain(s) rate limits and controls the polycondensation. 

2) In the absence of mixing, polymer precursor transport occurs through a horizontal interface 

between the two solvents. It is found in the present thesis work that the rate of polymerization 

and dispersion can be dramatically accelerated by aggressive mixing by vortexing. Vortexing 

results in emulsification, where the nonpolar solvent segregates into microparticle domains in 

the polar solvent. Hence, polymerization occurs in the form of microparticles. The enhanced 



46 
 

interface area between nonpolar/polar domains due to emulsification accelerates 

polymerization and nanofiller dispersion. Accordingly, the resultant composites are named as 

Nanocomposites by Dynamic Emulsification Polycondensation (NCDEP).   

3) It is concluded that PVP plays multiple instrumental roles in DEP. First, it serves as a 

surfactant in efficient dispersion of AgNWs in water. Strong binding of PVP to Ag surface is 

verified by FTIR spectroscopy. Binding is by coordinative bonding through carbonyl 

moieties in PVP. Second, PVP also mediates the dispersion of AgNWs in the THF domains. 

Third, as elucidated by FTIR spectroscopy in this thesis, PVP establishes hydrogen bonding 

with N66. Hence, it functions as a coupling agent. 

4) The Tg of the AgNW/N66 composites varies from 61 to 48℃ as the weight content of Ag 

increases from 0 to 6.47%. We explain this depression in Tg in terms of two mechanisms. 

First, AgNWs act as plastizers and lead to increase in the free volume. However, by FTIR 

spectroscopy we show this plastizer effect can be more dramatic due to seeding effect of the 

AgNWs. It is observed that the IR signal characteristic of chain ends increase with Ag 

content, indicative of higher density of polymer chains. Hence, AgNWs serve as seeds, from 

which polymer chains nucleate. We anticipate these chains sticking out from the silver 

surface has a higher misalignment with the chains in the matrix leading to increased free 

volume. Second, the FTIR evidence of higher density but shorter chains corroborates another 

mechanism for the lowering of Tg. The shorter average chain length facilitates the slipping of 

polymer chains against each other. 



47 
 

5) Dispersion of nanofillers in the N66 matrix is expected to yield enhanced mechanical 

stiffness and strength. However, our nano-indentation results show insignificant variation of 

Young’s modulus and hardness with AgNW content. Based on Halpin-Tsai model, we 

conclude that the filler enforcement and shorter polymer chain effect counterbalance. 

5.2. Future work 

In the present thesis work, we were motivated towards mechanical reinforcement in N66 

by dispersion of AgNWs. On the contrary, our investigation of the mechanical properties using 

nano-indentation did not reveal any reinforcement due to AgNWs. As discussed in the remainder 

of this thesis, the lack of mechanical reinforcement observed was attributed to the AgNW content 

being insignificantly low. Therefore, the future work should investigate AgNW/N66 composites 

of higher Ag content. 

An interesting property of the AgNWs is their high electrical conductivity. Bulk silver 

has the highest metal conductivity among all metals. Thus, AgNW/N66 composites of the present 

thesis may be further investigated with the objective of developing transparent conductive layers. 

Transparent conductive layers based on AgNWs coated on glass substrates have already been 

demonstrated in the literature and they have been the subject of increasing interest due to their 

potential use in touch screens. However, those demonstrations lacked stabilization by a polymer. 

It has been typically observed that the layer conductivity exhibits a sudden jump above a 

threshold AgNW density. Basically, the layer turns conductive when the AgNW density is high 

enough to assure percolation. Once percolation occurs, the nanowires form continuous conductive 

pathways. As a matter of fact, although it has not been investigated systematically, conductive 
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AgNW/N66 composites were obtained during the course of the present thesis work when Ag 

weight content was increased to 26.8%. Therefore, future work should investigate higher Ag 

content AgNW/N66 composites not only for mechanical reinforcement, but also for developing 

durable transparent conductive layers  
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