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Abstract: Wheat is one of the most important crops in the world. Wheat can be classified 

according to its qualitative requirement for low temperature to accelerate flowering (i.e. 

vernalization). Winter wheat has a vernalization requirement whereas spring wheat does 

not. Winter wheat can be further classified according to its quantitative vernalization 

requirement: weak winter, semi-winter, and strong winter types. Three genes were cloned 

based on qualitative variation in vernalization requirement between spring and winter 

wheat, but genes controlling quantitative variation among winter wheat cultivars are not 

well characterized. In this study, the following genetic features for wheat development 

were addressed.  

First, the micro RNA molecule TamiR1123 present in the Vrn-A1a promoter was found 

to be associated with the transcriptional level of Vrn-A1. Hence an alternative regulatory 

mechanism is proposed such that Vrn-A1 is regulated by plant age, low temperature, and 

short days through TamiR1123.  

Second, the vernalization requirement duration in winter wheat was found to be 

controlled by TaVRN-A1 at the protein level. The mutation in the gene encoding  

TaVRN-A1 thus impacts its interaction ability with TaHOX1. This protein-protein 

interaction was confirmed by in vitro and in vivo assays. A SNP in the gene encoding 

TaHOX1 was associated with flowering time variation. This study presented the first 

example that MADS and HOX proteins involving homeosis have a direct-binding 

relationship in higher plants.  

Third, TaHOX1 was mapped on chromosome 6B (TaHOX-B1), and homoeologues 

TaHOX-A1 and TaHOX-D1 were sequenced but showed no allelic variation. Whereas 

TaHOX-A2 was mapped on chromosome 2A due to an 18-bp indel polymorphism in exon 

1, TaHOX-B2 or TaHOX-D2 showed no allelic variation.  

Lastly a wheat centromeric protein encoded by TaCENPE1 from a yeast-2 hybrid (Y2H) 

library was also confirmed to directly bind with TaVRN1 in living cells based on a 

transient expression system applied in tobacco leaves. Plant height of TaCENPE1::RNAi 

transgenic wheat was reduced and more florets were produced relative to non-

transformed wheat.  
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CHAPTER I 
 

 

GENERAL INTRODUCTION  

 

 

Abstract 

All wheat cultivars grown in Oklahoma and surrounding states are of winter type, which 

require more or less vernalization for timely flowering. A unique characteristic of the 

winter wheat grown in this region is that wheat cultivars are utilized in the dual purpose 

agricultural system. These cultivars are required to have a longer vegetative growth 

phase, during which more plant biomass is produced for cattle grazing. In addition, 

proper timing of flowering and maturity are required to ensure that high grain yield is 

also achieved after grazing. This unique developmental pattern is genetically controlled 

by multiple genes responding to temperature and photoperiod. Three vernalization genes, 

VRN1, VRN2 and VRN3, have been cloned, but all of them were cloned based on 

qualitative variation between winter wheat with a vernalization requirement and spring 

wheat without this requirement. A tri-loci model (vrn-A1, PPD-D1, and vrn-D3) has been 

established to select for the development pattern of most winter wheat cultivars, but the  
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current model does not match up with phenotypes in some of the tested cultivars, suggesting 

that more genes are involved in developmental trait of winter wheat. 

In this study, we found that Vrn-A1 is regulated at the transcriptional level via 

TamiRNA1123 to determine flowering time in spring wheat cultivars, and the same gene is 

regulated at the protein level to determine the quantitative variation in vernalization 

requirement duration in winter wheat cultivars. 

1.1    The importance of wheat development 

Wheat is one of the most important crops 

Winter wheat (Triticum aestivum L. 2n=6x=42, AABBDD) is one of the most important 

crops for human nutrition in the world. U.S wheat occupies approximately 11% of the world 

supply, and nearly 35% of world exports in recent years. A substantial increase in the 

productivity of wheat is needed to meet the demands for food due to the projected increase in 

world population from current 6 billion to 9 billion by 2050 (McMichael, 2001). Wheat 

grown the Great Plains accounts for 40% of the total 20 million hectares U.S. harvested 

wheat and more than 50% of the total 48 million metric tons U.S. wheat production . 

In addition to biotic stresses of insects and diseases on wheat production, abiotic stresses 

such as adverse temperature and light are main factors that inhibit further increase of wheat 

productivity. A better understanding of major mechanisms underlying adaptation of wheat 

will enable us to understand why wheat is the most widely grown crop worldwide. The 

adaptive mechanisms can be explained by a few known genes and many more unknown 

genes controlling wheat development. 
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1.2    Genetic basis of wheat development 

Three pathways are established for wheat development 

Bread wheat is a hexaploid species and it could have as many as over 200 genes affecting 

flowering time, based on the prediction of flowering gene number in diploid Arabidopsis 

(Yan, 2009). Three pathways have been revealed involved in the regulation of flowering time 

in wheat, including vernalization, photoperiod, and earliness per se (Valárik et al., 2006). 

Vernalization is a major pathway controlling wheat development 

The temperate grasses, which include economically important species such as wheat, barley, 

rye, and oats, are well-adapted to cold winters. Most of these species require a prolonged 

period of cold treatment for timely flowering, a process referred to as vernalization. Wheat is 

divided into two types, based on its qualitative requirement for low temperature to accelerate 

flowering (i.e. vernalization), winter wheat with a vernalization requirement and spring 

wheat without this requirement (Law, 1967; Pugsley, 1971). Vernalization is an adaptive 

mechanism of the most importance, allowing winter wheat to synchronize its developmental 

transition with changes in seasonal climate (Flood and Halloran 1986; Kirby et al. 1999). 

This requirement delays the initiation of the reproductive phase and protects the sensitive 

floral meristems from frost damage during the winter. It also contributes to the precise 

adjustment of flowering time to seasonal changes, which is important to maximize seed 

production. Therefore, a better understanding of the mechanisms involved in the regulation 

of wheat flowering can contribute to the engineering of high yielding varieties adapted to 

changing environments. 
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In contrast with adverse effects of higher temperature on the reproductive developmental 

transition, increasing temperature in any season will increase growth rate resulting in 

precocious maturity due to a shorter phyllochron (McMaster, 2009). 

 

Photoperiod interacts with vernalization in regulation of wheat development 

Photoperiod also has complex and paradoxical effects on winter wheat development. Wheat 

is sensitive to long day (LD, 14 h or more light) and flowers earlier when exposed to LD; 

therefore, wheat is a LD plant. Winter wheat is required to meet vernalization under long 

days (Law, 1967; Law and Wolfe, 1966; Pugsley, 1971). Winter wheat, for which any 

requirement for vernalization has been fully satisfied, will have similar responses to ambient 

temperature as spring wheat (Snape et al. 2001). 

Wheat cultivars are classified into sensitive and insensitive types, based on their responses to 

photoperiod. A cultivar with photoperiod insensitivity is a mutant from sensitivity to LD, 

which enables the wheat to flower earlier under short day (SD) photoperiod conditions (Law 

and Worland, 1997; Snape et al., 2001). Short days can partially replace low temperature to 

promote the developmental transition of cultivars insensitive to photoperiod (Evans et al. 

1987; Heide 1994; Snape et al. 2001), but short days would repress plant growth. An earlier 

arrival of long days in spring in the temperate region would allow photoperiod-insensitive 

wheat to flower sooner (Turner et al. 2005). 
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Earliness pathway 

Earliness per se (EPS) is another characteristic of wheat. When a cultivar is not regulated by 

vernalization or photoperiod for flowering, this cultivar flowers early independently of the 

vernalization and photoperiod or under any environmental condition (Snape et al., 2001; 

Valárik et al., 2006). The flowering of the winter wheat cultivars without treatment with 

vernalization or photoperiod is due to plant age. 

Three genes for qualitative variation in vernalization requirement between spring 

wheat and winter wheat 

Three genes in the vernalization pathway controlling spring wheat development have been 

cloned, VRN1 (Yan et al. 2003), VRN2 (Yan et al. 2004a), and VRN3 (Yan et al. 2006). The 

three vernalization genes were cloned, based on clear segregation in three independent 

populations for vernalization requirement as a qualitative trait between winter wheat and 

spring wheat. 

VRN1 is an orthologue of the Arabidopsis meristem identity gene AP1 (Yan et al. 2003) that 

encodes a MADS-box protein and is responsible for the initiation of the transition from 

vegetative to reproductive apices (Mandel et al. 1992). VRN1 transcripts can be detected in 

spring wheat grown under natural conditions but not in winter wheat without vernalization. 

This VRN1 is further enhanced by long-day photoperiods (Petersen et al., 2004).
 
A dominant 

Vrn1 allele originated from mutations in the promoter or first intron of a recessive wild type 

vrn1 gene in diploid wheat and barley, tetraploid, and hexaploid wheat (Dubcovsky et al. 

2006; Fu et al. 2005; Yan et al. 2004a; Pidal et al. 2009). 

http://jxb.oxfordjournals.org/cgi/content/full/57/13/3419#BIB40
http://jxb.oxfordjournals.org/cgi/content/full/57/13/3419#BIB40
http://jxb.oxfordjournals.org/cgi/content/full/57/13/3419#BIB40
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VRN2 is a transcription factor containing a conserved region encoding a CCT domain in its 

protein (Yan et al. 2004a). A recessive vrn2 allele was caused by a point mutation resulting 

in an alteration of an amino acid at the conserved CCT domain of the VRN2 protein or 

complete deletion of this gene in diploid wheat (Yan et al. 2004b; Distelfeld et al 2009a). 

VRN3 is an orthologue of the Arabidopsis flowering gene FT  (Abe et al. 2005; Corbesier et 

al. 2007; Tamaki et al. 2007; Wigge et al. 2005) and the rice Hd3a (Yano et al. 2001) gene, 

and allelic variation at VRN3 is related with mutations in its promoter in wheat and its first 

intron in barley (Yan et al. 2006). 

All known vernalization genes are cloned according to qualitative variation in vernalization 

requirement between spring and winter wheat, but genes controlling quantitative variation for 

more or less vernalization requirement among winter wheat cultivars remain unknown. It 

could be reasonable to speculate that genetic factors or mechanisms which account for the 

qualitative trait cannot be used to explain the quantitative trait for various durations of 

vernalization requirements among winter wheat cultivars.  

Complex and paradoxical effects of altered temperature and photoperiod on 

development and growth of winter wheat 

Genes which confer photoperiod response in wheat were isolated, according to the sequence 

of the orthologous photoperiod gene PPD-H1 in barley (Turner et al. 2005). A PCR marker 

for PPD-D1 was developed to distinguish between wheat varieties sensitive and insensitive 

to photoperiod, based on a 2-kb deletion upstream from its coding region that causes mis-

expression in cultivars insensitive to photoperiod (Beales et al., 2007). PPD-D1 had a large 

effect on heading date in spring wheat cultivars grown at high latitudes (Snape et al., 2001; 
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Beales et al., 2007), but it was also mapped in the center of a major QTL for segregation of 

heading date in two winter wheat populations grown at low latitudes (Chen et al. 2010; Wang 

et al. 2009), demonstrating the extensive utilization of PPD-D1 regardless of growth habit. 

No regulatory site has been determined for PPD-B1 due to a lack of polymorphism in the 

genic and promoter regions in spring wheat (Beales et al. 2007). Although PPD-B1 was 

mapped in the center of a major QTL for heading date in a winter wheat population, PPD-B1 

showed no allelic variation in sequence (Wang et al. 2009). No allelic variation in PPD-A1 is 

known in hexaploid wheat, but two independent deletions of PPD-A1 are associated with 

photoperiod insensitivity in tetraploid wheat (Wilhelm et al. 2009). 

In addition to the independent role of each of the genes in vernalization and photoperiod 

pathways, interactions between the genes in the two pathways will cause greater complexity 

in understanding wheat development. For example, Vrn1 and Vrn3 are dominant for spring 

growth habit, whereas Vrn2 is dominant for winter growth habit; but the dominance of Vrn2 

is masked in the presence of a dominant Vrn1 or Vrn3 gene, due to epistatic interaction 

between VRN2 and VRN1 or VRN3 (Tranquilli and Dubcovsky, 2000; Takahashi and Yasuda, 

1971). Vrn2 is repressed not only by low temperature (Yan et al. 2004b) but also by 

photoperiod (Dubcovsky et al. 2006; Trevaskis et al. 2006). PPD1 genes have interactions 

with FT (=VRN3) at the transcriptional level (Turner et al. 2005; Wilhelm et al. 2009). These 

previous studies were conducted in diploid wheat or barley. 

1.3    Genes controlling development of dual purpose wheat 

Winter wheat cultivars have a quantitative difference in vernalization requirement 

duration 
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Winter wheat varieties are reported to have various vernalization requirement durations to 

attain a vernalization saturation point, from which further exposure to low temperature will 

not result in any more acceleration of flowering time or reduction of final leaf number (Berry 

et al. 1980; Wang et al. 1995a; Wang et al. 1995b). It has been reported that as many as 12 

weeks of low temperature was required for winter wheat cultivar Yeoman to attain a 

vernalization saturation point (Baloch et al. 2003; Berry et al. 1980; Crofts 1989). Low 

temperature confers typically 2-10°C, which has significant effects, but vernalization rate 

will decline at temperatures above 11°C and it will be apparently
 
ineffective above 18°C 

(Brooking 1996). Winter wheat is sub-divided into three types, based on its quantitative 

requirement for low temperature duration to satisfy vernalization, including weak winter 

wheat, semi-winter wheat, and strong winter wheat (Berry et al. 1980; Crofts 1989). 

Dual purpose wheat has a unique development pattern 

All of wheat grown in Oklahoma is winter wheat, which is used for dual purpose: biomass at 

seedling stage is used for cattle to graze and grains from the plants are harvested later. Wheat 

cultivars utilized in the dual purpose agricultural system are required to have a longer 

vegetative growth phase, during which more plant biomass is produced for cattle grazing 

(Chen et al. 2009). In addition, proper timing of flowering and maturity are required to 

ensure that high grain yield is also achieved after grazing. This unique developmental pattern 

is genetically controlled by multiple genes responding to temperature and photoperiod. 

The timing of a developmental stage is important in production for the dual purpose wheat. 

Based on morphological or agronomic changes, the wheat life cycle can be recorded at 

several critical stages at development, including seed emergency, stem elongation prior to 
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jointing, booting, heading, flowering, grain filling, and maturity (Zadoks et al., 1974; 

McMaster, 2009). The dual purpose wheat is required to have a longer phase from 

germination to stem elongation (GE-STE), but a not too shortened phase from stem 

elongation to heading time (STE-HD), or from heading time to physiological maturity (HD-

PM) (Chen et al. 2010).  

Three genes have genetic effects for the unique development pattern of dual purpose 

wheat 

Winter wheat development is regulated by genes that are identified by mapping winter wheat 

population. Three QTLs for variation in the developmental process from stem elongation to 

physiological maturity were found in a winter wheat population of recombinant inbred lines 

(RILs) that are generated from two winter wheat cultivars, ‘Jagger’ and ‘2174’ (Chen et al. 

2010). Each of the three major QTLs is tightly associated with a known flowering gene, vrn-

A1 on chromosome 5A, PPD-D1 on chromosome 2D, and vrn-D3 on chromosome 7D. The 

effect of vrn-A1 decreased from stem elongation through heading to physiological maturity, 

the effect of PPD-D1 was minor at stem elongation but increased up to heading then 

decreased at physiological maturity, and the effect of vrn-D3 was not detected at stem 

elongation but increased at heading up to physiological maturity. Therefore, vrn-A1, PPD-

D1, and vrn-D3 had greatest impact on development at stem elongation, heading date, and 

physiological maturity, respectively. 

The allelic variation in PPD-D1 between the Jagger allele and the 2174 allele relies on a 

mutation in the promoter region of this gene. Jagger has an allele sensitive to photoperiod for 
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late development, whereas 2174 has an allele insensitive to photoperiod for early 

development (Chen et al. 2009; 2010; Wang et al. 2009). 

The genetic and molecular mechanisms which account for the qualitative difference between 

the two divergent types of wheat are not expected to explain the quantitative variation in 

development between winter wheat cultivars. For instance, allelic variation in vrn-D3 in 

winter wheat does not occur in the promoter or intron regions where the variation is 

characterized at the DNA level for spring wheat, but it does occur as a mutation in the coding 

region that alters vrn-D3 protein sequences (Bonnin et al. 2008; Chen et al. 2009; 2010; 

Wang et al. 2009). This newly discovered functional mechanism can be manipulated to 

regulate adult plant development of winter wheat. 

vrn-A1 also has mechanism similar to that of vrn-D3, because the point mutation in the 

coding region in vrn-A1  results in an alteration of a critical amino acid in the conserved K-

box of the vrn-A1 protein (preliminary results). This mechanism is revealed by cloning the 

QTL centered on vrn-A1 for quantitative vernalization duration in winter wheat (Li et al., 

2013). 

Unidentified genetic parts in the development pathways in wheat 

The tri-loci model (vrn-A1, PPD-D1, and vrn-D3) of selection for winter wheat development 

is not conclusive, because the current model does not match up with phenotypes in some of 

the tested cultivars, such as Fannin that is extremely early and Trego that is extremely late in 

development, suggesting that more genes are involved in developmental trait of winter 

wheat. The missing part in the winter wheat development pathway could be found using two 
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different research strategies: one through genetics method and the other through biochemistry 

method. 

On the genetic part, it is possible that missing part in the winter wheat development pathway 

is in gaps between the linkage groups mapped in the winter wheat population, since the 

previous SSR (simple sequence repeat) markers did not sufficiently cover the whole genome. 

Our lab is using genome-wide SNP (single nucleotide polymorphism) markers to construct 

higher density genetic maps for the mapping population. It is also possible that some genetic 

factors controlling winter wheat development were not detected in the Jagger x 2174 

population because the two parental lines may have the same allele for those unknown gene 

loci. A new doubled haploid (DH) population using two winter wheat cultivars, Duster and 

Billings that have the same allele at each of the three known genes but have a significant 

difference in developmental processes, has been generated to identify new genes/QTLs in the 

Duster and Billings DH population. 

The missing part in the winter wheat development pathway can also be found by protein and 

protein interactions. In comparison with research on a functional gene at the DNA level 

which characterizes transcription and translation of genes, protein studies have received less 

attention. Protein-protein interaction has been considered as increasingly important for 

understanding the molecular mechanism of biological process (Pawson and Nash, 2003), 

such as plant vernalization. Several methods have been proposed for studying the protein-

protein interaction. Yeast two-hybrid (Y2H) approaches have been very successful in 

identifying the protein interaction partners these years. Y2H analysis is a robust method for 

detecting pair-wise protein-protein interactions in a cellular setting (Parrish et al. 2006). The 

proteins known for winter wheat development can be used as bait to screen the available 
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Y2H libraries and find interacting proteins. Mapping interacting proteins has emerged as a 

new technique in application of functional genes. In rice, 116 representative rice kinases and 

255 of their interacting proteins have been linked to disease resistance pathways established 

via large-scale mass spectrometry and Y2H screening (Ding et al. 2009). However, no 

similar information is available for wheat. This project is to establish the development 

pathways via micro RNA and proteins interact with VRN-A1. 

1.4    Pleiotropic effects of genes on vernalziation requirement, drought resistance, 

and maturity time in wheat 

Pleiotropic effects of cloned vernalization genes 

In addition to the independent role of each of these known vernalization genes in controlling 

the difference in vernalization requirement, the vernalization genes were found to have 

pleiotropic effects on agronomic traits. In a recent study on winter wheat, the vrn-A1 locus 

was found associated with variation in the stem elongation in the winter wheat Jagger x 2174 

RIL population (Chen et al. 2009), and this locus influenced subsequent timing of heading 

and physiological maturity when characterized in the field for three years (Chen et al. 2010). 

Allelic variation in the dominant Vrn-A1 locus also indicated pleiotropic genetic effects in 

spring wheat cultivars (Baga et al. 2009; Blake et al. 2009; Distelfeld et al. 2010; Kuchel et 

al. 2006; Li et al. 2008; Santra et al. 2009; Shimada et al. 2009; Shitsukawa et al. 2007; 

Zhang et al. 2008), supporting that the VRN-A1 locus has pleiotropic effects on wheat 

development. 

VRN2 was cloned in diploid wheat, but this gene has not been either mapped or utilized for 

breeding purposes in hexaploid wheat, probably due to a rare occurrence of spring growth 
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habit that is caused by a null or nonfunctional allele at all three VRN-2 genes in a given 

cultivar in this species. VRN2 is indeed functional in hexaploid wheat, as confirmed by 

previous reports that reduction in RNA level
 
of VRN2 by RNAi accelerated the flowering 

time of
 
transgenic plants by more than one month (Yan et al. 2004b) and that VRN2 

expression was down-regulated by vernalization in hexaploid winter wheat cv. Jagger (Yan 

et al. 2004b) and Triple Dirk lines (Loukoianov et al. 2005). Particularly important is that 

VRN2 has been found to have pleiotropic effects in plants. A closest orthologue (Ghd2) of 

VRN2 contributes significantly to adaptation in drought stress environment and to yield 

productivity in rice (Xue et al. 2008). Heterologous expression of the wheat VRN2 gene in 

Arabidopsis had a significant effect on adaptability to the environmental stresses including 

dehydration, salt, heat shock, wounding, and abscissic acid (Diallo et al. 2010). The 

conserved CCT domain present in VRN2 proteins interacts with HEME ACTIVATOR 

PROTEIN (HAP), for which transcript levels are regulated by drought and osmotic stress in 

Arabidopsis (Distelfeld et al 2009b). These studies lead to the exciting possibility that VRN2 

may contribute to drought resistance, in addition to its more widely recognized effect on 

vernalization requirement. 

VRN3 was found to have significant effects on heading date and physiological maturity in 

two winter wheat populations, Jagger x 2174 (Chen et al. 2010) and Intrada x Cimarron 

(Wang et al. 2009), and extensive wheat cultivars (Bonnin et al. 2008). Allelic variation in 

vrn-D3 does not occur in the promoter or intron regions but as a mutation in coding region 

that alters vrn-D3 protein sequence. This new functional mechanism can be used to regulate 

adult plant development to avoid heat damage in later stages of grain filling. 
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Multiple traits are controlled by genetic factors on chromosome 5A 

In winter wheat, vernalization and cold hardiness were reported to be correlated with several 

morphological traits, including prostrate or rosette growth habit (Salmon 1917; Klages 1926; 

Taylor and Olsen 1976; Zelenski and Remeslo 1977; Robert 1982; McIntosh 1983; Taylor 

1983; Roberts and Larson 1985; Roberts 1986; Chaudhry 1986), plant height (Fowler and 

Gusta 1977; Fowler et al. 1981), and leaf length (Roberts and MacDonald 1984, 1988). 

Allelic variation in the dominant Vrn-A1 locus also indicated pleiotropic genetic effects in 

spring wheat cultivars (Baga et al. 2009; Blake et al. 2009; Distelfeld et al. 2010; Kuchel et 

al. 2006; Li et al. 2008; Santra et al. 2009; Shimada et al. 2009; Shitsukawa et al. 2007; 

Zhang et al. 2008). These previous studies supported that the VRN-A1 locus has different 

mechanisms in controlling wheat development. It was very recent reported that VRN-A1 was 

associated with spike development (Pearce et al. 2013) and froest tolerance (Zhu et al., 

2014). The complete deletion of the VRN1 gene in diploid wheat enables the mutant wheat 

not to flower forever under any conditions, suggesting that signals from different 

developmental pathways converge at VRN1. It is postulated that VRN1 would code for 

production of a temperature-sensitive protein, which undergoes conformational changes with 

changes in temperature (Robert 1989). In this study, we will identify proteins that interact 

with VRN1 and test if the interacting proteins have any genetic effects on multiple traits as 

reported. 
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CHAPTER II 
 

 

TamiR1123 ORIGINATED FROM A FAMILY OF MINIATURE INVERTED-REPEAT 

TRANSPOSABLE ELEMENTS (MITE) INCLUDING ONE INSERTED IN THE Vrn-A1a 

PROMOTER IN WHEAT* 

 

*This study has been published in Plant Sciences, Ming Yu, Brett F. Carver, Liuling Yan, 2014. 

117-123 

 

Abstract 

More than half of spring wheat cultivars have a Vrn-A1a allele that has an insertion of a 

miniature inverted-repeat transposable element (MITE) in its promoter. In this study, we 

found that the MITE present in the Vrn-A1a gene (MITE_VRN) is a nearly perfect 

palindrome and it can form highly stable hairpin loop when expressed as RNA.  

MITE_VRN also possessed sequences of a microRNA in T. aestivum (TamiR1123). The 

P
32

 labeled TamiR1123 probe detected two RNA molecules on a small RNA gel blot, one 

expected for MITE_VRN, and the other expected for TamiR1123. These results 

demonstrated that MITE_VRN was expressed as RNAs and TamiR1123 was originated 

from the MITE_VRN family. The isogenic line TDD carrying the dominant Vrn-A1a  
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allele with MITE_VRN showed higher TamiR1123 and Vrn-A1a transcript levels than 

the isogenic line TDE carrying the recessive vrn-A1a allele without MITE_VRN.  

TamiR1123 was greatly up-regulated by plant age but slightly down-regulated by low 

temperature and short days. These findings have pointed to a specific mechanism for the 

origin and evolution of TamiR1123 and additional regulatory mechanisms for plant 

development governed by Vrn-A1a in spring wheat. 

2.1  Introduction 

Wheat is the most widely grown crop, occupying 17% of all cultivated land and 

providing approximately 55% of the world’s carbohydrates, and serving as a major staple 

to approximately 35% of the world population (Gill et al., 2004). Wheat cultivars are 

generally classified into two general types: winter wheat with variable vernalization 

requirement for a proper flowering time and thus successful grain reproduction and 

spring wheat without this requirement (Pugsley, 1971; Chouard, 1960; Amasino, 2004). 

The decoding of vernalization genes can facilitate understanding of the vernalization 

phenomenon that extensively exists in the plant kingdom.  

The cloning of a gene, via a positional cloning approach from hexaploid common wheat 

(Triticum aestivum L, 2n=6x=42, AABBDD), seemed impossible a decade ago due to the 

large genome size (16,000 Mb), the complex structure of homoeologous genomes, and 

the highly repetitive genomic sequences of wheat (80%) (Bennett and Leitch, 1995; 

SanMiguel et al., 2002; Wicker et al., 2003). Diploid wheat T. monoccoccum (2n=2x=14, 

A
m

A
m

) has a single genome and was selected to clone the first vernalization gene VRN-

A
m
1, in which its genetic effect segregated according to a one-gene model in a diploid 
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wheat population (Tranquilli and Dubcovsky, 2000). VRN-A
m
1 was cloned (Yan et al., 

2003), and it is an orthologue of the meristem identity gene AP1 encoding a MADS-box 

protein for the initiation of the transition from vegetative to reproductive apices in 

Arabidopsis (Mandel et al., 1992). Allelic variation in VRN-A
m
1 between the dominant 

Vrn-A
m
1 allele for spring wheat and the recessive vrn-A

m
1 allele for winter wheat relies 

on mutations in the promoter in diploid wheat (Yan et al., 2004a; Dubcovsky et al., 2006; 

Pidal et al., 2009; Fu et al., 2005). Mutations in the promoter region of the wild type vrn-

A
m
1 in diploid winter wheat are believed to result in multiple spring Vrn-A

m
1 alleles 

varying in lengths of deletions (alleles Vrn-A
m
1a, Vrn-A

m
1b, Vrn-A

m
1g, Vrn-A

m
1f) 

involved in a so-called CArG-box recognition site (Yan et al., 2004a; Pidal et al., 2009; 

Golovnina et al., 2010).  

The availability of these VRN-A
m
1 sequences has facilitated identifying allelic variation 

in orthologous VRN1 genes in diverse wheat species, including two homoeologous genes 

VRN-A1 and VRN-B1 in tetraploid wheat T. turgidum (2n=4x=28, AABB) and VRN-A1 

and VRN-G1 in T. timopheevii (2n=4x=28, AAGG), and three homoeologous genes VRN-

A1, VRN-B1 and VRN-D1 in hexaploid T. aestivum. The Vrn-D1 gene in hexaploid wheat 

has a single form of mutations in intron one due to the presence of a large deletion (Fu et 

al., 2005); the Vrn-B1 gene has the deletion in intron one in tetraploid T. turgidum ssp. 

durum and hexaploid wheat (Fu et al., 2005; Golovnina et al., 2010; Yan et al., 2004b). In 

a recent study, it was found that the Vrn-B1 gene has a 5.6 kb retrotransposable element 

(Retrotrans_VRN) in the 5’-untranslated region (UTR) in tetraploid wheat, which is 

prevalent among T. turgidum subsp. carthlicum (Chu et al., 2011). In addition to small 

deletions in the promoter (Vrn-A1d and Vrn-A1e) observed in tetraploid wheat or a large 
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deletion in intron one (Vrn-A1c) observed in hexaploid wheat, the Vrn-A1 gene has a 

miniature inverted-repeat transposable element (MITE) that is inserted in its promoter 

(Vrn-A1a) (MITE_VRN) in more than half of all hexaploid wheat varieties (Yan et al., 

2004b). 

Without vernalization, the winter recessive vrn-A1a allele was not expressed and plant 

flowering time was delayed, whereas the spring dominant Vrn-A1a allele was expressed 

and the plant flowered (Yan et al., 2003; Danyluk et al., 2003; Murai et al., 2003; 

Trevaskis et al., 2003). A model was proposed to explain mechanisms underlying growth 

habit by VRN-A1a. In this model, without vernalization the winter vrn-A1a allele cannot 

be expressed due to the presence of repressors in the binding site in the vrn-A1a promoter, 

and the repressors can be removed by vernalization. Further studies have indicated that 

VRT2 (Kane et al., 2005) or TaFD1 (Li and Dubcovsky, 2008) can bind to the vrn-A1a 

promoter. On the other hand, the spring Vrn-A1a allele is expressed without vernalization 

requirement, because the spring Vrn-A1a promoters are impaired due to the insertion of 

the MITE or other retrotransposal elements or deletions; therefore, the flowering 

repressor cannot bind to the Vrn-A1a promoters. However, the previous model cannot 

explain why those plants that carry MITE_VRN produce more Vrn-A1a transcripts and 

flowered earlier than those plants that carry other mutant alleles with deletions in their 

promoters or intron 1 (Yan et al., 2004b; Loukoianov et al., 2003).  

In our further analysis on MITE_VRN, we found that MITE_VRN possessed sequences 

of a microRNA in T. aestivum (TamiR1123). This finding has encouraged us to test if 

there are additional regulatory mechanisms through TamiR1123 in spring wheat.  
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2.2  Materials and Methods  

Plant materials 

We investigated the spring wheat near-isogenic Triple Dirk D line (TDD), which has a 

dominant Vrn-A1a allele with MITE_VRN but a recessive allele at each of vrn-B1 and 

vrn-D1. As a control, we used the near-isogenic Triple Dirk E line (TDE), which has a 

recessive vrn-A1a allele without MITE_VRN but is also a spring type. The spring growth 

habit was determined by the dominant Vrn-D1 gene (Fu et al., 2005). These near-isogenic 

lines have provided a useful tool to study the effect of different VRN1 genes in hexaploid 

wheat without the confounding effect of other genes affecting flowering time (Pugsley, 

1971).   

The TDD and TDE lines were initially grown in a greenhouse at 20-25°C and with a long 

day photoperiod (LD, 16/8 hours light/dark). At the 3
rd

-leaf stage, the first set of the two 

lines were moved into a cold room with 4°C and the same LD photoperiod, and the 

second set of the two lines were moved into a growth chamber with 20-25°C but with a 

short day photoperiod  (SD, 8/16 hours light/dark). After 5 days, these temperature-

photoperiod treated plants and the 3
rd

 set plants that were continuously kept in the 

greenhouse were collected for leaf samples for analyses of small RNA blot and VRN-A1a 

transcript levels.  

RNA gel blot analysis with a P
32

 labeled Tami1123 probe 

Small RNAs were isolated from leaves of the TDD and TDE plants growing under 

different conditions. Total RNA was extracted using Trizol regents (Invitrogen). RNA 

samples were size-fractioned on a 15% denaturing polyacrylamide gel and then 
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electrophoretically transferred to a Hybond-N
+
 membrane (Amersham Biosciences). The 

membrane was UV cross-linked to fix RNA on the membrane. The small RNA 

membrane was hybridized with two probes. One probe was TamiR1123 (5’-

TCCGTGAGACCTGGTCTCATAGA-3’) that has the same sequence as observed in 

MITE_VRN. The other probe was U6 (5’-TCATCCTTGCGCAGGGGCCA-3’) that was 

used as a control to ensure that the membrane had small RNA molecules. The 

hybridization was performed using the protocol described previously (Sunkar, 2008). 

Briefly, a DNA fragment was end-labeled with γ-
32

P-ATP using T4 polynucleotide kinase 

(New England Biolabs), which was used to test if the probe has sequence complementary 

to small RNA or micro RNA molecules that were size-fractionated on the small RNA 

blot. The blot membrane was pre-hybridized in Perfect-Hyb Plus buff (Sigma) for 2 hours, 

and the 
32

P probe was then added to hybridize with the membrane at 38°C for 16 hours. 

The hybridized membrane was washed with 2X SSC buffer plus 1% SDS for three times 

at 50°C, 10 minutes for each. The filter was exposed for 24 hours and images were taken 

using a scanner (Typhoon). 

ImageJ 1.32 software (National institutions of Health, Bethesda, MD. 

http://rsb.info.nih.gov/ij) was used to quantify the density of different signals on blots. 

The signal of MITE_VRN or TamR1123 was compared between different samples by 

converting to the ratio of its own signal density over the density of its respective U6 

signal density.  

 

 

http://rsb.info.nih.gov/ij
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VRN-A1a expression pattern 

The RNA samples from the TDD and TDE plants were treated with Deoxyribonuclease I 

and first-strand cDNA was synthesized using a SuperScript
TM

 II Reverse Transcriptase 

kit (Invitrogen). Primers vrn-A1-Exp-F1 (5’- 

GAATAAAGTTCTCCAGAAGGAACTCGTG-3’) and vrn-A1-Exp-R2 (5’- 

GCATGAAGGAAGAAGATGAAGAGCTG-3’) that are specific to Vrn-A1a 

(Loukoianov et al., 2005) were used to determine its transcript levels in leaves of plants. 

Primers actin-F1 (5’-ATGGAAGCTGCTGGAATCCAT-3’) and actin-R1 (5’-

CCTTGCTCATACGGTCAGCAATAC-3’) were used to amplify transcripts of actin as 

endogenous control. A quantitative RT-PCR was performed using a 7500 Real-Time 

PCR System (Applied Biosystems) and iQ
TM

 SYBR Green Supermix kit (BIO-RAD) and 

the Applied Biosystems 7500 Real-Time PCR Systems.  

Sequence data analyses 

It was reported that the TDD line has a duplicated copy including the promoter, exon 1 

and partial intron 1 (Yan et al., 2004b), but it was not known which copy is original or 

duplicated. The only difference observed between the two copies is the size of a 

MITE_VRN in the promoters. The MITE-VRN structure of each of two Vrn-A1a copies 

was predicted using DNA folding form program at http://mfold.rit.albany.edu/. The 

MITE-VRN sequences were used to search the miRNA database at 

http://www.mirbase.org.  

The MITE_VRN sequences were used to search the wheat genomic sequence database at 

http://www.cerealsdb.uk.net to determine its copy number. The MITE_VRN flanking 

http://mfold.rit.albany.edu/
http://www.mirbase.org/
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sequences of targeted fragments were searched in GenBank for potential genes. The 

TamiR1123 sequences found in the sequences were also used to search in GenBank 

expressed sequence tags (EST) databases for potential target genes. 

2.3 Results  

The insertion of transposable elements in multiple Vrn-A1 genes 

The previously reported foldback element (MITE_VRN) with a target site duplication 

(TSD= TTAAAAACC) in the dominant Vrn-A1a allele in the TDD line was inserted in a 

CG-rich region, where there are 14 G/C in 16 bp (CCTCCCCCCCTGCCGG) at the 3’ 

downstream of the TSD element (Fig.1C). A member of the MITE_VRN family was 

found to insert in Vrn-G1, with a TSD (CTCCGCCC), where there are 9 G/C in 11 bp 

(TCCCCTCCCCG) at the 3’ downstream of the TSD element (Fig.1D). Interestingly, a 

5.6 kb retrotransposal element (Retrotrans_VRN) (Chu et al., 2011)was inserted in Vrn-B1 

at the exactly same site as Vrn-G1, though Vrn-B1 has a different TSD sequence 

(CTCCG) (Fig.1E).  

These observations indicated that different MITE and TE inserted in Vrn-A1 genes in the 

upstream region from the start codon ATG, where it is GC-rich. This is characteristic of a 

MITE or TE insertion preference (Ferguson et al., 2011). The difference in the insertion 

site between Vrn-A1a and the other two Vrn-1 genes is that MITE_VRN was placed on 

the upstream side of the transcriptional site (or the promoter region) in Vrn-A1a but 

MITE_VRN or Retrotrans_VRN was located on the downstream side of the 

transcriptional site or the 5’-UTR in the other two Vrn-1 genes. 
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A nearly perfect palindrome of the MITE_VRN containing TamiR1123  

A previous study reported that there were two copies of Vrn-A1a in the TDD line; one 

has the insertion of a 222-bp MITE and the other has a 131-bp MITE (Yan et al., 2004b). 

The two MITE_VRN sequences have the same inverted repeat sequences 

(GGAAAAAATT) but different lengths between the flanking sequences, suggesting that 

they were originated from a duplication event. Using DNA folding form program, it was 

predicted that the 222-bp MITE_VRN possessed a nearly perfect palindrome (Fig.1B), 

whereas the shorter 131-bp MITE cannot form a perfect palindrome due to the absence of 

a 91-bp deletion (data not shown). It is likely that the 91-bp section in the duplicated Vrn-

A1a copy lost during or after the gene duplication. Only the original Vrn-A1a containing 

MITE_VRN was further analyzed in this study. 

The search of MITE_VRN sequences in the miRNA database at http://www.mirbase.org 

found that MITE_VRN possessed a 23 bp sequence, 

TCCGTGAGACCTGGTCTCATAGA (Fig.1A), which was complementary to 

TamiR1123 (Fig.1A). The TamiRNA1123 was a microRNA that was found expressed in 

wheat, but it was mistakenly named as miR507 (Yao et al., 2007). There are 4 

mismatches between TamiR1123 and the element 

(TATATGAGACCAGGTCTCATATA) (Fig.1B). These observations suggested that if 

MITE_VRN with highly stable hairpin loops was expressed as RNA molecules, it could 

be recognized by RNA interference enzymatic machinery and processed to form mature 

TamiR1123.   

 

http://www.mirbase.org/
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Fig.1 MITE_VRN in wheat genomes. (A) TamiR1123 is derived from MITE_VRN. 

(B) MITE_VRN forms a stem loop structure. (C) MITE_VRN is inserted in Vrn-A1a at 

TTAAAAACC. (D) MITE_VRN is inserted in Vrn-G1 at CTCCGCCC. (E) 

Retrotrans_Vrn in Vrn-B1 is inserted at CTCCG in the same site as MITE_VRN in Vrn-

G1. (C)-(E), CArG-box and transcriptional site in Vrn-A1a is indicated to show that 

MITE_VRN is in the Vrn-A1a promoter region, whereas MITE_VRN in Vrn-G1 and 

Retrotrans_VRN are in the 5’-UTR. (F) MITE_VRN is in 28 wheat genome sequence 

contigs with various host direct duplication. (G) MITE_VRN is in 8 EST sequences with 

the same host direct duplication. A work model for the loop between MITE_VRN, 

miR1123, and targeted genes/genomic sites is diagrammed with lines. 

 



25 
 

 

The existence of MITE_VRN and TamiR1123 in small RNAs 

To confirm that MITE_VRN was expressed as RNAs, a 
32

P labeled TamiR1123 probe 

was used to analyze a small RNA blot that was generated from the leaves of the TDD and 

TDE plants under different conditions. The 
32

P labeled small RNA U6 probe was used as 

a control to ensure that small RNAs from each samples were transferred on blot 

membranes. As expected, the 
32

P probes of both TamiR1123 and U6 detected positive 

hybridization signals on the small RNA blot.  

As shown in Fig.2A, the U6 probe detected RNAs as a single band in all samples. When 

the same membrane hybridized with the U6 probe was washed and then hybridized with 

the TamiR1123 probe, three bands appeared in each sample as shown in Fig.2B. The 

highest band was from U6 signal rescues, and the middle band and the lowest band were 

two new signals that should be from the TamiR1123 probe. When a brand new 

membrane was hybridized with the TamiR1123 probe, only two bands with the same 

sized as shown for the middle band and the lowest band were observed (data not shown), 

confirming that the TamiR1123 probe detected the two small RNA molecules. 

The middle band size (Fig.2B) was expected for MITE_VRN, compared with the U6 

band (250-300 bp). The lowest band was expected for TamiR1123. These results 

demonstrated that both MITE_VRN and TamiR1123 existed in the RNA samples. The 

appearance of the positive and discrete small RNA molecules on the small RNA blot 

indicated that they were not degradation products of RNA but from MITE_VRN of a 

hairpin structure. The expressed MITE_VRN was also processed to mature TamiR1123. 
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Therefore, the member of MITE_VRN family might be one of the precursors of 

TamiR1123.  

The regulation of MITE_VRN and TamiR1123 by internal and external factors 

Both of the isogenic TDD line (lanes 1 and 3-5, Fig.2B) and the isogenic TDE line (lanes 

2 and 6-8, Fig.2B) were detected to have the middle hybridization signal representing 

MITE_VRN and the lower signal representing TamiR1123 molecules. Using the ImageJ 

software, the amount of the MITE_VRN and TamiR1123 molecules in each sample was 

converted to percentage of U6 hybridization signals in the same sample. U6 was used as 

an endogenous control. 

The MITE_VRN in the TDD line (graph 1, Fig.2C) was not higher but slightly lower 

than that in the TDE line (graph 2, Fig.2C). It was possible that the difference in 

MITE_VRN transcription between the TDD line and the TDE line was masked due to the 

presence of multiple MITE copies in wheat, as shown in later results. In both TDD 

(graphs 3-5, Fig.2C) and TDE (graphs 6-8, Fig.2C), MITE_VRN signals were decreased 

with plant age and treatments with low temperature and short days. 

A significant difference in the TamiR1123 molecules was detected between the two 

isogenic lines. The TDD line (graph 1, Fig.2D) showed much more TamiR1123 

molecules than the TDE line (graph 2, Fig.2D). When the TDD line was continuously 

kept in a greenhouse with long day and room temperature, the plants were observed to 

have more TamiR1123 molecules after 5 days (graph 3, Fig.2D). When the plant was 

treated with low temperature (graphs 4, Fig.2D) or short day (graph 5, Fig.2B), 
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Fig.2 Expression of MITE_VRN and TamiR1123. (A) Expression patterns of micro RNA 

U6. (B) Expression patterns of TamiR1123.  RNA gel blots of small RNAs from isogenic 

TDD line with MITE_VRN at Vrn-A1a and the TDE line without MITE_VRN at Vrn-A1a. 

The blot was probed with labeled oligonucleotides. The small RNA samples were collected 

from leaves of the plants at the beginning of experiments (CK) and the plants grown at 

greenhouse (GH) or treated with low temperature (LT) or short days (SD) for 5 days. (C) 

Expression amount of MITE_VRN relative to U6. (D) Expression amount of TamiR1123 

relative to U6. 

 

TamiR1123 molecules were significantly increased. The TamiR1123 at TDE line showed 

a low level under these conditions (graphs 6-8, Fig.2D). 
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Association of TamiR1123 molecules with Vrn-A1a transcript levels 

The VRN-A1a transcript levels in the TDD and TDE lines were determined using a 

quantitative RT-PCR (Fig.3). The expression of dominant Vrn-A1a in the TDD line was 

detected in seedlings grown in the greenhouse (TDD-CK). The Vrn-A1a transcript level 

was 31.7 before the plants were treated with different conditions, and it was increased to 

52.5 after 5 days (TDD-GH). Vrn-A1a transcript level was also increased in plants treated 

with low temperature (TDD-LT) or short day (TDD-SD) compared with TDD-CK but 

slightly decreased compared with the plants that were continuously kept in the 

greenhouse (TDD-GH). The vrn-A1a transcript level in the TDE seedlings grown in the 

greenhouse (TDE-CK) was 4.8, which was 40% in the TDE seedlings grown under the 

same condition after 5 days (Fig.3). A similar result was shown in the TDE line treated 

with low temperature and short days as the TDD line. Overall, Vrn-A1a transcripts were 

5.8 folds as vrn-A1a transcripts in the isogenic lines. Under any condition, the Vrn-A1a 

transcript level in the TDD line was significantly higher than the vrn-A1a transcript level 

in the TDE line.  

Both Vrn-A1a and TamiR1123 transcripts were regulated positively by plant age and 

negatively by low temperature and short days. The concomitant expression of Vrn-A1a in 

the normal RNA samples with TamiR1123 molecules in the small RNA samples 

suggested that Vrn-A1a could be induced by TamiR1123.   
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The copy number of MITE_VRN in hexaploid wheat 

The availability of 5-fold coverage of the whole-wheat genome 

(http://www.cerealsdb.uk.net) has facilitated identification of the copy number of 

MITE_VRN in the entire wheat genome. A total of 124 wheat genome contigs (as of 

March 30, 2013) were hit in ‘Draft assembly of gene-rich regions’ (E value<1.0e-05). 

However, only 28 hits were found to have similar sequences in the complete MITE_VRN 

Fig.3 Expression profiles of Vrn-A11. Transcript levels of Vrn-A1a in TDD and 

vrn-A11a in TDE are shown using the values calculated by the 2
(-CT) 

method, 

where CT is the threshold cycle, and actin was used as an endogenous control. RNA 

samples were collected were collected from leaves of the plants at the beginning of 

experiments (CK) and the plants grown at greenhouse (GH) or treated with low 

temperature (LT) or short days (SD) for 5 days plants. The values represent mean 

expression levels (n=12), and the bar indicates standard error. 
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region (Fig.1F), and the remaining hits included no or one end of the MITE_VRN. 

Further analyses showed that each member of the MITE_VRN family was inserted with a 

different host direct duplication of 3 or 7 bp sequences (Table 1). It was predicted to have 

approximately 375 copies of the MITE_VRN present in the tetraploid wheat genome 

based on the clone number in the Langdon BAC library (Yan et al., 2004b).  The 

dramatic difference in the MITE-VRN copy number between hexaploid wheat and 

tetraploid wheat was because some positive BACs hit by the MITE_VRN probe should 

be false or not belong to the MITE_VRN family. In this study, only the genome sequence 

contigs that have intact MITE_VRN sequences were analyzed. 

Target genes of MITE_VRN and TamiR1123 

The search of MITE_VRN sequences in the wheat EST databases deposited in GenBank 

with BLAST algorithms found a total of 16 EST accessions (E<0.01). After removing the 

EST sequences with more than 2 mismatches, seven EST accessions were found to have 

either MITE_VRN or miR1123 or both in sequence and structure., including three from 

cultivar ‘Norstar’ (CK217184, CK217185, and CK217186), two from cultivar ‘Halberd’ 

HX153735 and HX153763), and the other two from ‘Ofanto’ (AJ613245 and 

‘Cranbrook’ (HX165961).  These ESTs were inserted with the same host direct repeat 

(ATGCCAGTG) (Fig.1G).  The EST MITE sequences in various cultivars showed more 

than 85% identity to each other (Fig.4). The conservations of insertion sites of MITEs in 

various cultivars and their sequence identity to MITE-VRN suggested that these 

expressed ESTs belong to the same MITE_VRN family. 
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TamiR1123 sequence alone was searched in the GenBank wheat EST databases. Expect 

for the seven ESTs that had MITE_VRN and thus TamiR1123, no new wheat EST was 

found to have identical sequences to TamiR1123 only.  
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Fig.4 Multiple sequence alignment of MITE_VRN. EST sequences are derived 

from GenBank. Wheat genome sequence contigs are derived at 

http://www.cerealsdb.uk.net. Except for host direct duplication, the sequences 

flanking MITE_VRN are included in the alignment. 

http://www.cerealsdb.uk.net/
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2.4 Discussion 

Many miRNA molecules have been found to exist in different plant species and they may 

play important roles in plant responses to abiotic and biotic stresses as well as signal 

transduction (Chen, 2010). Tens of miRNA genes have been identified in wheat (Yao et 

al., 2007). However, the origin and evolution of these non-coding regulatory sequences 

remain largely unknown. No miRNA has been characterized with a functional gene in 

wheat.  

In this study, we demonstrated that TamiR1123 was derived from a MITE that was 

inserted in the promoter of a dominant Vrn-A1a gene. First, MITE_VRN was nearly 

perfect palindromes. When expressed as RNA it can form highly stable hairpin loops. 

This structure can be processed to form mature TamiR1123 sequences if MITE_VRN 

was recognized by the RNA interference enzymatic machinery as described in plants or 

animals (Chen, 2010; Ambros, 2004; Bartel et al., 2004).  It is possible that the 

MITE_VRN hairpin stem is cleaved and then degraded to produce a TamiR1123. Second, 

the 
32

P labeled TamiR1123 detected RNAs in the same size as expected for MITE_RNA, 

indicating that the small RNA contained TamiR1123. The probe also detected 

TamiR1123 molecules, provided experimental evidence that TamiR1123 could be 

released from MITE_RNA. The association of Vrn-A1a and TamiR1123 at the transcript 

level and the concomitant regulation of their expression by plant age also supported that 

TamiR1123 was derived from MITE_VRN in the TDD line. The MITE_VRN in the 

TaVRN-A1 promoter could be the direct target of TamiR1123 because they have 

complementary sequences. However, the MITE_VRN in the VRN-A1 promoter could be 

one of the targeted sites of TamiR1123, since an average miRNA has approximately 100 
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target sites (Brennecke et al., 2005). No other target site was found in the TaVRN-A1 

gene. The TamiR1123 sequence was identified in the previous study (Yao et al., 2007), 

but its function is unknown. Our results clearly showed that TamiR1123 was increased 

with plant age, which was concomitant with Vrn-A1a transcript levels during 

development. In this study, we provided a depth understanding of the MITE inserted in 

the promoter of the dominant Vrn-A1 allele in hexpaloid wheat that was previously 

described (Yan et al., 2004b). We provided experimental evidence that the level of 

TamiR1123 was positively correlated with of Vrn-A1a; therefore, it is possible that Vrn-

A1a could be induced by TamiR1123. However, it is also possible that Vrn-A1a was not 

induced directly by TamiR1123 and TamiR1123 could be the by-product of transcription 

of Vrn-A1a. Based on characteristics of the sequence and target site duplication of 

MITE_VRN, it is a Mutator-like element (MULE). A MULE can harbor the promoters of 

a gene for transcription (Ferguson and Jiang, 2012; Lisch, 2002), and the function of such 

a MULE was reported in the promoter of the hcf106-mum1 gene (Mutator transposons 

(Das and Martienssen, 1995). The potential mechanism could explain why Vrn-A1a is 

linked to a much stronger expression than other Vrn-A1 alleles. The two mechanisms 

presented in this study are different from the previous hypothesis that the insertion of 

MITE_VRN in the promoter of Vrn-A1a resulted in a damage of recognition site by a 

flowering repressor (Yan et al., 2003; Yan et al., 2004b). The recognition of the promoter 

of Vrn-A1a by a TamiR1123 resulted in Vrn-A1a expression without vernalization 

requirement. This study provided additional mechanisms for developmental regulation by 

MITE_VRN through TamiR1123 in spring wheat. 
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MITE_VRN in Vrn-A1a was expressed as RNA, which released TamiR1123 that in 

return induced the expression by a direct or indirect manner. This formed a loop that 

regulated the expression of Vrn-A1a (Fig.1). This loop could involve in plant 

development and other phenotypes through both MITE_VRN and TamiR1123. On the 

one hand, MITE_VRN is active and movable, which can insert in a functional gene or a 

regulatory site like Vrn-A1a promoter. On the other hand, TamiR1123 has many 

regulatory sites throughout the genome. The expression of these targeted genes could be 

regulated due to the insertion of MITE_VRN or recognition of their regulatory sites by 

TamiR1123, which would form a dynamic gene regulatory network governed by Vrn-A1a 

in plant development.  The VRN1 region was reported to have association with multiple 

traits including vernalization, cold hardening, and the development of rosette (Roberts, 

1990). This study provided a machinery explanation for the complex association among 

some of the multiple phenotypes.  

The MITE_VRN derived TamiR1123 characteristics can be applied in wheat breeding. 

Firstly, the genomic and EST sequences flanking MITE_VRN can be used to design 

specific primers to map members of the MITE_VRN family. The characteristics that such 

a MITE has a few hundred nucleotides will facilitate development of a PCR marker for 

mapping the MITE_VRN dispersed throughout the genome. Any phenotypic variation 

that shows association with a MITE_VRN marker can be suggested to link with 

development controlled by VRN-A1a or TamiR1123 donated from MITE_VRN in the 

VRN-A1a. These potential applications of MITE_VRN and TamiR1123 in wheat need to 

be investigated in the future studies. 
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CHAPTER III 
 

 

TAVRN1 AND TAHOX1 PROTEINS INTERACTIVELY REGULATE VERNALIZATION 

REQUIREMENT DURATION* 
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1
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1
, Brett F. 

Carver, Liuling Yan, 2014. 76:742-753 (
1
 these authors contributed equally to the project). Only 

the research work that was mainly conducted by Ming Yu is presented herein. 

 

Abstract 

Winter wheat requires a period of low temperatures to accelerate flowering (vernalization). This 

requirement could make winter wheat more vulnerable to elevated global temperature via 

insufficient vernalization. All known vernalization genes are cloned according to qualitative 

variation in vernalization requirement between spring and winter wheat, but genes controlling 

quantitative variation for more or less vernalization requirement among winter wheat cultivars 

remain unknown. A major QTL on chromosome 5A was found associated with quantitative 

vernalization requirement duration (QVrd.osu-5A) in the winter wheat population generated from 

Jagger and 2174, this QTL was cloned by using a positional cloning approach, and the allelic 

variation at vrn-A1 at the protein level was finally found to be responsible for QVrd.osu-5A (Li 

and Yu et al., 2013). The Ala
180

 in vrn-A1a encoded by the dominant allele for 3-week  
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vernalization was mutated to Val
180

 in vrn-A1b encoded by the recessive allele for 6-week 

vernalization. Further studies indicated that the mutated Val
180

 in vrn-A1b protein decreased the 

ability to bind with TaHOX1 (the first homeobox protein in T. aestivum) by in vitro protein 

pulldown assays and immunoprecipitation analyses. The direct binding of TaVRN-A1 and 

TaHOX1 proteins was confirmed in the nucleus of living plant cells by bimolecular fluorescence 

complementation (BiFC) analyses. The TaHOX1 gene was found to be up-regulated by low 

temperature and have significant genetic effect on heading date, suggesting that TaHOX1 

functions in the flowering pathway in winter wheat. 

3.1 Introduction 

Wheat (Triticum aestivum, 2n=6x=42, AABBDD) is cultivated across more land area 

than any other grain crop. Wheat cultivars are qualitively classified as two general types: 

winter wheat with variable low temperature requirement for a proper flowering time 

(vernalization) and thus successful grain reproduction and spring wheat without this 

requirement (Amasino, 2004; Chouard, 1960; Pugsley, 1971). Winter wheat cultivars are 

quantitatively classified as three types according to the low temperature duration required 

to reach a vernalization saturation point or achieve the maximum vernalization effect: a 

weak winter type that is stimulated to flower by brief exposure to low temperature (less 

than two weeks), a semi-winter type that requires 2 to 4 weeks of cold exposure for 

flowering, and a strong winter type that requires more than 4 weeks of cold exposure for 

timely flowering (Crofts, 1989). 

Vernalization usually occurs at temperatures less than 8°C (Amasino, 2004; Chouard, 

1960; Crofts, 1989; Pugsley, 1971). Recent studies showed that average global surface air 

temperature rose 0.5 °C in
 
the 20

th 
century and is projected to continue its increase by 
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roughly 3°C or 5 °C by the end of the 21
st
 century (Kerr, 2007; Semenov and Halford, 

2009). As various simulation models have shown, winter wheat is more vulnerable to 

increasing temperatures during winter seasons due to its low temperature requirement to 

ensure proper flowering time and successful seed reproduction (Humphreys et al., 2006; 

Miglietta et al., 1995). A shortened duration at low temperature, due to global warming, 

could result in a failed or insufficient vernalization in winter wheat. 

Three vernalization genes have been cloned from wheat by using a positional cloning 

approach, VRN1 (Yan et al., 2003), VRN2 (Yan et al., 2004a), and VRN3 (Yan et al., 

2006), and each of them was cloned in the context of growth habit as a discrete trait of 

winter and spring types in diploid wheat and barley. VRN1 (=AP1) is a central promoter 

for spring cultivars to flower without vernalization (Danyluk et al., 2003; Murai et al., 

2003; Trevaskis et al., 2003; Yan et al., 2003), and dominant Vrn-A1 alleles originated 

from mutations in the promoter or the first intron of the wild recessive vrn-A1 in 

hexaploid wheat (Yan et al., 2004b; Fu et al., 2005). A recent study reported that the 

increased copy number of TaVRN-A1 resulted in an increased requirement for 

vernalization in winter wheat (Diaz et al 2012). VRN2 (=ZCCT1) is a flowering repressor, 

and a recessive vrn2 allele was caused by a point mutation at the conserved CCT domain 

or complete deletion of the wild dominant Vrn2 in diploid wheat (Yan et al., 2004). VRN3 

(=FT1) is another flowering promoter, and the early flowering plants carry Vrn3 alleles 

originating from mutations in the promoter or the first intron in wheat and barley (Yan et 

al., 2006). The genetic and molecular mechanisms to account for the qualitative 

difference in the three genes between the two divergent types of wheat are not expected 

to explain the quantitative variation in vernalization requirement duration among winter 
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wheat cultivars, because all winter wheat cultivars are supposed to have the same winter 

allele for each of the three cloned vernalization genes, recessive vrn1, recessive vrn3, and 

dominant Vrn2 alleles (Pugsley, 1971; Tranquilli and Dubcovsky, 2000). No exception 

was reported to invalidate this genetic model, when numerous cultivars/germplasm from 

different wheat species varying in ploidy level were screened using molecular markers 

for each of the three genes (Yan et al., 2003; Yan et al., 2004a; Yan et al., 2004b; Fu et 

al., 2005; Bonnin et al., 2008; Zhang et al., 2008; Santra et al., 2009; Chen et al., 2010).  

The molecular mechanism underlying quantitative vernalization requirement in a winter 

type of Arabidopsis is unknown yet, but could be explained by three models. The first 

model is that vernalization
 
results in a quantitative reduction in FLC mRNA levels, which 

negatively correlates with flowering time (Michaels and Amasino, 1999; Sheldon et al., 

1999). The second model  is that the transcript level of FLC is up-regulated or down-

regulated by multiple genes including VIN3 and FRI in the vernalization pathway, as well 

as GI, CO, and FT in the photoperiod pathway (Corbesier et al., 2007; Heo and Sung 

2011; Levy et al., 2002; Reeves and Coupland, 2001). The last model is that quantitative 

vernalization requirement is modulated by accumulation of the Polycomb-based 

epigenetic-silencing complexes and histone modifications at the FLC gene (Angel et al., 

2011) and the quantitative modulation of Polycomb silencing is associated with natural 

variation in the sequence of FLC (Coustham et al., 2012). The signals from these 

pathways are integrated at FLC to induce AP1 for flowering. Previous studies have 

demonstrated that vernalization has evolved different mechanisms between winter wheat 

and Arabidopsis (Yan et al., 2003). The gene(s) responsible for various vernalization 
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requirement durations in winter wheat should be cloned from a population generated 

using two winter wheat cultivars having different vernalization saturation points.  

In previous studies, we developed a population of recombinant inbred lines (RILs) 

generated from a cross between two winter wheat cultivars, ‘Jagger’ and ‘2174’.  When 

different sets of the same population were tested in field, the RIL population was 

segregated in stem elongation, heading date, and physiological maturity (Chen et al., 

2009). In this previous study, a PCR marker developed for allelic variation in exon 4 of 

TaVRN-A1 was found to have genetic association with a major QTL for the phenotypes, 

but it was not known whether TaVRN-A1 caused the QTL in winter wheat. If TaVRN-A1 

was indeed responsible for this QTL, it could have different mechanisms in regulating the 

developmental process in winter wheat (as opposed to spring wheat). Otherwise, a novel 

gene at the TaVRN-A1 locus should be responsible for the QTL regulating developmental 

process in winter wheat. In the present study, we tested this RIL population under 

thermal-photo-controlled greenhouse conditions and found a major QTL for vernalization 

requirement duration, and we then generated a large backcross population and cloned the 

first gene for vernalization requirement duration in winter wheat.  

3.2 Materials and Methods 

Plant materials and vernalization experiments   

Jagger and 2174 were initially grown in a greenhouse at 20-25°C and with a long day 

photoperiod (LD, 16/8 hours light/dark). At the 5
th

-leaf stage, the parental plants were 

moved into a cold room with 4°C and the LD photoperiod. The LD photoperiod was 

applied throughout this study to avoid disruption of photoperiod effects on vernalization 
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(Wang et al., 2009). The two parental lines were vernalized for varying weeks. The 

vernalized plants were returned to the greenhouse, whereas non-vernalized plants that 

continuously remained in the greenhouse were used as controls. Heading date for 8 plants 

of each treatment was scored.  

Three populations from the same Jagger x 2174 RILs were initially grown in the same 

greenhouse as for the parental lines. At the 5
th

-leaf stage, two of these populations were 

vernalized for 3 weeks and 6 weeks. The vernalized populations were returned to the 

greenhouse for comparison with the 3
rd

 population as non-vernalized control. Heading 

date was scored for 3 plants of each line in these 3 populations.   

Positional cloning of QVrd.osu-5A  

A major QTL on chromosome 5A was found associated with quantitative vernalization 

requirement duration (QVrd.osu-5A) in the winter wheat population generated from 

Jagger and 2174, and this QTL was cloned using a positional cloning approach (Li and 

Yu et al., 2013). The allelic variation at vrn-A1 at the protein level was finally found to be 

responsible for QVrd.osu-5A (Li and Yu et al., 2013). 

Identification of proteins interacting with vrn-A1 

The ‘Matchmaker™’ Library Construction & Screening System (Clontech, USA) was 

used to construct an Y2H ‘prey’ library for Jagger. RNA was extracted from pooled 

samples of young leaves and apices from vernalized plants for 1, 2, and 3 weeks, and the 

vrn-A1a was used as ‘bait’ to screen the ‘prey’ library. The constructing and screening 

procedures were described in a previous study in which 2174 was used as a host plant 

(Cao and Yan, 2013).   
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The in vivo interaction of TaVRN-A1 and TaHOX1 proteins 

The complete TaVRN-A1 cDNA was cloned into pDONR207 with the BP cloning kit 

(Invitrogen), and then transferred to pEarleygate 101 (pEG101) using the LR cloning kit 

for subcellular localization of TaVRN-A1. TaVRN-A1 in pDONR207 was fused to the N-

terminal 174 amino acid portion (1-174) of YFP in the pEarleyGate201-YN vector 

(pEG201-YN) to test in vivo interaction with TaHOX1 fused to the C-terminal amino 

acid portion (175-239) of YFP in the pEarleyGate202-YC vector (pEG202-YC). Empty 

vectors were also used as negative controls for interaction with TaVRN-A1 or TaHOX1 

proteins. A. tumefaciens strains (GV3101) carrying the BiFC constructs were used 

together with the p19 strain for infiltration of N. benthamiana leaves (5 weeks old). Leaf 

discs were cut for BiFC for imaging 3 days after infiltration. The images were taken with 

a bright filter (BF) to indicate the background of the leaves infiltrated with A. tumefaciens 

carrying constructs, or with an ultraviolet filter (DAPI) to indicate the position of the 

nucleus stained with 4′, 6-diamidino-2-phenylindole. The overlay images align the 

locations of YFP with the DAPI-stained nucleus. Images were taken under a fluorescent 

microscope (Olympus BX51) with GFP filter to indicate the presence of fluorescent 

proteins.  

3.3 Results 

The discovery of a major gene for vernalization requirement duration 

We tested the two parental lines, Jagger and 2174, for variation in vernalization 

requirement duration to reach the vernalization saturation point or gain the maximum 

vernalization effect on heading under a long day condition (16/8 hrs for day/light). Jagger 
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required 3 weeks at 4°C to reach the maximum vernalization effect on heading, whereas 

2174 required 6 weeks under the same condition (Li and Yu et al., 2013). When 

vernalized for 3 weeks, Jagger flowered 101 days after planting but 2174 flowered 136 

days after plants. When Jagger and 2174 were tested in the field, they showed a 

difference of 3-5 days in heading date and 1-3 days in physiological maturity (Fig.5). The 

3 weeks’ vernalization produced phenotypic difference in flowering time for up to one 

month between the two alleles.  The enlarged difference could be easily scored for 

mapping and cloning of genes segregated in the Jagger x 2174 population. 

 

 

 

 

 

 

 

 

 

                       Field                                 Greenhouse 

2174            Jagger 2174     Jagger 

2174                   

Jagger 

2174                 

Jagger 

A 

B 

Fig.5 Phenotypic comparison of Jagger and 2174. (A) Phenotypic comparison of heading 

date between Jagger and 2174. Jagger and 2174 showed a difference in heading date for only 

3-5 days when tested in the field but up to one month when tested in a greenhouse and 

vernalized for 3 weeks. (B) Phenotypic comparison of physiological maturity between Jagger 

and 2174. Jagger and 2174 showed a difference in heading date for only 1-3 days when tested 

in the field but up to one month when tested in a greenhouse and vernalized for 3 weeks. 

                        Field                               Greenhouse 
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A major QTL for vernalization requirement duration that segregated in the mapping 

population of Jagger x 2174 RILs was mapped to the long arm of chromosome 5A in a 

genomic region encompassing the vrn-A1 locus (Figure 6), and this QTL was designated 

QVrd.osu-5A. The QVrd.osu-5A locus explained 63.4% (LOD=18.8) of the total 

phenotypic variation in the population vernalized for 3 weeks, and 20.9% (LOD=4.3) in 

the control population with no vernalization (Fig.6). 

 

 

 

 

 

 

 

 

 

 

Fig.6 Genetic map of QVrd.osu-5A. Two sets of the Jagger x 2174 RIL population were 

vernalized for 3 weeks (3wk) and 6 weeks (6wk) and one set of the same population  was 

not vernalized for control (CK). The horizontal dotted line represents a threshold value of 

2.5 LOD. 

A recombinant inbred line, RIL23 carrying the Jagger vrn-A1 allele was backcrossed with 

the parental line 2174 to generate a BC1F2 population, in which the QVrd.osu-5A locus 
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was heterozygous but each of PPD-D1 and VRN-D3 was fixed at the homozygous allele. 

The latter two genes showed significant effects on heading date in the Jagger x 2174 RIL 

population when tested in the field (Chen et al., 2009). The resulting BC1F2 population 

was used to test genetic effects of the QVrd.osu-5A locus on vernalization requirement in 

winter wheat. The 70 plants either homozygous or heterozygous for the Jagger vrn-A1a 

allele for early heading showed a significant difference from the 20 plants homozygous 

for the 2174 vrn-A1b allele for late heading (p<0.001). The observed segregation ratio 

between the earlier heading and later heading groups was not significantly different from 

a 3:1 ratio (X
2
=0.37, df=1, p=0.54) and fit a one-gene model. Finally, vrn-A1 was 

identified being the gene that caused the difference in vernalization requirement duration 

between Jagger and 2174 (Li and Yu, et al., 2013). 

A modified PCR marker for allelic variation in vrn-A1 

No difference was observed between the Jagger and 2174 vrn-A1 alleles in the previously 

identified regulatory sites that accounted for allelic variation between the winter vrn-A1 

allele and the spring Vrn-1 allele. No difference was observed in gene expression 

between the Jagger and 2174 vrn-A1 alleles (data not shown). However, two point 

mutations were found in coding regions, resulting in alteration of two amino acids in the 

conserved domain between the Jagger and 2174 alleles. A PCR marker for the mutated 

site corresponding to amino acid residue (L
117

/F
117

) between the Jagger vrn-A1a allele 

and 2174 vrn-A1b allele was developed (Chen et al., 2009). Primers vrn-A1F7B (5’-

GTGGAGAAGCAGAAGGCGCATG-3’) and vrn-A1R7 (5’-

CCGACAGAACTGCATAGAGACC-3’) were designed in this study to map A
180

/V
180
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between the Jagger vrn-A1a allele and 2174 vrn-A1b allele (Fig.7A) (Li and Yu, et al., 

2013).  

The previously pusbilished PCR marker was used for gene cloning. However, the PCR 

marker cannot be used to show that 2174 has two copies of vrn-A1b as found in the 

previous study and reported in another study (Díaz et al., 2012). A new PCR marker for 

the polymorphism between the Jagger vrn-A1a allele and the 2174 vrn-A1b allele, as well 

as for the polymorphism between the duplicated vrn-A1b1 and vrn-A1b2 copies in 2174, 

by using one-shoot PCR following digestion with two restriction enzymes (Fig.7B). The 

PCR marker will facilitate identification of the point mutation at L
117

/F
117

 or A
180

/V
180

 or 

at both of them in diverse wheat genetic germplasm. 
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100 bp 
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Fig.7 Comparison of PCR markers for the Jagger and 

2174 vrn-A1 alleles. (A) A PCR marker for the SNP in exon 

7. The two primers amplified a 221bp fragment using an 

annealing temperature of 55°C and extension time for 1 min. 

The PCR products digested with restriction enzyme Sph I 

were run on a 2% agarose gel, showing polymorphic bands 

between the vrn-A1a allele (199 bp) and vrn-A1b allele (221 

bp). (B) A PCR marker for both of two SNPs in exon 4 and 

exon 7. The PCR products were digested with MboI + AciI + 

HpaII. The digested PCR products were  342 bp + 73 bp + 

470 bp + 88 bp + 9 bp + 65 bp + 123 bp in size for the 

Jagger allele and 415 bp  + 470 bp + 97 bp + 65 bp + 123 bp 

for duplicated vrn-A1b1  and 342 bp + 73 bp + 470 bp + 97 

bp + 65 bp + 123 bp for vrn-A1b2  of the 2174 allele. The 

digested PCR products were run on a 9% acrylamide gel.  
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The interaction site of TaVRN-A1 and TaHOX1 proteins 

A protein that has the same structure of the homeodomain (HD) and the leucine zipper 

domain (Zip) as HOX proteins reported in animals (Ariel et al., 2007) was identified from 

the Y2H library using vrn-A1 as a probe. TaHOX1 and TaVRN-A1 shared 5 leucine 

residues present in the Zip domain (Fig.8). The interaction of TaHOX1and TaVRN-A1 is 

attributable to the presence of the zipper in the two proteins. However, the Ala
180

 in vrn-

A1b represented the same amino acid residue as TaHOX1, but Val
180

 caused a mismatch 

between vrn-A1b and TaHOX1. This mismatch explained the decreased ability of vrn-

A1b to interact with TaHOX1 (Li and Yu et al. 2013).  

 

Fig.8. Interacting site of TaVRN-A1 and TaHOX1 proteins. (A) Sequence comparison 

between the TaVRN-A1 and TaHOX1 proteins.  Locations of conserved domains in 

TaVRN-A1, and two altered sites in amino acid sequence are indicated with a red star. 

Leu
117

/Phe
117

 or Ala
180

/Val
180

 residues are highlighted in red, and the conserved leucine 

residues are highlighted in pink. (B) The cDNA of TaHOX1 fished out from the Y2H 

library was expressed to test protein interactions with TaVRN-A1. (C) Positions of 

conserved HD and Zip domains in TaHOX1 proteins in plants. 

The in vivo interaction of TaVRN-A1 and TaHOX1 proteins 

A. 

B. 

C. 
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The direct binding between TaVRN-A1 and TaHOX1 proteins was confirmed by in vitro 

experiments (Li and Yu, et al., 2013). The physical interaction of TaVRN-A1 and 

TaHOX1 proteins was also confirmed by in vivo experiments (Fig.9). When TaVRN-A1-

YN and TaHOX1(1-180)-YC were simultaneously expressed in the same cell, yellow 

fluorescence was observed in the nucleus with a confocal microscope (Fig.9). The 

interaction happened on cell nucleus that was confirmed using DAPI to stain the cell 

nucleus (Fig.9). 

 

 

 

 

 

 

 

 

 

 

 

Allelic variation in TaHOX1 

YFP DAPI Overlay 

HOX1-PEG202-YC 

    VRN1-PEG201-YN 
+ 

A B C 

Fig.9. The in vivo interaction of TaVRN-A1 and TaHOX1 proteins. (A) The fluorescent proteins 

resulted from the in vivo interaction between TaVRN-A1-YN and TaHOX1(1-180)-YC in the 

nucleus are shown in green. by ‘N’. No YFP was observed in a negative control of the co-

transformation of pEG202-YC with TaVRN-A1-pEG201-YN or pEG201-YN with TaHOX1-

pEG202-YC (Figures not shown). YN, YFP fragment at the N-terminal end expressed from pEG201-

YN vector; YC, YFP fragment at the C-terminal end expressed from pEG202-YC vector. Images 

were taken under a fluorescent microscope. A. tumefaciens strains (GV3101) carrying the BiFC 

constructs were used together with the p19 strain for infiltration of N. benthamiana leaves (5 weeks 

old). Leaf discs were cut for BiFC for imaging 3 days after infiltration. (B) The image was also taken 

with an ultraviolet filter (DAPI) to indicate the position of the nucleus stained with 4′, 6-diamidino-

2-phenylindole. (C) The overlay images align the locations of YFP with the DAPI-stained nucleus.  
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The complete TaHOX1 gene including 956-bp upstream from the start codon and the 

region from the start codon to the stop codon. The only difference in TaHOX1 between 

Jagger and 2174 alleles was one SNP that occurred in exon 1. This DNA SNP resulted in 

an alteration Leu
99

/Pol
99

. This site was not included in the protein fragment that was used 

for protein interaction with TaVRD-A1, but could be included in the suggested DNA 

binding site.  This SNP facilitated mapping of the TaHOX1 gene. A PCR marker was 

developed for a SNP between the Jagger TaHOX1a allele and the 2174 TaHOX1b allele 

(Fig.10A). Primers TaHOX1-6BF1 (5’-GCGGCGCGCCAAGCTGGAC-3’) and 

TaHOX1-R2M (5’- CAGCTGCACATCGAGCAGACAC-3’) were used to map the SNP 

in TaHOX1. The TaHOX1 marker was mapped into a genetic linkage group including 11 

SSR markers located on chromosome 6B (Fig.10B). 

 

 

 

 

 

 

 

 

Fig.10. Mapping of TaHOX1. (A) The specific primers amplified a 317 bp gDNA fragment 

using an annealing temperature of 55°C and extension time for 1 minute. The PCR products 

digested with restriction enzyme Msp I were run on a 2% agarose gel, showing polymorphic 

bands between the TaHOX1a allele (198 bp) and TaHOX1b allele (217 bp). (B) Location of 

TaHOX1. TaHOX1 was mapped in the Jagger×2174 RIL population.  

A 

Jagger     2174         M                   

B 
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The up-regulation of TaHOX1 by low temperature and its genetic effects on heading 

date 

We isolated the complete TaHOX1 gene from Jagger (JQ915061) and 2174 (JQ915062) 

for functional characterization. Using RT-PCR, we found that the TaHOX1 transcripts in 

leaves were greatly up-regulated and remained at a high level during vernalization 

(Figure 11A). This result indicated that TaHOX1 had a similar expression pattern as the 

recessive vrn1 allele characterized in previous studies (Danyluk et al., 2003; Murai et al., 

2003; Trevaskis et al., 2003; Yan et al., 2003). TaHOX1 and TaVRN-A1 were 

concomitantly up-regulated by low temperature, indicating that they functioned in the 

flowering pathway.  

To determine if TaHOX1 was involved in the flowering pathway, the PCR marker was 

used as a single marker to analyze the phenotypic data that were collected from field and 

greenhouse experiments. A significant difference in heading date was observed between 

the Jagger TaHOX1a and the 2174 TaHOX1b alleles (120 days vs. 109 days, 

respectively) in the RIL population vernalized for 3 weeks (P<0.05) but not in the RIL 

population vernalized for 6 weeks or the control population (Figure 11B). The SNP in 

exon 1 resulted in a ‘leucine’ residue at position 99 in TaHOX1b and a ‘proline’ residue 

at the same position in TaHOX1a. This point mutation in TaHOX1 did not affect its 

interaction with vrn-A1. In contrast, the higher TaHOX1 transcriptional level was 

associated with earlier heading, suggesting that the regulation of heading date by 

TaHOX1 was at the transcriptional level. 
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B A 

Fig.11. Expression profiles of TaHOX1 and its genetic effect on flowering time. (A) 

Expression pattern of TaHOX1 in greenhouse (GH) and cold room (CR). Transcript levels 

of TaHOX1a (the Jagger allele) and TaHOX1b (the 2174 allele) in leaves of vernalized 

plants for 3 weeks (3wk) and 6 weeks (6wk) as well as non-vernalized plants (CK) are 

shown using the values calculated by the 2
(-CT) 

method, where CT is the threshold cycle, 

and actin was used as an endogenous control. The values represent mean expression levels 

(n=15-20), and the bar indicates standard error. (B) Genetic effect of TaHOX1 on heading 

date. The heading date was from each line of the population (n=96) that was vernalized for 3 

weeks (3 wk) or 6 weeks (6 wk) or used for control in a greenhouse (CK). The significant 

effects of the TaHOX1 gene on heading date were determined using one-way analysis of 

variance (ANOVA). Bar indicates standard error.  
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VRN1 was not necessary for the expression of HOX1 

In an mvp plant in which TmVRN1 was deleted, transcripts of TmHOX1 were detected in 

both flowered plants and non-flowered plants (Fig.12), indicating TmVRN1 is not 

necessary for the expression of TmHOX1 in diploid wheat T. monococcum. 

 

 

 

 

 

 

 

 

3.4 Discussion 

A C/T polymorphism in exon 4 that is responsible for the amino acid change at 

Leu
117

/Phe
117

 in TaVRN-A1 was found between the Jagger allele and the 2174 allele, and 

a PCR marker for this polymorphism was developed to show an association with 

developmental variation in the Jagger x 2174 RIL population tested in the field (Chen et 

al 2009). A new PCR marker was developed for the polymorphism in exon 7 that is 

responsible for the amino acid change at A
180

/V
180

 (Li and Yu et al., 2013). In this study, 

   CK      mvp        CK         mvp      H2O        M 

cDNA                 gDNA                                             

Fig.12 HOX expression in MVP plants. Primers TmHOX1-F1 (5’-

CGCGACGGCTCCGAAATG-3’) and TmHOX-R1 (5’-TCATGCCACTGCGTTCCACT-3’) 

were used to test if HOX1 is expressed in MVP plants, with the wild type plant as control. The 

gDNA was also used as control to ensure that the primers work for diploid wheat.  

The expected size of cDNA PCR products was 696 bp, while the expected size of gDNA PCR 

products was larger than 696 bp due to the presence of an intron. 
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we developed a PCR marker that can be used to identify the point mutation at L
117

/F
117

 or 

A
180

/V
180

 or at both of them in diverse wheat genetic germplasm. This new PCR marker 

can also be used to distinguish the polymorphisms between the Jagger vrn-A1a allele and 

the 2174 vrn-A1b allele and between the duplicated vrn-A1b1 and vrn-A1b2 copies in 

2174. 

It was recently reported that TaVRN-A1 was duplicated in winter wheat cv. ‘Hereward’ 

(JF965397) but not in ‘Claire’ (JF965395) (Díaz et al., 2012).  In the population of Claire 

x Hereward, plants homozygous for the Claire allele flowered earlier and plants 

homozygous for the Hereward allele flowered later, while heterozygotes had an 

intermediate flowering time; therefore, the authors concluded that the increased copy 

number of TaVRN-A1 in Hereward resulted in an increased requirement for vernalization 

(thus late flowering). We found that at the polymorphic sites of both exon 4 and exon 7, 

Jagger has the same allele as Claire and 2174 has the same allele as Hereward. We also 

observed the duplication event of vrn-A1b in 2174 for more vernalization but not in 

Jagger for less vernalization. Thus on the surface, it seems that the two studies have 

consistent results and that the phenomenon the Diaz et al. described in their paper that 

plants with an increased copy number of TaVRN-A1 have an increased requirement for 

vernalization was correct. However, we affirm that a greater vernalization requirement in 

2174 was not because 2174 has one more vrn-A1 copy than Jagger but because Jagger 

produces a different vrn-A1 protein from 2174. Our results from several independent 

progeny populations clearly and consistently demonstrated the Jagger vrn-A1a allele for 

early flowering was dominant over the 2174 vrn-A1b allele for late flowering, which 

phenotypic segregation was 3:1. The two studies have made different conclusions for 
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several reasons. First, in the Diaz et al. study, vernalization was performed under a short 

day condition (7°C, 8 h light), and then the vernalized plants were grown under a long 

day condition (18 h light) in a greenhouse (no temperature condition was provided).  In 

our study, however, vernalization was performed under 4°C, 16 h light and then the 

vernalized plants were moved to 25°C, 16 h light. The same long day was set throughout 

the experiment in our study to avoid disruption of photoperiod that was well known to 

have significant effects on flowering in winter wheat (Dubcovsky et al., 2006; Wang et 

al., 2009). Second, in the Diaz et al. study, a small mapping population of 96 F2 lines was 

used to test the association between the vrn-A1 copy number and flowering time. 

However, we generated a backcross population and screened 6,500 plants to find several 

lines that had crossovers at the vrn-A1 locus and were segregated in progeny for 

flowering time by a single gene vrn-A1a to avoid disruption of other genetic factors for 

this phenotype. Third, vrn-A1 is the promoter of flowering as shown in wheat and barley 

(Danyluk et al., 2003; Murai et al., 2003; Trevaskis et al., 2003; Yan et al., 2003), and 

Arabidopsis (Ng and Yanofsky, 2000). The dosage effect of two copies from such a 

flowering promoter should not result in a phenotype of a later flowering time as 

suggested in the previous study (Díaz et al., 2012). In this study, we used the positional 

cloning strategy to prove that vrn-A1a in Jagger was dominant for early flowering, 

regardless of the function of the duplicated vrn-A1b in 2174.  Therefore, we concluded 

that less vernalization requirement by Jagger was due to its vrn-A1a protein form or that 

more vernalization requirement in 2174 was not due to the presence of its two vrn-A1b 

copies.  
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CHAPTER IV 
 

 

GENETIC ANALYSES OF HOMOWOLOGOUS AND HOMOLOGOUS GENES OF TaHOX1 

 

 

Abstract 

Bread wheat (Triticum aestivum) is an allohexaploid species that possesses three 

genomes A, B and D; therefore, each gene should have three homoeologous genes. The 

availability of TaHOX1 sequences has facilitated identifying allelic variation in its 

homoeologous and homologous genes. TaHOX1 presented in the previous chapter was 

mapped on chromosome 6B (TaHOX-B1), and the complete gene of homoeologous 

TaHOX-A1 on chromosome 6A and TaHOX-D1 on chromosome 6D were sequenced but 

showed no allelic variation and mapped using Chinese Spring nullisomic-tetrasomic 

lines. A set of three homoeologous TaHOX2 genes similar to TaHOX1 was observed in 

the wheat genome. While TaHOX-A2 was mapped on chromosome 2A due to an 18 bp 

indel polymorphism in exon 1, TaHOX-B2 on chromosome 2B or TaHOX-D2 on 

chromosome 2D showed no allelic variation but mapped using Chinese Spring 

nullisomic-tetrasomic lines. Using subcellular localization, TaHOX-A2 protein was 
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characterized. The expression patterns of these homoeologous and homologous TaHOX1 

and TaHOX2 in different developmental stages and tissues were characterized in wheat. 

 

4.1 Introduction 

Bread wheat (Triticum aestivum) is an allohexaploid species that possesses three 

genomes, A, B and D, each of which is originated from diploid wheat. These three 

genomes are closely related in genome structure, chromosome size and shape, and gene 

content and order, but genome sequences are divergent particularly in repetitive DNA 

content. Each of most genes in bread wheat is present as three similar sequences of 

homoeologous loci with high exonic homology and lower homology in introns. Based on 

specific sequences, three homoeologous loci can be distinguished and designed gene A, B, 

and D. 

VRN1 was originally cloned from diploid wheat, T. monococcum that is a relative of 

genome A in hexaploid wheat (Yan et al., 2003). The availability of the VRN1 gene 

sequence from diploid wheat has enabled three homoeologous genes VRN-A1, VRN-B1, 

and VRN-D1 in bread wheat to be isolated using a relatively readily PCR approach. 

Allelic variation in each of the three VRN1 genes in extensively collected germplasm in 

different geographical areas of the world has been identified and functionally 

characterized (Kamran et, 2014). VRN-A1, VRN-B1, and VRN-D1 in bread wheat also 

play important roles in regulating developmental processes. The first objective of this 

study is to isolate two homoeologous genes, TaHOX-A1 on chromosome 6A and TaHOX-

D1 chromosome 6D, based on the TaHOX-B1 on chromosome 6B that was isolated in the 
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previous study. Each of the two homoeologous genes was isolated from each of Jagger 

and 2174 to identify allelic variation for mapping in the available Jagger x 2174 RIL 

population. 

In addition to homoeologous genes in hexaploid wheat, this species may have many 

genes that have been duplicated during evolution and domestication. Early studies with 

molecular markers indicated the presence of duplicated loci or regions on the genetic 

maps in wheat, revealing ancestral genome duplications and polyploidization events in 

the history of this species. During the processing of isolating the three TaHOX1 genes, 

we found that TaHOX1 was duplicated, thus producing three homoeologous TaHOX2 

genes. The second objective of this study is to isolate and map homoeologous TaHOX2 

genes in bread wheat.  

The co-existence of six homologous genes including three homoeologous TaHOX1 and 

three TaHOX2 in the same wheat plant makes it not easy to obtain the complete gene of 

each of these genes. However, the release of the wheat genome sequences enables us to 

design specific to each gene. In this study, we have developed a method allowing 

respective isolation of each gene by a single PCR reaction and provided important new 

insights into developmental mechanism, showing that wheat development involves the 

differential expression of HOX family genes. 

4.2 Materials and Methods 

Isolation of homoeologous and homologous TaHOX genes 
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The complete gene from the translational start codon and stop codon, the 5’-UTR and 

part of the promoter, as well as part of the 3’-UTR were isolated for each of 6 

homoeologous and homologous TaHOX genes.  

Specific primers for each TaHOX gene were designed, based on multiple sequence 

alignment. Chinese Spring (CS) nullisomic-tetrasomic lines were used to confirm 

determine which chromosome a HOX is located. The N6A-T6B, N6B-T6D, and N6D-

T6A deletion lines were used to determine chromosomal assignment in homoeologous 

group 6, and the N2A-T2B, N2B-T2A, and N2D-T2A deletion lines were used to 

determine chromosomal assignment in homoeologous group 2. The use of deletion lines 

enables markers to be localized to a certain chromosome. Once specific primers were 

determined, Jagger and 2174 were used to amplify each gene, and polymorphic 

sequences were used to map in the Jagger x 2174 RIL population. Sequences of primers 

used for isolation of these genes are provided in Table 1. PCR was performed with 

annealing temperature of 55°C and extension time of 1 minute for approximate 1 kb PCR 

products of these TaHOX genes. The PCR products were purified and sequenced directly.  

Expression patterns of homoeologous and homologous HOX genes 

Expression pattern of each TaHOX gene was investigated by using specific primers to 

test cDNA samples from leaves and roots of seedling plants plus spikes when adult plants 

were tested. Total RNA was extracted using Trizol regents (Invitrogen). The first-strand 

cDNA was synthesized using a SuperScript
TM

 II Reverse Transcriptase kit (Invitrogen). 

Sequences of primers used for gene expression are provided in Table 2.  
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Subcellular localization of TaHOX-A2 

The TaHOX-A2 cDNA was amplified by specific primers HOXC4-BiFC2-F1-2      (5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGATTACCACCACCATCAC

-3’) and HOXC4(124/130)-BiFC2-R (5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTCGAAGTCGTGCTCCAGCT-3’). The 

cDNA fragment encodes 1-124 amino acids for the Jagger allele and 1-130 amino acids 

for the 2174 allele.  The difference of 6 amino acids between the two proteins was due to 

an 18-bp deletion in the Jagger allele. DMSO was added into the PCR system for higher 

amplification efficiency. The cDNA fragments were cloned into pDONOR207 with the 

BP cloning kit, and then transferred to pEarleyGate 101 (pEG101) using the LR cloning 

kit. TaHOX-A2 in pEG101 was used for subcellular localization. Agrobacterium 

tumefaciens strains (GV3101) carrying the BiFC constructs were used for infiltration of 

tobacco leaves (at 5 weeks old). Three days after agrobacterium infiltration, leaf discs 

were cut for BiFC for imaging. Images were taken using a fluorescent microscope.  

Images taken under GFP filter or ultraviolet filter indicate the presence of fluorescent 

proteins, or the position of the nucleus stained separately.  

4.3 Results 

Isolation of homoeologous genes of TaHOX1 

The sequences of the complete gene of TaHOX-B1 are deposited in GenBank for the 

Jagger allele (JQ915061) and the 2174 allele (JQ915061). The isolated genes from the 

two alleles have the same length of 1,737 bp including 956 bp upstream from the 

translational start codon and 781 bp from the start codon to the stop codon. The two 
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alleles showed one SNP in exon 1 that resulted in alteration of an amino acid (Chapter 

III). The gene consists of two exons and one intron, and which is the same as all of the 

other TaHOX genes isolated in this study.  

The isolated TaHOX-A1 gene was 2,736 bp in length, including 987 bp before the 

translational start codon, 798 bp between the start codon and the stop codon, 951 bp after 

the translational stop codon. No difference was found in the complete TaHOX-A1 gene 

between the Jagger and 2174 alleles. The chromosomal location of TaHOX-A1 was 

determined based on identification of this gene in CS deletion lines (Fig.13A). 

The isolated TaHOX-D1 gene was 2,239 bp in length, including 1,141 bp before the 

translational start codon, 774 bp between the start codon and the stop codon, 324 bp after 

the translational stop codon, and. No difference was found in the complete TaHOX-D1 

gene between the Jagger and 2174 alleles. The chromosomal location of TaHOX-D1 was 

determined based on identification of this gene in CS deletion lines (Fig.13B). 

 

 

Fig.13 Chromosomal locations of TaHOX-A1 

and TaHOX-D1. Primers were designed 

specific to TaHOX-A1 (A) and TaHOX-D1 (B) 

respectively. PCR were performed with 

Chinese Spring homoeologous group 6 nulli-

tetrasomics. M: PCR 100 bp ladder marker. 

PCR was performed using standard programs 

except annealing temperature of 55°C and 

extension time for 1 min. 
M      N6AT6B  N6BT6D  N6DT6A   CS 

A 

B 
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Isolation of homoeologous genes of TaHOX2 

TaHOX1 sequences were used to search GenBank nucleotide collection databases, a 

cDNA (AK335335.1) was found to have very high identity with TaHOX1. This cDNA 

was different from all of TaHOX-A1, TaHOX-B1, and TaHOX-D1; therefore, this cDNA 

could be from a novel gene. An effort was made to isolate homoeologous genes that are 

different from TaHOX1 and thus were TaHOX2. We have also found three new HOX 

genes that have high identity to TaHOX1 genes, and these new HOX genes are hereafter 

referred to as TaHOX2.  

The first TaHOX2 gene was 1,522 bp in length, including 306 bp before the translational 

start codon, 905 bp between the start codon and the stop codon, 301 bp after the 

translational stop codon. An 18 bp indel (insertion/deletion) polymorphism was observed 

in exon 1 of this gene between the Jagger and 2174 alleles. A PCR marker was developed 

for 18 bp indel using specific primers HOXC4-MF2 (5’- 

CATCCAGCAGAGCAGAGGAGAGC -3’) and HoxC4-MR2 (5’- 

GAACATGGACTCCAGCGACCGTG -3’) (Fig.14).  

Fig.14 PCR marker for TaHOX-A2. Specific 

primers HOXC4-MF2 and HoxC4-MR2 were used to 

map the 18 bp indel in TaHOX-2A. The specific 

primers amplified a 310 bp gDNA fragment in Jagger 

and a 328 bp gDNA fragment in 2174, using PCR 

programs with annealing temperature of 56°C and 

extension time for 30 seconds. The PCR products 

were run in a 2% agarose gel directly.  M: PCR 100 

bp DNA ladder. 

M                 Jagger              2174 
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The marker for the first TaHOX2 gene was developed by one shoot PCR without 

requirement for digestion with restriction enzymes. This marker was mapped on the short 

arm of chromosome 2A in the Jagger x 2174 RIL population (Fig.15); therefore, this 

TaHOX2 was designated TaHOX-A2.  

 

The isolated TaHOX-B2 gene was 1,536 bp in length, including 426 bp before the 

translational start codon, 876 bp between the start codon and the stop codon, 234 bp after 

the translational stop codon. No difference was found in the complete TaHOX-B2 gene 

between the Jagger and 2174 alleles. The chromosomal location of TaHOX-B2 was 

determined based on identification of this gene in CS deletion lines (Fig.16A). 

The isolated TaHOX-D1 gene was 1,219 bp in length, including 124 bp before the 

translational start codon, 789 bp between the start codon and the stop codon, 306 bp after 

the translational stop codon. No difference was found in the complete TaHOX-D2 gene 

between the Jagger and 2174 alleles. The chromosomal location of TaHOX-D2 was 

determined based on identification of this gene in CS deletion lines (Fig.16B). 

 

Fig.15 Chromosomal locations of 

TaHOX-A2. Primers specific to 

TaHOX-A2 were used for mapping of 

the gene. SSR markers linked with 

TaHOX-A2 are reported to locate on 

chromosome 2A. 
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Expression of TaHOX1 and TaHOX2 

As shown in Fig.17, all of the five genes were observed expression in leaves of seedling 

plants. Except TaHOX-A2, all other genes were observed expression in spikes. TaHOX-

D1 expression was detectable in roots of both seedling and adult plants. Another gene 

that was found to express in roots was TaHOX-D2, but it was at seedling only. All of the 

five genes showed higher transcriptional levels in leaves of seeding plants in the 2174 

allele than the Jagger allele. 

Fig.16 Chromosomal locations of TaHOX-B2 and 

TaHOX-D2. Primers were designed specific to 

TaHOX-B2 (A) and TaHOX-D2 (B) respectively. 

PCR were performed with Chinese Spring 

homoeologous group 2 nulli-tetrasomics. M: PCR 100 

bp ladder marker. PCR was performed using standard 

programs except annealing temperature of 55°C and 

extension time for 1 min. 

 

B 

A 

     M  N2AT2B  N2BT2D  N2DT2A   

CS 
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Subcellular localization of TaHOX-A2 proteins  

To test if there is any difference in the expression location of the TaHOX-A2 protein 

between Jagger and 2174, TaHOX-A2 protein in pEG101 was expressed in living cells. 

As shown in Fig.18, the Jagger TaHOX-A2 protein was expressed predominantly in the 

nucleus and partly on the cytoplasm membrane. No detectable difference was found in 

Fig.17 Chromosomal locations of TaHOX-B2 and TaHOX-D2. Primers specific to 

five different HOX genes were used to test the same cDNA samples. (These cDNAs 

were tested using actin gene data not shown here). 

                 Adult plant         

 
     Leaf         Root         Spike         

M

             

J        2         J       2      J       2         

       Seedling         

 
     Leaf         Root                  

J        2         J       2               

TaHOX-D1         

TaHOX-A1         

TaHOX-A2         

TaHOX-B2         

TaHOX-D2         
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the subcellular location of TaHOX-A2 between Jagger and 2174, though Jagger TaHOX-

A2 lost 6 amino acids in the nucleotide binding site. 

 

4.4 Discussion 

There are 42 genes in the HDZip gene family in Arabidopsis (Arabidopsis Genome 

Initiative, 2000). These HDZip proteins interact as dimers by their leucinezippers 

domains, and bind DNA sequence specifically via their homeodomains (Sessa et al., 

1993; Aoyama et al., 1995; Meijer et al., 1997; Frank et al., 1998; Johannesson et al., 

2001). Based on sequence blast, both TaHOX-A1 and TaHOX-A2 showed the highest 

identity to Arabidopsis thaliana homeobox 7 (AtHB7) (NP_182191.1), suggesting that 

TaHOX-A1 and TaHOX-A2 are two genes that were duplicated during evolution. 

YFP DAPI Overlay BF 

Fig.18 Subcellular localization of TaHOX-A2.  A.tumefaciens strains (GV3101) 

carrying the pEG101 construct was used with the P19 strain for infiltration of N. 

benthamiana leaves (5 weeks old). Leaf discs were cut for imaging 3 days after 

infiltration, with an ultraviolet filter (DAPI) to indicate the position of the nucleus 

stained with 4′, 6-diamidino-2-phenylindole. The overlay images align the locations of 

YFP with the DAPI-stained nucleus. 
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AtHB proteins in Arabidopsis have been grouped into four classes (Sessa et al., 1994). 

AtHB7 was characterized as a member in HD-Zip class I that involves responses to water 

and light stresses. AtHB7 could be induced by water deficit conditions or ABA treatment; 

hence, it is a gene that had response to water deficit (Soderman et al., 1996 and 1999; Lee 

and Chun, 1998). Over-expression of AtHB7 resulted in early flowering in transgenic 

Arabidopsis plants (Soderman et al., 2000), and reduced elongation of the inflorescence 

stem and rosette leaves (Hjellstro¨m et al., 2003). These studies in Arabidopsis suggest 

that the orthologous TaHOX-A1 and TaHOX-A2 may play a role in regulation of 

flowering time and drought tolerance in wheat.  

TaHOX-B1 has been demonstrated that it does have genetic effects on flowering time in 

winter wheat when vernalized for 3 weeks (Chapter 3). TaHOX-B1 was expressed in 

seedling leaves, and all of the five homoeologous and homologous HOX genes presented 

in this study were also observed expression in leaves of seedling plants, suggesting they 

may have similar role in regulation of flowering time. However, only TaHOX-D1 and 

TaHOX-D2 were observed expression in roots of seedling, suggesting that if any of these 

wheat HOX genes play a similar role in plant response to drought stress as AtHB7, 

TaHOX-D1 and TaHOX-D2 should be the better candidates. 

Like TaHOX-B1, both TaHOX-A1 and TaHOX-D1 were expressed in spikes in wheat. 

However, only TaHOX-B2 in the TaHOX2 homoeologous genes was were expressed in 

spikes. These genes expressed in spikes may be involved in spike development, as over-

expression of orthologous AtHB7 resulted in reduced elongation of the inflorescence 

stem. The functional validation of these HOX genes needs to be tested in transgenic 
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wheat. It was unfortunate that no transgenic wheat was successfully generated in this 

study. 

Homeotic protein is one of the HOX proteins known to function as an on-off switch in 

controlling development, including specialization of regional identities along the 

anterio/posterior axis in a wide range of phyla in animals (Manak et al. 1994), whereas 

vrn-A1 (=AP1) is one of the MADS-box proteins known to act as floral switches for the 

transition from the vegetative to reproductive development in plants (Ng and Yanofsky, 

2001). This study presented the first example that MADS and HOX proteins involving 

homeosis have a direct binding in higher plants.  
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CHAPTER V 
 

 

TaVRN1 AND TaCENPE1 PROTEINS INTERACTIVELY REGULATE PLANT 

HEIGHT AND SPIKE DEVELOPMENT IN WHEAT 

 

 

Abstract 

Using TaVRN-A1 as bait, a wheat kinase interacting protein from a yeast-2 hybrid (Y2H) 

library was gained. The protein showed very high similarity to the CENP-E like 

kinetochore protein in cereals and it thus designated TaCENPE1. TaCENPE1 protein has 

a long region of sequence that was similar to conserved domains including leucine 

residues in TaVRN-A1, suggesting that this region includes interaction sites. TaCENPE1 

was localized in the same pattern as TaVRN-A1, indicating that they had the interaction 

site in living cells. TaCENPE1 and TaVRN-A1 were also confirmed to have a direct 

binding in living cells by using a transient expression system in tobacco leaves. The 

interference of TaCENPE1 through RNAi approach showed the plant height was reduced 

and more florets were produced in transgenic wheat. These results suggest that TaVRN1 

and TaCENPE1 proteins interactively regulate cell division and agronomic traits in 

wheat. 
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5.1 Introduction 

TaVRN-A1 and TaHOX1 proteins were found to have the physical interaction in wheat, 

though such an interaction was not reported in any plants or other organisms. A single 

marker analysis showed that TaHOX-B1 had a significant effect on flowering time of the 

plants with 3 weeks’ vernalization, supporting that TaHOX1 and TaVRN-A1 function in 

the same flowering pathway in wheat. The previous study encouraged us to test if any 

other proteins identified from the Y2H library have interactions with TaVRN-A1. 

The Y2H system can generate a significant number of both false-positive and false-

negative interactions. False clones may be identified for two reasons. One reason is that 

the two proteins show interactions with each other in yeast cells actually may not be 

expressed in the same tissue at the same time. Another reason is that the two proteins in 

yeast cell may interact indirectly, due to other proteins or factors that are also involved in 

the same pathway. As discussed in previous chapters, in addition to SOC1 and VRT2 

belonging to the MADS family that have interactions with TaVRN-A1, HOX1 proteins 

with a leucine rich region have a direct binding with TaVRN-A1. The previous study 

suggests that the proteins that have conserved leucine rich domain could have interactions 

in plants. In this chapter, a CENP-E like kinetochore protein  (CENP-E) was selected to 

test if it has interactions with TaVRN1, based on a sequence analysis result that the 

TaCENPE1 and TaVRN1 have a conserved region including leucine rich domain. We 

first confirmed the interaction between TaVRN-A1 and TaCENPE1 proteins in an in vivo 

protein interaction system as previously described for TaVRN-A1 and TaHOX1.  
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In winter wheat, vernalization and cold hardiness were reported to be correlated with 

several morphological traits, including prostrate or rosette growth habit (Salmon 1917; 

Klages 1926; Taylor and Olsen 1976; Zelenski and Remeslo 1977; Robert 1982b; 

McIntosh 1983; Taylor 1983; Roberts and Larson 1985; Roberts 1986; Chaudhry 1986), 

plant height (Fowler and Gusta 1977; Fowler et al. 1981), and leaf length (Roberts and 

MacDonald 1984, 1988). Allelic variation in the dominant Vrn-A1 locus also indicated 

pleiotropic genetic effects in spring wheat cultivars (Baga et al. 2009; Blake et al. 2009; 

Distelfeld et al. 2010; Kuchel et al. 2006; Li et al. 2008; Santra et al. 2009; Shimada et al. 

2009; Shitsukawa et al. 2007; Zhang et al. 2008). These previous studies supported that 

the VRN-A1 locus has different mechanisms in controlling wheat development. It was 

very recently reported that VRN-A1 was associated with spike development (Perrce et al. 

2013) and forest tolerance (Zhu et al., 2014). The complete deletion of the VRN1 gene in 

diploid wheat enables the mutant wheat not to flower forever under any conditions, 

suggesting that signals from different developmental pathways converge at VRN1. It is 

postulated that VRN1 would code for production of a temperature-sensitive protein, 

which undergoes conformational changes with changes in temperature (Robert 1989). In 

this study, we identified proteins that interact with TaVRN1 and then test if the 

interacting proteins have any genetic effects on multiple traits as reported. 
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5.2 Materials and Methods 

Identification of TaCENPE1 clones from Y2H library 

Three clones from the Y2H library were found to have a TaCENPE1 cDNA fragment. 

The wheat genomic sequences database (http://www.cerealsdb.uk.net) and GenBank 

were used to determine three homoeologous TaCENPE1 genes in hexaploid wheat. 

Chinese Spring deletion lines were used to identify specific primers that can be used to 

distinguish each of the three homoeologous genes in common wheat. Each of three 

homoeologous genes from parental lines were amplified and sequenced.  

Subcellular localization of TaCENPE1 

TaCENPE1 and TaVRN-A1 proteins were tested if they have a direct binding in living 

cells by using a transient expression system in tobacco leaves (Lu et al., 2010). The full-

length TaVRN-A1 was expressed by pEG101-YFP vector for subcellular localization.  

The complete TaCENPE1 cDNA was amplified (KIP-5-F1, 5’-

GGGCGGATCCCCATCTCC-3’; KIP-5-R2, 5’-

ATTCGATTTTGAAAAGGAATGCCATAATGGTCCAT-3’; HF Taq, 60°C for 

annealing temperature, 1 minute extension, with 40 cycles) and cloned into TA vector 

using ligase kit. Another pair of primers (KIP-BiFC2-F1, 5’- 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAGCGCATGAGTAG -3’; 

KIP-BiFC2-R1r2, 5’- 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCAGCAAACCAGACACCTTATTA

-3’) was used to add the attB-flanked DNA fragment at both end of TaCENPE1 so that it 

can be cloned into the donor vector pDONOR207 with the BP cloning kit. Then the full 

http://www.cerealsdb.uk.net/
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length of TaCENPE1 was transferred to pEarley-gate 101 (pEG101) using the LR cloning 

kit for subcellular localization of TaCENPE1.  

In vivo interaction of TaCENPE1-TaVRN-A1  

For in-vivo interaction between TaVRNA1 and TaCENPE1, only partial TaCENPE1 

cDNA was cloned into vector pEarley-gate 202 (pEG202) since the full gene did not 

express in the pEG201 vector. Similarly, the attB-flanked DNA fragment was added at 

both end of partial TaCENPE1 (KIP-BiFC2-F1, KIP-BiFC2-R2r) and then cloned into 

pDONOR207 with the BP cloning kit. Then, the partial length of TaCENPE1 was 

transferred to pEarley-gate 202 (pEG202) using the LR cloning kit for in-vivo protein 

interaction.  

TaVRN-A1 in pDONR207 was fused to the N-terminal amino acid portion of YFP in the 

pEarleyGate201-YN vector (pEG201-YN) to test in-vivo interaction with TaCENPE1 (1-

533 aa) fused to the C-terminal amino acid portion of YFP in the pEarleyGate202-YC 

vector (pEG202-YC).  

Empty vectors were used as negative controls for interaction with TaVRN-A1 or 

TaCENPE1 proteins. Agrobacterium tumefaciens strains (GV3101) carrying the BiFC 

constructs were used together with the p19 strain for infiltration of tobacco leaves (at 5 

weeks old). Leaf discs were cut for BiFC for imaging 3 days after infiltration. Images 

were taken using a fluorescent microscope with different filters to indicate different 

signals/background. The images taken with a bright filter (BF) are used to indicate the 

GFP filter to indicate the background of the leaves infiltrated with A. tumefaciens 

carrying constructs. Images taken under filter GFP indicate the presence of fluorescent 
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proteins, and ones taken under ultraviolet filter indicate the position of the nucleus 

stained with the stain DAPI. 

Interference of TaCENPE1 using RNAi  

The gene encoding TaCENPE1 was cloned into the vector pMCG161 and the construct 

was transformed into wheat to characterize the function of TaCENPE1. The pMCG161 is 

an RNAi vector used for RNA interference. When the synthetic dsRNA is introduced into 

plants, endogenous RNAs of TaCENPE1 could be degraded. The plasmid pMCG161 

contains the bar gene resistance to the herbicide and also the Bacterial chloramphenicol 

resistance gene to facilitate the selection of transgenic plants.  

A two-step method was used to clone TaCENPE1 covering 309 bp into the pMCG161 

RNAi vector. In the first cloning step, the PCR fragment was amplified using primers 

KIP-RNAi-F1 (5’- ACTAGTGGCGCGCCGTCTGGTTTGCTGAGTGATCTCACA-3’) 

and KIP-RNAi-R1 (5’- GCGATCGCCCTAGGACCATCGGCCTCTTGTGGCCCTGA-

3’), which were cleaved at the ‘inner’ restriction sites AscI and AvrII and then ligated to 

pMCG161 cleaved with the same restriction enzymes. In the second cloning step, the 

plasmid DNA resulting from the first cloning step served as a template for a second 

amplification using the original primers. The resulting PCR product was cleaved at the 

‘outer’ restriction sites SpeI and SgfI and then ligated to pMCG161 cleaved with the same 

restriction enzymes. This second ligation inserted the TaCENPE1 fragment in pMCG161 

in an inverted orientation with respect to the first cloned fragment. The construct plasmid 

DNA was extracted in a large scale using a commercial kit (OMEGA) for plant 

transformation. 
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Generation of transgenic wheat using TaCENPE1-RNAi 

Transgenic wheat was generated using Bobwhite, which is a spring wheat advanced 

linewidely used in wheat transformation, because of its relatively high transformation 

efficiency. Brief procedures include: 

Constructs of transformation: A two-step method was used to clone TaCENPE1 

covering 309 bp into the pMCG161 RNAi vector. In the first cloning step, the PCR 

fragment was amplified using primers KIP-RNAi-F1 ( 5’- 

ACTAGTGGCGCGCCGTCTGGTTTGCTGAGTGATCTCACA-3’) and KIP-RNAi-R1 

(5’- GCGATCGCCCTAGGACCATCGGCCTCTTGTGGCCCTGA-3’ ), which were 

cleaved at the ‘inner’ restriction sites AscI and AvrII and then ligated to pMCG161 

cleaved with the same restriction enzymes. In the second cloning step, the plasmid DNA 

resulting from the first cloning step served as a template for a second amplification using 

the original primers. The resulting PCR product was cleaved at the ‘outer’ restriction sites 

SpeI and Sgf I and then ligated to pMCG161 cleaved with the same restriction enzymes. 

Immature embryo used to host transgene: Immature embryos were collected from the 

spikes of plants approximately 14 days after anthesis. At this stage the embryos were 

about 0.1-1.0 mm in length and had great differentiation ability suitable for gun 

bombardment gene transformation. 

The collected seeds were sterilized with 70% ethanol for 5 min, 20% bleach for 30 min, 

and then rinsed 5 times with sterile and distilled water. The sterilized seeds were excised 

using aseptic technique in a hood, and the excised embryos were cultured in dissection 
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medium (Table 3) at room temperature (22-23 °C) in the dark for 4-6 days, before they 

were used for bombardment. 

Gene-gun bombardment: The dark-cultured embryos were transferred to high 

osmoticum media (bomb medium) (Table 4) four hours before bombardment. The 

embryos, with scutellum up, were placed in a circle in the middle of the plate. The 

TaCENPE1::RNAi construct plasmid DNAs were coated with gold particles (BioRad) 

and shot into the embryos by helium pressure.  

Callus incubation: The bombed calli were cultured at recovery medium (Table 5) in dark 

for 4 weeks, then regeneration medium (Table 6) in lighted growth chamber (22-23 °C, 

16 hours light/ 8 hours dark) for 6-7 weeks, followed by rooting medium (Table 7). 

Seedlings with healthy roots were transferred to soil in pots until plant matured.  

Identification of transgenic plants: A PCR method was used to check if the transgene 

was in the plants that survived. A pair of primers in the regions before and after the inner 

restriction enzyme digestion sites was designed to check the presence of the sense 

fragment of TaCENPE1, forward sense primer 5’-ATATCCCCTAGCCACCCAAG-3’, 

and reverse sense primer 5’-CCCCTGGGTGTGTTTCTCTA-3’. Another pair of primers 

in the regions before and after the outer restriction enzyme digestion sites was designed 

to check the presence of the antisense fragment of TaCENPE1, forward antisense primer 

5’- GTAAGGTGTTGGGCTGGAAA-3’, and reverse antisense primer 5’- 

CGCTCGGTGTGTCGTAGATA-3’. The PCRs were conducted in a reaction at 94 °C 

for 3 min, followed by 40 cycles of 94 °C for 30 sec, 53 °C for 30 sec, as well as a final 
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step of 72 °C for 3 min. Construct plasmid DNA was used as positive control, and the 

wild type plant DNAs and water were used for negative control.  

Gene expression of transgenic wheat 

T1 transgenic wheat populations were tested to see if endogenous TaCENPE1 is repressed 

by RNAi. The positive transgenic plants were identified using primers that designed 

based on sequences on vector pMCG161 for RNAi experiments. RNA will be extracted 

with the Trizol method, and RT-PCR approach was used to determine transcript level 

with SYBER Green
®
 systems (Loukoianov et al. 2005). Non-transgenic plants were be 

used as controls. 

5.3 Results 

Discovery of TaCENPE1 

Of these positive cDNA clones from the Y2H library using TaVRN-A1 as bait, 3 

independent ones are predicted to encode part of the protein TaCENPE1, which is first 

defined for kinase interacting protein in T. aestivum. 

A BLAST search using the TaCENPE1 sequence revealed the existence of many related 

genes in two families, one is CENP-E1 in cereals including HvCENP-E in barley, 

ADH94798 with 95% similarity at the protein level; the other is kinase interacting protein 

in Arabidopsis (AtKIP1), NP_180608 with 34% identity or 51% similarity at the protein 

level. The original name of the gene for research work was TaKIP1 but it was renamed as 

TaCENPE1 hereafter. 
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Interaction sites between TaVRN-A1 and TaCENPE1 

TaVRN-A1 is a MADS box protein that contains
 
a conserved modular structure 

consisting of four different functional
 
domains: the MADS-box, the

 
intervening region (I-

region), the coiled-coil keratin-like
 
(K-box), and the C-terminal region (Kane et al., 2005; 

Mandel et al., 1992; Yang et al., 2004).
 
MADS box proteins often homodimerize or 

heterodimerize with other MADS box protein in the same family to gain functional 

diversity (Immink and Angenent, 2002; Riechmann et al., 1996). Intriguingly, 

TaCENPE1 was found to have a long region with amino acids conserved with TaVRN-

A1 including several leucine residues (Fig.19), suggesting that this region might be 

interaction sites of the two proteins.   

 

 

 

 

 

 

 

 

 

Fig.19 Sequence alignment between TaVRN-A1 and TaCENPE1 proteins. TaVRN-

A1 is encoded by the Jagger allele. An amino acid in blue indicates a point mutation that 

occurred between Jagger and 2174 TaVRN-A1 proteins. Conserved leucine residues are 

highlighted in red. 
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Subcellular localization and in vivo interaction of TaVRN-A1 and TaCENP1 

proteins 

The full length TaCENPE1 was expressed by pEG101-YFP vector, and enriched yellow 

fluorescent signals were detected predominantly in the nucleus (Fig.20A) and partly on 

the cytoplasm membrane (Fig.20B). The expression pattern of TaCENPE1 was exactly 

the same as TaVRN-A1 observed in the previous study. This result indicated that 

TaVRN-A1 and TaCENPE1 have interaction sites in the cell. 

TaVRN-A1 into pEG201-YN vector and TaCENPE1(1–513) into pEG202-YC vector 

and analyzed in vivo protein interactions by BiFC. When TaVRN-A1-YN and 

TaCENPE1-YC were simultaneously expressed in the same cell, yellow fluorescence was 

observed in the membrane with a fluorescent microscope (Fig.20C-F), but no signal was 

observed in the negative controls using TaCENPE1 and empty vectors to express in the 

same cell (data not shown). These results indicated that TaVRN-A1 and TaCENPE1 

proteins had a physical interaction in plants. 

The in vivo protein interactions are usually conducted using agrobacterium tumefaciens 

strains (GV3101) to carry the BiFC constructs to infiltrate tobacco leaves that are 

complete at 5 weeks old. Interestingly, when the bacteria was used to infiltrated with 

leaves that were young and not yet complete, interaction signals were observed on two 

dividing nuclei in the same cell (Fig.20G), dotted interaction signals were observed on 

spindle fibers (Fig.20H) and two divided cells (Fig.20I).  
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Fig.20 Subcellular localization and in vivo interaction of TaVRN-A1 and TaCENP1 proteins. (A) 

Circle signals representing TaCENPE1-YFP protein expressed by pEG101 on nucleus. (B) Dot signals 

representing TaCENPE1 on the cytoplasm membrane. (C)-(I) In vivo interaction of TaVRN-A1 and 

TaCENPE1 when the two proteins were simultaneously expressed in the same living cell in Nicotiana 

tabacum (tobacco) leaves. (C) No signals in cells when imaged with bright filter (BF). (D) The green 

fluorescent proteins resulted from the in vivo interaction between TaVRN-A1-YN and TaCENPE1-YC. 

YN, YFP fragment at the N-terminal end expressed from pEG201-YN vector; YC, YFP fragment at the 

C-terminal end expressed from pEG202-YC vector. (E) Leaf discs were cut for imaging 3 days after 

infiltration, with an ultraviolet filter (DAPI) to indicate the position of the nucleus stained with 4′, 6-

diamidino-2-phenylindole. (F) Overlay of image D and image E to indicate that interaction signals on 

the nucleus. (G) Interaction signals of TaVRN-A1-YN and TaCENPE1-YC on two dividing nuclei in 

the same dividing cell. (H) Interaction signals of TaVRN-A1-YN and TaCENPE1-YC on spindle 

fibers. (I) Interaction signals in two divided young cells. 

B C A 

D E F 

G H I 
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Isolation and mapping of TaCENPE1 genes 

To map the single nucleotide polymorphism in TaCENPE1, forward primer KIP2-F2 5’-

GGGTAAAAAGGGAAGTGATGGATCG-3’ and reverse primer KIP2-R2 5’-

AGTTCTTGACCACTTCTTGGAGA-3’ were designed to amplify a 530 bp fragment 

containing this SNP. Jagger PCR DNA product contained two Aci I digestion sites while 

2174 PCR contained only one. After digestion, the Jagger PCR showed 184-, 255- and 

91-bp bands, whereas the 2174 PCR showed 439- and 91-bp bands. The digested PCR 

products of 184-bp and 255-bp for the Jagger TaCENPE2a allele and 439-bp for the 2174 

TaCENPE2b allele were distinguishable on a 2% agarose gel (Fig. 21). 

 

 

 

 

 

 

 

 

 

   Jagger   2174     M 

Fig.21 A PCR marker for TaCENPE-A1 in wheat. 

TaCENPE-A1a has ‘GCGG’which can be digested 

with AciI, whereas TaCENPE-A1b has ‘GCTG’ which 

cannot be digested with AciI. The expected Jagger 

PCR product has a lower band than 2174. 
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The mapping of the newly developed PCR marker for TaCENPE2 in 96 RILs of the 

Jagger x 2174 population showed that TaCENPE1 was on chromosome 3A, therefore, 

this gene is designated TaCENPE-A1 (Fig.22) 

 

  

 

 

 

 

 

 

TaCENPE1::RNAi transgenic plant  

In order to investigate the function of TaCENPE1, we used a vector of RNAi pMCG161 

(RNA interference) to transform this gene into the hexaploid spring wheat variety 

Bobwhite. RNAi is a biological process in which RNA molecules inhibit gene 

expression, typically by causing the destruction of specific mRNA molecules. This 

method is widely used to silence gene expression in the study of gene function. The 

phenotype of transgenic plant of TaCENPE1::RNAi would provide solid evidence to the 

function of TaCENPE1. Two transgenic wheat plants (T20 and T33) showed the 

expected PCR products of transgenes for both sense and anti-sense orientation (Fig.23) 

Fig.22 Chromosomal location of TaCENPE1 in wheat.  Primers specific to 

TaCENPE1 were used for mapping of the gene. SSR markers linked with TaCENPE1 

are reported to locate on chromosome 3A.The genetic linkage map was constructed 

using MapMaker 3.0. 
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Functional understanding of TaCENPE1 in transgenic wheat 

Since only a few seeds were harvested, no T1 population was generated to test 

phenotypes but the phenotypes of a few T1 plants were presented herein. A T2 population 

generated from a few T1 plants is growing and will be tested for phenotypes. Positive 

plants in the T2 populations have been identified for gene expression.  

For T2 populations of both T20-3 and T33-4, a ratio of 3:1 segregation was observed for 

plants carrying the TaCENPE1::RNAi construct and plants without this construct. The 

TaCENPE1 transcript levels in leaf samples of the seedling stage plants were determined 

using a quantitative RT-PCR (Fig.24). The transcriptional levels of endogenous 

TaCENPE1 in the plants carrying TaCENPE1::RNAi construct were significantly 

reduced compared with the plants without the construct in the same population. For T20-

3 population, positive plants showed only 2/5 of the transcriptional level of the controls, 

and T33-4 positive plants showed only 1/2 of transcriptional level of the corresponding 

#20 #33 

A 
 

B 

Fig.23 Screening of TaCENPE1::RNAi transgenic plants. (A) PCRs used to amplify 

the transgene in sense. (B) PCRs used to amplify the transgene in antisense. Plant #20 

and #33 are two positive plants.  Bobwhite gDNA and H2O as negative controls, 

TaCENPE1::RNAi construct as positive control.  
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controls. This result indicates that the TaCENPE1::RNAi construct efficiently decreased 

the TaCENPE1 transcriptional level.  

 

As shown in Fig.25A, the plant height of the transgenic wheat was significantly reduced. 

Several positive transgenic plants showed similar phenotypes. Another striking 

phenotype in transgenic wheat plants was that more flowerets per spikelet were 
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Fig.24 TaCENPE1 expression level in T2 population of TaCENPE1::RNAi 

transgenic wheat. Transcript levels of TaCENPE1 in T2 populationare shown using 

the values calculated by the 2
(-CT)

 method, where C
T
 is the threshold cycle, and 

actin was used as an endogenous control. For T2 population of T20-3: plants carrying 

RNAi construct (#1, 5, and 8) have lower expression level than plants without the 

construct (#12, 34, and 35). For T2 population of T33-4: most plants carrying RNAi 

construct (#1 and 7) have lower expression level than plants without the construct 

(#6, 9, and 13). Only the expression level for plant #3 is not depressed obviously, 

maybe the RNAi construct breakdown during cell division and lost function as a 

result. 
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developed (Fig.25B and 25C) compared with wild type (Fig.25D). There usually are 6-10 

flowerets each spikelet on the middle-lower part of a spike and 1-5 of them are visible 

and can be developed to seed. However, in the transgenic plants, up to 10 flowerets were 

visible (Fig.25B and 25C), and more grains per spikelet were produced in the 

TaCENPE1::RNAi transgenic wheat.  

 

 

 

 

 

 

 

 

 

5.4 Discussion 

CENP-E is a kinesin-like protein that binds to kinetochores during mitosis in organisms 

(Yen et al., 1991, 1992; Cooke et al., 1997; Yao et al., 1997). Mitosis and meiosis and 

two ways to divide and reproduce cells. Meiosis is a special type of cell division 

necessary for sexual reproduction in plants, in which homologous chromosome pairing, 

Fig.25 Phenotypes of TaCENPE1::RNAi transgenic wheat.  (A)The plant height 

of positive transgenic wheat T20-2 is significantly reduced caompared with the 

wild type. (B) and (C) Spike and floweret structure for positive transgenic wheat 

T33-1 and T33-3. (D) Spike and floweret structure for wild type wheat as control. 

 

T20-2               (-)                        T33-1                   T33-3                 Wild type  

A                                          B                           C                            D 

http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Sexual_reproduction
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synapse and recombination occur. Mitosis is the process in which the chromosomes in the 

cell nucleus are separated into two identical sets of sister chromosomes, each in its own 

nucleus. Mitosis is followed immediately by cytokinesis, which divides the cytoplasm, 

organelles, and cell membrane, and later karyokinesis, which divides the nucleus, 

dividing the cell into two new cells containing roughly equal shares of these cellular 

components. Mitosis and cytokinesis together define the mitotic (M) phase of the cell 

cycle—the division of the mother cell into two daughter cells, genetically identical to 

each other and to their parent cell. During mitosis, the two identical chromatids or sister 

chromatids are held together by a specialized region of the chromosome: a DNA 

sequence called the centromere. A kinetochore is a complex protein structure that 

assembles on the centromere and links the chromosome to microtubule polymers from 

the mitotic spindle during mitosis and meiosis. In human cells, the centromeric proteins 

include constitutive proteins, such as CENP-A, -B, -C, and -H, that are present at the 

centromere throughout the cell cycle, and transient proteins that appear after the onset of 

mitotic phase, such as CENP-E and -F.  

CENP-E of a genomic sequence similar to ZW10 of Drosophila was identified in 

Arabidopsis (Starr et al 1997) and in barley (Hoopen et al. 2002). The previous evidence 

suggests that CENP-E like protein may also occur at plant centromeres (cross reactivity 

of antibodies agaisnt CENP-E (Yen 1991) with the kinetochores of Vicia faba and/or 

Hordeum vulgare. Arabidopsis genome revealed 61 sequences encoding proteins with a 

kinesin motor domain (Teddy and Day 2001). Some of the Arabidipsis kinesin sequences 

grouped with CENP-E according to the maximun likelihood method (Lawrence et al 

2002).  

http://en.wikipedia.org/wiki/Chromosomes
http://en.wikipedia.org/wiki/Cell_nucleus
http://en.wikipedia.org/wiki/Cytokinesis
http://en.wikipedia.org/wiki/Cytoplasm
http://en.wikipedia.org/wiki/Organelle
http://en.wikipedia.org/wiki/Cell_membrane
http://en.wikipedia.org/wiki/Cell_cycle
http://en.wikipedia.org/wiki/Cell_cycle
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Chromatid
http://en.wikipedia.org/wiki/Sister_chromatids
http://en.wikipedia.org/wiki/Sister_chromatids
http://en.wikipedia.org/wiki/Centromere
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By the sequence alignment, TaCENP-E1 could have a direct physical binding with 

TaVRN-A1 protein. The in vivo interaction approach also demonstrated that TaCENPE-

A1 had interaction with TaVRN-A1 protein. In view of sequence, the interaction of the 

two proteins in different families is due to the presence of conserved sequences including 

leucine rich domain between them. 

It was reported that interference of CENP-E function reduces tension across the 

centromere, increases the incidence of spindle pole fragmentation, and results in 

monooriented chromosomes approaching abnormally close to the spindle pole. Recent 

efforts to eliminate CENP-E expression by an antisense strategy yielded a similar 

phenotype (Yao et al., 2000). These studies have been interpreted to mean that CENP-E 

is required for stable attachment of kinetochore microtubules (kMts) and chromosome 

congression to the spindle equator (Schaar et al., 1997; Yao et al., 2000). The presence of 

bipolar aligned chromosomes in the absence of CENP-E function has been attributed to 

chromosomes located near the center of the forming spindle during early prometaphase. 

The locations of the interaction signals in nuclei and spindle suggested that both 

TaCENPE1 and TaVRN-A1 move with chromosomes during cell division. 

Plant growth rate at the cellular level is regulated by the combined activity of two 

processes: cell proliferation and expansion, which involves the integration of signals from 

the intrinsic genetic programs with environmental cues. Gibberellins (GA) are one of 

endogenous hormones that play a central role in regulating responses of plant growth and 

development to environment conditions (Olszewski et al. 2002, Achard et al. 2006). It is 

well known that GA promote cell expansion and proliferation by repressing DELLA 

proteins restraining cell division activity in the shoot meristematic zone and early 



89 
 

developing leaves, which enhance the level of kinase interacting protein Kip-related 

protein 2 (KRP2), an inhibitor of the cell production (Olszewski et al. 2002; Peng et al., 

1997; Achard et al. 2009). GA signaling, by modulating the expression levels of KRP2, 

controls the cell proliferation rate, resulting in dwarf and branching spikelets. A recent 

study on wheat reported both VRN1 and GA are required in the wheat shoot apical 

meristem for the up-regulation of SOC1-1 and LFY and for the acceleration of spike 

development (Pearce et al., 2013). Put these studies together, we establish a model for 

floweret development, in which TaCENPE1, which may play a functional role like 

KRP2, regulate plant height and spike development through VRN1 and GA pathway in 

wheat. Further functional understanding of these proteins is of importance because the 

pathway is related to grain yield. 
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CHAPTER VI 
 

 

DISCUSSION AND CONCLUSION 

 

 

6.1 New approaches in identifying genes for important traits 

A genetic approach is usually utilized to identify genes associated with important traits 

by using genome-wide markers to construct higher density genetic linkage groups for the 

mapping population. For developmental genes in winter wheat, three major QTLs (vrn-

A1, PPD-D1, and vrn-D3) have been genetically associated with developmental phases 

(Chen et al., 2010). However, The tri-loci model of selection for winter wheat 

development is not conclusive, because the current model does not match up with 

phenotypes in some of the tested cultivars, such as Fannin that is extremely early and 

Trego that is extremely late in development, suggesting that more genes are involved in 

developmental trait of winter wheat. The missing part in the winter wheat development 

pathway could be found using further genetic research. It is possible that some genes is in 

gaps between the linkage groups mapped in the winter wheat population, since the 

previous SSR (simple sequence repeat) markers did not sufficiently cover the whole 

genome. It is also possible that some genetic factors controlling winter wheat  
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development were not detected in the previous Jagger x 2174 population because the two 

parental lines may have the same allele for those unknown gene loci. A new doubled 

haploid (DH) population using two winter wheat cultivars, Duster and Billings that have 

the same allele at each of the three known genes but have a significant difference in 

developmental processes, has been generated to identify new genes/QTLs in the Duster 

and Billings DH population.  

The missing part in the winter wheat development pathway can also be found by using 

new research strategies. In comparison with research on a functional gene at the DNA 

level which characterizes transcription and promotion of genes, micro RNA and protein 

studies have received less attention. These new research areas have been considered as 

increasingly important for understanding the molecular mechanism of biological process 

(Pawson and Nash, 2003), such as plant development.  

6.2 A flowering pathway via TamiR1123 

A new model was proposed to explain mechanisms underlying spring growth habit by 

TamiR1123 present in the promoter of the Vrn-A1a allele without vernalization 

requirement. In this model, without vernalization the spring Vrn-A1a allele can be 

expressed much earlier than other spring alleles due to the presence of TamiR1123 in the 

Vrn-A1a promoter. In previous studies, all of spring Vrn-A1 alleles, regardless of 

mutation types in the promoters of the insertion of the MITE or retrotransposal elements 

or deletions, were believed to lose the binding sites of repressors, but the previous model 

cannot explain why those plants that carry MITE_VRN produce more Vrn-A1a 
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transcripts and flowered earlier than those plants that carry other mutant alleles with 

deletions in their promoters or intron 1 (Yan et al. 2004, Fu et al., 2005).  

In this study, we have experimentally demonstrated that the level of TamiR1123 was 

positively correlated with the transcriptional levels of Vrn-A1a. Therefore, it is likely that 

TamiR1123 binds to the same sequence present in MITE_VRN in the promoter of the 

Vrn-A1a to induce expression of Vrn-A1a. However, the possibility that TamiR1123 is 

the by-product of transcription of Vrn-A1a that is used to enhance the expression of Vrn-

A1a cannot be excluded. A MULE (Mutator-like element) could harbor the promoters of 

Vrn-A1a for transcription, based on characteristics of the sequence and target site 

duplication of MITE_VRN. The potential mechanism could explain why Vrn-A1a is 

linked to a much stronger expression than other Vrn-A1 alleles.  

TamiR1123 can be released from MITE_VRN that is expressed as RNA. The released 

TamiR1123 can induce the expression of the genes that have a target of TamiR1123. 

Moreover, MITE_VRN is active and movable, which can insert in the promoter or 

regulatory site of a functional gene. In this study, we have found several cDNA clones or 

sequence contigs in the available databases that have identical or similar sequences as 

TamiR1123 or MITE_VRN. Many more regulatory sites with such a sequence would be 

found as the wheat genome is completely sequenced. The expression patterns or coding 

sequences of these targeted genes could be altered due to the insertion of MITE_VRN or 

the cognition of TamiR1123, which would form a dynamic gene regulatory network 

governed by Vrn-A1a in plant development. The VRN1 region was reported to have 

association with multiple traits including vernalization, cold hardening, and the 
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development of rosette. This study provided a machinery explanation for the complex 

association among some of the multiple phenotypes.  

6.3 Protein interaction pathways for flowering time in wheat 

Using VRN1 as bait, we identified HOX and CENPE1 proteins from the yeast-two-

hybrid (Y2H) library and confirmed the interaction using in vitro approach, in addition to 

other proteins such as VRT2 and SOC1that have been reported to involve in development 

processes. We have used pull down assay for in vitro interaction and the bimolecular 

fluorescence complementation (BiFC) system for in vivo interaction to confirm that these 

proteins have real interaction. These interacting proteins may be a necessary component 

in different biological function pathways.  

The HOX proteins are known to function as an on-off switch in controlling development 

including specialization of regional identities along the anterio/posterior axis in a wide 

range of phyla in animals, and MADS-box proteins, such as wheat VRN1 and 

Arabidopsis FLC, are known to act as the floral switches for the transition from the 

vegetative organ to reproductive organs in plants. The striking parallels in function 

involving homeosis between animal HOX proteins and plant MADS-box proteins has 

provided the possibility that plant HOX may direct floral architecture (Ng and Yanofsky, 

2001). This study presented the first example that plant HOX regulated flowering time by 

directing homeosis for organ identity from the apical meristem to the stem. 

6.4 Future research perspectives  

With recent releases of wheat survey genome sequences, we have entered a post-genomic 

era that should focus on identification of functions of genes and gene products (proteins) 
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and application of multiple functional genes/proteins in wheat. In comparison with 

previous research on a marker associated with a QTL, future researches will focus on 

functional characterization of the candidate genes associated with QTLs.   

Many miRNA molecules have been found to play important roles in plant responses to 

abiotic and biotic stresses as well as signal transduction. In this study, several gene 

sequences have been identified to be direct targets of MITE_VRN or TamiR1123, but 

functions of these potential targets are not known. A future research will be to establish 

network via TamiR1123 and MITE_VRN governing multiple traits in wheat. In addition, 

the MITE_VRN derived TamiR1123 characteristics needs to utilize in wheat breeding. 

Firstly, the genomic and EST sequences flanking MITE_VRN can be used to design 

specific primers to map members of the MITE_VRN family. Any phenotypic variation 

associated with a MITE_VRN marker can be suggested to link with development 

regulated by TamiR1123 donated from MITE_VRN in the VRN-A1a. These potential 

applications of MITE_VRN and TamiR1123 in wheat need to be developed in the future 

studies. 

TaHOX1 protein was suggested to function in the flowering pathway, based on its direct 

interaction with TaVRN-A1 and genetic association with flowering time. However, the 

role of TaHOX1 in regulating flowering time needs to confirm in transgenic plants, and 

further experiments are also needed to test if the TaVRN-A1-TaHOX1 protein complex is 

sensed by low temperature in winter wheat. We hypothesize that when a protein like 

VRN1 interacts with multiple proteins such as HOX1, CENPE1, SOC1, and VRT2, the 

protein interactions have resulted in a competition for signals from different pathways in 
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plants. It would be intriguing that a model is established to understand how these 

interacting proteins are balanced by binding strength or anything else.  

The mechanism how plants measure the vernalization duration in Arabidopsis is 

unknown yet, but a model is proposed to understand this mechanism. In the model, some 

gene(s) is gradually up-regulated or down-regulated during the vernalization process to 

reach a threshold at which the vernalized plants acquit the competence to flower. The 

vernalization duration depends on when the plant reach the maximum vernalization 

effects or any further vernalization no longer makes the plant to flower earlier but may 

delay flowering due to paradox effects of low temperature on development and growth. 

In the threshold model, the cold
 
sensor could simply be an enzyme that measures the 

duration of the cold. In Arabidopsis, VIN3 could be such an enzyme based on its unique 

expression pattern. One challenge research for the future is to understand
 
the nature of the 

measurement of cold duration at a protein or enzyme
 
level in wheat.

 
 

Current scientific consensus shows that average global temperature rose in
 
the 20

th 

century and will continue its increase by 3 to 5 °C by the end of the 21
st
 century. Winter 

wheat requiring a few weeks of low temperature at lower than 8 °C for proper flowering 

time is more vulnerable to elevated temperature, because a shortened low-temperature 

duration may result in a failed or incomplete vernalization. The precise characterization 

of interacting molecules at micro RNA or protein intersection will lead to gene networks 

that can be used to regulate development processes in wheat. This knowledge, in turn, has 

a direct impact on our ability to develop new plant cultivars that are responsive to the 

increasing challenges of climate change.
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Table 1. The MITE_VRN family in wheat genomes 

 

Sequence source Accession # 

Host direct duplication 

sequences 

MITE length 

(bp) 

Sequence length 

(bp) 
 

EST HX153763 ATGCCAGTG 195 624 

 
CK217184 ATGCCAGTG 194 1049 

 
CK217185 ATGCCAGTG 195 1047 

 
CK217186 ATGCCAGTG 195 1027 

 

Wheat genome sequence 

contig Contig299482 CCAAATATAAG 219 1679 

 
Contig134865 ATGGTTTGAG 224 2194 

 
Contig80285 GTGTTTTTC 221 2554 

 
Contig3014060 CTATTATAC 214 525 

 
Contig859785 GCAGTTTAG 222 1093 

 
Contig311912 CATAATTAC 221 1663 

 
Contig4207044 CTGAATTTG 221 325 

 
Contig1137015 GCTCAACAC 220 955 

 
Contig279496 CTAGGATGC 220 1742 

 
Contig3124132 GCCAT 218 509 

 
Contig2088947 ATG 220 476 
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Table 2. Primers used for TaHOX expression in Jagger and 2174 

 

Target 
 

Primer name Sequence 

 

TaHOX-A1 
 

TaHoxC2-F3 TTCTCGCTCTGACGATTTGATACCGCG 

 

 
TaHoxC2-R1 TGCAACGTTGGTTCATGCCACTGCG 

 

TaHOX-D1 
 

TaHoxC2-F2 GGAGTTCTGTCTCTGACGATTCGATTCCAAT 

 

 
TaHoxC2-R1 TGCAACGTTGGTTCATGCCACTGCG 

 

TaHOX-A2 
 

HoxC4-MF2 CATCCAGCAGAGCAGAGGAGAGC  

 

 
Hox-M-R4 GGCGGTCGCCTCCATGGTTTCAGGTC 

 

TaHOX-B2 
 

Hox-M-F6 GTAGGGAGGGGATCCATCCAGATCC 

 

 
Hox-M-R6 ACTTAAGACATTTTGAGACGGAGGGAGTATAC 

 

TaHOX-D2 
 

HoxC5-MF3 GATCCATCCAACAGAGCAGAGCAGAGT 

 

 
Hox-M-R5 GATTCAGGTGCATCATCCTCTATCTTACATTC 
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Table 3. Dissection medium (1 L) 

 

Murashige & Skoog Salt Mixture (BRL) 4.4 g 

Maltose  40 g 

Thiamine-HCL (25mg/500ml) 10 ml 

L-asparagine 0.15 g 
 

  

   

Adjust pH with 1.0 M KOH to 5.85.  

Add 3.5 g phytagel and autoclave in the autoclave machine.  

Cool to 60 °C in water bath. 

Add 2.0 ml 0.5 mg/ml filter-sterilized 2, 4-D to each 500-ml bottle. 

Add 24.5µl 0.1M filter-sterilized CuSO
4
 to each 500-ml bottle. 

Pour into 100 mm × 15 mm plates (15-20 plates per 500 ml). 
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Table 4. High osmoticum media (bomb medium) (1L) 
 

Murashige & Skoog Salt Mixture (BRL) 4.4 g 

Maltose  40 g 

Thiamine-HCL (25mg/500ml) 10 ml 

L-asparagine 0.15 g 

Sucrose 171.15 g 
 

 

  

Adjust pH with 1.0 M KOH to 5.85.  

Add 3.5 g phytagel and autoclave in the autoclave machine.  

Cool to 60 °C in water bath. 

Add 2.0 ml 0.5mg/ml filter-sterilized 2, 4-D to each 500-ml bottle. 

Add 24.5 µl 0.1M filter-sterilized CuSO4 to each 500-ml bottle. 

Pour into 60 mm × 15 mm plates (20-30 plates per 500 ml). 
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Table 5. Recovery medium (1 L) 

 

Murashige & Skoog Salt Mixture (BRL) 4.4 g 

Maltose  40 g 

Thiamine-HCL (25mg/500ml) 10 ml 

L-asparagine 0.15 g 
 

  

   

Adjust pH with 1.0 M KOH to 5.85.  

Add 3.5 g phytagel and autoclave in the autoclave machine.  

Cool to 60 °C in water bath. 

Add 2.0 ml 0.5 mg/ml filter-sterilized 2, 4-D to each 500-ml bottle. 

Add 24.5µl 0.1M filter-sterilized CuSO
4
 to each 500-ml bottle. 

Pour into 100 mm × 15 mm plates (15-20 plates per 500 ml). 
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Table 6. Regeneration medium (1 L) 
 

Murashige & Skoog Salt Mixture (BRL) 4.4 g 

Maltose  40 g 

Thiamine-HCL (25mg/500ml) 10 ml 

L-asparagine 0.15 g 
 

  

   

Adjust pH with 1.0 M KOH to 5.85.  

Add 3.5 g phytagel and autoclave in the autoclave machine.  

Cool to 60 °C in water bath. 

Add 2.0 ml 0.5mg/ml filter-sterilized 2, 4-D to each 500-ml bottle. 

Add 24.5µl 0.1M filter-sterilized CuSO
4
 to each 500-ml bottle. 

Add 1.5 ml 3.0 mg/ml filter-sterilized bialaphos to each 500-ml bottle. 

Add 50 µl of 6-Benzylamino purine (6-BA) to each 500-ml bottle. 

Pour into 100 mm × 20 mm plates (12-15 plates per 500 ml). 
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Table 7. Rooting medium (1 L) 
 

Murashige & Skoog Salt Mixture (BRL) 2.2 g 

Maltose  20 g 

Thiamine-HCL (25mg/500ml) 510 ml 

L-asparagine 0.075 g 
 

  

   

Adjust pH with 1.0 M KOH to 5.85.  

Add 2.5 g phytagel and autoclave in the autoclave machine.  

Cool to 60 °C in water bath. 

Add 1.5 ml 3.0 mg/ml filter-sterilized bialaphos to each 500-ml bottle. 

Pipet 18mls into each tube (13 tubes/ 500 ml) 
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