
MODULAR AUTOPILOT DESIGN AND DEVELOPMENT

FEATURING BAYESIAN NON-PARAMETRIC

ADAPTIVE CONTROL

By

Jacob Stockton

B.S. Mechanical Engineering
B.S. Aerospace Engineering
Oklahoma State University

Stillwater, OK
2011

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
Master of Science
December, 2014

MODULAR AUTOPILOT DESIGN AND DEVELOPMENT

FEATURING BAYESIAN NON-PARAMETRIC

ADAPTIVE CONTROL

Thesis Approved:

Dr. Girish Chowdhary

Thesis Advisor

Dr. Jamey Jacob

Committee Member

Dr. Andy Arena

Committee Member

ii

ACKNOWLEDGMENTS 1

First and foremost, I would like to thank my wife Christine Stockton. Without

her support, I could not have spent the countless hours required to complete my

degree. Christine, I am incredibly grateful for your love and support during this

busy season of life.

I would also like to thank my adviser, Dr. Girish Chowdhary, and my committee

members, Dr. Jamey Jacob and Dr. Andy Arena. Without your guidance, patience

and time, I would not be where I am today. Each of their abilities complement

each other, and the result has been some amazing counseling, both technical and

practical. I admire you all, and I hope that you continue to put your full efforts into

teaching and research.

Lastly, I would also like to thank all of the members of the Distributed Au-

tonomous Systems Laboratory, and specifically Ben Reish. Most of what I have

learned has been due to the interactions and discussions with lab members. I want

to thank all of the electrical engineering undergraduates that I have worked with.

Without them, I could not have constructed the majority of the autopilot.

1Acknowledgments reflect the views of the author and are not endorsed by committee members
or Oklahoma State University.

iii

Name: Jacob Stockton

Date of Degree: December, 2014

Title of Study: MODULAR AUTOPILOT DESIGN AND DEVELOPMENT FEA-

TURING BAYESIAN NON-PARAMETRIC ADAPTIVE CONTROL

Major Field: Aerospace Engineering

Abstract:

Over the last few decades, Unmanned Aircraft Systems, or UAS, have become a crit-
ical part of the defense of our nation and the growth of the aerospace sector. UAS
have a great potential for the agricultural industry, first response, and ecological
monitoring. However, the wide range of applications require many mission-specific
vehicle platforms. These platforms must operate reliably in a range of environments,
and in presence of significant uncertainties. The accepted practice for enabling au-
tonomously flying UAS today relies on extensive manual tuning of the UAS autopi-
lot parameters, or time consuming approximate modeling of the dynamics of the
UAS. These methods may lead to overly conservative controllers or excessive de-
velopment times. A comprehensive approach to the development of an adaptive,
airframe-independent controller is presented. The control algorithm leverages a non-
parametric, Bayesian approach to adaptation, and is used as a cornerstone for the
development of a new modular autopilot. Promising simulation results are presented
for the adaptive controller, as well as, flight test results for the modular autopilot.

Contents

Chapter Page

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 3

1.3 Outline of Contributions . 7

2 Bayesian Nonparametric Adaptive Control for Fixed-Wing Flight 9

2.1 Introduction . 9

2.1.1 Aircraft Kinematics and Dynamics 10

2.1.2 Gaussian Processes . 13

2.1.3 Online Learning using Gaussian Processes 15

2.2 Aircraft Guidance . 16

2.3 Control Design . 18

2.3.1 GP-MRAC in Longitudinal Motion 20

2.4 Simulation Results . 23

2.4.1 Computation Requirements for GP-MRAC 24

2.5 Summary . 31

3 Autopilot Design & Development 32

iv

3.1 Hardware Design . 34

3.1.1 Modular Components . 36

3.1.2 Systems Integration Board . 39

3.1.3 Power Management System 42

3.2 Software Design . 43

3.2.1 Thread Design . 45

3.2.2 Ground Control Station Software 47

3.3 Experimental Setup . 48

3.3.1 Airframe . 48

3.3.2 Autopilot Control Scheme . 48

3.3.3 Simulation Environment . 49

3.4 Flight Test Results . 49

3.4.1 Control Loop Tracking . 50

3.4.2 Waypoint Tracking . 50

3.5 Summary . 51

4 Conclusion 54

4.1 Summary . 54

4.2 Future Work . 55

A GP-MRAC in Lateral Motion 56

B Autopilot Specifications 58

C Component Benchmarking 61

v

C.1 Flight Control Computer Survey . 62

C.2 Inertial Sensor Survey . 63

Bibliography 68

vi

List of Tables

Table Page

3.1 COTS Autopilot SWAP analysis . 33

3.2 Operating System Design Matrix . 44

B.1 Autopilot compatible peripherals . 59

B.2 Autopilot sensor specifications . 60

C.1 Table caption text . 62

C.2 List of Inertial Sensors [1] . 63

vii

List of Figures

Figure Page

2.1 Body Fixed Frame with aerodynamic angles 10

2.2 Control loop closure . 19

2.3 (a) Aerosonde UAV. (b) Zaggi UAV 24

2.4 Outer loop longitudinal control of Aersonde aircraft without GP-MRAC.

The controller performs fair with respect to tracking the desired path,

but poorly in other respects. Wind gust disturbance is introduced at

t = 1 second. 26

2.5 Outer loop longitudinal control of Aersonde aircraft with GP-MRAC.

Clear, enhanced performance in tracking the path and reference model.Wind

gust disturbance is introduced at t = 1 second. 27

2.6 Outer loop longitudinal control of Zaggi aircraft using the same gains

parameters as the Aerosonde aircraft. Controller performance is clearly

degraded.Wind gust disturbance is introduced at t = 1 second. 28

2.7 Outer loop longitudinal control of Zaggi aircraft with GP-MRAC. Un-

certainty between the aircraft dynamics is learned quickly enhancing

the controller performance and allowing for the proper path tracking.

Wind gust disturbance is introduced at t = 1 second. 29

viii

2.8 GP learning the uncertainty between the aircraft dynamics in order to

perform feedback linearization associated with AMI-MRAC architecture. 30

3.1 The autopilot block diagram shows the different components and their

communication protocols. Note that the protocols may be changed

depending on the modules used. 35

3.2 (a) Beaglebone Black embedded computer (b) VN200 MEMS Inertial

Navigation System . 38

3.3 (a) Prototype systems integration board (b) First iteration of PCB de-

sign for systems integration board (c) Current PCB layout of systems

integration board . 40

3.4 SCM Block Diagram . 41

3.5 Histogram depicting sampling time variance 44

3.6 Thread design block diagram . 46

3.6 (a) Task scheduling performed by main() (b) Variable spaces associ-

ated with multithreaded architecture. 47

3.7 Skyhunter model in the X-Plane environment 49

3.8 (a) Attitude tracking performance of the aircraft, where desired and

actual attitude is given by green and blue respectively (b) Longitudinal

and lateral outer loop tracking . 52

3.9 Straight line waypoint tracking performance over the course of two

flights. Flights were completed with crosswinds up to 12 knots. 53

ix

Chapter 1

Introduction

1.1 Motivation

Over the last few decades, Unmanned Aircraft Systems, or UAS, have become a

critical part of the defense of our nation and the growth of the aerospace sector. UAS

have already demonstrated a positive impact in many industries such as agriculture,

first response, and ecological monitoring. Recently, there has been an increasing

push industry-wide for UAS platforms to perform novel tasks such as Short Take-Off

and Landing, or STOL, deep stall landings, or other acrobatic maneuvers. Of course,

these novel tasks cannot be completed solely with innovative vehicle design, rather

a more holistic approach is required. The ability to develop novel control systems

that can perform such tasks is highly limited by the computational abilities of the

autopilot system on board the UAS. In general, commercial-off-the-shelf (COTS)

autopilots are split between between two categories: open-source autopilots and

closed-source autopilots. The latter feature low-quality hardware and unreliable

software, but a low price point; whereas, the former are extremely reliable, but

1

highly proprietary, relatively expensive, and limited in their capability to perform

novel tasks. These limitations clearly restrict the ability for researchers to push the

boundaries of higher functionality for UAS.

The wide range of applications of UAS mentioned above has resulted in countless

mission specific Unmanned Aerospace Vehicle, or UAV, platforms. These platforms

must operate reliably in a range of environments, and in presence of significant un-

certainties. The accepted practice for enabling autonomously flying UAVs today

relies on extensive manual tuning of the UAV autopilot parameters or time consum-

ing approximate modeling of the dynamics of the UAV. In practice, these methods

usually lead to overly conservative controllers or excessive development times. Fur-

thermore, controllers cannot be simply transferred from one UAV to another, rather

each platform must be tuned independently of the others in order to acheive the de-

sired performance criteria. This process can be extremely costly and time consuming

for companies.

To solve these problems, this thesis posits the use of adaptive control to provide

an airframe-independent control algorithm. The problem is framed using past works

in adaptive control and Rapid Controller Transfer (RTC). However, RCT has not

been realized on fixed wing UAV platforms in the outdoor environment. The primary

goal of RCT is to transfer autopilot hardware with negligible effects on the controller

performance from a source system, whose dynamics are well-known, to a transfer

system, whose dynamics are poorly understood. A practical example of this could be

transferring an autopilot from an Aerosonde airframe, the well-known source system,

to a Zaggi airframe, the unknown transfer system, as demonstrated in Chapter 2.

2

The primary advantage of RCT is the significant reduction in time and cost of

developing a model for the poorly understood system. The algorithm overcomes

the need of laboriously tuning traditional PID controller parameters. The proposed

method is an alternative, adaptive control method derived from a new class of data

driven adaptive control algorithms. This control algorithm leverages a nonparamet-

ric, Bayesian approach to adaptation, and is used as a cornerstone for the devel-

opment of a airframe-independent autopilot. The limitations of existing autopilot

platforms listed above was one of the primary concerns of the author. Thus, this

thesis also presents the design and evaluation of a new, open-source autopilot named,

Stabilis, to address the standing limitations of current COTS autopilots.

1.2 Literature Review

This research focuses on a platform independent autopilot by means of adaptive

control. The following section has been provided in order to present a thorough

understanding and a complete history of both adaptive control as it relates to this

thesis, as well as, an understanding of existing autopilot technology. The problem

of using adaptive control techniques for control transfer has not been extensively

studied. However, adaptive control has proved to be a notable solution to both

modeling error and system uncertainty. Adaptive control has loosely been classified

into two categories direct and indirect adaptive controllers. The former uses the

tracking error to directly modify controller parameters or gains; whereas, the latter

approximates the difference between the assumed and actual system dynamics, then

3

uses the approximation to control the plant.

Model reference adaptive control, or MRAC, has become a well established direct

adaptive control method among the academic community [2–4]. Classical direct

MRAC formulations have proven to be applicable to many different systems [5–7],

and most relevant to this thesis, flight control systems [8–10]. Classical MRAC

methods force the plant output to follow a reference model using weight update

laws to reduce tracking error over time. These weight update laws generally rely

on Lyapunov stability criteria to guarantee convergence of the system plant to the

reference model. Although direct MRAC has proven to be effective on many systems,

there are some undesirable effects for certain types of systems. In order to converge

to the ideal weight values, there is a need for persistent excitation, or PE, of the

system. In addition, such algorithms have been proven to be susceptible to sensor

noise, and possess a lack of robustness (see [6, 11] and the references therein).

Since the inception of classical MRAC, there have been many MRAC formulations

that have sought to solve some of the issues that are associated with such methods.

L1 adaptive control is a well known MRAC formulation that has been widely used

in aerospace guidance and control applications [12,13], as well as others [14,15]. Au-

thors claim that the benefits of L1 adaptive control are threefold: fast and robust

adaptation, analytically computable performance bounds and excellent performance

with minimal flight control design cost [16]. The formulation differs from classical

MRAC methods through the use of high adaptive gains with an input filter. The

high adaptive gains help ensure the adaptive controller is responsive enough to track

the uncertainty point wise in time. Another direct MRAC formulation known as

4

Intelligent Excitation, seeks to mitigate the need to inject PE in the reference input

while guaranteeing parameter convergence [17,18]. This is done by injecting excita-

tion only when the tracking error exceeds a desirable limit. Although this MRAC

formulation reduced the need for excitation, PE is still used, thus control effort is

ultimately wasted. A more recent direct MRAC formulation called Derivative Free

MRAC, or DF-MRAC, was presented by Yucelen et al. [19]. DF-MRAC relaxes

the assumption of constant ideal weights that classical MRAC methods , and thus,

features a time varying set of weight parameters. This feature of the algorithm al-

lows for a time varying system to be modeled in the face of uncertainty. In [20],

the DF-MRAC formulation is shown to be uniformly ultimately bounded, and the

error is shown to be ultimately bounded exponentially. Authors present evidence

for dramatic improvement in robustness and superior performance over conventional

adaptive laws.

All direct MRAC methods employ a reactive approach, in that, each favors instan-

taneous adaption through point wise uncertainty suppression to learn the underlying

modeling error. Indirect methods, on the other hand, try to learn the underly-

ing dynamical uncertainty using regression techniques. This provides a particular

advantage that direct methods do not. Since direct adaptive control methods are

not focused on estimating the uncertainty itself, these types of controller can suffer

from “Short Term Learning”. Essentially, tracking performance does not necessarily

improve over time when identical commands are repeatedly tracked [21].

The first, and most widely used, technique for estimating the system uncertainty

in the context of indirect MRAC methods is undoubtedly the neural network. From

5

the early 1990s to present neural networks have fascinated and spurred on research

within the control community [22–26]. Neural networks used in conjunction with

adaptive control techniques are used extensively in flight control and guidance. This

formulation guarantees the existence of a set of ideal weights that guarantees opti-

mal approximation of uncertainty, which is implied by the universal approximation

property of neural networks.

There are primarily two types of neural networks that are used in adaptive con-

trol: single layer hidden (SHL) neural networks and radial basis function (RBF)

neural networks. The idea of RCT is first presented using a neural network based

MRAC formulation [27], but RCT was not explicitly studied. Later, Chowdhary et

al. extended neural networks into a formulation of MRAC that uses both recorded

and instantaneous data to “concurrently learn”, and was thus called Concurrent

Learning MRAC, or CL-MRAC. The most notable feature of CL-MRAC is its abil-

ity to leverage the advantages of both direct and indirect adaptive control to mitigate

the need for PE [28]. Recently, CL-MRAC was used for RCT on indoor quadcopters

with promising results [29].

However, both SHL and RBF neural networks have disadvantages. One of the

more notable disadvantages of RBF neural network based approaches, is that the

number of centers and hyperparameters must be expertly allocated a-priori over the

operating domain. Thus controllers operating outside of the intended domain ex-

perience degraded performance [30, 31]. On the other hand, SHL neural networks

performance can suffer from getting stuck in local minimum, provided deficient mo-

mentum [32].

6

Unlike RBF Neural Networks, Gaussian Processes, or GPs, can cover the en-

tire operating domain by dynamically allocating kernel locations based on a fixed

budget of kernels. Furthermore, since GPs are Bayesian in nature, the model itself

provides a quantified confidence metric in its predictions via the predictive variance.

Previously, the prospect of using online GPs to model uncertainty was computation-

ally intractable due to large data sets. However, largely due to the derivation of

sparse, online Gaussian Processes by Casato et al. [33], GPs were recently proposed

as a nonparametric approach to modeling dynamical uncertainty in an adaptive con-

troller [31]. Furthermore, Grande et al. proved that the hyperparameters associated

with the kernels can be optimized online as well [34]. The flight test results presented

in this research show GP-MRAC outperforms modern MRAC methods that use NN

by a factor of two to three times. However, the promising results of these works have

yet to be implemented in the outdoor environment, nor on fixed wing platforms.

1.3 Outline of Contributions

The main contributions of this thesis are twofold:

• A control architecture is defined that extends GP-MRAC to fixed wing flight

in order to perform Rapid Controller Transfer (RCT).

• An open architecture autopilot is designed, constructed and evaluated. This

autopilot design differs from past designs in its modularity and superior com-

putational performance.

7

The thesis outline is as follows. The contributions of this thesis are primarily

distributed between Chapters 2 and 3. The problem of RCT as it pertains to fixed

wing aircraft dynamics is formulated in Chapter 2. A brief overview of nonlinear

flight dynamics is followed by an exposition of industry practice pertaining to UAS

automatic control systems. A full nonlinear control scheme for longitudinal motion

is implemented using the GP-MRAC formulation discussed above. Benchmarking,

design and construction of a modular, open-source autopilot, which we term Stabilis,

is presented in Chapter 3. Due to the potential risk of autonomous UAV operations,

thorough testing before flight is paramount. To this end, Stabilis is thoroughly tested

using hardware in the loop simulations and ground testing procedures. Finally, flight

test results are presented to validate the predicted performance of Stabilis. Future

work and concluding remarks are in Chapter 4.

8

Chapter 2

Bayesian Nonparametric Adaptive

Control for Fixed-Wing Flight

2.1 Introduction

In order to control a system, an in-depth understanding of the system dynamics and

its operating conditions must be possessed. In the case of this thesis, Rapid Con-

troller Transfer causes uncertainty within the context of fixed wing flight dynamics.

Thus, the notation and equations used to describe nonlinear, rigid body flight are

briefly covered first. Interested readers are referred to [35–38] for more information

regarding coordinate frames, flight dynamics and control. Since this work departs

from traditional adaptive control formulations in its use of Gaussian Processes, a

brief overview of GPs is provided.

9

α

β
Vt

z

y
x

q,M
p,L

r,N

u
w

v

Figure 2.1: Body Fixed Frame with aerodynamic angles

2.1.1 Aircraft Kinematics and Dynamics

Consider an aircraft, as shown in Figure 2.1, with a mass moment of inertia, Ib, and

mass, m. The mass moment of inertia is aligned with the body fixed frame denoted

with the superscript, (·)b. Note the x-axis of the body fixed frame points out the

nose of the aircraft, the y-axis is directed out of the starboard wing of the aircraft,

and the z-axis is oriented downward, normal to the x and y axes. The origin of the

body fixed frame is the aircraft center of mass.

Let the position of the aircraft with respect to the origin of the body fixed frame

be described using the navigational frame denoted with the superscript, (·)n. The

attitude of the vehicle is described using Euler angles defined, EA = [φ θ ψ].

The translational kinematics of the aircraft in the navigational frame are related to

the body fixed frame by Euler angles

10

ṗn =
d

dt

(
Rn
bp

b
)

= Rn
bV

b ; (2.1)

where, ṗn = [ṗn ṗe ṗd]T and,

Rn
b =


CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ

CθSψ SφSθSψ + CφCψ CφSθSψ + SφCψ

−Sθ SφCθ CφCθ

 . (2.2)

Note that in equations 2.2 and 2.3, Sθ = sin θ, Cφ = cosφ, and so on. The relation

of the body fixed angular rates to inertial frame angular rates is


φ̇

θ̇

ψ̇

 =


1 Sφ tanθ Cφ tan θ

0 Cφ −Sφ

0 Sφ sec θ Cφ sec θ



p

q

r

 (2.3)

The relationships for the translational and rotational kinematics above can be

used to express Newton’s second law in the navigational frame. The equations of

translational and angular dynamics of a 6 degree-of-freedom rigid body are given by

∑
i

Fi = mp̈n = gn + Rn
bmab (2.4)

ω̇b =
(
Ib
)−1 (

Mb − ωb × Ibωb
)

; (2.5)

where, gn = [0 0 g]T is the navigational frame gravity vector, and ab = [u̇ v̇ ẇ]T

is the body fixed accelerations. Equations (2.4) and (2.5) above can be expanded

and written in terms of the body frame as

11


u̇

v̇

ẇ

 =


−g sin θ

−g sinφ cos θ

−g cosφ cos θ

+
1

m



FT

0

0

+


X

Y

Z


−


qw − rv

ru− pw

pv − qu

 (2.6)


ṗ

q̇

ṙ

 =
(
Ib
)−1


L

M

N


b

−


p

q

r


b

× Ib


p

q

r


 ; (2.7)

where, Fb and Mb are given by the aerodynamic forces on the aircraft. The aero-

dynamic forces are primarily dependent on the angle of attack, α, and side slip, β,

in steady states. However, the body fixed angular rates can significantly change the

aerodynamc forces as shown in equations 2.8 and 2.9.


X

Y

Z

 =


CX(α, β)

CY (β)

CZ(α)

QS (2.8)


L

M

N

 =


CL(δa, β, p̃, r̃)QSb

CM(δe, α, q̃)QSc̄

CN(δr, β, r̃)

 ; (2.9)

where, p̃ =
bp

2Vt
, q̃ =

c̄q

2Vt
, r̃ =

br

2Vt
. Since body fixed forces and moments are functions

of multiple variables, they are the most complex part of the aircraft to be modeled.

Usually, linear approximations are used for aerodynamics forces; readers are referred

to the references in the introduction for full linear state models.

12

2.1.2 Gaussian Processes

A Gaussian process is a supervised learning technique, which is the problem of map-

ping an input to a corresponding output given a set of data. The applications for

supervised learning are practically endless. All supervised learning techniques utilize

a set of training data, D, which is usually a set of observations or emprical data,

defined, D = {(xi, yi)|i = 1, . . . , n}. Supervised learning techniques are inductive in

nature, in that, the objective is to make predictions for an input, say x∗, that is

not included in the training set. In order to make an accurate prediction about an

input that is not included in our data set, there must be some kind of assumption

about the underlying function. Supervised learning techniques generally correspond

to inference utilizing either parametric or nonparametric models; in the first case,

the structure of the model or predictor is assumed to be known (for instance, it is

assumed to be linear, quadratic, etc in the input), and the parameters associated

to the model are inferred from the data. In the second case, the structure of the

predictor is inferred from the data itself, which makes the predictor more flexible,

although more expensive to compute. GP regression is an example of the second

class of techniques.

GPs are in the class of Bayesian nonparametric methods. In a GP, the prior

is placed on a function space, specifically, on functions contained in a Reproducing

Kernel Hilbert Space, or RKHS. Here the prior encodes the “prior belief” of what

class of functions the predictor belongs to. The actual, unknown function is a point

in the RKHS. Consider the case of RCT, where there exists significant uncertainty

between aircraft dynamics. It is desirable to predict the dynamical uncertainty using

13

a set of discretely sampled state measurements, Zt = z1, . . . , zt; where, t is the current

measured state, and there exists an inherent extent of noise for all z ∈ Z. Let the

uncertainty, which will be furthered defined in Section 2.3.1, be denoted as, ∆; where,

∆(·) ∈ R for ease of exposition. When modeled using a GP,

∆(·) ∼ GP(m(·), k(·, ·)); (2.10)

where m(·) is the mean function, and k(·, ·) is a real-valued, positive definite co-

variance kernel function. The covariance kernel function operates on Z such that a

covariance matrix is defined by the indexed sets, Ki,j = k(zi, zj). The most popular

choice of kernel matrix, is the Gaussian radial basis function,

k(z, z′) = exp

(
‖z − z′‖2

2µ2

)
. (2.11)

It is assumed that the GP prior has a zero mean, that is, ∆(zi) = m(zi)+εi, where

εi ∼ N (0, ω2
n). The posterior is not restricted to zero mean. Given a new measured

state value, zt+1, the joint distribution of the data under the prior distribution is

 yt

yt+1

 ∼ N
0,

 K(Zt, Zt) + ω2I k(Zt, zt+1)

(k(Zt, zt+1))
T k(zt+1, zt+1)


 . (2.12)

The posterior distribution is obtained using Bayes law, and by conditioning the joint

Gaussian prior distribution over the observation, zt+1

p(yt+1|Zt, zt+1) ∼ N (m̂t+1, Σ̂t+1); (2.13)

14

where, the mean and the covariance are respectively estimated by

m̂t+1 =
[
(K(Zt, Zt) + ω2I)−1yt

]T
K(zt+1, Zt) (2.14)

Σ̂t+1 = k(zt+1, zt+1)−K(zt+1, Zt)
T (K(Ztau, Zt) + ω2I)−1K(zt+1, Zt) (2.15)

RCT requires the prediction of uncertainty be done online, as the controller has

no foreknowledge of the uncertainty that exists between the aircraft. However, the

measurement vector Zt and observation set grow quickly over time. This makes the

computation of equations 2.14 and 2.15 intractable over time. Clearly, a modification

to traditional GP regression has to exist to make GP regressions possible for MRAC.

2.1.3 Online Learning using Gaussian Processes

As aforementioned, calculations associated with traditional GP regressions quickly

become intractable for larger data sets, since the method scales as O(n3), where n is

the number of data points. Csato developed a method that utilizes rank 1 updates

for the weight vector α and covariance. Additionally, a budget can be implemented

to retain a limited number of measurement values in Zt. This subset of available

measurements used to is called the basis vector set, BV . The implementation of rank

1 updates while budgeting BV allows for real time uncertainty modeling. Not every

measurement is useful for prediction. Thus, we work to restrict BV using a linear

independence test, given by equation 2.16 to determine the novelty of incoming data.

γt+1 = K(zt+1, Zt)− k(zt+1, zt+1)αt (2.16)

where, γt+1 is a scalar. There are two schemes used to determine which point in

15

BV is retained, oldest point method, OP, and KL divergence method, KL [31]. For

OP, provided that γt+1 is greater than some user specified tolerance, the data point

is retained in BV and the oldest point is discarded. Although this method is less

computationally intensive, the retention of a new measurement in BV may come at

the cost of discarding a more useful measurement for prediction. Thus, researchers

have found that the KL method performs significantly better [31,34] in the context of

flight controllers. The KL divergence method employs Csato’s sparse online Gaussian

process to efficiently approximate the KL divergence . For the specifics concerning

this method, readers are referred to [33].

2.2 Aircraft Guidance

Although there has been extensive research in trajectory tracking [16, 39–41], most

real world applications involve navigating between, or orbiting around, waypoints.

Furthermore, time-parameterized trajectories are typically not robust due to environ-

mental interactions and physical limitations of the transfer system. Thus, this work

utilizes waypoint-based guidance methods. In practice, waypoints are provided to

the aircraft as geodetic coordinates through the ground station user interface. Guid-

ance methods in the following sections utilize the navigational frame; conversion from

geodetic coordinates to the navigational frame can be found in [38]. Consider the

problem of navigating through n waypoints in an environment without obstacles.

Let the waypoints be given in the navigational frame as, WPn
i , where i ∈ N and i

represents the current waypoint. Furthermore, let the aircraft position be pn, the

16

desired path, qn, and the UAS location relative to the current waypoint, rn. Hence,

qn = WPn
i+1 −WPn

i (2.17)

un = pn −WPn
i . (2.18)

Then, the path tracking error can be found by taking the vector rejection of the

actual and desired path vectors by

ep =


epx

epy

epz

 = un − (un · r̂) r̂ ; (2.19)

where, r̂ =
rn

‖rn‖
.

In order to follow the path, the UAS must minimize the error in the lateral

direction known as crosstrack error, epxy , as well as the longitudinal error dictated

by the altitude of the aircraft, epz . The sign of the crosstrack error is determined by

the angle given by

A(∠1,∠2) := {∠1 − ∠2 + 2πn | n ∈ I 3 |A(∠1,∠2)| ≤ π} ; (2.20)

where, ∠1 = ∠rxy and ∠2 = ∠pxy. The magnitude of the crosstrack error is deter-

mined by the north and east elements of the vector ep. Thus,

epxy = sign(A(∠rxy,∠pxy)) ‖ep(1, 2)‖ . (2.21)

The guidance method must also encompass some type of switching mechanism

to advance the directive of the aircraft to the next waypoint provided the current

17

waypoint is reached. The simplest and most common is the distance method [35,38,

42], which states that the waypoint will be switched when the distance between the

desired waypoint and the aircraft is less than the tolerance, ε. Thus, the waypoint

is switched provided that

∥∥pn −WP n
i+1

∥∥ ≤ ε ; (2.22)

Alternatively, the waypoint can be switched when the UAV enters the half plane

between the segments a and b; where, a = WP n
i −WP n

i−1 and b = WP n
i+1 −WP n

i .

Empirical tests between the methods dictated that the half-plane method yielded

better waypoint tracking performance.

2.3 Control Design

The most widely used method in autopilot control design is the successive closure of

control loops to achieve a desired inertial position and attitude [35,42–45]. Successive

loop closure, in most cases, uses the assumption that the dynamics of the aircraft,

both longitudinal and lateral are decoupled. This assumption is widely utilized, and

allows for simplification of the autopilot control schemes. In Figure 2.2, the loop

closure design is shown. In order to keep the dynamics of each loop sufficiently

decoupled, the bandwidth of each loop must be sufficiently smaller as one moves

from the outer loop design to the inner loop design. The differences in bandwidth

will vary due to the application, but authors have had success with variance by a

factor of 5 to 10 between each loop [35].

18

Desired
AirspeedGuidance

Aircraft
Dynamics

Attitude
Control Loop

Waypoints

Outer Loop
Control

Figure 2.2: Control loop closure

Rather than taking a traditional successive loop closure design shown in Figure

2.2, this implementation takes a more “human based” approach to flight. Essentially,

altitude is commanded using the available control input directly, rather than relying

on simplifying assumptions required for successive loop closure. We are able to

do this largely because the GP can sufficiently model the coupling between inner

and outerloop dynamics. Unlike the indoor flight environment, precise position and

attitude measurements are not available when using modern MEMS inertial sensors.

Thus it is necessary to turn to the following assumption.

Assumption 2.1 Sufficiently accurate estimates of φ, θ and ψ are available for

control.

This assumption can be satisfied by utilizing a good inertial navigation system that

fuses together inertial and absolute reference (such as GPS) measurements to reliably

estimate attitude [35,38,42]. Empirical results in flight test dictated that longitudi-

nal motion proved to be more sensitive to controller parameters. Thus, this thesis

19

demonstrates the viability of GP-MRAC in longitudinal motion. However, a parallel

formulation is provided for fixed-wing lateral motion using the crosstrack error as

the reference system. This formulation is given in Appendix A for reference.

2.3.1 GP-MRAC in Longitudinal Motion

Interested readers are referred to [31] for a rigorous exposition of proofs for the

stability of GP-MRAC that directly relate to this work. The results of which, dictate

that GP-MRAC is a exponentially mean square ultimately bounded controller in the

context of AMI-MRAC. Furthermore, let δe(t) ∈ Dδe ⊂ Rn be bounded for all t ∈ R+.

The following assumption must hold for both the source and the transfer system:

Assumption 2.2 For all δe(t) ∈ Dδe, there exists a finite value B > 0 such that

|q(t)| < B.

Since UAS are required to be piloted remotely, the vast majority of fixed-wing UAS

are designed to be dynamically and statically stable, and therefore, satisfy this as-

sumption de facto. An inner loop controller must be used to provide baseline stabil-

ity, provided that Assumption 2.2 does not hold. The dynamics of the source and

transfer system must be defined . To this end, let z = [α θ q ḣT δe]T . It is

assumed that for both systems the outer loop states for the longitudinal direction

can be modeled by the following differential equation,

ḣ1(t) = h2(t)

ḣ2(t) = f(z(t)) + b(z(t))δe

(2.23)

20

The function f is assumed to be Lipschitz continuous in z, ż ∈ Dz, and the systems

are assumed to be finite input controllable. This assumption is validated, in part,

by rearranging Equation 2.4. The altitude dynamics can be written as

ḧ = g − sin θ u̇+ sinφ cos θ v̇ + cosφ cos θ ẇ , (2.24)

where, [u̇ v̇ ẇ] = [X Y Z]/m, and the body fixed forces are given by 2.8.

The following assumption characterizes the controller on the system [29]:

Assumption 2.3 For the source and transfer system, there exists a control law g :

Dz → Dδe such that δe(t) = g(z, ḧrm) drives h → hrm as t → ∞. Furthermore, the

control law is invertible w.r.t. δe, hence the relation ḧrm = g−1(z, δe) holds. [29]

The primary goal of MRAC based methods is to design a control law such that h

converges to hrm satisfactorily. In the case of AMI-MRAC, feedback linearization of

the system is achieved by identifying the pseudo-control, ν(t) ∈ R, that achieves the

desired acceleration. Provided that the system dynamics were known and invertible,

the control input could be easily found as δ = f−1(ν, b, t). However, in the case of

RCT, the plant dynamics are extremely poorly understood. Thus, an approximate

model must be used which, in practice, is usually the previous vehicle. The use of an

approximate model, f̂(z) + b̂(z)δ, leads to modeling error ∆; where delta is defined

∆(z) = ḣ2(t)− ν(z) (2.25)

A designer reference model is used to characterize the desired system response.

In the case of straight path tracking, the positional input translates to a ramp input.

21

Standard reference models include second order systems or the second time derivative

of a time-parameterized trajectory polynomial. The former results in steady state

error, whereas, the latter is not used in this work for reasons discussed above. Thus,

a more appropriate reference model selection would be a PID reference model. Then

the feedforward term of reference model is given by

ḧrm(t) = Kpeh +

∫ b

a

eh(τ) dτ +Kdėh ; (2.26)

where, eh = h − hcmd and ėh = ḣ − ḣrm. Here, hcmd is given by the path between

waypoints, q, and ḣcmd = qd/
√

q2
n + q2

e cos(χ−χq) |Vg|. The reference model states

ḣrm and hrm are given by integrating 2.26 for some initial conditions ḣrm0 and hrm0 .

The tracking error is defined as, et = hrm − h, and the psuedocontrol, ν to be

ν = νrm + νpd − νq − νad. (2.27)

where, νrm = ẋ2rm , νpd = [K1 K2] et and the robustifying term νq = q. The adaptive

term, νad is tasked with canceling the uncertainty ∆(z). Thus, the existence and

uniqueness of a fixedpoint solution to νad = ∆(z) is assumed [31,34]; results from [46]

dictate that the sign of control effectiveness derivative must be the same for both

systems, i.e. sgn
∂g

∂δs
= sgn

∂g

∂δt
. It was alluded to in Section 2.1.2 that the uncertainty

of the dynamical system could be predicted using a draw from a GP. Thus, νad is

modeled

νad(z) ∼ GP(m̂(z), k(z, z′)) . (2.28)

22

Rather than drawing the adaptive element strictly from the distribution in 2.28,

the adaptive element is set equal to the GP mean output, i.e. νad = m̂(z), for

reasons discussed in [31,34]. The simulation results below required the GP to model

the dynamic uncertainty in the outer loop based upon the input vector z, which

included both inner and outer loop states. Practically speaking, it can be costly and

difficult to measure the aerodynamic angles included in the vector z. Accordingly,

simulations were run that excluded the aerodynamic angles from the results. The

tracking performance for both cases was remarkably similar, varying only by 1-3%

depending on the aircraft. Although this is not entirely intuitive, the performance is

largely attributed to the GP’s ability to model the coupling between inner and outer

loop dynamics.

2.4 Simulation Results

Two aircraft were chosen with largely different dynamics and different configurations:

the boom-tailed Aerosonde and the flying wing Zaggi. Viability of the controller for

fixed-wing aircraft is shown for the longitudinal direction only. The aerodynamic

models for the aircraft were taken from [35]. Due to time constraints, the RCT was

implemented solely using a custom MATLAB simulator. The same PD gains were

used for both aircraft ([Kp Kd] = [1.2 .2]). The GP was preallocated a budget of 25

active bases; where, the tolerance ε = .0001 and the RBF kernel bandwidth µ = 0.5.

Each aircraft was flown in the same altitude climb maneuver, tasked with follow-

ing a given path used as the reference model. The simulations detailed in Figures

23

(a) (b)

Figure 2.3: (a) Aerosonde UAV. (b) Zaggi UAV

2.4 through 2.7 show each aircraft being flown with a simple PD, feedforward control

scheme, and then subsequently, using the GP-MRAC algorithms. In order to per-

form Rapid Controller Transfer, the marginally tuned controller for the Aerosonde in

Figure 2.4 is applied directly to the Zaggi in Figure 2.6. The controller performance

on transfer aircraft is degraded significantly. Without modifying the controller pa-

rameters, the feedback linearization is applied using the GP to learn the uncertainty

that arises from transfer system in Figure 2.7. In Figure 2.8, the performance of the

GP to model the uncertainty is shown.

2.4.1 Computation Requirements for GP-MRAC

Practically speaking, all adaptive control algorithms come at the cost of some kind of

computational power. The computational requirements of GP-MRAC are primarily

influenced by the number of kernels used in GP estimates, which is preallocated for

online GP methods. In order to provide an estimate of the computational require-

ments, the GP-MRAC architecture was translated to C++ and implemented on the

24

on the Flight Control Computer in Section 3.1.1. A subroutine was written that

utilized an online GP with KL divergence method to regress. Utilizing 25 kernel

centers, the script ran at approximately 10Hz. Taking into consideration that the

code was running in the context of an operating system and the code was not op-

timized for run-time, the number of instructions per iteration was approximately,

5 · 106.

25

Figure 2.4: Outer loop longitudinal control of Aersonde aircraft without GP-MRAC.

The controller performs fair with respect to tracking the desired path, but poorly in

other respects. Wind gust disturbance is introduced at t = 1 second.

26

Figure 2.5: Outer loop longitudinal control of Aersonde aircraft with GP-MRAC.

Clear, enhanced performance in tracking the path and reference model.Wind gust

disturbance is introduced at t = 1 second.

27

Figure 2.6: Outer loop longitudinal control of Zaggi aircraft using the same gains pa-

rameters as the Aerosonde aircraft. Controller performance is clearly degraded.Wind

gust disturbance is introduced at t = 1 second.

28

Figure 2.7: Outer loop longitudinal control of Zaggi aircraft with GP-MRAC. Un-

certainty between the aircraft dynamics is learned quickly enhancing the controller

performance and allowing for the proper path tracking. Wind gust disturbance is

introduced at t = 1 second.

29

Figure 2.8: GP learning the uncertainty between the aircraft dynamics in order to

perform feedback linearization associated with AMI-MRAC architecture.

30

2.5 Summary

The control laws presented in this chapter posit that a controller can be transferred

between fixed-wing aircraft platforms with very little foreknowledge of the system

dynamics. The primary benefit would be the potential time and cost savings in

developing highly functional UAS. The control law presented fused AMI-MRAC, a

well known adaptive control method, with an online supervised learning technique

known as a Gaussian Process for adaptation. The formulation involved adaptation

in the outer loop, rather than the inner loop. Simulation results presented in this

chapter demonstrate the ability of this alternative approach to adapt to new airframe

dynamics.

31

Chapter 3

Autopilot Design & Development

The implementation of control theory is only as robust and powerful as the hardware

and software supporting it. This chapter presents the justification, design, construc-

tion and assembly of the autopilot hardware and software. There have been many

autopilots designed both in the academic and industry settings. However, many of

the autopilots developed in years past have become obsolete due to the computa-

tional requirements of modern control techniques, and, in part, by Moore’s Law.

The market survey conducted in [47] is no longer current. Table 3.1 includes a com-

prehensive SWAP analysis of existing COTS autopilots. Additional tables regarding

the sensor and peripheral compatibility of each autopilot are provided in Appendix

B. The autopilots featured in Table 3.1 are primarily limited in three ways: com-

putational ability, software access and hardware flexibility. Since most vision-based,

machine learning, adaptive control and cooperative control algorithms call for higher

computational capabilities, these hardware limitations clearly restrict the ability for

researchers to push the boundaries of higher functionality for UAS.

32

Table 3.1: COTS Autopilot SWAP analysis

Size (in) Wt.(g) Power Cost $ CPU Mem. VDC In

Kestrel 2.2 2.0x1.4x0.5 17 2.5W 5k 29MHz 512Kb 6-16.5

MP 2128g 3.9x1.6x0.6 28 0.9W 5.5k 150MIPS - 4-26

Piccolo Nano 3x1.5x0.43 32 - 8k - - 6-30

Piccolo LT 5.1x2.3x0.7 110 4W 10k 40MHz 448Kb 4.5-28

Piccolo II 5.2x2.5x1.8 220 4W 10k - - 8-20

Unav3521 2.0x1.0x0.4 42 .6W 3-5k 40MIPS 256Kb 4-7

osflexPilot1 2.4x2.2x1.2 200 - 7.5k 1GHz 512Mb -

osnanoPilot1 2.7x1.2x0.8 32 - - - - -

osflexQuad1 2.7x2.7x0.8 41 - - - - -

Slugs 2.0x3.0x1.0 - - - 70MIPSx2 - 6-12

PixHawk2 2.0x3.2x0.7 38 1W 300 252 MIPS 256Kb 5

Ardupilot2 2.6x1.6x0.4 31 1W 300 16MHz 256Kb 5

Swiftpilot 2.8x1.3x1.1 34.0 1.3W 2.5k - - 5

wePilot 1/3000 6.3x4.6x2.4 1020 6W - 400MHz 64Mb 12

SkyCircuit-SC2 4.8x3.1x1.7 285 1W - - - 4-15

SmartAP 2.4x1.6x.5 16 - - 168MHz - -

Paparazzi 3.6x2.0x.7 30 - - 72MHz - -

GNC1000 4.0x6.3x3.0 1360 6W - 264MHz 256Kb -

(1) Autopilots are currently in development and unavailable for purchase.

(2) Open source autopilots

33

Hardware aside, most companies are forced to protect the intellectual property

and the software integrity by limiting user access. While this may be desirable

for applications that only require the integration of payload hardware, it limits the

ability of researchers to implement novel software. Stabilis, on the other hand, is

presented as an open-architecture autopilot. One notable exception to the hardware

computational limitations mentioned above is the “os” series by Airware. However,

Airware products continue to be offered on a limited basis to the market as they are

still largely in development. Moreover, even the Airware autopilots are fairly rigid

with respect to autopilot hardware flexibility. In the next section, the concept of

hardware design and flexibility is outlined.

3.1 Hardware Design

This thesis takes an alternative approach to conventional autopilot design by modu-

larizing specific subsystems. In this way, the autopilot system can be prevented from

becoming obsolete. Here modularity is defined as the ability to readily exchange sys-

tem components. The benefits of modularity are two fold. Not only does modularity

prevent obsolete,it allows components to be tailored to the application. For example,

if one were flying an foam airplane a low cost inertial sensor such as the ArduIMU,

rather than a higher cost inertial sensor such as the Epson M-G350, could be used.

Furthermore, broken subsystems can be swapped out individually, minimizing the

impact on system.

A system block diagram of key components was identified and is provided in

34

Ground Control Autopilot System Actuators

UART

I2C-1

I2C-1

UART

PPM

PWM

I2C-1

PWM

Control CPU

Module

Battery x 2

Parallel

(7.2-22.2V)

Computer &

Displays
Control

Surfaces

Propulsion
Servo Ctrl

Unit

Manual Control

Wireless Module

Video Receiver

FPS/Vision Power System

INS Module

AS Sensor

Altimeter

Visual Sensor

Visual Transmitter

PMM 1 PMM 2

Wireless Module Camera

Control

Figure 3.1: The autopilot block diagram shows the different components and their

communication protocols. Note that the protocols may be changed depending on

the modules used.

Figure 3.1. The benefits of a modular design are only justifiable in those components

for which technology advances quickly, or component price differs largely. Thus, the

following components were selected to feature modularity: flight control computer,

inertial navigation system and wireless ground control communications module. Note

these components are identified with the keyword “Module” in Figure 3.1.

One must be especially concerned with the form, weight and power consumption

of all components in aerospace design. Benchmarking efforts dictated the following

requirements for Stabilis.

1. Minimum 750MHz clock speed with 256Mb RAM

35

2. Minimum of 8 servo outputs/inputs, PPM compatibility, and SBus compati-

bility

3. Feature RS232, RS485, UART, I2C, SPI, CAN, ethernet, and USB compati-

bility (with a minimum of 3 serial based connections not including necessary

components, i.e. INS, airspeed, and wireless module)

4. Maximum of 80 grams, dimensions not to exceed 3.0 x 3.0 x 1.5 inches, and

power consumption less than 1W including flight essential sensors.

Since COTS autopilots span a wide spectrum of capability, the requirements above

were provided as generic guidelines for being competitive with the market as it stands.

However, the ultimate goal is to design a system that can accommodate new hardware

as it becomes available to prevent the system from ever becoming obsolete.

3.1.1 Modular Components

Flight Control Computer

The flight control computer (FCC) is responsible for interacting with almost every

component on-board the aircraft, as well as the ground control station. Thus, it is

the primary hardware limitation when it comes to overall system functionality. It

must be able to analyze and filter sensor inputs, log data, communicate with the

ground station and compute automatic flight control system outputs. Given all of

these roles, it is paramount to ensure that a vast array of peripherals are supported

in order to maximize the capabilities of the UAS.

36

A market survey was conducted in order to identify the most suitable computer for

the application. The specifications of wich are summarized in Table C.1 in Appendix

C. The Beaglebone Black, shown in Figure 3.2a, was the most suitable for the

application given the design parameters above. There were a few notable factors

that played into the selection. First, those embedded systems that feature a small

form factor, such as the Gumstix DuoVero, Arduino Due and Arietta G-25, do not

feature the connectors necessary to implement valuable peripherals, i.e. USB, HDMI,

ethernet, etc. Rather, they feature simple headers for breakout boards that have the

connectors. Thus, the form factor was actually higher than the RaspberryPi and

Beaglebone products. Additionally, community and product support played a role

in the final decision, as some of the products seemed to have little to no support.

The Beaglebone black features Sitara AM3359AZCZ100 1GHz, 2000 MIPS, pro-

cessor with 512MB DDR3L 606MHZ RAM and 2GB 8bit EMMC flash on-board

storage, all coming in at only 40 grams. The remaining specifications can be found

in Appendix C. Usually, the autopilot system is designed around the selection of the

central computer. However, in this case, the computer is considered modular since

the subcomponents can be easily adapted to fit other similar linux-based embedded

computers by simply modifying the routing and connection of the System Integration

Board (SIB). Furthermore, Circuit Co, the makers of the Beaglebone embedded com-

puters, have now 4 generations of boards whose form factor has not changed. Thus,

in the future the computer may be able to be swapped with absolutely no modifica-

tion at all. A prime example of this is the Beaglebone Black Sapphire, which was

released in the middle of the development of Stabilis. Rather than being forced to

37

design an entirely new autopilot that featured a more advanced processor, the old

embedded computer was simply swapped out for the new one.

(a) (b)

Figure 3.2: (a) Beaglebone Black embedded computer (b) VN200 MEMS Inertial

Navigation System

Inertial Navigation System

For the sake of brevity, it is assumed that readers understand the differences be-

tween navigation sensors; interested readers are referred to [48] for more information

regarding the differences between navigation sensors. It is common practice to in-

tegrate the INS in the autopilot package to reduce the wiring footprint, and the

overall form factor of the autopilot. However, with the rapid advancement of mi-

croelectromechanical systems driven by the UAS market potential, INS are quickly

increasing in precision. Furthermore, navigation sensor technologies such as ring

laser gyros (RLG) and fiber optic gyros (FOG) are decreasing in price, making these

technologies more available to users. Since, many COTS navigation sensors come

in rugged, self-contained packages, and it is often advantageous to place navigation

38

sensors in locations which are not ideal for the FCC, and vice-versa, this essential

sensor was not included on the Systems Integration Board.

This allows users to integrate navigation sensors that match the application, both

in price and form factor. The number of navigation sensors available on the market is

staggering, see Table C.2 for examples. In the early development stages VectorNav’s

VN200, depicted in Figure 3.2b, was selected as the first navigation sensor to be

implemented. Although, other navigation sensors were implemented such as the

Epson M-G362, and the KVH 1750, all flight testing was conducted with the VN200.

Wireless Communication Device

The fidelity of the connection between the ground control station and the UAV is

paramount. The ground control station is a relay for all of the relevant informa-

tion on-board the UAV. Similar to the navigation sensors, wireless communication

technology is rapidly advancing, and largely varies in cost. Thus, this component

is also located off board Stabilis. In this way, one can also reduce the amount of

EMI introduced from other systems. Three low-cost, serial wireless communication

modules were tested to determine the robustness of the electronics and connection:

XBee 900 RPSMA, 3DR Radio Set, and JDrones jD-RF900. It was found that the

JDrones jD-RF900 performed extremely.

3.1.2 Systems Integration Board

The purpose of the Systems Integration Board, or SIB, is the electronic integration

of the FCC with the other sensors and components. The SIB was designed primarily

39

with form factor and robustness in mind. The three design iterations, including the

final design, are shown in Figure 3.3c. In order to mitigate issues with loose or faulty

connections, as well as allow for quick connect/disconnect action, a screw type main

connector was chosen. The servo control module was designed to go on a smaller

board connected via a mezzanine connector towards the middle of the board. Two

airspeed sensors and two barometers are provided on-board the SIB for robustness.

(a) (b)

(c)

Figure 3.3: (a) Prototype systems integration board (b) First iteration of PCB design

for systems integration board (c) Current PCB layout of systems integration board

40

Servo Control Unit

The servo control module is the most crucial component to allow for remotely piloting

the vehicle. The servo control module, or SCM, is basically a multiplexer. In order

to prevent accidents, pilots must be able to take manual control of the plane at any

point in time. Thus, the SCM must be designed to function even if the autopilot

were to fail entirely. The subsystem is shown in 3.4 for reference.

Figure 3.4: SCM Block Diagram

The pilot input signal to the SCM is given as a PWM signal which is then

converted to a PPM signal and sent to the FCC for analysis. The relay of pilot

input to the FCC will allow for aircraft stability augmentation and similar control

techniques in the future. The FCC control signal, which is produced by the ACS,

is then sent back to the SCM. The SCM muxes between the signals based on pilot

input, so the pilot ultimately has the control to turn off the ACS as needed.

Systems Integration Board Sensors

The Honeywell, HSCMRRN001PD2A3, was chosen for its superior resolution, ac-

curacy and form factor to provide the differential pressure reading of the airspeed

41

sensor. Additionally, the Freescale MPL3115A2 Precision Barometric Altimeter was

chosen as a simple, inexpensive option for sensing altitude. The sensor features a

resolution of 0.3 meters, with maximum altitude of approximately 8000 meters.

3.1.3 Power Management System

Although there exist COTS power management systems that could be used for UAS,

a simple SWAP analysis quickly showed that most COTS systems were too large or

heavy for UAS applications. The remaining power management systems were found

to lack quality or be extremely cost prohibitive. Furthermore, no standardization

exists for on-board voltages for UAS platforms. Thus, the power management module

must be able to handle a wide variety of input voltages, and in the case of a failure,

be able to protect electronic components from voltage surges.

The Castle Creations Battery Eliminator Circuit, or CCBEC, was chosen as a

voltage regulator due to the components small footprint, efficiency and excellent

reputation among users. Despite its user-reported reliability, the voltage regulator

was intended for RC hobbyist applications, so quality was still a large concern. In

order to mitigate issues with quality and robustness, two CCBECs were placed in

parallel with a surge and reverse voltage protection circuits. This configuration

allows for a single CCBEC to fail open or closed without adverse consequences to

the electronics being powered. Note that the CCBEC circuit could be replaced with

any voltage regulator with similar specifications. The final configuration allowed for

input voltages from 7.4V to 22.2V, with a maximum 10 amps continuous.

42

3.2 Software Design

Operating in the outdoor environment poses the challenge of onboard computation

for all control and automation algorithms. Choosing an operating system is one of

the most important aspects of the software development in the context of embedded

development. The operating system must be light enough to devote most of the

processor to core tasks, but minimize development time when trying to perform

basic tasks. The following key requirements drove the choice of operating system:

• Tasks must be performed in a deterministic manner

• Operating system must be able to provide precise timing when executing tasks

• Mitigation of low-level, time-consuming programming.

• Level of development of the operating system itself

• Community support

The first two requirements above includes performing tasks in a given sequence, as

well as, the ability to provide tolerances on the amount of time it takes to complete a

given task with a 95% confidence level. Although students are exposed to embedded

systems, most lack the experience to operate them without community support.

Thus, it is extremely important that support, whether via the university or online,

is available. Several key operating systems were looked at and can be found in Table

3.2 below. The lack of a real-time operating system, or RTOS, for the Beaglebone

Black at the time the design decision was made forced authors to utilize Ubuntu.

43

Table 3.2: Operating System Design Matrix

Angstrom Ubuntu Arch QNX RTOS Xenomai

Determinism 0 0 0 1 1

Timing 0 0 0 1 1

Integration 0 1 -1 -1 0

Level of Development 0 0 0 1 0

Support 0 1 0 -1 1

Total 0 2 -1 1 3

Since Ubuntu is not a RTOS, the sampling time will vary slightly over time. The

sampling time variance was quantified using the experiment outlined in [49], and

relevant statistical data is provided in Figure 3.5.

Figure 3.5: Histogram depicting sampling time variance

44

The standard deviation of the sampling time was significant; however, provided

that the mean was used as the sampling time, it was concluded that the error asso-

ciated with the controller would be within acceptable limits for research purposes.

Recently, however, an RTOS by the name of QNX Neutrino RTOS was released for

the BBB. Thus, due to the necessity for determinism in aerospace control systems,

as well as the performance based motivations, this author strongly recommends the

QNX Neutrino RTOS for future development.

3.2.1 Thread Design

A multithreaded architecture was selected for the autopilot in order to ensure the

integrity and robustness of the software as whole. Performance is enhanced by al-

lowing the OS to optimize those task that can be done is psuedo-parallel. The term

pseudo-parallel is used here to describe those tasks that are executed in parallel,

but on a single processor, and therefore, not parallel processing in its truest sense.

The thread structure was broken up into distinct tasks based on functionality and

hardware components. These threads are shown in Figure 3.6, and align well with

the practices of past research [38]. In addition to executing the threads, the main()

is tasked with autopilot initialization. This includes loading the configuration files

such as, system gains, actuator limits and sensor profiles, as well as previous mission

attributes must be loaded.

Multi-threading while advantageous, has its disadvantages as well. Thorough

protection of global variables is required to prevent race conditions, a condition in

which two threads attempt to read or write to the same variable simultaneously. Race

45

Figure 3.6: Thread design block diagram

conditions cause erratic behavior in software, and are extremely difficult to debug.

Additionally, the tasks for each thread must be scheduled such that the control is

executed properly. The task scheduling should be handled through the main() as

shown in Figure 3.6d. Threads contain a variable space that is only accessible locally.

However, the sole means by which threads can communicate is the global variable

space. In order to prevent race conditions and protect the integrity of data in the

global variable space, a mutex or semiphore must be used.

46

(d)

(e)

Figure 3.6: (a) Task scheduling performed by main() (b) Variable spaces associated

with multithreaded architecture.

3.2.2 Ground Control Station Software

The ground control station is the primary means by which operators plan, execute

and monitor UAS missions. Many ground control station software platforms exist,

but none are as well documented, platform independent, and community supported

as qGroundcontrol (QGC). The QGC software is compatible with the three major op-

erating systems, Windows, Linux and Mac; features serial, UDP and mesh networks

communication compatibility; and, posses real-time plotting and logging capabilities

47

of onboard parameters. QGC is flexible and easily modified since it is Qt based.

Lastly, QGC utilizes a highly efficient communication protocol called MAVLINK.

MAVLINK is extensively tested and quite possibly the most widely used communi-

cation protocol in the UAS research community. It uses C-structs to efficiently pack

information for transmission over serial and UDP connections. Readers are referred

to the QGC website for user manuals and documentation.

3.3 Experimental Setup

3.3.1 Airframe

The Skyhunter was used as the primary experimental fixed wing platform. The

platform is a COTS, boom-tail design that features tough EPO Construction, a large

payload bay capable of carrying upwards of 7 pounds, and a 1.8 meter wingspan.

The high wing design adds a significant amount of stability and robustness in the

presence of wind. The aircraft features ailerons and an elevator as control inputs,

but no rudder.

3.3.2 Autopilot Control Scheme

As a baseline, the autopilot control architecture from Chapters 6, 10 and 11 of [35] is

utilized, although the implementation of the control algorithms developed in Chapter

2, should be included in future work. The path manager uses a path-fillet-path

algorithm to smooth the transitions between waypoints.

48

3.3.3 Simulation Environment

Critical to the design of any system is a simulation environment that allows for

mitigation of potential issues. The XPlane Simulator by Laminar Research was

utilized to simulate aircraft dynamics in order to evaluate Stabilis. The Skyhunter

airframe was modeled using plane maker and is shown in Figure 3.7.

Figure 3.7: Skyhunter model in the X-Plane environment

3.4 Flight Test Results

A course consisting of five waypoints was used to evaluate the waypoint tracking

capabilities of Stabilis. All of the flight test experimentation was performed at OSU’s

Unmanned Aircraft Flight Station. During experimentation wind disturbances on

the course ranged from six to twelve knots, with gusts up to four knots.

49

3.4.1 Control Loop Tracking

The outer loop and attitude control performance is shown in Figure 3.8. The con-

troller parameters that proved to be successful in simulation were utilized in flight

testing. Although the simulation model was fairly accurate each axis took some ad-

ditional tuning during flight testing. While the controller parameters for tracking φ

were relatively insensitive, tracking of the heading angle, χ, and pitch angle, θ, were

found to be more sensitive. Although the fixed-wing aircraft tracks the waypoints,

there is an issue with the logged data in Figure 3.8 (b). At various times in the

altitude error, crosstrack error and airspeed error, there are zero values where the

curve trends infer otherwise. Thus, it is safely inferred that there is either an error

in the software or the hardware. This is clearly a serious issue that is currently being

investigated and will be resolved.

3.4.2 Waypoint Tracking

The waypoint tracking performance is shown in Figure 3.9. Arrows denote the en-

try point of the aircraft for two different flight tests. The autopilot was in fully

autonomous mode for the entire duration of the each flight test. A path-fillet-path

algorithm was used to make the smooth transitions and to avoid significantly over-

shooting each waypoint. To compensate for the wind, the aircraft experienced a

significant amount of side slip between waypoints three and four. However, it main-

tained similar tracking performance across all waypoints.

50

3.5 Summary

With the exception of the ground control station, the control hardware and soft-

ware is almost entirely custom in design. The hardware system optimized between

weight, form factor, computational ability, and peripheral compatibility. The cus-

tomized hardware was designed using a modular approach in order to allow for

application-based selection of hardware. The mission planning, monitoring and exe-

cution is performed using the qGroundcontrol software, and XPlane was utilized as

the primary simulation environment for control algorithm evaluation. Flight testing

results show the ability of the autopilot to perform waypoint tracking.

51

0 10 20 30 40 50 60 70 80 90
−200
−100

0
100
200

t (s)

χ

0 10 20 30 40 50 60 70 80 90
−20
−10

0
10
20

θ

0 10 20 30 40 50 60 70 80 90
−40
−20

0
20
40

φ

(a)

0 10 20 30 40 50 60 70 80 90
−30
−20
−10

0
10

t (s)

e a
ir
sp

ee
d

0 10 20 30 40 50 60 70 80 90
−10

0
10
20
30

e x
tr
a
ck

0 10 20 30 40 50 60 70 80 90
−60
−40
−20

0
20
40

e a
lt
it
u
d
e

(b)

Figure 3.8: (a) Attitude tracking performance of the aircraft, where desired and

actual attitude is given by green and blue respectively (b) Longitudinal and lateral

outer loop tracking
52

−250−200−150−100−50050100150200250300
−100

−50

0

50

100

150

200

250

1

2

3
4

5

East (m)

N
or

th
(m

)

Waypoint Tracking

Figure 3.9: Straight line waypoint tracking performance over the course of two flights.

Flights were completed with crosswinds up to 12 knots.

53

Chapter 4

Conclusion

4.1 Summary

This thesis seeks to address the problems of control-transfer associated with outdoor,

fixed-wing flight in order to reduce development time and costs associated with new

unmanned systems. A control architecture is formulated using a new class of data

driven control, GP-MRAC. Feedback linearization was used to show the efficacy of

modeling the underlying uncertainty between aircraft with online GP methods. The

simulation results provided indicate the feasibility of RCT using online GP based

methods.

To this end, this thesis also addresses a deficiency in current COTS autopilots to

facilitate cutting edge research in control systems and autonomy. A modular, open-

architecture autopilot was design, developed and evaluated in order to address this

issue. Tests were conducted to show that the computational requirements of GP-

MRAC were satisfied by autopilot hardware. Next, traditional control techniques

were employed to show the baseline performance of the autopilot. Thorough simula-

54

tion and ground testing were completed to mitigate risks associated with unmanned,

autonomous flight. Finally, flight tests were conducted, and the results are provided

for performance metrics.

4.2 Future Work

Recommendations for future work could include:

• Vetting fixed-wing lateral control architecture posited using simulation

• Flight testing of GP-MRAC fixed-wing control architecture

• Relaxation of Assumption 2.2 by way of an adaptive inner loop architecture

• Relaxation of Assumption 2.3 by way of the following:

– The implementation of psuedo-control hedging to aid in protection of

input saturation and undesirable adaptation

– Establishing physical limitations of aircraft, e.g. acceptable structural

load factors, by way of basic aircraft performance calculations to ensure

the reference model falls within the operational abilities of the aircraft

• Implementation of RTOS system on flight control computer of Stabilis

• Mitigation of the sensor/software issues presented in flight testing results.

• Implementation of fault detection where mutiple sensors are used. See section

3.1.2

55

Appendix A

GP-MRAC in Lateral Motion

This section draws on the assumptions and discussion provided in 2.3.1. In lateral

motion, the heading angle, defined χ = atan2(Vn, Ve), is used as for guidance; where,

Xq = atan(qn, qe). The guidance law is given by [35] as,

χc(t) = χ∞ − 2

π
χ∞atan(kpathepxy(t)) ; (A.1)

where, kpath and χ∞ are designer chosen constants of the reference model χ̈ =

−2ωnζχ̇ − ω2
n(χc − χ). For the lateral case, let z = [p r φ ψdot χ̇T]T , and

let δa ∈ Dδa . Note that the ailerons are chosen for lateral input, since many fixed

wing UAS platforms do not feature rudders. Then Assumption 2.2 for the lateral

direction can be stated: For all δa(t) ∈ Dδa , there exists a finite value B > 0 such

that |p(t)| < B and |r(t)| < B. It is assumed that the outer loop system states for

the lateral motion can be modeled by the following differential equation,

χ̇1(t) = χ2(t)

χ̇2(t) = f(z(t)) + b(z(t))δa

(A.2)

56

The function f is assumed to be Lipschitz continuous in z, ż ∈ Dz, and the

systems are assumed to be finite input controllable. The following assumption char-

acterizes the controller on the system for lateral motion [29]:

Assumption A.1 For the source and transfer system, there exists a control law

g : Dz → Dδa such that δa(t) = g(z, χ̈rm) drives χ → χrm as t → ∞. Furthermore,

the control law is invertible w.r.t. δa, hence the relation χ̈rm = g−1(z, δa) holds. [29]

.

The tracking error is defined as, eχ = χrm − χ, and the psuedocontrol, ν to be

ν = νrm + νpd − νp − νad. (A.3)

where, νrm = ẋ2rm , νpd = [K1 K2] ec and the robustifying term νp = p. The remainder

of the lateral formulation follows directly from 2.3.1.

57

Appendix B

Autopilot Specifications

Specifications for the autopilots benchmarked in Table 3.1 are provided in Table B.1

and B.2 below. These specifications were used to aid in selecting components for

Stabilis. It should be noted that many of the autopilot companies do not readily ad-

vertise the specifications of their product. Thus, unfortunately, a significant amount

of information was not provided since it was not disclosed.

58

Table B.1: Autopilot compatible peripherals

Serial I/O Digitial I/O ADC

R
S

232

R
S

422

R
S

485

U
A

R
T

I2C

S
P

I

C
A

N

E
th

.

P
W

M

P
P

M

S
B

U
S

Kestrel 2.2 4 Serial Ports (STD, SPI, I2C) 10 - - 2 - 12bit

MP 2028g - - - - - - - - 24 - - >1

Piccolo Nano 3 - - - - - 1 - - - -

Piccolo LT 3 - - - - - 1 - - - -

Piccolo II 3 - - - - - 1 - 16 - - up to 4

Unav3521 - - - - - - - - 4 - - -

osflexPilot2 >1 >1 >1 >1 >1 >1 >1 - >1 - - >1

osnanoPilot2 - - - >1 >1 >1 >1 - 8 - - -

osflexQuad2 - - - - >1 - >1 - 8 - - -

Slugs - - - - - - - - - - - -

PixHawk - - - 5 1 1 2 - - 1 1 1 - 12bit

Ardupilot - - - 2 1 - - - 8 - - 12

Swiftpilot - - - - - - - - 6 - - -

wePilot1000/3000 1 - - - - - - - 10 - - 6 - 12bit

SkyCircuit-SC21 - - - - - - - 1 6 - - -

SmartAP - - - 1 - - - - 6 - - 2

Paparazzi - - - 3 2 2 1 - 6 1 - 1

GNC1000 2 1 8 - - - 2 4 6 - - -

Note 1) Expansion boards available.

Note 2) Specific values not advertised

59

T
ab

le
B

.2
:

A
u
to

p
il
ot

se
n
so

r
sp

ec
ifi

ca
ti

on
s

R
at

e
G

y
ro

sc
op

es
A

cc
el

er
om

et
er

s
A

ir
S
p

ee
d

M
ax

A
lt

.

(f
t)

O
p
.

T
em

p

(◦
C

)
R

an
ge

(◦
/s

)

R
es

.

(◦
/s

)

B
ia

s

(◦
/v

H
r)

R
an

ge

(g
)

B
ia

s

(m
g/

L
S
B

)

N
oi

se

(g
/v

H
z)

R
an

ge

(k
ts

)

R
es

.

(k
ts

)

K
es

tr
el

2.
2

30
0

0.
03

18
6

10
1.

50
20

0
25

2
0.

05
22

k
−

40
to

+
85

M
P

21
28

g
-

-
-

-
-

-
50

0
-

12
k

-

P
ic

co
lo

N
an

o
-

-
-

-
-

-
-

-
-

−
30

to
+

80

P
ic

co
lo

L
T

30
0

-
-

6
-

-
19

2
-

-
−

30
to

+
80

P
ic

co
lo

II
30

0
-

-
10

-
-

15
5

-
-

−
40

to
+

80

U
n
av

35
21

30
0

-
-

-
-

-
-

-
-

-

os
fl
ex

P
il
ot

-
-

-
-

-
-

-
-

-
-

os
n
an

oP
il
ot

-
-

-
-

-
-

-
-

-
-

os
fl
ex

Q
u
ad

-
-

-
-

-
-

-
-

-
-

S
lu

gs
-

-
-

-
-

-
-

-
-

-

P
ix

H
aw

k
1

25
0

0.
00

88
1.

8
8

0.
24

4
∼

60
0

19
3

1.
1

>
60

k
−

30
to

+
70

A
rd

u
p
il
ot

1
10

00
32

.8
3

8
0.

2
40

0
60

0.
5

>
60

k
−

30
to

+
70

S
w

if
tp

il
ot

20
00

-
-

-
-

-
-

-
-

0
to

70

w
eP

il
ot

10
00

/3
00

0
10

0
-

-
10

-
-

-
-

10
k

-

S
k
y
C

ir
cu

it
-S

C
2

-
-

-
-

-
-

-
-

15
−

20
to

+
60

S
m

ar
tA

P
1

10
00

32
.8

3
8

0.
2

40
0

E
x
te

rn
al

>
60

k
−

30
to

+
70

P
ap

ar
az

zi
2

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
N

C
10

00
20

0/
10

00
-

3
10

5
-

45
0

1
60

k
-

N
ot

e
1)

F
S

va
lu

es
as

su
m

ed
;

th
e

re
so

lu
ti

on
an

d
ra

n
ge

ar
e

d
ep

en
d
en

t
on

th
is

as
su

m
p
ti

on
.

N
ot

e
2)

U
se

r
d
efi

n
ed

IM
U

60

Appendix C

Component Benchmarking

61

C.1 Flight Control Computer Survey

A summary of some of the flight control computers that were considered are provided

in C.1.

Table C.1: Embedded system specifications

Model Clock Speed Memory Price Peripherals

Arduino Due 84MHz 512Kb $45 I2C(2), UART(2), GPIO(28),

12 bit ADC(2), USB

Arietta-G25 400 MHz 256MB $40 I2C (2), UART (3), SPI (1),

10 bit ADC (4), PWM (4), on-

board WiFi, USB

Beaglebone 720 MHz 256MB 40 I2C (3), UART (6), SPI(2),

CAN (2), 12 bit ADC

(8), 400MHz PRUSS (2),

TCP/UDP, uSD, USB

Beaglebone Black 1 GHz 1 GB $40 I2C (3), UART (6), SPI(2),

CAN (2), 12 bit ADC

(8), 400MHz PRUSS (2),

TCP/UDP, uSD, USB,

uHDMI

RaspberryPi 700 MHz 512MB $40 I2C (1), UART (1), GPIO (8),

SPI (1), 12 bit ADC x 2, uSD,

USB, HDMI

Intel Edison 2 x 500 MHz 1GB $50 I2C (1), UART (1), GPIO

(20), PWM (4), SPI (1), uSD,

onboard WiFi & Bluetooth

Gumstix Overo 1 GHz 512MB $140 I2C (3), UART (2), GPIO

(??), SPI (3), uSD, onboard

WiFi & Bluetooth

62

C.2 Inertial Sensor Survey

The following list is a compilation of available COTS IMU/INS/AHRS sensors. Table

C.2 was used primarily in the early design phases of Stabilis in order to characterize

and select an appropriate inertial navigation system. It is provided as a reference to

the reader.

Table C.2: List of Inertial Sensors [1]

Model Manufacturer Type GPS Cost

Daisy-7 ACME Systems MEMS Yes 128.7

Adjacent Reality open hardware MEMS no

Spatial Advanced Navigation MEMS Yes 3000

Spatial Dual Advanced Navigation MEMS Yes 10000

Spatial FOG Advanced Navigation FOG Yes 35000

ARN-NS0535 Aeron Systems MEMS

impactAIMS AIMS MEMS

uMotion AIMS MEMS

Navigation AIMS MEMS yes

FOG AIMS MEMS/FOG

AHRS/INS American GNC MEMS

AHRS/INS/GPS American GNC MEMS yes

AHRS/INS/DGPS American GNC MEMS yes

ADIS16355 Analog Devices MEMS 600

Opal APDM MEMS

AHR150A-1 Archangel Sys. MEMS

3D-Bird Ascension MEMS 1768

INU Atair Aerospace MEMS yes

Micro INS Athena (Rockwell) MEMS yes

SensorPac Athena (Rockwell) MEMS yes

SilMU 01 UTC Aerospace (BAE) MEMS

SilMU 02 UTC Aerospace (BAE) MEMS

SiNAV 02 UTC Aerospace (BAE) MEMS yes

MMQ 50 BEI Systron Donner MEMS

MMQ-G BEI Systron Donner MEMS yes

Continued on next page

63

Table C.2 – Continued from previous page

Model Manufacturer Type GPS Cost

C-MIGITS III BEI Systron Donner MEMS yes

MiniSense 2 CDLTD MEMS input

TOGS CDLTD RLG input

MiniRLG2 CDLTD RLG input

MiniPOS2 CDLTD RLG input

MiniPOS/NAV CDLTD RLG input

MiniTilt CDLTD MEMS

MicroTilt CDLTD MEMS

MiniSense CDLTD MEMS

ADAHRS Chelton Avionics MEMS input 26000

CHR-6d CH Robotics MEMS no 125

CHR-6dm CH Robotics MEMS no

CHR-6um6 CH Robotics MEMS no

GP9 CH Robotics MEMS yes 320

Crista Cloudcap MEMS 2000

Piccolo Cloudcap MEMS yes 6000

Terrella 6 Clymer Tech. MEMS 1300

NAV 420 Crossbow MEMS yes

NAV 425EX Crossbow MEMS yes

NAV 440 Crossbow MEMS yes 6000

AHRS500 Crossbow MEMS 14200

IMU440 Crossbow MEMS yes

IMU700CB Crossbow FOG 12000

Landmark 10 IMU Gladiator Tech. MEMS 2495

Landmark 10 IMU/GPS Gladiator Tech. MEMS yes 4995

Landmark 20 IMU Gladiator Tech. MEMS 3995

Landmark 20 IMU/GPS Gladiator Tech. MEMS yes 5995

Landmark 10 GPS/AHRS Gladiator Tech. MEMS yes

Landmark 10 AHRS Gladiator Tech. MEMS

Landmark 30 Gladiator Tech. 6600

HG 1700 Honeywell RLG 9000

AG-1 Icewire MEMS No 199

iNAV-FMS-T iMAR FOG input

iIMU-FSAS iMAR FOG

iIMU-FR-M1 iMAR input

iVRU-FAS-C167-IGS iMAR FOG/MEMS input

iVRU-FC-C167-MSL iMAR FOG/MEMS input

Continued on next page

64

Table C.2 – Continued from previous page

Model Manufacturer Type GPS Cost

iVRU-SSA-C167 iMAR FOG/MEMS input

iVRU-SSKS-C167 iMAR MEMS input

iVRU-SBA1-C167 iMAR FOG/MEMS input

iVRU-FA-C167 iMAR MEMS input

iVRU-FKS-C167 iMAR FOG/MEMS input

iTGAC-FK iMAR FOG/MEMS

iHRP(Y) iMAR FOG/RLG input

iNAV-FMS iMAR FOG/RLG yes

iDIS-FMS iMAR FOG yes

iFLY iMAR

iuIMU-02 iMAR MEMS yes

iTraceRT-F200 iMAR FOG yes

OptoAHRS Inertial Labs Optical/MEMS no 7499

AHRS-1 Inertial Labs MEMS no 3499

AHRS-2 Inertial Labs MEMS no 2999

VG Inertial Labs MEMS no 2699

OS3D Inertial Labs MEMS no 999

OS3DM Inertial Labs MEMS no 999

ISIS-IMU Inertial Science MEMS

ISIS-GPS Inertial Science MEMS yes

DMARS-R Inertial Science MEMS input

DMARS-I Inertial Science MEMS input

DMARS-GARS Inertial Science MEMS yes

InertiaCube2 InterSense MEMS 1500

InertiaCube3 InterSense MEMS 1800

MPU-9150 Invensense MEMS no 80

MPU-6000 Invensense MEMS 15

KN-4072 Kearfott RLG

KN-4072A Kearfott RLG yes

KN-4073B Kearfott RLG

KN-4074 Kearfott RLG yes

KN-4075 Kearfott RLG yes

KN-4077 Kearfott RLG yes

KN-4051/2/3 Kearfott

KN-4051/2/3G Kearfott yes

KI-4801 Kearfott RLG

KI-4901 Kearfott RLG input

Continued on next page

65

Table C.2 – Continued from previous page

Model Manufacturer Type GPS Cost

KI-4902 Kearfott RLG input

TG-6000 KVH FOG 25000

CNS-5000 KVH FOG/MEMS yes 30250

LPMS-B LP Research MEMS no 500

LPMS-CU LP Research MEMS no 400

micro IMU Memsense MEMS

nano IMU Memsense MEMS 2730

MIDG II Microbotics MEMS yes 6750

MP 2028g MicroPilot MEMS yes 5000

3DM-GX1 MicroStrain MEMS 1500

3DM-GX2 MicroStrain MEMS

3DM-GX3-25 MicroStrain MEMS 2295

3DM-GX3-35 MicroStrain MEMS yes 3075

3DM MicroStrain MEMS

3DM-DH MicroStrain MEMS

INERTIA-LINK MicroStrain MEMS

LN-200 Northrop-Grumman

Summit 34203A Omni Instr. MEMS

Falcon GX O-Navi MEMS 1000

Phoenix AX O-Navi MEMS yes 1200

UM6 Pololu MEMS input 200

FreeIMU open hardware MEMS

AHRS200A Rotomotion MEMS

AHPRS200A Rotomotion MEMS yes

CHIMU Ryan Mechatronics MEMS No 299

Nav Board M3 Ryan Mechatronics MEMS No 299

IG-500A SBG Systems MEMS no 2208.7

IG-500N SBG Systems MEMS yes 4483.7

IG-500E SBG Systems MEMS yes

Ekinox INS SBG Systems MEMS yes 32500

Ekinox AHRS SBG Systems MEMS no

MoveIt Senspod Sensaris MEMS yes

STIM300 Sensaris MEMS yes 7800

STM32F3 ST Semiconductors MEMS no 10.66

65210A Summit Instr. yes

65210E Summit Instr. yes

CompaNav 2 Teknol MEMS input

Continued on next page

66

Table C.2 – Continued from previous page

Model Manufacturer Type GPS Cost

CompaNav 2T Teknol MEMS input

Autopilot Teknol MEMS input 6000

Nanosatellite Tethers Unlimited MEMS input

CC2541 DevKit Texas Instruments MEMS no 25

Colibri Trivisio MEMS no 550

Colibri wireless Trivisio MEMS no 800

Atom UAV NAvigation MEMS input

Polar UAV NAvigation MEMS yes

Vector UAV NAvigation MEMS yes

Proton UAV NAvigation MEMS yes

VN-100 Vectonav MEMS no 500

VN-200 Vectonav MEMS yes 500

VN-200 dev. kit Vectonav MEMS yes 2500

x-IMU x-io MEMS no 249

MTi-10 IMU Xsens MEMS 1170

MTi-20 VRU Xsens MEMS 2080

MTi-30 AHRS Xsens MEMS 2340

MTi-100 IMU Xsens MEMS 1820

MTi-200 VRU Xsens MEMS 3380

MTi-300 AHRS Xsens MEMS 4940

MTi-G-700 GPS/INS Xsens MEMS yes 4940

3-Space USB YEI MEMS no 145

3-Space Embedded YEI MEMS no 99

3-Space Wireless 2.4G YEI MEMS no 220

3-Space Bluetooth YEI MEMS no 290

3-Space Data-logging YEI MEMS no 180

3-Space Data-logging HH YEI MEMS no 192

67

Bibliography

[1] “A small list of imu / ins / inu.” http://damien.douxchamps.net/research/imu/.

Accessed: 10-30-2013.

[2] P. A. Ioannou and P. V. Kokotovic, “Instability analysis and improvement of

robustness of adaptive control,” Automatica, vol. 20, no. 5, pp. 583–594, 1984.

[3] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adapta-

tion without persistent excitation,” Automatic Control, IEEE Transactions on,

vol. 32, no. 2, pp. 134–145, 1987.

[4] S. Boyd and S. S. Sastry, “Necessary and sufficient conditions for parameter

convergence in adaptive control,” Automatica, vol. 22, no. 6, pp. 629–639, 1986.

[5] Astrom, Adaptive control. Mineola, N.Y: Dover Publications, 2008.

[6] K. Narendra, Stable adaptive systems. Mineola, N.Y: Dover Publications, 2005.

[7] G. Tao, Adaptive control design and analysis. Hoboken, N.J: Wiley-Interscience,

2003.

[8] E. Lavretsky, Robust and adaptive control with aerospace applications. London

New York: Springer, 2013.

[9] E. N. Johnson, Limited authority adaptive flight control. PhD thesis, Citeseer,

2000.

[10] J. D. Boškovic and R. K. Mehra, “Intelligent adaptive control of a tailless ad-

vanced fighter aircraft under wing damage,” Journal of Guidance, Control, and

Dynamics, vol. 23, no. 5, pp. 876–884, 2000.

68

[11] S. Sastry and M. Bodson, Adaptive control: stability, convergence and robust-

ness. Courier Dover Publications, 2011.

[12] R. W. Beard, N. B. Knoebel, C. Cao, N. Hovakimyan, and J. S. Matthews,

“An l1 adaptive pitch controller for miniature air vehicles,” in AIAA Guidance,

Navigation, and Control Conference, Keystone, CO, 2006.

[13] C. Cao, N. Hovakimyan, and E. Lavretsky, “Application of l1 adaptive con-

troller to wing rock,” in AIAA Guidance, Navigation, and Control Conference,

Keystone, CO, 2006.

[14] C. Cao and N. Hovakimyan, “Design and analysis of a novel l1 adaptive control

architecture with guaranteed transient performance,” IEEE Transactions on

Automatic Control, vol. 53, no. 2, pp. 586–591, 2008.

[15] “L1 adaptive controller for systems with unknown time-varying parameters and

disturbances in the presence of non-zero initialization error,” International Jour-

nal of Control, vol. 81, no. 7, pp. 1147–1161, 2008.

[16] I. Kaminer, A. Pascoal, E. Xargay, N. Hovakimyan, C. Cao, and V. Do-

brokhodov, “Path following for small unmanned aerial vehicles using l1 adaptive

augmentation of commercial autopilots,” Journal of guidance, control, and dy-

namics, vol. 33, no. 2, pp. 550–564, 2010.

[17] C. Cao and N. Hovakimyan, “Vision-based aerial tracking using intelligent

excitation,” in American Control Conference, 2005. Proceedings of the 2005,

pp. 5091–5096, IEEE, 2005.

[18] C. Cao, N. Hovakimyan, and J. Wang, “Intelligent excitation for adaptive con-

trol with unknown parameters in reference input,” Automatic Control, IEEE

Transactions on, vol. 52, no. 8, pp. 1525–1532, 2007.

69

[19] T. Yucelen and A. J. Calise, “Derivative-free model reference adaptive control

of a generic transport model,” in AIAA Guidance, Navigation, and Control

Conference, Toronto, ON, 2010.

[20] T. Yucelen and A. J. Calise, “Derivative-free model reference adaptive control,”

Journal of Guidance, Control, and Dynamics, vol. 34, no. 4, pp. 933–950, 2011.

[21] G. Chowdhary and E. Johnson, “Concurrent learning for convergence in adap-

tive control without persistency of excitation,” in Decision and Control (CDC),

2010 49th IEEE Conference on, pp. 3674–3679, IEEE, 2010.

[22] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical

systems using neural networks,” Neural Networks, IEEE Transactions on, vol. 1,

no. 1, pp. 4–27, 1990.

[23] F. Lewis, “Nonlinear network structures for feedback control,” Asian Journal

of Control, vol. 1, no. 4, pp. 205–228, 1999.

[24] A. J. Calise and R. T. Rysdyk, “Nonlinear adaptive flight control using neural

networks,” Control Systems, IEEE, vol. 18, no. 6, pp. 14–25, 1998.

[25] B. S. Kim and A. J. Calise, “Nonlinear flight control using neural networks,”

Journal of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 26–33, 1997.

[26] A. J. Calise, N. Hovakimyan, and M. Idan, “Adaptive output feedback control of

nonlinear systems using neural networks,” Automatica, vol. 37, no. 8, pp. 1201–

1211, 2001.

[27] E. N. Johnson, M. A. Turbe, A. D. Wu, S. K. Kannan, and J. C. Neidhoefer,

“Flight test results of autonomous fixed-wing uav transitions to and from sta-

tionary hover,” in Proceedings of the AIAA Guidance, Navigation, and Control

Conference Exhibit, Monterey, CO, 2006.

70

[28] G. Chowdhary and E. Johnson, “Adaptive neural network flight control using

both current and recorded data,” in AIAA Guidance, Navigation, and Control

Conference, AIAA-2007-6505. Hilton Head, 2007.

[29] G. Chowdhary, T. Wu, M. Cutler, and J. P. How, “Rapid transfer of controllers

between uavs using learning-based adaptive control,” in Robotics and Automa-

tion (ICRA), 2013 IEEE International Conference on, pp. 5409–5416, IEEE,

2013.

[30] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-

function networks,” Neural computation, vol. 3, no. 2, pp. 246–257, 1991.

[31] G. Chowdhary, H. Kingravi, J. P. How, and P. A. Vela, “Bayesian nonparamet-

ric adaptive control using gaussian processes,” IEEE Transactions on Neural

Networks, 2013 (submitted).

[32] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive

window: Theory and experiment,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 16, no. 9, pp. 920–932, 1994.

[33] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computa-

tion, vol. 14, no. 3, pp. 641–668, 2002.

[34] R. Grande, G. Chowdhary, and J. How, “Experimental validation of bayesian

nonparametric adaptive control using gaussian processes,” Journal of Aerospace

Information Systems, 2013 (Submitted).

[35] R. Beard, Small Unmanned Aircraft Theory and Practice. Princeton: Princeton

University Press, 2012.

[36] R. Nelson, Flight stability and automatic control. Boston, Mass: WCB/McGraw

Hill, 1998.

[37] E. Lavretsky and K. Wise, Robust and Adaptive Control: With Aerospace Ap-

plications. Springer, 2012.

71

[38] G. Cai, Unmanned rotorcraft systems. New York: Springer, 2011.

[39] E. Johnson, A. Calise, and J. E. Corban, “A six degree-of-freedom adaptive flight

control architecture for trajectory following,” in Proceedings of the AIAA Guid-

ance, Navigation, and Control Conference, Princeton University Press, 2002.

[40] E. Frazzoli, M. A. Dahleh, and E. Feron, “Trajectory tracking control design for

autonomous helicopters using a backstepping algorithm,” in American Control

Conference, 2000. Proceedings of the 2000, vol. 6, pp. 4102–4107, IEEE, 2000.

[41] S. Park, Avionics and control system development for mid-air rendezvous of two

unmanned aerial vehicles. PhD thesis, Massachusetts Institute of Technology,

2003.

[42] G. J. Ducard, Fault-tolerant flight control and guidance systems: Practical meth-

ods for small unmanned aerial vehicles. Springer, 2009.

[43] G. Cai, B. M. Chen, T. H. Lee, and M. Dong, “Design and implementation

of a hardware-in-the-loop simulation system for small-scale uav helicopters,”

Mechatronics, vol. 19, no. 7, pp. 1057–1066, 2009.

[44] J. M. Goppert, An adaptable, low cost test-bed for unmanned vehicle systems

research. 2011.

[45] A. Bittar and N. M. de Oliveira, “Central processing unit for an autopilot: De-

scription and hardware-in-the-loop simulation,” Journal of Intelligent & Robotic

Systems, vol. 70, no. 1-4, pp. 557–574, 2013.

[46] N. Kim, “Improved methods in neural network-based adaptive output feedback

control, with applications to flight control,” 2003.

[47] H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial vehicles:

a survey,” International Journal of Control, Automation and Systems, vol. 8,

no. 1, pp. 36–44, 2010.

72

[48] P. Groves, Principles of GNSS, inertial, and multisensor integrated navigation

systems. Boston: Artech House, 2008.

[49] J. H. Brown and B. Martin, “How fast is fast enough? choosing between xeno-

mai and linux for real-time applications,” in proc. of the 12th Real-Time Linux

Workshop (RTLWS12), pp. 1–17, 2010.

73

VITA

Jacob Stockton

Candidate for the Degree of

Master of Science

Thesis: MODULAR AUTOPILOT DESIGN AND DEVELOPMENT FEATURING
BAYESIAN NON-PARAMETRIC ADAPTIVE CONTROL

Major Field: Aerospace Engineering

Biographical: Born in Fairfield, OH on September 24th, 1988.

Education:
Completed the requirements for the degree of Master of Science at Oklahoma State
University, Stillwater, OK in May 2014.

Completed the requirements for the Bachelor of Science in Aerospace Engineering at
Oklahoma State University, Stillwater, OK in May 2011.

Completed the requirements for the Bachelor of Science in Mechanical Engineer-
ing at Oklahoma State University, Stillwater, OK in May 2011.

Experience:
Flight Test Instrumentation Engineer, Bell Helicopter 2011-2012

Professional Memberships:
AIAA

