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Abstract: IPTV has grown in recent years to an estimated 100 million users worldwide. 
IPTV uses IGMP processes to stream an individual channel to a user until the next 
channel change when the current channel is stopped and the new selection begins 
streaming. One of the critical factors determining customer satisfaction is the requirement 
to have reasonably rapid channel change times of 2 seconds or less, but current channel 
change times are frequently above that threshold. Numerous research efforts have been 
ongoing to reduce these times including edge servers, I-frame management, buffering 
improvements, dynamic video coding, and pre-selecting channels. Channel pre-selection 
involves sending additional channels in hopes that the user’s next selection will already 
be present at the user’s set top box to reduce the channel change time. While this pre-
selection technique has previously been proposed, the proposals have been limited in 
scope, typically based on set top box replacement, and lack specific details regarding the 
expected channel change reductions attained. This research addressed all of these 
shortcomings beginning with laboratory testing to verify that the channel change time 
reduction for successful pre-selection is two times the network delay plus the IGMP 
processing time which equates to an average of 320 millisecond reduction per channel 
change. Several pre-selection models were developed and evaluated using theoretical 
calculations, functional testing, and performance simulations. Sample data was generated 
to reflect a wide range of user IPTV viewing behavior for use in the performance 
simulations. The top two models resulted in an average of well over 70% success rates in 
accurately pre-streaming the user’s next selection in the multicast cache output. This 
approach also has the benefit of being implemented on IPTV provider equipment and 
would typically only require firmware upgrades without the need for expensive new 
equipment or changes to existing standards. Operational considerations were also 
discussed to reduce problems and delays during the implementation phase of the system. 
Additional applications and future improvements were also presented.  
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CHAPTER I 
 
 

INTRODUCTION 

 Television viewers have grown to expect high quality service through traditional 

broadcasting techniques over the many past decades. Whether from cable or satellite 

services today or even earlier electromagnetic services of the past, users have had an 

inherent advantage in that all of the offered channels are simultaneously broadcast to 

their location. This allows for a rapid channel change time whenever the user selects a 

new channel for viewing, since the user’s equipment only has to adjust to the new 

frequency associated with the next channel for reception. Due to this inherent advantage, 

users have come to expect fast channel change times from their television service. 

However, these traditional techniques are limited by fixed channel offerings and 

unidirectional services. For these reasons traditional providers are limited in the number 

of High Definition (HD) channels that they can provide. 

 With the growth of the internet, a wide range of new services have been offered in 

recent years. Many providers now offer various combinations of traditional data services, 

Voice over Internet Protocol (VoIP), Internet Protocol TV (IPTV), Video on Demand 

(VoD), content streaming, gaming, informational services, and mobile access. IPTV has 

been tightly defined as the transmission of video over broadband IP networks using 

multicast technology [1]. But it is often more loosely defined to be a service that includes 

multimedia applications such as TV, video, audio, text, graphics, and data over an IP 
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based network [2]. For the purposes of this paper, the first more tightly worded definition 

will be used, but it shall be understood that all of these IPTV services are typically 

offered in a multi-service environment.  

IPTV is ushering in an era where all of the offered channels are no longer 

simultaneously present down to each subscriber’s location. Instead typically only the 

specific channel currently requested is transmitted. This has led to the capability of 

offering an increasing number of channels and services, since a fixed number of channel 

offerings that are all simultaneously broadcast would no longer be a limiting factor. The 

signaling between the user and the network for channel requests is most frequently done 

using the Internet Group Management Protocol (IGMP), and the inherent delays 

associated with this channel change time and other quality issues have now come to the 

forefront as some of the major technical issues associated with IPTV services. Users that 

have long experienced near instantaneous channel change times have come to expect 

similar performance from these newly offered IPTV services, so the goal of this research 

is to offer an improved multicasting method to significantly reduce the average channel 

change time experienced by users.  

 
1.1 Rise of IPTV 
 
 
 As the number of broadband internet users has steadily increased in recent years 

due to the availability of Digital Subscriber Lines (xDSL), Fiber-to-the-Home (FTTH), 

cable modem services, and other Next Generation Network (NGN) offerings, customer 

acceptance and interest in a wide variety of multimedia services has been high. Providers 

have made Triple Play services relatively commonplace in which voice, video, and data 
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applications are merged onto a single platform. By then adding remote wireless access 

onto this package, Quadruple Play services have become available in many metropolitan 

markets. Providers are now looking further into providing Multiplay packages in which 

further advanced applications, such as Video-on-Demand and Informational Services, are 

then merged into a single ubiquitous service. IPTV service has now become a key 

competitive component for companies looking to distinguish themselves over their 

competitors.  

 Worldwide IPTV growth continued over the last several years aided by the 

increased broadband customer base, technical improvements, introduction of standards, 

and regulatory reform. Some key metrics associated with this IPTV growth are: 

• The number of households worldwide with broadband service was estimated to be 

422 million for 2010, with 139 million of those having sufficient bandwidth 

capabilities to allow reception of IPTV services [3]. 

• 2011 estimates of worldwide IPTV subscribers were over 100 million [4]. 

• Europe, Asia, and North America are currently the largest IPTV regions of growth 

[4] [5]. 

• European estimates for IPTV subscribers in 2010 topped 11 million [6]. 

• IPTV usage in Japan has risen by over 50% annually and exceeded the 3 million 

customer mark by 2012 [7]. 

• The 2009 outlook for IPTV users in Korea topped 2.5 million [8]. 

• In the U.S., AT&T’s U-Verse program had over 1 million subscribers through 

2008 and other competitors were increasing investments in IPTV capabilities [9]. 

3 
 



• China had already approached 1 million IPTV customers by the end of 2007 and 

continues to be one of the fastest growth markets [10]. 

• Even with an initially low broadband penetration, India represents another large 

area of IPTV growth and has attracted substantial recent investments [11]. 

 
Taken collectively, these metrics clearly indicate the favorable direction that 

IPTV services have taken in recent years. However, in the U.S. there are still whole 

market areas that have yet to be penetrated. The Multi-Dwelling Unit (MDU) market 

represents a large opportunity for IPTV providers, as well as the markets associated with 

large office buildings and business centers [12]. The MDU space generally refers to 

apartment complexes, and as such it provides a high concentration of similarly 

configured locations that could speed IPTV deployment. The high potential of this 

market is evident by the over 18 million apartment units rented in U.S. annually [13]. 

Note that this figure excludes single family homes and trailer rentals. Several of the large 

apartment management companies each offer services to many thousands of apartment 

complexes, and these companies have now set their sights on providing IPTV and other 

integrated services [14]. Similarly the high number of office buildings in the U.S., 

currently standing at well over 700,000, represents another opportunity where providers 

benefit from both the concentration and uniformity of the configurations [15].  

It is important to note that IPTV deployments are made in a wide variety of 

configurations. Passive Optical Networks are often deployed to residential areas in a 

much different configuration than is typically implemented at MDU locations. 

Furthermore, deployments differ with respect to various regions and countries worldwide 

as a result of differing telecommunications standards, practices, and environments. This 
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research effort will primarily focus on the architecture associated with the MDU 

deployment space, although many of the concepts and conclusions are applicable to other 

configurations as well. A typical configuration associated with an MDU deployment of 

IPTV services is shown on Figure 1.1.  

While implementations can differ significantly, it is common for the majority of the 

offered IPTV channels along with other integrated services to be simultaneously present 

at a central Head End location for major metropolitan areas. The First Hop Router (FHR) 

is nearest to the Head End and multicast signals are broadcast down to the Last Hop 

Router (LHR). The LHR is frequently the last edge Layer 3 device to have a significant 

To MDU Location

Triple Play Services with 
IPTV Video Broadcasts

Last Hop Router with 
IGMP Multicast 

Querying Function

Head End Location with 
Network IPTV

Video Broadcast
+ Voice & Data Services

Primary Link 
(≅ 1 Gbps)

Home Gateways

Links to Individual 
Apartments 

(typically 100 Mbps)

User Set Top Boxes

User Televisions
Independently Watching 

Various Channels

First Hop Router    

Note: Other 
Layer 2 Devices 
may be present 
on these links 
depending on 
the size of the 

MDU

 
Figure 1.1 Typical IPTV Configuration for MDU Deployments 
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number of offered channels present and is often configured to be the IGMP Querying 

Device. Other Layer 2 devices may be present between the LHR and the user’s Home 

Gateway, and these devices are typically configured to perform IGMP Snooping. 

Individual apartments typically have a Home Gateway (HG) to handle the integration of 

voice, video, and data within the apartment itself. A Set Top Box (STB) is a required 

device at the customer premises to handle IPTV service, and there are a wide variety of 

these devices on the market with differing levels of performance and options. All of these 

various functional devices and concepts will be covered in detail in later sections. Due to 

the nature of several different apartment complexes having similar configurations and 

that the individual apartments within each complex are implemented in duplicate 

fashions, this MDU architecture represents a valuable market to the major providers in 

this country. 

 
1.2 Popular Video Formats 
 
 
 Live TV video broadcasts are first broken down into small chunks of data and 

placed into packets for transport across networks for IPTV reception much like standard 

data has been packetized for internet delivery for years. However, IPTV data is generally 

placed in User Datagram Protocol (UDP) packets, whereas standard internet data is most 

frequently placed in Transmission Control Protocol (TCP) packets. TCP is considered a 

reliable connection that allows for ordering, acknowledgement, timeout, and 

retransmission of packets. UDP is unreliable in that it does not offer any method of 

guarantee that packets will arrive at their destinations, so it is used only for applications 

that can accept some level of error. Since live video streams require a significant amount 
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of bandwidth to be delivered in a time sensitive fashion, most IPTV applications have 

currently been implemented using UDP connections. To improve quality some STB 

providers have implemented error concealment techniques to minimize the effects of 

errors or lost packets at the price of increased complexity and processing delays [16-19].  

 UDP was formally defined in the standard IETF RFC 768 going back to 1980. 

The IGMP process was defined in the standards RFC 1112, RFC 2236, and RFC 3376 for 

versions 1, 2, and 3 respectively, and this process will be covered in detail in the next 

section. As IPTV usage has increased, the Focus Group of ITU-T issued base 

specifications in December 2007 and the IPTV-GSI (Global Standard Initiative) was 

established in early 2008 to continue coordinating recommendations for IPTV 

specifications. The Motion Pictures Expert Group (MPEG) was formed in 1988 and 

began issuing formal standards for video coding in 1993 and has steadily issued 

additional standards ever since. More information on IPTV related standards can be 

found in Appendix A. SDTV differs from HDTV primarily in the areas of resolution, 

scanning, and refresh rates. As the state of the art of HDTV has progressed the ITU and 

other standards organizations have struggled to keep up. While a large number of video 

formats exist, the most popular video formats are listed in Table 1.1 along with an 

 
Format Typical Bit Rates 

MPEG-2 SDTV 3-6 Mbps 

MPEG-2 HDTV 14-20 Mbps 

H.264/MPEG-4 SDTV 1-4 Mbps 

H.264/MPEG-4 HDTV 6-14 Mbps 

 
Table 1.1 Popular IPTV Video Formats 
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overview of the bit rates typically associated with each. 

 The common format of MPEG-2 Transport Stream (TS) is produced with 

sequence of fixed length 188 byte packets as shown in Figure 1.2 with more details in 

Appendix A [20]. The video packet stream is formed from video frames that are sized 

depending on the aspect ratio and resolution. The frame rate can vary depending on 

applications, and frames are likewise placed into a Group of Pictures (GOP). As the TS is 

received at the user’s location, it is vital for the STB to be able to quickly determine 

 

 

Figure 1.2 Transport Stream Packet Structure and Header [20] 

188 Byte Packet 

4 Byte  

Packet 

Header 

Adaptation Field 

     (if present) 

  Payload 

(if present) 
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where in a particular video frame the data is intended to occupy and the compression 

technique. This function is aided through the use of frame types, most commonly the I, P, 

and B frame types. The Intra-coded frame, known as an I-Frame in MPEG-2 and an 

Instantaneous Data Refresh (IDR) in MPEG-4, contains all of the information necessary 

to decode the stream, so they are known as the Key Frames [1][21-22]. Since set top 

boxes have no way of knowing in advance where the video stream of packets had begun, 

it is mandatory to first receive one of these Key Frames before any decoding and display 

can begin. Due to this limitation, an I-Frame serves as a Random Access Point (RAP) 

into an ongoing video stream. It is also important to keep in mind that I-Framing specifies 

a full and complete picture. Significant compression can occur through the use of 

Predictive Frames (P-Frames) that indicate only data that differs from the previous frame 

[23]. Bi-predictive Frames (B-Frames) go even further by indicating only data that differs 

from the previous and next frames. The I-Frame rate is considered the most significant 

type of framing for analysis of channel change time (CCT), since it is initially required 

for decoding, it is required for later P and B framing to be effective, and it heavily 

influences the required bandwidth [21-22]. I-Framing optimization and dynamic I-

Framing are two well-studied techniques that have been used to improve CCT and will be 

covered more in the next chapter. 

 
1.3 IGMP Multicasting Protocol 

 
 Internet Group Management Protocol (IGMP) is used to facilitate the multicasting 

of video streams more effectively than traditional transmission methods. The multicasting 

process is a method to optimize video transmission by reducing the number of duplicate 
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 Figure 1.3 Comparisons of Broadcasting, Point-to-Point, and Multicasting Methods 
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and unnecessary or extra streams. The primary options for video configurations are 

Broadcasting, Point-to-Point, and Multicasting as depicted in Figure 1.3 with users A, B, 

and C each requesting to see the same video stream. In the Broadcasting configuration 

the requested stream is sent to everyone in the network resulting in unnecessary or extra 

streams on Links 5, 9, 10, and 11 to users D, E, and F. All users are treated identically as 

indicated by the same green streams. In the Point-to-Point configuration a separate stream 

is sent to each requesting user, so two duplicate streams result on Link 1 and one 

duplicate on Link 2. Each requesting user is treated individually as indicated by the 

different color streams. In the Multicasting configuration common streams are shared and 

are not sent on to any users not requesting access, so there are no duplicate or 

unnecessary streams present on the network. It can be thought of as a combination of the 

positive characteristics of both Broadcasting and Point-to-Point. 

 To accomplish this multicasting task all of the nodes associated must be running 

compatible IGMP versions and have all optional parameters properly configured. When 

IPTV video is transmitted from a multicast source, each TV channel is given a specific IP 

address and port number. When a user changes to a new channel using his Set Top Box 

remote control, the STB then sends messages upstream indicating that it no longer needs 

the current channel and wants to join the new channel. These IGMP messages reflect the 

IP addresses of the appropriate streams rather than channel numbers. Table 1.2 shows an 

example of this Channel to IP Address Translation that was a screen shot from an Amino 

130 Set Top Box. In the table it is clear for example that Channel 1 is associated with the 

IGMP format for the stream on IP address 224.2.3.1 using port 1234. 

 In a typical IPTV multicasting configuration the incoming video streams are first  
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Table 1.2 Sample Channel to IP Address Translation 
 
 

sent to an IGMP Querying Device, which is frequently providing Layer 3 type 

functionality. The Querying Device does not pass the videos streams on until it first 

receives a Join request, and then it only sends the stream on to the particular physical port 

connected to the requesting party. Multiple ports may request and receive the same video, 

but currently only ports that have requested a particular stream will receive it to eliminate 

unnecessary broadcasts to the other ports.  

An example of this messaging for a typical channel change from Channel 2 to 

Channel 1 is shown on Figure 1.4. In this Wireshark IP stream capture the display is 

filtered to only show the IGMP messages. The user’s STB is associated with Source IP 

address 192.168.16.25 and the IGMP Querying Device has address 192.168.16.1. The 

first message sent from the STB is to Leave the stream on IP address 224.2.3.2 for 

Channel 2. The Querying Device sends out several Membership Query Reports to verify 

that there are no other users still watching that channel before it removes the stream 

completely. The STB then sends the Join message that was highlighted in Figure 1.4 

requesting to receive the IP stream on address 224.2.3.1 which is for Channel 1. In the 

packet details for this Join message it can be seen that it was from the Amino device with 
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Figure 1.4 Packet Capture for IPTV Change from Channel 2 to Channel 1 
 
 

IP version 4 address 192.168.16.25, it is an IGMP version 2 type request, and it is 

requesting to be a Member or Join multicast stream 224.2.3.1. Note that Leave messages 

are sent to destination address 224.0.0.2 while Join messages are sent to the stream 

address of the request. This basic IGMP messaging established the STB as a member of 

the Channel 1 stream and no longer a member of Channel 2. This process is repeated 

throughout the network for every IGMP channel change event.  

Consider the example configuration shown by Figure 1.5 to examine how the 

IGMP Querying Device keeps track of the various streams and members. In this example 

a video source PC is inputting four streams for Channels 1 through 4 to the Layer 3  

Switch acting as the Querying Device. The second PC is a DHCP Server to the four Set 
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Figure 1.5 Example IGMP Physical Configuration 

 
 
Top Box/TV pairs connected to the Switch on Ports 8, 12, 16, and 20 for the users. 

 For the viewing scheme as shown in Figure 1.5 with each STB requesting a 

different channel, the Querying Device will maintain an IGMP Configuration Table that 

tracks the members of each IP multicast stream. For the configuration shown in Figure 

1.5 the resulting IGMP Configuration Table captured as a screen shot from the Layer 3 

Switch is shown on Table 1.3. In this table each multicast stream currently active is listed 

by its IP address with applicable VLAN details. Each multicast member as established 

through the IGMP messaging system is listed by its associated physical port connection. 

Table 1.3 also shows that the Switch is configured for the IGMP Protocol and as the 

Querying Device with other timing parameters. As expected the table shows that Port 8 is  
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Table 1.3 Example IGMP Configuration Table 
 
 
watching Channel 4 on stream 224.2.3.4 and likewise for the other active ports. The first 

three multicast IP streams are management streams not associated with actual IPTV 

video. In a similar fashion other devices on the network may also track the IGMP 

multicasting traffic in a process known as IGMP Snooping. If there were a Layer 2 

Switch or a Gateway between the Layer 3 Switch and the Set Top Boxes of this example, 

they would optimally be configured for IGMP Snooping functionality to listen and track 

the multicasting through them. That would allow them to only send on streams to ports 

that requested it just like the IGMP Querying Device. The primary difference is that in 

order for the IPTV video to be passed down the IGMP messaging must first be 

established with the main Querying Device. After that all of the IGMP devices properly 

configured will maintain optimal multicasting of the streams.  

 The IGMP functions were first introduced in Version 1 with Join messages but no  
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Leave messages. Instead a timeout system was used to end streams that were no longer 

needed [23]. As traffic levels increased it became beneficial to quickly pull down streams 

that are no longer active, so Version 2 introduced the Leave messaging system. Version 3 

then was introduced to allow specification of hosts for receiving and blocking which is 

useful in the prevention of denial of service attacks and network optimization.   

 
1.4 Need for Short Channel Change Times 
 
 
 Customer expectations are the primary justification for the continued research into 

shortening IPTV channel change times. Previous researchers in this area have 

consistently put forth the case that excessive CCTs will be prohibitive with respect to 

customer satisfaction and IPTV growth [1][2][5][21-22][24-48]. As noted earlier this has 

not been a significant issue in the past, and with the emergence of IPTV services the CCT 

has become a major factor in determining the Quality of Experience (QoE) [2][22][37]. 

The QoE is a relatively new concept that stemmed out of the well known Quality of 

Service (QoS) analysis with respect to IPTV. While the QoS typically is based on 

quantitative measurable data, the QoE frequently involves customer impressions as 

determined by survey results. Results of these customer surveys conclude that viewers 

rated a CCT of one second as only “fair”, and that this process is a key component of 

overall QoE [32][33].  

 Customer expectations have conflicted with the reality of actual CCTs during 

these early deployment years of IPTV. Clearly the exact times are based on the deployed 

configurations, equipment involved, broadcast scope, and parameter settings. Recently 

published results of change times indicate that the numerical values differ substantially 
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based on the specifics, but a representative sample of these results is shown on Table 1.4. 

From this data we see a considerable range of times reported in actual field cases that are 

well in excess of customer expectations. Through tradeoffs with minimum customer 

expectations versus the reality of IPTV field issues, the general consensus for an 

acceptable CCT target appears to be two seconds or better [1][22][29-31][33][38-40].  

 
Channel Change Times Source 

1.9 - 4.8 sec Cisco [41] 

1.5 - 4 sec Wikipedia [42] 

3 sec Motorola [30] 

0.9 - 70 sec Agilent Technologies [2] 

 
Table 1.4 Sample Reports of Channel Change Times 

 
 
 Given this two second maximum CCT target, the next question becomes how 

quickly customers will give up on IPTV service if the target is not met. The answer to 

this question may in fact be quite complex depending on what other TV subscription 

options they have available to them at that particular moment. Considering the overall 

benefits of IPTV, the case can be made that customers may soften their stance on CCTs a 

bit if other larger advantages are present. If the customer can merge data or informational 

services onto their routine TV broadcasts, then they may expect some minor delays. An 

example of this would be running a web video conference call or performing online 

shopping in the corner of their TV screen while watching a network broadcast 

simultaneously. These added services have forced the Set Top Box manufacturers to 

develop units that can effectively handle these different voice, video, and data streams 
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through the use of complex middleware. But by introducing this middleware application 

the average CCT is adversely affected even when the services are not fully utilized. Even 

with a softened position on change times, customers will still require reasonably seamless 

performance to meet minimum expectations. This analysis indicates how drivers that add 

new functionality and advances in one area can further increase the need to keep CCTs 

sufficiently low to exceed minimum customer QoE.  

 
1.5 Sources of Delay 
 
 

 The existing research base on this topic shows a wide disparity in the descriptions 

and values associated with CCT delays. Various researchers have categorized and 

documented the sub-components of the channel change process in methods that were 

suited to meet the particular needs of their study. Consequently no standard description 

about the sources of delay in the change time process exists, but by taking a cumulative 

view of the existing research one can find trends and similarities concerning these delays. 

Table 1.5 reflects a consensus view of the conventional sources of delay as compiled 

from the wide body of existing research [1][5][21-22][24][26-30][34][38-39][43-52]. 

Table 1.5 goes on to show how these sources will be classified for this research. The 

reasons for classifying the conventional sources of delay are the following: 

• It allows for a convenient description of multiple delay sources simultaneously. 

• Classifications reflect the overall process from which each delay is a component. 

• Classifications for this research are similar to other researcher’s schemes. 

• This research improves the times associated with the overall classifications rather 

than the individual sources of delay.  
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While a more detailed description of the individual sources of delay will be given 

shortly, there are a few issues relating to Table 1.5 that need immediate clarification. The 

cumulative delay times differ significantly between the Conventional Time Delays and 

the Applicable Delays by Classification due to how the Network Latency and Wait for 

RAP items are handled. The Conventional Time Delays reflects the full range of values 

for these items as documented by the existing resources cited above, but the Applicable 

Delays by Classification reflects values for these items that are pertinent to the 

methodology of this research.  

The conventional view of the one way Network Latency indicates a 30 to 70 

millisecond delay if optimally configured, but this configuration typically indicates an 

edge server located very near the end user. Since this configuration is not the primary 

considered case for MDUs and other applications covered by this research, then these 

optimal values are not considered applicable for the purposes of this analysis. When 

optimal configurations are not present the conventional view of one way Network 

Latency shows that this value widely varies from around 50 milliseconds to over 1 

second, but the Applicable Delays by Classification reflects a value of 600 milliseconds 

for the testing purposes of this research in line with previous research into predictive 

tuning [1][7]. It is understood that the one way Network Latency will vary widely from 

this 600 millisecond value in real-world applications even when optimal configurations 

are not present, but this distinction will be made towards the end of this research in the 

sections handling the potential improvements of this multicast caching technique. 

 Similarly the Wait for RAP items vary from 250 milliseconds to 2 seconds for 

the conventional view depending on how the I-Frames are implemented, but the 
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Applicable Delays by Classification reflect the Wait for RAP item as approximately 300 

milliseconds in line with the values typically seen in practice [21-22][32][40-42][48]. The 

result of these differences in handling these values is the reason for the variance between 

the conventional range of 1.855 to 6.68 seconds and the applicable range of 3.045 to 4.18 

seconds. Note that this applicable range is in line with the industry reported delay times 

from widespread actual deployments documented previously in Table 1.4.  

A closer inspection of the sources of delay will be made by looking at each of the 

Conventional Descriptions found in Table 1.5. The first item begins the process with the 

User Selects New Channel at time zero typically using a remote control device. This 

selection is received followed by the STB Processes Selection and Stops Decoding 

Current Channel. When the STB receives the new channel request it takes approximately 

10 milliseconds to process this request and stop decoding the current channel. This is 

followed by another 10 to 20 millisecond delay until the STB sends Leave Current 

Channel Message upstream as covered earlier in the multicasting discussion. Then finally 

the STB sends Join New Channel Message about 20 milliseconds later to the Querying 

Device to initiate the channel change by the network. All of these processes are 

performed by the STB and until the Querying Device receives the Join message then no 

action is taken with respect to the new channel. For these reasons all of these processes 

are frequently grouped together in the classification of Command Processing to take a 

combined delay of 40 to 50 milliseconds.  

Once the Join message is sent out by the STB it takes a period of time 

corresponding to the one way Network Latency or Delay time before it is received by the 

Querying Device upstream. As discussed previously this delay period ranges from a 
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minimum of 30 milliseconds to over 1 second in duration depending on the configuration, 

the devices involved, and what other activity is taking place at that time. In order for this 

delay to be in the minimal range then an edge server located near the end user along with 

a high performance configuration and a minimal number of intermediate devices is 

typically required. A valid assumption for networks with a high QoS is to treat one way 

Network Latency values identically in both transmit and receive directions and constant 

over time [24]. For this application the item is classified as the Network Delay with the 

fixed value of 600 milliseconds only being applicable for illustrating the effects of 

multicast caching with a recognition that actual Network Delays will vary widely.  

When a Join message arrives then it takes about 10 milliseconds typically for the 

Querying Device Receives and Processes IGMP Request function to take place. The 

encoding and rate control functions followed by the aggregation, streamer, and rate 

shaping processes yield the next two delays each of around 5 milliseconds. These 

functions are all carried out by the Querying Device sequentially, so they have been 

grouped together into the IGMP Processing classification with a typical group delay of 

about 20 milliseconds. At the end of this process the first packet of video for the new 

channel selected is being sent out followed by the full video stream. 

Another point of note is that these individual sources of delay could also be 

further divided into even more granularity as needed. For instance if a Layer 3 device 

manufacturer is looking to optimize the overall IGMP Processing time, they would 

certainly look at these sources much closer and come up with finer characterizations of 

the process to include every sub-task such as TCP encapsulation followed by IP 

encapsulation for instance. Since this research is not geared toward the physical product 
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improvement of STBs or Querying Devices, then we are able to look at them solely as 

classification groups with the Command Processing for the STB functions and IGMP 

Processing for the Querying Device functions.  

The IGMP Processing is followed by another one way Network Delay cycle for 

the video packets to make the trip from the Querying Device to the STB. At the end of 

this second Network Delay the first video packets begin arriving from the Querying 

Device to the STB for the new channel selected.  

With the video packets arriving at the user’s set top box the next series of items is 

grouped into the STB Processing classification. This begins with the De-Jitter Buffering 

to account for variations in the packet arrival times and under-run conditions adding 

approximately 300 milliseconds of delay [30][41-42]. The next processing is on the 

Program Allocation Table (PAT) to provide identification codes and system information 

for the broadcast programming that is useful for guide functions such as listing the 

available channels for selection. This is followed by processing the Program Map Table 

(PMT) which contains information that describes the components of the applicable 

channel, such as providing the identifiers for the separate video and audio streams of an 

ongoing channel. These Wait for PAT and PMT functions performed by the STB add a 

combined delay of about 125 milliseconds [41].  

Whenever programming requires encryption, such as with pay channels, then a 

Conditional Access System is used to prevent unauthorized access. This is done through 

the use of Entitlement Control Messages (ECM) with embedded keys in them necessary 

to correctly decrypt the video stream [41][48-50]. This process results in an ECM Delay 

of approximately 125 milliseconds only when encrypted channels are selected.  
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As previously discussed the Wait for RAP delay ranges from 250 milliseconds up 

to 2 seconds depending on how the I-Framing is configured. A typical configuration 

using a GOP of 15 frames streaming at 25 frames per second results in an average 300 

millisecond RAP delay. Since the I-Frames contain the complete picture of a particular 

frame that is then edited by P and B Frames for subsequent frames, then they are 

significantly larger in size [51]. So to reduce the Random Access Point wait times by 

inserting more I-Frames significantly increases the bandwidth required for a particular 

channel. For instance I-Framing at 0.25 seconds roughly doubles the required channel 

bandwidth over I-Framing at 2 second intervals [1][21]. This tradeoff between channel 

bandwidth versus shorter channel change times results in various providers setting up 

their broadcasts using significantly different I-Framing rates.  

As the STB completes the list of items from above, it is now ready to begin 

handling the actual video stream. This requires the STB to first perform an MPEG 

Buffering step to allow uninterrupted video downstream to the monitor. Another delay is 

introduced of approximately 1 to 2 seconds while the STB waits for this buffer to fill 

[5][21][41-42]. The buffer design and processing power of each STB significantly 

influences this period. The presence of HD video further requires a larger amount of 

buffering and slightly higher delays. The last STB delay of another 50 milliseconds is 

introduced in order to Decode Content and Output Video transforming the stream of 

packets into the video output format required such as High Definition Multimedia 

Interface (HDMI). All of these STB functions associated with receiving and preparing the 

incoming video stream are grouped together for the purposes of this research into the 

single classification of STB Processing with an associated delay of 1.775 to 2.9 seconds. 
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Again a STB manufacturer would analyze these functions to a finer granularity with 

many additional sub-functions included such as managing the Program Clock References 

and Sequence Headers for timing information and frame rates. Additional STB functions 

like error concealment can add more delays beyond those specified here. Since this 

research is not aimed at reducing these specific delays then this section is simplified by 

the singular classification of STB Processing.  

Following the STB Processing the monitor or television introduces the final delay 

of the Monitor Response Time and Video Scaling. This relatively minor monitor delay of 

approximately 10 milliseconds allows for handling the various aspect ratios and other 

formatting associated with the end user’s viewing device [30][52].  

While the analysis of the individual sources of delay provides a more complete 

picture of an IPTV channel change, the simplified classifications will be used going 

forward in this research project for clarity and convenience.  

 
1.6 Objectives of Multicast Caching 
 
 
 Referring back to the last section the simplified classification scheme indicates 

the following delays associated with a typical IPTV channel change: 

• Command Processing 

• Network Delay (upstream for new Join request) 

• IGMP Processing 

• Network Delay (downstream for new video channel) 

• STB Processing 

• Display 
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It is the objective of multicast caching to predict to a reasonably high degree of 

success the channels that are most likely to be changed to next and optimally stream them 

prior to an upcoming channel change. If this can be successfully accomplished before a 

user’s new channel request input then this new channel would already be streaming to the 

user. With the delay classifications in mind, this event would differ from the typical case 

after the Command Processing function since the two Network Delay periods and the 

IGMP Processing time are minimized as the new channel’s video packet stream is 

already arriving. Once the STB finishes its Command Processing then it is ready to start 

receiving the new channel as soon as the video arrives. This is the case since multicasting 

has the Join and Leave functions and no true handshaking occurs.  

 For all cases where the next channel selection is present in the multicast cache and 

is therefore being streamed in advance, then theoretically this new system would 

approximate the following delay classification scheme: 

• Command Processing 

• STB Processing 

• Display 

If this can be shown to be a viable system, then this streamlined method would improve 

the overall CCT by approximately the following time reduction: 

CCT Reduction = (2 x Network Delay) + (IGMP Processing) 

The difficulties associated with managing time weighted probabilities, bandwidth 

availability, and optimizing cache effectiveness are the most problematic aspects of this 

proposed method. Given these significant potential reductions of CCT, it is the objective 

of this research to put forth the actual means through which these multicast caching 
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problems can be handled effectively and provide a detailed analysis of the workability of 

the new system.  

 
1.7 Additive Properties of Multiple Methods 

 
 An effective multicast caching system still leaves the CCT being dictated by the 

Command Processing, STB Processing, and Display classifications. Referring back to 

Table 1.5 it is clear the STB Processing is by far the longest and most significant factor of 

these three remaining classifications. It is equally important to note that the multicast 

caching system proposed has no direct impact on the STB Processing delay. Therefore 

any other methods that independently result in a delay of the STB Processing period 

would provide additional time reductions to the overall CCT beyond those already 

potentially achieved by multicast caching.  

 This additive property of utilizing multiple methods for CCT reduction is easily 

demonstrated through two ongoing areas of research: 

• I-Frame Management 

• Buffering Techniques 

As noted in the Sources of Delay section, the two most significant factors of the STB 

Processing delay were the Wait for RAP (I-Frame) and MPEG Buffering items. As will 

be covered in Chapter II, both of these factors have been researched heavily with many 

potential improvements proposed. Examples of these are a dynamic I-Framing system 

that sends an increased number of I-Frames immediately following a channel change and 

improved physical processors or buffering techniques to reduce the STB MPEG 

Buffering times. Both of these improvements could be implemented simultaneously with 
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the proposed multicast caching system to effectively reduce the overall CCT by the sum 

of each of these individual time reductions.  

 There are a few other proposed methods for CCT reduction that do conflict with 

or are irrelevant to the multicast caching proposal, and they would not provide additive 

benefits. However, the methods that do not conflict with multicast caching, particularly 

those geared toward reducing the STB Processing times, can be implemented in addition 

to this proposal. That provides the further benefit to this proposed method that it is not 

primarily an “either/or” proposal that requires a firm decision up front between one 

particular method versus another in most cases. 

 
1.8 Wasted Bandwidth Fallacy 

 
 The concept of sending additional IPTV channels to an end user to reduce the 

next CCT if one of them is selected next has been referred to as Predictive Tuning, Pre-

Buffering, Pre-Selection, or Pre-Fetching in the existing literature [21][25][26][28] 

[29][34]. These existing approaches will be covered in more detail in the next chapter, 

but the argument made against this approach is that it wastes bandwidth by sending extra 

channels that are not in use [21][26]. In the research that supports this approach, no 

mention or response to this “wasted bandwidth” argument has been found. This research 

proposal further supports the use of sending these extra channels in certain 

configurations, but an effort will be made up front to respond directly to the typical 

criticism of the approach.  

It is true that there are many areas of communications networks that frequently 

have strong limitations on bandwidth usage, and it is the responsibility of network 
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planners to design and operate the network to make the best use of available bandwidth. 

For this reason networks are frequently “oversubscribed” where the total bandwidth 

available would not be able to meet the maximum requirements of all users 

simultaneously. Instead statistical approaches are used in the design to ensure that under 

most conditions all likely users will be satisfied, but that occasionally high usage 

conditions will result in some customers not getting their expected service once the 

defined peak limit has been passed. But what happens during times of minimal network 

usage or even during normal operating conditions that are well below the peak limit? For 

most networks, even ones that are heavily oversubscribed, it is not unusual to have 

significant amounts of idle bandwidth throughout many portions of the network until high 

peak conditions return.  

An even more important point about bandwidth in most networks is that certain 

layers or functional areas of the network may have significantly differing availability 

limitations than other areas. It is in connection to this key point that the Multi-Dwelling 

Unit configuration is important, because it has such a nice potential fit for IPTV services. 

Reconsider Table 1.1 assuming that the links between the Layer 2 device and the 

Gateways are configured in the typical 100 Mbps manner, and this entire topic can be 

explained through the analysis of one of these access links. With the present state of 

communications technology even users of triple or quadruple play services rarely, if ever, 

approach the limits of a typical 100 Mbps link and future deployments may go even 

further in this direction with 1 Gbps links present. Comcast broadband metering services 

in 2009 indicated that the average residential user consumes 2 to 4 Gigabytes per month 

and that highly technical “power” users that frequently telecommute from home only 
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raise the rate to 35 Gigabytes per month [53]. Converting this heavy user to an average 

Mbps consumption rate can be done as follows: 

 
(35 GB/mo)*(8 b/B)*(12 mo/yr)*(1 yr/365 day)*(1 day/86,400 sec) = 106,545 bits/sec 

 
Comcast’s average residential user can be similarly converted to yield approximately a 6 

to 12 Kbps mean consumption rate. Clearly during peak usage this goes up into the 

Megabit per second range, but very often this rate is offset by zero usage to yield the low 

average consumption rate. These surprisingly light usage rates are supported by Cisco’s 

2010 estimate for North American home IP traffic rates of approximately 142 Kbps, on 

average, running through its platforms [54]. A 2009 University of California, San Diego 

study indicates that the total information flow coming to the average American person is 

34 Gigabytes daily from all sources (newspapers, TV, radio, internet, etc.) [55]. This 

study converted written mediums, traditional audio and video sources, plus internet 

consumption into a single digitized equivalent for overall information. Converting this to 

bits per second yields a mean information flow to the average U.S. person of 3.15 Mbps 

from all sources. Further insights into this usage can be gained by the fact that providers 

customarily limit broadband user bandwidth for traditional data to the range of 5 to 25 

Mbps downstream and even less upstream.  

 The low bit rates associated with voice services play an extremely small role in 

this overall usage. Given that the service provider will almost certainly limit the 

customer’s downstream data usage, assume for a moment that the customer uses in the 

range of 10 to 25 Mbps for traditional data service. That still leaves 75 to 90 Mbps 

available on the link up to this point in the analysis. Consider that 100 Mbps links cannot 
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actually support exactly that rate of traffic continuously, then throw in the minor voice 

requirement and a large safety factor, and it quickly becomes apparent that this MDU 

style customer will still have somewhere in the range of 50 to 75 Mbps available for 

continuous video service as illustrated in Table 1.6. 

 

Typical MDU Link Bandwidth Available 100 Mbps
Data Service 10 - 25 Mbps

Overhead and Safety Margin 15 - 25 Mbps
Voice Service << 1 Mbps

Remainder Available for Video Services ≅ 50 - 75 Mbps
 

Table 1.6 Bandwidth Composition Rates for a Sample MDU Customer 

 
 With continuously available video bandwidth in the range of 50 to 75 Mbps for a 

sample MDU link and video streams in the range of 1 to 20 Mbps from Table 1.1, then it 

follows that if only one channel is being streamed then there will frequently be a 

significant amount of idle bandwidth on the link. Consider typical SD streams running at 

2 or 4 Mbps and HD streams at 9 or 18 Mbps, there may in fact be the ability to run many 

simultaneous streams in preparation for the next channel change. Given the savings to 

CCTs of approximately two times the one way Network Delay plus the IGMP Processing 

time, then this significant time savings can be potentially achieved with little more than 

the use of otherwise idle traffic flow after the processing features are implemented.  

 Another key factor to consider is the relative ease at which traffic can be 

prioritized by Ethernet architecture. Through the use of the three bit precedence field, the 

four bit Type of Service field, or sometimes through specific Virtual LAN configurations 

it is common for specific types of packets to receive higher or lower priority treatment 
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with respect to other flowing packets [56]. One recommendation this proposal will make 

is to have all of the packets associated with the multicast cache of video streams tagged 

with a low priority, so that these efforts to speed up the CCT would have negligible 

impact on higher priority existing voice, video, or data packet routing. Under this 

situation even if a quick burst of higher priority traffic, such as a large data transaction, 

were to take place while a lower priority cache of multicast video was streaming, then the 

higher priority data traffic would simply jump to the front of the line. If a higher traffic 

condition well beyond the normal range available for video services persists then the 

system would recognize this and reprocess the multicast cache to take advantage only of 

the bandwidth currently available for video.  

 Noting that most networks have a significant amount of idle traffic periods, that 

MDU style architectures have extra capacity built in, that current data usage while 

growing is still relatively minor, and that prioritization of additional video packets would 

prevent harmful impacts to existing traffic it is the position of this research proposal that 

a multicast caching system could be put in place without any significant negative impact. 

Anytime a portion of a network experiences idle traffic conditions should be considered a 

lost opportunity for passing some form of communication which can never be regained 

after the point at which it is lost. Put more bluntly it appears that not using idle traffic for 

low priority operations such as the one being proposed here would actually result in 

“wasted bandwidth”. 
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1.9 Contributions of this Research 

 
The primary contributions of this research are listed below and will be explained in 

more detail throughout this document. 

 
• A unique multicast caching system with specific algorithms is presented, with a 

focus on the MDU style architecture. 

• Laboratory testing is conducted to yield a validation of the actual reductions made 

to channel change times by this process. 

• Probability simulations are made to reflect the potential effectiveness of the 

various proposed algorithms under a wide variety of conditions. 

• The use of packet prioritization on the cache of multicast video streams is 

proposed here to significantly improve the performance of this system over 

existing methods. 

• This research offers a network-based solution over other client-based methods to 

provide several inherent advantages. 

• A detailed analysis of the primary implementation considerations is presented to 

aid in the actual deployment of this approach. 

• A listing of other applications that could benefit from this proposed method is 

presented along with several areas of further research that could provide future 

improvements to this field. 

• A secondary level contribution is made by the alternative view presented to the 

traditional “wasted bandwidth” mindset that compels others to start thinking more 

along the lines of use it or lose it with respect to network bandwidth. 
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These contributions begin with the unique algorithms associated with this 

proposal and then go on to offer supporting research from laboratory testing and 

simulations that provide evidence about the effectiveness of the approach. The novel uses 

of exponential time weighting to the probability process, the concept of channel 

bandwidth penalization, and the use of packet prioritization for the cached video streams 

are unique in this area of research. The network approach alone is a significant departure 

from existing research that concentrates on client methods, and this new view provides 

distinct advantages that will become evident as this research is fully presented. The 

efforts made by this research at identifying and analyzing the main implementation 

considerations is rarely seen with existing technical proposals in this field that tend to 

concentrate solely on the mechanics of the new methodology and leave deployment 

issues up in the air. The use it or lose it mindset proposed here is a departure both in 

terms of a better way of looking at existing network bandwidth and as a preemptive 

rebuttal to expected criticisms of the proposal. All of these individual advancements 

taken in their entirety make up the full contributions of this research.  

 

 

 

 

 

 

34 
 



 
 
 
 
 

CHAPTER II 
 
 

REVIEW OF EXISTING LITERATURE 

In reviewing through the existing research and literature on recent advancements 

to improve IPTV channel change times it was evident that the methods documented 

generally fell into one of three main groups: 

• Optimizing the configurations and parameters of existing technology. 

• Proposals for improved methods or processes based on new research. 

• Presentations on new hardware developed by manufacturers. 

The existing solutions for improved CCT performance from these main groups will be 

presented in the following sections based on the general technical area of the overall 

process that was targeted for improvement.  

 
2.1 Edge Servers 
 
 
 In Chapter I an analysis of IGMP message flows and the primary sources of delay 

associated with CCTs for IPTV applications was presented. It was shown that the 

Network Delay between the HG and the LHR with IGMP Querying capability is included 

twice in the CCT to account for the delay required for packets to flow in both directions. 

A smaller number of hops and reduced complexity on this path directly reduces CCT. For 

this reason it was documented in [21] that placing an Edge Server as close as possible to 
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the end user is a well verified method for improving CCTs. The Edge Server would 

handle the IGMP Querying functions and the channels offered would need to be 

continuously streamed into it to allow for rapid multicasting downstream when requested. 

This effectively moves the LHR closer to the HG to reduce the Network Delay times. 

This method proposes using more resources of existing technology to optimize the 

physical configuration in order to reduced CCTs.  

While certain applications definitely fit the profile for the use of this method, the 

primary drawbacks to its use are the extra expenses associated with more equipment and 

the additional bandwidth required to have all channels presented continuously down to its 

edge location. Consider an example case of a small suburban apartment complex with 10 

units located near the outside of a large sprawling city. Assume that all of a provider’s 

150 offered channels are available at a downtown Head End location with an average 

bandwidth size of 6 Mbps. To continuously stream all of the 150 channels down to an 

Edge Server on or near the apartment complex would require a dedicated 900 Mbps link 

just to serve the video needs of 10 units. Even if all 10 units had two TVs watching 

completely different channels it would only result in a maximum of 120 Mbps of video as 

compared to the 900 Mbps rate required for the Edge Server. Add this increased link 

expense to the actual hardware, installation, and maintenance costs associated with the 

Edge Server and it would seem unlikely that the service provider would frequently be 

able to offer competitive pricing for these types of customers. However, if this apartment 

complex were extremely large or located near other complexes then the provider might 

well be justified in providing the necessary link sizing and equipment to support an Edge 

Server at the complex. The factors to be analyzed for Edge Server deployment are the 
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number and type of users, proximity of other users, bandwidth required for all channels 

offered, link and equipment costs, alternative options available, local pricing, and other 

market considerations. 

This method has technical merit for certain applications, but it must be evaluated 

on a project-by-project basis to determine the cost effectiveness of its use. Clearly there 

are many applications and configurations that do not lend themselves to the use of Edge 

Servers.   

 
2.2 I-Frame Management 
 
 
 Previous discussions showed the importance and tradeoffs associated with the I-

Frame rate between the Wait for RAP delay and the channel bandwidth. Due to this 

importance the management of I-Frames has been a major target of previous research into 

reducing CCTs. The proposals for I-Frame management generally involve changing the I-

Frame rate dynamically, use of enhanced server and STB pairs, or the use of a specialized 

I-Frame server. 

 New algorithms have been developed by researchers to optimize the CCT process 

by dynamically increasing the I-Frame rate for a quick period of time immediately after a 

channel change request is received [5][21][46-47]. Assuming the effectiveness of these 

new algorithms is substantiated, field deployment would be made in the form of new 

LHRs that would dynamically adjust the I-Frame rates. The primary advantage of this 

technology is the potential effectiveness in reducing the random access point delays and 

that it is compatible with existing standards and STBs already in widespread use. The 

main drawback is the increased complexity associated with recalculating and inserting 
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additional I-Frames into existing streams that the LHR would need to undertake to 

dynamically adjust the I-Frame rate.  

 By coupling the server functions of the LHR with the STB functions, some 

manufacturers have been able to offer specialized combinations that optimize CCT for 

IPTV service [41][48]. The very fact that these specialized combinations are being 

undertaken by manufacturers such as Cisco underlines the importance of reducing CCTs 

to achieve increased IPTV markets. Some of the proprietary techniques utilized by these 

combined solutions involve the use of I-Frame caching, unicast bursting, and dynamic 

protocol swapping.  Unicast bursting is a Cisco technique that sends a quick burst of 

reference data in unicast fashion to accelerate CCTs, and it is a potential technique under 

consideration for retransmission applications. Dynamic protocol swapping typically 

involves the use of RTP immediately after channel changes and then it moves back to 

UDP transmission later on. These proprietary techniques typically require specialized 

firmware that is capable of handling the dynamic processes. These solutions offer the 

advantage of specialized equipment to optimize aspects of IPTV applications while not 

affecting higher level network operations. The disadvantages are the increased cost and 

complexity of the proposal and that it is not backwards compatible with existing STB 

technology. To be effective in the field the solution should be deployed as a combined 

system rather than using individual components here and there.  

 Another implementation of dynamic I-Frame management and specialized IPTV 

equipment is made through the use of I-Frame Servers [57]. This technique has not been 

adopted for widespread use due to the insertion of a standalone device that operates in 

parallel with the existing configuration to optimize the rate at which I-Frames are sent. 
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From a technical standpoint the current state of a user’s IPTV viewing is analyzed to 

determine the optimal I-Frame rate of individual channels. Proposals look at past 

behavior to determine if a user is currently surfing channels up and down, swapping back 

and forth between specific channels, or statically watching a single channel. With this 

knowledge the I-Frame Server will prepare bursts of I-Frames for select channels to be 

rapidly inserted into the video stream when an appropriate channel selection is received. 

While the technique offers similar improved performance to dynamic I-Frame 

management techniques, there is no inherent reason why LHRs cannot incorporate this 

same functionality themselves to reduce the need for specialized components to be 

inserted into the system.  

 
2.3 Buffering Techniques 
 
 
 Improvements to the buffering processes involved with IPTV have consistently 

been undertaken since the delays associated with buffering constitute such a major 

portion of the CCT. While some researchers have targeted the server side, most of the 

major gains have come from improvements to STB buffering techniques in recent years. 

As previously discussed the STB undertakes buffering throughout the de-jittering, PAT, 

PMT, ECM, RAP, MPEG, and error concealment processes prior to finally decoding the 

video output. Recent STB buffering improvements have been made through the use of 

improved hardware, architecture, and algorithms [21][24][41][48].  

 Some of the STB delays are built into the stream and have to be improved 

elsewhere, such as delays waiting for I-Frames, PATs, and PMTs to be received. 

However, even in these cases improved STB processing of these items can make slight 
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improvements to CCTs [21][24]. The use of larger and faster chips with embedded 

architectural improvements have enabled STB manufacturers to steadily cut down on the 

significant delays associated with MPEG buffering while still avoiding under-run 

situations where relatively minor delays upstream can result in a temporary loss of video 

output [41][48]. In addition to offering speed improvements, the new STBs also offer 

improved performance for a higher overall customer QoE, such as reducing channel 

change jerkiness or residual artifacts [41]. Problems associated with audio-to-video 

synchronization (A/V Sync) stem from the facts that the audio streams tend to be much 

faster and easier to decode than video and that these two processes are frequently 

performed on different integrated chips that rarely communicate with each other [58]. 

This A/V Sync problem is often referred to as the Lip Sync issue where a person’s verbal 

sounds do not match up with their visual facial activity, and it is an entire complex field 

of study in itself [59-61]. The important point for CCTs is that audio is generally buffered 

until appropriate timing information correlates it back into its proper position with respect 

to the lagging video stream.  

 The improved equipment associated with the size and speed of IPTV buffering 

processes has made significant improvements to CCTs and QoE benchmarks. The 

primary disadvantages other than the cost of these improvements stem from the different 

interpretations of the various standards leading to different implementation methods [58-

59]. For this reason engineers are forced to look at the overall IPTV system closely to 

verify the compatibility of all components in the path.  

 

 

40 
 



2.4 Dynamic Video Coding 
 
 
 Several methods to perform dynamic video coding exist and have been utilized to 

reduce CCTs with varying degrees of success. The most notable of these methods are 

Scalable Video Coding (SVC), tune-in streams, and tune-in servers. Rate control and 

shaping functions have to be considered as well for optimal dynamic video coding.  

The Joint Video Team (JVT) is a partnership made up of members of the primary 

standards bodies in this area, which are the MPEG team from the International 

Organization for Standardization (ISO) and the Video Coding Experts Group (VCEG) 

from the International Telecommunication Union (ITU). In November 2007 Appendix G 

of the H.264 Advanced Video Coding (AVC) specification on MPEG-4 video was 

completed to provide flexible standards for the implementation of SVC [62]. To meet the 

pressing needs of the emerging handheld device customers, the JVT formalized methods 

to provide acceptable quality to users based on the specific device involved by 

considering its resolution, frame rate, and bit rate. SVC is a layered approach to video 

streaming where a base layer is defined along with one or more enhancement layers 

[1][16][21][62]. For bandwidth limited situations only the low quality base layer may be 

sent without the enhancement layers to reduce the overall bit rate. Researchers have 

concluded that this process can be used dynamically for a short period of time 

immediately after a channel change has been requested. An SVC capable server can 

reduce the frame and bit rates temporarily for the new channel requested by sending only 

the base layer. The user would then see a lower quality image of the new channel quicker 

than waiting for the higher quality image to decode due to the more rapid transmission of 

IDRs for the smaller base layer. After a few seconds the server would then transition over 

41 
 



to the high quality video by transmitting the base layer along with all enhancement 

layers.  

 The dynamic nature of SVC is also affected by the lower layer functions of rate 

control and shaping that are frequently used to reduce congestion and regulate flow on 

modern networks. To prevent denial of service and other harmful attacks it is necessary 

to maintain network links at stable levels through packet buffering, modification, or 

dropping the identified packets [63]. To limit network congestion video packets are 

occasionally modified at either the group of pictures, picture, or macroblock levels of 

granularity [64]. Video frames are often divided up into smaller sub-sections to facilitate 

processes such as rate shaping and error concealment. An eight by eight array of pixels is 

known as a block and a two by two array of blocks is known as a macroblock [65-66]. 

Rate shaping and error concealment algorithms analyze these sub-sections for temporal 

and spatial characteristics such as motion vectors. Given that rate control and shaping 

functions may be ongoing, it is imperative that SVC operations on these video sub-

sections work in conjunction with the other dynamic video coding processes [38][67].  

 A tune-in stream is a parallel stream with a higher number of RAPs that some 

systems use to reduce the CCT. This second stream has a lower resolution but has a much 

higher I-Frame rate to reduce the RAP delay [21][35][44][46]. The primary disadvantage 

of tune-in streams is that it requires specialized STB applications to manage the parallel 

streams and transition between the two.  

 A tune-in server differs from an edge server in that it operates in parallel to the 

traditional video path. A specialized tune-in server is positioned upstream to receive 

available channels, buffer each channel, and send rapid bursts of a new channel upon 
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selection by the user [21][35][47]. The tune-in server would detect a channel change 

request and then empty its buffer for the requested channel at a higher bit rate using all of 

the available link bandwidth for a short period of time. In this method the STB would 

receive the next I-Frame much quicker than otherwise to again reduce the RAP delay. 

Tune-in servers are designed to operate on existing STBs with little to no interoperability 

problems. The main drawback is that this extra component must be introduced into the 

system adding considerable expense and complexity.  

 These various methods of dynamic video coding have gained acceptance and use 

in IPTV applications to reduce CCTs primarily through reducing RAP delays. Not all 

applications can support these methods and significant CCT issues still remain with their 

use. As mentioned earlier overall CCT solutions tend to be an optimized combination of 

several techniques that minimize different areas of the entire process.  

 
2.5 Use of RTP Video Streaming 
 
 

Real-Time Transport Protocol (RTP) is gaining popularity over plain UDP for certain 

IPTV applications. When used in this fashion RTP is typically run on top of UDP to 

provide enhanced clocking, checksum support, and packet identification [21-

22][27][45][48]. This is accomplished through the following RTP mechanisms: 

• Payload Type Identification 

• Sequence Numbering 

• Time Stamping 

Payload type identification assists advanced IPTV applications in quickly identifying 

the format and type of data encoded, such as audio in the G.711 format. Easier 
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identification of packets streamlines decoding operations and can result in performance 

enhancements and slightly better CCTs. Sequence numbering gives applications the 

ability to rapidly identify lost or out of order packets to facilitate error concealment 

processes. Time stamping of packets along with RTP Control Protocol (RTCP) sender 

reports allow for the matching clocks to assist with AV Sync functions and de-jitter 

calculations. By reducing delays associated with de-jitter and AV Sync processes, the 

RTP time stamping capabilities also provide slight improvements to CCTs. Some 

researchers suggest the use of RTP or related unicast bursting to provide a dynamic 

protocol model to go along with the dynamic video coding of the previous section 

[21][68-70]. Recent research into Time Shifted Sub-channels (TSS), Multicast Assisted 

Zap Acceleration (MAZA), and their related schemes has been put forward to further 

address this very issue [71-73]. The only apparent drawback to these approaches is the 

further need for more interoperability verification on a project level basis.  

 
2.6 Reversing IGMP Leave and Join Messaging Order 
 
 
 During the typical channel change process a STB first sends a Leave message to 

stop the streaming of the current channel and then it sends a Join message to request the 

new channel. This order is not set by the standards and was established when tighter 

bandwidth constraints existed during the early development of DSL. The order has 

continued to this day as the convention for IGMP channel change processes. Until the 

LHR receives this Join request no action will be taken to begin streaming the new 

channel requested. It has been proposed that this order should be reversed so that the Join 
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message is sent out first to begin streaming the requested channel faster thereby resulting 

in a reduced CCT [28]. 

 The time lag between transmissions of the Leave packet and the Join packet has 

been documented as ranging from 20 ms up to 200 ms depending on the STB device used 

[28][41]. This delay equates directly to the potential reduction in CCT by this proposed 

change of IGMP convention. In laboratory trials that will be presented in later chapters, 

these results were independently verified by this research with the delay between these 

outgoing IGMP messages routinely measured in excess of 150 ms.  

 Excluding the modification efforts required for existing firmware, this change 

could be made to the IGMP channel change process with little to no impact on other 

network devices. STB manufacturers could code their devices to behave in the new 

fashion without violating existing standards or experiencing major interoperability issues. 

Modern broadband networks would not be expected to experience significant congestion 

issues by the extended overlap where both the current and new channels are streamed 

until the Leave message is received. No other apparent problems or documented 

opposition to making this change were identified, while another 20 to 200 ms could be 

saved in the overall CCT process with this modified IGMP implementation scheme.  

 
2.7 Adjacent Groups Methods 
 
 
 When a channel change request is made a significant delay occurs before the first 

packets are received for the new channel as documented earlier. If the new channel was 

already being streamed to the STB, then those delays would not be present and the STB 

could begin its processing of the new channel. In Chapter I this delay was identified to be 
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two times the one way Network Delay plus the IGMP Processing time. Researchers have 

suggested that the elimination of this delay can be achieved in certain circumstances by 

pre-selecting likely channels for transmission. The Adjacent Groups method proposes 

sending not only the channel requested but also the next channels up and down from the 

one requested [25-26].  

 The analysis of the Adjacent Groups method shows that this proposal would 

indeed lower CCTs whenever a user next enters the up or down channel button on their 

remote. The average reduction in CCTs for this method is completely dependent on the 

user’s behavior and channel surfing patterns. Users that do not sequentially change 

channels would receive no benefit from this proposal whatsoever, while users that only 

change sequential would always see this reduction in their CCTs [25]. For users that are 

sequentially changing channels this proposal also provides the benefit of reducing 

channel misses where a series of changes is made so rapidly that the system cannot 

respond with a requested channel before the next request is made. A notable point about 

this method is that these adjacent channels are always being streamed even if a given 

user’s behavior indicates a poor likelihood of success for the technique. 

 An improvement to this method was then proposed to monitor the user’s previous 

behavior to determine if they are engaged in sequential channel surfing or not 

[26][38][73]. When the sequential criteria for a given user is met then the adjacent 

channels will also be streamed, but if the criteria is not met then only the selected channel 

is streamed. This minor improvement does preserve bandwidth and processing 

capabilities for non-sequential users that would not benefit from adjacent channel 

streaming, but again only the sequential surfers would see any benefit from this proposal. 
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Under these proposals the STB would be responsible for tracking and initiating the 

requests for the adjacent channels, so it would require no changes of network equipment 

to implement. However, this reliance on the STB does have the inherent disadvantage of 

requiring large numbers of clients’ equipment to be upgraded prior to implementation. 

 
2.8 Client-Based Statistical Models 
 

 Building on the initial concepts put forward in the Adjacent Groups 

documentation, researchers have suggested several increasingly sophisticated approaches 

to provide improved channel pre-selections to reduce CCTs [21][26][29-

30][34][36][40][73-82]. This began with the modest improvements to the Adjacent 

Groups method by the suggestion that additional benefits could be gained by giving 

consideration to the last channel viewed and the most popular channels [26]. Specific 

algorithms were not introduced in that literature regarding the collection and handling of 

these additional advancements for this client-based proposal. Another discussion of these 

concepts was made in [21] primarily by providing an overview of these other proposals 

with no additional research or results presented for this specific topic.  

 Further improvements were proposed through the use of a ratings server to 

provide localized Nielsen-like data on content popularity that would function in tandem 

with clients’ HGs and STBs to generate more reliable pre-selected channel listings 

[29][75]. Based on the future works section of [29], the process had yet to be 

implemented or evaluated experimentally as specific algorithms and details were lacking. 

A fuzzy logic algorithm was proposed for use in ratings server technology in [75]. 
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 For residential applications based on Gigabit Passive Optical Network (GPON) 

technology, another proposal was presented to improve IPTV performance and CCTs by 

identifying neighborhood peer groups with the localized favorite channels receiving 

priority treatment [30][83]. GPON allows users to share common links throughout 

implemented neighborhoods, so this proposal leverages the information collected from 

each residence to optimize the video broadcasting through conservation of resources 

based on statistical predictions. This proposal was also not well defined with few 

specifics provided, and it was only geared towards PON configurations.  

 Along similar lines a proposal was provided to enhance CCTs for the next 

generation wireless networks through the use of an extended IGMP system. Fourth 

generation (4G) users of the proposals in [74][77][84] would be allowed to rapidly 

change channels to any other channels currently being viewed by other users connected 

to the same edge server. This method is based on the Worldwide Interoperability for 

Microwave Access (WiMAX) standards defined by the IEEE 802.16 standard. The use of 

localized networks sharing common channels was also proposed by [36] for STBs 

connected to the same edge server. These proposals involve both client and network 

processes to be upgraded and maintained to share the cache of channels being viewed by 

the members of the local network. Both proposals also depended solely on simulated or 

theoretical results and new proxy processes to estimate the potential gains. Improvements 

to Multicasting Trees were proposed in related research in [85]. 

 The path towards more efficient IPTV pre-selected channel usage was continued 

in [34] with increased emphasis given toward making the case for this technical 

innovation. This research introduced the concept for “Intelligent Pre-Fetching” of a list of 
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channels to be transmitted for the purposes of reducing CCTs based on statistical 

information to be collected in user STBs. The justification for the proposal in this 

research was compelling, but the method of implementation was unspecific and left for 

future development.  

 In related research there have been several recent proposals for the development 

of innovative Electronic Program Guide (EPG) applications that provide refinements to 

better determine user preferences. The rationale for these improved processes is to 

provide viewers with custom EPGs that reflect their favorite channels prominently, to 

improve customer satisfaction, to assist with network content to be offered, and to lead 

efforts at improved targeted advertising. One of these approaches proposed using stored 

viewer STB data coupled with a novel remote control that would allow users to manually 

input their current mood to generate personalized EPGs [78]. This model was not 

proposed for the purpose of reducing CCTs, but it did put forth an improved mechanism 

for determining viewer preferences based on processing these viewer inputs through a 

neural network that would presumably reside in some unspecified server on the network.  

 Continuing down the path of improved EPG development, another proposal was 

made to predict user preferences through the use of Markov Models that make real-time 

satisfaction calculations. The inputs into this model were proposed to be STB historical 

data as well as video feedback of viewers’ facial expressions as they are themselves being 

filmed for their reactions to the current channel [79]. This method was not intended for 

ubiquitous deployment, but it was proposed to advance efforts in the production of 

Nielsen-like ratings. The researchers in [80] examined another approach to provide 

improved EPGs by generating user profiles based on geography, time-of-day, and day-of-
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week analysis of viewer channel preferences. This research introduced a method to 

perform time-weighting on the collected data through a Bayesian network that operated 

multiple sliding windows across separate temporal regions of the data. All of these efforts 

to support improved EPG services were not geared toward reducing CCTs, but rather to 

achieve the benefits described above for EPG applications. They did each put forth new 

concepts aimed at determining viewer preferences to support the applications.  

 This EPG research was brought back to the goal of reducing CCTs by [40][81] 

with the proposal to use the EPG viewer preference data to generate an improved pre-

selection list of channels to be transmitted at any given time. While the background and 

justification for this proposal was sound, the implementation depended on a workable 

EPG system. The EPG proposals were merely suggestions of potential methods that 

could be used at some point in the future if the specific details of the schemes were fully 

developed. In addition to the effort that would be required to realize this solution, [81] 

suffers from several cumbersome problems involving the collection of the data to be used 

in the first place. Not the least of which is the heavy reliance on improved client devices 

such as complex remotes, STBs, and HGs. Solutions that are further based on manual 

inputs such as mood indicators or facial feedback would almost assuredly face some 

significant degree of customer dissatisfaction. The inherent problems associated with a 

requirement that a current network user must replace and upgrade their components 

before any of these client-based solutions could be implemented would severely hamper 

the effectiveness of these proposals. Even for new users the client-based approaches 

attempt to place increasingly complex functionality into the least complex devices on the 

IPTV networks.  
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 The only apparent network-based pre-selection approach that was found in the 

existing research was a proposal made by Lucent engineers in a paper that suggested 

using historical channel change data to develop customized pre-selection lists of channels 

to be streamed for CCT reduction [82]. This proposed method would develop channel 

sets based on popularity, time-of-day, day-of-week, and geography from historical data 

collected in a standalone Service Control Platform that managed the solution. Possibly 

due to proprietary concerns, no specific details or algorithms were presented in this 

proposal and it was essentially just a general outline for a potential future program to 

assist IPTV development within metro business units.  

 Even though many of these previous research efforts lacked specific algorithms 

and details required for implementation and almost all were dependent on client-based 

modifications, these researchers did present varying degrees of corroboration about the 

need for improved CCTs and the potential benefits of streaming pre-selected channels. 

 

 

 

 

 

 

 

 

51 
 



 
 
 
 
 

CHAPTER III 
 
 

LABORATORY TESTING TO DEMONSTRATE EFFECTS 

The concept that IPTV CCTs would be reduced if the next channel to be selected 

was already streaming in advance of the change request was discussed in earlier chapters. 

This CCT reduction was theorized to be approximately equal to two times the one way 

Network Delay between the STB and LHR plus the IGMP Processing time for handling 

the query request by the LHR that serves as the Querying Device. It was shown that 

previous researchers have proposed solutions based in part on this concept, but 

documented results confirming these theoretical reductions were either not performed or 

not publicly available for review. Given the importance placed on actual verification of 

these claims about the potential for CCT reductions, it was determined that independent 

laboratory testing could corroborate these benefits or show flaws to the conceptual 

understanding of the proposal. The independent testing made during the course of this 

research into the effectiveness of this method is documented in the following sections. 

 
3.1 Rationale for the Laboratory Testing 
 
 
 The laboratory testing performed during this research project was geared to show 

the actual time reductions that would be achieved by implementing a scheme by which 

pre-selected channels were effectively multicast down to the STB in advance of the next 

channel change. It is important to note that later chapters will detail the actual processes 
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involved with determining the optimal channels to be pre-selected for multicast caching, 

but this chapter is focused on what CCT reductions would be seen if the pre-selected 

cache successfully streamed the next channel to be selected. If the next channel requested 

was not included in the multicast cache of pre-selected channels, then no CCT reduction 

would be seen from this proposal. Later discussions will simulate and document the 

expected effectiveness of the cache in correctly determining the next request, but that is 

not taken into account in this laboratory testing.  

The proposed mechanics of this research will be detailed in later sections, but 

network devices will generally be responsible for determining which channels will be 

included in the multicast cache for its downstream elements. Consider the case where a 

LHR acting as the Querying Device for a group of STBs has determined which channels 

are pre-selected for the multicast cache and is actively streaming them downstream along 

with the current channel being viewed. Since current Layer 3 devices do not include this 

functionality, then they are not presently capable of performing this task in a laboratory 

or field environment. To get around this limitation another STB was connected to the 

appropriate HG to ask for an additional channel in advance of a monitored channel 

change request. This activity effectively generated a second video stream down to the HG 

to reproduce conditions that would occur if the research proposal was fully implemented.  

Prior to measuring the results of this cached condition, it was first necessary to 

perform a series of baseline tests to determine the operation and timing of the different 

STBs to be used in this laboratory experiment. This was accomplished in both minimal 

and full lab configurations. The minimal configuration, shown in Figure 3.4 and 

described in more detail below, was used to indicate the best CCTs attainable for the 
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various STBs available and the Querying Device utilized by minimizing the number of 

intermediate devices and Network Delays. The full configuration, shown in Figure 3.1, 

was used to represent conditions typically found in many IPTV applications. The full 

configuration consisted of two main setups that represented both the non-cached and 

cached conditions of testing. In the non-cached condition the additional adjacent STB has 

not requested any video channels, so only the currently watched channel is being 

streamed to the HG and on to the monitored STB. In the cached condition the adjacent 

STB has requested and is viewing the next channel, so both the currently viewed channel 

and the next channel to be requested are being streamed to the HG. Only the specific 

channels requested by a STB are passed on to it depending on the type of HG used and 

the parameter settings. The HG used in this research was configured for IGMP Snooping, 

so the additional channel requested by the adjacent STB was not forwarded on to the 

monitored STB until it was requested. Under these various conditions the monitored STB 

then made the request for the next channel while all of the bi-directional packets were 

captured and the entire process was being recorded. The recorded video of each channel 

change was then closely analyzed to determine the observable delays and overall CCT 

associated with each STB. This process was repeated to yield statistically viable results. 

 
3.2 Laboratory Configurations 
 
 
 Figure 3.1 shows the full laboratory configuration that was built specifically for 

the purposes of this research project. This lab consisted of the following components: 

• (2) LanTech GE-24F2GBM Gigabit Managed Network Switches 

• Xavi X-550 Home Gateway 
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• Agilent J2300D WAN Advisor Test Set 

• Motorola VIP-1216KK Set Top Boxes 

• Amino AmiNET130M Set Top Box 

• Amino AmiNET125 Set Top Box 

• Westinghouse SK-32H240S LCD HDTV 

• Sylvania SST4132 Color TVs 

• Personal Computers (PC) with Accessories 

• NETGEAR DS104 Hubs 

• Miscellaneous cables, optics, power supplies, breakers, and other hardware 

 

 
 

Figure 3.1 Full Laboratory Configuration 
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As indicated in Figure 3.1 two of the PCs are used as sources for the video inputs 

with the capabilities of providing multiple SD and HD streams. The LanTech managed 

switch labeled as "Layer 3 Switch" acts as the LHR with full IGMP Query Processing 

capabilities and all available video channels being input into it continuously. This LHR 

switch with partial layer 3 functionality has optical Gigabit interfaces to connect to 

another LanTech managed switch with the Agilent WAN Advisor in throughput mode in 

between. The blue lines on Figure 3.1 represent electrical 100 Mbps Ethernet 

connections, and the yellow lines represent optical GigE connections. This convention 

will be continued on later diagrams throughout the rest of this paper. This second switch 

functions as an intermediate layer 2 device and is configured to perform IGMP Snooping 

processes. The WAN Advisor allowed for the capture and inspection of all packets sent 

between these two devices, which proved to be beneficial during analysis and 

troubleshooting phases. PC #3 was configured with NetDisturb network impairment 

emulator software to allow for the simulation of delays, jitter, and other conditions 

typically seen in IPTV networks. The NetDisturb emulator was configured to simulate a 

constant Network Delay of 600 ms in each direction for all packets in line with prior 

documented laboratory research [1][5][7]. PC # 4 was configured to act as a Dynamic 

Host Configuration Protocol (DHCP) server that provided IP addresses for the various 

STBs. PC #4 was also used to capture packets in and out of the Gateway using Wireshark 

software. The Xavi X-550 Home Gateway was also set up to perform IGMP Snooping 

and to appropriately route all streams through it using WAN bridge mode to the 

connected STBs. One of the Motorola STBs was used as STB #1 to simulate a multicast 

cached condition for one or more pre-selected channels. The other STBs provided three 
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different monitored performance opportunities based on the individual capabilities of 

these three unique devices. The various NETGEAR hubs allow proper interconnection 

and numerous test points from which packet inspection was possible. Miscellaneous 

hardware connected the system together as shown in Figure 3.1 with a -48 VDC power 

supply sourcing the LanTech switches. The specific IP scheme utilized is also presented 

with most devices configured for the static IP addresses shown except for the STBs 

which were configured as DHCP clients. Figure 3.2 shows a photograph of the full 

laboratory configuration including the Sony DCR-HC40 Digital Video Camera Recorder 

mounted on a tripod at the bottom of the photo that was used to visually record each  

 

 

Figure 3.2 Photograph of Full Laboratory Configuration 
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Figure 3.3 Close-Up Photograph of Laboratory Cabinet 
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tested channel change. Many of the components were either rack mounted or placed on 

trays within the open telecommunications cabinet toward the left of the photo. Figure 3.3 

shows a close-up view of the primary equipment in this cabinet. Appendix B provides 

specific details on the firmware versions and parameter configurations for each of the 

major components used in this laboratory testing.  

The AmiNET125 STB can only handle SD video streams, but the AmiNET130M 

STB can process SD or HD channels. The Motorola VIP-1216KK STB can handle SD or 

HD streams via the KreaTV operating system [86]. Source PCs #1 and #2 used VLC 

Media Player 0.9.9 software from VideoLAN to multicast SD streams at 4.482 Mbps and 

HD streams at 18.485 Mbps to serve as various video sources. 

 

 
Figure 3.4 Minimal Laboratory Configuration 
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 The minimum configuration used for the laboratory testing is shown in Figure 3.4 

where the WAN Advisor, Layer 2 Switch, PC #3, and Gateway were removed from the 

network. The minimized path between the STB and the Layer 3 Switch with the IGMP 

Querying capability consists only of Ethernet cables and a single hub device. PC #4 is 

still capable of capturing all packets through its hub connection when a channel change 

process was performed. The testing performed with this minimal configuration yielded 

baseline data about the best channel change results attainable with this equipment under 

optimal conditions.  

 The non-cached series of tests that were performed in both the minimal and full 

configurations only involved the use of a single STB. Either STB #1, 2, or 3 was used 

during each of the non-cached tests with no additional video streams ongoing. The STB 

was initially set up viewing one of the available channels and then the channel was 

changed to another available channel while the entire process was monitored and 

recorded. The cached series of tests were initially set up with STB #1 viewing the next 

channel while one of the other STBs was set to a different current channel. The STB 

under test was then changed to the channel that STB #1 was viewing while the entire 

process was monitored and recorded. In this cached environment the next channel to be 

changed to was already present and streaming since STB #1 had previously requested it. 

These two series of tests indicate the CCT for a common network topology and the CCT 

if a multicast cache system correctly pre-selected the next channel to be requested.  

 Each individual CCT test was recorded using a Sony DCR-HC40 Digital Video 

Camera Recorder, and these recordings were downloaded to a PC for analysis using 

Quick Time Player version 7.6.4 to measure the CCT on a frame-by-frame basis. The 
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start of each change request was indicated by a Remote Control LED turning ON, and the 

end of each request was determined to be the first full frame of video displayed on the 

TV for the new channel. With the camera mode set to CAMERA-MEMORY these 

recordings were made at a frame rate of 25 frames per second [87-88]. By setting the 

Quick Time display mode to Frame Number instead of Standard elapsed time, it was 

possible to analyze the activity down to the accuracy level attained by the 25 frames per 

second recording rate [89-90]. This process is described in more detail below, but the 

accuracy level can be determined using the reciprocal: 

 
1 / (25 frames/second) = 0.04 seconds/frame 

 
 Any event that took place between two recorded frames could have occurred as 

early as immediately after the first frame was displayed or as late as immediately before 

the third frame was displayed. Figure 3.5 shows an example channel change which began 

with the LED OFF when the 1st frame was displayed, but it was ON when the 2nd frame  

 

 
 

Figure 3.5 Accuracy of Event Calculations Using Recordings 
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was displayed. Therefore the LED could have turned ON any time after the 1st frame 

ended and before the 2nd frame ended. Similarly the completion of the channel change 

could have been any time after the 51st frame ended and before the 52nd frame ended.  

The CCT is determined by taking the difference in time between these two events. The 

example activity in Figure 3.5 would be determined by direct observation or calculated 

through all possible values to determine the full range in the following manner:  

 
 
 
 
 
 
 
 
 
 
 
 
 
These calculations show that direct observation of the first indication of each event leads 

to a valid CCT with the resulting margin of error for each CCT calculation as follows: 

 
 
 
 

 Each type of test was performed numerous times to get statistically reliable results 

for the statistical mean and variance. Thirty independent trials were performed for each 

test type in accordance with conventional interpretation of the Central Limit Theorem 

(CLT) [91-96]. A section in a later chapter will explore the concepts of independent and 

identically distributed (i.i.d.) random variables and how they relate to this research, but in 

the meantime note that all CCT trials performed in this laboratory testing were 

CCT Margin of Error  =  ± 1 frame  =  ± 0.04 seconds

CCTdirect =  Ending Frame – Beginning Frame (direct observation)
=  52 – 2 frames (first indications of events)
=  50 frames

CCTpossible =  Possible End Frames – Possible Beginning Frames
=  (52 or 51) – (2 or 1) frames (possible range per event)
=  52 – 2 or 52 – 1 or 51 – 2 or 51 – 1 frames
=  50 or 51 or 49 or 50 frames
=  50 ± 1 frame
=  CCTdirect ± 1 frame
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considered to be i.i.d. and therefore the CLT was applicable. The CLT provides the 

following guidance: 

If x  is the mean of a sample of size n taken from a population that has mean 

µ  and the finite variance 2σ , then 

 

 

 
is a random variable whose distribution function approaches that of the 

standard normal distribution as n ∞→  [92]. 

 
The sample means and standard deviations (STDev) for each test type were calculated 

using the following equations with n = 30 [93][95]: 

 

 
Performing 30 independent trials of each type allowed for the application of the CLT, 

which in turn allowed for a determination about the likelihood of accuracy using the “68-

95-99.7 Rule” on the Normal Distribution. This rule states that the intervals defined by 

one, two, and three standard deviations away from the mean will contain approximately 

68%, 95%, and 99.7% of a normally distributed population respectively [93][95][97]. 

This rule will be used later on to provide accuracy information about the testing results.  

n
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 A total of 15 different types of lab tests were performed by varying the minimum 

and full configurations, the non-cached and cached conditions, SD and HD streaming, 

and the 3 different types of STBs involved. For each of the 15 different types of tests, 30 

trials were performed, recorded, and evaluated to yield reliable results and conclusions 

about the potential effectiveness of multicast caching techniques. 

 
3.3 Laboratory Testing Methodology 
 
 
 Note that throughout this section the Amino AmiNet 125 is referenced as A125 

STB, the Amino AmiNet 130M is referenced as A130 STB, and the Motorola VIP-

1216KK is referenced as MSTB for convenient abbreviations. Table 3.1 shows the 15 

different types of lab tests that were performed to yield the results found in this section. 

 
Functional Specifics for Each Test 

STB SD or HD Minimal or Full With or Without Cache 
A125 SD Minimal Without Cache 
A130 SD Minimal Without Cache 
A130 HD Minimal Without Cache 
MSTB SD Minimal Without Cache 
MSTB HD Minimal Without Cache 
A125 SD Full Without Cache 
A130 SD Full Without Cache 
A130 HD Full Without Cache 
MSTB SD Full Without Cache 
MSTB HD Full Without Cache 
A125 SD Full With Cache 
A130 SD Full With Cache 
A130 HD Full With Cache 
MSTB SD Full With Cache 
MSTB HD Full With Cache 

 
Table 3.1 List of Tests Performed 
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Figure 3.6 Ping Tests to Verify Network Delay Emulator 

 
As previously noted the NetDisturb Emulator residing on PC #3 was set to delay 

packets by 600 ms for each direction to simulate Network Delays. Appendix B provides a 

more detailed view about how this software was configured to perform these functions. 

The operation of this software program was verified by running a series of ping tests 
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from PC #4 to the layer 2 switch (see Figure 3.1) with the results shown on Figure 3.6. 

These two devices were immediately adjacent to PC #3 on each side of the emulator, so 

any ping test between them would have to make two trips across PC #3 through the 

emulator. The first ping test was performed with the emulator software set to provide no 

delay, and the results show ping delays of less than 1 ms. This delay was more precisely 

shown to be approximately 400 μs by the ping packets captured using Wireshark as 

displayed on Figure 3.7. The second ping test was run with the emulator set at 600 ms in 

each direction, and the results show an average round trip delay of 1198 ms.  

 

  
 

Figure 3.7 Wireshark Display of Ping Tests with No Delay Set 
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Another Wireshark display of this test is shown on Figure 3.8 to be approximately 1.1986 

seconds of delay. Subtracting the nominal 400 μs required for a zero delay ping test 

yields around 1.1982 seconds round trip time for the 600 ms delay setup. This verifies the 

basic operation of the emulator, but it also shows that the combination of emulator and 

PC clock accuracy does not provide an exact delay of 600 ms in each direction, as a delay 

of 1.2004 seconds would have been expected. This minor difference of a couple of 

milliseconds will be noted later as some the test results are presented.  

 

 
 

Figure 3.8 Wireshark Display of Ping Tests with 600 ms Delay Set 
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 The next series of figures provide a detailed view about how the camera 

recordings of tested channel changes were used to generate data results. The pictures are 

screen shots taken with the recorded video being played a frame at a time. Each figure 

shows a specific frame number in the bottom left corner that is used to coordinate the 

changes made to the Remote Control LED and the TV display during channel changes. 

 Figure 3.9 shows the beginning sequence of a channel change using the A125 

STB going from one SD video to another. Note that the frame number depicted by the 

50F for frame 50 and the Remote Control LED is OFF. Figure 3.10 shows the next frame 

number 51 recorded as the channel change was made and the LED is now ON. 

 

 

Figure 3.9 Frame 50 Showing Remote LED OFF 
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Figure 3.10 Frame 51 Showing Remote LED ON 

 
 The sequence from frame 50 with the LED OFF to frame 51 with the LED ON 

establishes the first detectable time for the start of the channel change as being between 

frame 50 and 51. A similar sequence of events establishes the time when the channel 

change was completed. Compare Figure 3.11 with Figure 3.12 to see that the next video 

channel was fully displayed somewhere between frames 116 and 117. This establishes 

the first detectable frame for completion of this particular channel change test as frame 

number 117. It is also apparent by comparing Figure 3.12 with Figure 3.9 that the system 

has changed to a different video channel. The overall CCT was then made by calculating 

the number of frames between these transitions and converting from frames to seconds. 
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Figure 3.11 Frame 116 Next Channel Not Yet Displayed 

 
 

Figure 3.12 Frame 117 Next Channel is Displayed 
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Figure 3.13 A125 STB Example of the CCT Calculation Method 

 
Figure 3.13 completes the CCT calculation for the example trial by subtracting 

the 1st transition from the 2nd and converting from frames to seconds. This process was 

repeated for all thirty trials on each of the fifteen test types to generate the lab data sets. 

Some of the trials were performed with additional data being recorded to simultaneously 

show all packets transported along with visible STB activity in addition to the Remote 

Control and TV displays. The data collected from these select trials was used to generate 

detailed timing sequences for comparison to the previous research and documentation 

that was presented earlier.  

 Figures 3.14 through 3.16 represent data recorded during one of the trials selected 

for the more advanced monitoring techniques. Figure 3.14 establishes the start of the 

channel change process with the 1st transition at frame 198 as with the last example. Note 

that a PC monitor with Wireshark running on it is also in view to the left of the TV 

display. In the dark area above the TV is one of the Motorola VIP-1216KK set top boxes 

that was used in this trial. This MSTB trial changes from a currently viewed SD channel 

to an HD channel that has been cached. The MSTB display on the TV shows the KreaTV 

standalone portal firmware from Motorola used for these STBs during these tests.  

Configuration:   A125 STB Change to SD Without Caching 

 

1st Transition:  Remote Channel Change Request @ Frame 51 

 

2nd Transition:  Next Channel Displays @ Frame 117 
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Figure 3.14 Beginning Transitions of MSTB Example from SD to HD 

 
 The 2nd transition on Figure 3.14 reflects the ongoing activity where the STB 

stops displaying the current channel at frame 204. The process continues on Figure 3.15 

with the 3rd transition showing that the 1st IGMP packet was sent out by the MSTB at 

frame 210. The Wireshark program was filtered to display only IGMP packets during the 

test so that this transition could be seen. All of the packets have timestamps on them 

which can now be used to correspond packet timing with the recorded video time using 

1st Transition showing Remote Channel Change Request @ Frame 198 

2nd Transition showing Channel 1 Display Dropped @ Frame 204 
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the frame numbers for translation. The 4th transition shown on Figure 3.15 reflects a 

change in display by the KreaTV program showing the intended move from channel 1 to 

channel 2 at frame 219. 

 

 
 

Figure 3.15 Middle Transitions of MSTB Example from SD to HD 

 
 The MSTB has an HD LED to indicate when it is processing high definition 

videos when the LED is ON. Figure 3.16 shows this activity with the 5th transition 

indicating that the STB is processing HD video by frame 234. There is an overlapping 

4th Transition showing TV Channel Indicator Moves to Channel 2 @ Frame 219 

3rd Transition showing First IGMP Leave Ch 1 Packet Sent @ Frame 210 
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period of time in which packets are received for both the original channel 1 and the new 

channel 2. Figure 3.16 goes on to show the 6th transition with the new HD channel fully 

displayed by frame 246. The channel change process is finally completed a short time 

later when the last UDP packet from the initial channel 1 is received as will be shown in 

the upcoming Wireshark data presentation. 

 

 
 

Figure 3.16 Final Transitions of MSTB Example from SD to HD 

 

6th Transition showing TV Begins Channel 2 Display @ Frame 246 

5th Transition showing STB High Definition LED Lit @ Frame 234 
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 In the exact manner documented in the IGMP section of Chapter I, the messaging 

captured by the Wireshark program shows that the MSTB and the LHR are properly 

communicating using the IGMP protocols. Figure 3.17 shows all of the IGMP messages 

captured during this channel change sequence beginning with the first Leave message 

from the MSTB with 192.168.16.24 as its source IP address. This Leave message was the 

one that was noted by the 3rd transition at frame 210. The layer 3 device is the LHR with 

IGMP Querying capabilities for this trial, and it sends out several Membership Report 

messages as expected followed by the important Join message sent out by the MSTB. 

 Wireshark on PC #4 was capturing all packets received at its interface, but it 

normally filtered the display to show only IGMP packets. Figure 3.18 shows the captured 

Wireshark display without the IGMP filter to show all of the packets captured during the 

flow. Figure 3.18 displays the moment when the first IGMP Leave message from the 

MSTB was captured. This figure clearly shows packets with destination addresses of both 

224.2.3.1 and 224.2.3.2 indicating that both the original channel 1 and the cached channel 

2 videos are streaming. The sources of these streams are the IP addresses associated with 

PC #2 and PC #1 respectively. This flow also shows one of the periodic B-Frames was 

received along with the UDP stream and the control messages. The Wireshark capture 

file was later scrolled down to show when the last of the UDP packets was received for 

the original SD channel 1 to indicate the formal conclusion of this channel change trial.  

 Another trial using the same STB with the same objective to change from an 

existing SD to a new HD channel was made, but this one did not have the new HD 

channel being cached. The monitoring functions were put into place for this trial and 

another data set was captured for this non-cached example. 
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Data from both the non-cached and cached trials was then put into the timing 

sequences shown on Tables 3.2 and 3.3. In the non-cached timing sequence shown on 

Table 3.2, each of the individual transitions from the visual recording and the packet flow 

are listed with the corresponding frame number or Wireshark timestamp. Event #3 

correlates between the frames and the timestamps since both are known for this first 

IGMP Leave packet sent out by the MSTB. These times were then converted into a 

running Test Time set to begin at Event #1 when the Remote Control channel change 

request was made from channel #1 to channel #2. The Overview section at the bottom 

categorizes the individual items into applicable groups. An identical process was 

performed for the cached example noted earlier, and the two timing sequences can be 

compared to show the differences made by caching the new HD video channel.  

 Table 3.3 shows transition frame numbers for the events associated with the 

visual recording that are identical to those presented in Figures 3.14-3.16 earlier. By re-

setting Event #1 to be the starting frame, the other transition frame numbers could be 

used to determine how many frames from the starting frame each of those events 

occurred. These frame calculations were then converted to Test Time using the 0.04 

seconds per frame reference. Event #3 indicated the moment when the first IGMP packet 

appeared on the Wireshark display at transition frame 210 which was 12 frames or 480 

ms from the starting frame. The Wireshark data on Figures 3.15 and 3.16 indicates that 

Event #3 occurred approximately at timestamp 10.800 seconds, but Event #3 was already 

known to have occurred at Test Time 0.480 seconds. This knowledge enables all of the 

timestamps to be converted to Test Times as needed for Events #5, #6, and #9. This same 

method was used to determine the Test Times for the non-cached trial on Table 3.2.  
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The Overview section grouped the events listed into the functional processes that 

were established in Chapter I for the Applicable Delays by Classification of Table 1.5. 

The Network Delay and IGMP Processing functions for the non-cached example in Table 

3.2 show a duration of 1.201 seconds. This is expected based on the fixed 600 ms 

Network Delay for each direction of the flow plus the IGMP Processing time typically 

required. Comparing this to the same functionality on Table 3.3 clearly shows that the 

multicast caching of the new HD video channel reduced this delay to the negligible 

duration of 0.002 seconds needed for the next UDP packet to appear with the new video 

channel.  

 From the Ping testing presented on Figures 3.6-3.8 it was shown that the expected 

time lag associated with the Network Delay fixed by the NetDisturb software on PC #3 

was an average 1198 ms. Table 1.5 listed the typical IGMP Processing delays to be 

approximately 20 ms. The experimental results of the non-cached trial show the Network 

Delay and IGMP Processing functions combine for a total delay of 1201 ms. Given the 

Ping testing results it can be concluded that the IGMP Processing delay for this trial was 

only 3 ms. In actual practice LHRs are typically responsible for ongoing IGMP 

Processing for the many users that are connected to the network at any given moment. 

The data in Table 1.5 was based on observed delays for actual deployments. With many 

users simultaneously engaged in IGMP multicasting, the LHR IGMP Tables and 

processes are normally kept at a busy level for the ongoing activity. By contrast these 

laboratory tests did not have a large number of users connected at any given moment due 

to the expense required to purchase numerous STBs. Considering the relatively low 

workload present during these lab trials, it is reasonable to expect the IGMP Processing 
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delays to be lower than those documented by previous research from field observations. 

Also the data from Table 1.5 on IGMP Processing was a baseline approximation, because 

the actual delays are dependent on the equipment deployed, the configuration design, and 

the background activity level.  

 The conclusion drawn from these timing sequences is that the multicast caching 

of the next channel to be selected resulted in a CCT reduction equivalent to two times the 

Network Delay plus the IGMP Processing time required by the LHR for these two trials. 

This was exactly in line with the expectations established earlier, but it still remained 

necessary to verify if this was consistent behavior under a variety of conditions. 

 
3.4 Results of Laboratory Testing 
 
 
 Table 3.1 showed the list of laboratory test types that were performed with the 

specific functional conditions present as indicated. These fifteen different test types were 

run thirty times each to meet CLT conditions for a total of 450 individual channel change 

trials. Each trial was filmed and analyzed as covered in the last section to determine the 

overall CCT per trial. Table 3.4 is an example of one of these test types showing the 

results of all thirty trials for the MSTB to SD channel changes under the minimal 

configuration. The results for each of the other fourteen trial types look similar in 

structure to Table 3.4, and they can be found in Appendix B. Note that all of these results 

reflect the direct CCT values indicated by the recordings, so the margin of error for all of 

the results found in this section is plus or minus 0.04 seconds. An examination of Table 

3.4 shows that of the thirty trials under this test type the minimum CCT lasted 1.68 

seconds or 42 frames and the maximum CCT was 2.00 seconds or 50 frames. Note again 

82 
 



that each trial indicates a specific channel change process that was filmed and analyzed 

for the beginning and ending transitions to determine that individual CCT.  

 
Table 3.4 Results for all Trials of the MSTB to SD  

Channel Change with Minimal Configuration 

Trial # # Frames Time (sec)
1 48 1.92
2 42 1.68
3 49 1.96
4 48 1.92
5 42 1.68
6 46 1.84
7 42 1.68
8 47 1.88
9 50 2.00

10 45 1.80
11 48 1.92
12 43 1.72
13 48 1.92
14 42 1.68
15 45 1.80
16 44 1.76
17 48 1.92
18 42 1.68
19 45 1.80
20 42 1.68
21 48 1.92
22 42 1.68
23 48 1.92
24 48 1.92
25 45 1.80
26 48 1.92
27 45 1.80
28 45 1.80
29 45 1.80
30 49 1.96

Total 1369 54.76
Mean 45.63 1.83
STDev 2.62 0.10

Minimum 42 1.68
Maximum 50 2.00
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 The sample mean time for the data in Table 3.4 was calculated to be 1.83 seconds 

with a sample standard deviation of 0.10 seconds. Application of the 68-95-99.7 Rule 

yields the following confidence levels about the associated accuracy intervals: 

 
68% Confident  1.73 sec  <  Population Mean  <  1.93 sec 

95% Confident  1.63 sec  <  Population Mean  <  2.03 sec 

99.7% Confident  1.53 sec  <  Population Mean  <  2.13 sec 

 
The similar analytical results that were made for each test type were then combined into 

the summary results found in Table 3.5 reflecting all lab efforts. 

 

 
Table 3.5 Summary Results Combined for all Trials 

 
 

Notice that all of the sample standard deviations fall between 0.09 and 0.14 

seconds, so the general accuracy ranges will be similar to those found previously for the 

data of Table 3.4. But rather than trying to dissect individual conclusions from these 

combined results, it was considerably easier to see differences and trends by analyzing 

certain test types by themselves or against opposing test types. Table 3.6 provides an 

Functionality Tested Min Time Max Time Mean Time STDev
A125 STB to SD Using Minimal Config 1.16 1.52 1.40 0.09
A130 STB to SD Using Minimal Config 1.88 2.24 2.06 0.11
A130 STB to HD Using Minimal Config 1.92 2.36 2.13 0.13
MSTB to SD Using Minimal Config 1.68 2.00 1.83 0.10
MSTB to HD Using Minimal Config 1.72 2.12 1.92 0.11
A125 STB to SD via Network Without Cache 2.52 3.04 2.76 0.14
A130 STB to SD via Network Without Cache 3.00 3.56 3.32 0.14
A130 STB to HD via Network Without Cache 3.16 3.72 3.40 0.13
MSTB to SD via Network Without Cache 2.88 3.28 3.07 0.10
MSTB to HD via Network Without Cache 2.92 3.36 3.13 0.12
A125 STB to SD via Network With Cache 1.32 1.80 1.53 0.14
A130 STB to SD via Network With Cache 1.92 2.28 2.13 0.11
A130 STB to HD via Network With Cache 1.96 2.44 2.17 0.13
MSTB to SD via Network With Cache 1.72 2.12 1.86 0.10
MSTB to HD via Network With Cache 1.76 2.20 1.95 0.12

All Times Recorded in Seconds
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example of this showing only the summary results of all minimal configuration trials. 

Note again that all minimal configuration trials performed were conducted without 

multicast caching of the next channel selection. From Table 3.6 it is evident that the 

STBs have different performance characteristics in terms of CCT, but the mean time for 

each of these five minimal configurations provides an excellent baseline for later 

comparison using full configurations to evaluate the effectiveness of specific CCTs. With 

these minimal configuration results the best attainable CCTs for these specific STBs 

under given circumstances are now known. 

 

 
Table 3.6 Summary Results for all Minimal Configuration Trials 

 
 

 The primary objective of the laboratory testing was to determine the effectiveness 

of multicast caching of the next channel selected, so Table 3.7 was compiled to directly 

show the results of non-caching versus caching trials. In each STB case the mean time 

reduction was within a few milliseconds of the expected results based on the 600 ms 

Network Delay for each direction plus the IGMP Processing time. Note that the overall 

mean time reduction was 1.21 seconds across all five comparison cases. These five 

comparison cases represent a total of 150 trials (5 x 30) of non-caching versus 150 trials 

of caching to provide a solid case of statistical significance proving the effectiveness of 

multicast caching.  

Functionality Tested Min Time Max Time Mean Time Standard Deviation
A125 STB to SD Using Minimal Config 1.16 1.52 1.40 0.09
A130 STB to SD Using Minimal Config 1.88 2.24 2.06 0.11
A130 STB to HD Using Minimal Config 1.92 2.36 2.13 0.13
MSTB to SD Using Minimal Config 1.68 2.00 1.83 0.10
MSTB to HD Using Minimal Config 1.72 2.12 1.92 0.11

All Times Recorded in Seconds
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Table 3.7 Summary Results for all Non-Caching Versus Caching Trials 

 
 

Note that the standard deviations of these sample types are substantially lower 

than the mean time reductions, so the likelihood of significant time savings near the 

levels indicated is extremely high. In the case of these lab tests the one way Network 

Delay of 600 ms led directly to a CCT time savings of two times the Network Delay plus 

the relatively minor delays associated with the IGMP Processing. For these STBs and 

conditions this equated to an overall mean time reduction of 38.72% in CCTs. As noted 

Functionality Tested Mean Time
A125 STB to SD via Network Without Cache 2.76
A125 STB to SD via Network With Cache 1.53

Time Reduction 1.22
Percent Reduction 44.37%

A130 STB to SD via Network Without Cache 3.32
A130 STB to SD via Network With Cache 2.13

Time Reduction 1.19
Percent Reduction 35.76%

A130 STB to HD via Network Without Cache 3.40
A130 STB to HD via Network With Cache 2.17

Time Reduction 1.23
Percent Reduction 36.26%

MSTB to SD via Network Without Cache 3.07
MSTB to SD via Network With Cache 1.86

Time Reduction 1.22
Percent Reduction 39.64%

MSTB to HD via Network Without Cache 3.13
MSTB to HD via Network With Cache 1.95

Time Reduction 1.17
Percent Reduction 37.59%

Overall Mean Time Reduction 1.21
Overall Mean Percent Reduction 38.72%

All Times Recorded in Seconds
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earlier this 600 ms delay was fixed to correspond to previously documented laboratory 

experiments [1][5][7]. The standard deviations in the range of 0.10 seconds against time 

reductions more than ten times that amount lead to a confidence level of around 99 

percent that the actual time reductions will be between 0.9 and 1.5 seconds per CCT for a 

600 ms Network Delay. Actual Network Delays experienced in field applications vary 

widely from case to case, but previous researchers indicate they are frequently seen in the 

100-200 ms range for one way delays (200-400 ms round trip) [39][76]. Given the results 

demonstrated by this lab testing, the applicable CCT reductions attainable by multicast 

caching of the next channel selection can in fact be confidently predicted to be the same 

as theorized earlier: 

 
CCT Reduction ≅ (2 x Network Delay) + (IGMP Processing) 

 
This indicates that if a specific application has the average one way Network Delay of 

150 ms, then the expected CCT reduction each time the next channel is successfully 

cached in advance would be approximately 320 ms depending on the IGMP Processing 

load [39]. This validated ability to confidently predict the effectiveness of this proposed 

technique represents one of the milestone contributions listed earlier for this research.  

 The laboratory data did go on to provide other conclusions that can be of further 

use on this project. Table 3.8 provides five more comparisons between the minimal 

configuration results and the cached results using the full configuration. By eliminating 

the Network Delay and IGMP Processing functions from the overall CCT, the results 

from caching compared well when pitted against the minimal configuration outcomes. In 

each case the caching data was only slightly higher than the best-attainable results from 
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the minimal configurations. The mean increase from caching was only 60 ms higher than 

the minimal configuration for a 3.63% mean increase in CCT. Note that all cached trials 

had several more hops inserted with the inclusion of the GigE test set, Layer 2 switch, 

PC#3, and HG, so these higher times are expected over the minimal configurations.  

 

 

Table 3.8 Summary Results for all Minimal Versus Caching Trials 
 

Functionality Tested Mean Time
A125 STB to SD Using Minimal Config 1.40
A125 STB to SD via Network With Cache 1.53

Time Increase 0.13
Percent Increase 9.62%

A130 STB to SD Using Minimal Config 2.06
A130 STB to SD via Network With Cache 2.13

Time Increase 0.07
Percent Increase 3.29%

A130 STB to HD Using Minimal Config 2.13
A130 STB to HD via Network With Cache 2.17

Time Increase 0.04
Percent Increase 2.01%

MSTB to SD Using Minimal Config 1.83
MSTB to SD via Network With Cache 1.86

Time Increase 0.03
Percent Increase 1.68%

MSTB to HD Using Minimal Config 1.92
MSTB to HD via Network With Cache 1.95

Time Increase 0.03
Percent Increase 1.53%

Overall Mean Time Increase 0.06
Overall Mean Percent Increase 3.63%

All Times Recorded in Seconds
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But the fact that the cached CCT results approached those of the minimal configurations 

did further indicate the effectiveness of this method’s implementation. If CCT reductions 

were made by caching but they happened to be significantly higher than those seen in the 

minimal configurations, then further analysis would be needed to determine the source of 

those unexpected delays. This was not necessary though since the 60 millisecond mean 

increase by caching over the minimal results was considered reasonable and expected. 

 Another comparison analysis was conducted to look into the differences in CCTs 

for SD versus HD conditions. This is not specific to the study of multicast caching, but it 

is of importance for modeling techniques that will be presented later. Table 3.9 shows the 

comparisons between SD and HD results for the six cases studied where that was the only 

difference involved in the testing. Note again that the A125 STB does not appear in these 

results because of its inability to process HD video. The results of Table 3.9 indicate a 

mean increase of 70 ms directly attributable to the need to handle HD video over SD 

video. The A130 STB had significantly better performance over that of the MSTB, but 

this was not unexpected due to the many added features and capabilities inherent in the 

Motorola devices. One important aspect to note about this however is that different STBs 

have significantly diverse CCTs associated with the processing of HD videos. The other 

principle of note is the relatively low importance of this aspect when considering the 

overall CCT as indicated by the mean increase of only 3.19% attributed to the HD video. 

These concepts will be considered again in later sections when multicast models are 

being analyzed for effectiveness.  

 The results documented by this lab testing clearly demonstrated that multicast 

caching reduced CCT by two times the Network Delay plus the IGMP Processing time.  
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Table 3.9 Summary Results for all SD Versus HD Trials 

 
 

These laboratory tests further document that multicast caching approaches the best 

attainable results for these given conditions. This is not to say that other improvements 

are not attainable through enhanced STB processing, dynamic I-Framing, or the many 

Functionality Tested Mean Time
A130 STB to SD Using Minimal Configuration 2.06
A130 STB to HD Using Minimal Configuration 2.13

Time Increase 0.06
Percent Increase 2.97%

MSTB to SD Using Minimal Configuration 1.83
MSTB to HD Using Minimal Configuration 1.92

Time Increase 0.10
Percent Increase 5.26%

A130 STB to SD via Network Without Cache 3.32
A130 STB to HD via Network Without Cache 3.40

Time Increase 0.08
Percent Increase 2.49%

MSTB to SD via Network Without Cache 3.07
MSTB to HD via Network Without Cache 3.13

Time Increase 0.05
Percent Increase 1.65%

A130 STB to SD via Network With Cache 2.13
A130 STB to HD via Network With Cache 2.17

Time Increase 0.04
Percent Increase 1.69%

MSTB to SD via Network With Cache 1.86
MSTB to HD via Network With Cache 1.95

Time Increase 0.09
Percent Increase 5.10%

Overall Mean Time Increase 0.07
Overall Mean Percent Increase 3.19%

All Times Recorded in Seconds
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other techniques previously discussed. But rather if those improvements are accounted 

for separately, then the multicast caching method successfully achieves the reductions 

documented without arbitrarily introducing other delays. The laboratory results further 

documented that different STBs handle HD video in substantially different ways, but that 

the overall introduction of HD video did not dramatically increase CCTs during these 

trial cases.   
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CHAPTER IV 
 
 

NEW CHANNEL CHANGE PREDICTION MODELS FOR ANALYSIS 

Chapter III was devoted to showing what the reductions in CCT would be if the 

proposed system was able to correctly pre-stream the next channel to be selected. 

Another major objective of an effective multicast caching system is to correctly identify 

the next channel selected by a user with a high probability. The system would not be 

considered effective overall if the next channel selected was rarely included in the pre-

streamed cache. Several models were developed to effectively identify the channels to be 

included in the multicast cache over time. Since this system does not currently exist, it 

was necessary to either build it for field testing or to create computer simulations of the 

system in operation. Some thought was given to actually building the system in a layer 2 

device that was based on open-source software, but the expense and complexity of 

completing that task proved to be a large obstacle to overcome. Even if this open-source 

testing device were to be actually created, a unique IPTV environment with numerous 

users willing to participate in the testing would have to be secured and managed. In the 

end it became clear that a computer simulation approach made more sense for the 

purposes of this research project.  

For clarity it is worth restating that the lab testing previously presented showed 

what the CCT reductions would be if the system correctly pre-streamed the next channel 

92 
 



to be selected. Throughout this research the currently updated list of channels to be pre-

streamed is considered to be the “multicast cache” of channels.  

A series of computer simulations were developed to test the effectiveness of the 

various models that were created to identify the channels to be selected for multicast 

caching. The simulations were designed to determine the likelihood of successfully 

caching the next channel to be selected, resulting in significant CCT reductions as 

documented by the lab testing. Whenever the system incorrectly identifies the next 

channel to be selected then there would be no corresponding reduction in CCT, also 

known as the zap time or channel change latency [44][70][73][75].  

 The high level steps that are required for successful computer simulation of 

multicast caching are the following: 

 
• Create New Channel Change Prediction Models for Analysis 

• Develop Sample Data Sets 

• Simulate the Models Using the Sample Data Sets as Inputs 

 
These high level steps are presented in order over the next three chapters. This chapter 

will present the different models developed during this research to simulate multicast 

caching of pre-selected channels to improve IPTV CCT performance. Chapter V is 

devoted to the development of the sample data sets, and the results of the computer 

simulations will then be covered in detail in Chapter VI. For now the important principle 

to consider is that each model represents a different view of the tradeoffs between 

complexity and performance. Some of the models are quite simplistic and do not yield 

optimal caching results, but they are extremely easy to implement. Other models provide 
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better caching performance, but they are more complex to develop and maintain. Another 

option put forth by this research is that a potential system implementation could be made 

using a mixed model approach. In this case the system would have two or more models 

running simultaneously, and it would compare the resulting cumulative weighted 

probabilities of the cache selections to determine which model was optimal for use at that 

specific moment in time.  

These models were developed for functional simulation through programs written 

using the Microsoft Visual C++ .NET development platform. The algorithm for each 

model will be presented and discussed, and the C++ source code for each model can be 

found in Appendix D. Many of the variable conventions, error checking routines, output 

programming, and other required C++ functions found in the appendix will be ignored in 

this chapter to focus on the core mechanics of each algorithm.  

 
4.1 Tracking the Channel History 

 
 A key prerequisite for each model to function is the availability of historical data 

related to recent channel change behavior. For this purpose a channel change history 

buffer was created to track the most recent channel changes in order back to a specified 

limit for each output port on the device. This buffer is used in conjunction with the 

known data rate for each channel to provide critical information that is used in 

determining the channels to be cached. Each time a new channel is selected, it is placed 

into the most recent position while all other previous changes are incremented down one 

position in the buffer. This research is not focused on the dwell time, or how long each 

channel is viewed, and no tracking of this metric is included in this current proposal. 
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 With this channel change history buffer it is possible to calculate the past 

probabilities of each channel. This can be done by adding up the number of times each 

channel appears in the buffer and dividing by the total number of entries in the buffer. 

These probabilities could then be used directly in calculations to fill the multicast cache 

with channels that are likely to be selected next provided that the basic historical trends 

are continued. However, many different areas of communications, such as packet 

addressing, make use of time-weighting algorithms to provide a means of giving the most 

recent events higher priority than older events. By adjusting the weighting parameters, 

the balance between maintaining a useful historical record and identifying new trends can 

potentially lead to improvements in channel change prediction over just the raw 

probabilities calculated directly from the history buffer. 

 
4.2 Time-Weighting the Channel History for Ranking 

 
 The widespread usage of many common packet-based protocols, most notably 

TCP, include methods for handling error control. To prevent network congestion these 

methods frequently involve time-weighting techniques for improving the analysis of tell-

tale metrics. These methods depend upon ongoing measurements of the round-trip time 

(RTT) for packet handshaking processes and adaptive improvements of this measurement 

give higher weight to the most recent measurements. The smooth round-trip time (SRTT) 

estimate is frequently calculated as shown in Equation 4-1 [98-99]. In this equation, K 

indicates the applicable segment and α is a constant smoothing parameter with a value in 

the range (0 < α < 1). Since both α and (1 – α) are less than one, each successive term in 

this equation is smaller than the previous term.  
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Equation 4-1 
 

 
 Error control advancements developed by Van Jacobson in the late 1980’s 

expanded on the exponential smoothing techniques for calculating SRTT. Jacobson’s 

algorithms calculated a retransmission timeout (RTO) that resulted in an exponential 

back-off of retransmissions [98-99]. The implementation of this algorithm meant that the 

RTO would grow exponentially for each successive retransmission, so devices would 

wait for increasing periods of time to allow the network to recover from congestion.  

 Numerous other exponential weighting algorithms have been developed for a 

wide range of other purposes, including many physical science and financial applications 

[100-103]. The common theme in these applications was the need to provide higher 

significance to more recent events. This theme was clearly present during this research as 

well, since the determination of channels to be placed into a multicast cache would 

naturally change over time. If time-weighting was not considered at all, then a user that 

finds a new favorite channel that had not been viewed before would likely have to wait 

for prohibitively long periods of time before the new behavior was taken into account. 

Other common conditions could easily end up with the same negative result, such as 

when providers modify channel lineups.  

 The mathematical mechanics involved in time-weighting channel change history 

queues are slightly different than those described above for network congestion. There is 

no need in the case of multicast caching for determining average times or comparing 

delays. The approach taken in this research was to exponentially modify the weight 

SRTT(K+1) = (1 - α)RTT(K + 1) + α(1 – α)RTT(K) + 
α2(1 – α)RTT(K – 1) +  . . .  + αK(1 – α)RTT(1)
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associated with each channel change such that each entry down the history queue had a 

slightly reduced value for use in overall calculations. The following exponential weight 

formula was applied to an array with the same quantity of sequential entries that are in 

the historical buffer: 

j
j α  W =    Equation 4-2 

where W was the weight, j was the change queue entry number, and α was the constant 

weighting parameter with a value (0 < α < 1). Analyses on how to set the maximum 

historical buffer limit N will be presented in the next chapter, but for now consider the 

case with the limit fixed at 2000 entries. The constant weighting parameter (α) defines a 

tradeoff between not providing enough and providing too much emphasis on the most 

recent channel changes. Smaller values of α result in a greater weight being applied to the 

more recent channel changes, but if α is set too low then only the last few channel 

changes will dictate the cache results. If on the other hand α is set too high, then the most 

 
Table 4.1 Exponential Weight Listings for Sample α Parameters 

 α Parameter = 0.5 0.9 0.98 0.99 0.995 1

Entry j
1 0.500000 0.900000 0.980000 0.990000 0.995000 1
2 0.250000 0.810000 0.960400 0.980100 0.990025 1
3 0.125000 0.729000 0.941192 0.970299 0.985075 1
4 0.062500 0.656100 0.922368 0.960596 0.980150 1
5 0.031250 0.590490 0.903921 0.950990 0.975249 1
6 0.015625 0.531441 0.885842 0.941480 0.970373 1
7 0.007813 0.478297 0.868126 0.932065 0.965521 1
8 0.003906 0.430467 0.850763 0.922745 0.960693 1
9 0.001953 0.387420 0.833748 0.913517 0.955890 1
10 0.000977 0.348678 0.817073 0.904382 0.951110 1
17 0.000008 0.166772 0.709322 0.842943 0.918316 1

110 0.000000 0.000009 0.108360 0.331033 0.576154 1
380 0.000000 0.000000 0.000463 0.021947 0.148857 1
573 0.000000 0.000000 0.000009 0.003155 0.056575 1
1151 0.000000 0.000000 0.000000 0.000009 0.003122 1
2000 0.000000 0.000000 0.000000 0.000000 0.000044 1

Resulting Weight Listings
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recent data is not weighted heavily enough to drive cache results in a timely manner for 

new viewer behavior.  Table 4.1 illustrates the weight tradeoffs for various values of α. 

The exponential weights in Table 4.1 clearly fall off quickly for the first two 

listings with α = 0.5 and α = 0.9, while for α = 0.995 weights fall off only 5% throughout 

the first 10 entries. The last column with α = 1 is equivalent to the non-weighted raw data 

found in the original historical buffer. So with α = 1, the previous 2000th channel change 

would carry the exact same weight as the most recent 1st change. This table goes on to 

show the buffer entry associated with the α parameter when the weight value first drops 

below 0.00001 or one thousandth of one percent. For the purposes of illustration, this 

level was used to show when the entry contributions have become negligible due to the 

low weight values. From these observations it is evident that a relatively high level must 

be used for the α parameter to retain some degree of significance for earlier changes. 

Following experimental trials, the decision was made to use a constant value of α = 0.98 

during the simulation phases of this research because it fell in the middle of the tradeoff 

region between rapidly moving a new favored channel up the probability list while still 

allowing for the contribution of several hundred channel changes in the final results.  The 

weighted probabilities for each channel are determined by Equation 4-3 below: 
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∑
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 Equation 4-3 
 

where Xi is the weighted probability of channel i, N is the historical buffer size, and α is 

the constant weighting parameter for each historical buffer position  j. Later sections will 
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discuss how the actual field implementation would use feedback mechanisms and logic 

criteria to adjust the α parameter along with the size N of the channel change queue to 

dynamically react to different circumstances over time. 

 
4.3 Shared Routines 

 
 The following terms are widely used in the discussions to follow: 

Channel Change History Buffer: This is a 1 x N array that sequentially tracks in order 

the recent history of channel change selections made up to the limit of N changes. For the 

purposes of the simulations, N was fixed at a constant 2000 as discussed in Chapter V.  

Channel List Arrays: The Channel List arrays consist of three separate 1 x 150 arrays 

for the remaining available channel numbers, bandwidths of each channel, and the time-

weighted channel probabilities respectively. 

Confirmed Channel Arrays: These consist of three 1 x 150 arrays containing the 

channel number, bandwidth, and time-weighted probability of all channels that have been 

confirmed into the current multicast cache for pre-streaming. 

Sample Data Sets:  A series of simulated channel activities was made to generate 

example data representing snap shots of expected input conditions that were then input 

into each model for comparative performance analysis. There were a total of 18 sample 

data sets created as described in the next chapter, and each of these data sets were input 

under three different conditions to each model for a total of 54 evaluations.  

Input Data Set: This refers to the specific data that is being evaluated for each run of a 

model. In actual field use, the input data set would directly be the channel change history 

data and related current information as updated after each channel change. During this 
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research the input data set was equivalent to the specific sample data set that was 

currently selected for evaluation.  

The basic pattern and flow of the caching models is as follows in Figure 4.1: 

 

 

Figure 4.1 Basic Pattern Flow of the Caching Models 

 
These high-level steps are performed on each model using a combination of 

shared routines and custom modeling routines. The shared routines used by all of the 

models to perform a variety of common tasks, such as data input and output, are detailed 

in Appendix C. The specific model algorithm is incorporated into each custom channel 

change prediction model routine.  

 The different models developed during this research are described in the next six 

sections that follow. The detailed code for each of these models can be found in 

Appendix D.  The fundamental metric of interest here is the cumulative weighted 

probability of all the cached channels. 

 

 

 

• Load the channel list arrays with the desired input data set 

• Determine the current channel being viewed 

• Determine the total bandwidth (BW) and available BW 

• Perform the specific model algorithm on the various data arrays 

• Load cache channel selections into the confirmed channel arrays 

• Log results  
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4.4 Probability-Only Model 

 
 Note that the sample data sets to be discussed in detail in the next chapter 

represent multiple simulated snap-shot views of data for different instants in time that 

would typically be present in the weighted probability queues. In actual implementation 

these probability queues would be routinely updated after each channel change of a fully 

functional device. During the following discussions on the various models note that the 

input data set has already been sorted from top to bottom based on the time-weighted 

probability of each available channel.  

Of all the models developed during this research project the model with the least 

amount of complexity is the Probability-Only Model. The Probability-Only Model 

follows the basic pattern of flow outlined in Figure 4.1. Following the completion of the 

first three steps of the pattern the Channel List arrays have been populated, details about 

the current channel are known, and the current available bandwidth has been calculated.  

The model works through the Channel List arrays from the top down always 

looking at the channel that currently has the highest probability, and the only criteria to 

be met to move a channel to the Confirmed Channels arrays is that the channel’s 

bandwidth is less than or equal to the remaining available bandwidth. If a channel under 

analysis meets the criteria, then the channel is added to the Confirmed Channels arrays 

and removed from the Channel List arrays. If the channel bandwidth is higher than the 

remaining bandwidth, then the routine removes the channel from the Channel List arrays 

and begins processing the next channel in the array. The process is continued until the 

remaining bandwidth is less than the minimum channel bandwidth of 2 Mbps or until the 

Channel List arrays are fully emptied. 
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This model has the benefits of not being complex to develop, of having a minimal 

processor requirement to implement, and it has a reasonably effective caching success. 

As will be shown with the simulation results in Chapter VI, the Probability-Only Model 

does exhibit a moderately high probability of successfully caching the next channel to be 

selected. However, an intuitive view of this routine indicates that it sacrifices a  

 

 
Table 4.2 Example of Probability-Only Model Tradeoffs 

 
 

significant degree of improved caching results for reduced complexity. Consider the 

example in Table 4.2 for the hypothetical condition where only 19 Mbps of remaining 

bandwidth are available for additional confirmed channel caching. The Probability-Only 

Model will simply pick the channel with the highest probability as long as it will fit into 

the remaining bandwidth. For this example the model would pick channel 21 first, but the 

18 Mbps required for that channel means that no additional channels could then be 

selected. In this case the Probability-Only Model would result in an estimated 10% 

chance of the user picking this pre-streamed channel as his next channel choice. Note 

however, that all four of the other channels (84, 17, 67, and 55) would fit into the same 

19 Mbps of available bandwidth for a cumulative weighted probability calculation of 

(0.09 + 0.08 + 0.07 + 0.06) = 0.3 or 30% as long as channel 21 is ignored. This would 

result in a channel cache that is three times more likely to be successful than the results 

21 18 0.10
84 2 0.09
17 4 0.08
67 2 0.07
55 9 0.06

Channel BW
Weighted 

Probability
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obtained from the Probability-Only Model for this example. However, the modeling 

calculations required to perform the intuitive selection process that was just outlined are 

significantly more complex. The Probability-Only Model has the benefit of being an 

easily implemented fully functional model that could be useful on inexpensive 

applications or for devices with extremely low processing capabilities. 

 
4.5 High Definition Model 

 
 The High Definition (HD) Model was developed to target HD video channels for 

caching in precedence over SD channels. The algorithmic process for the HD Model 

follows the basic pattern flow of the Probability-Only Model except that channels are 

sorted first by decreasing probability, and then they are resorted by decreasing 

bandwidth. The resulting Channel List arrays end up with the 18 Mbps channels at the 

top of the arrays in decreasing order of probability. These will be followed by the 

channels with a bandwidth of 9 Mbps, then those at 4 Mbps, and finally the 2 Mbps 

channels. The caching process is then completed in the same fashion as the Probability-

Only Model until the available bandwidth limit is fully utilized. The resulting cache list 

will not typically have a large number of entries since it selects channels with the highest 

bandwidth first when filling the available bandwidth. 

 The simulation results for this model will be detailed in Chapter VI, but the 

cumulative weighted probabilities of the selected channels in the cache were significantly 

lower than the other models tested. It is therefore clear that this model would only be 

considered for use in applications that have a compelling need to select the highest 

bandwidth channels first. 
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4.6 Maximum Channels Model 

 
 The Maximum Channels Model is essentially the opposite of the High Definition 

Model in that preference is given to channels with the lowest bandwidth first. The 

algorithmic process of the Maximum Channels Model follows the HD Model, except that 

the Channel List array sorting is performed first by ordering the channels from the 

highest to the lowest probability followed by a resorting of all channels from lowest to 

highest bandwidth. The resulting Channel List arrays will then have all of the 2 Mbps 

channels at the top of the arrays in decreasing order of probability. These will be 

followed by the channels with a bandwidth of 4 Mbps, then those at 9 Mbps, and finally 

the 18 Mbps channels. The caching process is then performed in the same fashion as the 

previous models until the Confirmed Channel arrays fully utilize the available bandwidth. 

The resulting output cache list from this model ends up with the largest possible 

number of channels since it selects channels with the lowest bandwidth first. However, 

the cumulative weighted probability of the cached channels tested well below the 

Probability Only Model in the simulations covered in Chapter VI. This can intuitively be 

expected since any channels with a highly weighted probability that use more than 2 

Mbps are sorted down below all of the 2 Mbps channels.  

  
4.7 Exhaustive Search Model 

 
 A computer program could theoretically use an exhaustive search technique to 

find the absolute best possible video cache selection for any given input data set. This 

may not be workable in real time due to the large number of calculations that must be 

performed using the expected processing power present at this layer of a network. This 
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idea quickly ran into the reality of the huge number of caching combinations associated 

with 150 offered channels.  

An attempt to reduce this complexity was made by considering only a lower 

available bandwidth option of 50 Mbps to reduce the possibilities to be calculated. If the 

currently viewed channel was at the minimum of 2 Mbps then there would only be a 

maximum of 48 Mbps available for caching. The maximum possible number of cached 

channels would then be 48 Mbps divided by a worst case of 2 Mbps or 24 maximum 

channels. The minimum number of channels would be determined by the condition with a 

currently viewed channel using 18 Mbps leaving 32 Mbps for caching. This would result 

in a minimum of 3 channels cached using up 31 Mbps of the available bandwidth with 

one channel at 18 Mbps, one at 9 Mbps, and one at 4 Mbps. Therefore the number of 

possible caching combinations with at least 3 channels and no more than 24 channels out 

of a possible 149 total channels would be calculated as follows: 

 
Number of Possible Cache Combinations for the 50 Mbps Example  
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The processing time required for this task makes this idea completely unworkable for the 

purposes of this project. Therefore any workable exhaustive search technique would have 

to look at a reduced number of possible combinations. 

 In this model, the maximum number of channels to be included in the cache for 

any single pass of the routine was limited to six based on sample testing that allowed for 
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reasonably rapid results using the available research computers. The exhaustive search 

routine would then look through all combinations of 1 to 6 channels out of the 149 

possibilities and select the combination of channels with the highest weighted probability 

of being selected to be included in the cache. Those channels would be removed from the 

Channel List arrays and if the remaining bandwidth permitted additional channels the 

process would be repeated for a second pass of up to six additional channels. If there was 

still any remaining bandwidth of 2 Mbps or higher then the routine was run again for a 

third time. The complete process allows for a total of up to 18 channels to be cached by 

this model. However these 18 cached channels are not necessarily the absolute optimum 

set of 18 channels due to the high number of combinations that would be required for a 

full 18 channel exhaustive search. Instead this represents the best six channels in terms of 

weighted probabilities, followed by the next best six channels, again followed by the next 

best six channels. 

 The maximum number of combinations to be checked by any single iteration of 

the Exhaustive Search Model can be calculated as follows: 

 
Maximum Number of Combinations to be Checked per Iteration  
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A comparison of this maximum number of combinations per iteration (1.43 x 1010) with 

the total number of combinations required to implement the full optimal exhaustive 
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search (4 x 1027) indicates that this iterative approach is significantly more feasible to 

implement and simulate.  

 While the Exhaustive Search Model does not yield the absolute best case cache 

possible as initially hoped, it did consistently provide a reasonably high cumulative 

weighted probability result of its multicast cache as will be shown by the simulation 

results in chapter VI.  

 
4.8 Probability Divided by Bandwidth Model 

 
 Recall the discussion earlier about how the Probability Only Model made no 

caching considerations regarding a channel’s bandwidth usage other than whether it 

would fit into the remaining bandwidth available. In that model an 18 Mbps channel with 

a slightly higher probability was favored over a channel with much lower bandwidth 

usage but a lower probability. The Probability Divided by Bandwidth Model takes into 

account both the probability and bandwidth of each channel prior to cache selection.  

 Consider a channel with a weighted probability equal to 0.1 and a bandwidth of 

18 Mbps. The Probability Divided by Bandwidth Model sorts the Channel List array 

based on each channel's probability (Xi) divided by its bandwidth (Ri) as defined in the 

sort field below: 

iR
ic

=Sort Field    Equation 4-6 

 
The channel under consideration would have a value of (0.1 / 18) or 0.005556 whereas 

another channel with the same probability but using only 2 Mbps of bandwidth would 

have a value of (0.1 / 2) or 0.05. In effect, channels are penalized proportional to their 
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bandwidth usage in this model prior to caching selection, and this concept of bandwidth 

penalization proved to be the key contribution introduced by this model. The 

mathematical basis for this model stems from prior research that utilizes analogous 

penalization techniques in the finance and rate distortion disciplines where entries are 

penalized by cost or bitrate respectively [104-105]. 

This model introduces a modest amount of additional complexity over the 

Probability Only Model, but in doing so it can make much more informed caching 

selections based on both the probability and bandwidth of each channel. The performance 

of this model during the simulation phase of this research showed that these more 

informed decisions resulted in a significantly higher probability of predicting the next 

channel selection. 

 
4.9 Sample Moment Model 

 
 The Sample Moment Model uses additional mathematical parameters for channel 

sorting prior to the cache selections. Estimates of the first moment are calculated using 

traditional methods to yield the sample mean (�̅�𝑥) of the weighted probabilities (Xi) for a 

channel population (n) as follows [106]: 

 

∑
=

==
n

i
in

x
1

1   MeanSample c   Equation 4-7 

 The Sample Moment Model works in the same manner as the Probability Divided 

by Bandwidth Model except that the sort field is no longer simply the probability divided 

by bandwidth term. Instead the sort field is calculated for each channel in the following 

manner: 
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where Xi is the weighted probability of channel i, �̅�𝑥 is the sample mean of the weighted 

probabilities (Xi) of all available channels (n), Ri is the bandwidth or rate of channel i, 

and pf is the penalty factor applied to the bandwidth. The following analysis steps 

through the development of this sort field and the individual contributions of each term.  

 Subtracting off the weighted probability sample mean (�̅�𝑥) places more emphasis 

on channels with higher probabilities. This is true since channels with weighted 

probabilities below the mean become negative and channels with probabilities slightly 

higher than the mean approach zero. This change directly affects the sorting order. Figure 

4.2 shows a hypothetical example that focuses on only two of 11 channels available in 

this case for simplicity where channel #7 uses one half the bandwidth of channel #11, but 

#11 has a bit less than twice the probability of #7. Channel #7 appears first in the list 

when sorted by probability divided by bandwidth, but when these channels are sorted by 

the probability minus the mean term divided by the bandwidth then #11 rises above #7 in 

the sort order. Channel #11, being farther positive from the mean weighted probability 

than Channel #7 and hence, based on past history, a more popular selection, receives 

more emphasis and is penalized less for its higher bandwidth requirements than occurs in 

the Probability Divided by Bandwidth Model of Section 4.8. 

From the Probability Divided by Bandwidth Model it was evident that dividing by 

the bandwidth effectively penalized channels operating at higher rates. The bandwidth 

penalty factor (pf) was introduced to explore the impact of this penalty with regard to the 

channels chosen for caching. Systematically varying the penalty factor in the range of 0.5 
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Figure 4.2 Example Showing the Effects of the Mean Term 
 

to 2.0 during initial testing indicated that improved results could indeed be obtained. The 

pf values that provided the best results for the simulations were calculated at 1.01 for 50 

Mbps and 1.19 for 65 and 75 Mbps video bandwidths, but in field use this value might 

Example Sample Moment Model Channel Details:

Rank # Xi
1 0.01
2 0.02
3 0.04
4 0.06
5 0.07
6 0.10
7 0.11
8 0.12
9 0.13

10 0.15
11 0.19

Total Sum = 1.00000

0.09091

# X i Ri X i  / Ri (X i  -   ) (X i  -   ) / Ri

4 0.06 2 0.03 -0.0309 -0.0155
6 0.1 4 0.025 0.0091 0.0023

Sorted by X i  / Ri

# Xi Ri Xi  / Ri

4 0.06 2 0.03
6 0.1 4 0.025

Sorted by (X i  -   ) / Ri

# Xi Ri (X i  -   ) / Ri

6 0.1 4 0.0023
4 0.06 2 -0.0155

Sample Mean Probability of all (n=11) Channels  =      ≈ 𝑥𝑥̅

𝑥𝑥̅ 𝑥𝑥̅

𝑥𝑥̅

𝑥𝑥̅
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need to be periodically updated using the feedback loop processes as described in the 

next section. This model had the highest performance results of all models as discussed in 

Chapter VI.  

 
4.10 Mixed Model Approach and Feedback Loops 

 
 The simulation results that are fully presented in Chapter VI show that specific 

caching models end up with higher cumulative weighted probability results on average. 

Not surprisingly there are instances where, for a specific input data set, models with 

lower results on the average outperform models that, on average, have better results.  It is 

worth noting that the overall effectiveness of the system might be slightly increased with 

a mixed-model approach where multiple models are running simultaneously. The 

multicast cache would then be selected through the model with the highest cumulative 

cache probability. 

 The vast majority of calculations covered in this chapter for the various models 

are accomplished outright on the input data representing the channel change history 

buffer and other known quantities. Besides channel change probabilities, there are a few 

additional parameters that that could be periodically updated over time through the use of 

feedback mechanisms. The candidates for updates through feedback loops are the 

following: 

 
• Size of the Channel Change History Buffer (N) 

• Constant Weighting Parameter (α) 

• Bandwidth Penalty Factor (pf) 
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 The size (N) of the channel change history buffer is a tradeoff between having 

enough information for meaningful probability analysis against memory and processor 

resources to maintain the data. Consider a situation where the oldest entries on the history 

buffer had virtually no impact to the cumulative probability calculations per channel, then 

the history buffer might be reduced to save memory and processor resources with 

negligible resulting impact.  

 The constant weighting parameter (α) was shown to impact the effect of past 

history on channel caching results. This parameter works in conjunction with the size of 

the history buffer to represent viewer channel changing behavior. Whenever the 

weighting parameter is changed, then the history buffer length may be adjusted as well.  

 Likewise the bandwidth penalty factor (pf) from the Sample Moment Model 

would likely benefit from a feedback approach. In particular the pf would need to be 

optimized whenever a user adjusts the total bandwidth available to video services or 

when caching performance falls below expected limits. Short term changes in bandwidth 

may not necessarily call for rigid adjustment of the pf, but any lengthy changes in 

available bandwidth should trigger an update to this parameter.  

 These feedback loops would be triggered by logical assessment of statistical fields 

and status flags. The exact nature of these fields will be subject to system hardware 

limitations as covered in Chapter VII, but the basic parameters illustrated with Figure 4.3 

would likely satisfy the needs of the feedback system. The approach relies upon several 

User-Defined Parameters, Tracking Statistics, Metrics, and Flags to develop the logic 

required for the feedback loops. The three feedback-adjustable variables would have 

associated optimization routines that could be triggered by the presence of negative flag 
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conditions. The Flag Conditions could be updated after each channel change based on 

logic associated with the defined parameters, statistics, and metrics. 

The primary considerations about the size of the channel change history buffer are 

that it is large enough to effectively track the entire statistically significant channel 

changes and that it is not so large that it unnecessarily slows down the processing times 

required to determine the channel caches. The minimum statistical significance of the 

buffer can be easily determined by looking at the weight of the oldest entry in the table to 

see if it is above a minimum default value. The values of these weights are only changed 

when the constant weight parameter (α) is modified. The processing time to determine  

 

 

Figure 4.3 Example of Feedback Statistics Display 

User-Defined Parameters:
Video Bandwidth Allotted Mbps 65 Mbps
Cache % Deviation Trigger Limit 10%
Failed Cache Processing % Limit 1%
Recent Change Limit 100
pf  Adjustment Limit Mbps 5 Mbps

Tracking Statistics:

Total # 
Caches 
Counter

Caching 
Success 
Counter

Caching 
Fail 

Counter
Caching 

Success %

Cache Avg. 
Cumm. 

Weighted 
Probability %

Failed 
Cache 

Processing 
%

Failures  
Inside 
Recent 
Change 

Limit
4731 3071 1660 64.9 68.3 0.08 1

Metrics and Flags:
Current Video Bandwidth Available Mbps 65.0
Channel Change History Buffer Size 2000
Current Constant Weight Parameter α 0.98
Current BW Penalty Factor pf 1.19
Channel Change History Buffer Flag Y
Constant Weight Parameter α Flag Y
BW Penalty Factor pf  Flag Y
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the multicast cache after each channel change should ideally always be less than the time 

before the next channel change. This will be further discussed in Chapter VII, but if the 

next channel change occurs before the previous cache processing is completed then the 

cache would not have time to be updated for that channel change. This situation may not 

always have a direct impact on the caching effectiveness since the caches are often not 

radically changed even after processing, but nevertheless the number of these events 

should be minimized. The “Failed Cache Processing %” field reflects the percentage of 

times that the next channel change is received before the caching process is complete. 

Therefore, the channel change history buffer size flag would be set to “N” triggering a 

size adjustment whenever the α parameter is changed or when the “Failed Cache 

Processing %” field exceeds the user-defined “Failed Cache Processing % Limit” value.  

 The constant weight parameter (α) would be subject to adjustment when the 

expected effectiveness of the system consistently exceeds actual system performance. As 

proposed this adjustment would be triggered whenever the difference from the expected 

“Cache Avg. Cumm. Weighted Probability %” to the actual “Caching Success %” is 

greater than the defined limit established by the “Cache % Deviation Trigger Limit” 

parameter. This condition indicates that the expected caching success rate is being 

overestimated by the caching model and the “Constant Weight Parameter α Flag” is set to 

N to initiate the α adjustment routine. The defined “Recent Change Limit” parameter and 

the “Failures Inside Recent Change Limit” counter would be used by the adjustment 

routine to analyze the frequency that newly popular channels go unnoticed by the model. 

 The bandwidth penalty factor (pf) value would be adjusted when using the 

Sample Moment Model and significant changes are made to the amount of video 
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bandwidth that is available for use or when unexpectedly poor performance is detected. 

The “Current Video Bandwidth Available Mbps” field reflects the actual bandwidth 

available for use by the system over the period of time that the field covers. This period 

would need to be determined during the manufacturing process for each type of device, 

but using a one minute period to determine the average current bandwidth availability 

would ensure that the pf is not altered based on instantaneous bandwidth fluctuations 

while still keeping the system reasonably up to date. If the “Current Video Bandwidth 

Available Mbps” field drops below the defined “Video Bandwidth Allotted Mbps” 

parameter by more than the limit established in the defined “pf Adjustment Limit Mbps” 

parameter, then the “BW Penalty Factor pf Flag” would be set to N to trigger the pf 

adjustment routine. The pf value would also be subjected to an adjustment routine for 

unexpectedly poor caching success rates if the α adjustment routine fails to achieve cache 

results within the trigger limits specified earlier.   

Additional details about potential feedback routines are shown in Appendix D. 

These feedback routines could be designed to provide higher likelihoods of caching 

effectiveness over time, but as discussed earlier the system should not typically be 

expected to achieve 100% success rates. Each of these feedback routine proposals takes 

comparisons of varied adjustments to select the optimal parameter level available for the 

observed conditions. Additional considerations and practical implications of these 

feedback processes will be further discussed during the implementation considerations of 

Chapter VII. Potential improvements and areas of future research, such as analysis of the 

time in which channel changes occur in terms of time-of-day, day-of-week, and month-

of-year or the geographical viewer location, are included in Chapter VII as well.  
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CHAPTER V 
 
 

SAMPLE DATA SETS DEVELOPED FOR THE PROJECT 

This chapter explains how the collections of sample data sets were developed for 

this project. Eighteen individual sample data sets reflecting a variety of situations were 

created for use by the models covered in the last chapter. Each model would then perform 

three different simulations on each data set with the bandwidth available for video service 

set to 50, 65, and 75 Mbps respectively. This led to 54 unique simulations performed by 

each of the six models yielding the results presented in Chapter VI. 

 
5.1 Variables to be Managed 
 
 
 This proposed multicast caching system would require several variable factors to 

be set as either fixed or adjustable values over time through the feedback processes. The 

channel change history buffer would have to be created and maintained to track the exact 

order of recent channel changes along with the current status over some definitive period 

of time. A separate process would maintain information about the bandwidth required for 

each available channel. Another process would keep track of the currently available 

bandwidth that the system has through the appropriate network connections, and a related 

process would determine how much of this available bandwidth could be devoted to 

IPTV video usage based on user preferences or other specified criteria. The models 

would then use the channel change history buffer, the currently viewed channel, the 
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required bandwidth for each channel, and the bandwidth presently available for IPTV 

video applications to determine which channels should be included in the current 

multicast cache.  

 The sample data sets for this project were designed to provide these 

characteristics that the models needed to make the caching selections. The sample data 

sets had to meet a wide variety of requirements to maintain validity throughout the 

simulation process. The following primary variables had to be considered and handled 

appropriately throughout the creation of the sample data sets: 

 
• Number of Channels Offered (n) 

• Mix of SD and HD Channels  

• Bandwidth Required Per Channel (Ri) 

• Total Bandwidth Available for IPTV Video Applications 

• Size of the Channel Change History Buffer (N) 

• Favorite Channel Listings per User 

• Constant Weighting Parameter Value (α) 

 
These main variables all had to be defined, tracked, and modified as needed to cover 

various potential conditions that the multicast caching system would likely encounter in 

real-world applications.  

 The number of channels offered by IPTV service providers varies significantly 

based on equipment capabilities, network limitations, broadcast licensing, geographic 

location, service pricing, user agreements, and other factors. Preliminary tests were 

performed with higher and lower channel availability numbers which clearly indicated 
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that modeling results were inversely proportional to the number of channels offered. 

Lower numbers of channels allowed for higher success rates while higher numbers of 

channels decreased the success rates if all other factors were held constant. Given the 

overall number of variables that had to be accounted for and the knowledge that the 

number of channels offered gave direct insight into the proportional expectations of 

caching, the decision was made to hold the number of offered channels constant during 

this research.  IPTV providers typically offer from100 to 200 channels [32][107-109], so 

the channel availability for this project was fixed midway between these levels at n=150 

channels in line with previous research assumptions [109]. 

 The mix of SD and HD channels offered also differs widely by provider and 

region [107]. To reflect these current and near-term variations, three bandwidth mixes 

were created with differing levels of SD and HD channels. This was accomplished first 

by assigning four popular bandwidth levels of 2, 4, 9, and 18 Mbps as the available 

bandwidth rates for various SD and HD channels. The three bandwidth mixes were then 

assigned different percentages to each of the four bandwidth rates as shown in Table 5.1.  

Mix A reflects a current provider offering limited HD services, while Mix B 

indicates a provider offering a moderate level of HD services. Mix C would reflect a  

 

 
 

Table 5.1 Channel Bandwidth Probability Used in Simulations 

BW Rate (in Mbps) Mix A Mix B Mix C
2 50.0% 40.0% 35.0%
4 40.0% 30.0% 15.0%
9 7.5% 25.0% 40.0%

18 2.5% 5.0% 10.0%
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provider that has at least half of the channels offered at full HD quality. Clearly these 

three mixes do not cover the full range of all options possible by the industry, but they do 

provide significantly different views of SD and HD offerings to expose any serious 

modeling flaws with respect to this variable. 

 With the number of channels fixed at n=150 and three bandwidth mixes defined, 

the next step was to assign one of the four bandwidth rates to each of the 150 channels.  

This was accomplished by creating a series of pseudo-random numbers from 0 to 1 that 

were applied against a percentage weighting table reflecting the bandwidth rates for each 

channel and each mix.  

 The total bandwidth available for IPTV video applications was also modified 

through three different values. The basic MDU case with a total customer link bandwidth 

of 100 Mbps served as the baseline broadband rate, so the resulting bandwidth rates 

available for video were between 50 and 75 Mbps as defined much earlier in Table 1.6. 

Three video bandwidth options were defined with the values of 50, 65, and 75 Mbps to 

reflect differing customer expectations based on their background processes and 

applications. These options would allow users to reserve from 25 to 50 Mbps for their 

other applications associated with voice, data, overhead, and safety margins.  

 Another variable to be considered was the size of the channel change history 

buffer (N). Beginning with the most recent and then working backwards, the question 

was how many previous channel changes should be tracked in the history. Published 

studies indicate that viewers change channels an average of 25 times per day, although 

some users reach levels of a few hundred changes per day [27]. As noted in the previous 

chapter, the channel history is used to determine the relative probability that a channel 
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may be selected next, so a reasonably high buffer was required to improve the confidence 

level of the calculated probabilities. If all of the variables to be considered were allowed 

to vary throughout the simulation process, then the complexity of the process would 

increase exponentially. The channel change history buffer was fixed to sequentially track 

the most recent 2000 channel changes. Additional details, such as the time-of-day and 

day-of-week, were not included in this channel change history buffer. An analysis about 

the inclusion of those and other inputs derived from the many potential fields of data that 

could be collected about each viewer will be discussed in Chapter VII.  

 Every viewer has an individual list of popular or favorite channels that varies by 

age, sex, time of day, day of week, season of year, and other factors. For example, the 

sports channels might expect to see an increase in game day viewership during the fall 

football season. Table 5.2 shows a portion of sample data reflecting both the rank and 

channel number for each entry. This list goes from a rank of 1 to 150 with a decreasing 

probability assigned to represent the most favorite down to the least favorite channel. The 

concept of randomly determining the channel ranking order will be covered in the next 

section, and the methods used for determining the actual probability numbers shown will 

also be a major topic of discussion later in this chapter. 

For clarity the rank refers to the user’s favorability of channels which is also 

referred to as the channel popularity by some researchers [108], and the channel number 

refers to the actual user number selections via remote or guide. The first entry on Table 

5.2 has a rank of one indicating that channel number 79 is this user’s favorite channel 

with the highest probability of selection. The P(x) column in Table 5.2 indicates the  
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Table 5.2 Sample Favorite Channel Listing 

Rank Channel # P(x) = F(x) = Rank Channel # P(x) = F(x) =
1 79 0.095163 0.095163 76 109 0.000053 0.999500
2 107 0.086107 0.181269 77 106 0.000048 0.999547
3 127 0.077913 0.259182 78 29 0.000043 0.999590
4 7 0.070498 0.329680 79 25 0.000039 0.999629
5 90 0.063789 0.393469 80 117 0.000035 0.999665
6 95 0.057719 0.451188 81 9 0.000032 0.999696
7 136 0.052226 0.503415 82 5 0.000029 0.999725
8 101 0.047256 0.550671 83 16 0.000026 0.999751
9 76 0.042759 0.593430 84 93 0.000024 0.999775
10 120 0.038690 0.632121 85 119 0.000021 0.999797
11 149 0.035008 0.667129 86 94 0.000019 0.999816
12 133 0.031677 0.698806 87 98 0.000018 0.999833
13 110 0.028662 0.727468 88 138 0.000016 0.999849
14 123 0.025935 0.753403 89 70 0.000014 0.999864
15 21 0.023467 0.776870 90 64 0.000013 0.999877
16 19 0.021234 0.798103 91 28 0.000012 0.999888
17 35 0.019213 0.817316 92 66 0.000011 0.999899
18 128 0.017385 0.834701 93 113 0.000010 0.999909
19 96 0.015730 0.850431 94 82 0.000009 0.999917
20 10 0.014233 0.864665 95 56 0.000008 0.999925
21 53 0.012879 0.877544 96 87 0.000007 0.999932
22 147 0.011653 0.889197 97 22 0.000006 0.999939
23 12 0.010544 0.899741 98 129 0.000006 0.999945
24 78 0.009541 0.909282 99 60 0.000005 0.999950
25 137 0.008633 0.917915 100 65 0.000005 0.999955
26 115 0.007811 0.925726 101 99 0.000004 0.999959
27 86 0.007068 0.932794 102 45 0.000004 0.999963
28 104 0.006395 0.939190 103 40 0.000004 0.999966
29 13 0.005787 0.944977 104 30 0.000003 0.999970
30 48 0.005236 0.950213 105 58 0.000003 0.999972
31 121 0.004738 0.954951 106 17 0.000003 0.999975
32 32 0.004287 0.959238 107 57 0.000002 0.999977
33 46 0.003879 0.963117 108 73 0.000002 0.999980
34 116 0.003510 0.966627 109 51 0.000002 0.999982
35 15 0.003176 0.969803 110 68 0.000002 0.999983
36 20 0.002874 0.972676 111 1 0.000002 0.999985
37 59 0.002600 0.975276 112 75 0.000001 0.999986
38 118 0.002353 0.977629 113 150 0.000001 0.999988
39 80 0.002129 0.979758 114 112 0.000001 0.999989
40 102 0.001926 0.981684 115 72 0.000001 0.999990
41 11 0.001743 0.983427 116 85 0.000001 0.999991
42 92 0.001577 0.985004 117 54 0.000001 0.999992
43 143 0.001427 0.986431 118 26 0.000001 0.999992
44 31 0.001291 0.987723 119 77 0.000001 0.999993
45 100 0.001168 0.988891 120 130 0.000001 0.999994
46 63 0.001057 0.989948 121 131 0.000001 0.999994
47 44 0.000957 0.990905 122 84 0.000001 0.999995
48 61 0.000866 0.991770 123 39 0.000000 0.999995
49 47 0.000783 0.992553 124 83 0.000000 0.999996
50 71 0.000709 0.993262 125 2 0.000000 0.999996
51 140 0.000641 0.993903 126 41 0.000000 0.999997
52 139 0.000580 0.994483 127 62 0.000000 0.999997
53 69 0.000525 0.995008 128 49 0.000000 0.999997
54 38 0.000475 0.995483 129 81 0.000000 0.999998
55 37 0.000430 0.995913 130 6 0.000000 0.999998
56 142 0.000389 0.996302 131 67 0.000000 0.999998
57 126 0.000352 0.996654 132 103 0.000000 0.999998
58 55 0.000318 0.996972 133 3 0.000000 0.999998
59 91 0.000288 0.997261 134 34 0.000000 0.999998
60 23 0.000261 0.997521 135 88 0.000000 0.999999
61 146 0.000236 0.997757 136 43 0.000000 0.999999
62 132 0.000213 0.997971 137 145 0.000000 0.999999
63 114 0.000193 0.998164 138 141 0.000000 0.999999
64 36 0.000175 0.998338 139 134 0.000000 0.999999
65 14 0.000158 0.998497 140 27 0.000000 0.999999
66 4 0.000143 0.998640 141 42 0.000000 0.999999
67 52 0.000129 0.998769 142 8 0.000000 0.999999
68 111 0.000117 0.998886 143 89 0.000000 0.999999
69 148 0.000106 0.998992 144 124 0.000000 0.999999
70 24 0.000096 0.999088 145 105 0.000000 0.999999
71 122 0.000087 0.999175 146 135 0.000000 1.000000
72 33 0.000079 0.999253 147 50 0.000000 1.000000
73 74 0.000071 0.999324 148 97 0.000000 1.000000
74 108 0.000064 0.999389 149 125 0.000000 1.000000
75 144 0.000058 0.999447 150 18 0.000000 1.000000
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probability assigned to each channel entry. The F(x) column provides the cumulative 

distribution of probabilities for each entry down the list in the table. 

Each viewer exhibits individual favorite channel listing behavior with respect to 

not only the order of favorite channels but also the shape or profile of how many channels 

a viewer regularly watches. A viewer that “surfs” through a large portion of the 150 

channels offered would have a much lower cumulative probability through the highly 

ranked channels than a viewer that only watches a small selection of channels. This 

characteristic defines the shape distribution of how the favorite channels are watched 

with respect to different viewers. While the same general type of the distribution may be 

applicable across a wide range of viewers, the specific shape details about that 

distribution will be different across the population. These topics will be discussed in more 

detail in upcoming sections, but the notable implication is that the distribution needed to 

be varied at some point during the creation of the sample data sets to reflect these 

differences in viewer’s channel changing behavior.  

 The channel change history will be used to determine how often channels have 

been selected over time to develop probabilities about future selection. With the use of a 

relatively large history buffer (N=2000), the notion that the most recent events reflect the 

current probabilities better than older events led to research into the time-weighting 

process presented in the last chapter. With the adoption of the time-weighting scheme it 

became necessary for the constant weighting parameter (α) to become another variable to 

be considered. During this research the α parameter was analyzed and assigned the fixed 

value of 0.98 as noted earlier, but in actual practice the feedback mechanisms previously 
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discussed in the last chapter would adjust the weights to maintain the system at optimal 

levels over time. 

 The variables discussed in this section formed the basic criteria used to create the 

sample data sets and to perform the model simulations. Some of the variables were fixed 

to constants while others were varied over a range of values. Each variable had to be 

considered individually and with respect to the other variables for validity of the 

assumptions used during the creation of the sample data sets. 

 
5.2 Notes on Independence of Samples 
 
 
 One key area of concern for this research is whether user channel changes are or 

can be assumed to be i.i.d. from change to change. The major components of user 

behavior with respect to channel changing are the duration or dwell time of watching 

particular channels and the frequency with which individual channels are selected. This 

research is not particularly concerned with the duration of watching particular channels 

except for how it leads to determining the expected time between user selections thus 

impacting the overall sizing of the channel change history buffer covered in Chapter IV 

as well as the processing implications to be discussed in Chapter VII. This project is 

primarily focused on understanding the popularity or frequency with which individual 

channels are selected.  

Regarding the popularity of channels, it is intuitively clear that the actual channel 

changing process is not independent as readily evidenced by the fact that many users 

loyally watch specific programs. In fact a wide variety of dependencies contribute to 

individual user IPTV behavior including age, sex, ethnicity, locale, income, and 

123 
 



education. Most of the previous research into channel pre-fetching did not address the 

i.i.d. issue directly or even mention that level of detail about their simulations [21][29-

30][34]. Therefore the key question of concern here is whether the assumption of i.i.d. 

channel selections as applied here is valid.  

In [26] and [77] the i.i.d. assumption was directly documented and used regarding 

simulated channel changes being independent of one another. In order for each channel 

change to be an independent event, the probability of the change cannot be affected in 

any way by previous changes. In real-world applications it is obvious that this is not 

actually the case. Consider the user that is swapping back and forth between two channels 

for news, business, weather, sports, or other programming. The probability of the next 

channel change would then not be an independent event since the swapping pattern 

defines the next channel with a much higher probability over all others. Similarly, the 

user that increments or decrements channels up or down to get to the intended destination 

does not behave in an i.i.d. fashion. However, researchers are still left with the fact that 

viewer behavior is unique and there are no known references to actual user behavior in 

the open literature.  Actual channel change behavior information is available from 

companies such as Nielsen, but not at a reasonably affordable fee.  Hence the choice has 

been made here to proceed in a manner common with previous studies, and assume that 

aspects of channel changes are statistically independent. It is important to note that this 

assumption has been previously made in peer-reviewed documentation of this application 

even though this alone does not guarantee its validity.   

If deployed by an IPTV provider who purchases channel change information from a 

company such as Nielsen, future research could be conducted into using state processes 

124 
 



based on Bayesian, Markovian, or Brownian models to reflect some of these channel 

change dependencies [79][110]. These advanced techniques could take into account 

current or recent states that a system exhibits for a more informed decision.  

The actual implementation plan for multicast caching calls for the historical tracking 

and analysis of each downstream IPTV port identified for usage within the system. Non-

independent events would still be reflected in the historical record associated with each 

user. Consider a two STB household with one TV in the parents’ bedroom and one in the 

children’s bedroom. If the children are frequently watching kids’ programming in their 

room, then those channels would be recorded much more heavily in the history associated 

with that port than on the parents’ port. In another example, consider a small apartment 

complex with only one Hispanic resident frequently watching Spanish language channels. 

Clearly those channels would not show up much in the other residents’ history, but they 

would accurately be reflected in the history of the Hispanic resident. This individualized 

approach would capture the history of certain non-independencies in real-world channel 

changes under the implementation plan proposed. The caching selection models would 

still correctly cache the next dependently selected channel for all cases in which that 

channel otherwise met the weighted probability criteria used for caching.  

Some of the potential concerns associated with relying on the i.i.d. assumption can be 

easily mitigated. For actual implementation one key proposal was mentioned previously 

about the additive properties of multiple methods where this caching system could be 

employed in conjunction with other existing techniques that have been previously 

developed by other researchers. For example, other researchers have already proposed 

systems to pre-select the last channel viewed or to identify if a user is incrementing or 
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decrementing channels and then cache channels accordingly [25-26][38][73]. Additional 

logic processes could be created to properly integrate these alternative methods 

effectively, but the approach of using multiple methods would help identify and manage 

several of the common non-independent situations that frequently arise.  

 
5.3 Exponential Distributions 
 
 
 If an IPTV service provider was offering 150 channels to its customers, then the 

uniform distribution would accurately describe a viewer’s channel change behavior only 

if the user selected channels in a purely random fashion or continuously changed through 

all 150 channels systematically. In reality users have certain favorite channels that they 

tend to watch much more frequently than others. Some users may only watch a very 

small number of channels while others have a longer list of favorites. Previous 

researchers have made use of different distributions to model viewer behavior with 

varying degrees of success. Attempts to model user behavior typically aim at providing 

baseline or average channel changing representations, and it is widely recognized that 

some users will be outliers that fall outside of the norm. The following distributions have 

been used recently to model various aspects of user channel changing behavior: 

• Uniform [5][27][57] 

• Exponential [26][108-109] 

• Zipf [5][28][57][108-109] 

• Poisson [5][26][28] 

• Gamma [26] 

• Weibull [108] 
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Most of these previous researchers did not elaborate on why or how each PDF 

was selected and used, but in [108] a comprehensive discussion was made into 

identification of the most valid methods of modeling user channel changing behavior. 

The goal of that research was to come up with a series of models that suitably reflected 

actual IPTV usage across a variety of metrics. This team composed mostly of AT&T 

researchers compiled trace data from over two million anonymous STBs across four time 

zones over a seven day period along with associated network device logs, programming 

information, and other pertinent details. Specifically with regard to modeling the 

popularity of channel selections, their research found that the exponential and Zipf 

distributions were the top two PDF performers. They stated that while the Zipf 

distribution worked well for the top few highly popular channels, the exponential 

distribution achieved a better fit for the larger body of available channels. For these 

reasons the exponential distribution was selected to provide the basis for user channel 

popularity representations during this project in line with this most comprehensive 

analysis on the topic.  

The PDF for an exponential random variable with parameter λ > 0 is defined as 

follows [91][110]: 

 
 

Equation 5-1 

The Cumulative Distribution Function (CDF) of this exponential random variable is 

defined as follows: 

 
 
 

Equation 5-2 

f(x) ={ λe-λx,     if x ≥ 0
0,          if x < 0

F(a) = ∫
a

0

λe-λxdx = 1 – e-λa,      a ≥ 0
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In this study, this exponential distribution is used for the purpose of creating valid 

sample data sets to be used as simulation inputs, but in actual field use the models will  

 

 
Figure 5.1 Sample PDFs for the Exponential Distribution 

 

 
Figure 5.2 Sample CDFs for the Exponential Distribution 
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only be concerned with the historical data collected on a per port basis. The resulting 

sample data sets derived from these exponential PDFs represent an acceptable fit for 

channel popularity for simulation, but the actual system implementation does not have a 

direct requirement for individual users to follow the exponential distribution. 

Basic user behavior about the number of favorite channels that are typically 

watched over some historical period of time was modeled by varying the λ parameter of 

the exponential distribution. Figure 5.1 shows the exponential for a variety of λ 

parameter values with the x-axis indicating the channel ranking and the probability of 

each channel is indicated by the y-axis. Note that the favorite channels are ranked first in 

all cases and naturally have the highest probability of being selected. From the PDFs 

shown on Figure 5.1, it is evident that the higher λ parameter values have a steeper initial 

slope corresponding to a user that typically watches only a few channels on a regular 

basis. The lower λ parameter values would be associated with viewers that watch or 

“surf” many different channels over the historical period.  

 Figure 5.2 provides a view of the sample exponential CDFs for these same 

λ values to offer another representation of these concepts. Consider the 0.1 λ distribution 

at the approximate point where it crosses the 0.90 or 90% mark and note that this point 

corresponds to just below the cumulative probabilities of the first 25 ranked channels. 

However, it takes the cumulative probabilities of almost the first 50 ranked channels for 

the 0.05 λ distribution to reach the 90% mark. These λ values were the specific limits used 

during the creation of the sample data set for this project, and they exhibit CDFs similar 

to those presented by the AT&T research team [108]. Lower λ values were discarded 

based on documented user behavior indicating that the vast majority of viewers find less 
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than one third of the total channels offered to be their favorites [27][108-109]. Higher 

λ values were similarly discarded as the documentation indicates most users surf through 

more than just a few channels with regularity. By generating sample channel changes 

based on the various defined λ parameter settings of the exponential distribution, each 

sample data set was created to reflect some of these differences seen in viewer channel 

popularity within the primary range of expectations. 

 
5.4 Creation of the Sample Data Sets 
 
 
 Each sample data set was created through a series of Visual Basic macro routines 

run on a Microsoft Excel spreadsheet. These routines performed the following functions: 

 
• Defined specific parameter settings for the next data set 

• Randomly determined the video channel line-up order 

• Determined the bandwidths of each video channel for all three mixes 

• Simulate channel changes based on the parameter settings 

 
Following the completion of these routines the spreadsheet shows the ranking of 

video channels, bandwidths assigned to each channel for all three mixes, current channel 

selected, and a history of the simulated channel changes. These provide the key elements 

to test the different models’ performance and resulting channel cache. The detailed 

spreadsheet format and the actual macro routines for these processes are found in 

Appendix E, but the basic steps associated with each function are explained below.  

 Each sample data set was created to reflect the specific parameters that were 

assigned to match the conditions desired for that unique trial. The three specific 
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parameters defined at this point were the exponential distribution parameter (λ), the 

number of channel changes simulated, and the constant weighting parameter (α). The λ 

parameter was varied in the range of 0.05 to 0.1 to correspond with expected viewer 

behavior about the channel popularity of different users as described earlier. The number 

of generated channel changes was set to N=2000 throughout the sample data set creation 

for a fixed size of channel change history buffer. The constant weighting parameter was 

also fixed at α=0.98 during the time-weighting process as discussed in Chapter IV.  

 The data set spreadsheet contained a column listing the numbers from 1 to 150 to 

indicate the channel ranking. Another unique number from 1 to 150, representing an 

actual video channel, is then randomly assigned to each channel ranking. The bandwidth 

for each video channel was also randomly assigned based on the proportional rates 

defined for each of the three bandwidth mixes. The mix routine was set up to run three 

iterations per channel to provide the output for each bandwidth mix. Table 5.3 shows an 

example portion of the sample data creation spreadsheet to illustrate the process.  

 
Table 5.3 Example Bandwidth Rate Assignment Data 

Column Column Column
A C M
1 79 2
2 107 2
3 127 4
4 7 4
5 90 2
6 95 4
7 136 2
8 101 9
9 76 4

10 120 2
Channel Video BW

Rank Channel # Mix A

131 
 



The Channel Rank list from 1 to 10 in Column A is a subset of the data that would 

normally range up to 150. Column C shows the randomly assigned Video Channel 

numbers. In Table 5.3, the bandwidths shown in Column M were randomly assigned 

using the probabilities associated with Mix A of Table 5.1. A similar procedure was used 

to generate channel preference tables for the other two bandwidth mixes.  

 An exponentially distributed CDF, defined as F(i), was then generated for all of 

the channels using Equation 5-3 below.  In this equation the variable i represents the 

channel rank from 1 to 150 and λ is the defined exponential parameter. 

 
 

Equation 5-3 
 

Table 5.4 shows the CDF values in column B calculated for λ = 0.1. Note that 

only the first and last five ranked channels are shown on this table with the remaining 140 

channels omitted for clarity. 

 
Table 5.4 Example Exponential Channel Data 

Column Column Column
A B C
1 0.095162582 79
2 0.181269247 107
3 0.259181779 127
4 0.329679954 7
5 0.39346934 90

146 0.999999544 135
147 0.999999587 50
148 0.999999626 97
149 0.999999662 125
150 0.999999694 18

Channel Cummulative Video
Rank Distribution F(i ) Channel #

F(i)   = 1 – e-λi

132 
 



A separate macro routine was used to generate the series of channel changes for 

each sample data set. In this routine, 2000 pseudo-random numbers from zero to one are 

sequentially generated and individually compared with the cumulative distribution values 

in column B to determine the channel selections. Whatever range each pseudo-random 

number fell between dictated that specific channel change. Following the completion of 

this channel change macro, the associated sample data set spreadsheet had a change 

queue showing the sequence of these 2000 channel changes listed by video channel 

number. The currently viewed channel is identified at the top of the queue. This queue 

adds to the previous data collected showing the parameter settings, the video channel 

ranking order, and the channel bandwidths for each mix. The sample data set is complete 

at this point with the channel change history buffer filled, but additional processes were 

undertaken to perform the time-weighting functions and to simplify the format of the 

sample data for convenient use by the various models. 

 
5.5 Time-Weighting of the Sample Data Sets 
 
 
 The rationale for time-weighting the channel change history was presented in 

Chapter IV along with the mathematical process and an analysis of the trade-offs 

involved in determining the constant weighting parameter (α).  

 Using the fixed constant weighting parameter of α = 0.98, a new column was 

created on the sample data set spreadsheet populated with 2000 progressively decreasing 

values of the weight from Equation 4-2, Wj = α j. It was then necessary to apply the 

weights to the channel change history buffer to calculate new time-weighted 

probabilities. The standard probability for a particular channel selection would typically 
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Table 5.5 Example of the Time-Weighting Process 

 
be calculated by the summation of all of the times the channel was selected in the history 

divided by the total number of entries or 2000 in this case. To calculate the time-weighted 

probability it is necessary to sum up all of the specific weight values associated with the 

relative position of each selection of a channel. This summation of the specific weights of 

a channel is then divided by the total summation of all 2000 weights. Table 5.5 illustrates 

a portion of this process for determining the weighted probability of example channel 

number 42 from a sample data run. Note that Table 5.5 indicates that channel 42 was 

selected a total of 10 times during the trial, and its last selection was on the 324th most 

recent channel change in this example. Using the standard methods for determining the 

probability of this channel number 42 example results in the following calculation:  

 
( )
( )

( )
( ) 005.0
2000
10

Selections of # Total
Selected #42 Times)42x(PStandard ====  

Equation 5-4 
 

Channel Selected Selection # (j ) Weight Equation Weight
42 324 Wj  = (0.98)324 0.0014363111251
42 486 Wj  = (0.98)486 0.0000544343181
42 565 Wj  = (0.98)565 0.0000110339946
42 655 Wj  = (0.98)655 0.0000017909340
42 763 Wj  = (0.98)763 0.0000002020672
42 847 Wj  = (0.98)847 0.0000000370242
42 849 Wj  = (0.98)849 0.0000000355581
42 1104 Wj  = (0.98)1104 0.0000000002059
42 1150 Wj  = (0.98)1150 0.0000000000813
42 1471 Wj  = (0.98)1471 0.0000000000001

Subtotal = 0.0015038453085
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However, calculating the time-weighted probability of channel 42 requires the 

summation of weights associated with its selections and the total sum of weights. Note 

that the total summation of all 2000 weights associated with the constant weighting 

parameter value of α = 0.98 is equal to a value of 49. Using the sub-total of weights for 

channel 42 from Table 5.5 and the total sum of all weights equal to 49, the weighted 

probability for example channel 42 is calculated as follows: 

 
( )

∑
=

== N

j

j
x

1

Weighted
Selections #42for  Weights all of Subtotal)42(P

a
 

Equation 5-5 

    
( )

( ) 0000307.0
49

0015038.0
==  

 
 

The significant difference between the standard probability and weighted probability is 

primarily attributed to the fact that channel 42 was not included in any of the most recent 

323 channel changes. This same time-weighting process was performed on all 150 

channels for each sample data set.  

The remaining sample data set tasks involved the necessary formatting and 

storing of the sample data for convenient use by the various caching model programs that 

were written and compiled in Visual C++. The resulting Minimized Sample Data Format 

is shown in Appendix E.  

 
5.6 Summary 
 
 

The overall number of sample data sets created was 18 in total. This allowed for 

six different values of the exponential λ parameter from 0.05 to 0.1 with each of these 
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different values in turn producing three sample data sets corresponding to the different 

bandwidth mixes A, B, and C. The modeling programs then performed three simulations 

on each of the 18 data sets corresponding to tests using 50, 65, and 75 Mbps of available 

video bandwidth levels. This produced a total of 54 individual simulation runs for each 

channel caching model as presented in the next chapter.  
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CHAPTER VI 
 
 

SIMULATIONS 

This chapter provides a comprehensive view of the simulations used to test each 

of the multicast caching models. The rationale, methodology, and results of the 

Functionality Testing are presented in the first section. This is followed by a discussion 

explaining the Performance Simulations. Simulation predictions will then be presented 

followed by the results of the Performance Simulations with an analysis of the outcomes.  

 
6.1 Functionality Testing 
 
 

The goal of the Functionality Testing is to verify that each model is operating 

correctly, while the Performance Simulation to be discussed later on will provide 

empirical data to analyze the prediction capabilities of each model. The Functionality 

Testing involves running a multicast caching model through a series of simulated channel 

changes. This basic test verifies the proper operation of a model by checking that the 

following functions are correctly performed and updated as the test progresses: 

 
• The various input parameters, such as the constant weighting parameter and the 

total bandwidth, are properly utilized. 

• The current channel number and its bandwidth are correctly identified. 
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• The output channel cache is correctly calculated for the available bandwidth, 

weighted probabilities, and model algorithm.  

• The output channel cache is properly modified by each successive channel change 

selected. 

• The net cached weighted probabilities are correctly calculated. 

• The system correctly tracks the successfulness of the cache prediction outcomes 

throughout the simulation.  

 
This testing involves preparing an initial test data set with the channel change 

history buffer filled up with 2000 events based on the specified variable settings. A 

sequence of four channel changes is then generated with additional data sets created after 

each change. These new data sets are then run into each model in succession with the 

caching results recorded for analysis. The particular variable settings used for the 

Functionality Testing are shown on Figure 6.1 below.  

The process of creating the initial test data set begins using these variable settings 

to result in the channel ranking and bandwidth values for the 150 channels used during 

 
 

 

Figure 6.1 Variable Settings for Functionality Testing 

 

Exponential Lambda (λ) = 0.1
Constant Weight Parameter (α) = 0.98

Channel Change History Buffer Size (N) = 2000
Number of Channels Offered = 150

BW Mix Option = C
BW Penalty Factor (pf ) = 1.19

Total BW Available for Video (in Mbps) = 65

138 
 



this testing. The channel change history buffer is then populated by generating N=2000 

channel changes based on one of the lambda value settings (λ = 0.10). The time-

weighting function was then completed using the constant weight parameter value (α = 

0.98), and the test data set is then represented through an initial minimized data format. 

The remaining test data sets are created in the same manner by generating single channel  

 

 

Figure 6.2 Example of Initial Channel Ranking and Bandwidth List 

Rank Channel # Bandwidth C Rank Channel # Bandwidth C Rank Channel # Bandwidth C
1 91 2 51 62 2 101 53 4
2 38 18 52 27 9 102 66 9
3 33 9 53 136 2 103 12 9
4 5 4 54 13 2 104 97 2
5 18 2 55 26 9 105 72 2
6 37 2 56 110 9 106 23 2
7 133 2 57 65 2 107 113 2
8 47 2 58 145 2 108 122 9
9 106 9 59 107 2 109 103 18
10 67 18 60 102 9 110 48 2
11 94 9 61 126 9 111 138 2
12 51 2 62 14 18 112 147 2
13 19 2 63 61 4 113 75 4
14 139 2 64 150 2 114 108 9
15 39 9 65 64 9 115 109 9
16 69 9 66 78 9 116 120 2
17 137 2 67 87 2 117 44 2
18 52 9 68 21 9 118 9 9
19 131 2 69 15 9 119 84 2
20 89 9 70 100 2 120 121 18
21 130 2 71 31 9 121 83 2
22 49 4 72 25 9 122 88 9
23 123 4 73 79 2 123 30 9
24 101 9 74 56 2 124 46 2
25 45 2 75 1 2 125 85 2
26 43 9 76 117 9 126 95 2
27 58 2 77 127 9 127 16 9
28 125 18 78 144 2 128 4 9
29 71 2 79 6 4 129 92 9
30 10 18 80 148 4 130 17 9
31 60 9 81 8 2 131 119 18
32 146 9 82 111 9 132 81 2
33 112 9 83 24 4 133 68 4
34 59 18 84 42 2 134 98 9
35 35 4 85 57 4 135 34 9
36 93 18 86 140 9 136 142 9
37 86 2 87 132 2 137 104 2
38 80 4 88 55 2 138 149 2
39 20 4 89 90 4 139 40 2
40 11 9 90 135 2 140 22 2
41 74 4 91 2 2 141 63 9
42 28 2 92 115 2 142 118 4
43 29 9 93 41 2 143 134 2
44 73 2 94 54 2 144 114 9
45 128 9 95 105 9 145 7 4
46 99 9 96 32 2 146 77 2
47 143 18 97 116 9 147 50 2
48 96 2 98 70 9 148 124 2
49 129 2 99 3 9 149 141 9
50 82 9 100 36 9 150 76 9
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changes and recollecting the resulting information. Ultimately five test data sets are 

represented by five minimized data formatted files, and these files are then input 

sequentially into each caching model. An example of the channel ranking and bandwidth 

listing was shown on Figure 6.2 and an example of the initial minimized data format file 

after the time-weighting process is shown in a partial listing on Figure 6.3.  

 

 

Figure 6.3 Partial List of Initial Entries in Minimized Data Format 

37 0.09172 2
33 0.07423 9
106 0.07129 9
67 0.06989 18
47 0.06501 2
5 0.06221 4
38 0.05967 18
91 0.05448 2
133 0.05162 2
69 0.03806 9
39 0.03728 9
18 0.03539 2
43 0.03178 9
89 0.03135 9
51 0.02514 2
139 0.02352 2
94 0.02267 9
19 0.02025 2
52 0.01953 9
101 0.01624 9
131 0.01541 2
129 0.01507 2
137 0.01331 2
11 0.01207 9
60 0.01139 9
125 0.01076 18
130 0.00488 2
71 0.00463 2
45 0.00374 2
49 0.00171 4
58 0.00139 2
146 0.00102 9
126 0.00079 9
10 0.00076 18
59 0.00073 18

BW C
Time-Weighted 

ProbabilityChannel #
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 The sequence of the initial 2000 channel changes followed by the four additional 

single selections used in this testing is partially shown through the latest entries in the 

channel change history buffer on Figure 6.4. Each model is run sequentially through 

these five test inputs to generate five corresponding output caches for evaluation. 

 

 

Figure 6.4 Partial List of Entries in the Channel Change History Buffer 

Test 4 67
Test 3 93
Test 2 45
Test 1 37

Initial 1 39
Initial 2 89
Initial 3 52
Initial 4 5
Initial 5 37
Initial 6 69
Initial 7 47
Initial 8 33
Initial 9 106
Initial 10 67
Initial 11 133
Initial 12 37
Initial 13 91
Initial 14 106
Initial 15 129
Initial 16 47
Initial 17 101
Initial 18 67
Initial 19 5
Initial 20 47
Initial 21 131
Initial 22 33
Initial 23 37
Initial 24 33
Initial 25 51
Initial 26 11
Initial 27 133
Initial 28 91
Initial 29 60
Initial 30 38

Channels QueuedBuffer Bins

141 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi
gu

re
 6

.5
 F

un
ct

io
na

lit
y 

Te
st

in
g 

Su
m

m
ar

y 
R

es
ul

ts
 fo

r t
he

 S
am

pl
e 

M
om

en
t M

od
el

Te
st

 S
ta

tu
s

C
ur

re
nt

 C
ha

nn
el

 N
um

be
r

C
ur

re
nt

 C
ha

nn
el

 B
W

C
ac

he
BW

C
ac

he
BW

C
ac

he
BW

C
ac

he
BW

C
ac

he
BW

37
2

47
2

37
2

37
2

37
2

47
2

91
2

47
2

47
2

47
2

91
2

13
3

2
91

2
91

2
91

2
13

3
2

18
2

13
3

2
13

3
2

13
3

2
18

2
5

4
18

2
18

2
18

2
5

4
51

2
5

4
5

4
5

4
51

2
13

9
2

51
2

51
2

51
2

13
9

2
19

2
13

9
2

45
2

45
2

19
2

33
9

19
2

13
9

2
13

9
2

33
9

10
6

9
33

9
19

2
19

2
10

6
9

13
1

2
10

6
9

33
9

33
9

13
1

2
12

9
2

13
1

2
10

6
9

10
6

9
12

9
2

13
7

2
12

9
2

13
1

2
13

1
2

13
7

2
69

9
13

7
2

12
9

2
12

9
2

69
9

39
9

69
9

13
7

2
13

7
2

45
2

45
2

39
9

C
ac

he
 W

ei
gh

te
d 

Pr
ob

ab
ili

ty
B

W
 o

f C
ac

he
B

W
 R

em
ai

ni
ng

0.
63

7
46 1

N
o 

C
ha

ng
e 

   
   

   
   

   
 

to
 C

ac
he

N
o

4t
h 

Te
st

67 18

0.
66

9

Ye
s

3r
d 

Te
st

93 18 46 1

R
em

ov
ed

 #
69

 
R

em
ov

ed
 #

39
   

   
   

 
Ad

de
d 

#4
5

0.
70

3

N
o

62 1

In
iti

al
 2

00
0

R
em

ov
ed

 #
45

   
   

   
 

Ad
de

d 
#3

7

2n
d 

Te
st

45 2

1s
t T

es
t

39

0.
68

6
0.

66
7

1
1

55
62

C
ac

he
 s

et
 a

fte
r 

in
iti

al
 2

00
0 

ch
an

ne
l 

ch
an

ge
s

R
em

ov
ed

 #
37

   
   

   
 

Ad
de

d 
#3

9

Su
cc

es
sf

ul
 P

re
di

ct
io

n 
of

 
Pr

ev
io

us
 C

ac
he

C
ac

he
 A

ct
io

ns
   

   
   

   
   

   
   

   
   

   
an

d 
C

ha
nn

el
   

   
   

   
   

   
   

   
   

 
M

ov
em

en
ts

N
/A

Ye
s

C
ac

he
d 

C
ha

nn
el

s 
&

 
As

so
ci

at
ed

 B
W

37 2
9

142 
 



 Figure 6.5 shows the Functionality Testing Summary Results for the Sample 

Moment Model. A careful analysis of these results shows that the Sample Moment Model 

did meet all of the testing criteria identified earlier. In particular, it is evident that the 

current channel is properly updated and the caches do change as expected. This summary 

also provides another avenue to understand the mechanics of the multicast caching 

system. For example, when the current channel uses a higher bandwidth, as in the 3rd and 

4th tests, then the total cached bandwidth exhibits a corresponding reduction.  

 All of the models did pass the Functionality Testing showing that the basic 

operation of the models proceeded correctly. This was not a particularly surprising result 

since when one of the models was properly debugged and fully operational, then the 

other models followed suit due to the heavy use of the same Shared Routines. The major 

changes between the models were with the implementation of the specific prediction 

algorithms. The Performance Simulation was next designed to evaluate the expected 

successfulness of these unique prediction algorithms. 

 
6.2 Performance Simulation Methodology 
 
 
 The Performance Simulations involve running each of the multicast caching 

models on the full complement of sample data sets at specified available bandwidth rates. 

As seen in Chapter V, the sample data sets consist of 18 files that represent 6 different 

exponential λ values at three different bandwidth mixes. The minimized data format of 

each sample data set was created as described in Chapter V with each one detailing the 

specific channel rankings, bandwidths, time-weighted probabilities, and currently viewed 

channel. Each model performed three simulations on each of the 18 sample data sets 
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using the rates of 50, 65, and 75 Mbps for the total available bandwidth for video 

services. This led to a total of 54 individual simulations per model.   

 Each simulation run amounted to one of the 18 minimized data format files being 

input to populate the historical buffers and related variables allowing the selected model 

to calculate the Confirmed Channel arrays and output the cached channel selections. This 

same process was repeated for each of the 54 simulations on all six models for a total of 

324 individual runs. Each run represented a snap-shot in time of various conditions in 

which the model had to make decisions about which channels to pre-select. In real-world 

implementation this would take place on all IPTV device ports after each channel 

selection yielding a continuously updated multicast cache for each port.   

 A sample of the text format of the model output file is shown in Figure 6.6. As 

seen in this figure, the output file indicates the model used, the input data set file name, 

the specified total bandwidth available for video services, the channels in the Confirmed 

Channel arrays that make up the multicast cache, information on the currently viewed 

channel, and other attributes about the cache. It is clear that the example in Figure 6.6 is 

from a Sample Moment Model simulation with the first sample data set chosen as the 

input file (i1.txt) with 50 Mbps of total bandwidth available for video services. In this 

case, the 17 channels that were included in the multicast cache are listed by channel 

number, time-weighted probability, and channel bandwidth. A check is made to see that 

the 50 Mbps of total bandwidth is fully utilized by the 48 Mbps in the cache plus the 2 

Mbps used by the currently viewed channel number 55 resulting in 0 Mbps of remaining 

bandwidth. The net expected weighted probability is calculated as shown in Equation 6-1 

for the cached channels.  
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Equation 6-1 

 

 

Figure 6.6 Example Format of a Model Output File 

SAMPLE MOMENT MODEL OUTPUT 

 

Input Filename =  i1.txt 

Total Bandwidth =  50 

 

Confirmed Channels List for Multicast Cache: 

 

Chan Prob BW 

10 0.0461 2 

50 0.0438 2 

88 0.0386 2 

137 0.062 4 

72 0.0326 2 

60 0.0311 2 

143 0.0556 4 

73 0.0533 4 

3 0.049 4 

29 0 025 2 
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Equation 6-1 reflects the observation that the possibilities for the next channel 

selection should not include the current channel. The cache net expected weighted 

probability is therefore dependent on the other 149 channels that make up the full set of 

potential candidates for the next selection.  

 All of the 54 simulation output files for each model were saved into the results 

folder for that model. The completed data was then input into a separate Microsoft Excel 

file for a Cumulative Summary for each model. These summaries provide a quantitative 

means of analyzing each model based on all outcomes, performance by bandwidth rate, 

and performance by λ value. The key findings on the Cumulative Summaries were then 

input into a master Performance Simulation Results Summary for comparative analysis 

on the overall performance of the various models. Predicted results of the simulations 

followed by summary results and an analysis of the key findings are presented in the next 

sections. The complete detailed Performance Simulation can be found in Appendix F.  

 
6.3 Predicted Performance Simulation Results 
 
 
 For caching predictions it is first necessary to determine the BW utilized by the 

currently viewed channel to then derive the remaining size of the channel cache. The 

average channel size per mix can be calculated from the data previously presented in 

Table 5.1 as shown in the following equations: 

 

Mbps

RxAnnelSizeMiAverageCha x
forallR

xR
x

A

725.3
)025.018()075.09()4.04()5.02(

)%(

=
×+×+×+×=

×== ∑µ

 

Equation 6-2 
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Equation 6-3 
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Equation 6-4 

 
 Using the average channel size per mix as the estimate of the expected size of the 

currently viewed channel the BW available for video caching is then computed as the 

selected total BW rate (50, 65, or 75 Mbps) minus the currently viewed channel size 

above. These milestones along with the mechanics of each model will be used to 

determine the number of channels that can be included in the resulting cache. 

PROBABILITY ONLY MODEL PREDICTIONS: 

 The Probability Only Model makes use of the calculated probabilities of all 

offered channels based on the history buffer. The simulations repeatedly fill this buffer 

based on the use of six lambda (λ) values in the exponential equation. Figure 6.7 below 

shows an example of this exponential function after normalization with the probability of 

all the 149 available remaining channels equal to 1.0 as required for the PDF. 

 Each available channel represented on x-axis of Figure 6.7 is shown in order of 

probability or favorite channel status. Figure 6.8 depicts that the #1 favorite channel in 

this case has a probability of P(x=1) = 0.0952. Note that for Mix A each favorite channel 

has BW probabilities associated with it as defined in Figure 5.1, and these different BW 

probabilities can be used to define a 2nd Order view of this distribution based on the four 
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Figure 6.7 Full PDF for Exponential Distribution with λ = 0.10 on Mix A  

 

  
 

Figure 6.8 Partial View of λ = 0.10 Exponential with #1 Favorite Highlighted 
 

BW options available. Figure 6.9 shows this 2nd Order PDF with its respective BW 

probabilities determined as the area under each BW portion equal to the rate probabilities 

assigned in Figure 5.1. 
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Figure 6.9 Probability Only Model 2nd Order PDF for Exponential λ = 0.10, Mix A 

 

 

Figure 6.10 Partial 2nd Order PDF of λ = 0.10 and #1 Favorite Highlighted by BW 
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Note that the combined probabilities of the four portions of the 2nd Order PDF in 

Figure 6.9 are still equal to 1.0 for the combined full PDF. Again we can look at each 

individual channel in the 2nd Order view to then find the resulting BW probability for 

each of the four rates possible. Figure 6.10 more clearly shows the individual 

probabilities by BW for favorite channel #1. It also follows that the probability of 

favorite #1 can be defined by the summation shown in Equation 6-5 below. 

 

0952.0
)0024.0()0071.0()0381.0()0476.0(

)1( )18,1()9,1()4,1()2,1(

=
+++=

== ==+==+==+== MyxPMyxPMyxPMyxPxP

Equation 6-5 
 

Using this concept applied to the Probability Only Model allows us to calculate the 

resulting net cache probability as follows in Equation 6-6 with m channels cached. 

 

∑
=

==+==+==+===

=
m

k
MykxPMykxPMykxPMykxP

cacheP

1
)18,()9,()4,()2,(

)(

 

Equation 6-6 

 
 The remaining task required for Probability Only Model prediction is to 

determine the expected number of channels m included in the caches associated with 

each mix and total video BW rate available. This expected number of cached channels is 

calculated by subtracting the current channel size from the total video BW and then 

dividing by the average channel size. The decimal remainder from this calculation must 

also be taken into account as the model mechanics will choose smaller BW sized 

channels as needed to maximize the available total video BW. Table 6.1 shows the results  

150 
 



 
Table 6.1 Probability Only Model Expected Number of Cached Channels 

 

of these calculations for each mix and total available BW rate. 

 With the number of cached channels from Table 6.1 repeatedly assigned as 

variable m in Equation 6-6, the cache net probabilities for each simulated conditions was 

determined using Excel to calculate the results found in Table 6.2 for the Probability 

Only Model. Note the significant increase in cache probability found with higher total 

video BW rates. It can also be seen that the cache probability increases for channel mixes 

containing fewer HD channels, such as Mix A. Users that have fewer favorite channels, 

depicted by higher λ values, also result in a higher cache probability.  

 

 
Table 6.2 Predicted Results for the Probability Only Model  

Selected
Mix 50 Mbps 65 Mbps 75 Mbps

Mix A 13 17 20
Mix B 10 13 15
Mix C 8 10 11

Expected # of Channels Cached @ Selected Rates

λ  value  0.10 0.09 0.08 0.07 0.06 0.05 Average
Mix A @ 50 Mbps 0.7275 0.6896 0.6465 0.5975 0.5417 0.4782 0.6135
Mix A @ 65 Mbps 0.8173 0.7835 0.7433 0.6958 0.6395 0.5729 0.7087
Mix A @ 75 Mbps 0.8647 0.8347 0.7981 0.7534 0.6989 0.6325 0.7637
Mix B @ 50 Mbps 0.6321 0.5934 0.5507 0.5034 0.4512 0.3937 0.5208
Mix B @ 65 Mbps 0.7275 0.6896 0.6465 0.5975 0.5417 0.4782 0.6135
Mix B @ 75 Mbps 0.7769 0.7408 0.6988 0.6501 0.5935 0.5279 0.6647
Mix C @ 50 Mbps 0.5507 0.5132 0.4727 0.4288 0.3813 0.3299 0.4461
Mix C @ 65 Mbps 0.6321 0.5934 0.5507 0.5034 0.4512 0.3937 0.5208
Mix C @ 75 Mbps 0.6671 0.6284 0.5852 0.5370 0.4832 0.4233 0.5540

Average per λ  0.7106 0.6741 0.6325 0.5852 0.5314 0.4700 0.6006
Average for all Mix A 0.6953
Average for all Mix B 0.5996
Average for all Mix C 0.5070

Average for all 50 Mbps 0.5268
Average for all 65 Mbps 0.6143
Average for all 75 Mbps 0.6608

Average Probability for all Conditions 0.6006
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PROBABILITY DIVIDED BY BANDWIDTH MODEL PREDICTIONS: 

 The Probability Divided by BW Model simulation results can be predicted in 

much the same way. Figure 6.11 shows a partial 2nd Order PDF of the Probability 

Divided by BW Model distribution following normalization for Mix A. Note that the 

combined probability of the four 2nd Order BW components again equals 1.0. These 

derived BW probabilities were then used in Equation 6-7 to determine the average BW 

for each channel to be included in the cache for Mix A. Calculations were performed for 

Mixes B and C respectively as shown in Equations 6-8 and 6-9. Dividing the total 

available cache BW by the average cache channel size resulted in the expected number of 

channels cached for each condition as presented in Table 6.3. 

 

 

Figure 6.11 2nd Order PDF of Probability Divided by BW Model λ = 0.10, Mix A 
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Table 6.3 Probability Divided by BW Model Expected Number of Cached Channels 
 

Using the expected number of cached channels from Table 6.3 into Equation 6-6 

on spreadsheet data values corresponding to the normalized 2nd Order PDF from Figure 

6.11 allowed for the calculation of the net cache probability for each condition. These 

simulation predictions for the Probability Divided by BW Model are presented in Table 

6.4 below. Again note the improved expected caching results when higher total video 

BW is allowed for caching. It can also be seen in Table 6.4 that fewer HD channels in a 

mix result in higher cache probability for this model. Users with higher λ values  

Selected
Mix 50 Mbps 65 Mbps 75 Mbps

Mix A 17 22 26
Mix B 14 18 21
Mix C 11 15 18

Expected # of Channels Cached @ Selected Rates
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Table 6.4 Probability Divided by BW Model Expected Simulation Results 

 

representing fewer favorite channels result in higher cache probabilities here as well. 

These key trends are consistent with the results seen in the Probability Only Model and 

reflect important concepts to consider when analyzing the performance of this proposed 

system. 

SAMPLE MOMENT MODEL PREDICTIONS: 

 The Sample Moment Model simulation results were also predicted using the 2nd 

Order PDF procedure. Each lambda value was used to generate six different exponential 

PDFs, and these were then normalized through only the first 149 values to yield the Xi 

values for all of the possible next channel selections. The Sort Field from Equation 4-8 

was then used to generate new sort data associated with each channel for this model. For 

λ=0.10 and Mix A the following data values were used in the Sort Field: 

  Xi for each channel (from the normalized exponential PDF) 

  𝒙𝒙� = 0.00671 (calculated using Equation 4-7) 

λ  value  0.10 0.09 0.08 0.07 0.06 0.05 Average
Mix A @ 50 Mbps 0.8173 0.7835 0.7433 0.6958 0.6395 0.5729 0.7087
Mix A @ 65 Mbps 0.8892 0.8619 0.8280 0.7856 0.7330 0.6675 0.7942
Mix A @ 75 Mbps 0.9257 0.9037 0.8751 0.8380 0.7900 0.7279 0.8434
Mix B @ 50 Mbps 0.7534 0.7163 0.6737 0.6247 0.5684 0.5037 0.6400
Mix B @ 65 Mbps 0.8347 0.8021 0.7631 0.7164 0.6605 0.5938 0.7284
Mix B @ 75 Mbps 0.8775 0.8489 0.8136 0.7701 0.7164 0.6504 0.7795
Mix C @ 50 Mbps 0.6671 0.6284 0.5852 0.5370 0.4832 0.4233 0.5540
Mix C @ 65 Mbps 0.7769 0.7408 0.6988 0.6501 0.5935 0.5279 0.6647
Mix C @ 75 Mbps 0.8347 0.8021 0.7631 0.7164 0.6605 0.5938 0.7284

Average per λ  0.8196 0.7875 0.7493 0.7038 0.6494 0.5846 0.7157
Average for all Mix A 0.7821
Average for all Mix B 0.7160
Average for all Mix C 0.6490

Average for all 50 Mbps 0.6343
Average for all 65 Mbps 0.7291
Average for all 75 Mbps 0.7838

Average Probability for all Conditions 0.7157
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  µR = 3.725 (from Equation 6-2) 

  pf = 1.19 (initial penalty factor) 

 The resulting list of 149 calculated values from the Sort Field was then shifted 

positive (using calculated Shift Factor = 0.001403) to remove all negative values. This 

was followed by a normalization of all values to result in a new Full PDF for the Sample 

Moment Model (dividing each value by calculated Full Normalizing Factor = 0.209102). 

The individual BW probabilities were then calculated per channel using these new Full 

PDF probabilities, the available BW rates (2, 4, 9, & 18), and the Mix A BW 

probabilities from Table 5.1 to generate the 2nd Order PDFs shown on Figure 6.12. 

 

 
Figure 6.12 Partial 2nd Order PDF of Sample Moment Model with λ = 0.10, Mix A 
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The sum of all the individual BW probabilities for each channel yielded the new 

BW probabilities of selection for this example as follows: 

  P(2M) = 0.72498  P(4M) = 0.25421 

  P(9M) = 0.01816  P(18M) = 0.00265 

Equations 6-10, 6-11, and 6-12 show how the various 2nd Order BW probabilities 

were used for each mix to calculate the average BW for channels cached with this model. 

The process again divided the total available cache BW by the average cache channel size 

resulting in the expected number of channels cached for the various conditions 

encountered as presented in Table 6.5 with supplemental details in Appendix F. 
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Table 6.5 Sample Moment Model Expected Number of Cached Channels 

 

As with the previous predictions the expected number of cached channels from 

Table 6.5 entered in Equation 6-6 was used on the spreadsheet values corresponding to 

the normalized PDF from Figure 6.12 to yield the net cache probabilities for each 

condition. The simulation predictions for the Sample Moment Model are presented in 

Table 6.6. Again the same trends noted earlier regarding increasing total available video 

caching BW, reducing the HD channel presence, and increasing the exponential λ values 

are found to increase cache net probabilities for this model.  

 

 
Table 6.6 Sample Moment Model Expected Simulation Results 

 

Selected
Mix 50 Mbps 65 Mbps 75 Mbps

Mix A 17 23 27
Mix B 15 20 23
Mix C 13 17 20

Expected # of Channels Cached @ Selected Rates

λ  value  0.10 0.09 0.08 0.07 0.06 0.05 Average
Mix A @ 50 Mbps 0.8173 0.7835 0.7434 0.6960 0.6401 0.5750 0.7092
Mix A @ 65 Mbps 0.8997 0.8738 0.8412 0.8003 0.7492 0.6861 0.8084
Mix A @ 75 Mbps 0.9328 0.9120 0.8847 0.8492 0.8030 0.7437 0.8542
Mix B @ 50 Mbps 0.7769 0.7408 0.6989 0.6503 0.5941 0.5298 0.6651
Mix B @ 65 Mbps 0.8647 0.8347 0.7982 0.7536 0.6996 0.6347 0.7642
Mix B @ 75 Mbps 0.8997 0.8738 0.8412 0.8003 0.7492 0.6861 0.8084
Mix C @ 50 Mbps 0.7275 0.6896 0.6466 0.5977 0.5422 0.4800 0.6139
Mix C @ 65 Mbps 0.8173 0.7835 0.7434 0.6960 0.6401 0.5750 0.7092
Mix C @ 75 Mbps 0.8647 0.8347 0.7982 0.7536 0.6996 0.6347 0.7642

Average per λ  0.8445 0.8141 0.7773 0.7330 0.6797 0.6161 0.7441
Average for all Mix A 0.7906
Average for all Mix B 0.7459
Average for all Mix C 0.6958

Average for all 50 Mbps 0.6628
Average for all 65 Mbps 0.7606
Average for all 75 Mbps 0.8090

Average Probability for all Conditions 0.7441
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ADDITIONAL MODEL PREDICTIONS: 

 Recall that the Exhaustive Search Model uses “brute force” techniques to 

systematically look at various channel caching combinations. This approach did not lend 

itself to theoretical methods to predict its performance, so no prediction attempts were 

undertaken in this research on the Exhaustive Search Model. 

 Due to the relatively high percentage assigned for 2 Mbps channels by each mix, 

the Maximum Channels Model is expected to only select these lower BW channels until 

all available caching BW has been fully utilized. The expected number of cached 

channels was calculated for this model using the original average channel size per mix 

from Equations 6-2, 6-3, and 6-4 along with this known 2 Mbps cached channel size to 

yield the data found in Table 6.7 below. This model also falls under the same conditions 

driving the Full and 2nd Order Exponential PDFs as the Probability Only Model that was 

seen in the example for Mix A presented in Figures 6.7 and 6.9 previously. 

 However, the Maximum Channels Model’s expected constraint to only cache 2 

Mbps channels effectively eliminates our previous ability to take advantage of the 2nd 

Order BW probabilities from Figure 6.9, because only the 2 Mbps channels would be 

selected for caching in direct contradiction to the BW probabilities from the 2nd Order 

PDF. Therefore another technique is required to make an effective predictive analysis of 

the Maximum Channels Model.  

 

 
Table 6.7 Maximum Channels Model Expected Number of Cached Channels 

Selected
Mix 50 Mbps 65 Mbps 75 Mbps

Mix A 23 30 35
Mix B 22 29 34
Mix C 21 29 34

Expected # of Channels Cached @ Selected Rates
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 The most promising technique analyzed that may yield accurate predictions for 

the Maximum Channels Model was the use of an event tree. Since the decision on 

whether or not to cache each favorite channel was based primarily on if it was a 2 Mbps 

channel or not, then this event tree approach could be followed through all of the various 

caching possibilities until the cache was filled to the number of channels listed above in 

Table 6.7. Figure 6.13 shows a partial example event tree through the first six favorite 

channels or tree layers for this model on Mix A. This particular example represents one 

of the easiest cases to attempt given its low cache number of 3 channels and the basic 2 

Mbps channel probability of 0.5 present in Mix A. But even in this limited example it is 

 

 
 

Figure 6.13 Event Tree Example for Maximum Channels Model to Obtain a 3 
Channel Cache on Mix A with P(2M) = 0.5 
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Also note that the probability of each cache “hit” would have 
to be individually calculated and included in the overall cache 
probability. This 3 channel cache case provides insight into 
the tree complexity as the cache channel size increases.

From the Binary Tree note that the probability of obtaining 
three 2 Mbps channels for this example cache within the top 
6 favorite channels is:

P(3x2M in top 6 Fav.) =1/8 + 3/16 + 6/32 + 10/64 = 0.65625
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clear that the size and complexity of this partial tree increases with each favorite channel 

included in the tree. The complete event tree would actually have branch layers all the 

way out to favorite channel #149, but in practice this may not be fully necessary since the 

probabilities fall off dramatically and may eventually be ignored as successive layers are 

added. The event tree also grows considerably as the size of the cache increases, but this 

method does represent a potential predictive solution and could be favorably assisted by 

event tree software.  

 

 
Table 6.8 HD Model Expected Number of Cached Channels 

 

The expected number of cached channels is low for the HD Model as calculated 

using the processes described earlier and as presented in Table 6.8. This model’s 

complexity is derived not by a high number of cached channels, which is not present, but 

by the model’s mechanics which will start filling in lower BW channels into the cache as 

room allows. A similar computer assisted event tree approach could again be used for 

accurate predictions of the HD Model, but this is left for future research in this field. 

 
 
6.4 Performance Simulation Results 
 
 
 The Performance Simulation Results Summary is shown on Figure 6.14 with the 

mean expected weighted probabilities listed for all input samples by the bandwidth rate 

and exponential λ for each of the six models developed in Chapter IV. All of the 

Selected
Mix 50 Mbps 65 Mbps 75 Mbps

Mix A 3 5 6
Mix B 5 4 6
Mix C 4 4 5

Expected # of Channels Cached @ Selected Rates
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expected weighted probabilities listed are the mean values per identified attribute cached. 

For instance, the mean net expected probability of 0.7193 for all samples and conditions 

simulated by the Sample Moment Model is the average summation of the weighted 

probabilities of the caches for all of the 54 simulations. The mean expected weighted 

probabilities listed for each bandwidth rate include all of the λ values simulated at that 

rate per model. The mean weighted probabilities of the λ values include all bandwidth 

rates simulated at that specific λ value. 

 Figure 6.14 lists the models in decreasing order of overall performance rates. The 

Sample Moment Model had the highest overall performance, and it had the highest 

success level for all bandwidth rates and for all but one of the λ values in comparison to 

all of the other models. The Probability Divided by Bandwidth Model also performed 

well during the simulations proving that it was a viable model for use across the full 

spectrum of tested conditions. The HD Model was the only model simulated that would 

typically have less than a 50% success rate with a mean expected weighted probability 

for all input samples of only 23.94%.  

A Cumulative Summary for the top performing Sample Moment Model can be 

seen on Figure 6.15. This summary shows the performance results for all 54 test runs of 

this model, and it is displayed in a multiple ways by rate and by λ value. It is evident that 

if a user provides the system more bandwidth for video caching, then the success rate of 

pre-selecting the next channel to be viewed increases. Also evident is the predicted result 

that users with a smaller number of favorite channels, as expressed by an increased λ 

value, have better prediction success rates from the caching models. Of particular note to 

examine is that only three of the 54 simulations for this model indicate an expected 
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success rate of less than 50% for the pre-selection outcome. The mean weighted 

probability outcome of the simulations run at the highest rate of 75 Mbps for users with 

only about 25 favorite channels (λ = 0.1) ended up with successful outcomes of greater 

than 85%. The Sample Moment Model overall result of 71.93% mean net weighted 

probability indicates that the vast majority of the time this model would be expected to 

successfully pre-select the next channel to be viewed and result in a CCT reduction of [(2 

x Network Delay) + (IGMP Processing)] for all successful caches. The Cumulative 

Summaries covering this same level of detail for all of the other models can be found in 

Appendix F.  

 Table 6.9 shows a comparison between the predicted and simulated results for the 

models that were fully predicted. The Sample Moment Model and Probability Divided by 

Bandwidth Model simulation results were within 2.5% of the predicted expected results. 

The Probability Only Model simulated at over 7% higher than expected. This deviation 

could potentially be attributed to a reliance on averaging techniques used in several key 

computations for the predicted results. Prior to any actual attempted field deployment of 

this model, additional predictive analysis should focus on theoretical techniques that 

eliminate this potential source of error in determining the expected results.  

The key conclusions to be drawn from the Performance Simulation results are that 

several different modeling techniques each have reasonably high expectations of 

 

 
Table 6.9 Comparison Between Predicted and Simulated Results 

Model Predicted Simulated % Difference
Sample Moment 0.7441 0.7193 -2.48%

Probability Divided by BW 0.7157 0.7180 0.23%
Probability Only 0.6006 0.6719 7.13%

164 
 



successfully predicting the next channel to be viewed and that higher bandwidth rates for 

video services dramatically improves the caching results. The Performance Simulation 

results were all within 7.13% or less of the predicted results. The Probability Only Model 

relying solely on the weighted probabilities would be expected to correctly predict and 

cache the next channel selection more than 60% of the time on average. By introducing 

the key concept of penalizing and rewarding channel sort fields based on their bandwidth 

usage, the Probability Divided by Bandwidth Model increased the expected system 

effectiveness to well above 70% on average. The additional complexity and data 

parameters added into the modeling process allowed the Sample Moment Model to 

become the overall top performer with gains to above 74% average predicted 

effectiveness and a near 72% success rate simulated across all conditions tested. 

The remaining chapters of this research document lay out additional proposals on 

how to implement the system, cover additional improvements that could be investigated 

in the future, and discuss other applications where this same caching approach may be 

beneficial.  
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CHAPTER VII 
 
 

IMPLEMENTATION OF MULTICAST CACHING 

The previous chapters provided the justification, rationale, details, and evaluations 

of this multicast caching proposal. The sections in this chapter identify and analyze the 

key issues that must be considered in order to successfully implement this proposal on 

actual provider networks. Several suggestions are also made concerning potential 

improvements to the overall system that could be further developed through additional 

research in the future. 

 
7.1 Operational Considerations 
 
 
 The proposed system of multicast caching does not require a direct change in any 

of the applicable standards, but all of the required devices will have to be capable of 

integrating the model routines and handling the multiple IPTV streams. Router devices 

from each vendor have distinct features and firmware that may or may not allow easy 

integration of the multicast caching system without major engineering redesign. These 

individual devices will have to be evaluated, upgraded, and redesigned as needed to be 

able to support the features of the proposed system. Based on laboratory testing with a 

variety of STBs, there does not appear to be interoperability issues pertaining to the 

additional multicast streams as these client devices simply ignore the other streams that 

are not selected for viewing. Client HGs may or may not require modifications primarily 
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dependent on whether the device is used in bridge or router mode and on whether IGMP 

Snooping is available. But due to the fact that this proposed system does not rely heavily 

on upgrades to customer client devices, the primary efforts to implement the system 

involve planned modifications to the network side of the IPTV process. 

Any other CCT reduction methods that are intended to be used simultaneously 

with the multicast caching system would have to be analyzed for proper integration as 

well.  In many cases such as with I-frame management, these methods involve CCT 

reductions in areas totally unaffected by pre-fetching the next channel for viewing, so the 

integration would not likely be of major concern. However, some of the other CCT 

improvements may directly affect the design and performance of the multicast caching 

system, such as the methods involving specialized tune-in servers.  

 One operational consideration concerns how the system behaves during the initial 

start-up condition. At the time of the initial start-up, the channel change history buffer 

would be empty and there would be no data available for the models to predict the next 

channel change. With each new channel change the history buffer slowly gains more 

information for the models to use in their cache determination. This expected condition 

will consistently improve over time until the history buffer has enough entries to reflect 

the user’s preferences. During this process the proposed system would only be expected 

to provide “best effort” performance based on the limited amount of information in the 

history buffer. Users should be made aware of this initial condition through customer 

documentation and product warnings so they will not expect optimal CCTs until the 

system has had time to gather their preferences.  
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 The device or port reset condition is an area that requires some consideration. As 

the system would typically be implemented to numerous customers that are fed IPTV 

streams from multiple ports on the same LHR edge device, each port of the device would 

run distinct instances of the model routine. Care should be taken during the design phase 

to make sure that normal resets of affected devices do not void out the channel change 

historical buffers and associated logs for each port. An alternative would be to have 

software capabilities to restart the multicast caching system for individual ports or for the 

entire device based only on verified technician inputs to the device. Power down 

scenarios along with soft and hard resets of an entire routing device should not result in 

the loss of the multicasting information. A full reset of a device to factory default 

conditions would be expected to clear out all of the caching system information and result 

in the system behaving the same as its initial start-up condition. 

 The pre-selected channels streamed as part of the multicast cache are designed to 

improve CCT, but they do fill up a significant portion of the unused available bandwidth. 

It is possible that in certain situations a burst of data or other traffic may need to receive 

preferential treatment over the cached channels. This would occur more frequently with 

users that have higher-end devices with larger data rate limits. A large part of this issue 

could be addressed up front with the rate selection parameter set to a lower rate for video 

services, such as lowering the rate from 75 Mbps to 65 Mbps. In this case optimal CCT 

performance would be sacrificed to reserve a larger amount of bandwidth for non-video 

services. More granularity could be added to the process by allowing video bandwidth 

usage as define by a user to be assigned in 1 Mbps increments. A dynamic approach to 

this problem would be to prioritize the multicast cache to much lower levels than other 
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traffic. This would allow a burst of data packets to have priority over the multicast cache 

packet stream. If the burst continued for long enough to be reflected in the available 

bandwidth rate fields, then the system would automatically reduce the size of the cache to 

maintain appropriate rates for the other non-video services. For short term burst situations 

that did not affect the available bandwidth rate fields, the cached traffic could be 

preempted by other traffic through use of a variety of standardized prioritization and QoS 

techniques within the Internet Protocol (IP). One of these techniques is the use of the 

Type of Service (TOS) field within the IPv4 header by adjusting the Precedence Bits (P-

Bits) and TOS subfield for the different types of traffic [98-99][111]. The TOS field was 

upgraded to the Traffic Class field in the IPv6 header with expanded capability to 

distinguish differentiated services. Virtual Local Area Networks (VLAN) can also be 

used to designate different routing and treatment of identified packets [112-113]. By 

assigning the multicast cache a lower precedence through the P-Bits or tagging it with a 

specific VLAN, the higher priority traffic packets can be directed to jump ahead of the 

cached stream packets in the packet processing queues. The use of these techniques 

would require further system evaluation and testing to quantify the capabilities, 

functionality, and reliability of the process for the specific devices deployed, although the 

concept has been standardized in general for many years. Further details about these 

prioritization techniques can be found in Appendix G. 

 A variety of performance logs and metrics for each instance of the multicast 

caching system should be kept along with overall device-level logs. These indicators 

should reflect key aspects of the system’s performance including historical items such as 

the overall caching success rates, the numerical values of model variables, and the 
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processing load required for the system. Some of these caching related metrics could be 

designed to be routinely uploaded to higher-level equipment or a Network Management 

System (NMS) to allow for network level performance analysis. Thresholds could be 

established to trigger warnings and alarms based on poorly performing network 

components or unusual conditions. 

 
7.2 Processing and Memory Implications 
 
 
 A key objective of an effective multicast caching system is that it stays relatively 

current with respect to viewer preferences. The optimal situation would be that the 

system can update the cache of pre-selected channels in between each channel change. 

Table 7.1 shows the timing results for a series of processing tests run on the Sample 

Moment Model. These processing tests were run on a modest personal computer with the 

following capabilities and configuration: 

 
Operating System  Linux – Fedora Release 12 

Linux Kernel   Version 2.6.32 

Processor   Dual Core T5270 @ 1.4 GHz each 

RAM    2 GB 

 
 The Sample Moment Model routine was recompiled to run on this Linux-based 

machine, and the Linux “time” utility command was run on the executable program of 

this model to return the actual amount of time spent processing the application for each of 

the eighteen tested inputs. Tracks of the CPU usage verified that only one of the Dual 

Core processors was used to run the application. These tests using only moderate CPU  
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Table 7.1 Processing Tests of the Sample Moment Model 

 
speeds indicate that the processing requirements of this proposed system are not 

prohibitively large, and the system would typically have enough time to update the cache 

between channel changes given the 11.4 msec recorded average.  

This tested average processing time is meant only as a benchmark to determine 

the processing feasibility of the system. Several factors would be different during an 

actual deployment that would affect the resulting processing times seen in the field. In 

addition to different CPUs and processing speeds, a field system would be designed so 

that it would not have the additional requirements used in this testing to open a file, read 

in the input data, write out the output data, and close a file. The channel change history 

Test # Processing Time (ms)
1 15
2 11
3 13
4 9
5 8
6 13
7 12
8 13
9 9

10 13
11 11
12 12
13 12
14 11
15 12
16 11
17 11
18 10

Average (ms) 11.4
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buffer and all key variables could simply be kept in Random Access Memory (RAM) for 

quick access, although the system could periodically save this data for safekeeping. The 

channel probability updates and the time-weighting routines were simulated in this test 

through insertion of additional coding steps to fill representative arrays since these 

functions were already completed in the minimized sample data format. The Sample 

Moment Model as written in C++ through this research was not fully optimized from a 

software perspective, so professional re-development of the routine would likely result in 

additional processing improvements. Nevertheless, these tests indicate that the Sample 

Moment Model does not have prohibitively high processing demands, and the general 

processing clock cycle requirements per port for each channel change event are 

approximated as follows: 

 
(11.4 msec) x (1.4 G cycles/s) = 15.96 M cycles / port channel change 

 
This result approximates the number of processing cycles that the current model program 

requires to update the multicast cache after each channel change on a per port basis. This 

estimate provides an insight into the processing requirements for a wide range of 

equipment using a multiple of this result by the desired number of ports a particular 

device needs to support. 

 The speed of the processing would be enhanced by retaining all of the data in 

RAM for immediate access for field deployments. This requires an analysis of RAM 

sizing to verify that each device will not be overburdened by excessive memory 

requirements. In an analysis similar to the processing tests, the peak RAM usage required 

by the systems was tested on the same Linux-based personal computer. These RAM tests 
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were conducted by comparing the peak memory usage near the end of the test with the 

usage at the beginning of the program run. The additional coding used to perform these 

tests was inserted into the appropriate positions of the Sample Moment Model, and the 

details of this routine can be seen in Appendix G. The Linux structure “getrusage( )” was 

the key component of this routine, and it provided the value of the “maxrss” variable 

indicating the set size in Kilobytes of memory usage at queried points in time. With the 

system variables fixed at the same levels used in the Chapter VI simulations, this testing 

consistently approximates the peak RAM requirements as follows:  

 
Peak RAM Usage of Sample Moment Model = 264 KB per port 

 
If the underlying system variables are changed, such as the history buffer size or number 

of channels offered, then the RAM requirements will be affected. However, these per port 

approximations do not indicate that the memory requirements for this system are 

prohibitively large. Furthermore, a streamlined professional software development plan 

would likely reduce the RAM usage significantly for actual implementation. Additional 

ongoing technical advancements, such as multi-core processing and embedded design 

optimization, will only increase the ability of network devices to be able to handle these 

system requirements. 

While the processing and RAM tests validate the general ability of the system to 

be designed so that it routinely stays up to date, it would still be prudent for the system to 

not be functionally required to always meet that objective. If a viewer is rapidly changing 

channels at the same time that the processor is extremely busy with higher priority tasks, 

then a cache update time-out could be triggered that retains the previous cache through 
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that particular channel change event and the “Failed Cache Processing %” metric field 

would be increased to reflect that the system did not complete the cache update in time. 

As noted earlier, there may or may not be changes to the cache in between channel 

changes based on the model results, so a slightly out of date cache would be highly 

preferential over no channels cached at all. As discussed in Chapter IV, the “Failed Cache 

Processing %” flagged set to No or an adjustment of the constant weighting parameter (α) 

would trigger the feedback adjustment routines to modify the size of the channel change 

history buffer to help decrease the processing demands. Proper design of the system 

would alleviate most of these concerns for the vast majority of channel change events.  

 There are several tasks of lower time sensitivity than updating the channel cache, 

and these tasks can be limited to run only when overall CPU demands are low. These 

tasks include the variable feedback adjustment routines and uploading performance 

metrics to higher network elements. Allowing these routines to run only when CPU usage 

is low ensures that these activities do not undermine the basic functionality of the system. 

A series of self-checks to verify process integrity could be similarly regulated based on 

the criticality of the situation. For instance, an alarm indicating that a key process has 

stopped would have a higher priority of resolution than sending out a periodic update to a 

process that has seen a period of inactivity. Clearly users will not be operating the system 

continuously and inactivity would be a common occurrence, but key processes should not 

close down unexpectedly. Careful consideration of decision flows such as these will 

further ensure that the multicast caching system operates effectively and does not impair 

other device functionality. 
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7.3 Limitations 
 
 
 The key limitation to understand first is that this proposed system does not expect 

to be 100% effective. From the simulation results based on a reasonably high bandwidth 

availability and 150 channels in the lineup, the top performing model was unsuccessful at 

predicting the next channel selection over a quarter of the time. From the laboratory 

testing it is known that there will be no reduced CCT for this system unless the multicast 

cache includes the next channel selected.  

 Two of the main issues that directly affect the success rate of the system are the 

bandwidth available for video services and the number of channels offered. It was shown 

in Chapter VI that the system’s success rate increased by over 13% for the Sample 

Moment Model when the video bandwidth was increased from 50 Mbps to 75 Mbps. 

Similarly the system would see a decreased success rate if the number of channels offered 

increases, such as from 150 to 300. The guidance here is that the system should not be 

expected to maintain high success rates at reducing CCT if the channel lineup is 

dramatically increased without additional bandwidth being made available for the cached 

channels.  

 While the system operates within the scope of existing standards, each applicable 

device within the IPTV network will have to be capable of handling its part of the 

system. LHR devices will have to be able to run an instance of the selected model for 

each IPTV port on the device. These routers will have to meet the processing and 

memory requirements covered earlier in addition to being capable of streaming all the 

cached video channels. Additional capabilities to maintain logs, manage packet priorities, 

and update feedback processes must be present within these devices as well. These tasks 
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do not conflict with the existing standards, but the functionality is not currently present 

on deployed equipment and would need development. Based on the reasonable 

processing and memory requirements analyzed earlier, it is expected that numerous 

existing devices could support the requirements through firmware updates to handle the 

implementation of the system without the need for wholesale hardware retrofits. This 

would not be an issue whatsoever for all new deployments once the functionality has 

been verified for the installation kit in laboratory testing and field trials. NMS systems 

would need additional software features to track network caching performance and 

metrics as well as being able to manage system alarms and warnings. With the overall 

focus of this proposal geared toward the network side, it is also worth noting that the 

entire network does not need to be upgraded simultaneously. The multicast caching 

system could be rolled out systematically over time to different areas of the network in a 

controlled fashion with minimal customer impact.  

As will be discussed in Chapter VIII, this multicast caching technique has 

potential applications higher up in the network that are unrelated to the specific goal of 

CCT reduction. Some of these potential applications focus more on optimizing bandwidth 

usage, so it is possible that additional upgrades would be required at different levels of 

the network to handle the additional functionality if this path is selected. 

 
7.4 Potential Improvements 
 
 
 There are several areas of improvement available beyond this current project 

scope including some potential gains to model development and some gains associated 

with other related processes. The recognition of existing special conditions could be 
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incorporated into the system rather easily to take advantage of previous methods used for 

CCT reduction. Two clear examples of this potential improvement would be to recognize 

when a viewer is incrementing or decrementing channels sequentially and to identify 

when a user is toggling back and forth repeatedly between two channels. Another 

improvement would be to include functionality designed to optimize the critical periods 

of “high surfing” channel changes, such as during advertisements. These situations have 

already been covered by previous researchers [26][38][73], so when these conditions are 

identified then the channel pre-selection process could utilize overriding priorities for 

which channels to cache first. It was shown during the model development for this 

research that gaining additional information about each individual user results in a more 

knowledgeable prediction of their future channel change selections. Further research 

could continue down this path through even more advanced mathematical algorithms or 

by including non-mathematical facts about the current viewer. The next few paragraphs 

will explore some of the most promising directions that could be systematically explored 

in the future.  

 Premium services utilizing attributes such as time-of-day (TOD), day-of-week 

(DOW), and month-of-year (MOY) viewing histories could be offered to gain insight into 

a preferential user’s periodic viewing tendencies. For example, if the user has routinely 

watched a particular local news channel at 10:00 p.m., then a higher probability could be 

assigned to that channel during those nightly time-slots. It is intuitively obvious that these 

parameters would lead to more informed predictions of channel change selections, but 

several factors would be introduced into the probability criteria that must be addressed. 

Initially the channel change history buffer would need to be divided into bins 
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representing the different time-slot parameters under consideration. A series of logic 

decisions would be required to integrate these new sorting parameters into the overall 

prediction process. A new weighting process would be required to determine how much 

emphasis should be put upon each of these new parameters. Consider the example where 

a viewer watched a particular channel at a certain hour the night before, but they did not 

watch that channel at all the previous week. This example may receive some higher 

weighting based on the previous night’s activity, but perhaps not as much as if they 

consistently watched it nightly or even each week during that same time-slot. All of these 

types of weighting decisions would then need to be integrated into the overall probability 

calculations in some fashion to come up with the new sorting field for determining the 

multicast cache. It is clear that a path could be developed using these parameters for more 

informed decisions, but the additional complexities introduced must be well managed for 

an overall improvement to the system.  

 Another potential premium service for consideration would allow the system to 

gain specific knowledge about an individual viewer. If authorized by the user, key 

attributes could be included into the decision criteria that take into account individual 

factors such as the user’s age, sex, education, and ethnicity. One method to help manage 

this could be a quick user identification from a known menu of previous users. For 

instance, a TV in the family room of a household may be periodically watched by 

different people at different times, so they could initially identify themselves when the 

STB is accessed from a simple menu listing the family viewing options. If it is known 

that a young child is watching the TV at a certain time, then the channel predictions could 

be quite different versus those made when the parent is watching. This parameter could 
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be contingent on a premium user’s acceptance and input. Other options could be taken 

into account to indicate if the TV is located in other types of facilities such as a hotel 

room or a business. The geographic location could be taken into account as well for 

weighing viewership expectations of sporting events or regionally oriented programs. For 

instance, viewers in Massachusetts are probably much more likely to watch a Boston Red 

Sox baseball game than viewers in New Mexico. An elaborate history could further be 

developed that tracks not only the channel numbers but also the actual programs 

associated with each viewing.  

While there may be clear privacy concerns in some cases, even more in-depth 

knowledge of a user could be utilized by integrating other business unit information into 

the decision process. Consider the situation where a large MDU apartment complex has 

entered into a business arrangement with a telecommunications company to obtain bulk-

rate IPTV services along with their other utilities. In these MDU cases, the apartment 

owner may have detailed knowledge of a viewer’s occupation, salary, financial history, 

and credit that could be authorized for use in the caching process. Furthermore, the 

telecommunications provider could conceivably use a viewer’s internet activity to gain 

insight into an individual’s interests and hobbies. These “big brother” cases may sound a 

bit far-fetched at first glance right now, but an increasingly large effort at targeted 

advertising has been ongoing for several years already to pave the way forward for these 

types of individualized services [114]. All of these potential user identification 

parameters covered above do introduce additional complexities and further judgmental 

weighting problems that must be considered and overcome in order to add them into the 

caching process. Consider the situation where many of the above parameters are known 
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about a user, then one key element of concern would be the logical decisions about how 

much emphasis must be placed on each parameter during full integration and prediction 

of the next cache list. Factors such as timing, memory, and processor requirements must 

be considered as well in order for these types of advanced criteria to be injected into the 

vast number of edge ports within a network.  

 Many of the existing CCT reduction techniques, such as dynamic I-Frame 

management, could be simultaneously used along with this proposed multicast caching 

system. A key existing technique that could hold significant promise for simultaneous use 

with this proposal would be the methods of dynamic video coding discussed in Chapter 

II. The concept of tune-in streams that use less bandwidth could be extremely beneficial 

to the channel caching process by allowing many more channels to be cached within a 

given bandwidth limit. This hybrid solution provides all of the CCT reductions associated 

with the dynamic video coding methods while at the same time significantly improves the 

effectiveness of the multicast caching solution. This particular hybrid approach represents 

one of the most recommended and optimistic areas of potential CCT improvement for 

future development given the steady rise in the number of offered IPTV channels.  
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CHAPTER VIII 
 
 

ADDITIONAL APPLICATIONS 

The models first presented in Chapter IV contain various algorithms and 

processes to maximize pre-streaming channels down to a user to reduce their CCTs. The 

top performing models predict the next channel to be selected while maximizing the 

overall probability of the pre-streamed cache for the next channel change. There are 

several other potential applications for this type of process in which a subset of video 

channels or live data streams can be pre-selected for transmission over a limited amount 

of bandwidth. 

 
8.1 Downstream Video in the Network Backbone 
 
 

Consider the example configuration depicted in Figure 8.1 showing a portion of a 

large future IPTV network with several downstream links. In this example the New York 

main office is the central transmission site for all of the 1500 network channels following 

advertising insertions and other edits, such as logos, as desired. The primary downstream 

long-haul links to the regional offices are at a rate of 10 Gbps. Links to various other 

smaller sites and hubs are at different rates depending on the size of the site demand, link 

availability, and cost. Additional links down to MDU locations similarly run at a variety 

of rates based on the number of users and cost concerns. The links within the MDU to 
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Figure 8.1 Example IPTV Downstream Links 
 

individual users are assumed to be at standard 100 Mbps rates. Even as the cost for 

bandwidth has significantly decreased over time these various network links still 

represent enormous ongoing cost expenditures to the IPTV providers, so they consistently 

take significant steps to minimize this burden [115]. For this example let us assume that 

the average channel BW is 5.1 Mbps as in the Mix B case from Chapter V. Table 8.1 

shows these downstream links by link BW, maximum channel carrying capacity, and 

planned number of channels to be carried simultaneously. Notice that all of the major 

markets have been designed to have all 1500 offered channels present to their location, 

but this is not needed or affordable when it comes to the destination markets like most 

MDUs with only a few hundred units or less.  

In Table 8.1 we see that the 400 unit MDU has plans to receive 582 simultaneous 

channels while the 20 unit MDU is only sized to receive 194 channels. While the 

New York Central
Feed of all 1500 IPTV Channels Following

Advertising Insertion and Other Edits

Dallas Regional Center

Oklahoma City POP

Stillwater Hub

Large MDU 
Complex 
400 Units

Small MDU 
Complex 
20 Units

10G Link

8G Link

3G Link 1G Link

8G Link

Downstream Links
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Table 8.1 Downstream Link Metrics 

 
provider sees these plans as more than enough to handle the expected demand from the 

respective MDUs, the channel limitations below the offered number of 1500 requires that 

certain channels be selected for streaming. If an MDU user picks a channel outside of the 

currently streamed list then clearly the CCT is expected to take longer. So the provider 

and its customers would clearly benefit from a system that would make the most effective 

use of its IPTV link capacity and increase the probabilities of customer QoE. The top 

performing model algorithms presented in this research would be well suited for this 

downstream video application. 

 
8.2 Upstream Video Broadcasting 
 
 
 In a future IPTV network application a large number of live channels offered may 

tend to frequently exceed the limits of most network links. This basic oversubscription 

could be built into the provider’s business plan by guaranteeing certain channels, offering 

“best effort” at providing others, and offering premium services to pay on demand for 

certain channel coverage. Figure 8.2 shows an example of an upstream portion of a 

network in which the source feeds exceed the upstream link limits. These source feeds 

could still be retained at the Regional Centers for viewing within the area even as they are 

not fully streamed back to the central New York office. But the ongoing routine decisions  

Link Starting Location Link Ending Location BW (Gbps) Max. # Channels Planned # Channels 
New York Dallas 10 1941 1500
Dallas Oklahoma City 8 1553 1500
Oklahoma City Stillwater 8 1553 1500
Stillwater Large MDU (400 units) 3 582 582
Stillwater Small MDU (20 units) 1 194 194
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Figure 8.2 Example IPTV Upstream Links 

 
regarding which channels to send on upstream form another suitable application for the 

caching algorithms presented in this research. 

 
8.3 Remote Sensing and Other High Bandwidth Applications 
 
 
 Several fields of science have situations where a large amount of live data is 

captured at remote locations, but the transmission capacity from the remote location back 

for analysis may not be large enough to handle all of the live data feeds. In these cases 

the data is instead analyzed remotely with summaries uploaded periodically. This 

situation arises sometimes by design but sometimes by accident. Examples of this were 

the Mars Rovers and other space probes that sustained damage to one of their 

communications links and were forced to handle large amounts of data over the 

remaining links not sized for the entire data stream. If an operator selects specific data to 

be forwarded from a remote location, then that request should pre-empt most normal 

New York Central
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Dallas Regional Center
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traffic. But over time in these BW limited cases, it is imperative that the communications 

link be utilized to its maximum capability. A couple of the caching algorithms presented 

in this research could take into account the BW price for certain channels or feeds in this 

case to maximize the overall remote transmission.  

 Another potential application of these algorithms involves managing video feeds 

back to control centers or security surveillance. Consider a corporation with numerous 

factories, buildings, or stores in which a large number of surveillance cameras are 

continuously recording ongoing operations. The control center may have the ability to 

manually view individual cameras over a remote link, but as the size of the network feeds 

grow then manually configuring which camera should be transmitted over the link poses 

an increasing burden. The caching algorithms could simplify this task while still allowing 

for manual override viewing as needed. Military command and control centers as well as 

airlines and hospitals could also be potential beneficiaries of this technology for their 

high BW situations.  
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CHAPTER IX 
 
 

CONCLUSIONS 

An analysis about the need for rapid channel change times on growing IPTV 

networks was initially presented, and the underlying processes that govern channel 

changing were examined in detail. This research advocated pre-streaming a multicast 

cache of video channels over available bandwidth to users in advance of their next 

channel change. The benefits of the multicast cache were verified in laboratory testing for 

cases in which the system had included the next channel change in the pre-streamed 

cache. This benefit was documented to typically be in the range of 220 to 420 msec in 

actual field practice for each correctly pre-streamed event.  

Six different caching models were developed for a variety of situations, and 

mathematically based predictions were presented for several of these models. Each model 

was run through a series of simulations using sample data sets as inputs to the model 

covering a wide variety of expected channel changing behavior. All six of the models 

successfully passed the functionality simulations, and showed varying degrees of success 

in the performance testing. Feedback mechanisms were presented that would tune field 

systems for optimal performance. Implementation considerations such as processing and 

memory requirements were also presented to bridge the gap between this research and 

actual field deployment of the systems proposed. It was also shown that implementation 

of this system could take place primarily on network devices and potentially through 

186 
 



firmware upgrades without the need for wholesale replacements or changes to existing 

IPTV standards. Related topics requiring further research or areas of potential 

improvement were discussed. Several additional potential applications of the models and 

algorithms were also presented. 

The Probability Only Model makes caching decisions based on each channel’s 

probability of selection as calculated from a history of channel changes stored in a device 

buffer over time. The concept of time-weighting the history buffer was proposed to give 

higher influence to more recent activity versus older events. Functionality and 

performance simulations of this model required the development of the sample data sets 

with a key element being the use of the exponential distribution to characterize user 

favorite channel behavior across six different exponential curves. Predictions of the 

model’s performance in the simulations focused on PDFs of multiple random variable 

distributions in which each favorite channel’s probability of selection along with its BW 

probability was analyzed. The Probability Only Model was predicted to correctly cache 

the next channel change roughly 60% of the time across the entire spectrum of conditions 

expected. The actual performance simulation results for this model over the 54 various 

simulation runs showed a 67% cache probability rate. 

The Probability Divided by Bandwidth Model introduced the concept of 

rewarding and penalizing channels based on their low or high bandwidth rates. Similar 

predictions based on composite PDFs of this model indicate that it was expected to be 

successful in 71.6% of the performance simulations, which ended up being extremely 

close to the simulated results.  
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The Sample Moment Model was introduced with a sort field based on the channel 

probability minus the mean then divided by the bandwidth to a power factor. This sort 

field and algorithm was shown to be the most effective of those presented with predicted 

results of 74.4% success and simulated results of near 72% cache probability.  

The Maximum Channels Model was presented as a method of optimally caching 

the highest number of channels. Performance predictions for this model were complicated 

in such a way that the composite PDF methods of prediction were not usable. An 

alternative predictive approach was presented using event trees, but this method was left 

for future research. The actual performance simulations did report this model to end up 

with an average of 58% cache probability. 

The HD Model was initially developed prior to the laboratory testing which 

showed that HD channels only experienced minor increases in channel change times. But 

this model was geared to cache the highest BW channels first, and as such it resulted in a 

smaller cache size. The model performed poorly in the performance simulations with an 

expected success rate of only 24%. 

The Exhaustive Search Model was developed in hopes of providing a benchmark 

for maximum model effectiveness by examining all possible channel cache combinations. 

The processing required to fully achieve those results was beyond the limits of this 

research, so a streamlined system was developed in which the best combination of up to 

six cached channels was determined in successive attempts using a “brute force” 

approach. A mathematical prediction was not undertaken for this technique, but the 

model did result in an average of 66% cache probability through the simulations.  
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The top performing of these models indicate that well over 70% of the time it is 

expected that users would experience significant channel change time reductions in the 

range of several hundred milliseconds if this proposed system was fully implemented on 

IPTV networks.  
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APPENDIX A 

 
Appendix A.1 List of Acronyms 

 
4G  Fourth Generation of Cellular Wireless Standards 
AVC  Advanced Video Coding 
A/V Sync Audio to Video Synchronization 
B-Frames Bi-Predictive Frames 
BW  Bandwidth 
CCT  Channel Change Time 
CDF  Cumulative Distribution Function 
CLT  Central Limit Theorem 
DHCP  Dynamic Host Configuration Protocol 
DOW  Day-of-Week 
ECM  Entitlement Control Messages 
EPG  Electronic Program Guide 
FHR  First Hop Router 
FTTH  Fiber-to-the-Home 
GOP  Group of Pictures 
GPON  Gigabit Passive Optical Network 
GSI  Global Standard Initiative 
HD  High Definition 
HDMI  High Definition Multimedia Interface 
HG  Home Gateway 
IDR  Instantaneous Data Refresh 
I-Frames Intra-coded Frames 
IGMP  Internet Group Management Protocol 
i.i.d.  Independent and Identically Distributed 
IP  Internet Protocol 
IPTV  Internet Protocol Television 
ISO  International Organization for Standardization 
ITU  International Telecommunication Union 
JVT  Joint Video Team 
LAN  Local Area Network 
LHR  Last Hop Router 
MAZA  Multicast Assisted Zap Acceleration 
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MDU  Multi-Dwelling Unit 
MOY  Month-of-Year 
MPEG  Motion Pictures Expert Group 
 NGN  Next Generation Network 
NMS  Network Management System 
PAT  Program Allocation Table 
P-Bits  Precedence Bits 
PC  Personal Computer 
PDF  Probability Density Function 
P-Frames Predictive Frames 
PMT  Program Map Table 
QoE  Quality of Experience 
QoS  Quality of Service 
RAM  Random Access Memory 
RAP  Random Access Point 
RTCP  Real-Time Transport Control Protocol 
RTO  Retransmission Timeout 
RTP  Real-Time Transport Protocol 
RTT  Round-Trip Time 
SRTT  Smooth Round-Trip Time 
STB  Set Top Box 
STDev  Standard Deviation 
SVC  Scalable Video Coding 
TCP  Transmission Control Protocol 
TOD  Time-of-Day 
TOS  Type of Service 
TS  Transport Stream 
TSS  Time Shifted Sub-channels 
UDP  User Datagram Protocol 
VCEG  Video Coding Experts Group 
VLAN  Virtual Local Area Network 
VoD  Video on Demand 
VoIP  Voice over Internet Protocol 
WAN  Wide Area Network 
WiMAX Worldwide Interoperability for Microwave Access (802.16) 
xDSL  Digital Subscriber Line 
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Appendix A.2 Primary Standards Related to IPTV 
 
 
Additional IPTV Standards are detailed in references [116-118]. 
 
International Telecommunication Union (ITU): 
 
 ITU-T H.264   ITU-T G.9970  ITU-T G.9954 
 ITU-T H.222   ITU-T G.9963  ITU-T G.9951-3 
 ITU-T G.9972   ITU-T G.9960-1 ITU-T G.987 
 
International Organization for Standardization / International Electrotechnical 
Commission (ISO/IEC): 
 
 ISO/IEC MPEG-4 AVC ISO/IEC 13818 ISO/IEC 11172 
 
Institute of Electrical and Electronics Engineers (IEEE): 
 
 IEEE 802.16   IEEE 802.3 
 IEEE 802.11   IEEE 802.1 
 
Advanced Television Systems Committee (ATSC): 
 
 ATSC A/91   ATSC A/64  ATSC A/54 
 ATSC A/90   ATSC A/63  ATSC A/53 
 ATSC A/72   ATSC A/58  ATSC A/52 
 ATSC A/65   ATSC A/57   
 
European Telecommunications Standards Institute (ETSI): 
 
 ETSC TS 185 011  ETSC TS 182 027 
 ETSC TS 185 009  ETSC TS 182 010 
 ETSC TS 185 007  ETSC TS 181 016 
 ETSC TS 185 003  ETSC TS 181 014 
 ETSC TS 183 065  ETSC TS 143 069 
 ETSC TS 183 064  ETSC TS 101 211 
 ETSC TS 183 053  ETSC TS 101 162 
 ETSC TS 182 028  ETSC TS 101 154 
 
Internet Engineering Task Force (IETF): 
 
 RFC 3550   RFC 1122 
 RFC 3376   RFC 1112 
 RFC 2250   RFC 768 
 RFC 2236 
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Appendix A.3 MPEG-2 Transport Stream Packet Structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MPEG-2 Transport Stream Packet Structure [20] 
 
 
The MPEG-2 Transport Stream flows at a constant bit rate with fixed length of 188 Byte 
packets. Each packet contains only one type of data (video, audio, guide, etc). The 4 Byte 
Packet Header consists of the following fields: 
 
Sync Byte - 8 bits in form 0x47 
 
Transport Error Indicator - 1 bit flag set if packet has uncorrectable error 
 
Payload Unit Start Indicator -  1 bit flag for PES or PSI data otherwise zero 
 
Transport Priority – 1 bit flag set for priority over packets with same PID 
 
PID – 13 bit Packet Identifier 
 
Transport Scrambling Control – 2 bit field for not scrambled or using even or odd key 

188 Byte Packet

4 Byte 
Packet
Header

Adaptation Field
(if present)

Payload
(if present)
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Adaptation Field Control - 2 bits for adaptation field, payload, or combination 
 
Continuity Counter – 4 bit field incremented when payload present only 
 
Adaptation Field – 0 or more bits depending on flag settings with following subfields 
 
 Adaptation Field Length – 8 bits to describe remaining size of field to follow 
 
 Discontinuity Indicator – 1 bit flag if packet off with continuity counter or PCR 
 
 Random Access Indicator – 1 bit flag if PES starts a video/audio sequence 
 
 Elementary Stream Priority Indicator – 1 bit flag for higher priority 
 
 PCR Flag – 1 bit set if packet contains a PCR field 
 
 OPCR Flag – 1 bit set if packet contains an OPCR field 
 
 Splicing Point Flag – 1 bit flag set if splice countdown field present 
 
 Transport Private Data Flag – 1 bit flag if private data bytes are present in packet 
 
 Adaptation Field Extension Flag – 1 bit flag if adaptation field extension present 
 
 Optional Field -  
 
  PCR – 33+9 bits for program clock reference for A/V sync and timing 
 
  OPCR – 33+9 bits for original program clock reference 
 
  Splice Countdown – 8 bits to indicate packets to next splicing point 
 
  Stuffing Bytes – variable length used only as needed 
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APPENDIX B 

 
Appendix B.1 Laboratory Equipment Details 

 
 
 
 
 
 
 

 
 
 

Full Laboratory Network Configuration 
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LanTech GE-24F2GBM Gigabit Managed Network Switches: 
 

 
 

 
 

LanTech GE-24F2GBM Gigabit Managed Network Switch 
 

 
 
 
 
 
 
 
 
 
 
 

LanTech Layer 3 Switch General Information 
 
 
 
 
 
 
 
 
 
 
 
 
 

LanTech Layer 2 Switch General Information 
 

206 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LanTech Layer 3 Switch IP and IGMP Configuration 
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LanTech Layer 2 Switch IP and IGMP Configuration 
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Xavi X-550 Home Gateway: 
 
 

 
 

Xavi X-550 Home Gateway 
 
 
 

 
X-550 General Information 
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X-550 WAN Configuration 
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X-550 LAN Configuration and Port Mapping 
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Agilent J2300D WAN Advisor Test Set: 
 

 
 
 

 
 
 

Agilent J2300D WAN Advisor Test Set 
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Agilent WAN Advisor General Information 
 
 
 
 
 
 
 
 
 
 
 
 

Agilent WAN Advisor Port Configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Agilent J2300D WAN Advisor
Serial Number US38140609
F/W Rev. GIG.11.000.01 Sept 1, 1999
LAN Library RA.Q.00:04
System Library P.03.10
AcqDLL 0.11.001
Decode DLL H.09.00

Port Configuration: RX Pass Through Ports A to B
RX Pass Through Ports B to A
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Appendix B.2 NetDisturb Software Configuration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NetDisturb Software General Information 
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NetDisturb 600 ms Constant Delay Configuration 
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Appendix B.3 Results of Laboratory Trials 

 
 
 
 
 
 

 
 

List of Lab Tests Performed 
 
 
 
 Each lab testing configuration (A through O) above consisted of 30 independent 

channel change trials. The results for each configuration and trial are found on the 

following pages. The summary results and analysis of these tests can be found in Chapter 

III. 

Configuration STB SD or HD Minimal or Full With or Without Cache
A A125 SD Minimal Without Cache
B A130 SD Minimal Without Cache
C A130 HD Minimal Without Cache
D MSTB SD Minimal Without Cache
E MSTB HD Minimal Without Cache
F A125 SD Full Without Cache
G A130 SD Full Without Cache
H A130 HD Full Without Cache
I MSTB SD Full Without Cache
J MSTB HD Full Without Cache
K A125 SD Full With Cache
L A130 SD Full With Cache
M A130 HD Full With Cache
N MSTB SD Full With Cache
O MSTB HD Full With Cache

Functional Specifics for Lab Testing
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Lab Testing Results for Configuration A 
 
 
 
 

Trial # # Frames Time (sec)
1 35 1.40
2 37 1.48
3 36 1.44
4 35 1.40
5 29 1.16
6 34 1.36
7 34 1.36
8 38 1.52
9 35 1.40

10 32 1.28
11 35 1.40
12 38 1.52
13 36 1.44
14 32 1.28
15 35 1.40
16 36 1.44
17 35 1.40
18 36 1.44
19 32 1.28
20 36 1.44
21 33 1.32
22 36 1.44
23 33 1.32
24 38 1.52
25 34 1.36
26 38 1.52
27 36 1.44
28 32 1.28
29 38 1.52
30 36 1.44

Total 1050.00 42.00
Average 35.00 1.40
STDev 2.20 0.09

Minimum 29.00 1.16
Maximum 38.00 1.52

Amino 125 STB to SD Using Minimal Config
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Lab Testing Results for Configuration B 
 
 
 
 

Trial # # Frames Time (sec)
1 56 2.24
2 54 2.16
3 50 2.00
4 53 2.12
5 48 1.92
6 48 1.92
7 48 1.92
8 49 1.96
9 56 2.24

10 49 1.96
11 55 2.20
12 49 1.96
13 52 2.08
14 50 2.00
15 51 2.04
16 53 2.12
17 52 2.08
18 48 1.92
19 48 1.92
20 51 2.04
21 56 2.24
22 51 2.04
23 53 2.12
24 51 2.04
25 54 2.16
26 47 1.88
27 53 2.12
28 56 2.24
29 54 2.16
30 53 2.12

Total 1548.00 61.92
Average 51.60 2.06
STDev 2.81 0.11

Minimum 47.00 1.88
Maximum 56.00 2.24

Amino 130 STB to SD Using Minimal Config
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Lab Testing Results for Configuration C 
 
 
 
 

Trial # # Frames Time (sec)
1 54 2.16
2 54 2.16
3 55 2.20
4 53 2.12
5 53 2.12
6 48 1.92
7 57 2.28
8 48 1.92
9 50 2.00

10 53 2.12
11 56 2.24
12 59 2.36
13 58 2.32
14 56 2.24
15 50 2.00
16 48 1.92
17 49 1.96
18 56 2.24
19 57 2.28
20 56 2.24
21 56 2.24
22 48 1.92
23 53 2.12
24 49 1.96
25 56 2.24
26 50 2.00
27 54 2.16
28 54 2.16
29 53 2.12
30 51 2.04

Total 1594.00 63.76
Average 53.13 2.13
STDev 3.31 0.13

Minimum 48.00 1.92
Maximum 59.00 2.36

Amino 130 STB to HD Using Minimal Config
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Lab Testing Results for Configuration D 
 
 
 
 
 

Trial # # Frames Time (sec)
1 48 1.92
2 42 1.68
3 49 1.96
4 48 1.92
5 42 1.68
6 46 1.84
7 42 1.68
8 47 1.88
9 50 2.00

10 45 1.80
11 48 1.92
12 43 1.72
13 48 1.92
14 42 1.68
15 45 1.80
16 44 1.76
17 48 1.92
18 42 1.68
19 45 1.80
20 42 1.68
21 48 1.92
22 42 1.68
23 48 1.92
24 48 1.92
25 45 1.80
26 48 1.92
27 45 1.80
28 45 1.80
29 45 1.80
30 49 1.96

Total 1369 54.76
Mean 45.63 1.83
STDev 2.62 0.10

Minimum 42 1.68
Maximum 50 2.00

Motorola STB to SD Using Minimal Config
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Lab Testing Results for Configuration E 
 
 
 
 

Trial # # Frames Time (sec)
1 49 1.96
2 48 1.92
3 48 1.92
4 45 1.80
5 51 2.04
6 47 1.88
7 51 2.04
8 48 1.92
9 46 1.84

10 43 1.72
11 50 2.00
12 48 1.92
13 45 1.80
14 43 1.72
15 51 2.04
16 47 1.88
17 48 1.92
18 51 2.04
19 45 1.80
20 48 1.92
21 52 2.08
22 43 1.72
23 51 2.04
24 48 1.92
25 50 2.00
26 45 1.80
27 48 1.92
28 50 2.00
29 49 1.96
30 53 2.12

Total 1441.00 57.64
Average 48.03 1.92
STDev 2.74 0.11

Minimum 43.00 1.72
Maximum 53.00 2.12

Motorola STB to HD Using Minimal Config
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Lab Testing Results for Configuration F 
 

Trial # # Frames Time (sec)
1 69 2.76
2 69 2.76
3 66 2.64
4 64 2.56
5 69 2.76
6 66 2.64
7 67 2.68
8 72 2.88
9 69 2.76

10 74 2.96
11 75 3.00
12 75 3.00
13 70 2.80
14 76 3.04
15 69 2.76
16 67 2.68
17 64 2.56
18 66 2.64
19 70 2.80
20 63 2.52
21 72 2.88
22 65 2.60
23 69 2.76
24 73 2.92
25 69 2.76
26 69 2.76
27 66 2.64
28 67 2.68
29 72 2.88
30 67 2.68

Total 2069.00 82.76
Average 68.97 2.76
STDev 3.45 0.14

Minimum 63.00 2.52
Maximum 76.00 3.04

Amino 125 STB to SD via Network Without Cache
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Lab Testing Results for Configuration G 
 
 
 
 

Trial # # Frames Time (sec)
1 87 3.48
2 81 3.24
3 84 3.36
4 88 3.52
5 84 3.36
6 81 3.24
7 86 3.44
8 86 3.44
9 78 3.12

10 81 3.24
11 81 3.24
12 76 3.04
13 84 3.36
14 87 3.48
15 81 3.24
16 75 3.00
17 87 3.48
18 81 3.24
19 89 3.56
20 84 3.36
21 83 3.32
22 84 3.36
23 85 3.40
24 84 3.36
25 78 3.12
26 84 3.36
27 81 3.24
28 84 3.36
29 87 3.48
30 78 3.12

Total 2489.00 99.56
Average 82.97 3.32
STDev 3.58 0.14

Minimum 75.00 3.00
Maximum 89.00 3.56

Amino 130 STB to SD via Network Without Cache

224 
 



 
 

Lab Testing Results for Configuration H 
 
 
 
 

Trial # # Frames Time (sec)
1 87 3.48
2 87 3.48
3 90 3.60
4 90 3.60
5 84 3.36
6 87 3.48
7 84 3.36
8 79 3.16
9 84 3.36

10 81 3.24
11 87 3.48
12 81 3.24
13 81 3.24
14 87 3.48
15 87 3.48
16 87 3.48
17 81 3.24
18 87 3.48
19 81 3.24
20 82 3.28
21 87 3.48
22 87 3.48
23 84 3.36
24 85 3.40
25 85 3.40
26 84 3.36
27 93 3.72
28 86 3.44
29 87 3.48
30 79 3.16

Total 2551.00 102.04
Average 85.03 3.40
STDev 3.35 0.13

Minimum 79.00 3.16
Maximum 93.00 3.72

Amino 130 STB to HD via Network Without Cache
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Lab Testing Results for Configuration I 
 
 
 
 

Trial # # Frames Time (sec)
1 75 3.00
2 78 3.12
3 82 3.28
4 75 3.00
5 75 3.00
6 78 3.12
7 81 3.24
8 76 3.04
9 77 3.08

10 75 3.00
11 78 3.12
12 75 3.00
13 81 3.24
14 72 2.88
15 78 3.12
16 75 3.00
17 78 3.12
18 78 3.12
19 81 3.24
20 75 3.00
21 78 3.12
22 75 3.00
23 75 3.00
24 78 3.12
25 73 2.92
26 78 3.12
27 78 3.12
28 78 3.12
29 75 3.00
30 75 3.00

Total 2306.00 92.24
Average 76.87 3.07
STDev 2.42 0.10

Minimum 72.00 2.88
Maximum 82.00 3.28

Motorola STB to SD via Network Without Cache
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Lab Testing Results for Configuration J 
 
 
 
 

Trial # # Frames Time (sec)
1 76 3.04
2 78 3.12
3 75 3.00
4 78 3.12
5 81 3.24
6 78 3.12
7 73 2.92
8 81 3.24
9 81 3.24

10 81 3.24
11 81 3.24
12 75 3.00
13 75 3.00
14 75 3.00
15 75 3.00
16 84 3.36
17 81 3.24
18 81 3.24
19 77 3.08
20 75 3.00
21 78 3.12
22 73 2.92
23 84 3.36
24 78 3.12
25 78 3.12
26 81 3.24
27 77 3.08
28 75 3.00
29 81 3.24
30 78 3.12

Total 2344.00 93.76
Average 78.13 3.13
STDev 3.06 0.12

Minimum 73.00 2.92
Maximum 84.00 3.36

Motorola STB to HD via Network Without Cache
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Lab Testing Results for Configuration K 
 
 
 
 

Trial # # Frames Time (sec)
1 40 1.60
2 42 1.68
3 37 1.48
4 36 1.44
5 45 1.80
6 40 1.60
7 39 1.56
8 33 1.32
9 37 1.48

10 36 1.44
11 43 1.72
12 34 1.36
13 43 1.72
14 37 1.48
15 37 1.48
16 34 1.36
17 40 1.60
18 43 1.72
19 42 1.68
20 36 1.44
21 43 1.72
22 33 1.32
23 39 1.56
24 34 1.36
25 42 1.68
26 34 1.36
27 42 1.68
28 36 1.44
29 40 1.60
30 34 1.36

Total 1151.00 46.04
Average 38.37 1.53
STDev 3.61 0.14

Minimum 33.00 1.32
Maximum 45.00 1.80

Amino 125 STB to SD via Network With Cache
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Lab Testing Results for Configuration L 
 
 
 
 

Trial # # Frames Time (sec)
1 57 2.28
2 51 2.04
3 54 2.16
4 57 2.28
5 54 2.16
6 54 2.16
7 51 2.04
8 51 2.04
9 54 2.16

10 51 2.04
11 48 1.92
12 54 2.16
13 57 2.28
14 51 2.04
15 54 2.16
16 50 2.00
17 54 2.16
18 51 2.04
19 48 1.92
20 54 2.16
21 57 2.28
22 55 2.20
23 54 2.16
24 57 2.28
25 57 2.28
26 57 2.28
27 54 2.16
28 54 2.16
29 51 2.04
30 48 1.92

Total 1599.00 63.96
Average 53.30 2.13
STDev 2.85 0.11

Minimum 48.00 1.92
Maximum 57.00 2.28

Amino 130 STB to SD via Network With Cache
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Lab Testing Results for Configuration M 
 
 
 
 

Trial # # Frames Time (sec)
1 56 2.24
2 51 2.04
3 49 1.96
4 51 2.04
5 60 2.40
6 55 2.20
7 54 2.16
8 54 2.16
9 57 2.28

10 54 2.16
11 51 2.04
12 57 2.28
13 54 2.16
14 51 2.04
15 51 2.04
16 57 2.28
17 51 2.04
18 57 2.28
19 51 2.04
20 61 2.44
21 51 2.04
22 51 2.04
23 60 2.40
24 57 2.28
25 54 2.16
26 54 2.16
27 54 2.16
28 52 2.08
29 54 2.16
30 57 2.28

Total 1626.00 65.04
Average 54.20 2.17
STDev 3.16 0.13

Minimum 49.00 1.96
Maximum 61.00 2.44

Amino 130 STB to HD via Network With Cache
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Lab Testing Results for Configuration N 
 
 
 
 

Trial # # Frames Time (sec)
1 51 2.04
2 48 1.92
3 45 1.80
4 45 1.80
5 45 1.80
6 48 1.92
7 45 1.80
8 45 1.80
9 48 1.92

10 45 1.80
11 51 2.04
12 43 1.72
13 45 1.80
14 48 1.92
15 51 2.04
16 48 1.92
17 44 1.76
18 48 1.92
19 46 1.84
20 47 1.88
21 45 1.80
22 45 1.80
23 53 2.12
24 45 1.80
25 45 1.80
26 44 1.76
27 45 1.80
28 45 1.80
29 45 1.80
30 44 1.76

Total 1392.00 55.68
Average 46.40 1.86
STDev 2.49 0.10

Minimum 43.00 1.72
Maximum 53.00 2.12

Motorola STB to SD via Network With Cache
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Lab Testing Results for Configuration O 
 
 
 
 
 

Trial # # Frames Time (sec)
1 54 2.16
2 48 1.92
3 45 1.80
4 51 2.04
5 44 1.76
6 51 2.04
7 48 1.92
8 48 1.92
9 45 1.80

10 48 1.92
11 51 2.04
12 51 2.04
13 48 1.92
14 51 2.04
15 48 1.92
16 45 1.80
17 51 2.04
18 51 2.04
19 48 1.92
20 48 1.92
21 51 2.04
22 45 1.80
23 51 2.04
24 54 2.16
25 48 1.92
26 45 1.80
27 55 2.20
28 44 1.76
29 48 1.92
30 48 1.92

Total 1463.00 58.52
Average 48.77 1.95
STDev 3.00 0.12

Minimum 44.00 1.76
Maximum 55.00 2.20

Motorola STB to HD via Network With Cache
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APPENDIX C 

 
Appendix C.1 Shared Routines for Channel Change Prediction Models 

 
Libraries and Standard Declarations: 
 
#include <iostream> 
#include <fstream> 
#include <cstdlib> 
#include <ctime> 
#include <cstdio> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
using std::cout; 
using std::cin; 
using std::endl; 
using namespace std; 
 
Variable Definitions: 
 
// Variables used for file Input/Output and to exit program 
char input_file [1] [MAX3]; 
char output_file [1] [MAX3]; 
char Quit1, Quit2; 
 
// Variables used to bring in Input Data Set and get them in properly formatted arrays 
const int MAX2=8; 
const int MAX3=15; 
char chan_t [150] [MAX2]; 
char prob_t [150] [MAX2]; 
char chan_n [1] [MAX2]; 
char bw_t [150] [MAX2]; 
int chan_in [150], bw_in [150]; 
float prob_in [150]; 
 
// Variables used for Channel List Arrays 
int Qchan_ls [150];  // For the List of Channels 
int Qbw_ls [150];  // For the Bandwidths of Channels 
float Qprob_ls [150];  // For Time-Weighted Probabilities of Channels 
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// Variables used for Confirmed List Arrays 
int Qchan_cf [150];  // Channel #s in Confirmed List 
int Qbw_cf [150];  // Channel Bandwidths in Confirmed List 
float Qprob_cf [150];   // Channel Probabilities in Confirmed List 
int Conf_chan_count;  // Count of Channels in Confirmed List 
 
// Variables used for the current channel information and Penalty_Factor 
int Curr_chan_number, Curr_chan_bw; 
float Curr_chan_prob [1]; 
double Penalty_Factor[1]; 
 
// Variable to track BW status of system and arrays 
int BW_avail, BW_total, Rem_BW_avail [1]; 
 
// Variables used during sorting processes 
int Qchan_sort [150], Qbw_sort [150], Qsortc_calc[1]; 
float Qprob_sort [150], Qdivided_sort [150], Qsort_calc [1];  
float Qlastd_sort[1], Qsortd_calc[1], Qdivided_ls [150]; 
 
// Variables used to hold attributes about the Confirmed Channel Arrays 
int Curr_conf_BW [1], test_cf_bw [1]; 
float Net_Confirmed_Probm [1]; 
 
// Variables used to track current best calculation results 
int Best_bw [1], Final_Best_bw [1], Qchan_best [150], Qbw_best [150]; 
float Best_prob [1], Best_Prob_Hold1 [1], Final_Best_prob [1]; 
float Qprob_best [150]; 
 
// Variables used to temporarily hold data during various conversions and comparisons 
int Qbw_temp [1], Qchan_temp2 [150], Qbw_temp2 [150]; 
float Qsort_temp[1], Qprob_temp [1];  
float Qprob_temp2 [150], Qdivided_temp2 [150]; 
double Qtempbw[1]; 
 
// Variables used as counters by the Shared Routines and Prediction Models 
int i, j, k, m, n, p, q, r, s, t, u, v, w, x, y, z, cc, BW_sum_init [1], BW_sumt, Chan_max; 
 
Shared Routines: 
 
void LS_Sort() 
// This routine sorts the Channel List Arrays based on the sort terms calculated by the 
specific prediction model. The sort terms must be calculated prior to this routine and 
populated in the “Qdivided_ls” array. The routine re-orders the Channel List Arrays by 
moving the channel number, bandwidth, and probability in descending order for each 
successive sort term.  
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{ for(j=0; j<150; j++) { 
  Qchan_sort[j] = 0; 
  Qprob_sort[j] = 0; 
  Qbw_sort[j] = 0; 
  Qdivided_sort[j] = 0; 
  Qchan_temp2[j] = Qchan_ls[j]; 
  Qprob_temp2[j] = Qprob_ls[j]; 
  Qbw_temp2[j] = Qbw_ls[j]; 
  Qdivided_temp2[j] = Qdivided_ls[j]; 
 } 
 for(k=0; k<150; k++) { 
  Qchan_ls[k] = 0; 
  Qprob_ls[k] = 0; 
  Qbw_ls[k] = 0; 
  Qdivided_ls[k] = 0; 
 } 
 Qsortd_calc[0] = 0; 
 for(q=0; q<150; q++) { 
  for(s=0; s<150; s++)  { 
   if (Qdivided_temp2[s] > Qsortd_calc[0])  { 
    Qsortd_calc[0] = Qdivided_temp2[s]; 
    Qsortc_calc[0] = Qchan_temp2[s]; 
   } 
  } 
  Qchan_sort[q] = Qsortc_calc[0]; 
  for(r=0; r<150; r++) { 
   if(Qchan_sort[q] == Qchan_temp2[r]) { 
    Qprob_sort[q] = Qprob_temp2[r]; 
    Qbw_sort[q] = Qbw_temp2[r]; 
    Qdivided_sort[q] = Qdivided_temp2[r]; 
    Qchan_temp2[r] = 0; 
    Qprob_temp2[r] = 0; 
    Qbw_temp2[r] = 0; 
    Qdivided_temp2[r] = 0; 
   } 
  } 
  Qsortd_calc[0] = 0; 
 } 
 for(t=0; t<150; t++) { 
  Qchan_ls[t] = Qchan_sort[t]; 
  Qprob_ls[t] = Qprob_sort[t]; 
  Qbw_ls[t] = Qbw_sort[t]; 
  Qdivided_ls[t] = Qdivided_sort[t]; 
 } 
} 
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void LS_Strip_Chan_0s() 
// Routine strips all channels that are outside limits or have null values. 
{ for(r=0; r<150; r++) { 
  if(Qchan_ls[r] > 150) { 
   Qchan_ls[r] = 0; 
  } 
 } 
 w=0; 
 while(w<150) { 
  for(m=0; m<150; m++) { 
   if (Qchan_ls[m] == 0) { 
    p=1; 
    for(n=m; n < 150; n++) { 
     if(Qchan_ls[n+p] == 0) { 
      p++; 
     } 
     else { 
      Qchan_ls[n] = Qchan_ls[n+p]; 
      Qbw_ls[n] = Qbw_ls[n+p]; 
      Qprob_ls[n] = Qprob_ls[n+p];  
    
     } 
    } 
   } 
  } 
  w++; 
 } 
 for(m=0; m<150; m++) { 
  if (Qchan_ls[m] == 0 || Qchan_ls[m] > 150) { 
   Qchan_ls[m] = 0; 
   Qbw_ls[m] = 0; 
   Qprob_ls[m] = 0;     
  } 
 } 
} 
 
void LS_Clean_BW_and_Prob() 
// Cleans up BW and Probability values outside limits following other manipulations. 
{ for(m=0; m<150; m++) { 
  if (Qchan_ls[m] <= 0 || Qchan_ls[m] > 150) { 
   Qchan_ls[m] = 0; 
   Qbw_ls[m] = 0; 
   Qprob_ls[m] = 0;   
   Qdivided_ls[m] = 0; 
  } 
 } 
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 for(m=0; m<150; m++) { 
if (Qbw_ls[m]!=2 && Qbw_ls[m]!=4 && Qbw_ls[m]!=9 && Qbw_ls[m]!=18) { 
   Qchan_ls[m] = 0; 
   Qbw_ls[m] = 0; 
   Qprob_ls[m] = 0; 
   Qdivided_ls[m] = 0; 
  } 
 } 
 for(m=0; m<150; m++) { 
  if (Qprob_ls[m]<=0 || Qprob_ls[m] >= 1) { 
   Qchan_ls[m] = 0; 
   Qbw_ls[m] = 0; 
   Qprob_ls[m] = 0; 
   Qdivided_ls[m] = 0; 
  } 
 } 
 for(m=0; m<150; m++) { 
  if (Qchan_ls[m] == 0) { 
   p=1; 
   for(n=m; n<150; n++)   { 
    if (Qchan_ls[n+p] != 0)   { 
     Qchan_ls[n] = Qchan_ls[n+p]; 
     Qbw_ls[n] = Qbw_ls[n+p]; 
     Qprob_ls[n] = Qprob_ls[n+p];  
     Qdivided_ls[n] = Qdivided_ls[n+p]; 
    } 
    else   { 
     p++; 
    } 
   } 
  } 
 } 
} 
 
void Confirmed_Count() 
// Verifies the confirmed count of cached channels. 
{ Conf_chan_count = 0; 
 for(m=0; m<150; m++) { 
  if (Qprob_cf[m] == 0) { 
   Qchan_cf[m] = 0; 
  } 
 } 
 for(i=0; i<150; i++) { 
  if (Qchan_cf[i] != 0) { 
   Conf_chan_count = Conf_chan_count + 1; 
  } 
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 } 
} 
 
void Confirmed_BW_and_Prob_Count() 
// Verifies the confirmed BW and Probability of all cached channels. 
{ Curr_conf_BW[0] = 0; 
 Final_Best_bw[0]=0; 
 Final_Best_prob[0]=0; 
 for(j=0; j<150; j++) { 
  if (Qchan_cf[j] != 0 && Qchan_cf[j] < 151) { 
   Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_cf[j]; 
   Final_Best_bw[0] = Final_Best_bw[0] + Qbw_cf[j]; 
   Final_Best_prob[0] = Final_Best_prob[0] + Qprob_cf[j]; 
  } 
 } 
 Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
 cout<<"Complete"<<endl; 
} 
 
void LS_to_Confirmed() 
// Moves channels from sorted list to confirmed arrays for caching. 
{ j=0; 
 Curr_conf_BW[0]=0; 
 Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
 for(i=0; i<150; i++) { 
  if (Qbw_ls[i] <= Rem_BW_avail[0])  { 
   Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
   Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
   Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
   Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
   j++; 
  } 
 } 
 Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
} 
 
void LS_Check_Confirmed() 
// Routine to check the validity of the confirmed cache channels. 
{ for(j=0; j<150; j++) { 
  for(k=0; k<150; k++) { 
   if (Qchan_ls[j] == Qchan_cf[k]) { 
    Qchan_ls[j] = 0; 
    k=150; 
   } 
  } 
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 } 
} 
 
Typical Usage and Order of Shared Routines: 
 
// Initially open Input Data Set file and read in data 
// Query and track Total Bandwidth available for video  
// Determine and track details about current channel 
// Calculate Bandwidth Available for caching 
// Populate Channel List Arrays from Input Data Set details  
// Calculate new sort term for all channels based on the specific prediction model used 
 
// The shared routines are typically run in a dual pass order. The first pass sorts the 
Channel List Arrays and then verifies the integrity and details about the Channel List and 
Confirmed Channel Arrays. The second pass populates the cached channels into the 
Confirmed Channels Arrays, cleans up the Channel List Arrays for all channels 
confirmed, and calculates key metrics about the cached channels. 
 
// 1st Pass Run Prior to Sorting Algorithm Routine 
 
LS_Sort(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
Confirmed_Count(); 
Confirmed_BW_and_Prob_Count(); 
 
// 2nd Pass Run After Sorting Algorithm Routine 
 
LS_to_Confirmed(); 
LS_Check_Confirmed(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
Confirmed_Count(); 
Confirmed_BW_and_Prob_Count(); 
 
// Verify all Bandwidth Available for caching fully utilized 
 
// Output Final Results and Exit Program 
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Appendix C.2 Input, Initialization, Output, and Related Routines 

 
Typical Input Section Routine and Additional Subroutines: 
 
// Libraries, Standard Declarations, and Variables per Appendix C 
int main(void) { 
// Read input data from entered file into arrays 
cout << "Enter the Name of the Input File: " <<'\t'<<'\t'; 
cin >> input_file[0]; 
cout << endl; 
cout << "Enter the Name of the Output File: " <<'\t'<<'\t'; 
cin >> output_file[0]; 
cout << endl; 
 ifstream infile; 
infile.open(input_file[0]); 
if(!infile)  { 
 cout<<"unable to open infile"; 
 exit(1); 
 } 
ofstream outfile; 
outfile.open(output_file[0]);  
if(!outfile) { 
 cout<<"unable to open outfile"; 
 exit(1); 
 } 
k=0; 
for(j=0; j<450; j++) { 
 infile.getline(chan_t[k],MAX2); 
 infile.getline(prob_t[k],MAX2); 
 infile.getline(bw_t[k],MAX2); 
 k=k+1; 
 j=j+2; 
} 
infile.getline(chan_n[0], MAX2); 
for(m=0; m<150; m++)  { 
 chan_in[m] = atoi (chan_t[m]); 
 prob_in[m] = atof (prob_t[m]); 
 bw_in[m] = atoi (bw_t[m]); 
} 
Curr_chan_number = atoi (chan_n[0]); 
for(n=0; n<150; n++) { 
 if (chan_in[n] == Curr_chan_number) { 
  Curr_chan_bw = bw_in[n]; 
  Curr_chan_prob[0] = prob_in[n]; 
  n = 150; 
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 } 
} 
// Read entered BW Total into variable for use 
cout << "Enter the Amount of Total Bandwidth: "<<'\t'<<'\t'; 
cin >> BW_total; 
BW_avail = BW_total - Curr_chan_bw; 
BW_sumt = 0; 
BW_sum_init[0] = 0; 
while (BW_sumt <= BW_avail)  { 
 for(n=0; n<150; n++)  { 
  if (BW_sum_init[0] + bw_in[n] <= BW_avail) { 
   BW_sum_init[0] = BW_sum_init[0] + bw_in[n]; 
   Chan_max = n+1; 
  } 
  else { 
   BW_sumt = BW_avail + 1; 
  } 
 } 
} 
 
// Populates Q List, places initial confirmed entries to Q Confirmed, and deletes those  
from the remaining list 
 
for(m=0; m<150; m++)  { 
 Qchan_ls[m] = chan_in[m]; 
 Qprob_ls[m] = prob_in[m]; 
 Qbw_ls[m] = bw_in[m]; 
} 
for(n=0; n<150; n++) { 
 if (Qchan_ls[n] == Curr_chan_number) { 
  for(p=n; p<150; p++) { 
   Qchan_ls[p] = Qchan_ls[p+1]; 
   Qprob_ls[p] = Qprob_ls[p+1]; 
   Qbw_ls[p] = Qbw_ls[p+1]; 
  } 
  n = n-1; 
 } 
} 
 
Typical Output Section Routine and Additional Subroutines: 
 
outfile <<"MODEL OUTPUT"<<endl; 
outfile <<endl<<"Input Filename = "<<'\t'<<'\t'<<'\t'<<input_file[0]; 
outfile <<endl<<"Total Bandwidth = "<<'\t'<<'\t'<<'\t'<<BW_total<<endl;  
outfile <<endl<<endl; 
outfile <<"Confirmed Channels List for Pre-Selected Queue:"; 
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outfile <<endl<<endl; 
outfile <<"Chan"<<'\t'<<"Prob"<<'\t'<<"BW"<< endl; 
for (i=0; i<150; i++) { 
 if (Qchan_cf[i] != 0) {   
  outfile <<Qchan_cf[i]<<'\t'<<Qprob_cf[i]<<'\t'<<Qbw_cf[i]<< endl; 
 } 
} 
outfile <<endl<<endl; 
outfile <<"Current Channel Number = "<<'\t'<<'\t'<<Curr_chan_number<<endl;  
outfile <<"Current Channel Probability = "<<'\t'<<'\t'<<Curr_chan_prob[0]<<endl; 
outfile <<"Current Channel Bandwidth = "<<'\t'<<'\t'<<Curr_chan_bw<<endl<<endl;  
outfile<< "Channel List Probability Mean = "<<'\t'<<Mean_pr[0]<<endl; 
outfile<< "Confirmed List Bandwidth = "<<'\t'<<'\t'<<Final_Best_bw[0]<<endl; 
outfile<< "Remaining Bandwidth Available = "<<'\t'<<Rem_BW_avail[0]<<endl<<endl; 
outfile<< "Gross Confirmed List Probability = "<<'\t'<<Final_Best_prob[0]<<endl; 
outfile<< "Net Confirmed List Probability = "<<'\t'<<Net_Confirmed_Prob[0]<<endl; 
infile.close(); 
outfile.close(); 
return 0; 
} 
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APPENDIX D 

 
Appendix D.1 Sample Moment Model Sorting Routine 

 
// Input data from file, populate Q arrays, & initialize variables  
 
int main(void) { 
{ Mean_pr[0] = 0; 
 for(p=0; p<150; p++) { 
  Mean_pr[0] = Mean_pr[0] + Qprob_ls[p]; 
 } 
 Mean_pr[0] = (Mean_pr[0] / 149); 
} 
Confirmed_Count(); 
Confirmed_BW_and_Prob_Count(); 
LS_Check_Confirmed(); 
{ Penalty_Factor[0] = 1.19; 
 for(p=0; p<150; p++) { 
  Qtempbw[0] = Qbw_ls[p]; 
  BWfactor[0] = pow( Qtempbw[0], Penalty_Factor[0] ); 
    // Sample_Moments Sort Field 
  Qdivided_ls[p] = ((Qprob_ls[p] - Mean_pr[0]) / BWfactor[0]); 
    // Avoid negatives to reuse existing Shared Routines 
  Qdivided_ls[p] = (Qdivided_ls[p] + 1); 
 } 
} 
{ for(j=0; j<150; j++) { 
  Qchan_sort[j] = 0; 
  Qprob_sort[j] = 0; 
  Qbw_sort[j] = 0; 
  Qdivided_sort[j] = 0; 
  Qchan_temp2[j] = Qchan_ls[j]; 
  Qprob_temp2[j] = Qprob_ls[j]; 
  Qbw_temp2[j] = Qbw_ls[j]; 
  Qdivided_temp2[j] = Qdivided_ls[j]; 
 } 
 for(k=0; k<150; k++) { 
  Qchan_ls[k] = 0; 
  Qprob_ls[k] = 0; 
  Qbw_ls[k] = 0; 
  Qdivided_ls[k] = 0; 
 } 
 Qsortd_calc[0] = 0; 
 for(q=0; q<150; q++) { 
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  for(s=0; s<150; s++)  { 
   if (Qdivided_temp2[s] > Qsortd_calc[0])  { 
    Qsortd_calc[0] = Qdivided_temp2[s]; 
    Qsortc_calc[0] = Qchan_temp2[s]; 
   } 
  }  
  Qchan_sort[q] = Qsortc_calc[0]; 
  for(r=0; r<150; r++) { 
   if(Qchan_sort[q] == Qchan_temp2[r]) { 
    Qprob_sort[q] = Qprob_temp2[r]; 
    Qbw_sort[q] = Qbw_temp2[r]; 
    Qdivided_sort[q] = Qdivided_temp2[r]; 
    Qchan_temp2[r] = 0; 
    Qprob_temp2[r] = 0; 
    Qbw_temp2[r] = 0; 
    Qdivided_temp2[r] = 0; 
   } 
  } 
  Qsortd_calc[0] = 0; 
 } 
 for(t=0; t<150; t++) { 
  Qchan_ls[t] = Qchan_sort[t]; 
  Qprob_ls[t] = Qprob_sort[t]; 
  Qbw_ls[t] = Qbw_sort[t]; 
  Qdivided_ls[t] = Qdivided_sort[t]; 
 } 
} 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
LS_to_Confirmed(); 
Confirmed_BW_and_Prob_Count(); 
Rem_BW_avail[0] = BW_avail - Curr_conf_BW[0]; 
Net_Confirmed_Prob[0] = ((Final_Best_prob[0])/(1 - Curr_chan_prob[0])); 
 
// Output Final Results 
} 
 
 

Appendix D.2 Probability Divided by BW Model Sorting Routine 

 
// Input data from file, populate Q arrays, & initialize variables as other models 
 
int main(void) { 
Confirmed_Count(); 
Confirmed_BW_and_Prob_Count(); 
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LS_Check_Confirmed(); 
{     for(p=0; p<150; p++)  { 
            Qdivided_ls[p] = (Qprob_ls[p] / Qbw_ls[p]); 
       } 
} 
LS_Sort_by_Divided(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
LS_to_Confirmed(); 
Confirmed_BW_and_Prob_Count(); 
Rem_BW_avail[0] = BW_avail - Curr_conf_BW[0]; 
 
// Output Final Results as with other models 
} 
 
 

Appendix D.3 Probability Only Model Sorting Routine 

 
// Input data from file, populate Q arrays, & initialize variables as other models 
 
int main(void) { 
Confirmed_Count(); 
Confirmed_BW_and_Prob_Count(); 
LS_Check_Confirmed(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
LS_to_Confirmed(); 
Confirmed_BW_and_Prob_Count(); 
Rem_BW_avail[0] = BW_avail - Curr_conf_BW[0]; 
 
// Output Final Results 
} 
 
 

Appendix D.4 Maximum Channels Model Sorting Routine 

 
// Input data from file, populate Q arrays, & initialize variables as other models 
 
int main(void) { 
Confirmed_Count(); 
Confirmed_BW_and_Prob_Count(); 
LS_Check_Confirmed(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
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Confirmed_Count(); 
j=0; 
Curr_conf_BW[0]=0; 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
 
            // Starts caching channels based on lowest BW 
for(i=0; i<150; i++) { 
     if (Qbw_ls[i] == 2 && Qbw_ls[i] <= Rem_BW_avail[0])  { 
            Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
            Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
            Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
            Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
            Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
            j++; 
     } 
} 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
for(i=0; i<150; i++) { 
     if (Qbw_ls[i] == 4 && Qbw_ls[i] <= Rem_BW_avail[0])  { 
          Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
          Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
          Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
          Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
          Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
          j++; 
     } 
} 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
for(i=0; i<150; i++) { 
     if (Qbw_ls[i] == 9 && Qbw_ls[i] <= Rem_BW_avail[0])  { 
          Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
          Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
          Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
          Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
          Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
          j++; 
     } 
} 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
for(i=0; i<150; i++) { 
     if (Qbw_ls[i] == 18 && Qbw_ls[i] <= Rem_BW_avail[0])  { 
          Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
          Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
          Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
          Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
          Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
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          j++; 
     } 
} 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
Confirmed_BW_and_Prob_Count(); 
Rem_BW_avail[0] = BW_avail - Curr_conf_BW[0]; 
 
// Output Final Results 
} 
 
 

Appendix D.5 HD Model Sorting Routine 

 
// Input data from file, populate Q arrays, & initialize variables as other models 
 
int main(void) { 
Confirmed_Count(); 
Confirmed_BW_and_Prob_Count(); 
LS_Check_Confirmed(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
Confirmed_Count(); 
 
            // Starts caching channels based on highest BW 
for(i=0; i<150; i++) { 
     if (Qbw_ls[i] == 18 && Qbw_ls[i] <= Rem_BW_avail[0])  { 
            Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
            Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
            Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
            Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
            Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
            j++; 
     } 
} 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
for(i=0; i<150; i++) { 
     if (Qbw_ls[i] == 9 && Qbw_ls[i] <= Rem_BW_avail[0])  { 
          Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
          Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
          Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
          Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
          Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
          j++; 
     } 
} 
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Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
for(i=0; i<150; i++) { 
     if (Qbw_ls[i] == 4 && Qbw_ls[i] <= Rem_BW_avail[0])  { 
          Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
          Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
          Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
          Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
          Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
          j++; 
     } 
} 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
for(i=0; i<150; i++) { 
     if (Qbw_ls[i] == 2 && Qbw_ls[i] <= Rem_BW_avail[0])  { 
          Qchan_cf[Conf_chan_count + j] = Qchan_ls[i]; 
          Qprob_cf[Conf_chan_count + j] = Qprob_ls[i]; 
          Qbw_cf[Conf_chan_count + j] = Qbw_ls[i]; 
          Curr_conf_BW[0] = Curr_conf_BW[0] + Qbw_ls[i]; 
          Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
          j++; 
     } 
} 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
Confirmed_BW_and_Prob_Count(); 
Rem_BW_avail[0] = BW_avail - Curr_conf_BW[0]; 
 
// Output Final Results 
} 
 
 

Appendix D.6 Exhaustive Search Model Sorting Routine 

 
// Input data from file, populate Q arrays, & initialize variables as other models 
 
// Subroutine to determine best 6 available channels per pass 
void Six_Iterations() 
   // First Iteration 
{ Best_Prob_Hold1[0] = Best_prob[0]; 
 Best_prob[0] = 0; 
 for(j=0; j<Total_Iterations; j++) { 
  Qbw_temp[0] = Qbw_ls[j]; 
  if (Qbw_temp[0] <= Rem_BW_avail[0]) {  
   Qprob_temp[0] = Qprob_ls[j]; 
   if (Qprob_temp[0] > Best_prob[0]) { 
    Qchan_best[0] = Qchan_ls[j]; 
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    Best_prob[0] = Qprob_temp[0]; 
    Best_bw[0] = Qbw_ls[j]; 
   } 
  } 
 } 
    // Second Iteration 
 for(j=0; j<Total_Iterations; j++) { 
  for(k=j+1; k<Total_Iterations; k++) { 
   Qbw_temp[0] = Qbw_ls[j] + Qbw_ls[k]; 
   if (Qbw_temp[0] <= Rem_BW_avail[0]) {  
    Qprob_temp[0] = Qprob_ls[j] + Qprob_ls[k]; 
    if (Qprob_temp[0] > Best_prob[0]) { 
     Qchan_best[0] = Qchan_ls[j]; 
     Qchan_best[1] = Qchan_ls[k]; 
     Best_prob[0] = Qprob_temp[0]; 
     Best_bw[0] = Qbw_temp[0]; 
    } 
   } 
  } 
 } 
    // Third Iteration 
for(j=0; j<Total_Iterations; j++) { 
 for(k=j+1; k<Total_Iterations; k++) { 
  for(m=k+1; m<Total_Iterations; m++) { 
   Qbw_temp[0] = Qbw_ls[j] + Qbw_ls[k] + Qbw_ls[m]; 
   if (Qbw_temp[0] <= Rem_BW_avail[0]) {  
                                    Qprob_temp[0] = Qprob_ls[j] + Qprob_ls[k] +Qprob_ls[m]; 
     if (Qprob_temp[0] > Best_prob[0]) { 
      Qchan_best[0] = Qchan_ls[j]; 
      Qchan_best[1] = Qchan_ls[k]; 
      Qchan_best[2] = Qchan_ls[m]; 
      Best_prob[0] = Qprob_temp[0]; 
      Best_bw[0] = Qbw_temp[0]; 
     } 
    } 
   } 
  } 
 } 
    // Fourth Iteration 
for(j=0; j<Total_Iterations; j++) { 
     for(k=j+1; k<Total_Iterations; k++) { 
 for(m=k+1; m<Total_Iterations; m++) { 
      for(n=m+1; n<Total_Iterations; n++) { 
           Qbw_temp[0] = Qbw_ls[j] + Qbw_ls[k] + Qbw_ls[m] +Qbw_ls[n]; 
  if (Qbw_temp[0] <= Rem_BW_avail[0]) {  
        Qprob_temp[0]=Qprob_ls[j]+Qprob_ls[k]+Qprob_ls[m]+Qprob_ls[n]; 
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   if (Qprob_temp[0] > Best_prob[0]) { 
       Qchan_best[0] = Qchan_ls[j]; 
       Qchan_best[1] = Qchan_ls[k]; 
       Qchan_best[2] = Qchan_ls[m]; 
       Qchan_best[3] = Qchan_ls[n]; 
       Best_prob[0] = Qprob_temp[0]; 
       Best_bw[0] = Qbw_temp[0]; 
      } 
     } 
    } 
   } 
  } 
 } 
    // Fifth Iteration 
 
 for(j=0; j<Total_Iterations; j++) { 
         for(k=j+1; k<Total_Iterations; k++) { 
  for(m=k+1; m<Total_Iterations; m++) { 
   for(n=m+1; n<Total_Iterations; n++) { 
    for(p=n+1; p<Total_Iterations; p++) { 
            Qbw_temp[0]=Qbw_ls[j]+Qbw_ls[k]+Qbw_ls[m]+Qbw_ls[n]+Qbw_ls[p]; 
if (Qbw_temp[0] <= Rem_BW_avail[0]) {           
Qprob_temp[0]=Qprob_ls[j]+Qprob_ls[k]+Qprob_ls[m]+Qprob_ls[n]+Qprob_ls[p]; 
     if (Qprob_temp[0] > Best_prob[0]) { 
      Qchan_best[0] = Qchan_ls[j]; 
      Qchan_best[1] = Qchan_ls[k]; 
      Qchan_best[2] = Qchan_ls[m]; 
      Qchan_best[3] = Qchan_ls[n]; 
      Qchan_best[4] = Qchan_ls[p]; 
      Best_prob[0] = Qprob_temp[0]; 
      Best_bw[0] = Qbw_temp[0]; 
       } 
      } 
     } 
    } 
   } 
  } 
 } 
     // Sixth Iteration 
 
 for(j=0; j<Total_Iterations; j++) { 
  for(k=j+1; k<Total_Iterations; k++) { 
   for(m=k+1; m<Total_Iterations; m++) { 
    for(n=m+1; n<Total_Iterations; n++) { 
     for(p=n+1; p<Total_Iterations; p++) { 
      for(q=p+1; q<Total_Iterations; q++) { 
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Qbw_temp[0]=Qbw_ls[j]+Qbw_ls[k]+Qbw_ls[m]+Qbw_ls[n]+Qbw_ls[p]+Qbw_ls[q]; 
     if (Qbw_temp[0] <= Rem_BW_avail[0]) {  
         
Qprob_temp[0]=Qprob_ls[j]+Qprob_ls[k]+Qprob_ls[m]+Qprob_ls[n]+ 
Qprob_ls[p]+Qprob_ls[q]; 
     if (Qprob_temp[0] > Best_prob[0]) { 
      Qchan_best[0] = Qchan_ls[j]; 
      Qchan_best[1] = Qchan_ls[k]; 
      Qchan_best[2] = Qchan_ls[m]; 
      Qchan_best[3] = Qchan_ls[n]; 
      Qchan_best[4] = Qchan_ls[p]; 
      Qchan_best[5] = Qchan_ls[q]; 
      Best_prob[0] = Qprob_temp[0]; 
      Best_bw[0] = Qbw_temp[0]; 
        } 
       } 
      } 
     } 
    } 
   } 
  } 
 } 
Best_prob[0] = Best_prob[0] + Best_Prob_Hold1[0]; 
} 
 
// Subroutine to load best six channels into confirmed arrays 
void Best_to_Confirmed() 
{ 
 j=0; 
 for(i=0; i<6; i++) { 
  if (Qbw_best[i] == 2) { 
   Qchan_cf[Conf_chan_count + j] = Qchan_best[i]; 
   Qprob_cf[Conf_chan_count + j] = Qprob_best[i]; 
   Qbw_cf[Conf_chan_count + j] = Qbw_best[i]; 
   j++; 
  } 
  else if (i<4 && Qbw_best[i] == 4) { 
   Qchan_cf[Conf_chan_count + j] = Qchan_best[i]; 
   Qprob_cf[Conf_chan_count + j] = Qprob_best[i]; 
   Qbw_cf[Conf_chan_count + j] = Qbw_best[i]; 
   j++; 
  } 
  else if (i<2 && Qbw_best[i] == 9) { 
   Qchan_cf[Conf_chan_count + j] = Qchan_best[i]; 
   Qprob_cf[Conf_chan_count + j] = Qprob_best[i]; 
   Qbw_cf[Conf_chan_count + j] = Qbw_best[i]; 
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   j++; 
  } 
 } 
 for(w=0; w<150; w++) { 
  Qchan_best[w] = 0; 
  Qprob_best[w] = 0; 
  Qbw_best[w] = 0; 
 } 
} 
 
int main(void) { 
 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
Confirmed_BW_and_Prob_Count(); 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
Best_prob[0] = 0; 
Best_bw[0] = 0; 
 
 
// First Phase 
 
Total_Iterations_Count(); 
Six_Iterations(); 
LS_BW_and_Prob_to_Best(); 
Confirmed_Count(); 
Best_to_Confirmed(); 
LS_Check_Confirmed(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
Confirmed_BW_and_Prob_Count(); 
 
//  Second Phase 
 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
Total_Iterations_Count(); 
Six_Iterations(); 
LS_BW_and_Prob_to_Best(); 
Confirmed_Count(); 
Best_to_Confirmed(); 
Confirmed_BW_and_Prob_Count(); 
LS_Check_Confirmed(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
Confirmed_BW_and_Prob_Count(); 
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Rem_BW_avail[0] = BW_avail - Curr_conf_BW[0]; 
 
//  Third Phase 
 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
Total_Iterations_Count(); 
Six_Iterations(); 
LS_BW_and_Prob_to_Best(); 
Confirmed_Count(); 
Best_to_Confirmed(); 
Confirmed_BW_and_Prob_Count(); 
LS_Check_Confirmed(); 
LS_Strip_Chan_0s(); 
LS_Clean_BW_and_Prob(); 
Rem_BW_avail[0] = BW_total - Curr_chan_bw - Curr_conf_BW[0]; 
Confirmed_BW_and_Prob_Count(); 
Rem_BW_avail[0] = BW_avail - Curr_conf_BW[0]; 
 
// Output Final Results 
} 
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APPENDIX E 

 
Appendix E.1 Visual of Sample Data Set Creation Tool 

 

 
 

 

254 
 



Appendix E.2 Sample Data Set Creation Tool Key Macros 

 
Below are the key Excel macro routines that control the Sample Data Set Creation Tool. 

Sub Button1_Click() 
' New Prep clears various data cells for a fresh run 
 
    Sheets("Weighting Comparisons").Select 
    Range("B2:G151").Value = "" 
    Range("I2:K151").Value = "" 
    Range("H2").Select 
    Sheets("Sample A").Select 
    Range("A1:E151").Value = "" 
    Range("A1").Select 
    Sheets("Sample B").Select 
    Range("A1:E151").Value = "" 
    Range("A1").Select 
    Sheets("Sample C").Select 
    Range("A1:E151").Value = "" 
    Range("A1").Select 
    Sheets("Channel Details").Select 
    Range("C2").Select 
    Application.CutCopyMode = False 
End Sub 
 
 
Sub Button2_Click() 
' Chan Order creates channels #'s 1 to 150 
 
    Range("C6:C155").Value = "" 
    rowCounter = 6 
For i = 1 To 150 
reChannel: 
    generatedChannel = Int((150 - 1 + 1) * Rnd + 1) 
        For Row = 6 To 155 
            checkChannel = Range("C" & Row).Value 
            If generatedChannel = checkChannel Then GoTo reChannel 
        Next Row 
     Range("C" & rowCounter).Value = generatedChannel 
    rowCounter = rowCounter + 1 
Next i 
    Range("E2").Select 
End Sub 
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Sub Button3_Click() 
' Initial 2000 Ch randomly selects 2000 channels to populate History Buffer 
         
Limit = Range("G1").Value + 6 
Range("E6:E2005").Value = "0" 
Range("F6:F155").Value = "0" 
Range("G6:G155").Value = "0" 
Range("H6:H155").Value = "0" 
Range("I6:I155").Value = "0" 
Range("J6:J155").Value = "0" 
Range("K6:K155").Value = "0" 
chcnt = 6 
Do While (chcnt < Limit) 
            generatedRandnum = Int((1000000000 - 0 + 1) * Rnd + 0) 
            currentRandnum = generatedRandnum / 1000000000 
    For i = 6 To 156 
            currentFx = Range("B" & i).Value 
            If currentRandnum > currentFx Then 
                GoTo Newi 
            Else 
                If Range("C" & i).Value = Range("E" & (chcnt - 1)).Value Then 
                    chcnt = chcnt - 1 
                 Else 
                    Range("E" & chcnt).Value = Range("C" & i).Value 
                    chcnt = chcnt + 1 
                    i = 156 
                End If 
            End If 
Newi: 
    Next i 
Loop 
Range("C161").Value = Range("E" & Limit - 1).Value 
    Range("I2").Select 
End Sub 
 
 
Sub Button4_Click() 
' One New Ch makes a single selection and increments History Buffer 
 
'Delect Oldest Channel and Decrement All Others in Buffer 
    Range("E6").Select 
    Selection.ClearContents 
    Range("E7:E2005").Select 
    Range("E2005").Activate 
    Selection.Cut 
    Range("E6").Select 
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    ActiveSheet.Paste 
    Range("E2005").Select 
'Select One New Random Channel 
   For j = 0 To 10 
     chcnt = Limit - 1 
     generatedRandnum = Int((1000000000 - 0 + 1) * Rnd + 0) 
    currentRandnum = generatedRandnum / 1000000000 
     For i = 6 To 156 
                  currentFx = Range("B" & i).Value 
                  If currentRandnum > currentFx Then 
                 GoTo Newi 
             Else 
                  If Range("C" & i).Value = Range("E" & (chcnt - 1)).Value Then 
                      GoTo Newj 
                      Else 
                      Range("E" & chcnt).Value = Range("C" & i).Value 
                        i = 156 
                         j = 10 
                        End If 
                     End If 
Newi: 
     Next i 
Newj: 
Next j 
Range("C161").Value = Range("E" & Limit - 1).Value 
Range("I2").Select 
End Sub 
 
 
Sub Button5_Click() 
' Weighting peforms the exponential time-weighting function 
 
        'Times Selected & Weighted Selections 
Limit = Range("G1").Value + 6 
For j = 6 To 155 
    Channel2Count = Range("C" & j).Value 
    For k = 6 To Limit 
        If Channel2Count = Range("E" & k).Value Then 
            Range("F" & j).Value = Range("F" & j).Value + 1 
            Range("G" & j).Value = Range("G" & j).Value + Range("D" & k).Value 
        End If 
    Next k 
Next j 
    'Weighted, Cumm Weighted, Non-Weighted, & Cumm Non-Weighted Probabilities 
For n = 6 To 155 
    Range("H" & n).Value = Range("G" & n).Value / Range("G159").Value 
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    Range("I" & n).Value = Range("I" & n - 1).Value + Range("H" & n).Value 
    Range("J" & n).Value = Range("F" & n).Value / Range("F159").Value 
    Range("K" & n).Value = Range("K" & n - 1).Value + Range("J" & n).Value 
Next n 
    Range("J2").Select 
End Sub 
 
 
Sub Button6_Click() 
' BW Mix sets up the channel BWs per mix ratios 
 
' Determine Channel Bandwidth For Mix A 
    Sheets("Weighting Comparisons").Select 
    Range("B2:G151").Value = "" 
    Range("I2:K151").Value = "" 
    Sheets("Channel Details").Select 
    Range("M6:M155").Value = "0" 
For i = 6 To 155 
    genrand2 = Int((1000 - 0 + 1) * Rnd + 0) 
    rand2 = genrand2 / 1000 
    For j = 11 To 15 
        If rand2 > Range("L" & j).Value Then 
             If rand2 < Range("L" & (j + 1)).Value Then 
                Range("M" & i).Value = Range("L" & (j - 6)).Value 
             End If 
        End If 
    Next j 
    If Range("M" & i).Value = 0 Then 
        i = i - 1 
    End If 
Next i 
    Range("M6:M155").Select 
    Selection.Copy 
    Sheets("Weighting Comparisons").Select 
    Range("E2").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("Channel Details").Select 
 
' Determine Channel Bandwidth For Mix B 
Range("O6:O155").Value = "0" 
For i = 6 To 155 
    genrand2 = Int((1000 - 0 + 1) * Rnd + 0) 
    rand2 = genrand2 / 1000 
    For j = 11 To 15 
        If rand2 > Range("N" & j).Value Then 
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             If rand2 < Range("N" & (j + 1)).Value Then 
                Range("O" & i).Value = Range("N" & (j - 6)).Value 
             End If 
        End If 
    Next j 
    If Range("O" & i).Value = 0 Then 
        i = i - 1 
    End If 
Next i 
    Range("O6:O155").Select 
    Selection.Copy 
    Sheets("Weighting Comparisons").Select 
    Range("F2").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("Channel Details").Select 
 
' Determine Channel Bandwidth For Mix C 
Range("Q6:Q155").Value = "0" 
For i = 6 To 155 
    genrand2 = Int((1000 - 0 + 1) * Rnd + 0) 
    rand2 = genrand2 / 1000 
    For j = 11 To 15 
        If rand2 > Range("P" & j).Value Then 
             If rand2 < Range("P" & (j + 1)).Value Then 
                Range("Q" & i).Value = Range("P" & (j - 6)).Value 
             End If 
        End If 
    Next j 
    If Range("Q" & i).Value = 0 Then 
        i = i - 1 
    End If 
Next i 
    Range("Q6:Q155").Select 
    Selection.Copy 
    Sheets("Weighting Comparisons").Select 
    Range("G2").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("Channel Details").Select 
    Range("J2").Select 
        Application.CutCopyMode = False 
End Sub 
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APPENDIX F 

 
Appendix F.1 Sample Moment Model Example Calculations of 2nd Order PDF 
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Appendix F.2 Detailed Performance Simulation Cumulative Summaries 
 
 

 
 

 
 
 
 
 
 
 

Sample Data Set Number: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
λ  value: 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.10

Probability at 50 Mbps Rate = 0.6376 0.6152 0.3476 0.6535 0.5868 0.5386 0.8058 0.7019 0.6148 0.8091 0.7427 0.4538 0.7764 0.6315 0.5714 0.8290 0.7188 0.5887
Mean Prob. for 50 Mbps Rate = 0.6457

Probability at 65 Mbps Rate = 0.7347 0.6946 0.4381 0.7504 0.6558 0.6079 0.8931 0.7738 0.7070 0.8832 0.8189 0.5671 0.8533 0.7451 0.6581 0.9120 0.8306 0.6976
Mean Prob. for 65 Mbps Rate = 0.7345

Probability at 75 Mbps Rate = 0.7866 0.7275 0.5014 0.8068 0.6979 0.6439 0.9302 0.8071 0.7699 0.9225 0.8540 0.6246 0.8778 0.7849 0.7043 0.9490 0.8646 0.7424
Mean Prob. for 75 Mbps Rate = 0.7775

Mean Probability for all Samples = 0.7193

λ  value: 0.05 0.06 0.07 0.08 0.09 0.1
Mean Prob. by λ  for 50 Mbps Rate = 0.5335 0.5929 0.7075 0.6686 0.6598 0.7122
Mean Prob. by λ  for 65 Mbps Rate = 0.6225 0.6713 0.7913 0.7564 0.7522 0.8134
Mean Prob. by λ  for 75 Mbps Rate = 0.6718 0.7162 0.8357 0.8004 0.7890 0.8520

Mean Prob. for all Rates by λ  = 0.6093 0.6602 0.7782 0.7418 0.7337 0.7925

Sample Moment Model Cumulative Summary

Sample Data Set Number: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
λ  value: 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.10

Probability at 50 Mbps Rate = 0.6376 0.6195 0.3514 0.6554 0.5868 0.5477 0.8061 0.7019 0.6148 0.8091 0.7427 0.4538 0.7764 0.6129 0.5436 0.8290 0.7188 0.5887
Mean Prob. for 50 Mbps Rate = 0.6442

Probability at 65 Mbps Rate = 0.7347 0.6844 0.4404 0.7504 0.6565 0.6130 0.8941 0.7738 0.7069 0.8832 0.8187 0.5671 0.8533 0.7451 0.6541 0.9120 0.8306 0.6976
Mean Prob. for 65 Mbps Rate = 0.7342

Probability at 75 Mbps Rate = 0.7870 0.7342 0.4830 0.8068 0.6954 0.6464 0.9296 0.7999 0.7699 0.9225 0.8539 0.6246 0.8778 0.7857 0.7003 0.9506 0.8646 0.7255
Mean Prob. for 75 Mbps Rate = 0.7754

Mean Probability for all Samples = 0.7180

λ  value: 0.05 0.06 0.07 0.08 0.09 0.1
Mean Prob. by λ  for 50 Mbps Rate = 0.5362 0.5966 0.7076 0.6686 0.6443 0.7122
Mean Prob. by λ  for 65 Mbps Rate = 0.6199 0.6733 0.7916 0.7564 0.7508 0.8134
Mean Prob. by λ  for 75 Mbps Rate = 0.6681 0.7162 0.8331 0.8003 0.7879 0.8469

Mean Prob. for all Rates by λ  = 0.6080 0.6620 0.7774 0.7418 0.7277 0.7908

Probability Divided by Bandwidth Model Cumulative Summary
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Sample Data Set Number: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
λ value: 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.10

Probability at 50 Mbps Rate = 0.5742 0.5422 0.3092 0.5517 0.5216 0.4699 0.7895 0.5848 0.5853 0.8091 0.7253 0.3729 0.6871 0.6130 0.4639 0.8064 0.6936 0.4786
Mean Prob. for 50 Mbps Rate = 0.5877

Probability at 65 Mbps Rate = 0.6950 0.6273 0.3184 0.7217 0.6011 0.5761 0.8931 0.7541 0.6593 0.8600 0.8147 0.5383 0.8201 0.7299 0.5801 0.9090 0.7364 0.5505
Mean Prob. for 65 Mbps Rate = 0.6881

Probability at 75 Mbps Rate = 0.7545 0.6530 0.3620 0.7808 0.6486 0.6012 0.9302 0.7252 0.7176 0.9105 0.8562 0.6114 0.8810 0.7720 0.6543 0.9444 0.8461 0.6688
Mean Prob. for 75 Mbps Rate = 0.7399

Mean Probability for all Samples = 0.6719

λ value: 0.05 0.06 0.07 0.08 0.09 0.1
Mean Prob. by λ for 50 Mbps Rate = 0.4752 0.5144 0.6532 0.6358 0.5880 0.6595
Mean Prob. by λ for 65 Mbps Rate = 0.5469 0.6330 0.7688 0.7377 0.7100 0.7320
Mean Prob. by λ for 75 Mbps Rate = 0.5899 0.6769 0.7910 0.7927 0.7691 0.8198

Mean Prob. for all Rates by λ = 0.5373 0.6081 0.7377 0.7221 0.6890 0.7371

Probability Only Model Cumulative Summary

Sample Data Set Number: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
λ  value: 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.10

Probability at 50 Mbps Rate = 0.5855 0.5470 0.3414 0.5667 0.5481 0.5121 0.7813 0.5894 0.5949 0.7832 0.7388 0.4538 0.6498 0.6130 0.5178 0.7829 0.6044 0.5258
Mean Prob. for 50 Mbps Rate = 0.5964

Probability at 65 Mbps Rate = 0.6741 0.5969 0.4286 0.7012 0.6204 0.5554 0.8675 0.6843 0.6704 0.8383 0.7807 0.5021 0.7275 0.6974 0.6036 0.8810 0.6694 0.6083
Mean Prob. for 65 Mbps Rate = 0.6726

Probability at 75 Mbps Rate = 0.7248 0.6537 0.4102 0.7720 0.6829 0.5693 0.9106 0.6916 0.6720 0.8617 0.8209 0.5686 0.7877 0.7737 0.6444 0.8784 0.7131 0.6688
Mean Prob. for 75 Mbps Rate = 0.7114

Mean Probability for all Samples = 0.6601

λ  value: 0.05 0.06 0.07 0.08 0.09 0.1
Mean Prob. by λ  for 50 Mbps Rate = 0.4913 0.5423 0.6552 0.6586 0.5935 0.6377
Mean Prob. by λ  for 65 Mbps Rate = 0.5665 0.6256 0.7407 0.7070 0.6762 0.7196
Mean Prob. by λ  for 75 Mbps Rate = 0.5963 0.6747 0.7581 0.7504 0.7352 0.7535

Mean Prob. for all Rates by λ  = 0.5514 0.6142 0.7180 0.7053 0.6683 0.7036

Exhaustive Search Model Cumulative Summary
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Sample Data Set Number: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
λ value: 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.10

Probability at 50 Mbps Rate = 0.4244 0.4773 0.2695 0.5242 0.5436 0.4265 0.6286 0.5488 0.4931 0.4997 0.6458 0.3495 0.6517 0.5625 0.3938 0.6579 0.4898 0.4285
Mean Prob. for 50 Mbps Rate = 0.5008

Probability at 65 Mbps Rate = 0.4381 0.4864 0.3298 0.5291 0.6009 0.4945 0.7987 0.6655 0.5632 0.7431 0.7675 0.3587 0.8184 0.6536 0.4000 0.8055 0.6713 0.6131
Mean Prob. for 65 Mbps Rate = 0.5965

Probability at 75 Mbps Rate = 0.4386 0.5414 0.3338 0.6519 0.6350 0.5050 0.8411 0.7204 0.6906 0.8235 0.7818 0.3611 0.8603 0.6993 0.5014 0.8960 0.6816 0.6547
Mean Prob. for 75 Mbps Rate = 0.6454

Mean Probability for all Samples = 0.5809

λ value: 0.05 0.06 0.07 0.08 0.09 0.1
Mean Prob. by λ for 50 Mbps Rate = 0.3904 0.4981 0.5568 0.4983 0.5360 0.5254
Mean Prob. by λ for 65 Mbps Rate = 0.4181 0.5415 0.6758 0.6231 0.6240 0.6966
Mean Prob. by λ for 75 Mbps Rate = 0.4379 0.5973 0.7507 0.6555 0.6870 0.7441

Mean Prob. for all Rates by λ = 0.4155 0.5456 0.6611 0.5923 0.6157 0.6554

Maximum Channels Model Cumulative Summary

Sample Data Set Number: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
λ value: 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.10

Probability at 50 Mbps Rate = 0.2157 0.0495 0.1000 0.2637 0.0835 0.1865 0.2245 0.3269 0.2479 0.3550 0.2401 0.1437 0.0988 0.2010 0.0947 0.2756 0.3433 0.2755
Mean Prob. for 50 Mbps Rate = 0.2070

Probability at 65 Mbps Rate = 0.3931 0.1246 0.1214 0.3037 0.1584 0.1104 0.4567 0.1703 0.0877 0.4954 0.1815 0.2244 0.2825 0.1854 0.1774 0.5273 0.3922 0.2908
Mean Prob. for 65 Mbps Rate = 0.2602

Probability at 75 Mbps Rate = 0.4317 0.1548 0.1851 0.4471 0.1347 0.0780 0.3388 0.1047 0.0180 0.4628 0.1891 0.1387 0.3088 0.0842 0.2787 0.5137 0.4130 0.2362
Mean Prob. for 75 Mbps Rate = 0.2510

Mean Probability for all Samples = 0.2394

λ value: 0.05 0.06 0.07 0.08 0.09 0.1
Mean Prob. by λ for 50 Mbps Rate = 0.1218 0.1779 0.2665 0.2463 0.1315 0.2981
Mean Prob. by λ for 65 Mbps Rate = 0.2130 0.1908 0.2382 0.3004 0.2151 0.4034
Mean Prob. by λ for 75 Mbps Rate = 0.2572 0.2199 0.1538 0.2635 0.2239 0.3876

Mean Prob. for all Rates by λ = 0.1973 0.1962 0.2195 0.2701 0.1902 0.3631

High Definition Model Cumulative Summary
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APPENDIX G 

 
Appendix G.1 Packet Prioritization 

 
 
Recommended IP packet tagging processes to prioritize network traffic for this system 
are the following: 
 
 
 

• IP Type of Service (TOS) Field 
 

• IP Traffic Class Field 
 

• Precedence Bits (P-Bits) 
 

• Virtual Local Area Networks (VLAN) 
 
 
 
The multicast cache packets could be given significantly lower priority such that they 

would be preempted if cases of higher priority packet bursting. Full application details on 

these processes are available in the industry standards listed in Appendix A.2 and in 

references [98-99][111-113]. 
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Appendix G.2 Operational Testing Code for Linux Platform 
 
 
The Processing and Memory Testing as discussed in Chapter VII was conducted on the 
Linux computer as described in the chapter. This testing required additional C++ code to 
capture the critical details involved in the tests, and this code was then recompiled to 
operate on the Linux platform. The following critical code lines were inserted into the 
Sample Moment Model at key positions to facilitate the testing. 
 
// Routine to set up structures and output key metrics required for testing 
void process(struct rusage *p, char *when) 
{ 
 printf("%s\n", when); 
 printf(" /* user time used */  %8d  %8d\n",  p->ru_utime.tv_sec,p->ru_utime.tv_usec ); 
 printf(" /* system time used */ %8d  %8d\n",  p->ru_stime.tv_sec,p->ru_stime.tv_usec ); 
        printf(" /* integral sset size */      %8d\n",  p->ru_maxrss           ); 
        printf(" /* integral shared memory size */      %8d\n",  p->ru_ixrss           ); 
        printf(" /* integral unshared data  */          %8d\n",  p->ru_idrss           ); 
        printf(" /* integral unshared stack  */         %8d\n",  p->ru_isrss           ); 
        printf(" /* page reclaims */                    %8d\n",  p->ru_minflt          ); 
        printf(" /* page faults */                      %8d\n",  p->ru_majflt          ); 
        printf(" /* swaps */                            %8d\n",  p->ru_nswap           ); 
        printf(" /* block input operations */           %8d\n",  p->ru_inblock         ); 
        printf(" /* block output operations */          %8d\n",  p->ru_oublock         ); 
 printf(" /* messages sent */                    %8d\n",  p->ru_msgsnd          ); 
        printf(" /* messages received */                %8d\n",  p->ru_msgrcv          ); 
        printf(" /* signals received */                 %8d\n",  p->ru_nsignals        ); 
        printf(" /* voluntary context switches */       %8d\n",  p->ru_nvcsw           ); 
        printf(" /* involuntary  */                     %8d\n",  p->ru_nivcsw          ); 
} 
          int who= RUSAGE_SELF; 
          struct rusage usage; 
          struct rusage *pjr=&usage; 
 
// Processing time report 
ret=getrusage(who,pjr); 
          process(pjr, "-------------before"); 
 
// Memory Time Report requires operator to address PC statistics at this point 
cout << "Calculate RAM then hit any key to continue: " <<'\t'<<'\t'; 
cin >> input_key[0]; 
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