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Dietary flavonoid intake, especially berry flavonoids, has been associated with 
antioxidant functions and metal chelation in mechanistic studies. We examined the 

hypothesis that freeze-dried strawberries (FDS) improve antioxidant biomarkers in adults 
with abdominal adiposity and elevated serum lipids. In a randomized dose-response 

controlled trial, 60 volunteers [5 men and 55 women; age: 49 ± 10 years; BMI: 36 ± 5 
kg/m2 (mean±SD)] were assigned to one of the following arms: low dose FDS (LD-FDS) 

(25g/d), low dose control (LD-C), high dose FDS (HD-FDS) (50g/d), and high dose 
control (HD-C) beverages for 12 weeks. Control beverages were matched for calories and 

total fiber. Serum levels of trace elements and whole blood glutathione, and catalase 
activity were examined at screening (0 week) and after 12 weeks intervention. At 12 

weeks, glutathione levels were higher in HD-FDS vs. LD-FDS, as well as vs. HD-C, and 
catalase activity was lower in HD-FDS vs. baseline (all P<0.05). No differences were 
noted in serum trace elements following FDS intervention. Thus, dietary strawberries 
may selectively modulate antioxidant biomarkers that influence risk factors of chronic 

diseases.  
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CHAPTER I 
 

 

INTRODUCTION 

 

 

Cardiovascular disease (CVD) remains a significant public health concern and the leading cause 

of mortality in the US1. Several of the risk factors underlying CVD are modifiable by dietary and 

lifestyle factors, including those related to overweight/obesity and dyslipidemia2. Obesity and 

dyslipidemia have also been associated with elevated oxidative stress, reduced antioxidant status 

and consequently the initiation and progression of CVD3-6.  

Oxidative stress identifies a biological condition when the production of harmful reactive oxygen 

species (ROS) and the concentrations of intracellular and extracellular antioxidants are under 

imbalance7. An antioxidant is any substance that can delay or prevent oxidation of a particular 

substrate. Antioxidants help protect against oxidative stress7. 

Trace elements are vital for biochemical reactions necessary for cell survival and human health, 

though they constitute only <0.01% of our total body weight8. Trace minerals like selenium and 

zinc are essential in reducing oxidative stress, and in performing antioxidant functions, while iron 

and copper can behave as an oxidant8. Studies have shown typically higher levels of iron and 

copper, and lower levels of zinc and selenium in populations with obesity and dyslipidemia9-12. 

Cells protect themselves against oxidative stress by endogenous enzymatic antioxidants, 
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including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), in a 

highly regulated endogenous defense system. These enzymes are important in reducing oxidative 

stress13. Trace elements are an integral component of antioxidant defense enzymes, such as the 

role of selenium in GPX, and that of copper and zinc in the antioxidant function of SOD8,14-16. 

Phytochemicals are plant-derived compounds that have gained attention for their protective 

effects against chronic diseases like CVD, cancer, osteoporosis, neurodegenerative diseases, and 

diabetes mellitus17. Strawberries are a popular berry fruit consumed in the US and previous 

clinical and observational studies show the role of strawberries in reducing CVD risks18-22. 

However, only a few studies have examined the role of dietary strawberries in modulating 

biomarkers of oxidative stress/antioxidant status, especially in participants with CVD risk factors, 

and this constitutes the scope of our current investigation. 

 

Purpose 

The purpose of this study is to identify the dose-dependent effects of a 12-week dietary 

strawberry supplementation on plasma trace elements and selected endogenous antioxidants in 

subjects with obesity and dyslipidemia. 

 

Hypotheses 

1. Consumption of freeze-dried strawberries (low vs. high dose) will affect plasma 

levels of trace elements, especially lower plasma iron, in obese individuals with 

above optimal serum lipids at 12 weeks when compared to baseline and their 

respective control groups. 
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2. Consumption of freeze-dried strawberries (low vs. high dose) will increase plasma 

levels of endogenous antioxidant catalase activity in obese individuals with above 

optimal serum lipids at 12 weeks when compared to baseline and their respective 

control groups. 

3. Consumption of freeze-dried strawberries (low vs. high dose) will increase whole 

blood levels of endogenous antioxidant glutathione in obese individuals with above 

optimal serum lipids at 12 weeks when compared to baseline and their respective 

control groups.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

A. Cardiovascular disease, dyslipidemia, and obesity and associations with trace 

elements and antioxidant status 

 

i. Cardiovascular disease 

Cardiovascular disease (CVD) tragically takes a toll on much of the world’s population and 

remains the leading cause of mortality in the U.S.1 Several of the risk factors underlying CVD are 

modifiable by dietary and lifestyle practices. These modifiable risk factors include 

overweight/obesity, especially abdominal obesity; dyslipidemia (high triglycerides, low HDL 

cholesterol, high LDL cholesterol, and high total cholesterol) and smoking2. Globally, the 

prevalence of overweight and obesity has reached what we know to be an all-time high: over 1.6 

billion adults (20 years or older) are overweight and approximately 500 million within that 

category are also classified as obese2. In the US, 35.9% of adults over the age of 20 years are 

obese, while those who are overweight and including obesity make up 69.2% of adults aged 20+ 

years23. Dyslipidemia and hyperlipidemia, as strong CVD risk factors are prevalent in the 

developed countries, including the US2. Nearly one in six of Americans over 20 years of age have 
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high serum cholesterol levels – particularly high levels of serum LDL cholesterol – which is a 

major carrier of cholesterol and contributes to CVD24. High levels of HDL cholesterol and low 

levels of LDL cholesterol are desirable for cardiovascular health8. 

ii. Dyslipidemia 

Dyslipidemia is characterized by four types of lipid disorders: high triglycerides, high total 

cholesterol, high LDL cholesterol, and low HDL cholesterol concentrations25. One in three US 

adults have elevated cholesterol levels, while less than half of this population seeks treatment to 

manage the condition. The American Heart Association (AHA) recommends optimal total serum 

cholesterol as below 200 mg/dL, with LDL cholesterol levels less than 100 mg/dL and HDL 

cholesterol levels greater than 60 mg/dL. The AHA also recommends optimal triglyceride levels 

as below 150 mg/dL26.  

Several aspects of research have established the positive relationship between elevated lipids and 

CVD27,28,29. Dietary intakes of total fat, saturated fatty acids, cholesterol, and trans fats have been 

shown to have a positive correlation with CVD risks, mostly due to the hypercholesterolemic 

effect, and increases in LDL: HDL cholesterol ratios. Lipids such as monounsaturated fatty acids, 

polyunsaturated fatty acids, and omega-3 fatty acids show an inverse correlation with CVD 

risks30. Dietary and lifestyle factors like weight loss, reduction in fat intake, increased fiber 

intake, and increased physical activity have been shown to reduce CVD risks and improve 

cardiovascular health. 

iii.  Obesity 

Obesity is a strong CVD risk factor and its incidence is observed similarly in younger and older 

age groups. More notably, significant evidence has shown that an obese child is likely to grow 

into an obese adult31-33. For this reason, obesity is a significant public health concern in the US. 

The morbidity related to the next generation of adults who are obese is predicted to become worse 
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than it is now33. Body mass index (BMI), generally used as an indicator of obesity, is a 

calculation using an individual’s height and weight to determine their weight classification. A 

BMI value 25 kg/m2 or higher categorizes the individual as overweight, while a BMI 30 kg/m2 or 

higher indicates that the individual is obese. Hip-to-waist ratio is also important in determining 

metabolic health by one’s size and weight34. 

Increased amounts of adipose tissue in obese subjects lead to increased non-esterified fatty acids, 

glycerol, hormones (such as leptin and insulin), and pro-inflammatory cytokines when compared 

to the non-obese individual35. Obesity and weight gain result in increased oxidative stress, often 

resulting from the dysregulation of adipokine secretion that occurs in adipose tissue5. This 

dysregulation of adipokine secretion over time can lead to chronic conditions related to obesity, 

including insulin resistance, type 2 diabetes mellitus, atherosclerosis, and CVD36,37.  

The abnormal adipokine secretion in obesity affects the functions of other tissues, like the liver, 

muscle, central nervous system, and vasculatures38. Identifying the effects of oxidative stress in 

obesity is important because adipokine secretion influences many vital metabolic processes, such 

as impaired carbohydrate and lipid metabolism, energy expenditure, inflammation, endothelial 

function, and blood coagulation. All of these conditions contribute to elevated CVD risks39. 

 

iv.  Oxidative stress 

 Oxidative stress identifies a biological condition when the production of ROS and the amounts of 

intracellular and extracellular antioxidants are under imbalance. While production of ROS is a 

normal metabolic process in living cells, the overproduction of ROS could lead to deleterious 

effects. Excessive oxidants mediate injury to cells or tissues and may lead to cell death by 

mechanisms of apoptosis and necrosis7. This damage may be caused by normal cellular 

metabolism, and by factors such as oxygen, light, free radicals, and metal ions, as well as the 
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aging process40. Endogenous oxidants like superoxide anion radical (O2
-), hydrogen peroxide 

non-radical (H2O2), and hydroxyl radical (●OH) are products of normal aerobic respiration by 

mitochondria. Yet, chronic infections by bacteria, viruses, and parasites result in chronic 

inflammation, and thus lead to higher levels of these ROS40.  

Oxidative stress and obesity 

Obesity has been associated with elevated oxidative stress and is a well-established CVD risk 

factor3,4. Fat accumulation has been shown to be correlated with systemic oxidative stress in both 

animal and human models of oxidative stress5. In studies involving healthy obese subjects with 

no pronounced health abnormalities other than high BMI, findings have shown a positive 

correlation between BMI and oxidative stress41-44. Animal models of oxidative stress have also 

produced identical results correlating adiposity with lipid peroxidation45,46. 

Since obesity increases the mechanical and metabolic burden on the myocardium, myocardial 

oxygen consumption is increased and production of ROS is also increased due to increased 

mitochondrial respiration47. A study evaluating abdominal obesity in pigs fed a high-fat diet 

reported that early phases of abdominal obesity resulted in increased incidence of coronary 

endothelial dysfunction, as well as vascular oxidative stress, hypertension, and mild abnormalities 

of lipid profiles compared to controls. However, no systemic inflammation or oxidative stress 

was observed, indicating that early obesity-related abnormalities are localized in the vasculature 

and contributes to increased risk for CVD48.  

Oxidative stress related to obesity is also likely to be induced by other possible conditions 

associated with obesity, including dyslipidemia , hypertension, poor diet, hyperglycemia, low 

physical activity, and smoking49. 

Oxidative stress and dyslipidemia 



8 

 

Dyslipidemia has been shown to elevate oxidative damage, resulting in increased oxidative 

stress50. LDL cholesterol contains a large amount of polyunsaturated fatty acids which is 

susceptible to becoming oxidized lipid radicals6. ROS promptly inactivates vascular nitric oxide 

(necessary for inhibition of platelet function and is a vasorelaxant), and can increase risks for 

atherosclerosis and stroke. Fibrinogen activity is enhanced by ROS and reactive nitrogen species 

(RNS), resulting in accelerated clot formation and thrombosis38,51. Oxidation of LDL cholesterol 

promotes monocyte activation leading to transformation into foam cells, which are mediators of 

the chronic process of atherosclerosis 52.  

 

v. Antioxidants 

An antioxidant has been defined as “any substance that can delay or prevent oxidation of a 

particular substrate”53, or “any substance that, when present at low concentration compared to 

those of an oxidizable substrate, significantly delays or inhibits oxidation of that substrate”54. 

Antioxidants can be either enzymatic or non-enzymatic. They are reducing agents, or electron 

donors, that have the ability to reverse oxidation due to their nature of donating electrons and 

hydrogen ions8.  

Dietary or non-enzymatic antioxidants include micronutrients like vitamins A, C, and E, 

selenium, and zinc, as well as polyphenols like flavonoids, tannins, anthocyanins, and ellagic 

acid8,40,55-57. Food sources that contain high amounts of antioxidants include whole grains, 

vegetables, and fruits, particularly berries, and other yellow- and orange-colored fruits and 

vegetables. Among popular beverages, green tea and cocoa drinks also have noteworthy amounts 

of antioxidants58. These potent antioxidants have been shown to inhibit lipid oxidation and 

therefore reduce the likelihood for CVD and its risk factors59.  
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Furthermore, antioxidants prevent DNA and protein damage, which could lessen the likelihood of 

developing chronic diseases like diabetes mellitus, a risk factor for CVD55. Enzymatic 

antioxidants are an integral constituent of the cellular defense mechanisms such as superoxide 

dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX). Low antioxidant status has 

been correlated with increased serum total cholesterol concentrations, while high plasma 

concentrations of antioxidants correlate with higher plasma HDL-cholesterol levels8. 

Vitamins as antioxidants  

Among all vitamins, A, C and E deserve special attention as dietary antioxidants. Vitamin A, or 

retinol, can be synthesized in the body from dietary carotenoids, especially α-carotene and β-

carotene. Orange and yellow vegetables, spinach, collards, and turnip greens are significant 

sources of β- and α-carotene. Retinol is a fat-soluble vitamin and will not be absorbed unless 

consumed with a fat-containing meal. Carotenoids in plants function as antioxidants and are 

quenchers of singlet oxygen, with lycopene being one of the most effective quenchers of this 

element18.  

Vitamin C, also known as ascorbate or ascorbic acid, is a water-soluble vitamin that is found in a 

variety or fruits and vegetables like papaya, oranges, broccoli, green peppers, grapefruit, and 

strawberries. This antioxidant is a reducing agent that is protective in aqueous solutions like in the 

blood and intracellular matrix. Ascorbate has a noteworthy reduction potential in that it will 

readily donate electrons to regenerate other antioxidants, such as vitamin E and glutathione. 

While vitamin C is known to be an antioxidant, it can also reduce transition metals like cupric 

ions (Cu2+) to cuprous (Cu3+) and ferric ions (Fe3+) to ferrous (Fe2+), while the vitamin itself is 

oxidized to a semidehydroascorbate radical. Ascorbic acid can later be regenerated by two 

semidehydroascorbate radicals to  produce two ascorbate molecules8.  
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Vitamin E has eight configurations, of which four are tocopherols and four are tocotrienols, and 

all contain the same phenolic functional group on a chromane ring and a phytyl side chain8. 

Vitamin E can be found in both plant and animal derived foods, including canola oil, olive oil, 

whole-grain cereals, and fatty tissues of animals. Vitamin E functions principally in maintaining 

the integrity of the cell membrane, where it protects cell damage by inhibiting peroxidation of 

phospholipids that make up the membrane. α-tocopherol is most effective in the ability to donate 

electrons, which act quickly to neutralize free radicals, like peroxyl radicals, thus reducing 

damage to the cell membrane8.  

 

vi. Trace elements: iron, zinc, copper, and selenium 

Trace elements (minerals) are vital for biochemical reactions necessary for cell survival and 

human health, though they constitute only <0.01% of our total body weight. Trace elements like 

selenium and zinc are essential in reducing oxidative stress, and in performing antioxidant 

functions, while iron and copper can behave as an oxidant8.  

Iron 

Iron in the body is primarily found in hemoglobin, but is also present in myoglobin, enzymes, 

blood, and in storage in much smaller amounts. Iron in the diet is found in either heme or 

nonheme form. Heme iron is mainly a component of animal products since it is present in 

hemoglobin and myoglobin. Nonheme is primarily present in plant foods like nuts, grains, tofu, 

fruits, and vegetables, but is also present in dairy products in smaller amounts8. Once released 

from the food components, most of the nonheme iron is present as ferric (Fe3+) iron in the 

stomach, while some of it may be reduced to ferrous (Fe2+) iron. Ferrous iron is absorbed in the 

small intestine by transporter binding at the brush border on the enterocyte; ferric state is reduced 

to ferrous state by ferrireductases and vitamin C in the intestine60,61. Ferric iron absorption 
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mechanisms are not well known, but an acidic environment is preferred and facilitation by 

chelation of iron with chelators or ligands helps solubilize ferric iron. Its absorption across the 

brush border requires membrane protein integrin, which is part of the paraferritin complex, also 

including mobilferrin and ferrireductase61,62.  

Chelators or ligands that bind with nonheme iron can either inhibit or enhance its absorption, part 

of which depends on the nature of the iron-chelate/ligand complex. Components in the diet that 

may enhance nonheme iron absorption include sugars, acids, meat, poultry, fish, and mucin, for 

each of these components act as chelators and can increase absorption of nonheme iron. Vitamin 

C acts as a reducing agent, forming a chelate with nonheme ferric iron in an acidic environment, 

and the chelate remains soluble in the small intestine which improves its absorption62. Factors in 

the diet that inhibit iron absorption include polyphenols, oxalic acid, phytates, calcium, calcium 

phosphate salts, and zinc. Polyphenols consumed with an iron-rich meal can reduce absorption of 

iron by 40-60%63. Phytates and oxalates bind to many minerals, and the resulting complexes are 

insoluble and poorly absorbed64. Calcium and phosphorus ingested in large amounts interact with 

iron absorption by chelate formation at the intestinal mucosa layer and can decrease absorption up 

to 70%. Zinc and iron may compete for the same transporters and negatively affect each other’s 

absorption65-67. 

During transport in the blood, iron in its oxidized ferric state is bound to protein transferrin which 

also acts as an antioxidant. If iron is left unbound, harmful free radicals can result. Iron can 

behave as a pro-oxidant as free ferrous iron can readily react with H2O2, producing a free 

hydroxyl radical that is extremely reactive and damaging to cells. The binding of iron to protein is 

equally important to prevent free iron that can be used by bacteria to grow and proliferate68. 

However, iron is also important in the antioxidant defense system, such as in CAT which has four 

heme groups and converts two molecules of H2O2 to water and molecular oxygen.. Thus, while 
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free iron can act as a pro-oxidant, iron as part of antioxidant enzymes plays a crucial role in 

alleviating oxidative stress69. 

Zinc 

Zinc is almost universally found as Zn2+, its divalent ion, and is complexed with amino acids in 

food sources like red meat, seafood, poultry, pork, and dairy products. Whole grains and leafy or 

root vegetables represent good plant sources of zinc, but have a lower zinc content and the zinc 

located in plants isn’t as efficiently absorbed as meat products70. Like iron, zinc must be 

hydrolyzed from its bound form with amino acids before absorption can take place. Zinc is 

absorbed into the intestinal cell by a carrier-mediated process and low zinc intakes are absorbed 

better than higher intakes. Passive diffusion and paracellular zinc absorption also may occur 

during periods of high zinc intake71,72. Zinc absorption can be enhanced or inhibited by chelators 

or ligands, depending on the absorbability of the chelate formed like in the case with iron73. Citric 

acid, prostaglandins, certain amino acids, pancreatic secretions, glutathione, tripeptides, and low 

zinc status tend to enhance zinc absorption. Absorption may be inhibited by phytate, oxalate or 

oxalic acid, polyphenols, folate, other divalent cations, and sometimes calcium8,64,74.  

 Zinc, as a vital trace mineral, is present along with copper as a structural constituent of SOD, 

which is an endogenous antioxidant enzyme that takes part in antioxidant defense roles by 

catalyzing superoxide O-2 radicals, into water and free molecular oxygen. Zinc is also known to 

be part of other enzyme systems essential for physiological functions. When zinc binds with 

protein thionein in the body, the complex is known as metallothionein. Although metallothionein 

serves as a storage site, it is also increased during states of stress and is known as an acute phase 

(reactant) protein.  This protein has been found to stabilize membranes, regulate zinc and copper 

metabolism, and detoxify heavy metals. More importantly, this protein functions as a radical 

scavenging antioxidant of, for example, hydroxyl radicals. Zinc may contribute to the antioxidant 
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protection of the structure of cell membranes by eliminating free radicals, as a structural 

component of metallothionein8,15,74,75. 

Copper 

Copper is present in either the cuprous state (Cu+) or cupric state (Cu2+) and is found in a wide 

variety of foods. Organ meats and shellfish are the richest sources, while plant sources high in 

this mineral include dried fruits, legumes, nuts, and seeds8. Most copper in foods is bound to 

amino acids and other organic components, which requires bound copper to be removed  before 

absorption can take place76. Hydrochloric acid and pepsin in the stomach facilitate the release of 

bound copper. The stomach absorbs some copper, but most absorption takes place at the brush 

border of the small intestine. While copper’s absorption process is not completely understood, it 

appears to be taken in by active carrier-mediated transporters as well as by passive diffusion. 

However, before absorption can occur, the copper ions must be reduced by copper reductase, 

stimulated by vitamin C. Copper status and available dietary copper influence the amount of 

copper that is absorbed in a given time. There are several enhancers of copper absorption, 

including amino acids, citric, gluconic, lactic, acetic, and malic acids. Yet, copper absorption can 

be inhibited by compounds such as phytate, zinc, iron, calcium, phosphorus, and a high pH 

environment77. 

Free copper, like iron, is typically bound to amino acids and glutathione, as free copper ions may 

damage cells by oxidizing reactions. More importantly, copper participates as an enzyme cofactor 

and allosteric component of enzymes, where in many functions copper will serve as an 

intermediate electron transfer78,79. Ceruloplasmin is a multifaceted copper-containing enzyme and 

antioxidant found in blood and bound to plasma membrane cell receptors. This glycoprotein 

oxidizes minerals like iron and manganese to bind to transferrin and is then transported to tissues. 

Ceruloplasmin also functions as a scavenger of oxygen radicals to protect cells and is a modulator 
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of inflammation80,81. SOD functions to catalyze removal of superoxide radicals where copper is 

reduced with the oxygen radical to generate molecular oxygen and then re-oxidized to hydrogen 

peroxide (H2O2). In absence of adequate SOD, superoxide radicals can damage unsaturated 

double bonds in cell membranes, fatty acids, and other cell molecules by formation of hydroxyl 

radicals. Peroxidation of cell membranes is found to be increased in copper deficiency8.  

Selenium 

Selenium is a nonmetal that exists in a variety of oxidation states. Concentrations of selenium in 

plant foods will vary greatly depending on soil selenium concentration in different regions of the 

world. Seafood is known to represent a better source of selenium except that it may be poorly 

absorbed due to mercury-selenium complexes. Cereals, grains, organ meats, muscle meats, and 

dairy products contain selenium, but ranges vary among these sources. Dietary selenium is found 

primarily as selenomethionine in plants, and selenocysteine in animals. Selenium is well absorbed 

primarily in the duodenum. Vitamins A, C, and E, and reduced glutathione (GSH) enhance its 

absorption, while heavy metals and phytates inhibit selenium absorption by chelation and 

precipitation8. 

Selenium is an essential cofactor for enzyme glutathione peroxidase (GPX) and there are several 

forms of this endogenous enzyme. GPX catalyzes H2O2 and hydroperoxide removal from tissues, 

therefore assisting in the actions of an antioxidant system16. The availability of selenium affects 

GPX activity. Deficiency of selenium results in decreased GPX activity, GPX concentrations, and 

GPX mRNA concentrations82-84. GPX found in the cytosol is a selenoprotein with protective 

antioxidant effects on hemoglobin in red blood cells16.  

Selenoprotein P is a glycoprotein functioning as an antioxidant by removing peroxynitrite 

radicals, which are activated by white blood cells and can cause DNA single-strand breaks and 

lipid peroxidation85. Selenium function can be affected in the body by iron and copper 
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deficiencies; iron deficiency decreases hepatic GPX synthesis and reduces tissue selenium 

concentrations, and copper deficiency decreases GPX activities86-88. 

 

B. Trace element status in individuals with obesity and dyslipidemia 

  There are a number of studies reporting trace mineral status in obese individuals and 

those with the metabolic syndrome89-92. In a study by Liang et al. in overweight/obese subjects, 

trace elements, such as iron, zinc, copper, and selenium were significantly increased in the plasma 

compared to normal weight individuals93. In another study, elevated iron stores were correlated 

with abnormal glucose metabolism, a predictor of type 2 diabetes94. Iron has also shown to be a 

pro-oxidant in subjects with dyslipidemia due to its ability to oxidize LDL cholesterol95,96. Iron 

being a catalyst for hydroxyl radical formation, when present in high concentrations, may 

promote oxidative stress in pancreatic β cells97. Thus, iron may play a role in increasing risks for 

developing type 2 diabetes or insulin resistance in the obese population, mainly due to the 

associations with increased oxidative stress, insulin resistance and obesity98. Zinc and selenium 

are typically lower  in obese subjects compared to normal weight individuals, while copper levels 

have been reported to be inconsistent and have been shown to be elevated or lowered in obese 

subjects vs. normal weight individuals9-12.  

 

Table 1: Observational studies on trace element status in obesity, dyslipidemia and related 
CVD risk factors 

 

Trace 
Element 

Sample Population Study Design 
and Methods 

Study Findings Reference 

Iron Overweight male 
adults (n=1,416);  
BMI 26.66 kg/m2; 
20-49 years 

Cross-
sectional; 
NHANES 
(1988-1994) 

Waist-to-hip ratio 
positively correlated with 
serum ferritin 

Gillum et 
al., 200199 
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Iron Overweight male 
adults (n=860); 
BMI 28.29 kg/m2; 
40-74 years 

Cross-
sectional; 
NHANES 
(1988-1994) 

Plasma TG levels positive 
correlated with serum 
ferritin levels in age 
subgroups 40-69 years 

Gillum et 
al., 
2005100 
 

Iron Overweight male 
(n=2,880) and 
female (n=3,069) 
adults with 
metabolic 
syndrome; waist 
circumference ≥102 
cm for men and 
≥88 cm for women; 
≥20 years 

Cross-
sectional; 
NHANES 
(1988-1994) 

Ferritin levels positively 
correlated with metabolic 
syndrome and individual 
components, including 
plasma TG 

Jehn et 
al., 
2004101 

Iron Overweight male 
(n=436) and female 
(n=379) adults; 
BMI 25.0 kg/m2; 
mean age 26 years 

Longitudinal 
cohort 

In women: serum ferritin 
positively correlated with 
waist measurement, BMI, 
and TG.  
In men: positive 
correlation with serum 
ferritin and waist 
measurement, BMI, 
HDL, and TG 

Williams 
et al., 
2002102 

Zinc Obese male (n=11) 
and female (n=12) 
children and 
adolescents; BMI 
30.1 kg/m2; mean 
age 11 years 

Case-control Lower plasma Zn 
concentrations in obese 
individuals 

Marreiro 
et al., 
20049 

Zinc Overweight female 
(n=23) adults who 
were on 
hypocaloric, 
Kawaga healthy 
diet for 6 months; 
BMI 25.5 kg/m2; 
mean age 54 years 

Randomized 
controlled 

↑ Plasma Zn before tx 
↓ body weight, BMI and 
percent body fat 

Ishikawa 
et al., 
2005103 

Zinc Overweight male 
(n=51) and female 
(n=190) adults; 
BMI 31.56 kg/m2; 
mean age 39 years 

Case-control ↓ serum Zn and SOD 
activity in the overweight 
group compared to 
control 
↑ serum Zn and SOD 
activity in female 
overweight group 
compared to male 
overweight group 

Tungtron-
gchitr et 
al., 200310 

Zinc Obese male (n=62) 
and female (n=81) 
children and 
adolescents; BMI 

Case-control ↓ serum Zn in obese 
compared to control and 
inversely correlated with 
skinfold thickness 

Perrone et 
al., 199811 
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>95th percentile; 
mean age 11 years 

Copper Overweight male 
(n=51) and female 
(n=190) adults; 
BMI 31.56 kg/m2; 
mean age 39 years 

Case-control ↑ serum ceruloplasmin 
and Cu in overweight 
subjects compared to 
control 
↑ serum ceruloplasmin 
and Cu in female 
overweight group 
compared to male 
overweight group 

Tungtron-
gchitr et 
al., 200310 
 

Copper Obese male (n=62) 
and female (n=81) 
children and 
adolescents; BMI 
>95th percentile; 
mean age 11 years 

Case-control Serum Cu inversely 
correlated with age 

Perrone et 
al., 199811 
 

Copper Overweight male 
(n=167)  and 
female (n=173) 
adults, BMI 26.8 
kg/m2; mean age 44 
years 

Cross-
sectional 

↓ Cu in obese subjects 
↑ in sedentary subjects 
(obese or normal weight) 

Sanchez 
et al., 
2010104 

Selenium Overweight male 
(n=2,605) and 
female (n=2,847) 
adults; BMI 28.1 
kg/m2; mean age 43 
years 

Cross-
sectional; 
NHANES 
(1988-1994) 

↑ serum Se correlated 
with total cholesterol, 
HDL, LDL, and TG 
 

Bleys et 
al., 
2008105 
 

Selenium Male adults 
(n=364); BMI not 
reported; ages 21-
59 years 

Cross-
sectional 

Se positively correlated 
with serum cholesterol 
after adjustment for age 
and BMI 

Jossa et 
al., 
1991106 
 

Selenium Male (n=264) and 
female (n=309) 
children; BMI 18.9 
kg/m2 (15% 
overweight and 
14.7% obese); 
mean age 10 years 

Case-control ↓ serum Se in children 
with excess weight 
(BMI>P85) compared to 
normal weight children 
↓ Se intake in obese 
children compared to 
normal weight 
Serum Se negatively 
correlated with all 
anthropometric variables 
recorded  
Serum Se negatively 
correlated with BMI 

Ortega et 
al., 201212 

BMI – body mass index; NHANES – National Health and Nutrition Examination Survey; TG – 
triglycerides; Zn – zinc, tx – treatment, HDL – high-density lipoprotein, LDL – low-density lipoprotein,  
SOD – superoxide dismutase, Cu – copper, Se – selenium, CHD – coronary heart disease 
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Excess stored iron and increased risk for CVD was first identified in 1981 in a study assessing 

iron status and sex differences107. Ferritin, an iron storage protein, is found in cells of the liver, 

spleen, heart and kidneys. Serum ferritin concentrations correlate well with iron stored in the 

body. In a study assessing iron status in Mexican-American men aged 20-49 years, the 

researchers measured waist-to-hip ratio, waist-to-thigh ratio, ratio of subscapular to triceps 

skinfold thickness, and central-peripheral skinfold ratio, and revealed positive relationships with 

serum ferritin levels in all age groups of the study sample population99. Another study in adults 20 

years or older reported increased serum ferritin with both increased abdominal adiposity and the 

prevalence of elevated triglycerides in men and postmenopausal women101. A third study in 26 

year old males also found correlations between iron and waist circumference, BMI, and 

triglycerides, while men showed positive correlations between iron and BMI and waist 

circumference, but negative correlations with HDL-cholesterol and triglycerides. Serum ferritin in 

women was also strongly associated with CRP, thus increasing risks of CVD102. Abundant iron 

stores could promote lipid peroxidation and accelerate atherogenesis and CVD108-111. Catalytic 

iron converts ROS into highly reactive radicals, leading to elevated oxidative stress108. 

Serum zinc has been found to be lower in obesity than in healthy weight individuals in several 

studies9,10,44,112. Normal weight individuals have a higher zinc status and lower risks for 

developing diabetes, while lower zinc status was observed for obese subjects113. A study 

examining  plasma levels of biomarkers after weight-loss in obese women showed higher zinc 

concentrations after weight loss and decreased BMI compared to baseline levels103. Similar 

results were seen in a study conducted in adolescents and children114. 

Higher serum ceruloplasmin and copper have been observed in some obese populations than in 

non-obese subjects10,115. These elevated levels could be a result of the body’s demand for copper 

as an antioxidant to reduce LDL oxidation (in obese subjects with dyslipidemia). Yet, since 
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copper can act as a pro-oxidant, high serum copper can cause peroxidation of LDL cholesterol115. 

Serum copper has been found to be inversely related to HDL cholesterol, and the zinc/copper 

ratio showed a positive correlation with HDL cholesterol as well116. However, some studies show 

low copper levels in obese individuals versus non-obese individuals11. 

Selenium levels in normal weight, overweight, and obese subjects showed a positive association 

with total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides105. Other studies have 

also reported similar correlations106,117-119. Since selenium is a cofactor for the GPX enzyme, it 

has been studied in association with CVD. While high levels of selenium in plasma haven’t been 

shown to be beneficial, low amounts have been correlated with CVD risk factors119-122. Low 

amounts of plasma selenium have been associated with vascular dysfunction, and this could also 

be linked with dyslipidemia123.  

 

C. Endogenous antioxidants 

Cells protect themselves against oxidative stress by endogenous, enzymatic antioxidants, 

including SOD, CAT, and GPX, in a highly organized endogenous defense system124. These 

enzymes are important in reducing oxidative stress; SOD converts a superoxide radical into a 

hydroxyl radical and then to H2O2, followed by the action of CAT and GPX converting the H2O2 

molecule into  free oxygen and water molecules125. They are also important regulators of redox-

sensitive signaling pathways14.  

 

Figure 1: The antioxidant defense system including SOD, CAT, and GPX 
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Li et al., 2000126 

 

SOD converts superoxide radical into a hydroxyl radical and then to H2O2, as evidenced by 

increased levels of H2O2 with increased cellular SOD activity127. There are three different 

isoforms of SOD found in mammals, all of which catalyze the same reaction: CuZnSOD (SOD1), 

MnSOD (SOD2), and ecSOD (SOD3). SOD1 is found in the cell cytoplasm, mitochondrial inter 

membrane space, nucleus, lysosome, and peroxisome. SOD2 is found in mitochondrial matrix, 

while SOD3 is located in extracellular matrix, cell membrane, and extracellular fluids. SOD 

location within the cell is important for redox signaling. SOD conversion of O2
- to H2O2 includes 

reduction and reoxidation of a transition metal at the enzyme’s active site, such as copper or 

manganese. Thus, SOD requires the presence of a catalytic metal to carry out its role in the 

antioxidant defense system127. 

Catalase (CAT), found in the cytosol and cell peroxisomes, contains four heme iron groups which 

are helpful to recognize and react to H2O2 as its substrate128,129. CAT  functions at a very low 

affinity. Thus, catalase may mainly function when H2O2 levels are above the physiological level, 

such as during an oxidative burst in response to stress. Peroxisomes produce H2O2 under 

physiologic conditions, but not O2
-. Thus, catalase is found in this organelle to decompose H2O2 

and prevent an accumulation of this damaging compound. If a peroxisome is badly damaged and 
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catalase is down-regulated, H2O2 will be released into the cytoplasm and contribute to significant 

oxidative stress128.  

GPX activity is said to represent the initial defense response to optimize H2O2 concentration 

under both normal and stressful conditions38. A high selenium intake is thought to increase GPX 

activity, thus decreasing the amount of H2O2 in the cell130. Glutathione, the co-factor for GPX is 

synthesized in the cytosol and is found in large concentrations in the cytosol, nucleus, and 

mitochondria124,131. Glutathione is protective against oxidative stress with its many roles, 

including as a cofactor of detoxifying enzymes that prevent oxidative stress (GPX, glutathione 

transferase, etc.), participation in singlet oxygen scavenging abilities, H2O2 and lipid peroxide 

detoxification, and its ability to regenerate vitamins C and E back to their reduced forms124.  

Glutathione may be found in two forms: oxidized glutathione disulphide (GSSG) and reduced 

glutathione (GSH). GPX is the enzyme that calalyzes the compound H2O2 to H2O and free 

oxygen, while GSH is oxidized to GSSG simultaneously.  GSH’s role in the nucleus is to 

maintain the redox balance for necessary DNA repair and expression. An accurate measurement 

of oxidative stress in an organism is to determine the GSH/GSSG ratio. Excessive GSSG 

concentration may impair GPX activity, as GSH is GPX’s substrate and is oxidized to GSSG 

when GPX acts to catalyze H2O2
132.  

  

 

Table 2: Plasma antioxidant status in individuals with obesity and/or dyslipidemia 

     

Sample Population Study Design 
and Methods 

Significant 
Findings about 

Plasma 
Antioxidants 

Other 
Significant 

Study Findings 

Reference 

Obese male (n=100) 
and female (n=160) 

Observational BMI positively 
correlated with 

Severe obesity 
positively 

Olusi et 
al., 200241 
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adults; BMI 19->50 
kg/m2; mean age 41 
years 

plasma MDA 
BMI negatively 
correlated with 
SOD and GPX 
activity 

correlated with 
lipid 
peroxidation 

Obese female adults 
(n=36); mean BMI 
38.5 kg/m2; mean 
age 35.4 years 

Randomized 
control 

Before weight 
loss, obese 
women had 
significantly ↓ 
GPX compared 
to healthy 
weight controls 

After weight 
loss, ↑ GPX 
compared to 
before weight 
loss  
 
After weight 
loss, ↓ GPX 
compared to 
control 

Bougou-
lia et al., 
2006133 

Obese male (n=23) 
and female (n=31) 
children; BMI 25.4 
kg/m2; mean age 9 
years 

Case-control ↑ SOD in obese 
children 
compared to 
control 

↑ cholesterol in 
obese children 
compared to 
control 

Sfar et al., 
2013134 

Obese (n=27) and 
non-obese (n=57) 
female adults with 
and without PCOS; 
BMI of obese group 
33.6 kg/m2; mean 
age 31 years 

Case-control  ↑ CAT activity 
in obese women 
with and without 
PCOS compared 
to non-obese 
control  

↑ serum GPX 
activity in obese 
group without 
PCOS compared 
to non-obese 
group without 
PCOS 

Bausen-
wein et 
al., 
2010135 

Obese male (n=30) 
and female (n=103) 
adults; BMI 31.4 
kg/m2; mean age 43 
years 

Case-control  ↑ serum GPX-3 
in obese group 
compared to 
control 

↑ TAG and ↓ 
HDL in obese 
compared to 
control  

Baez-
Duarte et 
al., 
2012136 

MDA – malondialdehyde (reactive species); BMI – body mass index; GPX – glutathione peroxidase; SOD 
– superoxide dismutase; CAT – catalase; GPX-3 – Nonselenocysteine-containing phospholipid 
hydroperoxide glutathione peroxidase; PCOS – polycystic ovary syndrome; WHR – waist-to-hip ratio; 
TAG – triacylglycerides 

 

Antioxidant enzymes are found in the vascular wall in order to reduce ROS and defend cells from 

oxidative damage and prevent development of diseases like atherosclerosis129. There is no current 

evidence expressing a correlation between dyslipidemia presence and plasma antioxidant status, 

but the effect of obesity on antioxidant status varies. In a study examining levels of  GPX and 

CuZn-SOD enzymes in humans, the authors reported that  BMI negatively correlated with levels 

of these endogenous antioxidant enzymes, while BMI positively correlated with plasma MDA41. 
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Similar results of decreased plasma antioxidants were found in a number of other studies in obese 

adults137, obese children138, obese male children139, and obese female children140. Yet, Olusi et al. 

proposed that initiation of obesity is associated with a stimulation of antioxidant enzyme activity. 

However, once obesity becomes persistent, the antioxidant enzyme activity and reserves become 

depleted, as indicated by the findings in the study41. Over time, low activity of cytoprotective 

enzymes like GPX and catalase may lead to progressive tissue damage, atherosclerosis, cancer, 

and other chronic conditions41. Many other findings shown in Table 2 indicate that activity of 

SOD, catalase, and GPX may be elevated in the presence of obesity134-136, and that weight loss 

may potentially improve these values compared with baseline values133. 

 

D. Polyphenols 

Polyphenols are commonly consumed plant-derived compounds in the diet and are present mostly 

in fruits, vegetables, fruit juices, wine, black tea, green tea, coffee, as well as in cereals, 

chocolates, and dry legumes. These compounds contribute to the food’s color, odor, flavor, and 

oxidative stability17. Since the mid-1990s, these compounds have been recognized for their health 

benefits and disease prevention characteristics19,141-143. Strong supporting evidence shows that 

polyphenols may confer protection against  CVD, cancer, osteoporosis, neurodegenerative 

diseases, and diabetes mellitus18-20. Polyphenols  have been shown to reduce CVD risk factors, 

such as lowering total TGs, total cholesterol, LDL-cholesterol, BMI, and waist 

circumference22,144.  The polyphenol content of selected foods is shown below in Table 3: 

Table 3: Commonly consumed polyphenol-containing foods in the US 

 

Food source 
 

Polyphenol content per 
serving 

(mg/serving) 

Type of polyphenol  Calories per 
100 g 
(kcal) 

Strawberry 27.01 Anthocyanins 32 
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 4.6 
1.65 
0.26 

Flavan-3-ols 
Flavonols 

Flavanones 
Blackberry 100.61 

42.4 
4.52 

Anthocyanins 
Flavan-3-ols 
Flavonols 

43 

Blueberry 163.3 
6.69 
10.63 
0.2 

Anthocyanins 
Flavan-3-ols 
Flavonols 
Flavones 

57 

Gala Apple 1.22 
8.21 
3.8 

Anthocyanins 
Flavan-3-ols 
Flavonols 

52 

Soybeans 37.41 Flavan-3-ols 70 
Red wine 19.27 

11.08 
2.4 
1.57 

Anthocyanins 
Flavan-3-ols 

Flavones 
Flavonols 

85 

Candies, milk 
chocolate 

10.88 Flavan-3-ols 535 

Potato 1.5 Flavonols 97 
Manach, et al., 2004; United States Department of Agriculture, 2009145-147 

 

Many factors affect polyphenol content in fruits , including exposure to light, ripeness of the fruit, 

soil type in which the fruit was grown, fruit yield per tree, processing, and storage148. Food 

processing can significantly alter polyphenol content, especially those involving vacuum and 

convection methods of drying149. Wojdylo et al. reported that freeze-drying versus vacuum 

microwave drying methods did not significantly alter polyphenol compounds in strawberries149. 

Polyphenols in cocoa and berries have been shown to lower blood pressure, increase HDL-

cholesterol150,151, decrease inflammatory markers, and overall decrease risks for cardiovascular 

mortality151,152. Polyphenols such as those found in green tea may decrease lipid digestion and 

absorption by decreasing digestive enzyme activity and lipid emulsification153. Tea catechins 

neutralize  reactive oxygen and nitrogen radicals, as well as act upon metal ion chelators that are 

active in the redox system154. Green tea, resveratrol, and curcumin have been shown to reduce 

adipocyte fat accumulation by activation, inhibition, and down-regulation of lipogenic enzymes 

and genes155-158.  Furthermore, phenolic compounds in various foods have been shown to affect 
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trace mineral and endogenous antioxidant levels, as well as LDL cholesterol oxidation, thus 

modulating disease risks in humans8,57,159-165. 

In cell culture studies, polyphenols have been shown to alter trace minerals, such as iron and zinc 

absorption in the human enterocyte166-169. Reported studies include polyphenol-rich supplements 

such as green tea, green tea extract, or grape seed extract. Ma et al. reported a significant decrease 

in iron absorption when enterocytes were treated with polyphenols and iron, when compared to 

the iron only treated control group166. Iron transfer across the basolateral membrane was 

significantly lower in the enterocytes treated with iron and polyphenols versus iron only, leading 

to the observation that polyphenols may form complexes with iron in the cell and prevent iron 

from leaving the basolateral membrane. However, zinc uptake has been shown to be increased or 

unchanged in the presence of EGCG and green tea compared to the control group170,171. Specific 

polyphenols may bind with zinc and form a complex which improves mineral absorption, but the 

transport and cellular bioavailability of the complex thereafter remains unknown. Thus, 

polyphenols can significantly alter trace element status in vivo, especially those that are known to 

modulate oxidative stress and antioxidant status. 

 

Table 4: Effects of polyphenols on trace element uptake in cell models (human Caco-2) 

Duration Polyphenol-Rich Source Significant Study Findings Reference 
3 hour 
incubation 

Phytate (66 mg/L);  
EGCG (46 mg/L); GT 
(46 mg/L); or GSE (46 
mg/L) 

↓ Fe uptake with EGCG, GT, and 
GSE tx 
↓ apical Zn uptake with GSE tx 
↓ Zn uptake with phytate tx 

Kim et al., 
2000170 

7 hour 
incubation 

EGCG (0.46, 4.6, or 46 
mg/L); GT (0.46, 4.6, or 
46 mg/L); or GSE (0.46, 
4.6, or 46 mg/L) 

↓ Fe uptake by EGCG, GSE and GT 
compared to control 
 

Ma et al., 
2012172 

7 hour 
incubation 

EGCG (46 mg/L) or 
GSE (46 mg/L) 

↓ Fe uptake by EGCG and GSE tx Ma et al., 
2010167 

3 hour 
total 

2 mL RW, RGJ, or GT; 
or 200 µmol/L tannic 

↑ Zn uptake with RW, RGJ, and GT 
tx compared to control 

Sreeniva-
sulu et al., 
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incubation acid, quercitin, catechin, 
gallic acid, or caffeic 
acid 

↓ Zn uptake with RW fraction 
excluding polyphenols  
↑ Zn uptake with tannic acid and 
quercitin tx compared to control 

2010171 

24 hour 
incubation 

0.73 mL apple, pear, 
white grape, RGJ, prune, 
grapefruit, or orange 
juice 

↓ Caco-2 cell ferritin formation (from 
iron) with RGJ and prune juice tx 
compared to control 

Boato et 
al., 
2002173 

Fe – iron, Zn – zinc, treatment – tx, DMEM – Dulbecco’s Modified Essential Medium, EGCG – 
epigallocatechin-3-gallate, GT – green tea, GSE – grape seed extract, RW – red wine, RGJ – red grape 
juice 

 

Altered levels of trace elements have been observed in healthy animal models following dietary 

supplementation of polyphenols174-176. Polyphenols have also been shown to alter endogenous 

antioxidant activity in animals models of  diet-induced obesity, which may alter absorption and 

activity of the trace minerals that are structural constituents of endogenous antioxidant 

systems177,178.  

Table 5: Effects of polyphenols on general antioxidant status in diet-induced animal models 

of obesity 

Animal Model Duratio
n 

Polyphenol-
Rich Source 

Significant Study Findings Reference 

Male Sprague 
Dawley rats 
(n=40), fed 
normal or HF 
diet with or 
without red 
grape skins 

Four 
weeks 

Red grape 
skins, 20 
mg/kg/day 

↓ CAT activity in HF diet compared 
to normal diet control 
↑ CAT and SOD in HF and normal 
diet with red grape skin tx  
↑ GSH/GSSG ratio in normal diet 
and red grape skin tx + normal diet 

Lee et al., 
2009174 

Sprague Dawley 
female rats 
(n=36), fed 
normal, HF, or 
HF diet + GTP 

Eight 
months 
(four 
months 
with 
GTP) 

GTP, 0.5% 
(wt/vol) of 
distilled 
water 

↑ liver GPX activity in HF + GTP 
compared to HF diet control  

Shen et al., 
2012175 

Obese Zucker 
fatty rats (n=24), 
fed normal diet 
or diet + RWP 

Eight 
weeks 

RWP, 20 
mg/kg/day 

↓ O2
− from aorta, carotid arteries, 

and SMA with RWP tx compared to 
control 

Agouni et 
al., 2009176 

HF – high-fat, CAT – catalase, SOD – superoxide dismutase, GSH – reduced glutathione, GSSG – oxidized 
glutathione, GTP – green tea polyphenols, RWP – red wine polyphenols, SMA - small mesenteric artery 
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i. Strawberries: bioactive compounds  

Strawberries, among many other berries, are rich in vitamins and polyphenols beneficial in 

disease prevention and overall health promotion.  Phytochemicals of particular interest found in 

strawberries include glycosides anthocyanins and 2,5-dimethyl-4-hydroxy-3-[2H] furanone 

(DMHF), catechins, ellagic acid and hydroxycinnamic acid derivatives, and flavanols, such as 

quercetin and kaempferol149,179-181. Strawberries contain both free and bound phenolics. Bound 

polyphenols may remain undigested in the stomach and intestine and then be acted upon by 

bacteria in the colon. Strawberries contain 92.3% of their polyphenols in the free form, allowing 

the small intestine to absorb them and then these may be utilized in the body182. Polyphenol 

content, ferric reducing ability of plasma (FRAP), and Trolox equivalent antioxidant capacity 

(TEAC) in strawberries are significantly decreased during processing methods, including 

mashing, pressing juice, filtering juice, pasteurizing juice, and pureeing. However, anthocyanin 

composition is significantly increased during processing methods like mashing and pureeing183.  

Table 6: Nutritive value and composition of fresh strawberries 

Nutrient Unit Value per 100 g 
Water g 90.95 
Energy Kcal 32 
Total lipid g 0.3 
Protein g 0.67 
Fiber, total dietary g 2.0 
Total carbohydrate g 7.68 
Sugars g 4.89 
Iron mg 0.41 
Zinc mg 0.14 
Vitamin A IU 12 
Vitamin C mg 58.8 
Vitamin E mg 0.29 

Agricultural Research Service USDoA, 2014 
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Strawberries are high in vitamin C and polyphenols, as well as fiber and thus have been known to 

reduce serum cholesterol levels and CVD risks in some studies180,184,185. Strawberry consumption 

has been shown to decrease serum glucose, total cholesterol and LDL cholesterol in obese 

adults186,187. Studies involving anthocyanin and ellagitannin consumption have shown that these 

phytochemicals may prevent incidence of cancer, CVD, and age-related decreased 

neurodegenerative function180,188,189. These preventative effects are thought to be associated with  

phenolic acids, mainly due to their antioxidant properties and ability to neutralize ROS  in 

prevention of chronic diseases181.  

Furthermore, consumption of strawberries has been shown to improve plasma antioxidant enzyme 

activity and reduce oxidative stress in healthy human subjects181,190. Experimental studies have 

also shown compounds in strawberries to possess ROS-scavenging activity182,191-193. Compounds 

in strawberry juice have shown to scavenge free radicals such as, O2
-, H2O2, and ●OH. Lin et al.  

found that among different berries, strawberries and blackberries have the highest ROS 

scavenging capacity when exposed to the individual reactive compounds, thus providing evidence 

that strawberries contain bioactive antioxidants192. 

 

E. Effects of polyphenols on trace minerals/general antioxidants in human subjects 

with obesity and/or dyslipidemia 

While polyphenols have been found to be beneficial in healthy human populations, they have also 

been shown to reduce risks of chronic diseases in populations with obesity and/or dyslipidemia. 

Mechanisms by which polyphenols may prevent weight gain include their ability to increase 

lipolysis, decrease lipogenesis, stimulate β-oxidation, inhibit adipocyte growth and 

differentiation, and debilitate inflammatory response and oxidative stress194. Another important 

property that polyphenols, especially flavonoids and tannins, possess is the tendency for phenolic 
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hydroxyl groups to chelate metal ions, further contributing to their antioxidant activity164. The 

capacity to bind metals may be relevant to the phenolic antioxidant activity, considering free 

transition metal ions are pro-oxidants which produce free radicals in the presence of H2O2.  Due 

to the presence of phenolic hydroxyl groups, electron delocalization principles allow phenolic 

groups to be readily ionized and thus act as weak acids which can influence chemical reactivity of 

phenolics159.  

Many studies have shown improved levels of selected trace elements195,196, increased total 

antioxidant capacity21,190,195,197,198, and decreased LDL cholesterol oxidation190,197,199 in study 

participants supplemented with a polyphenol-rich source (Table 7). 

 

Table 7: Effects of polyphenols on trace elements and general antioxidant 

status/endogenous antioxidants in overweight or obese participants with/without 

dyslipidemia 

Sample 
Population 

Study Design 
and Methods 

Duration Polyphenol-
Rich Source 

Significant Study 
Findings 

Reference 

Obese male 
(n=23) and 
female (n=23) 
adults; BMI 
32.76 kg/m2; 
mean age 50 
years 

Randomized, 
double-blind, 
placebo-
controlled  

Three 
months 

379 mg GTE ↓ BMI, waist 
circumference, 
serum TC, LDL-
cholesterol, and 
TG levels 
compared to 
control 
↑ TAC after tx 
compared to 
control 
↓ serum Fe and 
Zn after tx 
compared to 
baseline 

Sulibur-
ska et al., 
2012 21 

Male (n=5) and 
female (n=20) 
adults with 
mild 
dyslipidemia; 

Randomized 
control  

12 weeks Three tablets 
of 280 mg 
mulberry leaf 
powder, three 
times daily 

↓ TC/HDL ratio 
and serum TG 
and LDL levels 
compared to 
control 

Aramwit 
et al., 
2013200 
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BMI 23.18 
kg/m2, mean 
age 36 years 
Overweight 
female adults 
(n=8); BMI 
26.1 kg/m2; 
mean age 67 
years 

Clinical  Four 
hours 

240 g fresh 
strawberries 

↑ serum 
antioxidant 
capacity during 
initial four hours 
after consumption 
compared to 
control 

Cao et al., 
1998190 

Overweight 
male adults 
(n=21); BMI 
26.9 kg/m2; 
mean age 38 
years 

Clinical  14 days 7 mL/kg 
cranberry 
juice 

↓ plasma oxLDL 
levels compared 
to baseline 
 
↑ plasma 
antioxidant 
capacity 
compared to 
baseline 

Ruel et al., 
2005197 

Obese male 
(n=13) and 
female (n=15) 
adults with 
HTN; BMI 
32.5 kg/m2; 
mean age 49 
years 

Randomized 
double-blind, 
placebo-
controlled 

Three 
months 

379 mg GTE ↑ TAC compared 
to control 

Bogdan-
ski et al., 
2012 198 

Obese male 
(n=22) and 
female (n=25) 
adults; BMI 
30.59 kg/m2; 
mean age 57 
years 

Randomized, 
parallel and 
double-blind 
case-control 

Four 
weeks 

1.4 g cocoa 
extract (645.3 
mg of 
polyphenols) 

↓ plasma oxLDL 
and MPO in tx 
group compared 
to control 

Ibero-
Baraibar 
et al., 
2013199 

Obese male 
(n=8) and 
female (n=27) 
adults with 
metabolic 
syndrome; 
BMI 36.33 
kg/m2; mean 
age 42 years 

Single-
blinded 
randomized 
controlled 

Eight 
weeks 

4 cups/day 
green tea, or 
2 capsules 
(870 mg 
catechins) 
GTE 

↑ whole blood 
GSH and plasma 
antioxidant 
capacity in GTE 
tx group and 
green tea tx group 
compared to 
control 
↓ plasma Fe in 
GTE tx group 
compared to 
baseline 
↑ plasma Cu in 
green tea tx group 
compared to GTE 
tx group after tx 

Basu et 
al., 
2013195 
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Overweight 
male (n=10) 
and female 
(n=14) adults 
with 
hyperlipidemia; 
BMI 29.2 
kg/m2; mean 
age 51 years  

Randomized, 
single-blind, 
placebo-
controlled, 
crossover  

12 weeks 
(6-week 
crossover 
point) 

10 g FDS 
beverage 
(338 mg total 
phenolic 
compounds) 
with high-fat 
meal 

↓ plasma oxLDL 
after FDS 
beverage 
supplementation 
compared to 
placebo 

Burton-
Freeman 
et al., 
2010201 

GTE – green tea extract, BMI – body mass index, TC – total cholesterol, LDL – low-density lipoprotein, 
TG – triglycerides, TAC – total antioxidant capacity, Zn – zinc, Fe – iron, tx – treatment, GPX – 
glutathione peroxidase, HDL- high-density lipoprotein, HTN – hypertension, oxLDL – oxidized low-
density lipoprotein, MPO – myeloperoxidase, GSH – glutathione, Cu – copper, FDS – freeze-dried 
strawberry 

 

Adults with obesity and dyslipidemia have increased oxidative stress and an increased risk for 

CVD. Trace elements have been shown to be altered in subjects with obesity and dyslipidemia, as 

iron is typically elevated and has a pro-oxidant effect, while zinc and selenium can act as 

antioxidants and are typically decreased in this population. Dietary and antioxidant defense 

enzymes are typically lower in obese and dyslipidemic populations compared to the healthy 

population, Plasma trace element and antioxidant levels are significant indicators of oxidative 

stress, which may contribute to the pathophysiology of chronic diseases, especially CVD. 

Strawberries and other polyphenol-rich foods have been shown to improve trace element and 

antioxidant status in subjects with obesity.  

While research provides some evidence on the role of polyphenols in improving antioxidant 

status and altering trace element levels, there is a lack of clinical data on the role of strawberries 

in modulating these biomarkers, especially in subjects with obesity and dyslipidemia. With the 

dramatic increase in the prevalence of obesity, dyslipidemia, and related chronic health conditions 

like CVD associated with elevated oxidative stress, there is an urgent need for research in this 

area. Thus, we intend to address this research gap and examine the effects of strawberries on 

plasma trace elements, especially iron, copper, zinc, and selenium, and antioxidants such as 

catalase and GSH in subjects with obesity and dyslipidemia. We hypothesize that the 
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consumption of freeze-dried strawberries will affect the levels of trace elements, especially lower 

plasma iron, in obese individuals with above optimal serum lipids when compared to the control 

group. We also hypothesize that the consumption of freeze-dried strawberries will affect the 

levels of endogenous antioxidants, especially plasma catalase and GSH in obese individuals with 

above optimal serum lipids when compared to the control group in a 12-week intervention trial. 
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CHAPTER III 
 

 

METHODOLOGY 

 

3.1 Participants and study design 

Male and female adults (≥21 years) with abdominal adiposity (waist circumference in men >40 

inches, women >35 inches) and dyslipidemia (two of four criteria: fasting total cholesterol 

>200mg/dL, triglycerides >150mg/dL, LDL-cholesterol >100 mg/dL, or HDL-cholesterol 

(men<40mg/dL, women <50 mg/dL), as defined by National Cholesterol Education Program 

(NCEP), Adult Treatment Panel (ATP) III were included in the study. Subjects with normal liver, 

kidney, and thyroid function tests were included in the study. Subjects on stable 

multivitamin/mineral supplements or prescription medications (except hypolipidemic, 

hypoglycemic, and steroid agents) were included in the study. Subjects with any form of pre-

existing disease, e.g. cancer, heart disease, diabetes (fasting blood glucose ≥126mg/dL), liver, or 

renal disorders, anemia, pregnancy and lactation, taking mega doses of antioxidants/fish oil 

supplements (> 1g/day), taking hypolipidemic, hypoglycemic, and steroid medications, abnormal 

hemoglobin (normal range: 12.0-18.0 g/dL), white blood cell (normal range: 4.0-11.0 thousands 

per cubic milliliter (K/mm3)), or platelets (140-440 K/mm3), hypo/hyperthyroidism (normal range 

for thyroid stimulating hormone: 0.35- 4.940 µIU/mL), abnormal liver enzymes (normal range for 

aspartate aminotransferase (AST): 7-40 units/L; alanine aminotransferase(ALT): 10-45 units/L), 

abnormal kidney function (normal creatinine: females- 0.7-1.2 mg/dL; males- 0.8-1.2 mg/dL; 
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normal blood urea nitrogen (BUN): 1-59 years- 7-18 mg/dL; > 59 years- 8-21 mg/dL), smoking, 

and drinking alcohol (>1oz/day) were excluded from the study. Both males and females, as well 

as individuals from any ethnic group, who qualify, were included in the study. People who have 

ever been allergic to strawberries were excluded from the study. The study was approved by the 

ethics committees at the Oklahoma University Health Sciences Center (OUHSC) and at 

Oklahoma State University (OSU), and all participants provided written informed consent prior to 

any study procedures. 

Subjects were recruited at the General Clinical Research Center (GCRC) at Oklahoma University 

(OU) and at the Department of Nutritional Sciences (NSCI) at OSU via flyers and campus e-mail 

advertisements (30 subjects/site). Following an initial telephone screen, subjects were scheduled 

for a screening visit and qualification was confirmed based on the two qualifying measurements 

of abdominal adiposity and dyslipidemia, as mentioned earlier. Upon qualification, subjects were 

then randomized using a block randomization design to account for the effects of age and gender 

on the variables of interests. Participants were recruited into quartets matched for age (± 5 years) 

and gender. The age and gender for a quartet was determined by the first participant assigned to 

that quartet. The next consecutive participant that met the matching criteria of that quartet was 

assigned as the second participant of that quartet, and so on. Each quartet had one participant in 

each of the four intervention groups: low fiber/calorie control, low freeze-dried strawberries 

(FDS) beverage, high fiber/calorie control, or high FDS beverage. While quartets had been filled 

consecutively within the matching parameters, the intervention to which the first, second, third, 

and fourth participants in the quartet was assigned was pre-determined by random permutation. 

All participants consumed two cups of FDS or control beverage. Each cup contained 12.5 g FDS 

blended in 1 cup water with added Splenda (optional) in the low dose group, or 25 g FDS blended 

in 1 cup water with added Splenda (optional) in the high dose group. The matched control 

beverage contained 2 g fiber (vegetable fibers and natural gums, containing both insoluble and 
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soluble fiber (1:2) per serving (Fiberstir)) and 2 tsp sugar blended in 1 cup water in the low 

fiber/calorie control group, or 4 g fiber (vegetable fibers and natural gums, containing both 

insoluble and soluble fiber (1:2) per serving (Fiberstir)) and 4 tsp sugar blended in 1 cup water in 

the high fiber/calorie control group. The control beverage also had artificial strawberry flavor and 

food color added to the drinks. The low dose FDS and matched control beverage contained equal 

amounts of fiber (4 g) and calories (75 kcal) per day, while the high dose FDS and matched 

control contained 8 g fiber and 150 kcal per day for 12 weeks (Table 8). 

All subjects came for three days/week of mandatory visits to the research facilities to ensure 

compliance and the remaining quantity of the beverages had been provided in containers for later 

consumption. All subjects were asked to follow usual diet and lifestyle, and refrain from other 

sources of berries and related products while on the study. Subjects also maintained 3-day food 

records at screen, 6 and 12 weeks of the study. Height, weight, blood pressure, and waist 

circumference was measured by trained personnel at GCRC and at NSCI at screen and at 12 

weeks of the study. Blood draws were performed by trained nurses at GCRC and by trained 

phlebotomists at Stillwater Medical Center at OSU. 

Fasting blood samples were immediately sent to OU Medical Center laboratory (Oklahoma City, 

Oklahoma) or the Stillwater Medical Center laboratory (Stillwater, Oklahoma) for comprehensive 

metabolic panel (CMP) including glucose, insulin, glycated hemoglobin, lipid panel, electrolytes, 

liver, kidney, thyroid tests, and complete blood count. Remaining plasma and serum samples 

were stored at -80ºC for subsequent analyses.  

3.2 Plasma trace elements 

Plasma levels of iron, zinc, copper, and selenium were measured using inductively coupled 

plasma mass spectroscopy (Elan 9000; Perkin Elmer, Norwalk, Connecticut) based on previously 

published procedures202. Plasma samples were diluted 1:50 in 0.05% Triton X-100 (Sigma-
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Aldrich, St. Louis, Missouri) and analyzed by inductively coupled plasma mass spectroscopy 

(ICP-MS, Elan 9000, Perkin Elmer, Norwalk, Connecticut) with gallium as internal standard. 

Plasma samples were diluted 1:20 in 0.1% nitric acid (GFS Chemicals, Powell, Ohio) and 

analyzed by ICP-MS using gallium as internal standard. The OSU Nutritional Sciences laboratory 

participates in the CDC Laboratory and Multielement Proficiency (LAMP) program. Tri-level 

blood lead control samples and plasma control samples were utilized (Utak Laboratories, Inc., 

Valencia, California) and were within expected ranges. A standard cocktail solution containing 

iron, zinc, copper, and selenium at a concentration of 100 µg/L was prepared (from commercial 

standard 1-g/L solution) and stored in pre-cleaned polyethylene volumetric flasks. A simulated 

blank solution was used to correct for interferences from polyatomic ions [0.14 mol/L nitric acid, 

internal standard (100 µg/L gallium), sodium chloride, sodium nitrate, cysteine, and calcium 

nitrate.] Quantitative analyses were performed using the scanning mode data acquisition. For each 

analyte (iron, zinc, copper, and selenium), peak area (signal) was divided (normalized) by the 

signal of the internal standard. For each element, the average normalized signal of the blank 

solution was subtracted from the average normalized signal of the diluted plasma solution. The 

inter-assay CV was within 5% for each element. 

3.3 Catalase and reduced glutathione 

Serum catalase enzyme activity was measured using Cayman Chemical Company (Ann Arbor, 

Michigan) spectrophotometric Catalase Assay Kit based on the manufacturer’s protocol. Samples 

were pipetted to wells, where 100 µL diluted Assay Buffer, 30 µL methanol, and 20 µL of sample 

were added in duplicates. The reaction was initiated by adding 20 µL of diluted hydrogen 

peroxide to all wells and were incubated on a plate shaker for 20 minutes. Next, 30 µL of diluted 

potassium hydroxide were added to each well to terminate the reaction and the addition of 30 µL 

of catalase purpald (chromogen) followed. Catalase purpald forms bicyclic heterocycles with 

aldehydes, which change from colorless to a purple color upon oxidation. The plate was 
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incubated on the plate shaker for ten minutes, followed by the addition of 10 µL of catalase 

potassium periodate to each well. The wells were incubated on a plate shaker a final time for five 

minutes at room temperature and then immediately analyzed by the microplate reader (Bio-Tek 

Synergy HT Multi-Detection, Winooski, Vermont) at 540 nm. 

Reduced glutathione content in heparinized whole blood sample was measured using the method 

described by Beutler et al203. Briefly, 100 mL of hemolyzed blood sample and 200 mL of 2.5 Mm 

5,5′-dithiobis-2-nitrobenzoic acid (Sigma, St. Louis, Missouri) were mixed in tubes containing 

1.9 mL Tris-HCL buffer, Ph 8.0. The absorbance of the yellow thiolate anion was measured at 

412 nm. GSH (Sigma, St. Louis, Missouri, USA) was used as a standard. Calibration curve was 

used to calculate concentration and was expressed as µg/g hemoglobin. The average inter-assay 

CV was 5.2%. 

3.4 Statistical analyses 

Descriptive statistics were calculated for all parameters, and graphs were drawn to look for 

outliers. The primary objective was to identify differences in means of antioxidant and trace 

element parameters at screening (week 0) and end of study (week 12) between low FDS beverage 

and control, and high FDS and control treatment. Within-group differences were analyzed using 

paired t test. Means at screen and 12 weeks were compared using the multivariate analysis of 

variance (MANOVA). All data were expressed as means ± standard deviation for the variables of 

interests, with significance level set at 0.05. SPSS for Windows (version 15.0, 2006; SPSS Inc, 

Chicago, Illinois) was used for the statistical calculations.
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CHAPTER IV 
 

 

FINDINGS 

 

Baseline characteristics 

Among the 85 participants screened for the study, 66 met the inclusion and exclusion criteria, and 

were enrolled in the study. Among the 66 enrolled, six participants dropped out of the study due 

to their time constraints and inability to make the mandatory three visits per week to the study 

centers. Thus, 60 participants completed the 12-week study in strawberry and control arms. 

Among these participants, compliance was 100% for the strawberry groups and 97% for the 

control groups, as assessed by mandatory weekly visits and any unconsumed beverages. No 

adverse events were reported in the study. At baseline, no significant differences in clinical and 

demographic characteristics were noted in the low dose FDS (25g/day) vs. low dose control 

group and in the high dose FDS (50g/day) vs. HDC (Table 9).  

 

Trace elements 

i. Iron and copper 

As shown in Table 10, at baseline 54Fe was not significantly different between high dose FDS and 

low dose FDS or between high dose FDS and HDC. However, at baseline, 54Fe was significantly 
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lower in the low dose FDS versus LDC (p<0.05). At baseline, 57Fe was not significantly different 

among any groups. There were no significant differences the two iron isotopes measured at 12 

weeks. There were no significant differences in copper at baseline or at 12 weeks among any 

groups. Within-group comparisons revealed no significant differences in plasma iron and copper.  

ii. Zinc and selenium 

No significant differences in zinc or selenium were noted at baseline or at 12 weeks between high 

dose FDS and low dose FDS as well as their respective matched controls. Within-group 

comparisons revealed no significant differences in plasma zinc and selenium (Table 10).  

Catalase 

At baseline, catalase activity was not significantly different between high dose FDS and HDC or 

between low dose FDS and LDC. Yet, at baseline, catalase activity was significantly higher in the 

high dose FDS versus low dose FDS (Table 11.) However, no significant differences were noted 

at 12 weeks among any of the groups. In the high dose FDS group, within-group comparison 

revealed catalase activity to be significantly lower at 12 weeks compared to baseline (Table 11). 

Reduced glutathione (GSH) 

As shown in Figure 3, GSH was not significantly different between high dose FDS and HDC, but 

was significantly higher in the high dose FDS versus low dose FDS and was significantly lower 

in the low dose FDS versus LDC at baseline. At 12 weeks, GSH was significantly higher in high 

dose FDS versus low dose FDS, as well as when compared to its respective control group. 

Within-group comparisons revealed that GSH was significantly higher at 12 weeks compared to 

baseline, in both low dose FDS and high dose FDS groups (Table 12).   
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Table 8: Composition of strawberry and control beverages administered in the 12-week 

study* 

Composition Low dose FDS Low dose control High dose FDS High dose control 
FDS (g)1 25 - 50 - 
Fiber (g)2 4.0 4.0 8.0 8.0 
Calories (kcal) 75 80 150 144 
Protein (g) 1.8 - 3.5 - 
Fat (g) 0.3 - 0.5 - 
Carbohydrates 
(g) 

16 20 32 36 

Ash (g) 1.5 - 3.2 - 
Vitamin C 
(mg) 

55 - 109 - 

Total phenolics 
(mg gallic acid 
equivalents) 

1001 - 2005 - 

Total 
anthocyanins 
(mg cyaniding-
3-glucoside 
equivalents) 

78 - 155 - 

Ellagic acid 
(mg) 

106 - 220 - 

Phytosterols 
(mg) 

23 - 50 - 

* Strawberry composition information provided by the California Strawberry Commission 

1FDS, freeze-dried strawberries (California Strawberry Commission, CA) 

2Fiber, insoluble and soluble fiber (FiberStir, LLC, Minneapolis, MN) for low and high dose control 
beverages 
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Table 9: Baseline characteristics of the study participants1 

 

Variable Low dose FDS Low dose control High dose FDS High dose control 
n 15 15 15 15 
Age (years) 50±10 48±10 49±11 48±10 
M/F (n/n) 1/14 1/14 2/13 1/14 
Waist (inches) 41±3 43±3.2 45±5 42±2.6 
Height (cm) 165±5.8 165±6.7 164±6.5 168.5±7.6 
Weight (kg) 94.6±13.5 100±12 101±18 99±15 
BMI (kg/m2) 34.5±4.4 37±4.4 38±7 35±5 
BUN (mg/dL) 14±2.3 15.7±4.5 16±4.2 17±5 
Creatinine 
(mg/dL) 

0.8±0.2 0.8±0.2 0.8±0.2 0.9±0.3 

AST (U/L) 29±10 26±7.1 25±4.3 25±7.2 
ALT (U/L) 34±12 34±12 30±11 31±12 
WBC (K/mm3) 6.6±1.2 6.7±1.4 6.7±1.7 7.1±1.5 
RBC (M/mm3) 4.6±0.5 4.5±0.3 4.6±0.6 4.8±0.4 
Hb (g/dL) 14±1.4 13.6±1.3 14±1.4 14±1.6 
Multivitamin 
users (%) 

20.0 20.0 20.0 10.0 

Fruit servings, 
cups2 

1.2 1.0 1.2 1.0 

Vegetable 
servings, cups2 

1.0 1.1 1.1 1.2 

1Values are mean ± SD 

2Servings consumed based on diet recall at baseline 

FDS – freeze-dried strawberries; M/F – male/female; BMI – body mass index; BUN – blood urea nitrogen; 
AST – aspartate aminotransferase; ALT – alanine aminotransferase; WBC – white blood cell; K/mm3 – 
thousands per cubic milliliter; RBC – red blood cell; M/mm3 – millions per cubic milliliter; Hb - 
hemoglobin 
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Table 10: Plasma trace element levels at baseline and 12 weeks after FDS supplementation  

Group Time 
Point 

54Fe 
(mg/L) 

57Fe 
(mg/L) 

63Cu 
(mg/L) 

65Cu 
(mg/L) 

66Zn 
(mg/L) 

82Se 
(mg/L) 

Low 
dose 
FDS 

Baseline 1.0±0.4* 1.4±1.0  1.3±0.4  1.1±0.3  1.0±0.7  0.1±0.1  

Week 12 0.9±0.4 1.8±0.9  1.5±0.4  1.3±0.4  0.7±0.4  0.1±0.1  

Low 
dose 
control 

Baseline 1.7±1.8 2.5±2.4  1.5±0.5  1.3±0.4  1.4±0.9  0.2±0.1  

Week 12 0.9±0.4 1.5±0.9  1.6±0.5  1.4±0.5  0.8±0.6  0.1±0.8  

High 
dose 
FDS 

Baseline 1.0±0.4 1.3±1.2  1.9±1.1  1.6±1.1  1.0±0.4  0.1±0.1  

Week 12 1.1±0.5 1.8±1.0  1.6±0.7  1.5±0.6  0.8±0.5  0.1±0.1  

High 
dose 
control 

Baseline 0.9±0.3 1.1±0.7  1.3±0.4  1.2±0.4  0.9±0.6  0.1±0.1  

Week 12 1.2±0.8 2.0±1.3  1.6±0.4  1.4±0.4  0.9±0.7  0.1±0.1  

Footnote: Fe – iron; Cu – copper; Zn – zinc; Se – selenium; FDS - freeze-dried strawberries 

*P < 0.05 versus low dose control at baseline 
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Table 11: Plasma catalase activity levels at baseline and 12 weeks after FDS 
supplementation  

 

Intervention Group Baseline (nmol/min/mL) Week 12 (nmol/min/mL) 

Low dose FDS 38.5±39.3 13.2±4 

Low dose control 77.7±73.2 32.3±28.4 

High dose FDS 114.6±82.9* 14.6±3.3** 

High dose control 63.7±74 84.7±88.7 

 

Footnote: FDS – freeze-dried strawberries 

* P < 0.05 versus low dose FDS at baseline 

** P < 0.05 versus high dose FDS at baseline 
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Table 12: Whole blood GSH levels at baseline and 12 weeks after FDS supplementation  

 

 

Footnote: GSH - glutathione; FDS – freeze-dried strawberries 

* P < 0.05 versus low dose FDS at baseline 

** P < 0.05 versus low dose control at baseline 

*** P < 0.05 versus low dose FDS and high dose control at 12 weeks 

† P < 0.05 compared to baseline 

 

 

  

Intervention Group Baseline (µg/g Hb) Week 12 (µg/g Hb) 

Low dose FDS 1657.1±180** 2294.9±500.4 

Low dose control 1898.8±164.1 1775.3±153 

High dose FDS 1824.2±119.5* 2860.2±381.6*** 

High dose control 1789.1±199.5 1862.2±195.1 

† 

† 



45 

 

 
 
 
 
 

CHAPTER V 
 

 

CONCLUSION 

 

Overall findings 

To our understanding, this is the first clinical study to examine the effects of freeze-dried 

strawberries (FDS) in a dose-response manner, on trace elements and endogenous antioxidant 

markers in obese subjects with dyslipidemia. No significant effects were observed in plasma iron, 

copper, zinc, and selenium, except 54Fe which was significantly lower in low dose FDS versus 

LDC at baseline only. In the high dose FDS supplemented group, catalase activity at 12 weeks 

was significantly lower when compared with baseline values. At baseline, GSH values were 

significantly higher in high dose FDS and low dose FDS, while significantly lower in low dose 

FDS versus LDC. When compared with the fiber- and calorie-matched controls, significant 

increases in GSH were detected in both high dose FDS and low dose FDS groups after 12 weeks 

of FDS supplementation Furthermore, GSH was significantly higher in high dose FDS versus low 

dose FDS at 12-weeks.  

Trace element:  

Trace elements are critical to human health and cellular function via participation in biochemical 

reactions, as components of enzymatic structure, and also act as enzymatic cofactors8. Iron and 

copper are known to participate in oxidizing reactions which can be damaging to cells68,69,78, 
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while zinc and selenium tend to partake in antioxidant activities within cells16,74,75. Certain levels 

of iron, copper, zinc, and selenium are vital to normal bodily functions, but elevated iron and 

copper as well as decreased levels of zinc and selenium, often seen in the obese population, can 

result in an oxidant/antioxidant imbalance and lead to oxidative stress9-12,95,96.  

Populations with obesity and/or dyslipidemia are more likely to have high levels of iron and 

copper, and are also likely to have lower serum zinc and selenium levels9-12. When consumed 

with polyphenol-rich foods, iron uptake is reduced while zinc uptake may be improved as 

reported in cell culture studies167,170-172. Endogenous antioxidants and total antioxidant capacity 

are also increased in obese participants fed a polyphenol-rich food source, along with some 

studies finding alterations in trace element levels as well21,190,195,197,198. Thus, we hypothesized that 

in participants consuming high- and low-dose polyphenol-rich freeze-dried strawberries would 

demonstrate decreased serum iron and copper levels, while increased serum zinc and selenium 

levels. However, no significance was found among iron, zinc, copper, and selenium levels in our 

study subjects after 12 weeks of strawberry supplementation. Thus, we reject our hypothesis of 

predicted modulation of trace elements after low and high dose FDS supplementation. 

The forms of trace elements examined in studies must be considered in assessing outcomes.  

While we measured only free isotopes of selected elements, previous research have reported 

bound iron as well as transport proteins that play an important role in levels of these trace 

elements.99-102. Suliburska et al. found that daily consumption of green tea extract (379 mg) for 

three months reduced serum iron and zinc compared to baseline in males and females with 

obesity21. Basu et al. reported eight weeks daily consumption of green tea extract capsules 

significantly reduced plasma iron compared to baseline in men and women with obesity and 

metabolic syndrome. This study also found copper to be increased after fresh-brewed green tea 

consumption when compared to green tea extract consumption195. These findings compared with 

ours may indicate that the polyphenols found in strawberries may not significantly affect free 
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iron, zinc, copper, and selenium levels when compared to the reported effects of green tea and 

green tea extract.  However, these observations need further clarifications in larger trials on the 

effects of dietary polyphenols in circulating levels of trace elements. 

Catalase: 

Catalase is an enzyme found in the cytosol and peroxisomes of most cells and functions as an 

endogenous antioxidant by converting toxic H2O2 into water and free oxygen.  

Our study found that high dose FDS supplementation significantly lowered catalase activity at 12 

weeks compared to baseline. Therefore, we fail to reject the hypothesis that high dose FDS would 

increase catalase activity at 12 weeks compared to baseline. Since glutathione peroxidase (GPX) 

is thought to initially respond to both normal and stressful conditions where H2O2 may be 

elevated, catalase activity may have been modified in the participants from our study as a result 

of possible modified GPX activity38,128. However, we did not report GPX activity in our 

participants. Catalase activity may have also decreased as a result of increased GSH found in our 

study; GSH being the reduced form of glutathione and is readily able to donate an electron to 

reduce and stabilize ROS204. Although catalase activity was found to be decreased post-

intervention compared to baseline, this may possibly indicate improved antioxidant status as a 

result of increased GSH, which works closely with GPX as a co-enzyme and as a “first-line of 

defense” in combating increased H2O2 levels124,131. 

Our study findings are consistent with previous clinical studies which reported insignificant 

changes in catalase activity after polyphenol supplementation174,195,205-208. On the other hand, 

animal studies show different results. In rats fed a high-fat or normal diet supplemented with  

polyphenol-rich red grape skins (20 mg/kg/day) daily for four weeks, catalase activity was 

increased in both diets when compared with rats fed a high-fat or normal diet alone. Furthermore, 

catalase activity was decreased in rats fed a high-fat diet compared with a normal diet174. In 
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contrast to our findings, diabetic rats fed polyphenol-rich green tea extract for four weeks 

revealed a significant increase in catalase activity in the aorta and heart compared to the diabetic 

rat controls209. Thus, polyphenols may differ in their effects in modulating antioxidant enzyme 

systems in vivo. 

In a study by Hokayem et al. two grams per day of grape polyphenols for nine weeks showed no 

significant changes in activities of catalase, GPX, SOD, or blood GSH/GSSG ratio in overweight 

and obese adults at increased risk for type 2 diabetes205. Another study by Basu et al. showed that 

supplementation of green tea or green tea extract for eight weeks in obese subjects with metabolic 

syndrome found no significant changes in catalase activity or reduced glutathione 

concentrations195. In our study, participants with obesity and dyslipidemia supplemented in high 

doses of strawberries had decreased catalase activity post-intervention. Thus, strawberries may 

have different effects on catalase activity compared to other polyphenol-rich foods. 

Reduced glutathione (GSH):  

Reduced glutathione (GSH) is a vital cofactor for the action of GPX and decomposition of H2O2. 

In addition to decreasing H2O2, GSH also quenches singlet oxygen and regenerates vitamins C 

and E into their stable, reduced forms. In the nucleus, GSH maintains the redox balance in order 

to protect DNA from oxidative stress124,131,132.  

A dose-dependent effect was observed with the significantly higher GSH levels at 12 weeks in 

the high dose FDS compared with low dose FDS. The significantly increased levels of GSH in 

high dose compared to low dose, both low dose FDS compared with their respective controls, and 

both low and high dose FDS at 12 weeks compared to baseline may imply improved antioxidant 

status as a result of strawberry supplementation. Furthermore, we fail to reject our hypothesis that 

low and high dose FDS supplementation would increase GSH when comparing the high to low 

dose FDS, their respective dose-dependent controls, and their respective baseline levels.  
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Similar results have been reported in animal and clinical studies on the effects of fruit 

polyphenols on GSH levels. A study in mice fed a berry juice mixture of blueberry, crowberry, 

and elderberry (1:1:1) for 3-4 weeks had increased total glutathione as a result of altered γ-

glutamylcysteine synthetase (γ-GCS) following the supplementation of  the polyphenol-rich berry 

juice208. A similar study conducted by Babu et al. in diabetic rats supplemented with green tea 

extract for four weeks revealed significantly increased serum GSH content in diabetic rats 

supplemented with the polyphenol-rich extract compared with the control animals209. The 

researchers suggested that green tea directly scavenging ROS in the experimental group may have 

reduced GSH utilization, leading to an increase in GSH in rats treated with green tea extract209. 

This may also help explain our findings of significantly increased GSH in FDS supplemented 

participants. An ex vivo study examining the concentration-dependent effects of epicatechin on 

biomarkers of oxidative stress in blood samples from overweight patients with hypertension, 

found significantly increased GSH levels after supplementation of epicatechin compared to 

baseline210.  

Clinical trials have reported similar effects on GSH after polyphenol-rich supplementation. Basu 

et al. previously reported significantly increased whole blood GSH and plasma antioxidant 

capacity after eight weeks of daily green tea (4 cups) or green tea extract (two capsules, 870 mg 

catechins) supplementation compared to the controls in adults with obesity and metabolic 

syndrome. Many other studies have also reported increased total antioxidant capacity in 

participants with obesity after consuming polyphenol-rich supplements compared with their 

respective controls21,190,197,198.. 

Our findings reveal that the supplemented dosage of polyphenols (25-50 g FDS) in strawberries 

for the study duration of 12 weeks may decrease catalase activity and increase serum GSH in 

participants with obesity and dyslipidemia. No effects were noted in trace elements. Increased 
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GSH may indicate improved response to oxidative stress, though these findings warrant further 

investigation. 

Limitations 

Our study has some limitations which must be considered in the interpretation of our findings. 

Our study participants are primarily females, with five out of sixty subjects being males. Our 

study sample of sixty participants is also small. The fact that our study was confined to those with 

enlarged waist circumference and dyslipidemia, included participants who were or were not 

taking vitamin supplements, excluded participants with other chronic conditions and were 

recruited locally at the OSU and OUHSC campuses limits the generalizability of our study 

findings.  

Our study involved supplementation of freeze-dried strawberries equivalent to 1.5 – 3 cups of 

fresh strawberries per day which is much higher than the average fruit consumption in the US. 

CDC state-specific trends show only about 18% of Oklahoma residents consume two or more 

servings of fruit per day211. Thus, while our intervention may have therapeutic implications, the 

doses used may not be suitable for a preventative strategy. Also, the differences in sensory 

qualities between the strawberry and the control beverages, the latter containing vegetable fiber 

and artificial flavor and color, could have led to inadequate blinding of the participants. No diet 

analysis was performed to analyze trace element consumption of participants at baseline and at 

12-weeks. Furthermore, no comprehensive analysis was obtained from subjects to include other 

antioxidants or enzyme systems (i.e. vitamin E, GPX, SOD, etc.)  

Conclusion and recommendations 

Strawberry supplementation in our study had no significant effects on trace elements, while 

catalase activity and GSH concentrations were significantly modulated following strawberry 

supplementation. Since obesity and dyslipidemia present a condition of elevated oxidative stress 
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and compromised antioxidant function, our findings may have some implications in the 

nutritional management of these conditions.  Thus including strawberries within the 

recommended servings of fruits and vegetables, as per the Dietary Guidelines of Americans 

(2010)212, may be a prudent approach in improving the dietary sources of antioxidants in 

participants with CVD risk factors. 
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