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Abstract: Agriculture is an industry with continuous advancements in technology and 

strategies to increase production while improving efficiency.  Hard red winter wheat is a 

staple crop for many producers in Oklahoma.  However, a dramatic increase in the 

commodity price of maize at the beginning of 2011 resulted in a restored interest to raise 

maize in the less productive, semi-arid environment of Oklahoma.  Provided in this 

dissertation are two projects that investigate the use of technology and nitrogen fertilizer 

management strategies to produce maize in Oklahoma.  Seed companies have recently 

commercialized maize hybrids which are marketed as having improved drought 

tolerance.  Both transgenic and non-transgenic approaches have been taken to exploit 

improved drought tolerance in maize.  In chapter one, transgenic and non-transgenic 

maize hybrids are compared to less drought tolerant maize hybrids.  Evaluation of these 

hybrids grown under irrigation and with different nitrogen (N) fertilizer rates on grain 

yield, water use efficiency (WUE), and nitrogen use efficiency were investigated.  Even 

with the presence of irrigation and above average rainfall, drought tolerant hybrids offer 

improved grain yield and WUE.  The transgenic drought tolerant hybrid seemed better 

suited for hot and dry environments.  Maize producers should consider incorporating 

transgenic drought tolerant maize hybrid technology into water stressed farming 

environments.  In chapter two, winter wheat and spring barley indicator crops were used 

to estimate the N response of the subsequent maize crop.  In-season response of the 

indicator crops was determined (RINDVI) and provided input values to calculate N 

fertilizer recommendations of the subsequent maize crop using the generalized algorithm.  

The agronomic optimum N rate (AONR) and response of N fertilizer at harvest (RIHarvest) 

were calculated from a maize N response trial.  Strong correlations existed between the N 

fertilizer recommendation generated from the generalized algorithm and the AONR for 

the maize along with the RINDVI for wheat and barley and RIHarvest for the maize.  The use 

of indicator crops to predict the response of a maize crop to N fertilizer is unprecedented 

and modifications to current maize N fertilizer recommendations could modernize N 

management strategies for all producers.  
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CHAPTER 1 

 

 

NITROGEN AND WATER USE EFFICIENCY AS INFLUENCED BY MAIZE 

HYBRID AND IRRIGATION 

 

1.1 Abstract 

The drought experienced in the United States in 2012 was the most severe 

encountered over the past 25 years and resulted in reduced maize (Zea mays L.) grain 

yields.  Thus, it is important to investigate how new drought tolerant maize hybrids 

influence water use efficiency (WUE) in drought environments.  The objective of this 

research was to evaluate WUE and N use efficiency (NUE) of drought tolerant and less 

drought tolerant maize hybrids in irrigated and dryland production systems.  Beginning in 

2013 and continuing through 2014, two maize hybrids designated as drought tolerant 

(one non-transgenic Pioneer AQUAmax hybrid and one transgenic Monsanto 

Droughtgard hybrid) were compared with two hybrids having less drought tolerance at 

two locations in north-central Oklahoma.  Grain yield, WUE, and NUE were determined 

at harvest.  Overall, irrigation had a tendency to increase grain yield, WUE, and NUE at 

all locations.  Improved grain yield was observed with the drought tolerant Monsanto  
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hybrid compared to the drought tolerant Pioneer hybrid.  Water use efficiency was 

influenced by grain yield and the interaction between WUE and NUE by hybrid proved to 

be weak across all eight sites.  In the presence of irrigation and above average rainfall, 

drought tolerant hybrids increased grain yield and WUE.  The transgenic drought tolerant 

hybrid seemed better suited for hot and dry environments.  These data would suggest 

maize producers should consider incorporating transgenic drought tolerant maize hybrid 

technology into water stressed farming environments. 

 

1.2 Introduction 

The drought experienced in the United States in 2012 was the most severe 

encountered over the past 25 years (USDA-ERS, 2012).  Areas within the Great Plains 

are still experiencing severe to exceptional drought (Fuchs, 2014).  Despite the 2012 

drought, maize (Zea mays L.) growers in the United States produced 274,078,246 Mg of 

maize grain with an estimated average grain yield of 7.74 Mg ha
-1

 (USDA-NASS, 2013).  

In comparison, average grain yield in 2011, without the effect of drought, was 9.23 Mg 

ha
-1

 and total production was 13 percent higher than in 2012 (USDA-NASS, 2013).  On 

January 9, 2013, the USDA declared 597 counties in 14 states primary natural disaster 

areas due to drought (USDA, 2013) resulting in over $14 billion USD in crop insurance 

indemnity payments calculated by the Congressional Budget Office (Delisle, 2013). 

Variability in precipitation is a normal part of the North American climate, but 

many dryland maize producers are vulnerable to catastrophic losses due to untimely 

drought conditions during the growing season.  Irrigation offers one management tool 
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which can minimize the impact of drought conditions.  However, the largest groundwater 

reserve in the High Plains, the Ogallala aquifer, has been depleted over the past several 

decades due to over irrigation (Peterson and Ding, 2005) and has caused many producers 

to return to dryland production practices.  If regional drought persists, this may be a 

growing trend across much of the Corn Belt. 

In a review, Hatfield et al. (2011) explains how climate change will have an 

impact on agricultural systems over the next 30 years.  The authors explain that the 

interaction of water stress and high temperatures during pollination and grain set could be 

damaging to crop production and food security.  As a challenge to agronomists, the 

authors concluded a need to couple physiological responses with genetic traits to provide 

an opportunity for better cropping systems to manage seasonal variability in precipitation 

(Hatfield et al., 2011).   

Water is used in many facets of a plant’s life cycle.  Most notably, water is used 

as a reactant in photosynthesis which supports plant growth.  Water is absorbed from the 

soil by roots and can transport dissolved nutrients throughout the plant.  Water pressure, 

called turgor, is the structural support for plant tissues.  Plants can control the opening 

and closing of the stomata, through which water vapor is exchanged with atmospheric 

carbon dioxide, in response to environmental conditions such as temperature and relative 

humidity.  Carbon dioxide is used to produce sugars and proteins that provide protection 

to the plant under stress and can be important in heat stress response. The stomata also 

release water vapor, which increases transpiration (the movement of water through the 

leaves), cooling the plant through evaporation.  In response to drought, plants may keep 
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the stomata closed in an effort to conserve water, but this also results in decreasing the 

supply of carbon dioxide, effectively starving the plant of sugars and depriving the plant 

of the cooling effects of transpiration.  The interaction of physiological responses to heat 

and drought are a subject of current research.  

Maize is most susceptible to drought one week before and two weeks after 

flowering (Denmead and Shaw, 1960; Grant et al., 1989).  Effects of drought include 

kernel abortion (Boyle et al., 1991) and reduced kernel set (Nielsen, 2011).  Reduced 

kernel set is most likely to occur at the tip of an ear where the ovules are unfertilized due 

to reduced opportunity for fertilization during the abbreviated silking period.  Kernel 

abortion due to drought has been documented to occur two weeks after silking (Westgate 

and Boyer, 1986).  The yield loss from kernel abortion and reduced kernel set cannot be 

recovered later in the season.  Drought can also increase the anthesis-silking interval 

(ASI) due to a delay in silk emergence (Bolaños and Edmeades, 1996).  Anthesis-silking 

interval is the period of time between pollen shed and silk emergence and is an indicator 

of ear growth rate (Carena et al., 2009).   Physiological stress due to drought, heat, or a 

combination thereof can result in increased ASI and therefore reduced ear growth rate.  

Therefore, achieving better water use efficiency (WUE) has been a main point of 

emphasis for many breeding programs in the United States and abroad.   

Drought tolerance is a quantitative trait that has complex and polygenic 

inheritance mechanisms.  Expression of drought tolerance is associated with epistatic 

effects and therefore has large genotype by environment interactions.  Genotype by 

environment factors affecting drought tolerance include; timing and duration of water 
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stress, soil type, temperature, and humidity.  Breeding to exploit polygenic effects is 

desirable and there is an opportunity for substantial genetic improvement. 

DuPont Pioneer (DuPont Pioneer Hi-Bred Intl., Inc., Johnston, IA) is a seed 

company which has focused its research to develop drought tolerant maize hybrids using 

conventional breeding (Butzen and Schussler, 2009).  Researchers from this company 

have developed drought tolerant maize hybrids using native drought tolerant traits 

through marker assisted selection.  The native drought tolerant traits were identified as 

linked to genetic markers. The markers were then used to make advancement selections 

based on the known desirable genetic traits, thereby saving time and resources that would 

otherwise be spent on less-specific phenotypic selections.  In this way, marker assisted 

selection can be used to quickly integrate desirable traits into market-ready hybrids. This 

approach has enabled breeders to stack multiple drought-related traits into successive 

lines, introducing more than one gene affecting drought tolerance and partially capturing 

the complex polygenic drought response.   

Pioneer’s goal is to improve the maize plant’s ability to capture and utilize water, 

sunlight, and nutrients under water limited conditions (Butzen and Schussler, 2009).  

Specific trait goals include a more efficient root system and more aggressive silk 

emergence, which will theoretically result in fewer aborted kernels during drought.  

Butzen and Schussler (2009) acknowledged that the energy required to establish an 

improved root system may decrease above ground growth, but they were certain that 

extensive testing would result in higher yields in all environments.  A highly efficient 

root system balances both shallow, immobile nutrient-mining roots and deep, water-
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mining roots without an overly abundant root system, which would be too high of a 

respiratory cost for a drought stressed plant (Ho et al., 2005).  Efficiencies can be 

achieved through root matter distribution between shallow and deep roots and also by 

selecting for increased parenchyma, air spaces within roots which allow the plant to 

physically expand the root system while avoiding the respiratory cost of supporting cells 

within the roots (Postma and Lynch, 2011).  

Breeding programs at the International Maize and Wheat Improvement Center in 

Mexico have worked to narrow the ASI in lowland tropical maize.  Their work reported 

increased grain yields of 30 to 50 percent under water stressed environments (Edmeades 

et al., 1999).  Increases in grain yield were attributed to a shorter anthesis-silking interval 

(Chapman and Edmeades, 1999).  Additionally, improvements in grain yield were also 

observed under unstressed environments.   

Scientists at the Monsanto (Monsanto Company, St. Louis, MO) and BASF 

(BASF Corporation, Florham Park, NJ) companies have discovered a transgene which 

can stabilize maize yields during periods of inadequate water supply.  Transgenes are 

genes which are moved from one organism to another through biotechnology instead of 

through traditional breeding methods.  Researchers have identified a cold shock protein B 

gene called CspB which is originally from the Bacillus subtilis bacterium (Castiglioni et 

al., 2008).  Cold shock proteins rapidly accumulate in cold shocked bacterial cells and act 

as RNA chaperones to facilitate the normal process of translation during protein 

synthesis.  In maize, the CspB genes help to maintain growth and development during 

water stress by binding and unfolding tangled RNA molecules to promote normal 
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function (Castiglioni et al., 2008).  Maize expressing the CspB protein experiences 

reduced growth during times of drought stress, but preserves a portion of the yield that 

would be lost in isogenic lines not bearing the transgene. 

Field trials were conducted to evaluate maize hybrids containing CspB.  When 

compared to nontransgenic control hybrids, the CspB transgenic hybrid demonstrated 

grain yield improvements of up to 15 percent under dryland growing conditions 

(Castiglioni et al., 2008).  However, more research will need to be conducted to confirm 

yield stability under well watered conditions.  Nonetheless, there is great potential for 

transgenetic advancements in drought tolerance through modifying the physiological 

responses to drought and heat. 

Transgenic traits offer exceptional opportunities to identify and manipulate many 

genes and traits which affect drought tolerance.  Genomic approaches will expand the 

possibilities to improve genetic variation in elite germplasm.  Identification of specific 

quantitative trait loci (QTL) is the first step to identify and isolate molecular material (a 

polymorphism) of the genetic variation at the sequence level (Tuberosa et al., 2007).  

However, some researchers suggest that quantitative traits are better explained by 

polygenes rather than QTLs (Carena and Wicks III, 2006).  Still, any method that 

increases the frequency of favorable alleles for traits that are quantitatively inherited 

while maintaining genetic variability will continue to improve genetic advancement.  

Water use efficiency can be defined differently depending on the objective and 

application.  For example, plant physiologists measure WUE as the amount of 

photosynthesis per unit of water used in transpiration, whereas, farmers and agronomists 
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may measure WUE as maize grain yield per unit of water, measured as precipitation 

and/or irrigation (Condon et al., 2004).  Commonly, evapotranspiration (ET) is the 

measure of water used in WUE calculations and is the summation of evaporation from 

soil and non-stomatal plant surfaces and transpiration from plant stomates.  Variation in 

ET due to environmental dynamics, plant factors, and management practices can result in 

differences in WUE (Stone et al., 1987). 

Many of the plant vegetative and reproductive processes are dependent upon a 

sufficient water supply, and so logically, adequate rainfall or irrigated production systems 

increase maize grain yield response to N fertilizer (Eck, 1984) and N uptake (Russelle et 

al., 1981).  Once in the plant, N is assimilated into proteins and some proteins are stored 

in the grain.  The efficiency at which N is taken up from the soil and used to produce 

grain is characterized as nitrogen use efficiency (NUE).  Nitrogen use efficiency is 

defined as the amount of maize grain produced per unit of nitrogen (N) available in the 

soil (Moll et al., 1982) or as the percent of N recovered in the maize grain (Varvel and 

Peterson, 1991).  However, NUE is dependent on soil and plant interactions (Huggins and 

Pan, 1993).   

Inorganic forms of N (nitrate and ammonium) have high mobility in the xylem of 

plants and long distance xylem transport of solutes, such as N, is driven by a water 

potential gradient generated by transpiration.  Accepting this premise, if modern drought 

tolerant maize hybrids utilize water more efficiently, will they utilize N more efficiently 

too?  Currently, there are no known research publications addressing the WUE and NUE 

interaction of modern drought tolerant maize hybrids.  Research conducted in spring 
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wheat has shown that under drought conditions, plants have the ability to improve 

nutrient uptake by increasing root respiration which increases nutrient solubility (Liu et 

al., 2004).  Evaluations of maize hybrids in Indiana reported that hybrid response to 

increased rates of N fertilizer were similar for drought tolerant and conventional maize 

hybrids (Roth et al., 2013).  A study conducted in Nebraska using hybrids with different 

NUE histories reported that different water regimes did not influence the NUE of those 

hybrids and suggested that hybrid selection for NUE will result in simultaneous selection 

for WUE (Eghball and Maranville, 1991).  

The functions of water in a maize plant are myriad and not fully understood.  This 

intricate relationship between water and harvestable yield speaks to the complexity of the 

genetic response to drought stress within the plant. Selection for drought tolerance 

requires accurate identification and characterization of the many underlying traits under 

controlled field conditions.  The biggest challenge facing researchers in genomics is the 

translation from basic research into application.  Therefore, a multi-dimensional approach 

using sophisticated phenotyping data, transgenic resources and conventional breeding is 

the best strategy to address the many facets of drought response within the plant.  The 

genetics of individual maize hybrids affect the many various physiological processes 

which influence water and N use within the plant.  The epigenetic relationship between 

the individual hybrid and its environment means that no single maize hybrid will work 

well across all environments.  Conventional breeding, along with integration of 

transgenic events in a comprehensive crop improvement program, has potential for 

achieving significantly better drought tolerance for US production in the future.  Thus, it 
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is important to investigate how new drought tolerant maize hybrids influence WUE and 

NUE in the water limited environments of Oklahoma. 

 

1.3 Objective 

The objective of this study was to evaluate WUE and NUE of drought tolerant 

and less drought tolerant maize hybrids in irrigated and dryland production systems. 

 

1.4 Materials and Methods 

Field experiments were established in 2013 and 2014 at the Efaw (36.081118
o
,  

-97.063270
o
, elevation 272 m above sea level) agronomy research station near Stillwater, 

OK and Lake Carl Blackwell (LCB; 36.090792
o
, -97.172486

o
, elevation 293 m above sea 

level) agronomy research station west of Stillwater, OK near Lake Carl Blackwell (Table 

1-1).  All soil fertility parameters were managed to ensure N was the only limiting 

nutrient (Table 1-2).  A summary of field activities for each cropping year including; soil 

sampling, planting, fertilization, irrigation, rainfall, and harvest are provided in Table 1-3. 

A three replicate randomized complete block design with treatments arranged as a 

two way factorial with 4 levels of hybrid and 3 levels of N rate were utilized in this study.  

At each location, hybrids and N rates were randomly assigned within both an irrigated 

and dryland production system.  In 2013, two maize hybrids designated as drought 

tolerant (DuPont Pioneer AQUAmax brand P1498 YHR and Monsanto Dekalb Genuity 

DroughtGard brand DKC63-55 GENDGVT2P) were compared with two hybrids with 

less drought tolerance (DuPont Pioneer brand P1395 YHR and Monsanto Dekalb brand 
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DKC62-09 GENVT3P).  Drought tolerance scores as determined by DuPont Pioneer (1 = 

poor, 9 = outstanding) were 9 and 7 for P1498 and P1395, respectively and scores 

determined by Monsanto Dekalb (1 = excellent, 9 = poor) were 1 and 3 for DKC63-55 

and DKC62-09, respectively.  In 2014, two maize hybrids designated as drought tolerant 

(DuPont Pioneer AQUAmax brand P1498 AM and Monsanto Dekalb Genuity 

DroughtGard brand DKC63-55 GENDGVT2P) were compared with two hybrids with 

less drought tolerance (DuPont Pioneer brand P1234 AM and Monsanto Dekalb brand 

DKC62-08 GENSS).  Drought tolerance scores for P1498 and P1234 were 9 and predicts 

above average, respectively and for DKC63-55 and DKC62-08 were 1 and 3, 

respectively.  For discussion of these hybrids, the following abbreviations will be used: 

P1 = P1498, P2 = P1395 or P1234, M1 = DKC63-55, and M2 = DKC62-09 or DKC62-

08.  Three different fertilizer N rates were used in each production system based on 

expected grain yield and N removal in the grain as described by Zhang and Raun, 2006.  

The N rates for the irrigated production system were 0 (Low), 101 (Med), and 202 (High) 

kg ha
-1

 and for the dryland production system were 0 (Low), 67 (Med), and 134 (High) 

kg ha
-1

.  Nitrogen fertilizer was applied prior to planting as broadcast and incorporated 

urea ammonium nitrate (UAN; 28-0-0).  Planting densities for each production system 

were different based on best management practices.  The irrigated production system was 

planted at 75,650 seeds ha
-1

 and the dryland production system was planted at 53,800 

seeds ha
-1

.  Plots were planted with a 4-row John Deere 7300 Integral MaxEmerge 

planter (Deere & Company, Moline, IL) at a planting depth of approximately 5 cm.  

Individual plots measured 3 m wide (four 0.76 m rows) by 6.1 m long. 
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Water for the irrigated production system was provided via a surface drip system 

on an as needed basis, dependent upon visual water stress symptoms.  The amount of 

water being supplied was monitored and documented (Table 1-3).  To ensure even 

distribution across each plot, drip tape was installed between rows 1 and 2 and between 

rows 3 and 4.   

Soil moisture content (SWC) of the top 1 m soil profile depth was determined 

prior to planting and immediately following grain harvest.  Soil cores were collected 

using a tractor mounted Giddings hydraulic soil sampler (Giddings Machine Company, 

Windsor, CO) and were used to determine SWC by the direct gravimetric method 

(Gardner, 1986) and soil bulk density (Blake and Hartge, 1986).  Volumetric soil water 

content (mL mL
-1

) was calculated as the product of the gravimetric soil water content (g 

g
-1

) and soil bulk density (g cm
-3

).  Prior to planting, four soil cores were collected from 

each production system to a depth of approximately 1 m.  Soil cores were weighed 

directly following collection, dried in a forced air oven at 60 
o
C for 72 hours, and 

weighed for an oven-dry soil weight.  A single soil core was collected from each plot 

following grain harvest using the same method and was used to determine the seasonal 

change in SWC.   

The amount of soil moisture within the 1 m soil profile depth was used to obtain 

ET of the production system.  Evapotranspiration was estimated using the soil water 

balance method proposed by Heermann (1985) and can be expressed in the following 

equation: 

ET =  +∆SWC + R + I 
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where ∆SWC is the change in volumetric soil water content (mm) of the 1 m soil profile 

from plant to harvest, R is the cumulative rainfall (mm) from planting to harvest, and I is 

the amount of irrigation water applied (mm).  Daily rainfall was recorded from an 

automated weather station (2 km from the field experiment) and data files were 

downloaded (Oklahoma Mesonet, 2014) to determine cumulative rainfall.  Water use 

efficiency (kg ha
-1

 m
-1

) was calculated as the ratio between grain yield (kg ha
-1

) and 

evapotranspiration (m) for each plot.  

 A daily water balance was created for each location to interpret the influence of 

daily weather and irrigation on potential evapotranspiration (Fig. 1-1 and 1-2).  Daily 

potential evapotranspiration (PET) values were determined from the American Society of 

Civil Engineers standardized reference evapotranspiration equation (Walter et al., 2002).  

Daily PET and rainfall data files were downloaded from an adjacent climate monitoring 

site (Oklahoma Mesonet, 2014).   

At physiological maturity, mechanical grain harvest was accomplished using a 

Massey Ferguson 8-XP self-propelled research plot combine (Kincaid Equipment and 

Manufacturing, Haven, KS) equipped with a HarvestMaster (Juniper Systems, Inc., 

Logan, UT) plot harvest data system calibrated to collect individual plot grain weight and 

moisture.  The center two rows of each plot were harvested and grain yield (Mg ha
-1

) was 

adjusted to 155 g kg
-1

 moisture content.  A subsample of the grain harvested from each 

plot was collected, oven dried at 60 
o
C until a constant dry weight was achieved, and 

ground to pass through a 140 mesh screen using a Wiley mill (Thomas Scientific, 

Swedesboro, NJ).  Grain samples were analyzed for total N content (mg g
-1

) using a 
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LECO Tru-Spec CN automated dry combustion analyzer (LECO Corporation, St. Joseph, 

MI; Schepers et al., 1989).  Total grain N uptake (kg ha
-1

) was calculated as the product 

of grain yield (kg ha
-1

) and grain N content.  Nitrogen use efficiency was calculated using 

the difference method described by Varvel and Peterson (1991).  

Statistical analysis was conducted by year, location, and production system for the 

combination of hybrid and N rate treatments.  Each production system was analyzed 

separately due to the different management practices utilized.  Analysis of variance 

(ANOVA) was performed using the SAS PROC GLM procedure (SAS Institute, 2011) to 

detect significant differences for the main and interactive treatment effects on grain yield, 

WUE, and NUE.  Single degree-of-freedom contrasts were utilized to partition treatment 

means and statistical differences.  A linear regression model, using the SAS PROC REG 

procedure (SAS Institute, 2011), was utilized to identify a relationship between WUE and 

NUE by hybrid for each site.  The coefficient of determination (R
2
) from the model was 

used to identify the amount of variation which could be accounted for by the NUE to 

predict WUE.  Significant differences were declared at α = 0.05.   

 

1.5 Results 

Efaw - Irrigated, 2013 

Water Balance.  Irrigation water was applied beginning at late vegetative growth 

(V10; Abendroth et al., 2011) and continued through pollination, ceasing at 

approximately maize kernel milk stage (R3).  Irrigation totaled 46 mm over that four 

week duration and accounted for seven percent of the seasonal PET (Table 1-3).  
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Irrigation began at approximately the same time the water balance fell below its initial 

point (Fig. 1-1).  Irrigation and rainfall accounted for almost 99 percent of seasonal PET. 

Grain Yield.  Maize grain yield values ranged from 5.4 to 9.4 Mg ha
-1

 across all 

treatments (Table 1-4).  Effects of hybrid, N rate, and hybrid x N rate were not significant 

for grain yield (Table 1-4).  A significant increase in grain yield (1.6 Mg ha
-1

) was 

observed for the Monsanto hybrids (M1 and M2) compared to the Pioneer hybrids (P1 

and P2) using single degree-of-freedom contrasts (Table 1-4). 

WUE.  Maize WUE values ranged from 0.96 to 1.70 kg ha
-1

 m
-1

 across all 

treatments (Table 1-5).  Effects of hybrid, N rate, and hybrid x N rate were not significant 

for WUE (Table 1-5).  A significant increase in WUE (0.32 kg ha
-1

 m
-1

) was observed for 

the Monsanto hybrids (M1 and M2) compared to the Pioneer hybrids (P1 and P2) using 

single degree-of-freedom contrasts (Table 1-5). 

NUE.  Maize NUE values ranged from 0 to 47 percent across all treatments 

(Table 1-6).  Effects of hybrid, N rate, and hybrid x N rate were not significant for NUE 

(Table 1-6).  A significant increase in NUE (25%) was observed for the drought tolerant 

Pioneer hybrid (P1) compared to the drought tolerant Monsanto hybrid (M1) using single 

degree-of-freedom contrasts (Table 1-6). 

WUE x NUE Interaction.  The linear regression model established that NUE could 

not statistically predict WUE for any of the hybrids (Table 1-7).  All hybrids had a 

positive slope, but significantly less than one (Table 1-7).  
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Efaw - Dryland, 2013 

Grain Yield.  Maize grain yield values ranged from 2.8 to 5.2 Mg ha
-1

 across all 

treatments (Table 1-4).  Effects of hybrid, N rate, and hybrid x N rate were not significant 

for grain yield (Table 1-4).  A significant increase in grain yield (1.2 Mg ha
-1

) was 

observed for the drought tolerant Monsanto hybrid (M1) compared to the drought tolerant 

Pioneer hybrid (P1) using single degree-of-freedom contrasts (Table 1-4).  

WUE.  Maize WUE values ranged from 0.58 to 1.09 kg ha
-1

 m
-1

 across all 

treatments (Table 1-5).  Effects of hybrid, N rate, and hybrid x N rate were not significant 

for WUE (Table 1-5).  A significant increase in WUE (0.24 kg ha
-1

 m
-1

) was observed for 

the drought tolerant Monsanto hybrid (M1) compared to the drought tolerant Pioneer 

hybrid (P1) using single degree-of-freedom contrasts (Table 1-5). 

NUE.  Maize NUE values ranged from 1.0 to 19 percent across all treatments 

(Table 1-6).  Effects of hybrid, N rate, and hybrid x N rate were not significant for NUE, 

nor were the single degree-of-freedom contrast comparisons (Table 1-6).  Treatment 

differences were difficult to discern due to high experimental error (CV, 139%).   

WUE x NUE Interaction.  The linear regression model established that NUE could 

statistically predict WUE for the less drought tolerant Monsanto hybrid (M2) and NUE 

accounted for 68% of the variability in WUE for that hybrid (Table 1-7).  All hybrids had 

a positive slope, but significantly less than one (Table 1-7).  

Lake Carl Blackwell - Irrigated, 2013 

Water Balance.  Irrigation was initiated during late vegetative growth (V12) and 

continued through pollination, ceasing at approximately maize kernel milk stage (R3).  
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Minimal irrigation water was applied (28 mm) due to significant seasonal rainfall events 

totaling 827 mm (Fig. 1-2).  Together, irrigation and rainfall surpassed seasonal PET by 

200 mm (Table 1-3).  Over 250 mm of rain fell during the middle and late maize grain fill 

reproductive stages (R4 to R6).  As a result of the unseasonable rainfall, the water 

balance only fell below its initial point for approximately three weeks during the entire 

growing season with only 2 days occurring during reproductive growth (Fig. 1-2). 

Grain Yield.  Maize grain yield values ranged from 5.0 to 11.2 Mg ha
-1

 across all 

treatments (Table 1-4).  The main effect of N rate was significant for grain yield (Table 

1-4).  Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic 

trend.  The medium and high N rates yielded 3.0 Mg ha
-1

 more compared to the low N 

rate and the high N rate yielded 0.5 Mg ha
-1

 more compared to the medium N rate (Table 

1-4).  The main effect of hybrid and the hybrid x N rate interaction were not significant 

for grain yield (Table 1-4).  A significant increase in grain yield (1.1 Mg ha
-1

) was 

observed for the Monsanto hybrids (M1 and M2) compared to the Pioneer hybrids (P1 

and P2) using single degree-of-freedom contrasts (Table 1-4).   

WUE.  Maize WUE values ranged from 0.64 to 1.44 kg ha
-1

 m
-1

 across all 

treatments (Table 1-5).  The main effect of N rate was significant for WUE (Table 1-5).  

Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic trend.  The 

medium and high N rates increased WUE 0.40 kg ha
-1

 m
-1

 compared to the low N rate 

and the high N rate increased WUE 0.07 kg ha
-1

 m
-1

 compared to the medium N rate 

(Table 1-5).  The main effect of hybrid and the hybrid x N rate interaction were not 

significant for WUE (Table 1-5).  A significant increase in WUE (0.14 kg ha
-1

 m
-1

) was 
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observed for the Monsanto hybrids (M1 and M2) compared to the Pioneer hybrids (P1 

and P2) using single degree-of-freedom contrasts (Table 1-5). 

NUE.  Maize NUE values ranged from 12 to 44 percent across all treatments 

(Table 1-6).  Effects of hybrid, N rate, and hybrid x N rate were not significant for NUE, 

nor were the single degree-of-freedom contrast comparisons (Table 1-6).   

WUE x NUE Interaction.  The linear regression model established that NUE could 

not statistically predict WUE for any of the hybrids (Table 1-7).  All hybrids had a 

positive slope, but significantly less than one (Table 1-7).  

Lake Carl Blackwell - Dryland, 2013 

Grain Yield.  Maize grain yield values ranged from 0.9 to 3.3 Mg ha
-1

 across all 

treatments (Table 1-4).  Effects of hybrid, N rate, and hybrid x N rate were not significant 

for grain yield, nor were the single degree-of-freedom contrast comparisons (Table 1-4).  

Treatment differences were difficult to discern due to high experimental error (CV, 80%).   

WUE.  Maize WUE values ranged from 0.12 to 0.44 kg ha
-1

 m
-1

 across all 

treatments (Table 1-5).  Effects of hybrid, N rate, and hybrid x N rate were not significant 

for WUE, nor were the single degree-of-freedom contrast comparisons (Table 1-5).  

Treatment differences were difficult to discern due to high experimental error (CV, 80%).   

NUE.  Maize NUE values ranged from 1.0 to 28 percent across all treatments 

(Table 1-6).  Effects of hybrid, N rate, and hybrid x N rate were not significant for NUE, 

nor were the single degree-of-freedom contrast comparisons (Table 1-6).  Treatment 

differences were difficult to discern due to high experimental error (CV, 153%).   
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WUE x NUE Interaction.  The linear regression model established that NUE could 

statistically predict WUE for all of the hybrids and NUE accounted for over 76 percent of 

the variability in WUE for all of the hybrids (Table 1-7).  All hybrids had a positive 

slope, but significantly less than one (Table 1-7).  

Efaw - Irrigated, 2014 

Water Balance.  Irrigation was initiated during early vegetative growth (V6) and 

continued through the silking growth stage (R1).  Irrigation totaled 28 mm over that eight 

week period and accounted for four percent of the seasonal PET (Table 1-3).  Irrigation 

began just before the water budget fell below zero (Fig. 1-1).  The water budget was 

below zero during the reproductive growth stages, but over 200 mm of rain fell during 

that same timeframe resulting in a stable water balance during grain fill (Fig. 1-1).   

Grain Yield.  Maize grain yield values ranged from 2.1 to 9.9 Mg ha
-1

 across all 

treatments (Table 1-4).  The main effect of N rate was significant for grain yield (Table 

1-4).  Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic 

trend.  The medium and high N rates yielded 3.9 Mg ha
-1

 more compared to the low N 

rate and the high N rate yielded 2.6 Mg ha
-1

 more compared to the medium N rate (Table 

1-4).  The main effect of hybrid and the hybrid x N rate interaction were not significant 

for grain yield, nor were the single degree-of-freedom contrast comparisons (Table 1-4).   

WUE.  Maize WUE values ranged from 0.56 to 2.92 kg ha
-1

 m
-1

 across all 

treatments Table 1-5).  The main effect of N rate was significant for WUE (Table 1-5).  A 

quadratic increase in WUE was observed for N rate.  The medium and high N rates 

increased WUE 1.25 kg ha
-1

 m
-1

 compared to the low N rate and the high N rate increased 
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WUE 0.76 kg ha
-1

 m
-1

 compared to the medium N rate (Table 1-5).  The main effect of 

hybrid and the hybrid x N rate interaction were not significant for WUE, nor were the 

single degree-of-freedom contrast comparisons (Table 1-5).   

NUE.  Maize NUE values ranged from 26 to 44 percent across all treatments 

(Table 1-6).  Effects of hybrid, N rate, and hybrid x N rate were not significant for NUE, 

nor were the single degree-of-freedom contrast comparisons (Table 1-6).   

WUE x NUE Interaction.  The linear regression model established that NUE could 

statistically predict WUE for the drought tolerant and less drought tolerant Monsanto 

hybrids (M1 and M2) and NUE accounted for over 66 percent of the variability in WUE 

for those hybrids (Table 1-7).  All hybrids had a positive slope, but significantly less than 

one (Table 1-7).  

Efaw - Dryland, 2014 

Grain Yield.  Maize grain yield values ranged from 2.2 to 6.5 Mg ha
-1

 across all 

treatments (Table 1-4).  The main effect of N rate was significant for grain yield (Table 

1-4).  Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic 

trend.  The medium and high N rates yielded 2.8 Mg ha
-1

 more compared to the low N 

rate and the high N rate yielded 1.4 Mg ha
-1

 more compared to the medium N rate (Table 

1-4).  The main effect of hybrid was significant for grain yield (Table 1-4).  The less 

drought tolerant Monsanto hybrid (M2) yielded 1.0 Mg ha
-1

 more compared to the less 

drought tolerant Pioneer hybrid (P2).  A significant increase in grain yield (0.8 Mg ha
-1

) 

was observed for the Monsanto hybrids (M1 and M2) compared to the Pioneer hybrids 

(P1 and P2) using single degree-of-freedom contrasts (Table 1-4). 
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WUE.  Maize WUE values ranged from 0.61 to 2.06 kg ha
-1

 m
-1

 across all 

treatments (Table 1-5).  The main effect of N rate was significant for WUE (Table 1-5).  

Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic trend.  The 

medium and high N rates increased WUE 0.86 kg ha
-1

 m
-1

 compared to the low N rate 

and the high N rate increased WUE 0.42 kg ha
-1

 m
-1

 compared to the medium N rate 

(Table 1-5).  The main effect of hybrid was significant for WUE (Table 1-5).  The less 

drought tolerant Monsanto hybrid (M2) increased WUE 0.37 kg ha
-1

 m
-1

 compared to the 

less drought tolerant Pioneer hybrid (P2).  A significant increase in WUE (0.26 kg ha
-1

 m
-

1
) was observed for the Monsanto hybrids (M1 and M2) compared to the Pioneer hybrids 

(P1 and P2) using single degree-of-freedom contrasts (Table 1-5). 

NUE.  Maize NUE values ranged from 26 to 39 percent across all treatments 

(Table 1-6).  Effects of hybrid, N rate, and hybrid x N rate were not significant for NUE, 

nor were the single degree-of-freedom contrast comparisons (Table 1-6).   

WUE x NUE Interaction.  The linear regression model established that NUE could 

not statistically predict WUE for any of the hybrids (Table 1-7).  All hybrids had a 

positive slope and significantly less than one with the exception of the less drought 

tolerant Pioneer hybrid (P2) which had a negative slope and significantly less than one 

(Table 1-7).  

Lake Carl Blackwell - Irrigated, 2014 

Water balance.  Irrigation was applied only during early vegetative growth (V7 to 

V9) due to a significant rainfall event (105 mm) occurring directly after that point (Fig. 1-

2).  Irrigation only totaled 8 mm, but irrigation and rainfall accounted for almost 74 
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percent of seasonal PET (Table 1-3).  The water balance did not fall below zero 

throughout the entire growing season and almost 250 mm of rain fell during the 

reproductive growth stages (Fig. 1-2).   

Grain Yield.  Maize grain yield values ranged from 3.5 to 10.7 Mg ha
-1

 across all 

treatments (Table 1-4).  The main effect of N rate was significant for grain yield (Table 

1-4).  Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic 

trend.  The medium and high N rates yielded 5.2 Mg ha
-1

 more compared to the low N 

rate and the high N rate yielded 1.4 Mg ha
-1

 more compared to the medium N rate (Table 

1-4).  The main effect of hybrid and the hybrid x N rate interaction were not significant 

for grain yield, nor were the single degree-of-freedom contrast comparisons (Table 1-4).  

WUE.  Maize WUE values ranged from 0.78 to 2.39 kg ha
-1

 m
-1

 across all 

treatments (Table 1-5).  The main effect of N rate was significant for WUE (Table 1-5).  

Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic trend.  The 

medium and high N rates increased WUE 1.25 kg ha
-1

 m
-1

 compared to the low N rate 

and the high N rate increased WUE 0.29 kg ha
-1

 m
-1

 compared to the medium N rate 

(Table 1-5).  The main effect of hybrid and the hybrid x N rate interaction were not 

significant for WUE, nor were the single degree-of-freedom contrast comparisons (Table 

1-5).  

NUE.  Maize NUE values ranged from 43 to 81 percent across all treatments 

(Table 1-6).  Effects of hybrid, N rate, and hybrid x N rate were not significant for NUE 

(Table 1-6).  A significant increase in NUE (22%) was observed for the medium N rate 

compared to the high N rate using single degree-of-freedom contrasts (Table 1-6).  
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WUE x NUE Interaction.  The linear regression model established that NUE could 

not statistically predict WUE for any of the hybrids (Table 1-7).  All hybrids had a 

positive slope and significantly less than one with the exception of the less drought 

tolerant Monsanto hybrid (M2) which had a negative slope and significantly less than one 

(Table 1-7).  

Lake Carl Blackwell - Dryland, 2014 

Grain Yield.  Maize grain yield values ranged from 2.6 to 8.0 Mg ha
-1

 across all 

treatments (Table 1-4).  The main effect of N rate was significant for grain yield (Table 

1-4).  Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic 

trend.  The medium and high N rates yielded 3.6 Mg ha
-1

 more compared to the low N 

rate and the high N rate yielded 0.1 Mg ha
-1

 more compared to the medium N rate (Table 

1-4).  The main effect of hybrid and the hybrid x N rate interaction were not significant 

for grain yield (Table 1-4).  A significant increase in grain yield (0.1 Mg ha
-1

) was 

observed for the drought tolerant Pioneer hybrid (P1) compared to the less drought 

tolerant Pioneer hybrid (P2) using single degree-of-freedom contrasts (Table 1-4).   

WUE.  Maize WUE values ranged from 0.56 to 1.90 kg ha
-1

 m
-1

 across all 

treatments (Table 1-5).  The main effect of N rate was significant for WUE (Table 1-5).  

Single degree-of-freedom contrasts indicated that N rate exhibited a quadratic trend.  The 

medium and high N rates increased WUE 0.87 kg ha
-1

 m
-1

 compared to the low N rate 

and the high N rate increased WUE 0.08 kg ha
-1

 m
-1

 compared to the medium N rate 

(Table 1-5).  The main effect of hybrid and the hybrid x N rate interaction were not 

significant for WUE (Table 1-5).  A significant increase in WUE (0.04 kg ha
-1

 m
-1

) was 
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observed for the drought tolerant Pioneer hybrid (P1) compared to the less drought 

tolerant Pioneer hybrid (P2) using single degree-of-freedom contrasts (Table 1-5).   

NUE.  Maize NUE values ranged from 37 to 82 percent across all treatments 

(Table 1-6).  The main effect of N rate was significant for NUE (Table 1-6).  A 

significant increase in NUE (31%) was observed for the medium N rate compared to the 

high N rate using single degree-of-freedom contrasts (Table 1-6).  The main effect of 

hybrid and the hybrid x N rate interaction were not significant for NUE (Table 1-6).   

WUE x NUE Interaction.  The linear regression model established that NUE could 

statistically predict WUE for the drought tolerant Monsanto hybrid (M1) and NUE 

accounted for 71 percent of the variability in WUE for that hybrid (Table 1-7).  Both 

drought tolerant hybrids (P1 and M1) had a positive slope, but significantly less than one 

and both less drought tolerant hybrids (P2 and M2) had a negative slope, but significantly 

less than one (Table 1-7).  

 

1.6 Discussion 

Cumulative rainfall throughout the 2013 growing season (first of April through 

the end of August) was 20 percent above the 21 year average at Efaw and 58 percent 

above the seven year average at LCB (Oklahoma Mesonet, 2014).  However, a period of 

26 days from the middle of June through the middle of July only had 8.1 mm of rainfall 

at Efaw and 3.0 mm at LCB.  This period of dry weather coincided with maize 

pollination, thus having the potential to reduce grain yield (Denmead and Shaw, 1960; 

Grant et al., 1989).  To mitigate these effects, nearly 90 percent of the irrigation water 
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was applied during this timeframe at both irrigated production system sites.  This deficit 

irrigation management strategy (Pandey et al., 2000) reduced maize water consumption 

and maintained similar grain yield levels versus well irrigated controls (Kang et al., 2000; 

Payero et al., 2006).   

In 2014, cumulative rainfall at Efaw was 30 percent below average and nearly 

average at LCB (Oklahoma Mesonet, 2014).  Only 20 percent of the irrigation water was 

applied at Efaw during the reproductive growth stages due to an 18 percent higher than 

average cumulative rainfall total for the months of June and July.  At LCB, all of the 

irrigation water was applied during vegetative growth due to over 70 percent of the 

seasonal rain falling in the months of June and July (during pollination).   

Even with above average rainfall in 2013, on average, the irrigated production 

system yielded nearly twice as much at Efaw and over 2.5 times as much at LCB 

compared to the dryland production system sites (Table 1-4).  The application of 

irrigation water at critical growth stages has been shown to optimize grain yield (Singh 

and Singh, 1995).  However, the above average rainfall could have masked the effects of 

the drought tolerant hybrids.  Research and product advancement strategies employed by 

seed companies to improve drought tolerant hybrids are twofold.  First, the drought 

tolerant hybrids must increase grain yield when water is limiting, but also, grain yield of 

drought tolerant hybrids must be competitive when growing conditions are better and 

water is not limiting (Castiglioni et al., 2008; Butzen and Schussler, 2009).   

For the conditions in 2013 with higher than average rainfall, the drought tolerant 

hybrids for each company (M1 and P1) tended to yield lower (1.0 to 0.9 Mg ha
-1

) at Efaw 
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or have little difference (0.5 to 0.1 Mg ha
-1

) at LCB compared to their less drought 

tolerant counterpart (M2 or P2) for the irrigated production systems (Table 1-4).  Two 

other field studies exhibited similar results in similar conditions; a less drought tolerant 

Pioneer hybrid yielded 0.8 Mg ha
-1

 more compared to a drought tolerant Pioneer hybrid 

(Roth et al., 2013) and a transgenic drought tolerant hybrid yielded similar to a 

nontransgenic isoline (Chang et al., 2014).  Drought tolerant hybrid M1 yielded 0.8 Mg 

ha
-1

 higher at Efaw and 0.7 Mg ha
-1

 higher at LCB compared to the less drought tolerant 

hybrid M2 whereas drought tolerant hybrid P1 yielded 0.8 Mg ha
-1

 less compared to the 

less drought tolerant hybrid P2 at Efaw in the dryland production system (Table 1-4).  

The Monsanto drought tolerant hybrid (M1) had a tendency to yield higher (1.6 to 0.9 Mg 

ha
-1

) compared to the Pioneer drought tolerant hybrid (P1) for all sites in 2013 (Table 1-

4). 

In 2014, differences in grain yield between the irrigated and dryland production 

systems were much less pronounced with both Efaw and LCB having approximately 25 

percent higher grain yields for the irrigated production system sites (Table 1-4).  

Variability in grain yield response to the four hybrids could be a result of the timing and 

duration of water stress throughout the growing season.  Bruce et al. (2002) described 

that water stress occurring one week prior to pollination resulted in grain yield 

differences between drought tolerant hybrids whereas water stress three weeks prior to 

pollination did not result in grain yield differences.  Across all sites, the drought tolerant 

hybrids (M1 and P1) tended to have higher yield (0.8 to 0.1 Mg ha
-1

) compared to the less 

drought tolerant hybrids (M2 and P2).  Although not significant, the Efaw irrigated and 
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LCB dryland sites, the drought tolerant Monsanto hybrid (M1) increased yield (1.6 to 1.1 

Mg ha
-1

) compared to the less drought tolerant Monsanto hybrid (M2), but the opposite 

occurred at the other two sites (Table 1-4).  With the exception of the LCB irrigated site, 

the Monsanto drought tolerant hybrid (M1) had a tendency to yield higher (0.9 to 0.5 Mg 

ha
-1

) compared to the Pioneer drought tolerant hybrid (P1) for three of the sites in 2014 

(Table 1-4). 

The application of pre-plant N fertilizer significantly increased grain yield with a 

quadratic trend for five of the eight sites in this experiment (Table 1-4).  Similar findings 

from a field study in Texas found that excessive N fertilizer did not reduce grain yields 

with severe water stress, and that N fertilizer rates should not be decreased to reduce 

water stress (Eck, 1984).  The remaining three sites, without a response to pre-plant N 

fertilizer applications, occurred in 2013.  The unseasonably high rainfall totals 

experienced during that growing season, resulted in saturated soils, and may have 

promoted N fertilizer loss via denitrification and leaching.  The lack of a two-way 

interaction suggests that all four hybrids yielded similarly across all N rates.  Similar 

results were reported from a maize study in Indiana (having drought tolerant and less 

drought tolerant Pioneer hybrids) where all hybrids responded similarly to four N rates 

over two years (Roth et al., 2013).   

 Water use efficiency values obtained for all eight sites in this experiment fall 

within the range reported in a review of 27 global maize experiments (Zwart and 

Bastiaanssen, 2004).  The WUE values measured in the irrigated production systems 

tended to be higher than the dryland production systems for any location (Table 1-5).  A 
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similar trend was described in the review by Zwart and Bastiaanssen, (2004) who 

explained that WUE can be maximized with fewer irrigation water applications at more 

precise timings, a strategy similar to deficit irrigation management.  A field study in 

Kansas found the largest increase in WUE resulted from a single irrigation event 

consisting of 150 mm of water (Norwood, 2000).  The 0.34 kg ha
-1

 m
-1

 increase in WUE 

corresponded to a 2.95 Mg ha
-1

 increase in grain yield (Norwood, 2000).  Another field 

study in Nebraska using subsurface drip irrigation observed a strong linear relationship 

(R
2
 = 0.95) between WUE and grain yield (Payero et al., 2009).  The largest WUE 

increase obtained in this study was 0.38 kg ha
-1

 m
-1

 and corresponded to a 1.6 Mg ha
-1

 

increase in grain yield between the drought tolerant Monsanto hybrid (M1) and the less 

drought tolerant Monsanto hybrid (M2).  The application of pre-plant N fertilizer 

significantly increased WUE at five of the eight sites in this experiment (Table 1-4).  A 

similar trend was observed from a field study in South Dakota that reported a 31 percent 

increase in WUE with the application of 112 kg N ha
-1

 (Kim et al., 2008).  Water use 

efficiency treatment differences for hybrid, N rate, and the interaction follow the same 

trend as observed with grain yield (Table 1-5).  The lack of treatment differences 

observed in ET (data not reported) resulted in differences for WUE being highly 

influenced by differences in grain yield.   

Nitrogen use efficiency values were highly variable across all eight sites, ranging 

from 0 to 82 percent.  The NUE values obtained in this experiment are very similar to 

other maize studies with pre-plant N fertilizer applications in Oklahoma (Walsh et al., 

2012).  As expected, irrigation had a tendency to increase NUE values compared to 
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dryland production at all sites (Table 1-6) due to improved plant N uptake and subsequent 

grain yield response (Al-Kaisi and Yin, 2003).  One trend observed for NUE was that the 

less drought tolerant hybrids (P2 and M2), when pooled together, did tend to increase 

NUE (4.8 to 3.4 percent) compared to the drought tolerant hybrids (P1 and M1) at all four 

dryland production system sites (Table 1-6).  Another trend was that the less drought 

tolerant Monsanto hybrid (M2) increased NUE (0.5 to 3.9 percent at Efaw and 11 to 15 

percent at LCB) compared to the less drought tolerant Pioneer hybrid (P2) at the irrigated 

production sites (Table 1-6).  The largest increases in NUE occurred at the 2013 Efaw 

irrigated site where the drought tolerant Pioneer hybrid (P1) was 25 percent higher 

compared to the drought tolerant Monsanto hybrid (M1) and 22 percent higher compared 

to the less drought tolerant Pioneer hybrid (P2; Table 1-6).  As would be expected, NUE 

values for the medium N rate were higher than for the high N rate at six of the eight sites 

(Table 1-6).      

The interaction between WUE and NUE by hybrid, determined using linear 

regression, proved to be weak across all eight sites (Table 1-7).  Only 38 percent of the 

regression models resulted in NUE accounting for more than 50 percent of the variability 

in WUE (Table 1-7).  The less drought tolerant Pioneer hybrid (P2) had the best 

relationship, compared to the other hybrids, with a R
2
 greater than 0.5 at four of the sites 

while the drought tolerant Pioneer hybrid (P1) had the poorest relationship with a R
2
 

greater than 0.5 at only one site (Table 1-7).   Other work investigating the interaction 

between WUE and NUE in maize suggests a synergistic relationship exists between water 

and N (Kim et al., 2008).  These authors developed a conceptual model to further explain 
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that the addition of N fertilizer would increase WUE and the addition of water would 

increase NUE (Kim et al., 2008).   

 

1.7 Conclusions 

Monsanto hybrids yielded slightly better than the Pioneer hybrids, and few 

differences in grain yield were detected between drought tolerant and less drought 

tolerant hybrids at the irrigated sites.  Nitrogen use efficiency was variable between all 

hybrids, but the less drought tolerant Monsanto hybrid was higher (up to 15 percent) 

compared to the less drought tolerant Pioneer hybrid.  At the dryland sites, the drought 

tolerant Monsanto hybrid yielded better than both the less drought tolerant Monsanto 

hybrid and the drought tolerant Pioneer hybrid.  The less drought tolerant hybrids tended 

to increase NUE (almost 5 percent) compared to the drought tolerant hybrids. 

Overall, irrigation increased grain yield, WUE, and NUE at all four locations.  

Grain yield was increased with the drought tolerant Monsanto hybrid versus the drought 

tolerant Pioneer hybrid.  Water use efficiency was highly influenced by grain yield and 

the interaction between WUE and NUE by hybrid proved to be rather weak.  Even in the 

presence of irrigation and above average rainfall, drought tolerant hybrids offer improved 

grain yield and WUE while the transgenic drought tolerant hybrid seemed better suited 

for hot and dry environments.  These data would suggest maize producers should 

consider incorporating transgenic drought tolerant maize hybrid technology into their 

Oklahoma farming practices. 
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1.8 Tables 

Table 1-1 Soil map unit and taxonomic classification for each location, 2013 and 2014. 

Year Location
†
 Soil Mapping Unit Major Component Soil Taxonomic Classification 

2013 Efaw Norge loam,  

3-5% slope 

Norge: Fine-silty, mixed, active, thermic Udic  

            Paleustolls 

LCB Port-Oscar 

Complex, 

0-1% slope, 

occasionally 

flooded 

Port: Fine-silty, mixed, superactive, thermic  

         Cumulic Haplustolls 

Oscar: Fine-silty, mixed, superactive, thermic 

           Typic Natrustalfs 

2014 Efaw Easpur loam,  

0-1% slope, 

occasionally 

flooded 

Easpur: Fine-loamy, mixed, superactive, thermic,  

             Fluventic Haplustolls 

LCB Pulaski fine  

sandy loam,  

0-1% slope, 

occasionally 

flooded 

Pulaski: Coarse-loamy, mixed, superactive,  

              nonacid, thermic Udic Ustifluvents 

† Efaw, Oklahoma Agricultural Experiment Station near Stillwater, OK;  

   LCB, Oklahoma Agricultural Experiment Station west of Stillwater, OK near Lake Carl 

   Blackwell 
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Table 1-2 Pre-plant soil sample (0-15 cm) chemical properties, 2013 and 2014. 

Year Location
†
 

Soil  

pH
‡
 NH4-N

§
 NO3-N

§
 P

¶
 K

¶
 

Total 

N
#
 

Organic 

C
#
 

   --------------- µg g
-1

 --------------- ----- mg g
-1

 ----- 

2013 Efaw        

      Irrigated 5.0 15.0 17.3 106 129 1.3 11.4 

      Dryland 4.9 13.4 9.8 33 131 1.2 9.7 

LCB 6.1 6.2 5.3 24 139 1.1 9.5 

2014 Efaw 5.4 8.9 2.6 26 126 1.1 10.4 

LCB 5.2 8.4 5.3 35 157 0.8 7.9 

† Efaw, Oklahoma Agricultural Experiment Station near Stillwater, OK;  

   LCB, Oklahoma Agricultural Experiment Station west of Stillwater, OK near Lake 

   Carl Blackwell  

‡ 1:1 soil water 

§ 2 M KCl extract (Mulvaney, 1996) 

¶ Mehlich III extract (Mehlich, 1984)   

# Dry combustion (Schepers et al., 1989) 
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Table 1-3 Field activities for each location, 2013 and 2014. 

 

2013 2014 

Field Activity Efaw
†
 LCB Efaw LCB 

Pre-plant soil water sampling March 15 March 15 April 1 April 3 

Pre-plant N fertilization March 18 March 18 March 31 March 25 

Planting March 20 March 20 April 1 April 3 

Start irrigation June 13 June 14 May 19 May 20 

Cease irrigation July 9 July 9 July 9 May 22 

Potential evapotranspiration (mm) 676 655 729 711 

Number of irrigations 8 7 8 3 

Amount of irrigation (mm) 46 28 28 8 

Amount of rainfall (mm) 621 827 375 517 

Harvest September 9 September 5 September 4 August 27 

Post-harvest soil water sampling September 13 September 8 September 4 August 28 

† Efaw, Oklahoma Agricultural Experiment Station near Stillwater, OK;  

   LCB, Oklahoma Agricultural Experiment Station west of Stillwater, OK near Lake 

   Carl Blackwell  
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Table 1-4 Maize grain yield levels (Mg ha
-1

), single degree-of-freedom contrasts, 

significance levels, and differences for hybrid and nitrogen fertilizer (N rate) treatments 

at Efaw and Lake Carl Blackwell (LCB), 2013 and 2014.  Contrast comparison 

differences are reported in Mg ha
-1

.  

  2013
†
 2014 

  Efaw LCB Efaw LCB 

Hybrid N rate Irr. Dry. Irr. Dry. Irr. Dry. Irr. Dry. 

  ------------------------------ Mg ha
-1

 ------------------------------ 

P1 Low 5.4 4.2 5.0 1.6 3.1 2.6 4.3 4.0 

P2 Low 7.1 3.6 5.5 1.9 2.8 2.2 4.3 3.6 

M1 Low 7.2 4.6 6.2 2.6 4.0 3.2 3.8 3.8 

M2 Low 9.0 3.8 5.9 1.7 2.1 2.8 3.5 2.6 

P1 Med 6.4 2.8 8.2 0.9 5.9 4.2 8.0 7.3 

P2 Med 9.1 3.8 8.1 1.3 5.1 4.1 8.1 7.5 

M1 Med 8.2 4.3 9.1 2.0 7.5 4.9 9.1 7.7 

M2 Med 8.6 4.1 8.2 1.6 3.7 5.7 8.8 5.6 

P1 High 7.6 3.1 8.0 2.5 7.2 6.2 10.7 6.8 

P2 High 5.9 5.2 7.9 1.8 8.2 5.5 8.9 7.4 

M1 High 8.6 4.7 8.5 3.3 7.5 6.4 9.3 8.0 

M2 High 9.4 3.4 11.2 2.3 9.9 6.5 10.6 6.4 

SED
‡
  1.9 0.8 1.2 1.3 1.8 0.5 1.7 1.2 

Source of Variation
§
 ------------------------------- P > F ------------------------------- 

Hybrid ns @ ns ns ns ** ns ns 

N rate ns ns ** ns ** ** ** ** 

Hybrid x N rate ns ns ns ns ns ns ns ns 

CV, %
¶
 30 25 20 81 40 13 28 26 

Contrasts --------------- comparison differences, Mg ha
-1

 --------------- 

M1, M2 vs P1, P2  1.6
*
  0.4  1.1

*
  0.6  0.4  0.8

**
  0.1 -0.4 

M1, P1 vs M2, P2 -1.0 -0.1 -0.3  0.4  0.6  0.1  0.2  0.8 

M1 vs P1  1.6  1.2
*
  0.9  0.9  0.9  0.5

@
 -0.3  0.5 

M2 vs P2  1.6 -0.4  1.3
@

  0.2 -0.1  1.0
*
  0.5 -1.3

@
 

M1 vs M2 -1.0  0.8
@

 -0.5  0.7  1.1 -0.1 -0.2  1.6 

P1 vs P2 -0.9 -0.8 -0.1 -0.1  0.1  0.4  0.6 -0.1
*
 

N rate linear ns ns ns ns ** ** ns ns 

N rate quadratic ns ns ** ns ** ** ** ** 

Low vs Med, High -0.8  0.1 -3.0
**

 -0.1 -3.9
**

 -2.8
**

 -5.2
**

 -3.6
**

 

Med vs High  0.2 -0.4 -0.5
**

 -1.0 -2.6
*
 -1.4

**
 -1.4

**
 -0.1

**
 

† Efaw, Oklahoma Agricultural Experiment Station near Stillwater, OK;  

   LCB, Oklahoma Agricultural Experiment Station west of Stillwater, OK 

   near Lake Carl Blackwell; Irr. = Irrigated production, Dry. = Dryland production 

‡ SED = standard error of the difference between two equally replicated means 

§ **, *, @ = significant at the 0.01, 0.05, and 0.10 probability levels, respectively, 

¶ CV = coefficient of variation 
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Table 1-5 Maize water use efficiency (WUE) levels (kg ha
-1

 m
-1

), single degree-of-freedom 

contrasts, significance levels, and differences for hybrid and nitrogen fertilizer (N rate) 

treatments at Efaw and Lake Carl Blackwell (LCB), 2013 and 2014.  Contrast comparison 

differences are reported in kg ha
-1

 m
-1

. 

  2013
†
 2014 

  Efaw LCB Efaw LCB 

Hybrid N rate Irr. Dry. Irr. Dry. Irr. Dry. Irr. Dry. 

  ------------------------------ kg ha
-1

 m
-1

 ------------------------------ 

P1 Low 0.96 0.84 0.64 0.21 0.87 0.81 0.96 0.94 

P2 Low 1.24 0.73 0.65 0.26 0.75 0.61 0.91 0.81 

M1 Low 1.32 0.91 0.76 0.35 1.11 0.94 0.85 0.99 

M2 Low 1.60 0.79 0.70 0.23 0.56 0.78 0.78 0.56 

P1 Med 1.12 0.58 1.04 0.12 1.88 1.22 1.84 1.70 

P2 Med 1.61 0.76 1.01 0.18 1.53 1.27 1.86 1.65 

M1 Med 1.50 0.89 1.14 0.27 2.17 1.38 2.17 1.90 

M2 Med 1.49 0.83 1.00 0.23 1.20 1.86 2.05 1.38 

P1 High 1.33 0.65 0.98 0.34 2.07 1.87 2.47 1.67 

P2 High 1.01 1.09 0.98 0.25 2.46 1.58 2.04 1.72 

M1 High 1.58 0.99 1.08 0.44 2.36 2.06 2.19 1.86 

M2 High 1.70 0.68 1.44 0.32 2.92 1.92 2.39 1.68 

SED  0.35 0.17 0.17 0.17 0.54 0.17 0.39 0.27 

Source of Variation
§
 ------------------------------- P > F ------------------------------- 

Hybrid ns @ ns ns ns ** ns ns 

N rate ns ns ** ns ** ** ** ** 

Hybrid x N rate ns ns ns ns ns @ ns ns 

CV, %
¶
  31 25 22 80 40 15 28 24 

Contrasts --------------- comparison differences, kg ha
-1

 m
-1

 --------------- 

M1, M2 vs P1, P2  0.32
*
  0.07  0.14

*
  0.08  0.13  0.26

**
  0.06 -0.02 

M1, P1 vs M2, P2 -0.14  0.00 -0.02  0.05  0.17  0.04  0.07  0.21
@

 

M1 vs P1  0.33  0.24
*
  0.10  0.13  0.27  0.16 -0.02  0.15 

M2 vs P2  0.31 -0.09  0.17
@

  0.03 -0.02  0.37
**

  0.14 -0.19 

M1 vs M2 -0.14  0.17
@

 -0.05  0.10  0.32 -0.06 -0.01  0.38 

P1 vs P2 -0.15 -0.17
@

  0.01  0.00  0.03  0.15  0.16  0.04
*
 

N rate linear ns ns ns ns * ** ns ns 

N rate quadratic ns ns ** ns ** ** ** ** 

Low vs Med, High -0.14  0.01 -0.40
**

 -0.01 -1.25
**

 -0.86
**

 -1.25
**

 -0.87
**

 

Med vs High  0.03 -0.09 -0.07
**

 -0.14 -0.76
**

 -0.42
**

 -0.29
**

 -0.08
**

 

† Efaw, Oklahoma Agricultural Experiment Station near Stillwater, OK;  

   LCB, Oklahoma Agricultural Experiment Station west of Stillwater, OK 

   near Lake Carl Blackwell; Irr. = Irrigated production, Dry. = Dryland production 

‡ SED = standard error of the difference between two equally replicated means 

§ **, *, @ = significant at the 0.01, 0.05, and 0.10 probability levels, respectively, 

¶ CV = coefficient of variation 
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Table 1-6 Maize nitrogen use efficiency (NUE) levels (%), single degree-of-freedom 

contrasts, significance levels, and differences for hybrid and nitrogen fertilizer (N rate) 

treatments at Efaw and Lake Carl Blackwell (LCB), 2013 and 2014.  Contrast 

comparison differences are reported in %. 

  2013
†
 2014 

  Efaw LCB Efaw LCB 

Hybrid N rate Irr. Dry. Irr. Dry. Irr. Dry. Irr. Dry. 

  ------------------------------ % ------------------------------ 

P1 Low . . . . . . . . 

P2 Low . . . . . . . . 

M1 Low . . . . . . . . 

M2 Low . . . . . . . . 

P1 Med 47 3.0 44 1.0 30 28 62 81 

P2 Med 25 12 27 2.9 33 38 62 82 

M1 Med 7.5 15 40 12 38 27 79 69 

M2 Med 21 9.1 28 28 26 39 81 67 

P1 High 23 1.0 19 12 29 34 54 44 

P2 High 0 19 12 7.0 36 33 43 51 

M1 High 11 6.8 27 12 27 28 44 37 

M2 High 12 3.3 34 15 44 26 54 45 

SED  16 10 16 13 12 8 14 16 

Source of Variation
§
 ------------------------------- P > F ------------------------------- 

Hybrid ns ns ns ns ns ns ns ns 

N rate ns ns ns ns ns ns ns ** 

Hybrid x N rate ns ns ns ns ns ns ns ns 

CV, %
¶
  107 139 69 153 46 31 28 32 

Contrasts --------------- comparison differences, % --------------- 

M1, M2 vs P1, P2 -11 -0.3  6.4  11  1.9 -3.4  9.1 -10 

M1, P1 vs M2, P2  7.4 -4.6  7.0 -3.9 -3.7 -4.8 -0.1 -3.4 

M1 vs P1 -25
*
  9.0  1.7  5.8  3.4 -3.4  3.6 -9.4 

M2 vs P2  3.9 -9.6  11  16  0.5 -3.4  15 -11 

M1 vs M2 -7.2
@

  4.7
@

  2.3 -9.2 -2.2 -4.8 -5.7 -2.5 

P1 vs P2  22 -14  12  1.4 -5.2 -4.8  5.5 -4.2 

Med vs High  14  2.2  12 -0.7 -2.4  2.7  22
**

  31
**

 

† Efaw, Oklahoma Agricultural Experiment Station near Stillwater, OK;  

   LCB, Oklahoma Agricultural Experiment Station west of Stillwater, OK 

   near Lake Carl Blackwell; Irr. = Irrigated production, Dry. = Dryland production 

‡ SED = standard error of the difference between two equally replicated means 

§ **, *, @ = significant at the 0.01, 0.05, and 0.10 probability levels, respectively, 

¶ CV = coefficient of variation 
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Table 1-7 Linear regression model parameters and analysis of variance of the model, 

intercept, and slope for the interaction between water use efficiency (WUE, kg ha
-1

 m
-1

) 

and nitrogen use efficiency (NUE, %) by hybrid pooled across N rates (n=6) at Efaw 

and Lake Carl Blackwell (LCB), 2013 and 2014. 

  
 

Parameter of the 

model
‡
  

Significance 

(Pr > F)
§
 

Year Location
†
 Hybrid β0: WUE β1: NUE R

2
 Model Intercept Slope 

2013 Efaw- P1 1.01  0.01 0.26 ns * * 

    Irrigated P2 1.00  0.02 0.64 @ ** ** 

  M1 1.17  0.04 0.44 ns ** ** 

  M2 1.42  0.01 0.18 ns ** ** 

 Efaw- P1 0.58  0.02 0.33 ns ** ** 

    Dryland P2 0.59  0.02 0.36 ns @ ** 

  M1 0.83  0.01 0.44 ns ** ** 

  M2 0.57  0.03 0.68 * ** ** 

 LCB- P1 0.95  0.01 0.16 ns ** ** 

    Irrigated P2 0.77  0.01 0.42 ns ** ** 

  M1 0.97  0.01 0.10 ns * ** 

  M2 0.79  0.01 0.54 @ * ** 

 LCB- P1 0.09  0.02 0.92 * ns ** 

    Dryland P2 0.14  0.02 0.76 * * ** 

  M1 0.17  0.02 0.87 ** * ** 

  M2 0.07  0.01 0.86 * ns ** 

2014 Efaw- P1 1.56  0.01 0.02 ns ns ** 

    Irrigated P2 0.73  0.04 0.57 @ ns ** 

  M1 0.55  0.05 0.74 * ns ** 

  M2 0.39  0.05 0.66 * ns ** 

 Efaw- P1 0.98  0.02 0.12 ns ns ** 

    Dryland P2 2.41 -0.03 0.49 ns ** ** 

  M1 0.81  0.03 0.18 ns ns ** 

  M2 1.56  0.01 0.44 ns ** ** 

 LCB- P1 1.44  0.01 0.11 ns ns ** 

    Irrigated P2 1.33  0.01 0.59 @ * ** 

  M1 1.08  0.02 0.48 ns ns ** 

  M2 2.39 -0.01 0.01 ns * ** 

 LCB- P1 1.12  0.01 0.33 ns @ ** 

    Dryland P2 1.83 -0.01 0.04 ns ** ** 

  M1 0.92  0.02 0.71 * @ ** 

  M2 1.63 -0.01 0.01 ns @ ** 

† Efaw, Oklahoma Agricultural Experiment Station near Stillwater, OK;  

   LCB, Oklahoma Agricultural Experiment Station west of Stillwater, OK 

   near Lake Carl Blackwell 

‡ β0= intercept, β1 = slope 

§ **, *, @ = significant at the 0.01, 0.05, and 0.10 probability levels, respectively.  
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1.9 Figures 

 

Figure 1-1. Daily water balance (rainfall plus irrigation minus potential 

evapotranspiration) for the 2013 (top) and 2014 (bottom) growing seasons at the Efaw 

experiment station near Stillwater, OK.  Soil profile water begins with volumetric soil 

moisture content samples collected prior to planting to a depth of 1 m.  Potential 

evapotranspiration and rainfall measured from nearby weather monitoring station. 

 

 

 

2013 

2014 
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Figure 1-2. Daily water balance (rainfall plus irrigation minus potential 

evapotranspiration) for the 2013 (left) and 2014 (right) growing seasons at the Lake Carl 

Blackwell (LCB) experiment station west of Stillwater, OK.  Soil profile water begins 

with volumetric soil moisture content samples collected prior to planting to a depth of 1 

m.  Potential evapotranspiration and rainfall measured from nearby weather monitoring 

station. 

  

 

 

2013 

2014 
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CHAPTER 2 

 

 

PREDICTING PRE-PLANT NITROGEN APPLICATIONS TO MAIZE USING 

INDICATOR CROP N-RICH REFERENCE STRIPS 

 

2.1 Abstract 

Use of active optical reflectance sensors has proven to accurately determine 

optimum nitrogen (N) fertilizer requirements and direct in-season N fertilizer 

applications.  However, maize (Zea mays L.) producer adoption of this technology has 

been slow due to an array of agronomic, economic, and technical reasons.  A study was 

established in 2012 at two locations in north-central Oklahoma to investigate the response 

of winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) indicator 

crops to a sufficient rate (168 kg ha
-1

) and zero rate of N fertilizer to estimate optimal 

early season N fertilizer application rates of the subsequent maize crop.  In the spring, 

corn was planted between the indicator crop strips and harvested to obtain the agronomic 

optimum N rate (AONR) and response of N fertilizer at harvest (RIHarvest) of six at 

planting N fertilizer treatments ranging from 0 to 225 kg ha
-1

 in 45 kg ha
-1

 increments.  

In-season response of the indicator crops was determined using the normalized difference 

vegetative index (RINDVI) and provided input values to calculate N fertilizer 

recommendations of the subsequent maize crop by using the generalized algorithm.  
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Strong correlations existed between the N fertilizer recommendation generated from the 

generalized algorithm and the AONR for the maize crop (R
2
 = 0.44 and 0.80) along with 

the RINDVI for wheat and barley and RIHarvest for the maize (R
2
 = 0.62 and 0.98).  The use 

of indicator crops to predict the response of maize to N fertilizer is unprecedented and 

modifications to current maize N fertilizer recommendations could modernize N 

management strategies for all producers.   

 

2.2 Introduction 

Active optical reflectance sensors have been used to accurately determine 

optimum nitrogen (N) fertilizer requirements in maize (Zea mays L.).  However, the 

adoption of this N fertilizer application technology has been slow due to an array of 

agronomic, economic, and technical reasons (Schepers, 2013).  The short timeframe to 

identify N deficiencies and apply N fertilizer mid-season using traditional sidedress 

application equipment is the most notable reason for maize producer’s reluctance, even 

though substantial work has gone into identifying the earliest growth stage at which N 

deficiencies can be detected (Teal et al., 2006; Martin et al., 2007).  Thus, it is important 

to investigate alternative strategies to widen the window for applying N fertilizer to 

maize with the use of active optical reflectance sensors. 

Various methods have been proposed to identify optimum N fertilizer rates for 

maize grain production including; yield goal (Stanford, 1973), maximum return to N 

(Sawyer et al., 2006), soil sampling (Magdoff et al., 1984; Bundy et al., 1993, Khan et al., 

2001), chlorophyll meters (Schepers, 1994), and crop reflectance (Solari et al., 2008; 
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Tubaña et al., 2008).  Of these techniques, crop reflectance measurements collected from 

active optical reflectance sensors offer both an on-the-go and mid-season evaluation of 

the plant’s nutritional status.  The transformation of the crop reflectance measurements, 

often times expressed as the normalized difference vegetative index (NDVI), into 

fertilizer N recommendations has proven to improve nitrogen use efficiency of cereal 

grain production (Raun et al., 2002).  These N fertilizer management techniques, which 

encompass spatial soil variability and decrease uniform applications, will decrease 

environmental degradation.   

All Oklahoma-developed N fertilizer management strategies using active optical 

reflectance sensors require an area in each field that has a non-limiting amount of N 

fertilizer applied prior to planting or directly following planting (Raun et al., 2005; Solie 

et al., 2012).  These areas are referred to as N-rich strips and are compared to an 

unfertilized area of the field (farmer practice area) to calculate a response index (RI); 

expressed in the following equation: 

RINDVI = NRNDVI / FPNDVI  

where NRNDVI is the NDVI collected from the N-rich strip and FPNDVI is the NDVI 

measured from an adjacent area with fertilizer applied at the farmer practice rate.  The RI 

identifies N deficiencies which are then used to measure the response of the crop to 

additional N fertilizer along with the yield level of that field (Johnson and Raun, 2003; 

Mullen et al., 2003).  Identifying how the crop will respond to N fertilizer applications 

does not directly translate to a recommendation, but is important to determine grain yield 

potential (Raun et al., 2005).  The relationship between in-season NDVI measurements 
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(RINDVI) and crop response to N fertilizer at harvest has been shown to be positively 

correlated (Mullen et al., 2003; Hodgen et al., 2005).  Crop response to N fertilizer at 

harvest (RIHarvest) can be defined by the following equation:  

 RIHarvest = Highest mean yield from N treatment /  

                              mean yield from check treatment 

In maize, early season N deficiencies are not readily evident until growth stage 

V7 to V9 in Oklahoma (Teal et al., 2006; Martin et al., 2007) and V11 in Nebraska 

(Solari et al., 2008).  Beyond growth stage V7 (maize height of approximately 0.5m), N 

fertilizer applications using traditional sidedress equipment is problematic due to 

clearance constraints.  High clearance N applicators offer one option, but many producers 

do not have access to this equipment nor are these applicators compatible to apply 

anhydrous ammonia, which is often a more cost effective N fertilizer source.  Thus, the 

window of opportunity to identify and correct N deficiencies must be widened for 

producers to adopt N management strategies using active optical reflectance sensors 

without maize height being a limiting factor.  Alternative and reliable strategies need to 

be investigated to identify early season N deficiencies in maize.   

Monitoring N availability throughout the winter and early spring using cereal 

grain indicator crops offers one option to widen the window to apply N fertilizer to 

maize.  This approach allows the indicator crop to demonstrate distinguishable 

differences in response to residual fall N and early spring N mineralization near or at the 

time of maize planting.  These soil N pools are otherwise less recognizable during the 



 49   

  

 

early growth stages of maize, especially when temperatures are low and crop growth is 

slow.   

The use of indicator crop reference strips will advance the detection of N 

deficiencies in maize.  Producers could initially balk at having a secondary crop in their 

maize fields.  However, once it is noted that the indicator crop reference strips will show 

N deficiency, far ahead of it being observed in maize, acceptance of this approach will 

soon follow.  The proposed system will provide farmers with much greater flexibility to 

use active optical reflectance sensors to apply N fertilizer to maize. 

 

2.3 Objectives 

The objective of this study was to evaluate the response of winter wheat (Triticum 

aestivum L.) and spring barley (Hordeum vulgare L.) indicator crops to applied N over 

winter and early spring to estimate optimal early season N fertilizer application rates of 

the subsequent maize (Zea mays L.) crop. 

 

2.4 Materials and Methods 

Field experiments were initiated in the fall of 2012 and continued through 2014 at 

the Efaw (36.081118
o
, -97.063270

o
, elevation 272 m above sea level) agronomy research 

station near Stillwater, OK and Lake Carl Blackwell (LCB; 36.090792
o
, -97.172486

o
, 

elevation 293 m above sea level) agronomy research station west of Stillwater, OK near 

Lake Carl Blackwell (Table 2-1).  All soil fertility parameters were managed to ensure N 

was the only limiting nutrient (Table 2-2) based on fertilizer recommendations described 
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by Zhang and Raun (2006).  A summary of field activities for each cropping year 

including; N fertilizer application dates, planting dates, cultivars or hybrids, sensing 

dates, irrigation amounts, and harvest dates are reported in Table 2-3. 

Winter wheat and spring barley were planted in late fall or early spring in strips 

along the outside of the eventual maize trial (Fig. 2-1) and served as the indicator crop 

reference strips.  Each indicator crop reference strip (6 m wide by 21 m long) was split 

and either a sufficient rate (168 kg N ha
-1

; N-rich reference strip) or a zero rate (farmer 

practice) of N fertilizer was applied prior to planting as broadcast urea ammonium nitrate 

(UAN; 28-0-0).  Winter wheat was planted using a Kincaid model 2010 grain drill 

(Kincaid Equipment and Manufacturing, Haven, KS) at a seeding density of 100 kg ha
-1

 

and row spacing of 18 cm (Table 2-3).  Spring barley was planted using the same Kincaid 

model 2010 grain drill at a seeding density of 112 kg ha
-1

 (Table 2-3). 

In the spring, maize was planted between the indicator crop reference strips (Fig. 

2-1).  A three replicate randomized complete block design was used to evaluate six at 

planting N fertilizer treatments ranging from 0 to 225 kg ha
-1

 in 45 kg ha
-1

 increments.  

Nitrogen fertilizer was applied prior to planting as broadcast and incorporated UAN.  

Maize was planted at a seeding density of 65,000 kernels ha
-1

 with a 4-row John Deere 

7300 Integral MaxEmerge planter (Deere & Company, Moline, IL).  Individual maize 

plots measured 3 m wide (four 0.76 m rows) by 6.1 m long and were irrigated using a 

surface drip system on an as needed basis, dependent upon visual water stress symptoms.  

The amount of water being supplied was monitored and documented (Table 2-3).  To 
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ensure even distribution across each plot, drip tape was installed between rows 1 and 2 

and between rows 3 and 4.   

Crop canopy reflection measurements were collected throughout the vegetative 

growth stages of the indicator crops to estimate biomass accumulation and potential N 

deficiency.  Spectral reflectance was measured from the center 1.5 m of the indicator crop 

reference strips using the GreenSeeker (Trimble Agriculture Division, Westminster, CO) 

active optical reflectance crop sensor and was expressed as a plot averaged normalized 

difference vegetative index (NDVI).  The GreenSeeker crop sensor utilizes red (660 nm) 

and near infrared (NIR; 780 nm) wavelengths and calculates NDVI as:  

NDVI = NIR(780) – red(660) / NIR(780) + red(660)   

Reflection measurements were collected at approximately Feekes (Large, 1954) growth 

stage 3, 4, 5, 7, and 10. 

Grain yield was determined for all of the maize plots at physiological maturity.  

Mechanical grain harvest was accomplished using a Massey Ferguson 8-XP self-

propelled research plot combine (Kincaid Equipment and Manufacturing, Haven, KS) 

equipped with a HarvestMaster (Juniper Systems, Inc., Logan, UT) plot harvest data 

system calibrated to collect individual plot grain weight and moisture.  The center two 

rows of each plot were harvested and grain yield (Mg ha
-1

) was adjusted to 155 g kg
-1

 

moisture content.  Agronomic optimum N rate (AONR) was determined using the SAS 

PROC NLIN procedure (SAS Institute, 2011) at each location.  The AONR is the N rate 

that produces optimum maize grain yield and was calculated using the best fit model 

(Cerrato and Blackmer, 1990).    
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In-season measurements of NDVI from the indicator crop reference strips were 

utilized to calculate a maize N fertilizer recommendation using the generalized algorithm 

(Solie et al., 2012).  The most recent version of this algorithm was accessed via the online 

interface at the end of the 2014 growing season (Oklahoma State University, 2014).  

Farmer practice NDVI and N rich strip NDVI from the winter wheat and spring barley 

indicator crops were used as inputs, but some assumptions were required for completion 

of the algorithm (Oklahoma State University, 2014).  These assumptions include; bare 

soil NDVI = 0.18, Max Yield for the region = 13.44 Mg ha
-1

, weight per bushel = 56 

lb/bu, Grain N = 1.2%, and nitrogen use efficiency = 50 %.  A maize N fertilizer 

recommendation was calculated for each growth stage in-season measurements of NDVI 

were collected from the indicator crops.   

 

2.5 Results and Discussion 

Indicator Crop NDVI 

Farmer practice NDVI and N rich strip NDVI values collected from the wheat 

indicator crop resulted in RINDVI ranging from 1.06 to 2.20 and the corresponding RINDVI 

from the barley indicator crop ranged from 1.02 to 1.95 for all four locations (Tables 2-4 

and 2-5).  Only 15% of the RINDVI values for the wheat and barley indicator crops were 

less than 1.1.  Mullen et al. (2003) explains that if RINDVI of a winter wheat crop is less 

than 1.1, the probability of obtaining a response to additional N fertilizer will be low.  For 

this trial, the large number of RINDVI values greater than 1.1 suggested that the subsequent 

maize crop would be responsive to additions of N fertilizer.     



 53   

  

 

The maize N fertilizer recommendation from the OSU generalized algorithm 

ranged from 0 to 270 kg N ha
-1

 using the wheat indicator crop and 0 to 275 kg N ha
-1

 

using the barley indicator crop (Tables 2-4 and 2-5).  Many of the very low N fertilizer 

recommendations (< 10 kg N ha
-1

) occurred during the early vegetative growth stages 

(Feekes 3 and 4) of the indicator crops due to a low amount of accumulated biomass, and 

thus, a low NDVI (<0.30) or RINDVI (<1.1).  Sensor data collected at Feekes growth 

stages 3 and 4 of the wheat indicator crop did occur prior to corn planting while the 

sensor data collected for all other wheat growth stages and all of the barley growth stages 

occurred after corn planting, but prior to maize growth stage V6 (Abendroth et al., 2011).  

Nitrogen fertilizer applications made to maize at growth stage V6 or before could be 

accomplished using traditional sidedress equipment.  The sigmoidal model utilized in the 

generalized algorithm predicts a low potential grain yield in response to a low NDVI of 

the crop due to a transitional region of NDVI between bare soil and the central region of 

the model (Solie et al., 2012).  Therefore, it is not surprising that the N fertilizer 

recommendation was low when indicator crop NDVI was also low due to the limited 

increases in grain yield with the changes in NDVI (Solie et al., 2012).  High N fertilizer 

recommendations (> 150 kg N ha
-1

) occurred when RINDVI of the indicator crop was also 

high (>1.5) as a result of a larger denominator in grain yield potential equation (Solie at 

al., 2012).  

Maize Grain Yield 

 Maize grain yields at all four sites were responsive to the addition of N fertilizer 

(Fig. 2-2).  Maize grain yields collected in this experiment were similar to grain yields 
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observed from other Oklahoma maize experiments using pre-plant N fertilizer (Tubaña et 

al., 2008; Walsh et al., 2012).  A linear plateau response model was fit to the range of N 

rates at both locations in 2013.  In 2014, the LCB location followed a quadratic trend and 

the Efaw location was linear (Fig. 2-2).  The AONR for Efaw 2013 was 185 kg N ha
-1

 

and LCB 2013 was 52 kg N ha
-1

 as a result of the linear plus plateau models.  In 2014, the 

AONR for LCB was calculated at 95 kg N ha
-1

 and Efaw was 224 kg N ha
-1

.  The large 

range in AONR could be expected due to the variable environmental conditions 

experienced, and their impact on N demand.  For example, seasonal rainfall ranged from 

375 to 827 mm for the four sites (Table 2-3).     

 The maize crop displayed a positive response to the addition of pre-plant N 

fertilizer at harvest (RIHarvest), ranging from 1.31 to 2.22 (Tables 2-6 and 2-7).  All four 

sites had a positive RIHarvest, indicating that increased grain yields were due to added N 

fertilizer rather than nonfertilizer N contributions, such as mineralization or rainfall.  

Nonfertilizer N contributions to the maize production system are likely reasons for low 

RIHarvest values (Mullen et al., 2003).   

Agronomic Optimum N Rate vs. Generalized Algorithm  

Linear regression indicated that the N fertilizer recommendations generated from 

the OSU generalized algorithm using both wheat and barley indicator crops could not 

predict the AONR for the maize crop (Fig. 2-3).  However, a strong correlation was 

detected between the N fertilizer recommendation generated from the OSU generalized 

algorithm using the barley indicator crop and the AONR for the maize crop (R
2
 = 0.80).  

Overall, the wheat indicator crop resulted in a slope closer to one and an intercept much 
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higher than the barley indicator crop (Fig. 2-3).  Even though the relationship was less 

using wheat (R
2
 = 0.44) compared to barley (R

2
 = 0.80), correlation remained high.  The 

NDVI data collected for use in the generalized algorithm using the indicator crops 

occurred during the months of March, April, and May.  The AONR data for the maize 

crop was obtained after harvest in either late August or early September.  This four month 

span encompassed a lot of environmental variation while the N rate recommendation 

from the generalized algorithm using a wheat indicator crop could account for nearly  

50 % of the variability in the AONR for maize. 

RIHarvest vs. RINDVI 

Linear regression established that RINDVI using the barley indicator crop could 

statistically predict RIHarvest for the maize crop and RINDVI for barley accounted for 98% 

of the variability in the maize RIHarvest (Fig. 2-4).  High correlation was also found 

between RINDVI for wheat and maize RIHarvest (R
2
 = 0.62).  Both crops resulted in a slope 

greater than one, but the barley had an intercept nearly equal to zero (Fig. 2-4).  The 

ranges in RI for both NDVI and harvest suggest that this relationship is consistent for 

both low and high responsive sites.  Other work in Oklahoma determined that RINDVI 

provided good prediction for RIHarvest (R
2
 = 0.56 to 0.75) in winter wheat (Mullen et al., 

2003; Hodgen et al., 2005).  Hodgen at al. (2005) also observed the slope for the 

relationship between RINDVI and RIHarvest to be greater than one due to large amounts of N 

taken up by the plant early in the season.  The ability to predict the response of a maize 

crop to N fertilizer at harvest at early stages of growth using a fall or early spring planted 

indicator crop is unprecedented.  Modifications to current maize N fertilizer 



 56   

  

 

recommendations as a result of this relationship would modernize N management 

strategies for maize producers across the United States.   

 

2.6 Conclusions 

 Analysis of these four sites found that a strong correlation existed between the 

maize N fertilizer recommendations from the OSU generalized algorithm using wheat 

and barley indicator crops and the maize AONR along with the RINDVI for wheat and 

barley and RIHarvest for the maize crop.  Although these relationships were a result of the 

best comparisons between the indicator crops and maize, the concept of using NDVI data 

collected from the indicator crops occurred during the months of March, April, and May 

to predict the response of the maize crop to N fertilizer obtained after harvest in either 

late August or early September is unprecedented.  Producers may be tentative to use 

indicator crop N rich strips, but they offer an alternative approach to current maize N 

fertilizer recommendations which could modernize N management strategies for maize 

producers across the United States.   
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2.7 Tables 

Table 2-1 Soil map unit and taxonomic classification for each location, 2013 and 2014. 

Year Location
†
 Soil Mapping Unit Major Component Soil Taxonomic Classification 

2013 Efaw Easpur loam, 

occasionally 

flooded,  

0-1% slope 

Easpur: Fine-loamy, mixed, superactive, thermic  

             Fluventic Haplustolls 

LCB Port-Oscar 

Complex, 

occasionally 

flooded,  

0-1% slope 

Port: Fine-silty, mixed, superactive, thermic  

         Cumulic Haplustolls 

Oscar: Fine-silty, mixed, superactive, thermic  

           Typic Natrustalfs 

2014 Efaw Norge loam,  

3-5% slope 

Norge: Fine-silty, mixed, active, thermic Udic  

            Paleustolls 

LCB Pulaski fine  

sandy loam,  

0-1% slope, 

occasionally 

flooded 

Pulaski: Coarse-loamy, mixed, superactive,  

              nonacid, thermic Udic Ustifluvents 

† Efaw, Oklahoma State University Agronomy Research Station near Stillwater, OK;  

   LCB, Oklahoma State University Agronomy Research Station west of Stillwater, OK near  

   Lake Carl Blackwell 
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Table 2-2 Pre-plant soil sample (0-15 cm) chemical properties, 2013 and 

2014. 

Year Location
†
 

Soil  

pH
‡
 NH4-N

§
 NO3-N

§
 P

¶
 K

¶
 

Total 

N
#
 

Organic 

C
#
 

   --------------- µg g
-1

 --------------- ----- mg g
-1

 ----- 

2013 Efaw 6.0 8.4 1.7 18.4 106 1.2 10.2 

 LCB 6.1 6.2 5.3 24.2 139 1.1 9.5 

2014 Efaw 5.1 8.7 1.7 84.1 108 0.8 7.0 

LCB 5.2 7.4 6.9 34.1 142 0.8 8.1 

† Efaw, Oklahoma State University Agronomy Research Station near 

Stillwater, OK;  

   LCB, Oklahoma State University Agronomy Research Station west of 

Stillwater, 

   OK near Lake Carl Blackwell 

‡ 1:1 soil water 

§ 2 M KCl extract (Mulvaney, 1996) 

¶ Mehlich III extract (Mehlich, 1984)   

# Dry combustion (Schepers et al., 1989) 
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Table 2-3 Field activities for each location, 2013 and 2014. 

 2012/2013
†
 2013/2014 

Field Activity
‡
 Efaw LCB Efaw LCB 

Winter wheat     

      N application October 1 October 3 October 23 October 10 

      Planting October 11 October 9 October 23 October 24 

      Cultivar Doublestop Doublestop Iba Doublestop 

      Sensing-Fk. 3 February 19 February 18 March 12 February 25 

      Sensing-Fk. 4 March 5 March 6 March 20 March 11 

      Sensing-Fk. 5/6 March 29 March 21 April 4 March 19 

      Sensing-Fk. 7/8 April 12 April 12 . April 3 

      Sensing-Fk. 9/10 April 29 April 29 April 17 April 17 

Spring barley     

      N application February 5 February 6 February 13 February 13 

      Planting February 5 February 6 February 13 February 14 

      Cultivar Pinnacle Pinnacle Pinnacle Pinnacle 

      Sensing-Fk. 3 March 29 March 21 . March 28 

      Sensing-Fk. 4 . . . April 3 

      Sensing-Fk. 5 April 12 April 12 April 17 April 10 

      Sensing-Fk. 6/7 April 29 April 29 . April 22 

      Sensing-Fk. 8/9 . . . April 26 

      Sensing-Fk. 10 May 22 . . May 2 

Maize     

      N application March 18 March 18 March 31 March 25 

      Planting March 20 March 20 April 1 April 3 

      Hybrid Pioneer P1498 Dekalb 63-55 Dekalb 63-55 Dekalb 63-55 

      Irrigation (mm) 50 28 0 8 

      Rainfall (mm) 621 827 375 517 

      Harvest September 9 September 5 September 4 August 27 

† Efaw, Oklahoma Agricultural Experiment Station near Stillwater, OK;  

   LCB, Oklahoma Agricultural Experiment Station west of Stillwater, OK near Lake 

   Carl Blackwell  

‡ Feekes (Fk.) growth stages as denoted by Large (1954)  
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Table 2-4 Maize N fertilizer recommendations from the OSU generalized algorithm 

based on farmer practice NDVI and N rich strip NDVI from wheat and barley indicator 

crops compared to the agronomic optimum N rate for Efaw and Lake Carl Blackwell 

(LCB), 2013. 

Location Crop 

Growth 

Stage
†
 

Farmer 

Practice 

NDVI 

N 

Rich  

Strip  

NDVI 

Response 

Index
‡
 

Generalized 

Algorithm N 

recommendation
§
 AONR

¶
 

Efaw Wheat 3 0.325 0.390 1.20 9 185 

  4 0.451 0.480 1.06 8 185 

  5 0.649 0.774 1.19 83 185 

  7 0.629 0.795 1.26 119 185 

  9 0.542 0.741 1.37 150 185 

 Barley 3 0.323 0.347 1.07 2 185 

  5 0.612 0.662 1.08 28 185 

  7 0.750 0.849 1.13 70 185 

  10 0.646 0.793 1.23 102 185 

LCB Wheat 3 0.388 0.478 1.23 27 52 

  4 0.410 0.631 1.54 175 52 

  5 0.399 0.674 1.69 227 52 

  7 0.370 0.658 1.78 239 52 

  10 0.285 0.616 2.16 269 52 

 Barley 3 0.219 0.264 1.20 1 52 

  5 0.387 0.685 1.77 243 52 

  7 0.422 0.812 1.92 275 52 

† Feekes growth stages as denoted by Large (1954)  

‡ Response index = N rich strip NDVI / farmer practice NDVI  

§ N recommendations, kg N ha
-1

; Assumptions: Bare soil NDVI = 0.18, Max Yield for 

the region = 13.44 Mg ha
-1

, weight per bushel = 56 lb/bu, Grain N = 1.2%, and NUE = 

50 % 

¶ AONR = agronomic optimum N rate, determined using either a linear plus plateau 

model or a linear plus plateau model, kg N ha
-1
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Table 2-5 Maize N fertilizer recommendations from the OSU generalized algorithm 

based on farmer practice NDVI and N rich strip NDVI from wheat and barley indicator 

crops compared to the agronomic optimum N rate for Efaw and Lake Carl Blackwell 

(LCB), 2014. 

Location Crop 

Growth 

Stage
†
 

Farmer 

Practice 

NDVI 

N 

Rich  

Strip  

NDVI 

Response 

Index
‡
 

Generalized 

Algorithm N 

recommendation
§
 AONR

¶
 

Efaw Wheat 3 0.221 0.239 1.08 0 224 

  4 0.249 0.286 1.15 1 224 

  6 0.234 0.389 1.66 72 224 

  9 0.255 0.397 1.56 57 224 

 Barley 5 0.218 0.426 1.95 165 244 

LCB Wheat 3 0.285 0.373 1.31 14 95 

  4 0.301 0.433 1.44 52 95 

  5 0.288 0.504 1.75 174 95 

  7 0.277 0.609 2.20 270 95 

  9 0.251 0.492 1.96 210 95 

 Barley 3 0.209 0.214 1.02 0 95 

  4 0.201 0.224 1.11 0 95 

  5 0.228 0.277 1.21 1 95 

  6 0.250 0.326 1.30 7 95 

  8 0.269 0.377 1.40 24 95 

  10 0.274 0.442 1.61 98 95 

† Feekes growth stages as denoted by Large (1954)  

‡ Response index = N rich strip NDVI / farmer practice NDVI  

§ N recommendations, kg N ha
-1

; Assumptions: Bare soil NDVI = 0.18, Max Yield for 

the region = 13.44 Mg ha
-1

, weight per bushel = 56 lb/bu, Grain N = 1.2%, and NUE = 

50 % 

¶ AONR = agronomic optimum N rate, determined using either a linear plus plateau 

model or a linear plus plateau model, kg N ha
-1 
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Table 2-6 Response index from the in-season sensor 

measurements of NDVI (RINDVI) collected from 

wheat and barley indicator crops along with maize 

grain yield response (RIHarvest) to applied nitrogen 

fertilizer for Efaw and Lake Carl Blackwell (LCB), 

2013. 

Location Crop 

Growth 

Stage
†
 RINDVI

‡
 RIHarvest

§
 

Efaw Wheat 3 1.20 1.31 

  4 1.06 1.31 

  5 1.19 1.31 

  7 1.26 1.31 

  9 1.37 1.31 

 Barley 3 1.07 1.31 

  5 1.08 1.31 

  7 1.13 1.31 

  10 1.23 1.31 

LCB Wheat 3 1.23 1.39 

  4 1.54 1.39 

  5 1.69 1.39 

  7 1.78 1.39 

  10 2.16 1.39 

 Barley 3 1.20 1.39 

  5 1.77 1.39 

  7 1.92 1.39 

† Feekes growth stages as denoted by Large (1954)  

‡ RINDVI = N rich strip NDVI / farmer practice NDVI  

§ RIHarvest = Highest mean yield N treatment / mean 

yield check treatment 
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Table 2-7 Response index from the in-season sensor 

measurements of NDVI (RINDVI) collected from 

wheat and barley indicator crops along with maize 

grain yield response (RIHarvest) to applied nitrogen 

fertilizer for Efaw and Lake Carl Blackwell (LCB), 

2014. 

Location Crop 

Growth 

Stage
†
 RINDVI

‡
 RIHarvest

§
 

Efaw Wheat 3 1.08 2.22 

  4 1.15 2.22 

  6 1.66 2.22 

  9 1.56 2.22 

 Barley 5 1.95 2.22 

LCB Wheat 3 1.31 1.50 

  4 1.44 1.50 

  5 1.75 1.50 

  7 2.20 1.50 

  9 1.96 1.50 

 Barley 3 1.02 1.50 

  4 1.11 1.50 

  5 1.21 1.50 

  6 1.30 1.50 

  8 1.40 1.50 

  10 1.61 1.50 

† Feekes growth stages as denoted by Large (1954)  

‡ RINDVI = N rich strip NDVI / farmer practice NDVI  

§ RIHarvest = Highest mean yield N treatment / mean 

yield check treatment 
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2.8 Figures 

 

Figure 2-1. Field layout for the winter wheat and spring barley planted in late fall or early 

spring as strips along the outside of the eventual maize trial. 
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Figure 2-2. Influence of preplant N fertilizer on maize grain yield (Mg ha

-1
) for Efaw and 

Lake Carl Blackwell (LCB), 2013 (top) and 2014 (bottom).  Error bars represent +/- 1 

standard error.   

 

 

 

 

 

 

 

2013 

2014 



 66   

  

 

 
Figure 2-3. Relationship between the N fertilizer recommendation (kg ha

-1
) generated 

from the OSU generalized algorithm for wheat (circles) and barley (squares) indicator 

crops and the maize agronomic optimum N rate (kg ha
-1

) from four sites in 2013 and 

2014. 
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Figure 2-4. Relationship between RINDVI for wheat (circles) and barley (squares) indicator 

crops and the maize RIHarvest from four sites in 2013 and 2014. 
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APPENDICES 

 

 

In addition to the data presented in Chapter 1, plant reflectance measurements 

were also collected.  Drought tolerant maize hybrids are a relatively new technology, and 

thus, no work has been done to validate current grain yield prediction approaches 

developed from older maize hybrids.  The objective of the data presented in the appendix 

was to evaluate grain yield potential of drought tolerant and less drought tolerant maize 

hybrids in irrigated and dryland productions systems. 

Crop canopy reflection measurements were collected throughout the vegetative 

growth stages to estimate biomass accumulation.  Spectral reflectance were measured 

from the center two rows of each plot using the GreenSeeker (Trimble Agriculture 

Division, Westminster, CO) active optical reflectance crop sensor and expressed as a plot 

averaged normalized difference vegetative index (NDVI).  The GreenSeeker crop sensor 

utilizes red (660 nm) and near infrared (NIR; 780 nm) wavelengths and calculates NDVI 

as: NDVI = NIR(780) – red(660) / NIR(780) + red(660).  Reflectance measurements were 

collected at approximately growth stage V4, V6, V8, V10, and V12. 
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Figure A-1. Relationship between maize grain yield and NDVI divided by cumulative 

GDD (growing degree day) from V7 to V10 growth stage for drought tolerant Pioneer 

(circles) and Monsanto (squares) maize hybrids at irrigated (top) and dryland (bottom) 

sites over 2 years and 4 locations, 2013 and 2014. 

 

Irrigated 

Dryland 



 73   

  

 

 

 

Figure A-2. Relationship between maize grain yield and NDVI divided by cumulative 

GDD (growing degree day) from V7 to V10 growth stage for less drought tolerant 

Pioneer (circles) and Monsanto (squares) maize hybrids at irrigated (top) and dryland 

(bottom) sites over 2 years and 4 locations, 2013 and 2014. 
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Figure A-3. Relationship between actual maize grain yield and potential maize grain 

yield from V7 to V10 growth stage for drought tolerant Pioneer (circles) and Monsanto 

(squares) maize hybrids at irrigated (top) and dryland (bottom) sites over 2 years and 4 

locations, 2013 and 2014. 
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Figure A-4. Relationship between actual maize grain yield and potential maize grain 

yield from V7 to V10 growth stage for less drought tolerant Pioneer (circles) and 

Monsanto (squares) maize hybrids at irrigated (top) and dryland (bottom) sites over 2 

years and 4 locations, 2013 and 2014. 
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