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ABSTRACT: Traffic loads are one of the key data elements required for the design and 

analysis of pavement structures. The MEPDG requires full axle-load spectrum mainly 

based on continuous site-specific Weigh-In-Motion (WIM) data sets for each axle type 

and axle-load group. Due to the fact that collecting high quality WIM data is expensive, 

challenging and analyzing them requires extensive efforts and expertise, many state 

DOTs have to rely on traffic data from various acquisition technologies and length of 

time coverage for the implementation of MEPDG. This paper studies the impacts and 

variability of various traffic data collection efforts on MEPDG predicted performance. 

Twelve traffic data input scenarios are simulated to consider various traffic data 

collection efforts at 20 WIM sites in Oklahoma. A total of 1,440 MEPDG runs are 

performed with 3 AADTT levels, and 2 growth rates. The impacts of traffic load level, 

WIM data coverage, vehicle distribution, axle loading, and using regional and national 

defaults on predicted pavement performance are evaluated. This study has recommended 

the minimum required traffic data collection efforts for highway agencies to prepare 

traffic data for the implementation of MEPDG. 
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CHAPTER I 

 

 

INTRODUCTION 

Background 

MEPDG is the new generation of pavement design and analysis software, a simplified 

inner process of MEPDG is shown in Figure 1.1. 

Figure 1.1 Simplified Inner Process of MEPDG 

Using mechanics, inputs are first transferred into stress and strain, and then the 

calculating results are converted to pavement distress based on engineering experience. 
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Among all these inputs, traffic is one of the key elements required for the structural 

design/analysis of pavement structures. Instead of using Equivalent Single Axle Load 

(ESAL) in the 1993 AASHTO Design Guide to characterize traffic throughout the 

pavement design life (1), the mechanistic pavement damage computations in the MEPDG 

requires axle-load spectra (2), defined as the number of axle passes by load level and axle 

configuration. In practice, highway agencies typically collect three types of traffic data: 

weigh-in-motion (WIM), automatic vehicle classification (AVC), and vehicle counts.  

Weigh-In-Motion, defined in ASTM, is the process of measuring the dynamic tire forces 

of a moving vehicle and estimating the corresponding tire loads of the static vehicle 

(ASTM, 2002), and therefore estimating a moving vehicle’s gross weight and the portion 

of that weight that is carried by each wheel, axle, or axle group, or combination. The 

information is critical for highway management, traffic operation and control, and 

structural design of pavements and bridges.  

A WIM system usually consists of weight sensors, inductive loop detectors, and a 

computer interface in a roadside cabinet. Depending on applications, optional peripheral 

devices can include Automatic Vehicles Identification (AVI) interfaces, video cameras, 

and modems. Weight sensors are the key hardware in the system. These sensors can be 

portable or permanently installed depending on system requirements. There are three 

basic classes of WIM sensors: piezoelectric sensors, bending plates, and load cells. 

Inductive loop detectors are used to detect approaching vehicles and measure axle 

spacing and vehicle speed. The computer interface is usually a data logger equipped with 

a microprocessor. It monitors and stores the traffic flow data that can be either retrieved 

on site or transmitted wirelessly from a remote location to a central office. The American 
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Society for Testing and Materials (ASTM) classifies WIM systems as Type I, II, III, or 

IV. This classification is based on speed ranges, data gathering capabilities, and intended 

applications. 

AVC system identifies vehicle class as it passes through a series of detection devices. T 

Kon et al. (26) summarized that majority technologies relevant to vehicle detection 

include loop detectors, infrared, ultrasonic, microwave and video detectors.  

Loop detectors are the most widely used technology for vehicle detection in the United 

States. A loop detector consists of one or more loops of wire embedded in the pavement 

and connected to a control box. The loop may be excited by a signal ranging in frequency 

from 10 kHz to 200 kHz. This loop forms an inductive element in combination with the 

control box. When a vehicle passes over or rests on the loop, the inductance of the loop is 

reduced. This causes a detection to be signaled in the control box.  

There are two types of infrared (IR) detectors, active and passive. In both types of 

detectors the LED or laser diode illuminates the target, and the reflected energy is 

focused onto a detector consisting of a pixel or an array of pixels. The measured data is 

then processed using various signal-processing algorithms to extract the desired 

information on count, presence, speed, and occupancy data in both night and day 

operation. The laser diode type can also be used for vehicle classification because it 

provides vehicle profile and shape data.  

Ultrasonic detectors have not become widely used in the United States, but they are very 

widely used in Japan in traffic applications with two types of sensors: presence-only and 

speed measuring. Both types operate by transmitting ultrasonic energy and measuring the 
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energy reflected by the target for measurements of vehicle presence, speed, and 

occupancy. Microwave detectors have been used extensively in Europe, but not in the 

United States, by measuring the energy reflected from target vehicles within the field of 

view to measure speed, occupancy, and presence. 

A video image processor (VIP) is a combination of hardware and software which extracts 

desired information from data provided by an imaging sensor to detect speed, occupancy, 

count, and presence.  

Comparing to the WIM and AVC methods, traffic counts has the least information of 

traffic, and only record AADT (Annual Average Daily Traffic). Many DOTs use this 

kind of data to build state traffic counts map or interactive live traffic map. 

Among the three types of traffic data gathering, only WIM data is able to generate both 

truck classification and axle loading spectra data required in MEPDG. However, 

collecting high quality WIM data is expensive, and analyzing the data requires extensive 

efforts and expertise. Many state DOTs have to utilize traffic data from various collection 

techniques. Moreover, data coverage of traffic data acquisition systems can vary widely 

from continuously operating to simple 48-hour (or less) data coverage. Even for 

continuously operating data acquisition systems; however, data coverage time may be 

hampered by system malfunctions. Therefore, there is need to learn how the variations of 

traffic data impact the outcome and implementation of MEPDG.  
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Literature Review 

Various methodologies have been developed to obtain traffic data input and the data 

variability on pavement design and performance.  

Extensive one-at-a-time (OAT) analyses have been performed to investigate the 

sensitivity of MEPDG inputs on pavement performance (3). It is found that main distress 

of both flexible and rigid pavement was sensitive or very sensitive to traffic volume.  

Cooper et al. (4) evaluated the sensitivity of three traffic levels considering five pavement 

structures and the combinational interaction effects of the input parameters and 

concluded that traffic level was the main influencing factor for pavement distress.  

Li et al. (5) performed comprehensive sensitivity analysis using Washington DOT 

(WSDOT) WIM data. For typical WSDOT pavement design, axle load spectra inputs 

showed moderate sensitivity to pavement performance.  

Based on the comparisons of MEPDG predictions with field observations for rigid 

pavements in Kansan DOT, Khanum et al. (6 and 7) found that IRI was the most sensitive 

output with respect to the traffic inputs, followed by the percentage of cracked slabs.  

Sauber et al. (8) examined the differences of pavement performance using Level 1 site-

specific data and Level 3 MEPDG defaults. Distress predictions were found to be 

significant different.  

Using Arkansas statewide averages and MEPDG default axle load spectra, Tran, Nam H 

et al. observed significant differences in predicted pavement performance (9).  
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North Carolina DOT conducted clustering analysis on traffic load spectra and found that 

99% of the pavement damage was due to single axle and tandem axle repetitions (10).  

Ritchie and Hallenbeck (11) studied the relationship between data collection sampling 

efforts and the accuracy in estimating the average annual daily traffic (AADT). The 

accuracy in predicting AADT increases with the number of days used in establishing the 

mean.  

The 2001 TMG recommends collecting traffic volume data through a combination of a 

limited number of continuously operating reference systems and a larger number of 

shorter duration coverage systems (12).  

Using Long-Term Pavement Performance (LTPP) WIM data sets, Papagiannakis et al. 

(13) established the minimum traffic data collection effort required for pavement design 

applications considering simulated traffic data collection scenarios. 

Selezneva et al. (14) investigated the effect of bias in weigh-in-motion (WIM) axle 

weight measurements. It was found that drift in WIM system calibration leading to a 

more than 5% bias in mean error between true and WIM-measured axle weight could 

lead to significant differences in MEPDG design outcomes. 

Realizing that it is not always practical to obtain site specific traffic data, Abbas and 

Frankhouser (15) evaluated the MEPDG outcomes calculated from continuous traffic 

monitoring data from Ohio DOT, generated site-specific and statewide traffic inputs. It is 

recommended to estimate the AADTT and the vehicle class distribution from site-

specific short-term or continuous counts and obtain the truck growth rate from ODOT 

Modeling and Forecasting Section. Other traffic inputs like hourly distribution factors, 
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axle load spectra, and number of axles per truck, state wide traffic data could be applied. 

MEPDG defaults can be used for the monthly adjustment factors. 

McCracken et al. (16) observed a significant difference between the design result of 1993 

American Association of State Highway and Transportation Officials (AASHTO) Design 

Guide and the Mechanistic Empirical Pavement Design Guide (MEPDG). Also, it is 

found that the MEPDG outcomes of different levels of inputs (typical value, correlated 

value or measured value) could lead to two inches of difference in design thickness. 

 

Problem Statement 

Despite these presented past research efforts, the challenge remains to determine the 

combination of traffic data acquisition technology and the time coverage required for 

particular pavement design situations. A lot of previous research focus on AADTT and 

traffic growth rate levels or the most sensitive factor that affects a certain kind of 

pavement distress, only a few of them compare the distress predicted with site specific 

data with statewide average value or MEPDG default while data time coverage has never 

been taken into consideration. This issue needs to be addressed in light of the sensitivity 

of the pavement design and performance analysis to the level of traffic data input. 

 

Research Objective 

In this paper, a comprehensive approach is proposed to establish the relationship between 

traffic data collection efforts (combination of traffic data acquisition technologies and 

length of time coverage) and the variability on predicted pavement performance using 
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MEPDG. Twelve traffic data input scenarios are simulated to use (1) data typically 

collected by permanent WIM systems and other technologies, such as portable WIM, 

automated vehicle classification (AVC) and short-term truck counts; (2) continuous 

coverage for axle loads, classification, or counts, while others involved discontinuous 

data coverage. A total of 20 flexible pavement sites at locations where WIM are installed 

for Oklahoma are analyzed to predict pavement performance using MEPDG. The 

sections have wide distribution of average annual daily truck traffic (AADTT) volumes 

and structural thicknesses.  Addition analysis considering three levels of AADTT and two 

levels of annual growth rate are conducted to examine their effects on pavement 

performance predictions. 
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CHAPTER II 

 

 

METHODOLOGY 

Scope of Work 

The scope of this study is to investigate the sensitivity of traffic inputs on flexible 

pavement performance. Flexible pavement structures in the study are designed using the 

1993 AASHTO Pavement Design Guide (1) at the 20 WIM locations in Oklahoma. The 

design results are input into MEPDG for distress predicting and further analysis.  

MEPDG requires the following inputs (2): 

Structure 

 Thickness of each pavement layer 

 Property of materials been used in each layer, including modulus of subgrade and 

aggregate, sieve analysis results etc. 

Traffic 

 The base year traffic volume. One important input in this category is annual 

average daily truck traffic (AADTT). 

 Volume adjustment factors. The base year AADTT must be adjusted by monthly 

distribution, hourly distribution, vehicle class distribution (VCD), and traffic 

growth factors. These factors can be determined on the basis of classification 

counts obtained from WIM, AVC, or vehicle count data.
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 Axle load distribution factors (axle load spectra). The axle load distribution 

factors represent the percentage of the total axle applications within each load 

Interval for a specific axle type (single, tandem, tridem, and quad) and truck class 

(class 4 to class 13). The axle load distributions or spectra can be determined only 

from WIM data. 

 General traffic inputs, such as number of axles per truck, axle configuration, and 

wheel base. These data are used in the calculation of traffic loading for 

determining pavement responses. The default values provided for the general 

traffic inputs are recommended if more accurate data are not available. 

Climate 

 Climate includes temperature, altitude, ground water level etc. 

In this chapter, pavement structure design based on 1993 AASHTO Guide at the 

Oklahoma WIM stations, development of the 12 simulated traffic input scenarios, other 

inputs for MEPDG and MEPDG predicted pavement performance results are addressed 

in details. 

 

Pavement Structure Design 

The process of design pavement structure in this study is divided into 4 steps: locating 

WIM stations, determining ODOT Division and County for each design site, obtaining 

soil data and designing pavement thickness based on 1993 AASHTO Guide. 

Step 1: Locating WIM Stations 

There are 23 operating permanent WIM stations within the state of Oklahoma (20). The 

location of these WIM stations is shown in Table 2.1.  
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Table 2.1 WIM Stations In Oklahoma 

WIM 

ID 

Func 

Class 
Sensor 

County 

FIPS 

Route 

# 
Location 

1 2 P 74 75 6.3 miles south of Jt. US-60 

2 1 P 50 35 2.6 miles south of Jt. SH-7 

3 11 P 55 240 2.57 miles West of Jt. I-35 

5 2 P 73 69 6.4 miles south Jt. US-412 

6 1 P 54 40 1.0 miles west of Jt. US-75 south 

7 2 P 6 270 2.7 miles west of Jt. SH-8 

8 2 P 67 99 0.3 Miles North Jt. SH-59 West 

9 2 P 62 3 1.1 miles East of Jt. SH-1 

10 2 P 61 69 3.75 Miles North Jt. SH-113 

11 6 P 26 81 2.46 Miles South Jt. US-81bus South 

16 2 P 49 412 2.6 Miles West Jt. US-69 

21 7 P 40 69 1.10 miles north of the Red River Bridge 

22 7 P 40 112 1.2 miles East Jt. US-59 

23 2 P 47 412 2.2 miles West Jt. US-58 

25 2 P  287 5.6 miles north of intersect of SH-3 & US 287 

27 1 P 36 35 2.5 Miles North Jt. US-60 

28 1 P 9 40 Location Not set as of 10/21/02 

29 1 P 68 40 0.5 Miles East Mile Marker 311 

30 1 P 44 35 100 Ft. North of Mile Marker 105 

32 2 P  70 3.5 miles West of Junction US-259/US-70 

104 1 P 42 35 0.5 miles North of Jt. Waterloo Rd 

114 1 P 75 40 0.1 Miles West of Mile Marker 43 

118 2 P 16 62 1.3 Miles West Jt. SH-115 
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However, no GPS coordinates are provided. With the assistance of Google Map, the GPS 

locations of the 23 WIM sites are located (Figure 2.1 is an example of WIM 6).  

Figure 2.1 Locating WIM Site 

GPS Coordinates of 23 WIM Stations and a plot of WIM site distribution are obtained 

and shown in Table 2.2 and Figure 2.2 respectively. 
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Table2.2 GPS Coordinates of WIM Stations in Oklahoma 

WIM Latitude Longitude 

1 36.8204 -95.935386 

2 33.460727 -97.144922 

3 35.391499 -97.541317 

5 36.077771 -95.364831 

6 35.433001 -95.989342 

7 35.84153 -98.467115 

8 34.193099 -96.674864 

9 33.754529 -96.685445 

10 35.067199 -95.705839 

11 33.729929 -97.958341 

16 36.169897 -95.388486 

21 32.837607 -96.520717 

22 35.060543 -93.604367 

23 36.391208 -98.28634 

25 36.79085 -102.517505 

27 36.745847 -97.34564 

28 35.500209 -97.864242 

29 35.45055 -93.752597 

30 34.166248 -97.488722 

32 33.936915 -93.879506 

104 35.732692 -97.416179 

114 35.421695 -99.317751 

118 33.638101 -98.655524 
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Figure 2.2 Plot of WIM Sites In Oklahoma
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Step 2: Determining Division and County For Each Site 

Because soil map data in the ODOT's Geologic Materials Classification (Red Books) (24) 

are saved by division and county, it is desirable to determine such information for each 

design site. State of Oklahoma is divided into 8 divisions, each division has several 

counties within it (shown in Figure 2.3). 

Figure 2.3 Divisions and County of Oklahoma 

The county that a WIM station belongs to could be determined by GPS coordinates from 

website: http://labs.silverbiology.com/countylookup/. For example, WIM 6 belongs to 

Okmulgee County, and it belongs to Division 1 (shown in Figure 2.4).  

http://labs.silverbiology.com/countylookup/
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Figure 2.4 Determining County of The Sample WIM Site 

Division and county information for all WIM sites is summarized in Table 2.3 

Step 3: Obtaining Soil Data 

Subgrade soil data, including AASHTO soil classification, sieve analysis, soil constants, 

and suitability, are obtained from ODOT's Geologic Materials Classification (Red 

Books) (24). Figure 2.5 shows an example on how to obtain soil data for WIM6 

pavement site. The summary of soil information for all pavement sites is shown in Table 

2.3, which is then used for subgrade input for MEPDG. 
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Table2.3 Division and County of WIM Sites 

WIM Division County Geologic Unit Soil Classification Sieve 10 Sieve 40 Sieve 60 Sieve 200 

1 8 Washington Chanute A6 100 86 82 65 

2 3 Murray Alluvium A6 100 98 97 94 

3 4 Oklahoma Hennessey A4 100 95 79 52 

5 8 Mayes Hartshorne-Atoka A4 100 85 79 61 

6 3 Okfuskee Wewoka A6 99 98 97 96 

7 5 Blaine Alluvium A6 100 99 99 97 

9 3 Pontotoc Francis A-7-6 100 99 99 98 

10 2 Pittsburg Boggy A6 100 99 98 96 

11 7 Grady  Rush Spring A4 100 100 100 73 

16 8 Mayes McAlester A-7-6 100 100 99 95 

21 2 Bryan Terrace Deposits A-7-6 100 95 85 75 

22 2 Le Flore McAlester A4 100 96 92 81 

23 6 Major  Terrace A4 100 95 85 75 

27 4 Kay  Wellington A-7-5 100 99 98 91 

28 4 Canadian Blaine A4 100 100 97 73 

29 1 Sequoyah McAlester A4 100 93 91 88 

30 3 McClain Hennessey A6 99 98 97 96 

104 4 Logan Garber A6 100 99 99 88 

114 5 Washita Elk City A4 100 99 98 91 

118 7 Comanche Addington A4 100 99 99 54 
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Figure 2.5Geologic Unit And Soil Classification of Sample WIM Site 
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Step 4: Designing Pavement Thickness 

The most commonly used Superpave mixture types in Oklahoma are S3 and S4 defined 

in the ODOT Standard Specification Book (22). Two inches of S3 mixture using PG76-

28 asphalt binder is designed as the surface functional course. Beneath that, S4 mixture 

binder layer with PG70-22 binder is applied for all the sites. Since Level 1 testing data 

for hot-mix asphalt (HMA) and asphalt binder are not available, Level 3 inputs based on 

typical mixture gradation are used. Three base materials are commonly used in 

Oklahoma: granular aggregate, lime treated, and fly ash treated. Pavement structures are 

designed following the 1993 AASHTO Guide using field collected AADTT with a 

growth rate of 4%. The designed layer thicknesses are summarized in Table 2.4.  

 

Simulated Traffic Input Scenarios 

Data Sources 

For the 23 WIM sites, the WIM traffic monitoring data are saved into four file types 

following the FHWA Traffic Monitoring Guide (TMG) formats (12): station description 

data, traffic volume data, vehicle classification data, and truck weight data. Raw WIM 

data in 2008 are obtained from Oklahoma Department of transportation (ODOT) and 

used in this paper. Three of the WIM sites (WIM 8, 25 and 32) don't have completed data 

sets and are excluded from analysis. The locations of the 20 WIM sites with complete 

coverage of a year data (from January to December) has already been demonstrated in 

Figure 2.2
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Table2.4 1993 AASHTO Pavement Design Results 

WIM 

Site 
AADTT 

AC Thickness (in.) Base Layer 

Subgrade Surface Layer 

(S3 Mix) 

Binder Layer 

(S4 Mix) 
Material Type 

Thickness 

(in.) 

1 1876 2 6 Granular Aggregate + Lime Treated 6 + 6 A-6 

2 6907 2 9 Granular Aggregate 8 A-6 

3 8496 2 9 15% Fly Ash Treated 7 A-4 

5 4037 2 8 Granular Aggregate 6 A-4 

6 5316 2 9 Granular Aggregate 6 A-6 

7 1413 2 7 15% Fly Ash Treated 6 A-6 

9 1260 2 8 Granular Aggregate 6 A-7-6 

10 4880 2 9 15% Fly Ash Treated 6 A-6 

11 1518 2 7 Granular Aggregate 6 A-4 

16 3096 2 9 15% Fly Ash Treated 6 A-7-6 

21 1316 2 6 Granular Aggregate + Lime Treated 6 + 7 A-7-6 

22 1225 2 6 15% Fly Ash Treated 7 A-4 

23 1039 2 4 Granular Aggregate + Lime Treated 6 + 8 A-4 

27 4600 2 8 Granular Aggregate + Lime Treated 6 + 6 A-7-5 

28 9523 2 9 Granular Aggregate 8 A-4 

29 6721 2 9 15% Fly Ash Treated 6 A-4 

30 10427 2 9 Granular Aggregate + Lime Treated 6 + 6 A-6 

104 6263 2 8 Granular Aggregate + Lime Treated 6 + 6 A-6 

114 8255 2 8 Granular Aggregate + Lime Treated 6 + 6 A-4 

118 916 2 6 Granular Aggregate 6 A-4 
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The raw WIM data are processed using the Prep-ME software (18), the final product of 

the Transportation Pooled-Fund study TPF-5(242): Traffic and Data Preparation for 

AASHTO Pavement-ME Analysis and Design. Particularly, Prep-ME is capable of pre-

processing, importing, checking the quality of raw WIM traffic data, and generating three 

levels of traffic data inputs with in-built clustering analysis methods for MEPDG. 

Traffic Input Scenarios 

Twelve traffic scenarios within four groups are proposed to simulate different traffic level 

of inputs from various traffic data acquisition technologies and time coverage of the data 

collection. All this calculations are performed in the Prep-ME software. 

 

Group #1: Site-Specific WIM Data with Various Time Coverage. 

 Scenario 1 - Continuous Site-Specific WIM Data. This scenario has high 

quality continuous 12-month of WIM data within a year, which represents the 

most complete traffic data sets required in the MEPDG, and it is defined as the 

"reference" traffic data. 

 Scenario 2 - Site-Specific WIM with 1 Month Data per Season. This scenario 

involves WIM data that cover 1 month in each of the four seasons, representing 

situations that only partial of the WIM data can pass WIM data quality check 

("good data") while those cannot pass QC ("bad data") are replaced with "good 

data". In other words, the traffic volume by truck class is not known for all 

months of a year. The WIM data in January, April, July and October are selected 

to represent the four seasons for winter, spring, summer, and fall. The traffic 
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inputs for this scenario are simulated from the continuous WIM data sets in 

Scenario 1 for all the 20 WIM sites. 

 Scenario 3 - Site-Specific WIM with 1 Week Data per Season. This scenario 

simulates traffic data collected using portable WIM systems. One week of 

portable WIM data are collected in each season. Each week was assumed to be 

representative of the entire season. The traffic data inputs for this scenario are 

simulated from the continuous WIM data sets in Scenario 1. To exclude holidays, 

the data from 7th to 13th in January, April, July and October are used to represent 

winter, spring, summer, and fall. 

 

Group #2: Site-Specific Classification Data with Various Time Coverage and Statewide 

WIM Load Data 

 Scenario 4 - Continuous Site-Specific Classification Data and Statewide WIM 

Load Data. This scenario used only the vehicle classification information that is 

available from the 20 WIM sites being analyzed. It represents the situation that 

only continuous site specific AVC data but no WIM load data is available. The 

average statewide axle loading data are used. This scenario is parallel to Scenario 

1. 

 Scenario 5 - Site-Specific Classification with 1 Month Data per Season and 

Statewide WIM Load Data. This scenario is parallel to Scenario 2. This scenario 

involves only one month of classification data in each of the four seasons. It 

simulates the situation that AVC data in some months is either not collected or 
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has unacceptable data quality. Those data is replaced with other month’s good 

data. 

 Scenario 6 - Site-Specific Classification with 1 Week Data per Season and 

Statewide WIM Load Data. This scenario is parallel to Scenario 3. This scenario 

involves only one week of classification data in each of the four seasons. It 

simulates the data collection technique using short-term classification counts. 

 

Group # 3: Regional and National Defaults 

 Scenario 7 - Statewide vehicle classification and LTPP TPF-5(004) Defaults 

load spectra. The LTPP TPF-5(004) study: Long-Term Pavement Performance 

(LTPP) Specific Pavement Study (SPS) Traffic Data Collection (19) has 

developed axle loading defaults based on the 26 LTPP pooled-fund study WIM 

sites. Three tiers of loading group are developed: Tier 1 for "Global" axle loading 

defaults, Tier 2 for "Typical" defaults, and Tier 3 for site-specific data. In this 

scenario, Tier 2 "Typical" axle loading defaults and State average vehicle 

classification. 

 Scenario 8 - State Averages. In this scenario, statewide averages of axle loading 

and truck volume adjustment factors are used. 

 Scenario 9 - National MEPDG Defaults. In this scenario, national MEPDG 

defaults are used. The default VCD factors are determined based on TTC classes 

from the MEPDG software. 
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Group #4: 48 Hour Short-Term Class Counts Using Various Clustering Methods 

In most practical cases, when pavements are designed, no prior Level 1 traffic WIM data 

are available and highway agencies opt not to use Level 3 inputs. Generally Levels 2 

(clustering average) traffic inputs are considered for design by combining existing site-

specific data from WIM systems located on sites that exhibit similar traffic 

characteristics. How to qualify these similarities and how to develop loading groups for 

pavement design is a recent interest in the US. This group provides three example 

clustering methods, ranging from simple to complex, to investigate the impact of axle 

loading on pavement performance. 

 Scenario 10 - 48 Hour Short-Term Class Counts Using TTC Method. 

Recognizing that highways within the same functional classification have 

significant variability in truck distribution, MEPDG proposes the truck traffic 

classification (TTC) methodology for pavement structural design purposes to 

describe the distribution of trucks traveling on roadway (2). In this scenario, 48 

hours of truck classification data on June 10th and June 11th are used to compute 

site specific VCD factors after monthly and DOW adjustment, and to determine 

the TTC class for each of the 20 design site. Traffic averages for each TTC class 

are obtained for MEPDG. This scenario simulates the situation that only short-

term 48-hour truck counts data is available. A summary of 48-hour VCD and TTC 

Class for each WIM site is shown in Table 2.5. 
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Table2.5 48-hour VCD and TTC Class 

WIM C4 C5 C6 C7 C8 C9 C10 C11 C12 C13  TTC Class 

1 1.5 41.8 4.2 0.3 11.6 38.6 0.7 0.1 0.1 0.1 9 

2 1.0 11.6 2.0 0.1 7.1 72.7 0.5 2.3 1.6 0.2 1 

3 0.8 72.8 3.0 0.1 8.8 11.7 0.6 0.8 0.1 0.3 14 

5 0.6 8.3 1.4 0.1 2.6 80.3 0.6 3.2 1.0 0.1 1 

6 1.1 12.0 1.7 0.1 5.8 72.7 0.8 2.9 1.2 0.7 1 

7 0.6 26.3 2.7 0.1 10.6 56.3 1.1 0.5 0.4 0.3 4 

9 1.7 39.8 9.3 0.4 5.8 41.3 1.1 0.2 0.2 0.2 6 

10 0.6 11.5 1.8 0.1 2.2 77.2 0.6 3.2 0.9 0.1 1 

11 1.4 50.5 4.0 0.2 13.4 27.6 0.9 0.3 0.1 0.7 12 

16 1.5 42.8 3.2 0.2 9.7 40.3 0.4 0.6 0.2 0.2 12 

21 1.5 17.5 0.7 0.0 3.8 69.0 0.5 3.6 1.2 0.1 2 

22 1.4 48.5 2.3 0.5 9.9 34.9 0.9 0.0 0.2 0.3 12 

23 1.1 46.7 2.6 0.1 11.2 36.1 1.5 0.5 0.2 0.1 12 

27 0.8 9.5 1.7 0.0 4.0 77.2 0.5 2.7 2.0 1.6 1 

28 1.0 18.8 2.5 0.1 2.5 71.0 0.7 1.8 1.4 0.2 1 

29 1.0 9.5 1.4 0.1 6.3 76.6 0.3 2.5 1.3 0.1 1 

30 1.4 19.1 2.5 0.3 8.5 62.5 0.6 2.7 1.2 0.2 2 

104 1.5 20.4 2.4 0.2 7.1 62.6 0.8 2.2 1.6 1.3 2 

114 0.9 14.2 1.7 0.1 2.5 72.8 0.9 2.0 1.6 0.1 1 

118 1.7 32.5 2.3 0.1 9.1 52.3 0.6 0.4 0.1 0.1 4 

 

 Scenario 11 - 48 Hour Short-Term Class Counts Using KYTC Method. 

Kentucky Transportation Cabinet (KYTC) has proposed an aggregated class 

method based on highway functional class to prepare traffic data for pavement 

deign (20). The detailed aggregated classes are shown in Table 2.6. This scenario 

is similar to Scenario 10 but using KYTC method to obtain traffic average data 

for MEPDG. 
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Table2.6 Aggregation Class for Traffic Inputs in Kentucky Transportation Cabinet 

(KYTC) 

Aggregate 

Class 
Functional Class 

Class I Rural Interstate (FC1) 

Class II 
Rural Principal Arterial (FC2) 

Rural Minor Arterial (FC6) 

Class III 

Rural Major Collector (FC7) 

Rural Minor Collector (FC8) 

Rural Local (FC9) 

Class IV Urban Interstate (FC11) 

Class V 

Urban Other Freeway and Expressway 

(FC12) 

Urban Other Principal Arterial (FC14) 

Class VI 

Urban Minor Arterial (FC16) 

Urban Collector (FC17) 

Urban Local (FC19) 

 

 Scenario 12 - 48 Hour Short-Term Class Counts Using Loading Group 

Method. In this scenario, loading groups are developed based on the North 

Carolina DOT clustering method, which is provided in the Appendix G of the 

2013 version of Traffic Monitoring Guide (21). Damage factor metric is 

developed by NCDOT to investigate the fatigue damage caused by a particular 

axle type within a particular weight load bin. It is found that more than 99% of 

total damage is caused by Single and Tandem axle types, and therefore Tridem 

and Quad axle types can be excluded from the loading group development (21). 

Following the NCDOT procedure, the damage factors for each of the 20 WIM 
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sites are developed for each WIM station. It found that WIM data from Oklahoma 

DOT shows a similar character to NCDOT: about 99% of damage comes from 

Single and Tandem axles (shown in Table 2.7).  

Table2.7 Damage Caused By Each Axle Type 

WIM Single Tandem Tridem Quad 

1 19.74 79.36 0.83 0.08 

2 40.69 58.84 0.42 0.05 

3 29.76 66.88 2.74 0.62 

5 22.82 76.80 0.35 0.03 

6 13.71 83.71 0.54 0.05 

7 20.12 77.46 2.24 0.18 

9 26.69 71.92 1.27 0.12 

10 20.02 79.31 0.60 0.07 

11 22.24 72.45 2.46 0.85 

16 18.29 81.00 0.66 0.06 

21 40.86 58.70 0.40 0.04 

22 16.01 81.45 2.22 0.31 

23 19.78 78.12 1.94 0.15 

27 18.33 81.31 0.35 0.01 

28 13.99 85.65 0.31 0.04 

29 14.08 85.60 0.30 0.02 

30 23.72 73.34 0.76 0.17 

104 22.55 76.65 0.70 0.10 

114 14.95 83.39 0.61 0.05 

118 23.13 74.28 0.55 0.05 

Average 22.22 76.56 1.06 0.15 

 

 

Subsequently, hierarchical clustering analysis is applied to the damage spectra of 

four axle types. Clustering analysis including determining the number of clusters 

is achieved with the open source software R. Number of clusters is the first factor 



28 

 

that is decided in this study. Figure 2.6 is generated by R and is used to determine 

number of clusters in this research. The horizontal axis means number of clusters 

and the vertical axis means sum of variance within each group. An optimized 

number of clusters should balance these two numbers. According to this rule, 

three loading groups are identified with distinctive levels of load patterns (Light, 

Moderate, and Heavy) as shown in Figure 2.7a and Figure 2.7b. More information 

about clustering analysis can be found in the work by Wang et al. (25). Average 

traffic inputs of the load groups are obtained for each of the 20 WIM sites. 

Figure 2.6 Determining Number of Clusters 
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Figure 2.7a Three Levels of Loading Group 

Figure 2.7b Three Levels of Loading Group 
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Other Inputs for MEPDG 

AADTT & Traffic Growth Rate 

AADTT and traffic growth rate are the basic inputs for MEPDG. The field AADTT 

values are obtained from the 2009 Oklahoma Traffic Characteristics Report (23). In 

order to examine the impact of AADTT variations on pavement performance, three 

AADTT levels are studied for each site: low (0.5 times of field AADTT), normal (field 

AADTT), and high (1.5 times of field AADTT). Two growth rates are included: 2% for 

the lower level and 4% for the higher level 

Operating Speed 

All the WIM sites are located on National Highway Systems (NHS). The typical highway 

speed is from 60 mph to 75mph. In this study, 70 mph is applied to all WIM sites.  

Axle per Truck 

In this study, statewide "Number of Axles per Truck" values rather than MEPDG default 

are used for all designs (except for Scenario 9, MEPDG default), the most significant 

difference between these two groups of inputs is that Statewide values take quad axles 

into consideration, so it shall be more accurate than the MEPDG default in this research. 

The comparison of these two data sets is shown in Table 2.8.  

Climate 

Climate data are generated by the MEPDG software based on the WIM site GPS 

coordinates. Altitude data is acquired from the website 

http://www.daftlogic.com/sandbox-google-maps-find-altitude.htm from the GPS 

coordinates. A typical value of 10 feet of ground water level is applied for all WIM sites. 

A summary of altitude for all WIM sites is shown in Table 2.9. 

http://www.daftlogic.com/sandbox-google-maps-find-altitude.htm
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Table2.8Statewide and MEPDG Default “Axles per Truck” 

 Statewide MEPDG Default 

 Single Tandem Tridem Quad Single Tandem Tridem Quad 

Class 4 1.49 0.5 0 0 1.62 0.39 0 0 

Class 5 1.89 0 0 0 2 0 0 0 

Class 6 1 1 0 0 1.02 0.99 0 0 

Class 7 1.22 0.22 0.61 0.13 1 0.26 0.83 0 

Class 8 2.21 0.76 0 0 2.38 0.67 0 0 

Class 9 1.29 1.85 0 0 1.13 1.93 0 0 

Class 10 1 1 0.95 0.02 1.19 1.09 0.89 0 

Class 11 3.8 0.02 0.05 0 3.29 0.26 0.06 0 

Class 12 2.85 1.01 0.04 0.01 2.52 1.14 0.06 0 

Class 13 2.25 1.18 0.35 0.16 2.25 2.23 0.35 0 

 

Table2.9Altitude of WIM Sites In Oklahoma 

WIM ID Altitude (ft) 

1 700.708 

2 795.041 

3 1263.125 

5 592.439 

6 782.654 

7 1500.295 

9 960.126 

10 626.902 

11 1330.407 

16 642.043 

21 630.176 

22 430.013 

23 1322.493 

27 1005.426 

28 1320.431 

29 521.346 

30 1158.428 

104 1124.408 

114 1918.004 

118 1280.191 
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Percent of Truck In Design Lane 

Lane distribution factor, the percentages of trucks on the design lane, is another traffic 

factor. For pavement sections that have two lanes in one direction, a typical number of 

95% is applied, while for the two pavement sections where WIM 22 and WIM 23 locates, 

there is only one lane in each direction and 100% is used for the lane distribution factor. 

Percent of Truck In Design Direction 

Since no site-specific direction factor information is available, 50% is applied for all 

design and analysis, which means that traffic of the two different direction is equal. 
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CHAPTER III 

 

 

MEPDG RESULTS ANALYSIS 

 

MEPDG Pavement Performance 

Considering 20 pavement sites, 12 simulated traffic data collection scenarios, 3 AADTT 

level, and 2 growth rates, 1,440 MEPDG runs are performed. For each run, the following 

MEPDG pavement performance data are predicted: 

 Fatigue cracking (bottom-up alligator) in percentage (%), 

 Longitudinal cracking (top-down longitudinal) in ft/mi., 

 Total plastic deformation in terms of total rutting in inches, 

 Roughness in terms of international roughness index (IRI) in in/mi. 

 

Impact of Traffic Level 

Three traffic levels are defined to examine the impacts of traffic level on pavement 

performance: 

 Low: 0.5 times of field AADTT with 2.0% growth rate, 

 Medium: field AADTT with 4% growth rate, 

 High: 1.5 times of field AADTT with 4% growth rate.  

The predicted pavement performance is demonstrated in Figure 3.1a, b, c and d 
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Figure 3.1a Pavement Performance (Long. Crack) at Various Traffic Levels 

Figure 3.1b Pavement Performance (Alligator Crack) at Various Traffic Levels 
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Figure 3.1c Pavement Performance (Rutting) at Various Traffic Levels 

Figure 3.1d Pavement Performance (IRI) at Various Traffic Levels 
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At the end of the 20-year design life, the predicted fatigue cracking is less than 2% for all 

the 20 sites. All sites except the pavement sections located at WIM22 and WIM23 are 

predicted to have less than 100 ft/mi of longitudinal cracking. The predicted longitudinal 

cracking values at WIM22 section are 17.6 ft/mi, 66.9 ft/mi, and 123 ft/mi for low, 

medium, and high traffic levels, while those at WIM23 section are 120 ft/mi, 448 ft/mi, 

and 605 ft/mi. This may because that WIM 23 has only 4 inches of binder layer, roughly 

2/3 to half of other sites. The default recommended design limits in the MEPDG software 

for arterial roads are 25% for fatigue cracking and 2000 ft/mi for longitudinal cracking. 

Therefore, it is concluded that all the 20 sites don't show potential failure in terms of 

longitudinal cracking and fatigue cracking. 

 

The default recommended design limits in MEPDG are 0.75 inches for total pavement 

rutting and 172 in/mi for terminal IRI. As can be seen in Figure 3.1, many sites will fail 

at the end of 20-year design life according to these two criteria. For example, at WIM28 

section, the predicted total rutting at the end of 20-year, are 0.695 inches, 0.928 inches, 

and 1.068 inches, while the predicted IRI are 163.02 in/mi, 174.22 in/mi, and 182.57 

in/mi. 

 

The difference of predicted pavement performance for the three traffic levels is shown in 

Figure 3.2a, b, c and d. The predicted differences of longitudinal cracking and fatigue 

cracking are significant. 
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Figure 3.2a Pavement Performance Changes (Long. Crack) at Various Traffic Levels 

Figure 3.2b Pavement Performance Changes (Alligator Crack) at Various Traffic Levels 
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Figure 3.2c Pavement Performance Changes (Rutting) at Various Traffic Levels 

Figure 3.2d Pavement Performance Changes (IRI) at Various Traffic Levels 
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 If comparing to the "Medium" traffic level, only 25% of longitudinal cracking and 38% 

of fatigue cracking are predicted for low traffic level, while 181% of longitudinal 

cracking and 150% of fatigue cracking for high traffic level. There are on average more 

than 20% differences of rutting predictions. The average predicted total rutting for the 

three travel levels are 0.47 inches, 0.62 inches, and 0.72 inches. For predicted IRI, the 

average difference is 5%, which is approximately 7.5 in/mi of IRI difference.  

 

Impact of WIM Data Coverage 

The predicted pavement performance and the differences for Scenarios 1, 2 and 3 are 

plotted in Figure 3.3a, b, c and d. Since very few fatigue cracks are predicted and 

longitudinal cracking shows no potential failure, only IRI data and total rutting data are 

presented. Scenario 1 with continuous site-specific WIM data is used as the reference 

scenario. Even though variations are observed for the predicted longitudinal cracking and 

total rutting for the 20 pavement sites, the differences among these three scenarios are 

generally small. Comparing to Scenario 1, Scenario 2 and Scenario 3 predicts -3.65 to 

1.01 inch/mile of IRI, and 100.01% and 99.68% of total rutting. 

 

Therefore, it can be concluded that the traffic data from the three scenarios with various 

WIM data coverage results in minor difference of pavement performance. Collecting 

short-term one week WIM data per each season is adequate to provide accurate traffic 

classification and loading data for MEPDG. 
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Figure 3.3a Predicted Pavement Performance Changes (IRI) with Various WIM Data 

Coverage (Scenarios 1, 2, 3) 

Figure 3.3b Predicted Pavement Performance Changes (Rutting) with Various WIM Data 

Coverage (Scenarios 1, 2, 3) 
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Figure 3.3c Predicted Pavement Performance (IRI) with Various WIM Data Coverage 

(Scenarios 1, 2, 3) 

Figure 3.3d Predicted Pavement Performance (Rutting) with Various WIM Data 

Coverage (Scenarios 1, 2, 3) 
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Impact of Vehicle Distribution 

The predicted pavement performance and the differences for Scenarios 4, 5 and 6 are 

plotted in Figure 3.4a, b, c and d. Comparing to the reference Scenario 1, Scenarios 4, 5, 

and 6 predict -4.46 to 6.21 inch/mile of IRI, and 104.2%, 104.2%, 105.6% of total rutting. 

Two observations can be made based on the comparisons: 

The three scenarios using site-specific truck classification data but with different time 

coverage generate comparable pavement performance prediction. In other words, 

collecting one week short-term truck classification data per each season is adequate to 

provide accurate traffic classification data for MEPDG. In order to obtain annual or 

monthly average traffic volume for each truck class to calculate VCD and monthly 

adjustment factors (MAF), the short-term weekly data should be adjusted by day of week 

for each month to remove biases using existing long-term traffic data. The accuracy of 

VCD and MAF generation is depending on the quality of the existing long-term data 

within a highway agency. Due to the fact that Scenarios 4, 5, 6 use statewide axle load 

data rather than site-specific WIM data, these three scenarios predict higher longitudinal 

cracking and total rutting, which indicates that axle loading data have impacts on 

pavement performance. The impacts of axle loading will be further discussed later. 
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Figure 3.4a Predicted Pavement Performance Changes (IRI) with Various Classification 

Data Coverage (Scenarios 4, 5, 6) 

Figure 3.4b Predicted Pavement Performance Changes (Rutting) with Various 

Classification Data Coverage (Scenarios 4, 5, 6) 
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Figure 3.4c Predicted Pavement Performance (IRI) with Various Classification Data 

Coverage (Scenarios 4, 5, 6) 

Figure 3.4d Predicted Pavement Performance Changes (Rutting) with Various 

Classification Data Coverage (Scenarios 4, 5, 6) 
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Use of Regional and National Defaults 

Results for Scenarios 7, 8 and 9 are plotted in Figure 3.5a, b, c and d. The predicted 

pavement performance demonstrates very consistent results. Comparing to reference 

Scenario 1 with Level 1 WIM input, Scenario 8 (Statewide traffic averages) generates the 

most accurate results, followed by Scenario 7 (the LTPP-5(004) typical defaults), and 

Scenario 9 (MEPDG defaults). In all cases, Scenario 8 outperforms Scenario 9 by a wide 

margin with much accurate predictions. On average, Scenarios 7, 8 and 9 predict -5.93 to 

21.36 inch/mile of IRI, and 118.8%, 107.2%, 131.4% of total rutting. Using MEPDG 

default may cause significant errors of performance prediction. At minimum highway 

agency should use statewide average for the implementation of MEPDG if site-specific 

WIM data are not available. The LTPP pooled-fund study TPF-5(004) Tier 2 "Typical" 

defaults generate better results than those based on MEPDG defaults. However, 

significant differences of the predicted performance are observed at several sites.  Since 

LTPP TPF-5(004) defaults were developed based on only 26 LTPP WIM stations, the 

traffic results may not be applicable for some highway agencies to use them as traffic 

inputs. 
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Figure 3.5a Predicted Pavement Performance Changes (IRI) with Regional/National 

Traffic Defaults (Scenarios 7, 8, 9) 

Figure 3.5b Predicted Pavement Performance Changes (Rutting) with Regional/National 

Traffic Defaults (Scenarios 7, 8, 9) 
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Figure 3.5c Predicted Pavement Performance (IRI) with Regional/National Traffic 

Defaults (Scenarios 7, 8, 9) 

Figure 3.5d Predicted Pavement Performance (Rutting) with Regional/National Traffic 

Defaults (Scenarios 7, 8, 9) 
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Impact of Axle Loading 

The predicted pavement performance and the differences for Scenarios 10, 11 and 12 are 

plotted in Figure 3.6a, b, c and d. On average, scenarios 10, 11, and 12 predict -8.48 to 10.8 

inch/mile of IRI, and 99.7%, 103.6%, 101.6% of total rutting. Comparing to Scenarios 7, 

8, 9 using regional of national averages for axle loading, Scenarios 10, 11, 12 using 

clustering approaches generate more accurate results, which indicates that developing load 

groups is necessary to prepare better traffic data for the implementation of MEPDG. 

 

Theoretically, Scenarios 10, 11, 12 should generate more accurate pavement performance 

prediction results than those from Scenarios 4, 5, 6. However, comparing to Scenarios 4, 

5, 6 using site-specific classification data and statewide axle loading, these three 

scenarios based on 48-hour classification counts and clustering approaches produce 

comparable pavement performance predictions. This may be due to two reasons. Firstly, 

Scenario 10, 11, 12 use 48-hour classification data to predict AADTT for each truck class 

may not be as accurate as those predicted from continuous, one month per season, and 

one week per season classification data. As a result, the pavement performance prediction 

accuracy is sacrificed. Secondly, it may indicate that the three clustering approaches are 

not the optimized algorithms to group Oklahoma traffic patterns. The TTC approach 

(Scenario 10) only takes truck classification data but not weight data into consideration; 

the KYTC method (Scenario 11) is fundamentally based on highway functional class and 

may not be adequate to characterize truck patterns; the loading group method (Scenario 

12) depends on the clustering results from North Caronia DOT. Therefore it is suggested 
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developing state specific truck traffic patterns in order to generate accurate traffic load 

spectra for MEPDG. 

 
Figure 3.6a Predicted Pavement Performance Changes (IRI) with Various Axle Loading 

Methods (Scenarios 10, 11, 12) 
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Figure 3.6b Predicted Pavement Performance Changes (Rutting) with Various Axle 

Loading Methods (Scenarios 10, 11, 12) 

 
Figure 3.6c Predicted Pavement Performance (IRI) with Various Axle Loading Methods 

(Scenarios 10, 11, 12) 
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Figure 3.6d Predicted Pavement Performance (Rutting) with Various Axle Loading 

Methods (Scenarios 10, 11, 12) 
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CHAPTER IV 

 

 

DISCUSSIONS 

 

One pair of WIM sites with comparable AADTT and pavement structures are selected to 

provide detailed comparisons of traffic inputs from the 12 simulated scenarios: WIM 2 on 

I-35 2.6 miles south of Jt. SH-7 with an AADTT of 6907 and WIM 29 on I-40 0.5 Miles 

East Mile Marker 311 with an AADTT of 6721. Both sites are classified as highway 

functional class 1 (Rural Major Collector). Based on the loading group results from 

Scenario 12, WIM 2 belongs to "Light" axle loading group, while WIM 29 belongs to 

"Heavy" axle loading group. 

 

The vehicle class distributions of these two sites are shown in Figure 4.1a and b. All 

simulated scenarios except for Scenario 8 (State Averages) generate very similar results. 

Dominant percentage of class 9 long-haul vehicles are observed on the two sites. The 

MEPDG VCD defaults (Scenario 9) are the national averages for the general roadway 

category of "Principal Arterials - Interstates and Defense Routes". Because the state 

averages consider both long-haul interstates and local short-haul truck routes (generally 

with higher percentage of class 5 trucks), Scenario 8 demonstrates much higher 

percentage of class 5 vehicles. 
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Figure 4.1a VCD For WIM 2 

Figure 4.1b VCD for WIM 29 
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For All other scenarios, including those use site-specific one month or one week truck 

data per season, and 48-hour truck count data, develop almost identical VCD inputs. 

Therefore, at minimum 48-hour site-specific truck class count data rather than using state 

or national averages are required to obtain accurate VCD inputs. 

 

The tandem axle load distributions are summarized in Figure 4.2a and b. Scenarios 1, 2, 

and 3 produce almost identical axle loading data with two peaks, representing empty or 

lightly-loaded versus full-loaded heavy axles. WIM 2 has approximately equal 

percentage of empty and fully- loaded peaks, while WIM 29 has much higher percentage 

of fully-loaded axles and less empty axles. The peaks for WIM 2 are located at 10kips 

and 26kips, while WIM 29 carries heavier loads with two peaks at 12kips and 30kips. For 

WIM 2 site, axle loading spectra for Scenarios 10, 11, and Scenarios 4, 5, 6, 8 using state 

averages demonstrate similar trends, but have lower percentage of axle load bins at the 

two peaks, and higher parentages of heavy load bins greater than 30kips. For WIM 29 

sites, Scenarios 4, 5, 6, 8, 10, 11 have comparable peak 1 and heavy load bins greater 

than 30kips, but lower percentage of axle load bins at the second peak. Scenarios 7 and 9 

in Group 3 predict significant different tandem axle loading. Scenario 7 based on LTPP 

method shows abnormally high percentages of light axles around 6kips and 8kips, while 

Scenario 9 using national defaults demonstrates much higher percentages of heavy loads 

greater than 34kips. In addition, Scenario 12 also develops different load patterns for 

WIM 29 site with heavier second peak located at 30kips.  
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Figure 4.2a Tandem Axle Loading for WIM 2 

Figure 4.2b Tandem Axle Loading for WIM 29 
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The monthly adjustment factors for vehicle class 5 and class 9 are illustrated in Figure 

4.3a, b, c and d. Class 5 trucks on both sites show significant variations of monthly truck 

volume, while the volume for class 9 is relatively consistent within all scenarios. 

Scenarios with either site-specific WIM data or site-specific classification data (Scenarios 

2, 3, 4, 5, 6) can establish as accurate MAFs as those from the reference Scenario 1. 

Scenario 9 using national defaults and Scenario 10 based on TTC method demonstrate 

minor monthly variations. Scenario 8 based on state averages, Scenario 11 based on 

KYTC method, and Scenario 12 based on loading group method show notable 

differences of monthly factors. It should be noted that there is significant drop of class 9 

trucks in November and December, probably due to the holidays. 

The above discussions also indicate that no two sites share the same traffic 

characteristics. Truck volumes and weights can vary considerably from road to road and 

even from location to location along a road. Therefore, using site-specific data when 

possible is recommended for MEPDG. Short-term site-specific data if appropriately 

adjusted to annual average data can generate accuracy traffic inputs. 
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Figure 4.3a MAF (Class 5 Vehicle) for WIM 2 

Figure 4.3b MAF (Class 5 Vehicle) for WIM 29 
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Figure 4.3c MAF (Class 9 Vehicle) for WIM 2 

Figure 4.3d MAF (Class 9 Vehicle) for WIM 29 
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CHAPTER V 

 

 

CONCLUSIONS 

 

Recognizing that many highway agencies do not have the resources to collect continuous 

Level 1 WIM traffic data to accurately characterize future traffic for MEPDG, this study 

investigates the variability and impacts of traffic data on MEPDG predicted performance. 

Twelve traffic data input scenarios are simulated to include a combination of various 

traffic data acquisition technologies and length of time coverage at 20 WIM sites in 

Oklahoma. In total 1,440 MEPDG runs are performed for 3 AADTT levels and 2 growth 

rates. Based on comparison analyses, the following conclusions are made to guide 

highway agencies to prepare traffic data for the implementation of MEPDG: 

 Base year AADTT and traffic growth rate have significant impact on pavement 

performance.  

 Using traffic data from site-specific WIM sites with various lengths of time 

coverage results in minor difference of pavement performance. Collecting one 

week short-term WIM data per each season is adequate to provide accurate traffic 

classification and loading data for MEPDG. 

. 
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 Truck volumes and weights can vary considerably from road to road and even 

from location to location along a road. Using site-specific data, either short-term 

or long-term, when possible is recommended. 

 If properly adjusted short-term data by day of week for each month, collecting 

one week classification data per season is adequate to provide truck adjustment 

data. At minimum 48-hour site-specific truck class count data are recommended 

to obtain VCD inputs. 

 Axle loading data have impacts on pavement performance. Developing state 

specific truck traffic patterns is recommended to generate traffic load spectra. 

 Using regional or national default inputs, especially MEPDG defaults, may cause 

significant errors of performance prediction. At minimum highway agency should 

use statewide average if site-specific WIM data are not available. 
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