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Abstract: Lactic acid bacteria (LAB) are known producers of small, anti-microbial 

peptides termed bacteriocins.  The first study looked at the presence of bacteriocin 

producing (Bac+) LAB on unprocessed retail foods.  A total of 170 food samples from 

108 different food products yielded 43 isolates with antimicrobial activity against Listeria 

monocytogenes.  Isolated Bac+ LAB included Lactococcus lactis, Lactobacillus curvatus, 

Carnobacterium maltaromaticum, Enterococcus faecium, and Leuconostoc 

mesenteroides, including two Gram-negative bacteria, Serratia plymuthica, and Serratia 

ficaria.  A wide variety of food products contain Bac+ bacteria, but the majority were 

isolated from fresh vegetables.  These data propose that Bac+ LAB are widely dispersed 

as part of the natural flora of unprocessed foods. 

 

A second study examines the bacteriocin structural gene sequences of Enterococcus 

strains isolated from food as well as additional strains from animal sources.  This second 

study utilizes a PCR primer array containing 16 primer pairs to detect bacteriocin 

structural genes in 22 Enterococcus spp isolates.  Each isolate contained at least one of 

the screened structural gene with 15 of the 22 containing at least two.  Enterocin A 

(entA), enterocins mr10A and mr10B (mr10AB), and bacteriocin T8 (bacA) were the 

most commonly found structural genes in order of decreasing prevalence.  Our results 

display a high degree of bacteriocinogenic potential among enterococci which promise a 

part in biopreservation of food. 
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CHAPTER I 
 

 

REVIEW OF LITERATURE 

 

Introduction 

In 2001, the United States Centers for Disease Control and Prevention (CDC) estimated 

that cases of foodborne illness had reached numbers totalling 76 million (Cleveland et al., 

2001).  Of those cases, roughly 5000 estimated deaths had occurred (Cleveland et al., 

2001).  One category of foodborne illness, listeriosis, is a severe bacterial infection 

caused by the consumption of food contaminated with the bacterium Listeria 

monocytogenes.  Listeriosis is a high-risk illness among immunocompromised 

individuals such as the elderly, pregnant women, and children although it still presents a 

serious risk for other individuals with mortality rates ranging from 23 to 44 percent 

(Williams and Chanos, 2012).  Other serious foodborne pathogens include 

Campylobacter jejuni, Clostridium perfringens, Escherichia coli O157:H7, Salmonella 

spp., Staphylococcus aureus, and Toxoplasma gondii (Cleveland et al., 2001).  The total 

estimated yearly cost for treatment of all foodborne illness is between 6.5 and 34.9 billion 

dollars according to the CDC (Cleveland et al., 2001). 

While chemical treatments can adequately control the growth of some foodborne 
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pathogens, there is an increasing demand among consumers for food that does not contain 

what is deemed by them as harsh chemicals and which utilizes more mild and natural 

treatment (Wieckowicz et al., 2011).  Therefore, the food industry and their consumers  

need new technology to combat contamination of food by foodborne pathogens while 

appeasing consumers’ desire for more natural products (Wieckowicz et al., 2011).  Many 

papers have been written regarding the replacement of chemical methods of preservation 

in food including the use of ribosomally synthesized antimicrobial peptides (i.e. 

bacteriocins) in food (Casaus et al., 1997; Macwana and Muriana, 2012).  The world food 

supply relies strongly on the availability of fermented foods in the market that rely on the 

presence of lactic acid, but more recent studies have examined additional enhancement 

by antimicrobial peptides also produced by starter cultures (Nes et al., 2006; Nes and 

Johnsborg, 2004).  It is thought that bacteriocins have likely been consumed for centuries 

as fermented foods have a long history of consumption around the world (Cleveland et 

al., 2001).  Many bacteriocins found in food today are likely added unintentionally as a 

result of growth of the natural flora in food but also as a side product of added probiotics 

(Garver and Muriana, 1993; Nes et al., 2006).  Not only do bacteriocins display 

antagonistic activity towards foodborne pathogens but also show activity against spoilage 

organisms (Knoll et al., 2008; Macwana and Muriana, 2012).  Bacteriocins have varying 

inhibitory spectra, but provide a competitive and protective role against others species 

that are usually closely related (de Jong et al., 2006; Knoll et al., 2008).  Bacteriocins are 

naturally produced by bacteria and found in all major groups of bacteria and archaea 

(Gillor et al., 2008; Rince et al., 1997).  Bacteriocins were first studied and discovered 

among the Gram-negative Escherichia coli.  These colicins, as bacteriocins produced by 
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E. coli were named, have a large range of activity against other bacteria, especially those 

that were closely related (Cleveland et al., 2001).  Lactic acid bacteria (LAB) are 

particularly of interest among the bacteria which produce bacteriocins.  LAB are 

considered “generally recognized as safe” (GRAS) by the United States Food and Drug 

Administration (FDA).  While bacteriocins produced by the LAB are not automatically 

granted their GRAS status, the bacteria found in the food are still able to produce these 

compounds.  LAB such as Lactobacillus spp. are also well documented to have a 

probiotic effect when ingested from food (Casaus et al., 1997).  In addition to 

bacteriocins,  LAB are also seen to produce other inhibitory compounds such as reuterin 

and terutericyclin which inhibit a much broader range of organisms including fungi (Nes 

and Johnsborg, 2004).  Typically, bacteriocins produced by LAB will only be effective 

against Gram-positive bacteria because Gram-negative bacteria are protected against 

most of their activity by the outer membrane (Liu et al., 2011).  Even the bacteriocins 

which are able to inhibit Gram-negative bacteria do not have a broad range of activity 

(Liu et al., 2011).  Another significant inhibitor to pathogenic and spoilage bacteria is the 

production of lactic acid by LAB (Casaus et al., 1997).  Besides being inhibitors of 

foodborne pathogens, bacteriocins can be used in tandem with other antimicrobial 

treatments in what is known as the hurdle effect in order to increase preservation of food 

(Cleveland et al., 2001).  For example, the antimicrobial effect of nisin is enhanced when 

mixed with a metal chelating molecule like EDTA or a pulsed electric field which can 

also greatly increase its effectiveness against Gram-negative bacteria due to temporary 

pores being formed in their outer membrane (Cleveland et al., 2001).  Full suppression of 
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target organisms with bacteriocins can be rarely achieved due to inability to be fully 

distributed within a food matrix (Casaus et al., 1997). 

 

Nisin and its Use 

One example of a well-studied bacteriocin is nisin (Casaus et al., 1997), which displays 

antagonistic activity against a few major Gram-positive foodborne pathogens: Listeria 

monocytogenes, Clostridium botulinum, Staphylococcus aureus, and Bacillus cereus 

(Abee et al., 1995).  More recent studies have shown that Nisin may not be as effective 

against Listeria monocytogenes as other bacteriocins produced by LAB (Himeno et al., 

2012).  Cleveland et. al (2001), showed that 35 out of 40 tested isolates of Lactococcus 

lactis produce nisin.  Nisin is used as a direct food additive in 40 countries and has been 

used for an excess of 50 years (Casaus et al., 1997).  Nisin has been sold commercially as 

Nisaplin® since 1953 (Williams and Chanos, 2012) and is used as a food preservative in 

more than 50 countries (Himeno et al., 2012).  Notably, pediocin PA-1, produced by 

LAB Pediococcus acidilactici PAC 1.0, is also sold for commercial use although its 

inhibitory spectrum is not as broad as nisin (Casaus et al., 1997).  Currently, nisin is the 

only bacteriocin allowed by the FDA to be used as a food additive.  Other bacteriocins 

produced by LAB can be used as crude mixtures in “cultured whey” and “cultured milk” 

ingredients.  Nisin has a history of being used in meat, where its producer L. lactis is 

naturally found (Cleveland et al., 2001).  Unfortunately, Nisin has been shown to be 

potentially unstable pH values greater than 5, making it not optimal for use in meats 

which have higher pH values (Casaus et al., 1997).  The use of nisin in meat can reduce 
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the amount of required nitrite.  Nitrites are known to prevent sporulation of the anaerobic 

spoilage and toxigenic bacteria Clostridium spp. (Cleveland et al., 2001).  However, nisin 

cannot replace nitrites entirely because its universal distribution within meat cannot be 

practically achieved, and nisin shows a significantly higher solubility in low pH 

(Cleveland et al., 2001).  Cloning of nisin into a Lactococcus lactis starter culture for 

Gouda cheese has been demonstrated.  Sporulation of Clostridium tyrobutyricum was 

completely inhibited when a bacteriocin-producing starter culture was used (Abee et al., 

1995).  In addition, nisin can prevent the germination of Clostridium botulinum spores.  

Cleveland et al. (2001) speaks briefly about the concern for use of nisin in food and the 

increasing generation of cross-resistance of foodborne pathogens to vancomycin and 

several other antibiotics.  This concern is unfounded as bacteria that have been repeatedly 

exposed to nisin retain their resistances to vancomycin, ampicillin, and chloramphenicol 

(Cleveland et al., 2001).  It has also been shown that penicillin-resistant Staphylococcus 

aureus is 50 times more sensitive to nisin; however, resistance to nisin in Listeria 

monocytogenes is more dependent on lipid composition rather than an expressed 

immunity gene (Cleveland et al., 2001). 

 

Bacteriocin Structure 

Many bacteriocins have been studied and categorized based on their amino acid 

sequence, composition, and inhibitory spectra.  Some common features of bacteriocins 

include the presence of cationic charges, amphiphilic conformations, and interactions 

with target membranes (Knoll et al., 2008).  Bacteriocins also follow a common amino 
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acid makeup including low cysteine content with most molecules having one pair or less, 

low proline content with 74 percent of bacteriocins including one or fewer proline 

residue, net positive charge ranging from +1 to +12 and less than 12 percent having a 

negative charge, and a high hydrophobic residue content (Hammami et al., 2007).  

Bacteriocins start as larger molecules but are post-translationally cleaved of 18-24 amino 

acids which most likely constitutes a signal or recognition sequence for the export or 

relocation of the proteins (Allison et al., 1994).  For example, enterocin B, a bacteriocin 

synthesized by Enterococcus faecium, is originally 71 amino acids but becomes cleaved 

down to 53 amino acids before it is actived by an ATP-binding cassette (Casaus et al., 

1997; Cintas et al., 1998).  In addition, enterocin B displays a double glycine motif just 

before the cleavage site which is a common feature among bacteriocins (Casaus et al., 

1997).  This consensus double glycine is a common N-terminal recognition sequence in 

class 2 bacteriocins, discussed in the next section, which is used to help secrete the newly 

synthesized peptide (Cintas et al., 1998).  Other bacteriocins are secreted by a more 

general secretory pathway possibly involving a positively charged N-terminus and a 

hydrophobic core (Cintas et al., 1998). 

 

Bacteriocin Classes 

Bacteriocins have been divided into various categories or classes based on common 

features including conserved biochemical and structural properties, although some 

features cause them to be classified incongruently across researchers. De Jong et al. 

(2006) describes five factors used to classify bacterions which include homology to other 
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classified bacteriocins, presence of domains seen in members of the same class, 

bacteriocin size, and isoelectric point.  In contrast, Zouhir et al. (2010) describe the 

classification of bacteriocins as being based on activity, method of excretion, amino acid 

sequence, and mode of action.  The current method(s) of classifying bacteriocins is 

inconsistent and current confirmations of novel bacteriocins is reliant uponamino acid 

and gene sequences (Chang et al., 2013).  This is compounded by different researchers 

discovering the same bacteriocin at different times and giving them different names.  Of 

107 individual bacteriocins, 40 fell in one class and subclass while 20 fell into more than 

one class and subclass at the same time (Zouhir et al., 2010). 

Class I bacteriocins, known as lantibiotics, are unique because of the presence of unusual 

amino acids in their structures including lanthionine, methyl-lanthionine, 

dehydrobutyrine, and dehydroalanine (Cleveland et al., 2001; Wieckowicz et al., 2011). 

These bacteriocins are translated into precursor molecules which under extensive 

posttranslational modifications to create a final product (Chang et al., 2013).  

Unfortunately, the posttranslational modifications have rendered these bacteriocins 

impossible to chemically synthesize (Nes et al., 2006).  These peptides are useful because 

of their ability to inhibit growth of multiple-drug resistant pathogens and effective use at 

nanomolar concentrations (Deegan et al., 2010).  Class I bacteriocins are small, typically 

less than 5 kiloDaltons (kDa) (Williams and Chanos, 2012).  Subdivisions of class I 

bacteriocins separate peptides further based on other factors.  Members of subdivision Ia 

are hydrophobic, flexible, pore-forming, cationic, and commonly polycyclic and 

elongated (Cintas et al., 1998; Nes et al., 2006).  The positive charges within the 

lantibiotics most likely assist with pore-formation, specificially during the initial 
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interaction and insertion into a net anionic membrane (Deegan et al., 2010).   Nisin falls 

within class Ia.  Class Ib bacteriocins are rigid and globular with no net charge 

(Cleveland et al., 2001; Wieckowicz et al., 2011).  These subdivisions are not without 

classification ambiguities. For example, plantaricin C, produced by Lactobacillus 

plantarum, contains structural elements of both subdivisions in class I while bacteriocin 

lacticin 3247 contains two peptides, each belonging to the other class of lantibiotics and 

working in tandem for a greater antimicrobial effect (Nes et al., 2006). 

Class II bacteriocins are heat-stable and unmodified except for a disulfide bond between 

two N-terminal cysteine residues (Cleveland et al., 2001; Wieckowicz et al., 2011).  

Some other notable features of class II bacteriocins include a small size, typically less 

than 10 kDa, high glycine content, positive charge, amphiphilic structure, and activity 

against a wide range of Gram-positive organisms including L. monocytogenes (Williams 

and Chanos, 2012).  Class II bacteriocins are further broken up into subclasses IIa, IIb, 

and occasionally IIc and IId (Cleveland et al., 2001; Wieckowicz et al., 2011).  An 

important aspect of LAB bacteriocins are the IIa peptides, also known as pediocin-like 

bacteriocins.  These bacteriocins that display activity against L. monocytogenes have 

important disulfide bridges between cysteine resides on the N-terminal end of the protein 

(Cleveland et al., 2001; Wieckowicz et al., 2011), and have a structural identity on the N-

terminus consisting of the residues YGNGVxC with x representing any amino acid 

(Chang et al., 2013; Dirix et al., 2004).  Most class IIa bacteriocins permeabilize the 

membrane of target cells, with the mannose PTS system as a common target (Nes et al., 

2006).  Himeno et al. (2012) discovered that higher antimicrobial activity was found in 

bacteriocins with two disulfide bridges than those with only one, likely contributed to by 
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an increase in stability.  The consensus residues found in the N-termini of class IIa 

bacteriocins should be avoided when designing primers to amplify their genes. Class IIb 

bacteriocins consist of unmodified two-peptide systems that act synergistically to one 

another (Nes et al., 2006).  Enterocins L50A and L50B as well as enterocins X alpha and 

beta are examples of two-peptide bacteriocins that have greater activity together than 

individually (Cintas et al., 1998; Nes et al., 2006).  Class IIc and IId bacteriocins 

comprise categories of  leaderless and circular bacteriocins respectively (Nes et al., 

2006). 

Class III and class IV bacteriocins are less commonly discussed in the literature.  Class 

III bacteriocins are large, usually with an atomic mass of greater than 30 kDa and degrade 

when heated (Williams and Chanos, 2012).  Class IV bacteriocins, such as plantaricin S, 

form aggregate structures with other molecules like sugars and lipids (Cleveland et al., 

2001; Wieckowicz et al., 2011).  Due to their large complexes, no class IV bacteriocins 

have been purified (Cleveland et al., 2001; Wieckowicz et al., 2011). 

Overall, the literature is inconsistent with the classification or acknowledgment of 

existing classes of bacteriocins.  Dirix et al. (2004), and Nes and Johnsborg, 2004 only 

divide bacteriocins into classes I and II with no mention of classes III or IV. Knoll et al. 

(2008) and Yi et al. (2010) describe bacteriocins in terms of the first three classes. When 

speaking of classes, a majority of the literature places bacteriocins in four classes 

although one paper did not mention subclasses (Allison et al., 1994) while the rest did.  

The inconsistencies of classifying bacteriocins indicate a clear need for sequential 

classification of these proteins. 
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Assaying for Bacteriocin Proteins 

The classical method for identification of bacteriocin-like peptides is to define their 

biological and antagonistic activity against an indicator organism and then isolating it and 

examining the peptide structure (de Jong et al., 2006; Knoll et al., 2008).  An example of 

a common technique is the ‘lawn-on-spot’ assay in which a small amount of bacteriocin-

producing culture, typically 2.5-5 microliters, is put on appropriate media and then 

overlaid with media containing 0.75% agar and inoculated with 1% of a susceptible 

indicator bacteria (Allison et al., 1994).  LAB commonly produce significant amounts of 

lactic acid which may mask the antimicrobial activity; however, this can be alleviated by 

addition of buffer to indicator growth media.  In addition, levels of bacteriocin gene 

transcripts are usually low during early exponential phase and can be up to 4.6 to 7.5 fold 

higher in late exponential and early stationary phases (Sedgley et al., 2009).  Another 

typical assay for determining bacteriocin activity is the addition of a cell-free supernatant 

on top of an indicator layer similar to the method previously described – ‘spot-on-lawn’ 

(Williams and Chanos, 2012).  Williams and Chanos (2012) describe this procedure as 

misleading because it ignores the possibility that bacteriocins will be unstable after a 

period of time and a producer might generate more than one kind of bacteriocin which 

would make the results of the assay ambiguous.  Yi et al. (2010) is also critical of this 

assay, saying that it is not sensitive and requires a lot of time and effort to perform.  In 

addition, some bacteriocins are produced only on solid media with growth temperatures 

playing a large role in production (Nes et al., 2006).  For example, Enterococcus faecium 

L50 produces at least three separate bacteriocins and each has a different optimum 

temperature showing that antimicrobial activity may fluctuate with growth temperatures 



11 
 

(Nes et al., 2006).  Excessive dilution of some Bac+ cultures, for example Lactobacillus 

plantarum C11, can cause loss of their antimicrobial phenotype which will not be 

regained unless they are exposed to small amounts of spent media (Sedgley et al., 2009).  

Another functional assay involves quantification of activity by serially diluting 

bacteriocin-containing supernatants and testing each two-fold dilution against a common 

indicator typically in a microtiter plate which is analyzed by spectrophotometric 

interference cause by the growth of indicator organisms (Aymerich et al., 1996; Casaus et 

al., 1997).  Similarly, two-fold dilutions of cell-free supernatents can be plated on top of 

indicator lawns similar to the ‘spot-on-lawn’ assay.  One final assay for determination of 

activity involves the separating of proteins on a polyacrylamide gel and overlaying the 

gel with an indicator layer (Marugg et al., 1992).  A common problem with assays that 

measure activity is the description of that activity.  For example, Marugg et al., 1992 

describes bacteriocin strength in terms of arbitrary units (AU) which is defined as “5 

microliters of the highest dilution of culture supernatant yielding a definite zone of 

inhibition on the indicator lawn.”  The definition of AUs differs between literature 

sources.  For example, Aymerich et al., 1996 uses what they call a bacteriocins unit with 

one of such unit representing the amount of bacteriocins to inhibit growth of an indicator 

organism by fifty percent; this measure only applies to quantitative growth measurements 

such as with a microtiter plate assay (Aymerich et al., 1996).  Similarly, Cintas et al. 

(1998) describes their unit, called an antimicrobial unit, as the reciprocal of the highest 

dilution of the sample causing fifty percent growth inhibition which also must be read 

spectrophotometrically.  Synergistic effects of bacteriocins can similarly only be 

measured quantitatively and vary based on indicator organism (Cintas et al., 1998).  Mass 
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spectrometer identification can also have errors in results when oxidation of methionine 

residues and bridges between cysteine residues cause readings to be higher in atomic 

mass (Casaus et al., 1997).  Isolation of novel bacteriocins from cultures can be difficult 

when screening cultured food samples because culture companies may isolate cultures 

from their competition’s products for use in their fermented or cultured foods (Macwana 

and Muriana, 2012). 

While the aforementioned assays can detect bacteriocinogenic activity of cultures, they 

do not assess the protein structure or sequence and can provide little help in classifying 

bacteriocins.  In addition, bacteriocin activity is strongly affected by external conditions 

such as media content and physical parameters like temperature and pH (Cleveland et al., 

2001).  Traditionally, isolation of protein must first be performed in order to assess 

structure, and this commonly involves several time-intensive steps.  Chang et al. (2013) 

describe their method to extract and purify a bacteriocin from Enterococcus faecium 

D081821 to include cation-exchange, size-exclusion chromatography, and SDS-PAGE.  

The class IIa bacteriocin it contained eluted between 0.48M and 0.62M NaCl during 

cation-exchange, after 12.8 minutes for size-exclusion chromatography, and presented a 

band between 5 and 10 kDa on an SDS-PAGE gel (Chang et al., 2013).  Edman 

degradation, in which amino acids from proteins are labeled and removed from the N-

terminus is commonly used to obtain the amino acid sequence once the peptide has been 

purified (Casaus et al., 1997).  With the advances in PCR amplification and DNA 

sequencing, much of this work can be accommodated by sequence analysis. 
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Assaying for Bacteriocin Genes 

Recently, researchers have taken to screening genomes for the presence of bacteriocin 

genes instead of relying on functional assays (de Jong et al., 2006; Knoll et al., 2008).  In 

their research, Wieckowicz et al. (2011) aligned 44 class IIa bacteriocin genes.  From 

these, seven unique, degenerate primer pairs were manually created with the forward 

primer targeting the conserved amino acid sequence YGNGVxCxxxxC and the reverse 

primers located within the structural gene (Wieckowicz et al., 2011).  They describe the 

daunting task of creating a set of sufficiently degenerate primers for all sequences as 

impossible (Wieckowicz et al., 2011).  Instead of designed degenerate primers, Macwana 

and Muriana, 2012 designed a ‘PCR primer array’ in which 42 structural genes were 

screened simultaneously with one PCR cycle.  Bacteriocin genes can easily be identified 

in this fashion, although this technique can only target sequences of bacteriocins that are 

already known and cannot be used to assay genomes for new bacteriocin sequences 

(Wieckowicz et al., 2011).  Macwana and Muriana, 2012 designed their primers using the 

Primer Express software after obtaining sequences from GenBank.  Another possible 

drawback to this assay is the difference in melting temperatures between the primers 

which can cause nonspecific amplification if the entire primer array is run simultaneously 

under the same set of conditions.  However, primer design can be optimized to minimize 

temperature differences.  SYBR Green real-time PCR dye was utilized in this assay to 

detect amplification.  Amplimers were sequenced and BLAST was used to assess 

sequence identity and uniqueness (Macwana and Muriana, 2012).  Another genetic 

approach for using primers is to target conserved areas of bacteriocin genes.  Specifically, 

Yi et al. (2010) used primers which targeted the conserved regions of class IIa 
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bacteriocins – YGNGV at the N-terminus and LDNAIE located at the C-terminus.  They 

found discrepancies of the sizes of the amplicons which might indicate strain-specific 

organization of bacteriocin operons (Yi et al., 2010).  However, degeneracies of primers 

can cause large amounts of nonspecific amplification which can lead to problems during 

sequencing and identification (Wieckowicz et al., 2011).  In addition, changing 

parameters to accommodate for nonspecific amplification has been shown to only reduce 

amplification of the intended target (Wieckowicz et al., 2011). 

 

In silico Screening of Bacteriocins 

Most recently, researchers have utilized mass online accumulations of genome data to 

artificially screen for bacteriocin genes and bacteriocin gene clusters.  One strategy, 

similar to genetic screening involves searching for common motifs such as the double 

glycine residue found amongst bacteriocins, but this search technique will only bring up 

most of the class II bacteriocins and a few class I bacteriocins (Dirix et al., 2004; Nes et 

al., 2006).  Also useful for database searches are the peptide pheromones and unique N-

terminal peptidase C39 domain that exists in cognate ABC transporters (Nes et al., 2006).  

Bacteriocins are screened at the amino acid level but analyzed at the protein level (Dirix 

et al., 2004).  Dirix et al. (2004) utilized the Wise2 program which translates DNA into 

protein in six different reading frames to scan chromosomes and plasmids for genes.  Abi 

protein genes, a group of metalloproteases found in both eukaryotes and prokaryotes and 

thought to influence bacteriocin self-immunity, were the target of in silico search for 

bacteriocin genes (Kjos et al., 2010).  Genes from the NCBI database were used and 
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examined for similar structures to bacteriocins (Kjos et al., 2010).  Genes were classified 

as related to bacteriocins when their translated proteins were between 50 and 85 amino 

acids or they contained a double glycine or sec-dependent leader sequences (Kjos et al., 

2010). 

 

Bacteriocin Gene Operons 

Most bacteriocins exist as one structural gene that encodes for the functional peptide, but 

their genes are surrounded by other related genes that assist cells in processing and 

excretion of the peptides.  These functional operons commonly contain a structural 

protein, processing proteins such as cleavage enzymes, transport proteins, and immunity 

proteins and can be found on any genetic structure in the cells such as chromosomes, 

plasmids, or transposons (Cleveland et al., 2001; de Jong et al., 2006; Knoll et al., 2008).  

In particular, pediocin genes pedABCD were found on a 9.4 kilobase pair plasmid in 

Pediococcus spp. (Marugg et al., 1992).  These gene clusters are preceded by direct 

repeats between the -40 and -80 positions from the promoter (Sedgley et al., 2009) and is 

commonly followed by a rho-independent terminator which ends transcription (Casaus et 

al., 1997).  However, these terminators are not found between the genes of the bacteriocin 

operon which is an indication that the preceding genes are transcribed together (Casaus et 

al., 1997).  An example of a bacteriocin which contains a rho-independent stem-loop 

structure is lactococcin A (Holo et al., 1991).  Another common feature that precedes the 

bacteriocin operon is the double glycine leader sequence previously mentioned 

(Cleveland et al., 2001) which generates a β-turn in the peptide and allows it to be 
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cleaved by a protease (Allison et al., 1994).  The double glycine motif is structured as 

LSxxELxxIxGG and is common in bacterial pheromones which are used in quorum 

sensing activities such as virulence, competence, and production of antimicrobial 

peptides (Dirix et al., 2004).  This consensus sequence may prove to be too short and 

variable to be used as a target for specific primers.  Quorum sensing involves the 

detection of a constitutively-produced autoinducer by other cells when at high 

concentrations and causes the induction of other regulatory genes (Dirix et al., 2004).  

Bacteriocins are produced in this fashion by LAB (Dirix et al., 2004).  Lactobacillus 

plantarum C11’s production of bacteriocins functions by this mechanism that is very 

similar to the way virulence is regulated in Staphylococcus aureus (Diep et al., 1996).  Its 

bacteriocin is only produced when regulatory peptide, plantaricin A, is in a high enough 

concentration during the cell’s exponential phase (Diep et al., 1996).  Cells lacking the 

ability to produce plantaricin A also lacked any antimicrobial capability (Diep et al., 

1996). 

Gillor et al. (2008) notes the genetic organization for colicins which contain a toxin gene, 

a constitutive immunity protein, and a lysis gene.  In LAB, regulation often occurs by a 

two-component system involving a sensing mechanism and a response mechanism, 

usually via a histidine kinase cascade (Nes et al., 2006).  In addition, the operon is 

regulated by an SOS region upstream of the first gene (Gillor et al., 2008).  SOS regions 

are commonly regulated by a repressor, LexA, and an activator, RecA (Gillor et al., 2008).  

While the SOS regulon is common among many Escherichia coli genes, it is not 

commonly found in duplicate like it is among the colicins (Gillor et al., 2008).  By 

contrast, lacticin 481 produced by Lactococcus lactis is organized in an operon consisting 
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of six genes that all are in the same transcriptional direction with no terminator sequences 

(lctAMTFEG) between them (Rince et al., 1997).  Rince et al. (1997) describe some of 

the functions of these genes including antimicrobial activity (lctA), amino acid alterations 

(lctM), and an ABC transporter (lctFEG). 

 

Bacteriocin Immunity 

Another target for genetic approaches to bacteriocin screening is the presence of a 

bacteriocin immunity gene.  Genes within the operon are commonly tested for their 

ability to provide immunity by cloning into a sensitive organism behind a constitutive 

promoter and looking for any signs of inhibition (Kjos et al., 2010).  For non-lantibiotics 

the immunity protein will be found downstream of the structural protein; the two are 

often transcribed together (Casaus et al., 1997).  The immunity proteins can exist in 

several different forms and act by disrupting bacteriocin aggregation at the cell 

membrane, preventing pore formation, or eliminating the interaction between the 

bacteriocin and receptor on the membrane (Van Reenen et al., 2006).  Hydrophobic 

regions are common in immunity proteins and may confer ability to anchor themselves 

into a membrane (Aymerich et al., 1996).  Specifically, nisin immunity is caused by a 

forced sequester of bacteriocins on the cell membrane or active efflux of bacteriocins via 

ABC transporters (Kjos et al., 2010; Rince et al., 1997).  Lactococcin 481 genes lctFEG, 

producing an ABC transporter, provide for self-immunity in Lactococcus lactis (Rince et 

al., 1997).  All of the genes must be present in order for the bacterium to be immune; no 

combinations of two provided immunity (Rince et al., 1997).  Abi proteins also provide 
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immunity to Lactobacillus sakei 23K, the genes of which are located downstream of two 

bacteriocin-like genes (Kjos et al., 2010).  For in silico screening, Abi proteins could be 

used to potentially locate nearby bacteriocin genes.  The ability to produce gelatinase 

provides immunity for Enterococcus faecalis MC4-1 from its own bacteriocins and 

bacteriocins from members of the same strain (Sedgley et al., 2009).  The gelatinase is 

thought to degrade the bacteriocins but the absence of immunity during the growth of 

lawns implies that expression does not happen until MC4-1 enters its stationary phase 

(Sedgley et al., 2009). 

 

BAGEL: Genome Mining Tool 

While open reading frame (ORF) databases exist online, they are not properly annotated 

and cannot identify genes that are functionally similar but sequentially dissimilar (de 

Jong et al., 2006).  Bacteriocins fall into this category because they are small with poorly-

conserved ORF sequences and organization (de Jong et al., 2006).  De Jong et al. (2006) 

explains the potential uses of the BAGEL database for bacteriocin gene detection.  

BAGEL’s main function is to detect and identify bacteriocins and bacteriocin clusters 

found in the genomic information of microorganisms using information about processing, 

modification, transport, regulation, and immunity genes (de Jong et al., 2006; Nes et al., 

2006).  BAGEL uses FASTA, BLAST, hidden Markov models (HMM), Glimmer, RBS 

finder, Zcurve, and GeneMark along with three ORF prediction tools to scan for ORFs 

(de Jong et al., 2006).  It also uses common motifs (double glycine and FNDLV N-

terminal peptide) and adjacent genes (ABC transporters and the C39 family) to scan for 
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bacteriocin genes (de Jong et al., 2006).  BAGEL can also be used to design primers for 

putative ORFs in search results (Knoll et al., 2008).  The database can even be used to 

detect new bacteriocin genes that have not previously been sequenced. 

 

Enterococcal Bacteriocin Genes 

Enterococcus is a genus of lactic acid-producing bacteria that were originally classified 

under the genus Streptococcus until genetic analysis showed enough difference to 

separate them (Schleifer and Kilpper-Bälz, 1984).  Members of Enterococcus are Gram-

positive, non-sporulating, catalase and oxidase negative, facultative anaerobic, and grow 

in singlets, pairs, or in chains (Brandão et al., 2010).  Enterococci are members of the 

natural intestinal flora of mammals, including humans, but can also be sources of 

opportunistic disease (Kurushima et al., 2013; Nes et al., 2006).  Nosocomial infections 

caused by Enterococcus spp. include bacteraemia, endocarditis, and urinary tract 

infections especially in individuals who are immunocompromised (Rehaiem et al., 2014).  

Still, Enterococcus members retain their important lactic acid fermenting abilities which 

allow them to be used as starter cultures for dairy products (Rehaiem et al., 2014).  Some 

enterococci are thought to be the main fermenting bacteria that give unique flavors to 

artisanal foods especially near the Mediterranean including cheeses, sausage, and olives 

(Brandão et al., 2010; Nes et al., 2006).  Their ability to survive temporary high 

temperatures allow them to be useful in this way (Nes et al., 2006).  Members of 

Enterococcus, found in food or in other niches, have been found to produce bacteriocins 

and a large variety of other compounds which give them an environmental advantage 
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with most bacteriocins being obtained from species E. faecalis and E. faecium (Nes et al., 

2006).  Nes et al. (2006) discovered that there is no preferential niche for enterococci that 

can produce bacteriocins and found 44% of vancomycin resistant enterococci isolated 

from hospital patients had the ability to produce bacteriocins with the ability to produce 

three or four different bacteriocins to be a common feature.  Bacteriocins from 

Enterococcus spp. may be useful for applications as food preservatives, but virulence 

factors, such as gelatinase, adhesion to collagen, aggregation substance (asa1), an 

endocarditis antigen, and occasional ability to be β-hemolytic make them less desirable 

for addition to foods (Liu et al., 2011). 

 The bacteriocins of Enterococcus species can be divided into 5 groups.  Group one 

contains bacteriocins with antimicrobial activity against a wide variety of Gram-positive 

organisms but may be β-hemolytic; this group includes the lantibiotic cytolysin 

(Kurushima et al., 2013).  Similarly, members of group two are active against 

Streptococcus, Enterococcus faecalis, and Staphylococcus aureus; this group includes 

enterocin AS-48 and bacteriocin 21 (Kurushima et al., 2013).  Group three specifically 

acts against E. faecalis, E.hirae, and L. monocytogenes; a member of this group is 

bacteriocin 31 (Kurushima et al., 2013).  Groups four and five are active only against 

other members of Enterococcus, specifically  the species E. faecalis and E. hirae 

(Kurushima et al., 2013).  Some enterococcins have the ability to inhibit Gram-negative 

bacteria although this ability is uncommon and usually has a very small range of affected 

organisms (Liu et al., 2011).  For example, enterocins mr10A and mr10B from E. faecalis 

710C have the ability to inhibit growth of Brevundimonas diminuta UFM1, an 

environmental bacterium without the ability to ferment lactose (Liu et al., 2011). 
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Most bacteriocins produced by enterococci are plasmid-encoded and belong to the 

nonlantibiotics (class II) (Nes et al., 2006).  Exceptions include cytolysin (class I), a two-

peptide lantibiotic produced by E. faecalis which displays hemolytic and virulence 

activity, enterocin AS-48 (class III), and enterolysin A (class IV) (Brandão et al., 2010).  

Class IIa bacteriocins are perhaps the most relevant with their ability to kill L. 

monocytogenes (Nes et al., 2006).  Class IIa enterococins include enterocin A, enterocin 

P, and hiracin JM79 (Brandão et al., 2010).  Interestingly, enterocin A has been shown to 

have a synergistic effect with class IIc enterocin B (Brandão et al., 2010; Casaus et al., 

1997).  Enterocin A is encoded on the bacterial chromosome and is different than other 

class IIa bacteriocins in its N-terminus (Aymerich et al., 1996).  Class IIb enterocins 

require both bacteriocin genes in order to have an effect and an immunity gene encoded 

nearby (Nes et al., 2006).  Enterocins L50A, L50B, mr10A, mr10B, Q, and 1071 fall into 

this category all with slight homologies to two-peptide bacteriocins in other genera 

(Brandão et al., 2010; Nes et al., 2006).  Enterocins L50A and B are secreted without a 

leader peptide, co-transcribed without an immunity protein although they are transcribed 

as an inactive precursor so they are not cytotoxic until secreted, and are similar to 

staphylococcal hemolysins yet display no hemolytic activity (Cintas et al., 1998).  They 

retain their formylated methionine and do not appear to have any adjacent secretory 

mechanisms (Cintas et al., 1998).  Because of their retained f-Met, these bacteriocins are 

known as leaderless and cannot easily be detected by in silico screening (Nes et al., 

2006).  Similarly, BacL1 in clinical Enterococcus faecium isolates, part of a two-peptide 

system of what is known as bacteriocin 41, is secreted without processing and is similar 
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in structure to peptidoglycan hydrolases with its activity being dependent on its partner 

bacteriocin, BacA (Kurushima et al., 2013). 

Brandão et al. (2010) performed an experiment to detect bacteriocin structural genes 

within 224 Enterococcus bacteria of fecal origin.  Out of the 224, 102 displayed activity 

against L. monocytogenes, 104 had activity against other indicator organisms, and the 

remaining 18 had no significant antimicrobial activity (Brandão et al., 2010).  In their 

findings, enterocin P (entP) was the most common bacteriocin found followed by 

enterocin A (entA) and L50A and L50B (Brandão et al., 2010).  In addition, certain 

bacteriocins were only found from fecal samples of certain sources.  Both hiracin JM79 

and enterocin B (entB) were detected only from humans and pets and did not come from 

wild animals (Brandão et al., 2010).  Regardless, the presence of enterococcal bacteriocin 

genes are widespread through all ecological niches and may be useful when isolated, 

purified, and used as food preservatives even if the cultures may present too much of an 

infection risk. 

 

Conclusion 

The screening of lactic acid bacteria for the ability to produce bacteriocins can be 

important as the need for anti-pathogenic technology increases with a rapidly growing 

world population and increased emphasis on food safety.  In silico screening is frequently 

used prior to primer design in order to create a specificity of the primer that will apply to 

the gene and avoid nonspecific amplification with other genes.  However, a closer 

inspection of bacteriocin gene databases shows that many identical or highly similar 
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bacteriocin genes are given different names by different researchers.  Additional 

consensus is needed in order to adequately catalog discovered bacteriocins.  Bacteriocin 

structural gene sequences are not commonly conserved so a dedicated set of primers 

could not possibly amplify all potential genes in bacteriocin producers’ genomes.  

Conserved regions within the bacteriocin operon are regular targets for PCR 

amplification.  Primers designed for these conserved regions often contain nonspecific 

nucleotides to accommodate for the degeneracy of the genetic code which in turn 

dramatically increases the amount of nonspecific amplification generated by PCR.  Since 

only the structural genes of bacteriocins truly indicate if a strain has the ability to produce 

these antimicrobial peptides, they are the most logical target for PCR amplification.  In 

order to screen for a large number of sequences, PCR reactions can be run simultaneously 

with a different set of primers for each reaction.  The most common way to do this is to 

create 96-well plates containing the different reaction mixtures and run all of them in the 

same cycler.  The issue with this approach comes from finding annealing temperatures 

that work for all primers.  Regardless, our aim is to create a multi-reaction PCR plate 

with primers designed for screening of different enterococcal bacteriocin structural genes 

simultaneously from pre-screened cultures that display antagonistic ability against L. 

monocytogenes. 
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CHAPTER II 
 

 

ISOLATION OF BACTERIOCIN-PRODUCING LACTIC  

ACID BACTERIA FROM RETAIL FOODS 

 

Abstract 

This study examines the presence of bacteriocin-producing (Bac+) lactic acid bacteria (LAB) 

which can be isolated from food products.  Food samples were enriched briefly in MRS broth and 

plated onto MRSA plates.  Antimicrobial activity was determined by an indicator overlay 

method, using Listeria monocytogenes as the primary indicator.  Antimicrobial activity was 

detected in 20 of the 108 different food samples tested with a total number of samples reaching 

170.  Isolated Bac+ LAB included Lactococcus lactis, Lactobacillus curvatus, Carnobacterium 

maltaromaticum, Leuconostoc mesenteroides, in addition to other Bac+ strains such as 

Enterococcus faecium, Serratia plymuthica, and Serratia ficaria.  A wide variety of food products 

contain Bac+ bacteria, and many were isolated from fresh vegetables.  These data propose that 

Bac+ LAB are widely dispersed as part of the natural flora of unprocessed foods. 

 

Introduction 

Considering consumer’s interest in natural products and the high cost of foodborne illness, food 

producers look for new ways to preserve food.  The development of pathogenic strains with 
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increasing resistance to antibiotics is another concern the food industry is handling (Nes et al., 

2006).  Numerous papers have been published discussion and characterizing the use of 

ribosomally synthesized antimicrobial peptides, termed bacteriocins, as one possible way to 

replace chemical methods of preservation (Casaus et al., 1997; Macwana and Muriana, 2012).   

Bacteriocins are produced naturally in foods, and often bacteriocin-producing bacteria are added 

as started cultures to fermented foods widely sold in the marketplace (Nes et al., 2006; Nes and 

Johnsborg, 2004).  Not only do bacteriocins display antagonistic activity towards foodborne 

pathogens, but they also show activity against spoilage organisms (Knoll et al., 2008; Macwana 

and Muriana, 2012).  Bacteriocins have varying inhibitory spectra, but provide a competitive and 

protective role against others species to which they are closely related (de Jong et al., 2006; Knoll 

et al., 2008).  Bacteriocins can be used in tandem with other antimicrobial treatments in what is 

known as the hurdle effect in order to enhance the preservation of food (Cleveland et al., 2001).  

For example, the antimicrobial effect of nisin is enhanced when mixed with a metal chelating 

molecule like EDTA or a pulsed electric field which can also increase its effectiveness against 

Gram-negative bacteria due to temporary pores being formed in their outer membrane (Cleveland 

et al., 2001). 

Lactic acid bacteria (LAB) are a major grouping of bacteria that have been shown to produce 

bacteriocins.  LAB are Gram-positive and considered “generally recognized as safe” (GRAS) by 

the United States Food and Drug Administration (FDA); however, their bacteriocins are not 

automatically granted that status (Macwana and Muriana, 2012; Nes and Johnsborg, 2004).  LAB 

such as Lactobacillus spp. are also well documented to have a probiotic effect when ingested 

from food (Casaus et al., 1997).  Typically, bacteriocins produced by LAB will only be effective 

against Gram-positive bacteria, which includes L. monocytogenes, Staphylococcus aureus, and 

Clostridium botulinum, because Gram-negative bacteria are protected against most of their 

activity by the outer membrane (Liu et al., 2011). 
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Bacteriocins are typically categorized based on their amino acid sequence, composition, and 

inhibitory spectra.  Bacteriocins commonly include cationic charges, amphiphilic conformations, 

and interactions with target membranes (Knoll et al., 2008).  Bacteriocins are divided into classes 

based upon their common features including conserved biochemical and structural properties 

although some features cause them to be classified incongruently by different researchers.  Class I 

bacteriocins, known as lantibiotics, are unique because of the presence of unusual amino acids in 

their structures including lanthionine, methyl-lanthionine, dehydrobutyrine, and dehydroalanine 

and are small, typically fewer than 5 kDa (Cleveland et al., 2001; Wieckowicz et al., 2011; 

Williams and Chanos, 2012).  Class II bacteriocins consist of unmodified peptides that are heat-

stable, small, and have high glycine content (Wieckowicz et al., 2011; Williams and Chanos, 

2012).  This group of bacteriocins is known for their wide range of activity against Gram-positive 

organisms including L. monocytogenes (Williams and Chanos, 2012).  Class III and IV 

bacteriocins are less commonly featured in studies.  Both are large, with class IV bacteriocins 

forming large complexes with sugars and lipids and being difficult to purify (Cleveland et al., 

2001; Wieckowicz et al., 2011). 

Materials and Methods 

Bacterial Cultures, Growth Conditions, and Storage 

Cultures of the Bac+ LAB were stored after isolation by inoculating a colony into a test tube 

containing 9 mL of MRS broth and incubated overnight (12-16 hours) at 30
o
C.  Master cultures 

were created by centrifuging overnight cultures at 6000 RPM for 15 minutes, decanting the spent 

media from the LAB pellet, and resuspending the pellet in 2 mL of milk-based freezing media 

(11% non-fat dry milk powder, 1% glucose, 0.2% yeast extract).  Resuspended cultures were then 

aliquoted into 8 mL storage vials and stored at -80
o
C.  Listeria monocytogenes 39-2 was grown in 

tryptic soy broth and frozen master stock cultures were prepared as described above. 
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Isolation of Bacteriocin-Producing (Bac+) LAB from Food 

Food items were obtained from multiple stores in Stillwater, OK including Walmart, Food 

Pyramid, Crêpe Myrtle, and Consumers.  These consisted of raw meat, fruit, vegetables, and 

herbs; processed foods were avoided.  Food samples were cut (if too large) and enriched in 

Whirl-Pak® filter bags (Nasco, Fort Atkinson, WI) as a 10 fold weight/volume dilution in MRS 

Broth (Difco Laboratories, Detroit, MI) for 24 h at 30
o
C.  Newer food samples were enriched for 

4 h after isolation resulted in mostly bacteria of one genus and species.  Enriched broth was 

serially diluted and spread plate onto buffered (0.1 M sodium phosphate dibasic and 8 mM 

sodium phosphate monobasic) MRSA plates (Fig. 1).  Plates were allowed to dry before being 

covered in a thin layer of 1.5% agar MRSA (the sandwich layer).  Colonies sandwiched between 

the layers were allowed to grow until pinpoint or slightly larger in size, anywhere from 12 to 48 

h.  Once colonies had grown, molten 0.75% agar MRSA agar was inoculated with 1 ml of 

indicator organism (e.g. Listeria monocytogenes) per 100 mL of molten media and poured over 

the top of the sandwich layers.  Plates were returned to incubate at 37oC overnight.  Plates were 

checked for zones of inhibition and food isolate colonies were excised from between the 

sandwich and base layer by flipping the plate over and cutting through the base layer (Figs. 2 & 

3).  Colonies were subsequently quadrant streaked, patch plated, and spotted under a lawn of 

indicator organism to ensure isolation of bacterial colonies from each other. 

Extraction of Total Bacterial DNA 

Prior to extraction of DNA, overnight copies of the Bac+ isolates were inoculated into tubes 

containing MRS broth and grown at 30
o
C.  1 mL of overnight culture was transferred into sterile, 

1.5 mL microcentrifuge tubes and spun down in a centrifuge at 12,000xg for 1 minute.  Resulting 

supernatant was discarded, and pellets were washed twice in 0.5 mL of sterile, deionized water.  

The final pellet was resuspended in 100 μL pH 7.4 10 μM Tris.  Pellets resuspended in Tris were 
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transferred to new microcentrifuge tubes containing acid washed silica beads (VWR 

International, LLC, Radnor, PA) so that the liquid covers the top of the beads.  Bead-pellet 

mixtures were then put on ice for 3 minutes and subsequently transferred to a pulsing vortex with 

attached shaker head for 3 minutes.  After another cycle of chilling and shaking, samples were 

placed on ice for 4 minutes.  Tubes containing the beads and sheared cells were placed into a 

centrifuge and spun down at 12,000 xg for 2 minutes.  50-100 μL of supernatant containing 

extracted DNA was transferred from the top of the beads to a new microcentrifuge tube and then 

stored at -20
o
C until used further.  Concentration of DNA was then measured using a NanoDrop® 

ND-1000 spectrophotometer. 

  



29 
 

 

Figure 1.  Colony overlay assay (deferred antagonism) to identify bacteriocin-producing (Bac
+
) 

isolates. 
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Figure 2. Isolation and retrieval of Bac+ colonies from ‘sandwich overlay’ plates.  
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Figure 3. Confirmation of Bac
+
 phenotype from isolated Bac

+
 colonies. 
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Identification of Isolates by 16S rRNA Gene Amplification, Sequencing, and Analysis 

The amplification of 75 Bac+ isolates was assessed using PCR with universal 16S ribosomal 

RNA primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 1391R (5’-

GACGGGCGGTGTGTRCA-3’) described by Turner et al. (1999).  The PCR reaction mix 

consisted of the following: 

 1 μL total DNA extract (obtained as previously described)  

 5 μL of 5X GoTaq® PCR Buffer (Promega, Madison, WI)  

 2.5 μL of 15 mM MgCl2 solution  

 2 μL of 5 mM dNTP mix  

 1.25 μL of each primer at 10 μM (515F and 1391R) 

 0.25 μL of  5 U/μL GoTaq® Flexi DNA Polymerase (Promega)   

The final concentration of primers used was 500 nM in a final volume of 25 μL for each reaction.  

Reaction mixtures were placed into 0.2 mL PCR tubes and then subjected to thermal cycling 

using a PTC-200 Peltier Thermal Cycler (MJ Research, St. Bruno (Quebec), Canada) with the 

following thermal cycles:   

 initial denaturation at 95
o
C for 4 min 

 30 cycles of 94
o
C for 1 min (denaturation), 60

o
C for 45 s (annealing), and 72

o
C for 1 min 

(extension) 

 final extension cycle at 72
o
C for 4 min 

 final hold at 4
o
C 

All PCR reactions were run with a negative control (no added template DNA) and a positive 

control (using template DNA from previous runs).  PCR reactions were accompanied by agarose 

gel electrophoresis and DNA sequence analysis in both directions. 
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Amplimers of 16S rRNA genes were purified via the GenCatch™ Advanced PCR Extraction Kit 

(Epoch Life Sciences, Missouri City, TX).  The entire PCR reaction was transferred and mixed 

with 500 μL of supplied PX Buffer in a sterile microcentrifuge tube.  Buffered PCR reaction 

mixtures were transferred to the top of Spin Columns which rested in provided collection tubes.  

The mixture was centrifuged at 5000xg for 1 minute, and the filtrate was discarded.  The DNA 

retained by the Spin Columns was washed with WN Buffer and then WS buffer by adding 500μL 

to the column and centrifuging at 5000xg for 1 minute.  The filtrate was again discarded between 

and after washing.  Washed columns were spun down at 13,000xg for 3 minutes to dry.  Dried 

columns were placed into new microcentrifuge tubes and 25 μL of Elution Buffer was added to 

the center of the column membranes and allowed to sit at room temperature for 3 minutes.  Eluted 

DNA was collected by centrifuging the column at 13,000xg for 2 minutes and stored at -20
o
C 

until used. 

Purified DNA was submitted to the Dept. of Biochemistry and Molecular Biology Recombinant 

DNA/Protein Resource Facility (Oklahoma State University) using an automated DNA sequencer 

via “BigDye™”-terminated reactions analyzed on an ABI Model 3700 DNA Analyzer.  ABI 

sequence files were analyzed using MEGA5 by cutting out 5’ and 3’ regions of high background 

noise.  Both forward and reverse sequences were compared and aligned in order to increase 

accuracy.  Consensus sequences between the forward and reverse amplimers were analyzed using 

NCBI’s Nucleotide BLAST. Identities were recorded, and sequences are compiled together and 

aligned to create a maximum likelihood tree. 

Results 

In this study, our objective was to identify bacteriocinogenic LAB indigenous to raw and fresh 

retail foods.  We isolated Bac+ LAB from 23 food samples out of 170 total samples (13.5% 

occurrence).  This number falls slightly below the 21% isolation rate found previously when 
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enriching food samples before plating (Garver and Muriana 1993).  We isolated a total of 43 

Bac+ LAB colonies from the 23 food samples where we occasionally found two or three Bac+ 

organisms from a single food sample.  Isolates were identified by utilizing universal 16S 

ribosomal RNA primers in PCR reactions with extracted total DNA.  Our results revealed 43 

isolates spanning seven different genera (Table 1) including Lactococcus lactis (24, 55.8%), 

Carnobacterium maltaromaticum (8, 18.6%), Enterococcus faecium (5, 11.6%), Lactobacillus 

curvatus (3, 6.98%), Leuconostoc mesenteroides (1, 2.3%), Serratia plymuthica (1, 2.3%), and 

Serratia ficaria (1, 2.3%).  The phylogenetic distribution is shown in Figure 5 as a Maximum 

Likelihood Tree constructed using the MEGA 5 genetic analysis software.  

During our analysis, we observed a much higher incidence rate of Lactococcus lactis (24) than 

any other isolate.  This number was threefold the occurrence of the next most frequent organism, 

Carnobacterium maltaromaticum (8).  Lactococcus lactis isolates were obtained from green 

beans (GBN), radish (RD, RDSH), sweet potato (SP), yellow onion (YO), shredded lettuce (SL), 

jalapeno peppers (PJP), asparagus (ASPG), whole lettuce (FL), and bean sprouts (BSP).  

Lactobacillus curvatus isolates were obtained only from ground beef (BEEF) and the sole 

Leuconostoc mesenteroides isolate from breakfast sausage (BFS).  Carnobacterium 

maltaromaticum isolates were obtained from ground beef (LGBF, GBF), collard greens (COG), 

chicken wings (CHW), tofu (TOF), ground pork (GPK), and ground Angus chuck (GAC).  

Enterococcus faecium isolates were obtained from thyme (THYME) and pork sausage (GPK).  

The Serratia plymuthica isolate was obtained from russet potatoes (POT) while the Serratia 

ficaria isolate was obtained from Chinese celery (CCEL).  Although 25 samples were tested, no 

Bac+ LAB were isolated from fresh fruit
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Figure 4.  Representative bacteriocin inhibition zones obtained after Listeria monocytogenes 

indicator agar was overlaid onto ‘sandwiched’ colonies plated from enriched food samples. The 

Bac+ colonies were then isolated/purified as indicated above, identified by 16S rRNA sequence 

analysis, and characterized for potential use as food preservatives.  
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Table 1 – Food samples and numbers and identities of isolated Bac+ microorganisms. 

 Food Sample Samples 

with Bac+ 

LAB 

Total # 

Samples 

Genus/Species 
M

ea
t 

an
d
 P

ro
te

in
s 

Ground Beef 2 6 

Lactobacillus curvatus  

BEEF 2L-1/2L-2/3 

Carnobacterium maltaromaticum 

LGBF-1, GBF-1 

Pork Sausage 2 10 

Leuconostoc mesenteroides  

BFS-1 

Enterococcus faecium 

JCP-9/B-5/M-2 

Tofu 1 2 
Carnobacterium maltaromaticum 

TOF-1 

Chicken Winglets 1 1 
Carnobacterium maltaromaticum 

CHW-1 

Ground Pork 1 3 
Carnobacterium maltaromaticum 

GPK-1 

Ground Angus Chuck 1 1 
Carnobacterium maltaromaticum 

GAC-1/2 

Ground Turkey 0 5   

Beef Roast 0 2   

Honey Ham 0 1   

Pork and Chicken Brats 0 2   

Pork (for stew) 0 1   

Chicken Gizzards and Hearts 0 1   

Hot Dogs 0 1   

Cubed Ham 0 2   

Cube Steak 0 1   

Shredded Ham 0 1   

Beef Tripe 0 1   

Chicken Breast 0 1   

Ground Chicken 0 1   

Pork Meatball 0 1   

Chicken Feet 0 1   

V
eg

et
ab

le
s 

Green Lettuce (Whole) 1 2 
Lactococcus lactis 

FL-1/2/M-1/S-2 

Asparagus 1 2 
Lactococcus lactis 

ASPG-1/2/3 

Iceberg Lettuce (Shredded) 1 2 
Lactococcus lactis 

SL-1/2/3 

Yellow Onion 1 1 
Lactococcus lactis 

YO-1/2/3 

Raddish (Red) 2 6 
Lactococcus lactis 

RDSH-1/2/3, RD 

Poblano/Jalapeno Mix 1 1 
Lactococcus lactis 

PJP-1 
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Sweet Potato 1 3 
Lactococcus lactis 

SP-1/2 

Bean Sprouts 1 2 
Lactococcus lactis 

BSP 

Collard Greens 2 2 
Carnobacterium maltaromaticum 

COG-1 

Russet Potato 1 2 
Serratia plymuthica 

POT-1 

Green Beans 1 2 
Lactococcus lactis 

GBN-1/2/3 

Chinese Celery 1 1 
Serratia ficaria 

CCEL-1 

Green Onion 0 4   

Celery 0 2   

Anaheim/Jalapeno Mix 0 1   

Broccoli 0 2   

Fajita Veggie Mix 0 1   

Jalapeno 0 3   

Red Leaf Lettuce (Whole) 0 3   

Anaheim Pepper 0 1   

Bell Pepper 0 3   

Poblano Pepper 0 1   

Habanero Pepper 0 1   

Kimchi 0 1   

White Mushroom (Whole) 0 1   

Sugar Snap Peas 0 1   

Parsnip 0 3   

Portabella Mushroom (Whole) 0 1   

Artichoke 0 1   

Kale 0 1   

Green Cabbage (Whole) 0 1   

Carrot (Whole) 0 1   

Mustard Greens 0 1   

Leeks 0 1   

Tomatillo 0 1   

Crook Neck Squash 0 1   

Spinach (Whole) 0 2   

Shallots 0 1   

Yam 0 1   

Taro 0 1   

Japanese Sweet Potato 0 1   

Cauliflower 0 1   

Yu Choy 0 1   

Avocado 0 1   

Turnip 0 1   

Corn (on the Cob) 0 1   

Cucumber (Whole) 0 1   

Burdock (Whole) 0 1   

Bok Choy 0 1   
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Water Chesnut 0 1   

Egg Plant 0 1   

D
ai

ry
 Colby Jack Monterey 0 1   

Sheep Cheese 0 1   

Provolone Cheese 0 1   

 

F
ru

it
 

 

Cantaloupe 0 2   

Cherry 0 2   

Strawberry 0 2   

Lemon 0 1   

Lime 0 1   

Orange 0 2   

Kiwi 0 1   

Mango 0 2   

Blueberries 0 1   

Blackberries 0 1   

Red Grapes 0 1   

Banana 0 1   

Honeydew 0 1   

Peach 0 1   

Asian Pear 0 1   

Green Plantain 0 1   

Plum 0 1   

Nectarine 0 1   

Grapefruit 0 1   

Coconut 0 1   

H
er

b
s 

Thyme 1 1 
 Enterococcus faecium 

THYME 2/3 

Cilantro 0 3   

Baby Dill 0 1   

Mint 0 1   

Rosemary 0 1   

Sage 0 1   

Parsley 0 3   

White Garlic 0 1   

Ginger 0 1   

Lemon Grass 0 1   

Basil 0 1   

Horseraddish 0 1   

Garlic 0 2   
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Figure 5.  Maximum likelihood tree for 16S rRNA sequences of food-isolated Bac+ LAB 
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Discussion 

 

In recent decades, interest in bacteriocins, especially those of lactic acid bacteria, has increased 

due to their ability to inhibit foodborne pathogens and spoilage bacteria.  Additionally, 

bacteriocins may be able to replace some chemical preservatives and provide a more natural 

preservative ingredient as requested by consumer demand.  Many of these Bac+ bacteria are 

already found in foods available on the market, whether added intentionally or as part of the 

natural flora.  Many Bac+ lactic acid bacteria are added as starter cultures to fermented foods 

alternately consumed as probiotics (Casaus et al., 1997). 

Microbiological analysis of common, unprocessed market foods carried out in this study 

implicates a variety of bacterial genera with the ability to produce bacteriocins including some 

that are not members of the lactic acid bacteria.  The difference in numbers of isolates that are not 

LAB are not indicative of their relative presence on these food products.  Rather, the use of MRS 

media, selective for lactic acid bacteria, limits the recovery to organisms that can grow on it.  In 

addition, multiple samples of the same food product revealed an inconsistent presence of Bac+ 

bacteria upon repeated testing. 

We observed differences in the identities of LAB isolates upon altering enrichment time of food 

samples.  Initially, samples were incubated for 24 hours in MRS before plating.  Isolates gathered 

from this technique were mainly Lactococcus lactis and included isolates designated ASPG, 

RDSH, PJP, SL, SP, and YO.  Due to the high prevalence of Lactococcus lactis, we recommend 

reducing enrichment times to 4 hours in order to isolate the full array of other genera that may be 

present. 

According to our results, Lactococcus lactis was the most common Bac+ LAB isolated from 

foods followed by Carnobacterium maltaromaticum.  This may be explained by our initial 
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extended enrichment process when first collecting samples, providing the quickest-growing 

bacteria (or bacterium that can grow to the highest numbers) with an advantage during the final 

screening via plating to extinction and overlay with indicator.  Regardless, all isolates we 

obtained have been documented with the ability to produce bacteriocins (Aymerich et al., 1996; 

Diep et al., 1996; Foulds and Shemin, 1969; Holo et al., 1991; Martin-Visscher et al., 2008; 

Stiles, 1994). 

This work extends our knowledge of the ubiquitous distribution of Bac+ bacteria in foods.  The 

extent of this distribution allows for researchers to isolate Bac+ bacteria readily from available 

market sources.  This information may assist future work on isolating natural sources of 

antimicrobials that may be used against foodborne pathogens including Listeria monocytogenes. 
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CHAPTER III 
 

 

SCREENING OF BACTERIOCIN STRUCTURAL GENES IN ENTEROCOCCUS SPP. 

USING A PCR PRIMER ARRAY 
 

Abstract 

Twenty-two bacteriocin-producing Enterococcus isolates obtained from food and animal sources 

were screened for bacteriocin structural genes using a PCR primer array based on enterococcal 

bacteriocin gene sequences in the NCBI GenBank database.  Isolates screened included members 

from the following species: E. durans (1), faecalis (4), faecium (12), hirae (3), and thailandicus 

(2).  Each isolate contained at least one of the screened structural genes. Fifteen of the twenty-two 

isolates yielded at least two different bacteriocin genes.  Enterocin A (entA), enterocins mr10A 

and mr10B (mr10AB), and bacteriocin T8 (bacA) were the most commonly found structural 

genes in order of decreasing prevalence.  Our results confirm that enterococci display a high 

degree of bacteriocinogenic potential which may play promising a part in biopreservation of food. 

Introduction 

Chemical treatments may be able to control the growth of foodborne pathogens in food, but with 

growing consumer demand for natural products and ingredients and an increasing resistance to 

the use of antibiotics in animal feed, a new solution is needed.  Bacteriocins are ribosomally 

synthesized peptides produced by bacteria capable of killing other bacteria by forming pores in 

the target membrane and lysing the cell (Casaus et al., 1997; Macwana and Muriana, 2012).  

Bacteriocins are supposedly most effective against bacteria that are closely related (Cleveland et 



43 
 

al., 2001) but this doesn’t always hold true.  Of particular interest among the bacteria which 

produce bacteriocins, are lactic acid bacteria (LAB).  LAB are considered “generally recognized 

as safe” (GRAS) by the United States Food and Drug Administration (FDA) as food ingredients, 

including, bacteriocins produced by LAB in cultured or fermented foods (Macwana and Muriana, 

2012; Nes and Johnsborg, 2004).  Some LAB also produce other inhibitory compounds such as 

reuterin, terutericyclin, hydrogen peroxide, and lactic acid (Nes and Johnsborg, 2004). 

Bacteriocins are typically divided into a number of classes and subclasses based on physiological 

properties and activity; however, the number of acknowledged classes varies between 

publications.  While homology, size, and isoelectric point are common indicators used to classify 

bacteriocins, the current method of classifying and confirming novel bacteriocins relies on amino 

acid and gene sequences (Chang et al., 2013; Zouhir et al., 2010).  Bacteriocins are also given 

different names by researchers who discover the same bacteriocins at different times.  Of 107 

bacteriocins, 40 fell into one class and subclass while 20 fell into more than one class and 

subclass at the same time (Zouhir et al., 2010). 

Enterococcus is a genus in the order Lactobacillales in which members produce lactic acid and 

many have also been documented to produce bacteriocins (Kurushima et al., 2013; Liu et al., 

2011; Nes et al., 2006).  Members are Gram-positive , non-sporulating, catalase and oxidase 

negative, facultative anaerobic, and grow in singlets, pairs, or in chains (Brandão et al., 2010).  

Their ability to ferment sugars into lactic acid makes them important for starter cultures in 

fermented (‘artisanal’) dairy products.  Enterococci have the ability to produce a number of 

inhibitory compounds with simultaneous production of three to four bacteriocins being a common 

feature (Nes et al., 2006).  In a study of the distribution of enterococcal bacteriocin genes among 

clinical isolates, enterocin P was the most widely distributed bacteriocin followed by enterocin A, 

and enterocins L50A and L50B (Brandão et al., 2010).  Unfortunately, Enterococcus spp. also 

exhibit a number of virulence factors including gelatinase, adhesion to collagen, aggregation 
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substance (asa1), an endocarditis antigen, and β-hemolytic substances which make them less 

likely candidates for being directly added to food (Liu et al., 2011). 

Materials and Methods 

Bacterial Strains, Storage, and Growth Conditions 

This study included 22 isolates from the Enterococcus genus obtained from food, rumen samples, 

and fecal samples.  Within the 22, 12 belonged to E. faecium, 4 to E. faecalis, 3 to E. hirae, 2 to 

E. thailandicus, and 1 to E. durans.  The isolation and detection of antimicrobial activity was 

performed as described on page 26.  Frozen master cultures of enterococcal strains were stored in 

milk-freeze media at -80
o
C, and 100 μL of master culture was added to MRS broth at 30

o
C for 

12-16 hours prior to use.   

Primer Creation 

Bacteriocin genes were found using the online database Bactibase (http://bactibase.pfba-lab-

tun.org/main.php) and searching for individual gene sequences produced by members of the 

genus, Enterococcus.  Duplicates and highly homologous gene sequences were condensed into a 

single primer set. Gene selections were made using bacteriocin structural genes and neighboring 

immunity proteins.  Adjacent ABC transporters and other similar features were excluded due to 

high homology between genes.  Primers were designed from gene sequences using the online 

Primer3 software (http://simgene.com/Primer3).   Once created, primers were analyzed against 

each bacteriocin gene using the MEGA 5.2 software (http://www.megasoftware.net/) to ensure 

cross-amplification would not occur.  Primers were ordered from Integrated DNA Technologies 

(IDT, Coralville, IA). 

 

 

http://bactibase.pfba-lab-tun.org/main.php
http://bactibase.pfba-lab-tun.org/main.php
http://simgene.com/Primer3
http://www.megasoftware.net/
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PCR Detection of Enterococcal Bacteriocin Genes 

The presence of bacteriocin related genes was determined by PCR.  Initially, total bacterial DNA 

was isolated using the BAX® protease lysis method (DuPont Qualicon, Wilmington, DE).  

Overnight culture (5 uL) was lysed in 200 uL protease mixture at 55
o
C for 60 minutes followed 

by a deactivation step at 95
o
C for 10 minutes.  PCR amplification was performed on a DNA 

Engine Opticon 2 (MJ Research, St. Bruno, Quebec, Canada) in 25 uL reaction mixtures.  Each 

reaction contained iTaq™ Universal SYBR® Green Supermix (Bio-Rad, Hercules, CA), a final 

concentration of 60 nM for each primer, and 5 uL of the cell lysate diluted 1:5.  The cycling 

program was preceded by an initial denaturation at 95
o
C for 15 minutes.  The specific cycling 

parameters consist of 40 cycles of the following denaturation at 95
o
C for 15 seconds, annealing at 

60
o
C for 60 seconds, and elongation at 72

o
C for 60 seconds followed by a plate read.  PCR 

products were verified by melting curve analysis (50
o
C to 90

o
C with a read every 0.2

o
C and hold 

for 0.02 seconds) and electrophoresis on a 2% (wt/vol) agarose (FMC Corporation, Philadelphia, 

PA) gel at 80V for 1h, using a 100 bp ladder for size verification and viewed using the 

ChemiDoc™ XRS System UV transilluminator (Bio-Rad).  PCR products were purified using the 

GenCatch™ Advanced PCR Extraction Kit (Epoch Life Science, Missouri City, TX) and 

submitted for sequencing to the Oklahoma State University Recombinant DNA and Protein Core 

Facility. 

Results 

Enterococcus spp. are commonly found among other lactic acid bacteria in food and the 

environment.  Enterococci have been documented to produce bacteriocins which may give them 

an environmental advantage (Nes et al., 2006).  The ability to produce several bacteriocins is also 

a common feature seen among these lactic acid bacteria (Nes et al., 2006).  Bacteriocin-producing 

strains of Enterococcus have been isolated from fermented  foods (Rehaiem et al., 2014), the 
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intestinal flora of mammals including humans (Kurushima et al., 2013), and retail meat (Garver 

and Muriana, 1993). 

Primer Design 

We found 37 Enterococcus bacteriocin DNA sequences in the Bactibase database and used them 

for creating primers.  Aligning the sequences in the database revealed that genes with identical 

sequences were denoted as different bacteriocins with different accession numbers.  Upon 

removal of highly homologous sequences, the DNA sequences were condensed to 16 unique 

sequences listed in Table 2 with highly homologous sequence names under the heading 

“Homologous Genes.”  Primary names for the primer pairs created with homologous genes were 

chosen subjectively.  Figure 8 shows a maximum likelihood tree, created with the MEGA 5.2 

software, of the bacteriocin genes used in this study. 

 

PCR Detection of Enterococcal Bacteriocin Genes 

The 22 Enterococcus isolates used in this study possessed the ability to inhibit growth of Listeria 

monocytogenes and contain at least one bacteriocin gene.  Gene presence is shown in Table 3 

along with homology to the documented gene sequence listed in Table 2.  In this study, the gene 

for enterocin A (entA) occurred most frequently (77.3%) with at least one isolate in each species 

showing amplification for this gene.  The amplification using the mr10AB primers was the next 

most frequently detected bacteriocin (63.6%).  Homology relatedness values for these amplicons 

with various Enterococcus bacteriocins are presented in Table 3.  Sequences obtained from 

bacteriocin mr10AB primers were all more homologous to L50A and L50B enterococcin 

sequences in the GenBank database.  L50A/L50B and mr10AB are highly homologous (>95%) 

and were considered interchangeable in this study.  Other percentages for amplification of 

specific structural genes from among our isolates are bacA (31.8%), enxAB (18.2%), entP 
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(18.2%), entB (9.1%), and munA (9.1%).  Structural genes for avicin A (avcA), columbicin A 

(colA), durancin Q (duqQ), enterocin 96 (ent96), enterocin C (entC), enterocin SE-K4 (entSE-

K4), enterocins W α and β (enwAB), enterocin Q (entqA), and mundticin KS (munA) were not 

detected among our isolated strains.  Sequenced amplicons were aligned using the MEGA 5.2 

software and a maximum likelihood tree was created and presented in Figure 9.
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Table 2. Bacteriocin structural gene primer sequences used in this study. 

Primer Target Gene Sequence (5'->3') 

Product 

Size (bp) Included Genes Homologous Genes 

1 

Avicin A (avcA) - FJ851402.1 

236 

avicin A precurson (avcA) 

immunity protein (avcI) 

divergicin-like bact (avcB) 

sakacin X (sakX) Forward ACG CGA AAT GAA GAA TGT TG 

Reverse TTT CAT TTC CGC CAG AAA AC 

2 

Columbicin A (colA) - EF033111.1 

299 
columbicin A (colA) 

hypothetical protein (orfB) 

bovicin A (bovA) 

enterocin as-48 
Forward TTT TTC TTG GGT TAT TTA CAG GAA 

Reverse ATG TGC AAT GGG CAA AAA CT 

3 

Durancin Q (duqQ) - AB284369.1 

384 

immunity protein (duqI) 

durancin Q (duqQ)         

inducing peptide (duqF) 

durancin TW-49 (durM) Forward GCA CTG ATT CCG GCA CTA AT 

Reverse CGT AAC TCT AAT GGC GGG AAG 

4 

Enterocin 96 (ent96) - FJ769024.1 

291 enterocin 96 - Forward GTG GAG AGG ACG AAA GGA GA 

Reverse TTG ATT AGT GGA GAG GAC GGT TA 

5 

Enterocin mr10A/mr10B (mr10AB) 

247 
enterocin mr10A (mr10A) 

enterocin mr10B (mr10B) 

enterocin JSB (entJSB) 

enterocin NA (entNA) 

enterocin NB (entNB) 

enterocin L50A (entL50A) 

enterocin L50B (entL50B) 

enterocin 62-6A (ent626A)                    

enterocin 62-6B (ent626B)                

enterocin RJ-11 

Forward ATG GGA GCA ATC GCA AAA T 

Reverse CAT CCT TGT CCG ATA AAC TGC 

6 

Enterocin C (entC) - FU862242.1 

506 

enterocin C1 (entC1)     

enterocin C2 (entC2)     

enterocin C immunity (entCI) 

enterocin 1081A 

enterocin 1071B 
Forward AGG TCC AGC TGC TTA TTG GA 

Reverse CCA TTA GAA TGA ATA CGC TAA AGA AA 

7 

Enterocin SE-K4 (entSE-K4) - AB092692.1 

608 

enterocin SE-K4 (entSE-K4)                                         

enterocin precursor (orf7)  

entSE-K4 homologue (orf8) 

entSE-K4 immunity (orf9)  

bacteriocin II (D78257.1)                                           

enterocin TW-21      

Bacteriocin 31 
Forward ATG TAG AAG CCG CCA CGT AT 

Reverse AAT CCC AAT CAT CCC ACA AA 
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8 

Enterocin EJ97(ej97a) - AJ490170.1 

104 enterocin ej97 - Forward AAA GCG ATG ATT AAG AAG TTT CC 

Reverse TCC CAA GGA TAA CGA CCG TA 

9 

Enterocin Wα/Wβ (enwAB) - AB600897.1 

423 
enterocin W alpha (enwA) 

enterocin W beta (enw B) 
- Forward GGG GTT GAA TTA TTG TAG AAA GGA 

Reverse AAC TAG CCT CTA CCG CCA CA 

10 

Enterocin Q (entqA) - DQ832184.1 

231 enterocin Q (entqA) - Forward ATC ACA AAG TGA GCC CCT GT 

Reverse TGG TAT CGC AAA ATG GAT GA 

11 

Enterocin P (entP) - AF005726.1 

431 
enterocin P (entP)              

enterocin P immunity (entQ) 
- Forward TTC CCC GAA GAA TAC AAA TGA 

Reverse AAT TTC TGG GGT GGC TAA TG 

12 

Enterocin A (entA) - AF240561.1 

362 
enterocin A (entA)        

immunity protein (entI) 
- Forward AAA ATA AAT GTA CGG TCG ATT GG 

Reverse CCA GCA GTT CTT CCA ATT TCA 

13 

Enterocin B (entB) - U87997,1 

257 enterocin B (entB) enterocin CRL35 Forward CAG AGT TCC CAA CTG TTT GCT 

Reverse AGC CCA TGC TAG TGG TCCT T 

14 

Enterocin Xα/Xβ (enxAB) - AB430879.1 

321 
enterocin X alpha (enxA) 

enteorcin X beta (enxB) 
- Forward GGACAATTTATGGGTAAACAAGC 

Reverse TACGTCCACCATTCCAACCT 

15 

Bacteriocin T8 (bacA) - AB178871.1 

469 

bacteriocin precursor (bacA)                       

hypothetical immunity protein 

(bacB) 

hiracin JM79 

Bac43 
Forward TTGTCTAGCTGGCATCGGTA 

Reverse CCAATAGAAGCCCATCCTCT 

16 

Mundticin KS (munA) - KC291253.1 

285 mundticin KS (munA) 
mundticin L (munL) 

 enterocin HF 
Forward AAA AGG GTG CAG TGT TGA TTG 

Reverse TCC ACT GAA ATC CAT GAA TGA 
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Figure 5. Quantitative PCR amplification plots for Enterococcus structural genes. 

a) 323RL1 (Enterococcus hirae). From high to low fluorescence end points: 16S Control 

(Ct=22.2), entA (Ct=30.3), munA (Ct=24.8), mr10AB (Ct=24.9), and bacA (Ct=38.3). 

b) Milk5 (Enterococcus faecium). From high to low fluorescence end points: 16S Control 

(Ct=22.4), bacA (Ct=23.5), entP (Ct=32.3), and mr10AB (Ct=34.9). 

c) FS707 (Enterococcus durans).  From high to low fluorescence end points: 16S Control 

(Ct=20.2), munA (Ct=24.3), and mr10AB (Ct=25.5).  
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Figure 6. Gel electrophoresis of amplified Enterococcus bacteriocin genes. 

Wells, from left to right: 100kb Ladder (a), 16S Control (b), NP-7 entA (c), JCP-9 mr10AB, JCP-

9 entP (d), JCP-9 bacA (e), JCP B-5 ent96, JCP B-5 mr10AB, JCP B-5 entP (f), JCP B-5 bacA 

(g), THYME2 entA (h), THYME2 entB, and THYME3 entA (i).  

a 

b 

c 
d 

e 
f 

g 

h 
i 
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Table 3. Enterococcus strains used in this study and sequence homology to the bacteriocin 

structural gene 

Isolate Species entA mr10AB
1
 enxAB bacA entP entB munA 

FS707 durans             99% 

BJ-12 faecalis 100%
2
             

BJ-13 faecalis       99%       

BJ-19 faecalis 100%             

BJ-27 faecalis 100% 96%           

326F faecium 100% 92% 99% 99%       

FS56-1 faecium 100% 97%           

FS97-2 faecium 100% 99% 100%         

JCP B-5 faecium   97%   100% 99%     

JCP M-2 faecium   95%   100% 99%     

JCP-9 faecium   98%   100% 99%     

Milk12 faecium 100% 99%   100%       

Milk5 faecium 100% 99% 100% 99%       

NP-7 faecium 100%             

Poop4 faecium 100% 96% 100%     99%   

THYME2 faecium 100%         100%   

THYME3 faecium 100%             

323F hirae 100% 97%           

323RL1 hirae 100% 96%         99% 

341FA hirae 100% 93%     99%     

FS92 thailandicus 100% 97%           

RP-1 thailandicus 100%             

 

1
 Homology values in this column are related to the genes for L50A and L50B.  L50A and B 

sequence obtained from NCBI's database.  

2
 Homology percentages based on highest “Max Score” by NCBI’s nucleotide BLAST program. 
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Figure 7. Maximum likelihood homology tree of structural gene sequences used in this study 

obtained from the Bactibase database. 
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Figure 8. Maximum likelihood homology tree of sequenced structural genes amplified from 

Enterococcus strains isolated in this study 
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Discussion 

Enterococcus spp. are widely distributed within most ecological niches.  Of particular interest is 

their role in the creation of fermented foods and the synthesis of antimicrobial compounds such as 

bacteriocins.  Enterococci are part of the natural flora of the mammalian gastrointestinal tract but 

can also be the cause of nosocomial infections (Rehaiem et al., 2014).  Their presence of part of 

the flora isolated from artisanal food products made from raw ingredients has been the subject of 

debate on whether they should be considered as food starter cultures (Kornacki, 2012).  Surely, 

some strains produce virulence factors and some enterococci are listed as BSL-2 strains. 

However, their ability to produce bacteriocins makes them viable candidates for food 

biopreservation. 

Naming conventions for bacteriocin structural genes are often inconsistent.  Of the 16 target 

structural genes in this study, nine had at least one additional structural gene to which they were 

highly homologous or identical, with four of them having at least two.  For just the structural 

genes mr10A and mr10B (transcribed together), genes with high homology include enterocin 

JSB, enterocins NA and NB, enterocins L50A and L50B, enterocins 62-6A and 62-6B, and 

enterocin RJ-11.  Common parts of the bacteriocin gene clusters were not included into the 

primer design such as ABC transporters and some N-terminal consensus sequences like those 

found in class IIa bacteriocins.  Immunity genes, which typically are preceded by their 

corresponding structural gene (Aymerich et al., 1996), were included in our primer design.  The 

inclusion of the immunity genes in primer design may interfere with the maximum likelihood tree 

in the homology comparison of the sequenced bacteriocin genes. 

Previous studies indicate that bacteriocin-producing members of Enterococcus have no 

preferential niche in the ecosystem (Nes et al., 2006).  Our isolates alone represent a wide 

distribution of food and environmental samples samples (Table 1) such as fecal matter (323F, 
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326F, 341FA, Poop4), meat (JCP-9/B-5/M-2), dairy (Milk 5/12), rumen fluid (323RL1) and herbs 

(THYME 2/3).  In addition, isolates from the same type of sample displayed similar bacteriocin 

structural genes. 

Enterocin A was the most commonly found bacteriocin structural gene from the 22 isolates we 

tested in this study.  Enterocin A shows sequence homology to class IIa bacteriocins such as the 

pediocin-like bacteriocins (Aymerich et al., 1996).  Given that the isolates are all able to inhibit L. 

monocytogenes, a high frequency of pediocin-like bacteriocins is normal due to their common 

ability to inhibit L. monocytogenes (Cleveland et al., 2001; Wieckowicz et al., 2011).  Further 

analysis to eliminate those that may be potentially pathogenic to humans may allow the remaining 

strains, or their derived culture supernatant fractions, to be used as biopreservatives in food 

applications.
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