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of ẍ(t) + 2 × 6% × (2π × 10)ẋ(t) + (2π × 10)2x(t) + 40x3(t) = 0 with
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30%× (2π× 5)ẋ(t) + (2π× 5)2x(t) + 20x3(t) = 0 with initial condition
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Abstract

This dissertation focuses on understanding and improving the “backbone” technique,

a Hilbert-transform based vibration signal processing technique developed by Dr.

Michael Feldman started in 1994. The concept of backbone seems straightforward

being a mapping between the instantaneous amplitude and instantaneous frequency

of vibration signals – mostly, free vibration signals of single-degree-of-freedom (SDOF)

systems. Dr. Feldman shows a correlation between backbone pattern and the type of

the underlying system nonlinearity. This motivated the utilization of the backbone as

a pattern classifier for rapid system identification and damage detection. Nonetheless,

unexpected “noisy” backbones – with oscillatory bodies and end(s) of these backbones

– were obtained previously instead without an understanding of what caused and

how to fix the problem that made the realization of the pattern classifier challenging.

The author therefore was set to find out the reason and fix the problem; a theoretical

approach would be taken whenever possible for a thorough understanding and remedy

in a fundamental manner.

First, we pay attention to the discrete Hilbert transform (DHT) as we deal with

real-world vibration signals that are, in general, finite and discrete. The end effect of

DHT is investigated, after which a two-step preprocessing procedure is introduced.

On one hand, theoretical justifications are provided for the preprocessing procedure.

On the other hand, numerical simulation examples are provided to demonstrate the

effectiveness in reducing end effect resulted from the procedure.

Unfortunately, even with the improved DHT procedure, we would still obtain

xviii



“noisy” backbones. We thus contemplate with a couple of carefully designed double-

component signals. We show both theoretically and numerically that “noisy” back-

bones with oscillatory bodies and heads are supposed to occur in this and other

multi-component signal. In the exploration of this phenomenon, we propose a con-

cept named after “time index” to capture the interaction of the two mono-components

that follow prescribed relations in their instantaneous quantities. By using this con-

cept, we arrive at a signal decomposition method and correct a major integral formula

in Dr. Feldman’s work.

The two-step preprocessing procedure for DHT and the time index-based signal

decomposition method are then used to extract backbones of a series of Duffing

oscillators, whose parameter values are designed so that these models mimic typical

nonlinear SDOF systems in structural engineering, the focused application domain in

this study. We perform a parametric study on the key parameters in these Duffing

oscillators, which confirms the validity of the backbone technique. More importantly,

we introduce the concept of instantaneous bandwidth to the backbone technique.

By using instantaneous bandwidth, we quantify the relations among displacement,

velocity and acceleration backbones in addition to other practical implementation

issues.

Last but not least, the improved backbone technique is applied to a couple of real

world data sets as the final tough test. Both promising results and technical challenges

are reported in the thesis. With the accomplished theoretical and numerical inves-

tigation, this study lays a solid foundation for further advancing both digital signal

processing and practical application aspects of this relatively new pattern classifier

for many possible engineering applications.
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Chapter 1

INTRODUCTION

1.1 Overview

Vibration signals have been heavily studied for the purpose of many engineering

disciplines including aerospace engineering, bio-medical engineering, civil engineering,

electrical engineering, mechanical engineering, and more. Figure 1.1(a) illustrates a

vibration signal as the free response of a single-degree-of-freedom (SDOF) system

which can be used to represent an object in the aforementioned disciplines.
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Figure 1.1: An idealized illustration of the backbone as a projection of a three-
dimensional (3D) view of time, instantaneous frequency (IF) and instantaneous am-
plitude (IA) of a vibration signal. (a) is signal in time domain; (b) is the backbone
curve, i.e., a projection of (t, ω, a) onto the (ω, a) plane; (c) is the 3D view of IF
(ω) and IA (a) time histories (in red) and three two-dimensional (2D) projections (in
blue).

This signal is normally a transient signal with a decaying profile in amplitude –

among many other subtle details. Such a signal is the focus of this entire dissertation.

Many vibration signal analysis research topics are dedicated to identifying the prop-

erties of the system underlying the signal, such as modal frequencies and damping

ratio. Here, the goal would be to extract system properties concerning the existence

and types of nonlinearities. This is the big picture concerning nonlinear system iden-

tification and damage detection, where signal processing and data analysis play a

critical role.

The heart of this research is to represent a transient signal as illustrated above us-

ing a two-dimensional curve with a distinct feature called “backbone” – see Fig. 1.1(b)

– defined by the signal’s instantaneous characteristics. The concept of the “backbone”
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originates from Feldman’s work, e.g., [23, 29, 30]. It is said to be “a very helpful and

traditional instrument in vibration analysis” [30]. Fig. 1.2 showcases the capability

of the backbone technique for identifying many types of nonlinearity of SDOF mod-

els including but not limited to – according to [23] – nonlinear spring models (such

as hardening, softening, backlash, pre-compressed strings, bilinear, or impact), and

nonlinear damping models (frequency-dependent or frequency-independent).

ω

a

23

54

1

Figure 1.2: Backbones of typical nonlinear models: (1) linear; (2) hardening; (3)
softening; (4) backlash; (5) preload. This figure is reproduced by following [30].

We consider the backbone technique a nonlinear system identification technique

based upon instantaneous amplitude and frequency. The correspondence between

the backbone feature and type of nonlinearity given in Fig. 1.2 could be used as a

pattern classifier because different types of nonlinearities in the system would cause

the backbone to bend in different directions (with more details), whilst the backbone

will not bend at all for a pure linear system.

It needs to be emphasized that a meaningful backbone is not as easy to obtain

as it appears. We are usually left to deal with much more noisy backbones than the

one shown in Fig. 1.1(b). This is exactly the challenge our previous research team

encountered [46]. Understanding the reason underneath the noisy backbones and also
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overcoming them was the first motivation for this research so that feature extraction

and pattern classification could be achieved more confidently and conveniently as an

outcome.

Since no rigorous definition of backbone was given in any of Feldman’s series of

publications, one is proposed herein based on the understanding of his work:

Definition 1. The backbone for a real signal x(t) is the curve {(ω(t), a(t)) | t ≥ 0}

in the amplitude-frequency plane, where a(t) is the instantaneous amplitude and ω(t)

is the instantaneous frequency of the signal x(t), respectively.

The mapping from instantaneous amplitude to instantaneous frequency as shown

in Fig. 1.1(b) (or vice versa) is not necessarily one-to-one, even though a one-to-one

mapping would be preferred for the intended application specified above. Alterna-

tively, the backbone could be viewed as a projection of a three-dimensional curve (t,

ω(t), a(t)) onto the plane of ω and a - with t playing an important role in under-

standing the backbone, as illustrated in Fig. 1.1(c).

The existence and types of nonlinearities are considered an indicator in system

identification and damage detection [22, 76]. Motivated by identifying the existence

and types of nonlinearities, three-dimensional features, or, two-dimensional contours,

such as those from time-frequency analysis may or may not be a good option given

another equally important practical concern of compressing rather than expanding

data. Fortunately, the backbone representation offers a means for compressing data

leading to simplified patterns. This facilitate real-world applications in classification

of problems, which will enable, say, embedded systems, wireless communication, and

quick decision making. This is the intended application of this Ph.D. research.

The reason for choosing backbone technique over other well known techniques is

further explained herein. Traditionally, processing a signal like that in Fig. 1.1(a)

could be carried out by using Fourier analysis. However, Fourier transform (FT)

suffers to a great deal when signals are non-stationary, which is exactly the case here.
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Short-time-Fourier-transform (STFT) could be useful for time-frequency analysis,

however it is not surprising to know that STFT suffers from the same limitation

due to its origin from FT. Other widely used signal processing techniques such as

Wavelets or Wigner-Ville distribution (WVD) have been well studied, however they

are not suitable for the purpose of this study as the outcome of neither method could

be easily transferred into a pattern classifier.

Technical challenges in this dissertation are summarized as follows:

The first aspect that we paid attention to is the instantaneous characteristics of

the signal, even though it is well-known that Hilbert transform can be used to per-

form this task. For example, the instantaneous frequency can become “messy” or even

lack physical meaning if not handled with care, even though it is still mathematically

sound. This is commonly seen for signals that is a mixture of several different fre-

quencies, which unfortunately is the case in most scenarios. Because of this fact, it

is generally required to decompose the signals and analyze each decomposed compo-

nents separately so that their instantaneous frequencies would make physical sense. In

general, this can be referred to as the challenge in instantaneous frequency estimation.

When it comes to simulated or real-world signals, we often face the discrete form

of an algorithm. Unfortunately, discrete Hilbert transform tends to suffer from the

end effect as it originates from discrete Fourier transform. An efficient two-step

preprocessing treatment that significantly reduces this end effect is utilized in this

dissertation and made a new routine into the backbone procedure. For illustration

purpose, Fig. 1.3 shows a comparison of the instantaneous amplitude and frequency

between with and without such a treatment. The selected signal is highly simple, yet

the significance of this technical problem is nontrivial and the improvement is drastic.
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Figure 1.3: Comparison of the instantaneous amplitude and frequency of the original
DHT method with the refined method on a pure sinusoidal wave. The signal tested
here is x[n] = cos(2πfn/Fs), n = 0, 1, · · · , N−1, where f = 5, Fs = 1000, N = 1010.
The original result refers to the one obtained by using discrete Hilbert transform
method stated in reference [13, 58], and the refined one refers to the method in
Chapter 3.

More importantly, the author conducted a thorough literature review to establish

the equivalency between two existing DHT algorithms through mathematical manip-

ulations offering new insights to DHT because one of the two algorithms has not been

utilized much. In addition, the author provided mathematical evidence to justify the

two add-on procedures, which are in essence preprocessing for DHT.

As the third aspect directly related to the backbone technique, we studied in-

depth a concept that is closely related to instantaneous amplitude and instantaneous

frequency but has not been used by Dr. Feldman, i.e., instantaneous bandwidth.

Instantaneous bandwidth is not only an indicator of the integrity of estimated in-

stantaneous frequency [15], but also directly related to damping estimation, and the
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relationship between the backbones of displacement, velocity and acceleration.

All of the aspects help fulfill the sole goal of understanding the reason for noisy

backbones suffered by our research team previously and improving the backbone

technique such that the backbone technique is more readily applicable to real-world

signals. Therefore, as the last step of this dissertation, the backbone technique is

tested on a couple of real-world data sets.

This research is focused on Dr. Feldman’s series of publications on the backbone

technique. However, the author is not simply implementing his methods or advertising

his achievements. In concrete, first, the author makes the technique more theoretically

grounded and closer to the intended (new) real-world applications. Secondly, we

have reexamined his work using electrical engineering concepts. Lastly, we have

achieved the goal of improving several aspects of the backbone technique as desired.

In addition, new techniques such as the proposed new signal decomposition method

and piecewise DHT are developed, which are not empirical methods and could benefit

beyond the backbone technique.

1.2 Background

1.2.1 Objectives and nature of research

The author is aimed at making the backbone technique more understandable, jus-

tifiable, and applicable in terms of its capability of being a nonlinear classifier. To

achieve this goal, the author is grounded in Digital Signal Processing (DSP) tech-

nique as the fundamental approach for this work. Specifically, a well-known signal

processing algorithm - the Hilbert transform (HT) - serves as the key algorithm. A

relatively new nonlinear system identification method named the “backbone” is the

dominant technique studied.

The nature of this study is not only quantitative but also theoretical whenever
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proper. On one hand, the author has re-derived and reconstructed or refined several

key formulas that are important for the studies. On the other hand, practical methods

for backbone technique implementation has been proposed.

1.2.2 Motivations

The reason for choosing this research topic is multifold. First of all, Structural Health

Monitoring (SHM) and damage detection has been a popular and important research

area for decades [18, 42, 70, 11, 55, 48, 21, 36]. As an important component of SHM,

advancement in system identification especially nonlinear system identification is in

demand.

The author focuses on SDOF systems in this study for two reasons: First, study-

ing SDOF systems is a prerequisite for looking into MDOF systems. Next, SDOF

system itself has strong utility for modeling in practice. For example, in earthquake

engineering, the design spectrum is based on SDOF models [12].

Hilbert transform is the focus of the studies due to its well-known aspect of being

suitable for nonlinear and non-stationary signal processing [14, 37, 49, 50, 29], just

to name a few key classical references studied by the author and used as the main

tool. Backbone – as a system identification method introduced by Dr. Feldman based

on Hilbert transform – has also been around for 20 years. While all relevant aspects

in Dr. Feldman’s work will be reviewed in detail from Chapter 2 to 4, his series of

publications related to Hilbert transform and backbone technique starting from 1990’s

is summarized in Table 1.1. These are the major references for the author to start

with this research.
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Table 1.1: Overview of selected publications by Dr. Feldman starting from 1990’s.
Year Reference Topic Summary

1994 [23, 24] system vibration analysis

introduced backbone technique for detecting
nonlinearity and viscous damping ratio of a
SDOF model based on its free or forced re-
sponse, i.e., FREEVIB and FORCEVIB

1995 [32]
nonlinear system parameter
identification

introduced the idea of estimating system pa-
rameters by using a lowpass filter on the sys-
tem backbone

1997 [8]
time-frequency characteris-
tics

introduced the idea of possibly characterizing
nonlinear systems by the time-frequency vari-
ations of the system response signals

1997 [25]
nonlinear free vibration
identification

introduced the idea of approximating the back-
bone of the free response of a nonlinear model
by using the average instantaneous amplitude
and instantaneous frequency

2005 [26]
nonlinear dynamical system
identification

introduced a method for estimating instan-
taneous system dynamic parameters, such as
natural frequencies, damping characteristics,
etc, under different kinds of system excitation
based on Hilbert transform

2006 [27]
signal decomposition tech-
nique

proposed a nonlinear signal decomposition
method named Hilbert Vibration Decomposi-
tion (HVD)

2011 [30, 29]
review of Hilbert transform
applications

presented a thorough review of topics related
to Hilbert transform applications

1.2.3 Identified research needs

Despite the pioneering contributions brought forward by Dr. Feldman, severe technical

challenges were encountered in [46] when making an attempt to directly employ his

earlier work in reference [23]. We thus regard it critical to clearly point out the flaws,

ambiguities and unaddressed critical details in his publications so that researchers in

the future can better implement his work. Although such facts will be given in detail

in later sections, the author feel it necessary to present some quick examples here

such that the readers can have a more concrete understanding of the relevant work

done by Dr. Feldman.

In terms of the flaw, the “zero integral” claimed in reference [27] is regarded

inaccurate according to this study; details with respect to this can be found under

Chapter 3. For the ambiguities, an important term called “congruent envelope” or
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“envelope of envelope” (EOE) given in reference [30] is not well explained, especially

the formula for EOE, i.e., Eq. (37) on page 774 is not explained clearly. With respect

to the unaddressed critical details, Dr. Feldman does not seem to have emphasized

(enough) the noisy backbones obtained from real-world data, which is exactly what

our previous research team suffered from as can be seen in reference [46] (Figs. 7

and 8). In other words, a clean backbone curve as seen in Fig. 1.1 does not come

across often. Rather, a “noisy” backbone is often obtained. The reason behind the

so-called “noisy” backbones deserves a thorough study. Moreover, driven by the

intended application of backbone as a nonlinear classifier, clean backbone curves are

much more preferred.

1.2.4 Duffing oscillator

Duffing oscillator has been selected as a major validation platform for us to explore

and further develop the backbone technique. As a popular topic in engineering re-

search family, Duffing oscillator or Duffing equation represents a typical normalized

nonlinear system which expresses as [51]:

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) + αx3(t) = F (t) (1.1)

where x(t) is the response to be solved. ζ, ωn, α stand for three system proper-

ties, damping ratio, natural frequency in rad/sec, and nonlinear stiffness coefficient,

respectively. We have ωn = 2πfn with fn being the natural frequency in Hz. F (t)

denotes the excitation force. Depending on the value or sign of the parameters in

Eq. (1.1), various situations exist as summarized in Table 1.2. The author focuses on

free Duffing only, where both damped and undamped, hardening and softening cases

are considered in this dissertation.
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Table 1.2: Different types of dynamics problems involving Duffing oscillator. † Not
considered in this study.

Parameter Value / Sign Type of problem

ζ
zero undamped Duffing
(0, 1) lightly damped Duffing
others † critically damped, over-damped, and self-excited Duffing

α
positive hardening Duffing
negative softening Duffing

F (t)
zero free (unforced) Duffing
nonzero † forced Duffing

Numerical simulation is essential to this investigation using Duffing oscillator.

For undamped free Duffing, harmonic-balance method [62] provides an approximate

solution. However, it demands solving highly coupled algebraic equations as will be

seen in Chapter H. For damped free Duffing, closed-form approximate solution can

be obtained by using Jacobi elliptic functions as provided in reference [51] (Eq. 4.3.18

on pp. 92). However, such a theoretical solution is not very helpful as it does not

provide a straightforward formula for the response in most cases. Therefore, numerical

solutions are used in this study. Runge-Kutta method is the key algorithm used to

obtain the response. MATLAB solver ode45, which implements RK45 method ([19]),

is the algorithm used herein.

For free softening Duffing oscillators, the stability issue needs to be taken into

consideration, as the response may blow up due to the existence of saddle points. For

under-damped Duffing with negative nonlinearity, Eq. (1.1) has a trivial fixed point

at (0, 0) and two saddle points at (y1st+, 0) and (y1st−, 0), where

y1st± = ±
√
−ω2

n/α

where ωn and α are specified previously. Therefore, the initial condition of the soft-

ening Duffing oscillators need to be chosen with care to avoid this instability issue.
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1.3 Contributions of this Dissertation

By thoroughly reviewing Feldman’s series of publications in the last 20 years, the

author has achieved a couple of goals. First of all, a simple yet effective modification

is applied to the current DHT algorithm given in references [13, 58] aiming at a

reduced end effect. Although the newness of the method itself is debatable due to

existing literature, i.e., [43], we have not only provided the method, but also presented

the reasoning that validates the proposed modification. The transformed signals

under such a modification suffer significantly less from the end effect. Moreover,

the instantaneous amplitude and instantaneous frequency behave much better than

without such a modification especially at the two ends - again see Fig. 1.3 for a quick

example.

Secondly, driven by overcoming the noisy backbones encountered by our research

team previously, the analysis in this chapter indicates why backbones could become

noisy by using noise-free double-component signals. In the investigation, the author

has also put forth a novel signal decomposition technique that is most suitable for

double-component signal decomposition and, more importantly, theoretically sound.

Thirdly, we have applied another instantaneous characteristic to the backbone

technique, i.e., instantaneous bandwidth. As a result, we have revealed why obtain-

ing a backbone using displacement time history is preferable over acceleration time

history, even though the latter is what is in generally readily available from dynamic

tests. In addition, instantaneous bandwidth has been proposed as a practical measure

for the integrity of instantaneous frequency estimation.

Last but not least, we have applied the improved backbone technique on several

different sets of real-world data all of which being the free vibration of either a model

or structure. Although the obtained backbones still suffer from heavy noise, we

can still extract clear feature from not only the acceleration data but also correctly

estimated displacement, indicating the usefulness of this technique in the real world.
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1.4 Structure of this Dissertation

The structure of this dissertation is as follows:

Chapter 2 focuses on first revealing the reason for the end effect of discrete Hilbert

transform and afterwards, a procedure to address such an issue. In Chapter 3, double-

component signals are designed to reveal the reason of the “noisy” backbones. Time

indices are proposed to characterize the interaction of two mono-components. An

important integral formula in reference [27] is corrected. A signal decomposition

technique is proposed as a by-product. In Chapter 4, instantaneous bandwidth is

studied in-depth. The mathematical relationship between the backbones of displace-

ment, velocity and acceleration is given as a function of both instantaneous frequency

and instantaneous bandwidth – among other technical discoveries, such as piecewise

DHT procedure. Both hardening and softening Duffing oscillators with parameter

values that are meaningful for structural engineering applications are studied. Much

smoother backbones are obtained in numerical exercises with the proposed decom-

position method. The improved backbone technique is applied to real-world data in

Chapter 5, where backbones with less “noise” are obtained in general. The future

work and conclusions are given in Chapters 7 and 6, respectively.

Chapters 2 to 5 are prepared as individual manuscripts for review for publication,

where relevant literature review will be provided independently within each section.

To illuminate the understanding of the most challenging technique aspect related

to this research, all leading concepts in HT and DHT are reviewed critically with

examples developed by the author in Chapter 1.5. Since each of Chapters 2 to 5

contains a discussion, an additional discussion section in this dissertation is thus

omitted. All derivations generated from this study, derivations for reviewing major

literature, and some relevant m-files are included as appendices.
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1.5 Additional Literature Review of Hilbert Trans-

form and Discrete Hilbert Transform

There is a vast body of well-established literature on HT and DHT; it is worth a

careful thought as to how to present a helpful big picture-like literature review herein

to assist future researchers working on the backbone technique and more. With this

said, instead of giving a laundry-list style of summary review, the author develops the

following critical review especially by targeting those challenging (and even confusing)

concepts, and by commenting on commonly-made mistakes in understanding these

concepts following [13, 15, 73, 58, 49, 50]:

1. Hilbert Transform (HT) and analytic signal (AS)

2. Instantaneous amplitude (IA), instantaneous phase (IP), instantaneous fre-

quency (IF) and instantaneous bandwidth (IB)

3. Discrete Hilbert transform (DHT)

While the succeeding subsections will continue with this critical review, as an

overview, Table 1.3 summarizes a couple of important concepts related to the back-

bone technique:
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Table 1.3: Overview of important concepts from digital signal processing (DSP) that
are applied to backbone technique. Some key concepts will be formally introduced
later on in this section. † For future work.

Concept Formula Remark

original signal x(t) = a(t) cosϕ(t)
x(t) is a real signal with instanta-
neous amplitude a(t) and instan-
taneous phase ϕ(t).

Fourier trans-
form (FT) [60]

X(ω) = A(ω)ejΦ(ω) X(ω) is the Fourier transform of
x(t).

Hilbert trans-
form (HT) [49]

x̃(t) = 1
πt ∗ x(t) = a(t)ej(ϕ(t)+

π
2 ) x̃(t) is half-π phase shift of x(t).

instantaneous
amplitude
(IA) [49]

a(t) =
√
x2(t) + x̃2(t)

a(t) stands for the envelope of
x(t).

instantaneous
phase (IP) [49]

ϕ(t) = arctan x̃(t)
x(t) mod π

ϕ(t) is taken as the unwrapped
phase in this dissertation.

instantaneous
frequency
(IF) [49]

ω(t) = dϕ(t)
dt

This seemingly straightforward
definition can be misleading; de-
tails will be given shortly.

instantaneous
bandwidth
(IB) [15]

b(t) =
∣∣∣ ȧ(t)a(t)

∣∣∣
b2(t) is regarded the standard de-
viation of the instantaneous fre-
quency, i.e., an indicator of the
spread out of the instantaneous
frequency.

group delay
(GD) † [60]

τg(ω) = −dΦ(ω)
dω

τg(ω) is defined as the rate
of change of the total phase
shift with respect to angular fre-
quency.

1.5.1 Hilbert transform (HT) and analytic signals (AS)

mathematical definition

Mathematically, the Hilbert transform of x(t) is the time convolution of x(t) with 1
πt

(e.g., Eq. (1.9) on pp. 4 in reference [37]):

x̃(t) = H[x(t)] = x(t) ∗ 1

πt
=

1

π
P

∫ ∞

−∞

x(τ)

t− τ
dτ (1.2)

where x̃(t) is denoted as the transformed signal and P denotes an improper integral

in the sense of the Cauchy principal value. With x(t) and x̃(t), we can then construct
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a special complex signal z(t), i.e., an analytic signal (AS) as follows [35]:

z(t) = x(t) + jx̃(t) (1.3)

analytic signal and analytic function

The concept of “analytic signal” comes from the concept of “analytic function,” the

latter of which refers to a class of complex functions that satisfies Cauchy-Riemann

conditions for differentiability [14, 37], i.e., a complex function as follows

w(t, τ) = u(t, τ) + jv(t, τ) (1.4)

is an analytic function if

∂u

∂t
=

∂v

∂τ
;

∂u

∂τ
= −∂v

∂t
(1.5)

where w, u, and v are all two-dimensional functions of t and τ .

implication in frequency domain

The goal of performing the Hilbert transform is that the constructed complex signal

z(t) has a zero frequency response in the negative half frequency plane. In other words,

x̃(t) is special in a way that its frequency response is exactly the complex conjugate

of the original signal x(t). Reference [14] (Section 2.3, pp. 30) proved why Hilbert

transform could achieve this goal. With equal importance, this is the foundation for

the famous algorithm proposed in reference [58] for DHT.

mathematical and physical viewpoints

It is reasonable to state that for an arbitrary signal, the Hilbert transform can be ob-

tained where the instantaneous amplitude, phase and frequency (APF) makes math-
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ematical sense. However, whether the corresponding APF makes physical sense is a

totally different question that demands full attention. Unfortunately, a completely

unified understanding does not seem to exist in the current literature.

As early as 1996, [73] shows that Hilbert transform is special as it is the only

transform that satisfies the three necessary conditions such that APF makes physical

sense. The three necessary conditions are as follows:

A. The instantaneous amplitude needs to be continuous and differentiable. This

results in a requirement of continuity of the transform operator.

B. The instantaneous phase must be independent of scaling and homogeneity, i.e., if

x(t) is replaced with cx(t) for a real constant c > 0, then the instantaneous phase

must remain the same. This requires the transform operator being homogeneous.

C. The constant amplitude and frequency of a simple sinusoid wave should remain

their values, i.e., harmonic correspondent. This means the operator must trans-

form a cos(ωt+ ϕ) into a sin(ωt+ ϕ) for any constant a > 0, ω > 0, and constant

ϕ.

Nonetheless, the differentiability requirement on instantaneous amplitude is no

longer mentioned at all in reference [17] dated 1999 where Dr. Vakman, the author

for [73], is a co-author. It is unclear why this change happened. One such consequence

can be referred to in the following example:

Example 1 (IA and IP of the product of two cosine waves).

Take a product of two cosine waves as an example,

x(t) = cos(ωlt) cos(ωht), with ωh > ωl ≥ 0 (1.6)

The IA and IP under two different choices are given in Eqs. (1.7) and (1.8), respec-
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tively following [17]:

ac1(t) = | cos(ωlt)| ϕc1(t) = ωht+
1

2
π (1− sgn(cos(ωlt))) (1.7)

ac2(t) = cos(ωlt) ϕc2(t) = ωht (1.8)

According to [73] in 1996, the first choice in Eq. (1.7) would not be valid due to the

violation of the differentiability of IA, while the second choice in Eq. (1.8) makes

sure the satisfaction of the continuity of IP. However, following [17], both choices are

legitimate, and it is only “a matter of taste and convenience” to decide which one to

choose [17]. It can be seen later in Eq. (1.17), the author sticks to the first choice,

i.e., assuming nonnegative amplitude.

1.5.2 Instantaneous amplitude (IA), instantaneous phase (IP)

and instantaneous frequency (IF)

The concepts of instantaneous amplitude (IA), instantaneous phase (IP) and instan-

taneous frequency (IF) are a direct result of the analytic signal. First of all, an

analytic signal in Eq. (1.3) can also be expressed in a unique polar form as follows

(e.g., Eq. (15b) on pp. 522 in reference [5]):

z(t) = a(t)ejϕ(t) (1.9)

where a(t) and ϕ(t) are called, respectively, the instantaneous amplitude (IA) and

instantaneous phase (IP) of z(t). A commonly made mistake is given as follows:

Mistake 1. For any signal written in the form of Eq. (1.9), take a and ϕ as the IA

and IP, respectively. This is elucidated in the following example:

Example 2 (Instantaneous characteristics of a chirp signal.).
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Take a simple linear chirp as an example,

x(t) = a(t)ejϕ(t) = a(t)ej(ωt+
ρ
2
t2) (1.10)

one potential mistake here is that the IA and IF are taken intuitively as

IA = a(t) (1.11)

IF =
dϕ(t)

dt
= ω + ρt (1.12)

Such a mistake can be found even in relatively recent literatures such as [14] (Example

1.8 on pp. 18). [65] points out this potential mistake and proves that the true HT of

a chirp signal with zero initial frequency

x(t) = cos
(ρ
2
t2
)

(1.13)

be the following

x̃(t) =

√
1

π

((
C(

√
ρt) + S(

√
ρt)

))
sin

(ρ
2
t2
)
+

√
1

π

(
C(

√
ρt)− S(

√
ρt)

)
cos

(ρ
2
t2
)

(1.14)

where

C(t) =

∫ t

0

cos2 τdτ ; S(t) =

∫ t

0

sin2 τdτ (1.15)

As stated in reference [65], the HT of Eq. (1.13) is simplified to

x̃(t) = sin
(ρ
2
t2
)

(1.16)

only when the signal length is infinite. However, we focus on finite signals in this

study as in many practical situations.

Along the same line and as a continuation of the discussion given previously
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concerning physical meaning, we would like to highlight this fact: Although we have

written down the instantaneous amplitude as

a(t) =
√
x2(t) + x̃2(t) (1.17)

as shown in Table 1.3, the definitions for instantaneous amplitude and phase may

not be unique as pointed out in reference [17]. To be concrete, there was actually a

debate on the uniqueness of these two instantaneous quantities between Cohen and

Hahn [17, 38, 16]. [17] introduced two choices for instantaneous amplitude and phase.

One choice ends up with a nonnegative amplitude but an instantaneous frequency

with infinite spikes, while the other yields a bounded instantaneous frequency but an

instantaneous amplitude that might become negative. This is already illustrated in

Example 1.

Continuing on, the instantaneous amplitude and instantaneous phase pair - [a(t),

ϕ(t)] - is often referred to as a canonical pair (e.g., [65], [7]). A canonical pair always

form a Hilbert pair, i.e.,

H[a(t) cosϕ(t)] = a(t) sinϕ(t) (1.18)

Mistake 2. Use Bedrosian’s identity [4] to explain Eq. (1.18).

This statement is incorrect: Bedrosian’s identity requires the frequency modulation

part having a higher frequency than that of the amplitude modulation part. However,

this does not need to be satisfied by the canonical pair – by definition.

Mistake 3. Not be careful with IF not being physically meaningful.

With instantaneous amplitude and phase elucidated as above, the concept of the

instantaneous frequency (IF) would seem natural. The IF is commonly defined as

the time derivative of the instantaneous phase ϕ(t), as shown below (e.g., Eq. (18) on
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pp. 522 in reference [5]):

ω(t) =
dϕ(t)

dt
(1.19)

Unfortunately, this seemingly straightforward definition can lead to paradoxes. For

example, if ϕ(t) is not monotonically increasing, we may end up with negative instan-

taneous frequency, which makes no physical sense “intuitively”. This could happen

even when the original signal makes perfect sense.

Example 3 (Negative IF).

This example consists of several sub-examples.

First, a sum of two sinusoidal waves x(t) = −2 cos(2π0.1t) + cos(2π0.4t) has a

time varying instantaneous frequency that goes to negative occasionally.

To have a more concrete understanding of the paradox, Fig. 1.4 exercises two

seemingly simple signals, where Panel (a1) is a chirp signal while Panel (a2) is a sum

of two chirps. The IF in Panel (a2) is an intentionally presented wrong result, which

one would intuitively conceive. The correct IF results for Panels (a1) and (a2) are

presented in Panels (b1) and (b2), respectively. In particular, Panel (b2) consists

of discrete results of IF that switching between two values – with one physically

meaningful and the other, not.
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Figure 1.4: Illustration of the “IF” of two signals. (a1) refers to a chirp signal and
(a2) is a sum of two chirp signals. The blue line segments in (a1) and (a2) refer to the
intuitive IF of the two signals, while the actual IF of the two signals are presented in
(b1) and (b2).

This paradox naturally introduces the topic of mono- and multi-component sig-

nals [5]. Taken directly from [5], the definition of mono- and multi-component signals

are as follows:

mono-component “An asymptotic signal, x(t), is referred to as a mono-component

(or invertible) signal if for that signal, the instantaneous frequency, fi(t), accu-

rately represents the frequency modulation law of the signal and is single-valued

and invertible, so that the function f−1
i (f) exists,” where f is the frequency axis.

multi-component “An asymptotic signal, x(t), is referred to as a multi-component

signal if there exists a finite number, N , of mono-component signals, xi(t),

i = 1, · · · , N , such that the relation x(t) =
N∑
i=1

xi(t) holds for all values of t

for which x(t) is defined, i.e., if x(t) can be characterized as the sum of several
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mono-component signals, and such that the decomposition is meaningful.”

It is emphasized in reference [5] that the decomposition of a multi-component

signal into mono-components is not unique and is application-dependent as illustrated

in Fig. 1.5.
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(a2) 2nd component

t
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(b1) 1st component

t

ω

(b2) 2nd component

decompositio
n #1

decomposition #2

Figure 1.5: Two decomposition methods of a multi-component signal. This figure
directly follows reference [5] with minor modifications.

Beyond the non-unique decomposition methods, the author would like to point out

the mistakes people could make related to the definition of mono-component signals.

For example, the following presents a mistake in a recent paper.

Mistake 4. Misunderstand the definition of a mono-component signal.

Reference [66] gives a mathematical definition for mono-component signal as follows:

z(t) = a(t)ejϕ(t) is a mono-component if z̃(t) = −jz(t), a(t) ≥ 0 and

ϕ̇(t) ≥ 0.

The author has to emphasize that the above definition is quite different from the

original one in [5] even though [66] claims that it follows the original mono-component

definition in reference [5]. Before providing a counter example, let us first interpret

the definition above. When z̃ = −jz(t), a(t) and ϕ(t) are the IA and IP of z(t),

respectively. Thus, we can interpret the definition as “z(t) is a mono-component
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signal if its IA and IF are both non-negative,” which, unfortunately, is not correct.

A contradictory example is given below.

Example 4 (IA and IF of a double-component signal).

Take a double-component signal z(t) = −2ej2π0.1t + 2ej2π0.4t as an example. The

IA and IF are as follows as derived formulas in Chapter 3 indicate:

a(t) = (8− 8 cos(2π0.3t))1/2

ω(t) = 0.5π

both of which are indeed non-negative. However z(t) is not a mono-component signal

as it has two clearly separated stripes, one at 0.2π and the other at 0.8π.

This counter example might leave the readers with a wrong impression stated

below as 0.5π is right in the middle of 0.2π and 0.8π.

Mistake 5. Take IF as an average of the IFs of its mono-components.

While a detailed explanation is given in reference [54], the author would like to

provide a quick example here to justify why interpreting the IF as an average of

the frequencies of a multi-component signal is incorrect. This is illustrated in the

following example.

Example 5 (Negative IF of a double-component whose two mono-components have

positive IFs).

The IF of a double-component signal x(t) = −2 cos(2π0.1t) + cos(2π0.4t) is as

follows by again following the derived formula in Chapter 3:

ω(t) = 2π0.25 + 2π0.15
−3

5− 4 cos(2π0.3t)

and it is occasionally negative.
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1.5.3 Instantaneous bandwidth (IB)

We will firstly give the definition formula of IB following [15] and later explain the

physical meaning of this concept:

b(t) =

∣∣∣∣ ȧ(t)a(t)

∣∣∣∣ (1.20)

Although this definition is not at all intuitive and the physical meaning is not that

obvious, [15] gives a very vivid analogy between the IF v.s. IB relationship and

the mean v.s. standard deviation relationship. In concrete, the IB is taken as the

standard deviation of the IF estimation, which is an effective indicator of the integrity

of the estimated IF. Refer to Chapter 4 for examples.

Instantaneous bandwidth is not only directly related to the IF estimation, but

also closely related to damping in the system. Moreover, IB (joining IF) makes the

connection amongst the backbones of displacement, velocity and acceleration. All of

these subjects will be elaborated in detail later in Chapter 4.

1.5.4 Discrete Hilbert transform (DHT)

Hilbert transform becomes Discrete Hilbert transform (DHT) in the intended real-

world applications since these real-world signals are not only finite but also discrete.

Going from continuous signals to discrete signals can introduce frequency leakage.

This is exactly why this dissertation studies this topic of DHT in great detail.

Although it is not stated in any other publication, the very concept of DHT was

first introduced by Cizek in reference [13] according to the author’s literature search,

where the DHT of a signal x[n] is defined as follows:

x̃[n] = x[n]⊗ hc[n] =
N−1∑
k=0

x[k]hc[n− k] (1.21)
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where hc[n] is the impulse response in time domain, whose DFT is

Hc[n] = −jsgn
(
N

2
− n

)
sgn(n)

=




−j n = 1, 2, · · · , N/2− 1

0 n = 0, N/2

j n = N/2 + 1, N/2 + 2, · · · , N − 1

for N ∈ E


−j n = 1, 2, · · · , (N − 1)/2

0 n = 0

j n = (N + 1)/2, (N + 3)/2, · · · , N − 1

for N ∈ O

(1.22)

The reason why Hc[n] is defined as above is to mimic the case for continuous time, i.e.,

to ensure that the right half of the samples result in a complex conjugate frequency

response as of the left half.

The concept of analytic signal might become controversial in the case of DHT as

pointed out in reference [58]. This is because analytic function is a type of function

that requires continuously differentiability as a minimum. This can never be satisfied

for discrete signals. [58] mimics the concept of continuous analytic signal by defining

the complex signal z[n] = x[n] + jx̃[n] as an “analytic-like” signal [58], which will be

followed in the studies.

DHT demands discrete Fourier transform (DFT), a crucial step in the DHT pro-

cedure in reference [58]. However, DFT suffers from the end effect resulted from

spectral leakage. This is reviewed and resolved in Chapter 2.

Last but not least and as discovered in this study, DHT – as a circular convolu-

tion algorithm – may introduce amplification error toward the end of instantaneous

amplitude time history. This happens when a transient signal’s amplitude drops sig-

nificantly. This is investigated in Chapter 4, where a piecewise treatment is introduced

to correct such an error.
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1.6 Additional Literature Review of Methods Rel-

evant to Backbone Technique

In this section, additional literature relevant to the intended applications of the back-

bone technique is reviewed so as to address why the focus of this dissertation is given

to the backbone technique (other than other techniques to fulfill the same/similar

purposes).

As a well-established tool for analyzing dynamics and performing system identifi-

cation of dynamical systems, frequency response function (FRF) for vibration analysis

and modal analysis has shown its usefulness. The FRF of a system is a function be-

tween the driving frequency of the external force and the response of the system [51].

Interestingly enough, there is also a feature called “backbone curve” in the context of

the FRF. That is, if we connect all of the peaks of the amplitudes of the FRFs under

different damping ratios, a curve is then formed and often referred to as a backbone

curve. An illustrative figure is given in reference [51], e.g., Figure 5.4. However, this

backbone curve is not the same as the backbone curve studied in this dissertation.

[48] presents a comprehensive review of the past and recent work in system iden-

tification of nonlinear dynamical systems. Techniques are examined based on differ-

ent aspects including linearization method, time-domain method, frequency-domain

method, modal analysis method, time-frequency analysis, black-box modeling, struc-

tural model updating, etc. Although the author will not present a comprehensive

recap of all relevant system identification techniques, one of them is worth a high-

light given its close relevance to the backbone technique and Dr. Feldman’s study

of this technique in his publications on the backbone technique (e.g., [30, 29]. This

well-known nonlinear system identification technique is commonly referred to as the

Hilbert-Huang transform (HHT).

The HHT was first proposed in reference [44] and later improved in reference [77]
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among others. A key component in HHT is a signal decomposition procedure called

empirical mode decomposition (EMD). The EMD decomposes a multi-component sig-

nal into a finite number of intrinsic mode functions (IMFs). An IMF is an function

that satisfies two properties: it has the same number (or, at most, one in differ-

ence) of local extrema and zero crossings, and its positive and negative envelopes are

symmetric.

A typical procedure for obtaining an IMF of a data set x[n] is called sifting, which

is explained as follows:

1. Identify all local extrema in the data set x[n].

2. Apply cubic spline fitting to all local maxima (minima) to form the upper

(lower) envelope.

3. Compute the mean of the upper and lower envelopes, and denote it as m1[n].

Subtract the mean from the data; denote the difference as h1[n], i.e.,

h1[n] = x[n] − m1[n] (1.23)

4. If h1 is not an IMF, denote it as h10. Take h10 through the aforementioned

three steps until the stopping criterion by following [44] is met. The stopping

criterion is to limit the standard deviation (SD):

SD =
N−1∑
i=0

|h1(k−1)[i]− h1k[i]|2

h21(k−1)[i]
, withk = 1, 2, . . . (1.24)

to be between 0.2 and 0.3, where h1k is the outcome of the k+1th sifting process

and is also the first IMF c1.

After the first IMF is obtained, it is subtracted from the original data x[n]. The

residue is sent through the same procedure so that the second IMF can be obtained.
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The IMF extraction procedure stops when the final residue rl is negligible or is a

monotonic function. The original signal x[n] can thus be written as a sum of its l

numbers of IMFs and the final residue as follows:

x[n] =
l∑

i=1

ci + rl (1.25)

After the sifting process is completed, Hilbert transform is applied to every IMF to

obtain the Hilbert spectrum of x[n].

The HHT technique is popular for its ease for implementation and its adaptivity

to data. Nonetheless, as a major limitation, it lacks theoretical support in a couple of

aspects thus it depends heavily on empirical procedures. For this reason, the author

chooses not to adopt this technique in this dissertation.
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Chapter 2

DISCRETE HILBERT

TRANSFORM (DHT): TWO

ADD-ON PROCEDURES

2.1 Introduction

2.1.1 Motivations

The Hilbert transform (HT) has been playing an important role in digital signal pro-

cessing for decades. In this chapter, we focus on discrete signals, where the discrete

Hilbert transform (DHT) is necessary. One popular DHT algorithm is Marple’s DHT

algorithm, documented in reference [58] and programmed into MATLAB [59]. How-

ever, applying this algorithm can cause issues due to the fact that Marple’s DHT

algorithm is based on discrete Fourier transform (DFT), which introduces spectral

leakage and further leads to the so-called “end effect”. The end effect could become

so severe that the good properties of Marple’s DHT algorithm is being challenged.

As a motivating example, Fig. 2.1 uses a toy problem of one cycle of a cosine wave

to compare known theoretical HT results versus those obtained through Marple’s
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DHT algorithm implemented to MATLAB under hilbert.m. Three slightly different

cases are considered in Fig. 2.1: After a periodic extension, Case (a) yields a perfect

sinusoidal wave while Cases (b) and (c) do not. Looking closely, Case (b) includes

just one more point at the end of the signal, while Case (c) omits just one point,

the last point. After a periodic extension, Cases (b) and (c) introduce erroneous low

and high frequencies, respectively. The frequency leakage is the roots of the poor

performance of Marple’s DHT algorithm in Cases (b) and (c), which is not hard to

tell from this toy problem. In practice, however, the cause and remedy would not be

as trivial when signals to be transformed are not always harmonics but could be with

time-varying amplitude and frequency, and are not of a not-so-perfect sampling rate.
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Figure 2.1: An illustration of spectral leakage by comparing the exact versus Marple’s
DHT results for signal x[n] = cos(2πn/Fs) where Fs = 20 and n = 0, 1, · · · , N − 1.
Cases (a), (b), and (c) refer to the cases when N = 20, 21 and 19, respectively. In
each case, the blue circles denote the exact result, which in time domain is simply
x̃[n] = sin(2πn/Fs), while the red dots represent the DHT results.

While Fourier transform-based signal processing algorithms are highly well-known

and widely applied to practice, DHT-based algorithms are not as well-known and pop-

ular in real-world applications. In contrast to this reality, it is the Hilbert transform
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not Fourier transform that is expected to be more powerful in handling non-stationary

and nonlinear signals. Given this belief, numerous researchers have been motivated to

look into various aspects of the Hilbert transform aiming for its wider acceptance and

better practice including but not limited to [23, 30, 29, 44]. This study contributes

to this line of research with a clear focus on the numerical procedure of performing

DHT algorithms.

2.1.2 Technical challenge and proposed approach

The seemingly signal-dependent performance of Marple’s DHT algorithm (as illus-

trated in Fig. 2.1) is a major technical challenge for a couple of reasons. Theoretically,

Marple’s DHT algorithm is known to satisfy the two important magnitude and phase

preserving properties in contrast to satisfying one but not both by almost all other

DHT algorithms [58]. For example, a time-domain complex filtering technique that

produces the real and imaginary responses zr[n] and zi [68, 63] does not satisfy the

first property; single finite impulse response (FIR) filter technique that approximates

the Hilbert transform [63] does not satisfy the second property. A modification to the

Marple’s DHT algorithm may come at the price of dissatisfying one or both properties

(as a side effect). Nonetheless, the need of correcting the end effect may outweigh

this undesired side effect. To address the issue theoretically (thus fundamentally),

the controversy is not less. On one hand, it is useful to look into some carefully de-

fined toy problems. Fig. 2.1 is such an example. On the other hand, one has to face

the music by dealing with real-world signals/situations but not surrender to some

anecdotal cases.

In light of these difficulties, we seek inspirations first from the history of DHT

algorithm development. In particular, we learn from [13], an earlier but lesser cited

work than [58], which focuses on using a non-causal circular convolution formula and

deriving the required impulse response function for Hilbert transform. This is the
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technique to be exercised throughout this chapter for quantitative analysis. The main

bulk of the work concentrates on devising the two proposed add-on procedures, pro-

viding quantitative analysis whenever possible including those to the well-defined toy

problem, and eventually presenting numerical examples for validation. Nonetheless,

the author specifies carefully the applicable range of the work: We aim to vibration

signals - a fairly large subset of real-world signals, but not arbitrary signals.

2.1.3 Intended contributions

For a general vibration signal, there would be multiple cycles of oscillations. One

such example is given in Fig. 2.2. We propose two add-on procedures that could

complement Marple’s DHT algorithm to significantly reduce the end effect. In addi-

tion, we examine in-depth three major DHT algorithms, i.e., Cizek in reference [13],

Kak in reference [47], and Marple in reference [58] and conclude their mathematical

equivalence. This fact about their mathematical equivalence alone could help better

understand and expedite the development of DHT theories and practice as will be

elaborated later in Chapter 2.3. Proofs concerning the two properties in reference [58]

are provided as well.
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Figure 2.2: Comparison of the results obtained with and without the proposed add-
on procedures when Marple’s DHT algorithm is used. The signal is the simplest free
vibration signal and has a form of x[n] = e−0.05n/Fs cos(n/Fs) with Fs = 500 and
n = 0, 1, · · · , 35000. The comparison clearly indicates that the add-on procedures not
only reduce the end effect to a large extent (see Panels (i) and (ii)) but also eliminate
erroneous ripples towards the mid-section (see Panel (ii)).

2.1.4 Structure of this chapter

In Chapter 2.2, key concepts are reviewed. Three major DHT algorithms are pre-

sented. Spectral leakage, the heart of the problem, is reviewed. Chapter 2.3 compares

the three DHT algorithms for their mathematical equivalence, a fact that has been

overlooked in the literature. In Chapter 2.4, two add-on procedures that will be used

in conjunction with Marple’s DHT algorithm are presented, analyzed, and illustrated.

The aim is at a more desirable DHT result in practice. Eventually, two sets of care-

fully designed or selected numerical examples are given in Chapter 2.5, where the

efficiency of the two proposed add-on procedures is validated. Finally, conclusions

are given in Chapter 2.6. Appendices A to D contain all relevant derivations in this

work that are not given in the main body.
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2.2 Literature Review

2.2.1 Discrete-time “analytic” signal

For real-world applications, signals are mostly not only finite but also discrete, in

which case Hilbert transform is often realized through discrete Hilbert transform

(DHT). Analytic signal, however, was initially defined for continuous time signals

as in reference [35]. [58] emphasizes this fact and names a discrete complex signal

obtained through DHT an “analytic-like” signal. We follow this terminology in this

dissertation.

One major difference between DHT and HT is that the former suffers from the end

effect resulted from spectral leakage introduced by DFT, a crucial step in the DHT

procedure in reference [58]. This will be discussed in more detail in Chapter 2.2.4.

We will go through two well-known DHT algorithms next.

2.2.2 Cizek (1970) and Kak’s (1977) discrete Hilbert trans-

form algorithm in references [13] and [47]

The concept of DHT was first proposed in reference [13], where a DSP formula for

computing DHT is given. Basically, the goal is to find an impulse response function

hc[n] so that the Hilbert transform can be readily computed by the circular convolu-

tion of hc[n] with the input x[n]. [13] limited its scope of interest to the case when

the length of signal N is even, while Kak discussed the case when N is odd. We

summarize Cizek and Kak’s algorithms as follows:
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Step 1 Define a transfer function in frequency domain as follows:

Hc[n] = − jsgn

(
N

2
− n

)
sgn(n)

=




−j n = 1, 2, · · · , N/2− 1

0 n = 0, N/2

j n = N/2 + 1, N/2 + 2, · · · , N − 1

N ∈ E


−j n = 1, 2, · · · , (N − 1)/2

0 n = 0

j n = (N + 1)/2, (N + 3)/2, · · · , N − 1

N ∈ O

(2.1)

This can be considered removing negative frequency components while dou-

bling positive frequency components as done in Hilbert transform.

Step 2 Obtain the impulse response in time domain by using inverse DFT as follows:

hc[n] =
1

N

N−1∑
l=0

Hc[l]e
j 2πln

N =
1

N
[1− (−1)n] cot

πn

N

=



 0 n ∈ E
2
N
cot πn

N
n ∈ O

N ∈ E − 1
N
tan πn

2N
n ∈ E

1
N
cot πn

2N
n ∈ O

N ∈ O

(2.2)

Step 3 Obtain the DHT of x[n] by performing the circular convolution of x[n] and

hc[n]:

x̃[n] = x[n]⊗ hc[n] =
N−1∑
k=0

x[k]hc[n− k] (2.3)
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2.2.3 Marple’s discrete Hilbert transform algorithm in ref-

erence [58] (1999)

Marple put forward an implementation algorithm for the DHT in reference [58], where

he also discussed the case for N ∈ E only. According to [58], the three steps for

obtaining a discrete-time “analytic-like” signal are as follows:

Step 1 Compute the N-point discrete Fourier transform (DFT) of the original N real

data samples:

X[n] =
N−1∑
k=0

x[k]e−j2πkn/N (2.4)

Step 2 Form the N-point one-sided discrete-time “analytic-like” signal in frequency

domain:

Z[n] =



X[0] for n = 0

2X[n] for n = 1, 2, · · · , N/2− 1

X[N/2] for n = N/2

0 for n = N/2 + 1, N/2 + 2, · · · , N − 1

(2.5)

This step can be considered performing a length-N windowingWm[n] on X[n],

where Wm is as follows:

Wm = [ 1 2 2 · · · 2︸ ︷︷ ︸
N/2−1

1 0 0 · · · 0︸ ︷︷ ︸
N/2−1

] (2.6)

Step 3 Compute the N-point inverse DFT to yield the discrete-time “analytic-like”

signal z[n]:

z[n] =
1

N

N−1∑
l=0

Z[l]e−j2πln/N (2.7)

Reference [58] states that this algorithm satisfies two important magnitude and

phase preserving properties as follows (with support of simulation results but not
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proofs):

Property 1 The real part of the complex signal z[n] yields the original signal x[n]

Property 2 The real and imaginary components are orthogonal:

N−1∑
n=0

ℜ{z[n]}ℑ{z[n]} = 0 (2.8)

Note that the signal length N is assumed to be even for this implementation

algorithm. This algorithm is adopted by MATLAB in its built-in function hilbert.m,

where the case when n ∈ O is included. The windowing function in Step 2 is as

follows:

Wm = [ 1 2 2 · · · 2︸ ︷︷ ︸
(N−1)/2

0 0 · · · 0︸ ︷︷ ︸
(N−1)/2

] (2.9)

This windowing function will be used for the derivation of the DHT formula for the

case of N ∈ O in Chapter 2.3.

With the DHT algorithm, Fig. 2.1 can be explained theoretically. Details are

given in A.

2.2.4 Spectral leakage

Spectral leakage refers to the the spreading of frequency components of a given signal

mainly due to the fact of finite duration of the signal [41]. As a well-known concept,

spectral leakage occurs when we perform Fourier transform on a finite-length signal

that requires periodic extension of the signal. [58] elucidates the periodic extension

involved in DHT. This periodic extension would possibly cause discrepancy to the

two ends of the original signal in time domain; such discrepancy happens to be a

spread out in frequency domain, i.e., leakage.

Since Marple’s DHT algorithm is performed by first taking the DFT of a given

signal, leakage is almost unavoidable. The toy problem in Fig. 2.1 is revisited here
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first. A periodic extension of Cases (b) and (c) in Fig. 2.1 would cause a high- and

low-frequency leakage, respectively. A more general case of sinusoidal wave form with

more than one cycle is shown in Fig. 2.3. Fig. 2.3(a) shows the original signal with its

DHT, where the end effect is obvious at both ends. Subsequently, the instantaneous

characteristics are highly corrupted in Fig. 2.3(b) and (c) - both with erroneous high

frequency. Consequently, the backbone (to be introduced in Chapter 2.2.5) in (d) is

far from being a dot as it should be theoretically.
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Figure 2.3: Another illustration of spectral leakage. In Panel (a), black and red lines
are used for the original signal, and its DHT based on Marple’s algorithm, respectively.
Panels (b) to (d) present the instantaneous amplitude, instantaneous frequency and
backbone based on the DHT result, respectively. Disclaimer: Panels (b) to (d) are
zoomed-in views such that not all points are shown.

2.2.5 Others

Instantaneous characteristics of a signal go hand-in-hand with the HT of the signal

as commonly seen. For finite discrete-time signals, we will simply generalize the

definitions for instantaneous amplitude and frequency for continuous-time signals to

discrete time. Spectral leakage would cause corrupted instantaneous characteristics

of the signal. In applications, instantaneous characteristics are useful for system

identification. One such technique is the backbone technique given in references [23,

30, 29], which are being studied by us. The term of “backbone” here refers to “a
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mapping from instantaneous amplitude to instantaneous frequency (or vice versa)”.

A robust implementation of the Marple’s DHT algorithm is critical to produce a

meaningful backbone; contrasting numerical examples using the backbone are thus

given throughout this chapter.

2.3 Two Discrete Hilbert Transform Algorithms

Interestingly enough, the algorithms in reference [13] and [47] yield exactly the same

DHT result as Marple’s DHT algorithm in reference [58]. To start, the final outcome

of Cizek’s and Kak’s algorithms can be utilized first:

x̃[n] = x[n]⊗ hc[n] (2.10)

The “analytic-like” signal z[n] will then be as follows:

z[n] = x[n] + jx̃[n] = x[n] + jx[n]⊗ hc[n] (2.11)

Taking the DFT on both sides of Eq. (2.11) yields the following equation:

Z[n] = X[n] + jX[n]Hc[n] = X[n] (1 + jHc[n]) = X[n]Wc[n] (2.12)

where the convolution theory is utilized [3], i.e., convolution of x[n] and hc[n] in time

domain is multiplication of X[n] and Hc[n] in frequency domain. The windowing
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function Wc[n] is obtained as follows:

Wc[n] = 1 + jHc[n] =




2 n = 1, 2, · · · , N/2− 1

1 n = 0, N/2

0 n = N/2 + 1, N/2 + 2, · · · , N − 1

N ∈ E


1 n = 0

2 n = 1, 2, · · · , (N − 1)/2

0 n = (N + 1)/2, (N + 3)/2, · · · , N − 1

N ∈ O

(2.13)

It can be seen that Wc[n] is the same as Wm[n] in Eq. (2.6) from [58] for N ∈ E and

Eq. (2.9) from MATLAB for N ∈ O.

To this point, the three major DHT algorithms, i.e., [13] together with [47]

and [58], are shown to be mathematically equivalent. Even though this derivation

may seem trivial, historically it seems necessary to acknowledge that [13] introduced

the concept of DHT nearly 30 years ahead of [58] while the latter seems to have

received more recognition. Technically, it appears to us that [13] and [58] somehow

complement each other: While [58] presents an implementation algorithm but not a

mathematical formula, [13] offers a DSP formulas but not an implementing algorithm.

Last but not least, realizing the mathematical equivalence of the two algorithms may

help future researchers avoid tedious manipulations when they start with the algo-

rithm in reference [58]. For example, almost one and half pages are used to derive

two formulas in Proposition I of [20]. In fact, the formulas are readily available in

reference [13].

By directly using this mathematical equivalence, it becomes apparent that the

first property in Chapter 2.2.3 is true as explained in B.
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2.4 Proposed Preprocessing Procedures

2.4.1 Overview

The proposed two add-on procedures are named after local extrema trimming and

even extension. With these, the entire process of DHT can be described as follows:

Step A Identify and select local extrema each close to the two end of a specified real

signal for the proposed local extrema trimming, and obtain a truncated

real signal.

Step B Perform the proposed even extension to the truncated signal to obtain an

extended real signal.

Step C Apply Marple’s DHT algorithm to the extended signal to obtain a trans-

formed signal.

Step D Extract the portion corresponding to the truncated real signal from the trans-

formed signal, and take this signal as the final DHT result.

An inherent limitation with the proposed add-on procedures is that they lead to a

DHT of a truncated version of a specified real signal - rather than the entire length of

the real signal itself. The shortening of the signal may or may not be a practical issue

depending on the situation. For the specified applications where vibration signals can

have many cycles in a data set, we believe that this sacrifice could be affordable in the

first place. Additionally and more importantly, this sacrifice can be a wise tradeoff

since it eases the adverse end effect that could impact a large portion of the entire

signal length.

In fact, the add-on procedure of even extension was developed first as an inspi-

ration from an even extension in Fourier series, or discrete cosine transform (DCT).

When combining this add-on procedure alone with Marple’s DHT algorithm, a signif-

icant reduction of end effect was achieved sometimes but not at other time indicating
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a strong signal-dependent performance. After a careful examination of all signals,

and more importantly, after a mathematical analysis conducted on the DHT result

from using even extension (that will be presented in Chapter 2.4.3, we realized that

this add-on procedure would be responsible for both ends of the DHT being zero. We

thus further proposed the add-on procedure of local extrema trimming to take full

advantage of the limitation caused by even extension. In other words, local extrema

trimming makes even extension far more robust in the specified applications but at

a cost of truncating the original signal, or “an early stopping” of the original signal.

The obtained DHT of the truncated signal is subject to the least end effect compar-

ing with those obtained from using even extension alone, and from using no add-on

procedures at all.

2.4.2 Even extension

To minimize frequency leakage, it is essential to reduce the discrepancy caused by

periodic extension (referring back to Chapter 2.2.4 for the discrepancy). One way

to achieve this goal is to reverse the original signal and concatenate this with the

original signal. Fig. 2.4 illustrates this idea when the reversal and concatenation take

place at the right end of the original signal. The reversal and concatenation can take

place at the left end of the original signal as well, however we will not illustrate and

discuss this situation hereafter. This is referred to as “even extension” by following

the same terminology for Fourier series and in DCT.
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Figure 2.4: Illustration of mirroring (b) and periodic extension (c). The original
signal in (a) has a length of N = 6 and is defined for n = 0, 1, 2, 3, 4, 5. The new
signal in (b) has a length of 2N − 2 = 10 and is defined for n = 0, 1, · · · , 8, 9.

It is important to emphasize that the proposed even extension must be taken with

care: The first and last points of the original signal need to be omitted for reversal

thus leading to a total length of 2N − 2 after concatenation with the original signal

- as illustrated in Fig. 2.4 (a) and (b). Not removing these two points would lead

to a situation similar to that in Fig. 2.1 (b) where low-frequency leakage would be

introduced.

Intuitively, this add-on procedure eliminates a sudden “jump”, i.e., a high-frequency

leakage that could otherwise happen during a periodic extension. For DFT, this would

help cure Gibb’s phenomenon. Nonetheless, this add-on procedure may still cause an-

other unwanted side effect. Referring to Fig. 2.4(c), the two ends of the original signal

become local extrama (i.e., minima or maxima) after the proposed even extension,

which may or may not be consistent with the original signal as illustrated in Fig. 2.5.

This intuition can be quantified in the analysis given in Chapter 2.4.3.
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Figure 2.5: An illustration of the limitation with the proposed even extension by using
the signal in Fig. 2.3. The red box highlights the undesired local extrema introduced
by even extension.
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2.4.3 Quantitative analysis of proposed even extension

Following [13], here we intend to derive a circular convolution formula for the DHT

of the signal after the proposed even extension. Denote the extended signal as y[n],

where n = 0, 1, · · · , 2N − 2, and

y[n] =

 x[n] n = 0, 1, ..., N − 1

x[2N − 2− n] n = N,N + 1, ..., 2N − 3
(2.14)

where x[n] is the original real signal.

Following the general DHT formula in Eq. (2.3), the DHT of y[n] can be obtained

as follows with derivations given in C:

ỹ[n] =
N−1∑
k=0

x[k] (hy[n− k] + hy[n+ k])− (x[0]hy[n] + x[N − 1]hy[n+N − 1]) ,

for n = 0, 1, · · · , 2N − 3 (2.15)

where

hy[n] =

 0 n ∈ E
1

N−1
cot nπ

2N−2
n ∈ O

(2.16)

The computation error measured by the difference between ỹ[n] and x̃[n] for the

range of n = 0, 1, · · · , N − 1 would thus be as follows:

ỹ[n]− x̃[n] =
N−1∑
k=0

x[k] (hy[n− k] + hy[n+ k]− hx[n− k])︸ ︷︷ ︸
∆h(n,k)

− (x[0]hy[n] + x[N − 1]hy[n+N − 1]) (2.17)

To further evaluate this error formula, Fig. 2.6 presents a 3D plot and 2D contour

plot of ∆h(n, k), respectively. It can be seen that this value is small in general,

indicating that ỹ[n] is close to x̃[n] in general.
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Figure 2.6: The function of ∆h(n, k) that shows a magnitude close to zero at most
points.

Concerning the two important properties, it is clear that the proposed even ex-

tension does not change the first property because it applies Marple’s DHT algorithm

to y[n] with y[n] containing all of x[n]. Unfortunately, the proposed even extension

destroys the orthogonality property between the original signal and its DHT, i.e.,
N−1∑
n=0

y[n]ỹ[n] ̸= 0. Take x[n] = [1, 3, 2,−5] as an example. After even extension, we

have y[n] = [1, 3, 2,−5, 2, 3]. ỹ[n] is calculated to be ỹ[n] = [0, −0.5774, 4.6188, 0,

4.6188, 0.5774]. Thus,
N−1∑
n=0

y[n]ỹ[n] =
3∑

n=0

y[n]ỹ[n] = 1 × 0 + 3 × (−0.5774) + 2 ×

4.6188 + (−5)× 0 = 7.5054 ̸= 0.

Another important consequence of the proposed even extension given in Eq. (2.15)

is that the two ends of ỹ[n] is always zero, i.e.,

ỹ[0] = ỹ[N − 1] = 0 (2.18)

While the detail of this is shown in D, the implication of this is given hereafter to

achieve, at a price of truncating part of the original signal, a more robust execution

of Marple’s DHT algorithm than otherwise.
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2.4.4 Local extrema trimming

An inherent limitation with the proposed even extension seems to lie in two consistent

facts: Both ends of the original signal being treated as local extrema regardless of

the truth with the original signal, and the DHT results of the both ends always being

zero. One quick fix but at the cost of shortening the original signal is to intentionally

select some local extrema in the original signal being the ends of the signal for even

extension and so on. In other words, this refers to trimming the original signal at a

user-defined leftmost and rightmost local extrema before starting the proposed even

extension procedure. This indeed is a trivial detail, however it is originated from

Eq. (2.18) with a rigorous mathematical proof, and will be validated in numerical

examples hereafter.

It is of great importance to highlight that when a signal is discrete, sampling

would very likely cause us to miss true local extrema. Having said this, the proposed

local extrema trimming would not be perfect most of time, a fundamental limitation

that cannot be overcome easily. In other words, errors caused by the proposed local

extrema trimming lies in the sampling process of the signal.

2.5 Numerical Examples

Two sets of case studies are designed to compare the performance under three options:

• Marple’s DSP algorithm alone (shorthanded as “M” in the figures)

• Marple’s DSP algorithm with proposed even extension procedure only (short-

handed as “E + M” in the figures)

• Marple’s DSP algorithm with the proposed two add-on procedures (shorthanded

as “T + E + M” in the figures)
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The second option is taken as a reference to compare the improvement by the

proposed local extrema trimming procedure. For illustration purpose, all signals are

designed so that we do not need to discard any point in the beginning of these signals.

In other words, the starting point in a signal is indeed a local minimum/maximum.

A total of six different types of signals are used as the first set of case studies.

See details in Table 2.1. While more information on how these signals designed will

be given in Chapter 3, we include three basic types of signals in Cases (a) to (c) and

some other signals that can be used to mimic the free vibration of a single-degree-

of-freedom (SDOF) system. Last but not least, it is very important to highlight the

concepts of mono- and multi-component signals. Hilbert transform should only be

directly applied to mono-component signals - not multi-component signals. All six

signals in this set of case studies are qualified as mono-component signals.

Table 2.1: Overview of the six case studies.
ID Description Signal
1 pure sinusoid cos(t)
2 FM signal 10 cos(t+ 0.05t2/2)
3 AM signal (10 cos(0.3t) + 20) cos(2t)

4
exponentially decaying
sinusoid

10e−0.05t cos t

5 AM-FM signal 10e−0.05t cos(t+ 0.05t2/2)
6 AM-FM signal 2 10e−0.05t cos (1t− 1.5e−0.3t)

Other details concerning all numerical exercises in this study are as follows: The

MATLAB built-in function hilbert.m is used to implement the Marple’s DHT algo-

rithm. Peak picking required in the proposed local extrema trimming is done by

using MATLAB built-in function findpeaks.m. The instantaneous frequency is ob-

tained by using a commonly seen central difference method, with a modification to

the algorithm given in reference [30]:

ω[n] =
ϕ[n+ 1]− ϕ[n− 1]

2
=

1

2
arctan (z[n− 1]z∗[n+ 1]) (2.19)
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where z[n] is the “analytic-like” signal of the original signal x[n], i.e., z[n] = x[n] +

jx̃[n], and z∗ is the complex conjugate of z[n], i.e., z∗[n] = x[n]− jx̃[n]. To make ω[n]

of the same length as x[n], we let ω[0] = ω[1] and ω[N − 1] = ω[N − 2].

For the first set of case studies, comparisons in terms of the obtained DHT, its

instantaneous characteristics and backbones are shown in Fig. 2.7. It can be seen that

the proposed two add-on procedures greatly complement Marple’s DHT algorithm.

Using the proposed even extension alone would not be as robust as using both of

the proposed two procedures especially when the specified signal does not end with

a local maximum or minimum.
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Figure 2.7: Comparisons for case studies by using the three different options in exe-
cuting DHT, where “M”, “E+M”, and “T+E+M” stand for using the Marple’s DHT
algorithm only, using the Marple’s DHT algorithm with the proposed even extension,
and using the Marple’s DHT algorithm with the proposed local extrema trimming and
even extension, respectively. Case (a): cos(t); Case (b): 10 cos(t+0.05t2/2); Case (c):
(10 cos(0.3t)+20) cos(2t); Case (d): 10e−0.05t cos t; Case (e): 10e−0.05t cos(t+0.05t2/2);
Case (f): 10e−0.05t cos(1t− 1.5e−0.3t).

Even though the focus of this work is vibration signals, the proposed two add-

on procedures may not be limited to vibration signals. To illustrate other potential
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applications, the second set of case studies is presented in Fig. 2.8. We carefully

selected three typical signals from [67], [44] and [45]. The signal in Fig. 2.8(a) is

a phase signal, commonly seen in HT analysis, while those in Fig. 2.8 (b) and (c)

are important test signals for Nordan Huang’s empirical mode decomposition (EMD)

method proposed to enable general Hilbert spectrum analysis ([44]). Once again, the

comparison among the three options clearly indicates the effectiveness of the proposed

two add-on procedures in working with Marple’s DHT algorithm.
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Figure 2.8: Comparisons for the second set of case studies by using the three dif-
ferent options in executing DHT, where “M”, “E+M”, and “T+E+M” stand for
using the Marple’s DHT algorithm only, using the Marple’s DHT algorithm with
the proposed even extension, and using the Marple’s DHT algorithm with the pro-
posed local extrema trimming and even extension, respectively. Case (a) is adopted
from [66], where x(t) = 10 cos

(
2t+ 2arctan sin t

2−cos t
+ 2arctan sin t

3−cos t

)
with sampling

frequency 100Hz. Case (b) is a frequency shift cosine wave adopted from Fig. 24
in reference [44]. Case (c) is damped Duffing wave with chirp frequency adopted
from [45], where x[n] = e−n/256 cos(π/64 (n2/512 + 32) + 0.3 sin(π/32 (n2/512 + 32))
with n = 0, 1, · · · , 1024. Disclaimer: Panels (a3), (a4), (b2), (b3), (b4) and (c4) are
zoomed-in views such that not all points are shown.
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2.6 Conclusion

Motivated by applications of HT in vibration signal analysis, two delicate and critical

numerical details that can make the Marple’s DHT algorithm more robust for pro-

cessing vibrations with multiple cycles of oscillations have been proposed, justified

and validated in this chapter. The proposed two add-on numerical procedures (to be

used in conjunction with the Marple’s DHT algorithm) enable wider acceptance and

more successful practice of DHT in similar engineering practice and more. Two major

DHT algorithms have been thoroughly examined with mathematical equivalence es-

tablished between them, which helps improve understanding and utilization of these

powerful algorithms in the DSP community. An additional formula for the situation

involving odd-numbered signal length has also been derived for one of these algo-

rithms. In addition to validations using two sets of numerical case studies, quantities

analysis of DHT has been carried out whenever possible.
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Chapter 3

NOISY BACKBONE: ANALYSIS

OF INTERACTION AND

SEPARATION OF TWO

MONO-COMPONENTS

3.1 Introduction

3.1.1 Background and motivations

The Hilbert transform (HT) has been an important signal processing tool for many

years. Among a vast body of HT literature is a technique called “backbone”, devel-

oped by Dr. Michael Feldman (e.g., [23, 24, 27, 28, 29, 30]), which is of interest to

this research topic. Its major utility could be to classify different types of nonlin-

ear behavior underlying a dynamical system’s response via the backbone, which is a

mapping between the instantaneous amplitude and instantaneous frequency. Both of

these instantaneous quantities are obtained from the system’s response signal via the

HT; the backbone’s profile is the key to system identification. For example, a linear
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single-degree-of-freedom (SDOF) system possesses a straight vertical backbone, while

a hardening or softening Duffing oscillator has a backbone bending to the right or

left, respectively. This technique has the potential for being a classifier with efficiency

in time and labor cost for an unknown dynamical system using outputs only.

[23] illustrates the capability of the backbone technique for identifying many types

of nonlinearity of SDOF models including but not necessarily limited to nonlinear

spring models (such as hardening, softening, backlash, pre-compressed strings, bilin-

ear, or impact), and nonlinear damping models (frequency-dependent or frequency-

independent). However, when this technique was applied in a naive manner, [46] en-

countered very “noisy” backbones. Indeed similar “noisy” backbones had appeared

(unnoticed by us) much earlier in Figs. 2, 6 and 10 of [32]. Causes and remedies for

such “noisy” backbones motivated this study (not signal decomposition methods). It

was a long journey through classical HT literature, while exercising mathematical,

physical and numerical reasoning, which shed light on this issue. By making this

contribution, we hope to complement a part of Dr. Feldman’s work.

3.1.2 Technical challenge, significance and structure of this

chapter

We shall show that, at least, some of the noise is not entirely an accident or a mis-

take. Rather, it could be due to the inherent nature of signals or even the technique

itself. In particular, two mono-components in a response can interact and lead to

oscillatory behavior in the backbone of their sum signal, thus appearing to be noise.

It will also be shown that this so-called “noise” is useful when decomposing such

double-component signals. As part of this study, a key formula for computing the

instantaneous frequency of a double-component signal is revised. In addition, a key

integral formula in reference [27] is revised. These would be the major contributions

of this study. We highlight here that signal decomposition is neither the motivation
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nor the primary focus of this study. The main purpose is to exercise quantitative

analysis to understand and resolve the “noisy” backbone issue, formulated here as a

certain type of double-component signal.

A suite of commonly seen signals will be studied in this chapter. They include

pure harmonics, frequency-modulated (FM) harmonics (called chirps), amplitude-

modulated (AM) harmonics, and amplitude-modulated frequency-modulated (AM-

FM) harmonics. To enable analysis, it is essential to obtain the instantaneous char-

acteristics of these signals, hence Hilbert transform needs to be applied. Although

Bedrosian’s identity ([4]) is a powerful tool that greatly simplifies computations of

the Hilbert transform of products, it has a strict condition on signals not covering

most cases to be studied here. Therefore, to be consistent, discrete Hilbert transform,

DHT, is employed for all case studies in this chapter. The subtlety and numerical

treatment of DHT has be addressed in Chapter 2.

The structure of the rest of this chapter is as follows. In Chapter 3.2, key con-

cepts are reviewed with a focus on the motivation for their definitions and subtleties

involved. Feldman’s backbone is formally introduced, where a definition is presented

based on the author’s understanding of his work. Two key formulas in Feldman’s se-

ries of publications concerning interactions of two mono-component signals are given.

In Chapter 3.3, results from several case studies are presented with a focus on how

two relatively simple backbones, each of which is from a mono-component signal, can

produce a backbone that is much more complicated after the two signals have been

summed. Chapter 3.4 gives an in-depth treatment of several theoretical issues in-

volved in the backbone of the sum of two mono-component signals. Chapter 3.4 also

presents a signal decomposition procedure and some preliminary simulation results

in Chapter 3.4.6. Given the focus of this chapter on noisy backbones, Chapter 3.4.6

only sketches the proposed signal decomposition technique which needs to be fur-

ther developed and extensively validated. Finally, discussions and conclusions are
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given in Chapters 3.5 and 3.6, respectively. E to H contain supporting proofs and/or

explanations developed in this work.

3.2 Literature Review

3.2.1 Analytic signal and Hilbert transform

Concepts to be reviewed in this and next subsections are fairly well known; however,

physical meaning and mathematical reasoning associated with these concepts are

subtle and fraught with ambiguities as pointed out in reference [17] and discussed in

reference [38] and [16].

A well-known concept is that starting from a real signal x(t), we can construct

a unique complex signal z(t). Originally proposed in [35] and based on the Hilbert

transform, it is nowadays called the analytic signal (AS) corresponding to x(t):

z(t) = x(t) + jx̃(t), with x̃(t) = H[x(t)] (3.1)

where j =
√
−1 is the imaginary unit. H[·] denotes the Hilbert transform operator,

and the alternative notation x̃(t) is used here for convenience.

The Hilbert transform of x(t) is the time convolution of x(t) with 1
πt

(e.g., Eq. (1.9)

on pp. 4 in reference [37]):

x̃(t) = x(t) ∗ 1

πt
=

1

π
P

∫ ∞

−∞

x(τ)

t− τ
dτ (3.2)

where x(t) and x̃(t) are the original and transformed signals, respectively. Due to the

singularity of the integrand at τ = t, the integral in Eq. (3.2) is defined as an improper

integral in the sense of the Cauchy principal value, denoted by P (e.g., Eq. (1.8) on

pp. 4 in reference [37]). Directly relevant to this study, an important property of the

Hilbert transform operator H[·] is that it is linear ([37]).
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An analytic signal can also be expressed in unique polar form as follows (e.g.,

Eq. (15b) on pp. 522 in reference [5]):

z(t) = a(t)ejϕ(t) (3.3)

where a(t) and ϕ(t) are called, respectively, the instantaneous amplitude and instanta-

neous phase of z(t). Different definitions for instantaneous amplitude and phase exist

as pointed out in reference [17]; not to cause any confusion to the readers, we stick to

one of the well-accepted definitions where instantaneous amplitude is restricted to be

non-negative. A pair of polar functions [a(t), ϕ(t)] corresponding to an analytic signal

is referred to as a canonical pair (e.g., [65], [7]). After matching real and imaginary

parts of z(t) in Eqs. (3.1) and (3.3), we can form the following four real equations:

x(t) = a(t) cosϕ(t) (3.4)

x̃(t) = a(t) sinϕ(t) (3.5)

a(t) =
√
x2(t) + x̃2(t) (3.6)

ϕ(t) = arctan
x̃(t)

x(t)
+ n(t)π, unwrapped phase (3.7)

Therefore for a canonical pair, it is clear from Eqs. (3.4) and (3.5) that

H[a(t) cosϕ(t)] = a(t) sinϕ(t) (3.8)

What needs to be emphasized here is that Eq. (3.8) is not a direct outcome of

Bedrosian’s identity, i.e., H[a(t) cosϕ(t)] = a(t)H[cosϕ(t)] when comparatively a(t)

is a lower-frequency signal while ϕ(t) is a higher-frequency signal whose spectra do not

overlap; furthermore, H[cosϕ(t)] is not necessarily sinϕ(t) as pointed out in [65]. It is

worth mentioning that Bedrosian’s identity only states a sufficient condition but not

a necessary condition. For a signal x(t) written in the form of Eq. (3.4), i.e., x(t) =
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f(t) cos(g(t)), there are actually infinitely many pairs of f(t) and g(t) corresponding

to x(t) [17]. Therefore, Eq. (3.8) does not hold in general, i.e., H[f(t) cos(g(t))] ̸=

f(t) sin(g(t)) in general.

3.2.2 Instantaneous frequency and mono-component signal

A commonly accepted definition of instantaneous frequency is that it is the time

derivative of the instantaneous phase ϕ(t), as shown below (e.g., Eq. (18) on pp. 522

in reference [5]):

ω(t) =
dϕ(t)

dt
(3.9)

This seemingly straightforward definition can lead to paradoxes. An example from [14]

(Example 2.4 on pp. 40-41) vividly demonstrates this situation by presenting a signal

that is the sum of two harmonics: x(t) = a1 cos(ω1t) + a2 cos(ω2t), with a1 and a2

constants, and ω1 and ω2 constants and positive and ω1 ̸= ω2. Although the original

signal contains two constant positive frequencies ω1 and ω2, the result from Eq. (3.9)

is time-dependent and can even be negative. Even with a1 and a2 both positive,

there are still issues with the instantaneous frequency of x(t); this will be verified in

Chapter 3.3.2. In other words, instantaneous frequency for this seemingly simple two-

tone signal lacks physical meaning at certain time points or intervals, even though it

is mathematically well defined.

To avoid this troublesome issue, [5] argues that instantaneous frequency is physi-

cally meaningful only for mono-component signals. According to [5] (pp. 527) and [7]

(pp. 19), a mono-component signal is characterized in the time-instantaneous fre-

quency domain by a single “ridge”, corresponding to an elongated region of energy

concentration. Moreover, “the crest of the ‘ridge”’ being interpreted as “a graph of

IF vs. time” needs to be a single-valued function. When expressed as an analytic

signal, a mono-component signal takes the form in Eq. (3.3). Eq. (3.8) will be used
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in this study as the starting point for proofs in E (the foundation for F and G),

where mono-component signals are treated as infinite-length continuous-time signals

to facilitate mathematical analysis.

As far as the author is concerned, there is no widely accepted rigorous mathe-

matical definition for mono-component signals. In the process of selecting and/or

designing these finite-length discretized signals, we adhere to the guiding principle in

reference [5] mentioned above. Other viewpoints regarding mono-component signals,

e.g., instantaneous amplitude a(t) is real and positive, and instantaneous phase ϕ(t)

is differentiable and often further required to be monotonically increasing to ensure

that its time derivative – the instantaneous frequency – is physically meaningful (see

e.g. [66]), have been considered as well.

To extract physically meaningful instantaneous quantities from a multi-component

signal, i.e., a sum of two or more mono-components, it is needed to first decompose

the multi-component signal into a series of mono-components, and study the instan-

taneous attributes of each component. Nonetheless, we can still try to extract mean-

ingful information from a multi-component signal by looking into its instantaneous

characteristics, although the outcome may be physically meaningless.

The simplest multi-component signal would be the case of a double-component

signal. For some dynamical systems, a double-component signal could be an accept-

able approximation to the system’s free vibration response, as long as a third mono-

component (and beyond) would be negligible. For example, the free response of a

damped hardening Duffing oscillator might have only two clearly separated “ridges”

in the short-time Fourier spectrum, as shown in Fig. 3.1. If the two “ridges” could

be approximated by two mono-components, then this example indicates that a third

mono-component would not contribute significantly to the response energy. Having

said this, we will focus on the study of double-component signals in this chapter.
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Figure 3.1: The time-frequency distribution (TFD) of the response of Duffing equation
ẍ(t)+0.03ẋ(t)+x(t)+x(t)3 = 0 with initial condition x(0) = 100 and ẋ(0) = 0. TFD
plot is obtained by using MATLAB [59] built-in function spectrogram, with parameter
values chosen as follows: Hamming window length 256; number of overlapping samples
255; FFT length 512; Fs = 500. The free response is approximated by using MATLAB
built-in function ode45.

3.2.3 Feldman’s backbone

The backbones to be discussed hereafter are those in Feldman’s work, e.g., [23, 29, 30].

A rigorous definition based on the understanding of Feldman’s work is proposed: The

backbone for a real signal x(t) is the curve {(ω(t), a(t)) | t ≥ 0} in the amplitude-

frequency plane, where a(t) is the instantaneous amplitude and ω(t) is the instanta-

neous frequency of the signal x(t), respectively. Although the Hilbert transform is a

linear operator on the signal x(t) and thus the analytic signal is too, the backbone

is not since it is defined via Eqs. (3.6) and (3.9). The mapping from instantaneous

amplitude to instantaneous frequency (or vice versa) is not even necessarily one-

to-one, even though a one-to-one mapping would be preferred for applications in

vibration analysis. Alternatively, the backbone could be viewed as a projection of a

three-dimensional curve (t, a(t), ω(t)) onto the plane of a and ω - with t playing an

important role in understanding the backbone.

This chapter focuses on the backbone of double-component signals. We will exam-
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ine how a backbone is affected when a signal is composed of two mono-components,

knowing that the backbone of each component could be as simple as indicated in

reference [23].

3.2.4 Original formulas for the Hilbert transform of double-

component signal

Considering two mono-component signals with zero initial phases, x1(t) and x2(t),

their sum, a double-component signal, x(t) = x1(t) + x2(t), is given as follows:

x(t) = a1(t) cos

(∫ t

0

ω1(τ)dτ

)
︸ ︷︷ ︸

x1(t)

+ a2(t) cos

(∫ t

0

ω2(τ)dτ

)
︸ ︷︷ ︸

x2(t)

(3.10)

whose instantaneous amplitude and instantaneous frequency are given in reference [31]

(Eqs. (3) and (4) on pp. 700), [25] (Eqs. (14) and (15) on pp. 479), [27] (Eq. (2) on

pp. 520), [28] (pp. 957), [30] (Eq. (35) on pp. 772), and [29] (Eqs. (4.8) and (4.9) on

pp. 51; Eq. (5.2) on pp. 62), with no proof, as follows:

a2(t) = a21(t) + a22(t) + 2a1(t)a2(t) cos

(∫ t

0

(ω2(τ)− ω1(τ))dτ

)
(3.11)

ω(t) = ω1(t) +
[ω2(t)− ω1(t)]

[
a22(t) + a1(t)a2(t) cos

(∫ t

0
(ω2(τ)− ω1(τ))dτ

)]
a2(t)

(3.12)

Similar formulas with a1 and a2 constants are stated in [14] (Eqs. (2.80) and (2.81)

on pp. 40), which are applied to two harmonics. E provides a derivation of Eqs. (3.11)

and (3.12) based on canonical pairs, the latter of which results in a different formula

that will be introduced and discussed in Chapter 3.4.3.
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3.3 Case Studies

3.3.1 Overview of case studies

A collection of double-component signals will be investigated hereafter, most of which

might mimic approximated solutions to SDOF dynamical systems. DHT is performed

to obtain the Hilbert transform of a given signal in all six cases as shown in Table 3.1.

All signals are qualified as mono-component signals in the sense of [5]; see Fig. 3.2

for typical concentrated instantaneous frequency “ridge” in every signal. However,

the fi(t) and gi(t) as shown in Table 3.1 are only for simplicity of presentation; they

do not form canonical pairs except for Case 1. Two requirements on the relationship

between the instantaneous quantities of each case is that (e.g., Eq. (5.2) on pp. 62 in

reference [29]):

a1(t) > a2(t), ∀t > 0 (3.13)

ω1(t) < ω2(t), ∀t > 0 (3.14)
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Table 3.1: Overview of case studies. † x(t) in Case 1 is an approximate solution of
ẍ(t) + x(t) + x3(t) = 0 with x(0) = 1, ẋ(0) = 0.

ID Mono-component
x(t) =

2∑
i=1

fi(t) cos (gi(t)) Parameter values adopted
fi(t) gi(t)

1
pure sinu-
soid † ai ωit

{
a1 = 0.9820, ω1 = 1.3180
a2 = 0.01796, ω2 = 3.9539

2 FM signal āi ω̄it+
ρit

2

2

{
ā1 = 10, ω̄1 = 1, ρ1 = 0.05
ā2 = 2, ω̄2 = 3, ρ2 = 0.05

3 AM signal
āi cos

(
ω̄f
i t
)
+

āfi

ω̄g
i t

{
ā1 = 10, ω̄f

1 = 0.3, āf1 = 20, ω̄g
1 = 2

ā2 = 2, ω̄f
2 = 1, āf2 = 3, ω̄g

2 = 6

4
exponentially
decaying si-
nusoid

āie
−αit ω̄it

{
ā1 = 10, α1 = 0.05, ω̄1 = 1
ā2 = 2, α2 = 0.05, ω̄2 = 3

5
AM-FM sig-
nal - 1

āie
−αit ω̄it+

ρit
2

2

{
ā1 = 10, α1 = 0.1, ω̄1 = 1, ρ1 = 0.05
ā2 = 2, α2 = 0.2, ω̄2 = 3, ρ2 = 0.05

6
AM-FM sig-
nal - 2

āie
−αit ω̄it+ γie

ρit


ā1 = 10, α1 = 0.05, ω̄1 = 1,

ρ1 = −0.3, γ1 = −1.5
ā2 = 2, α2 = 0.1, ω̄2 = 3,

ρ2 = −0.3, γ2 = −5

Figure 3.2: The time-frequency distribution (TFD) of the first mono-component,
x1(t), of all six case studies, while that of the second mono-component, x2(t), of
six case studies is similar. TFD plot is obtained by using MATLAB built-in function
spectrogram, with parameter values chosen as follows: Hamming window length 2048;
number of overlapping samples 2047; FFT length 1024; Fs = 50.

3.3.2 Case study #1: summation of two harmonics

To start simple, a1, a2, ω1 and ω2 are all constants for the first case study. Con-

sequently, the backbone of either x1(t) or x2(t) is a single point. The backbone of
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x(t) = x1(t) + x2(t), however, is not as simple. Time histories of the first 25 seconds

can be found in Fig. 3.3 (a) for all signals, i.e., x(t), x1(t) and x2(t), (b) for their

instantaneous amplitudes, and (c) for their instantaneous frequencies, while all back-

bones based on 50 seconds of a full length signal can be found in Fig. 3.3(d). Also in

Panel (c) of Fig. 3.3 is a mathematical quantity ω̂(t) defined as the difference between

the instantaneous frequency of the sum signal and the first mono-component:

ω̂(t) = ω(t)− ω1(t) (3.15)

This introduced mathematical quantity is important to this study and will be analyzed

in Chapter 3.4.7. The design of Fig. 3.3 will be repeated in Figs. 3.5 to 3.9 for Cases

#2 to #6.
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Figure 3.3: Case #1: Summation of two harmonics, where x1(t) = 0.9820 cos (1.3180t)
and x2(t) = 0.01796 cos (3.9539t) as given in Table 3.1. This is an approximated
response of an undamped Duffing equation ẍ(t) + x(t) + x3(t) = 0 with x(0) = 1
and ẋ(0) = 0. Legend follows the same manner in Figs. 3.6- 3.9 and is thus omitted
hereafter.

Fig. 3.4 duplicates the results in Fig. 3.3 without using DHT based on the fact that
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fi(t) and gi(t) (with i= 1, 2) form canonical pairs for this case. In other words, Fig. 3.4

depicts the ideal Fig. 3.3, which would result for the infinite-length continuous-time

signal. To gain more insights into this case, the instantaneous frequency of the sum

signal, by definition, is (as will be elaborated later in Chapter 3.4.3):

ω(t) =
ω1 + ω2

2
− (ω2 − ω1)(a

2
1 − a22)

2

1

a2(t)
(3.16)

Eq. (3.16) represents a mapping from a(t) to ω(t) in a polynomial with a negative ex-

ponent. Deviations from ideal results are most obvious in the backbone of the double-

component signal (enlarged in (d)). The errors in Fig. 3.3 are mainly attributable

to the end effect (finite length of time) of the DHT. Fig. 3.4 clearly illustrates the

transition of the backbones from two points to one curve - without the disruption

caused by the end effect. Unfortunately, such errors exist to varying degrees for all

six cases. The focus is mainly on the body of the backbones rather than the two

ends when we are trying to understand how mixing two mono-components affects the

backbone.
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Figure 3.4: A duplicate of Fig. 3.3 without using DHT.
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The transition from two points to one curve is interesting; either point does not

seem easy to be recovered from the curve directly. However, this recovery can be

done effectively when the proposed decomposition method is applied, which will be

given in detail later.

Equation (3.16) can also be utilized to examine the sign of the instantaneous

frequency of such a double-component signal. Suppose we would like to find the

necessary and sufficient condition for ω(t) in Eq. (3.16) to be negative, meaning that

the following inequality holds for at least one time instance ts:

ω1 + ω2

2
− (ω2 − ω1)(a

2
1 − a22)

2

1

a2(ts)
< 0 (3.17)

which leads to

ω1a
2
1 + ω2a

2
2 < (ω1 + ω2)a1a2 (3.18)

Without losing generality, we can assume a1 > a2 and eventually obtain a necessary

and sufficient condition:

ω1a1 < ω2a2, (with a1 > a2) (3.19)

3.3.3 Case study #2: summation of two linear chirps

Figure 3.5 presents the behavior of two linear chirps and their sum. Observations are

made as follows:

Panel (b): a(t) centers around ā1 and fluctuates within [ā1 − ā2, ā1 + ā2].

Panel (c): Similarly, ω(t) oscillates around ω1(t), i.e., ω(t)−ω1(t) in Eq. (3.15), seems

to vary between some positive and negative values almost periodically. In

fact, a signal decomposition method called Hilbert vibration decompo-

sition ([27]), HVD, is a vivid application of this property. Nonetheless,
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Figure 3.5: Case #2: Summation of two linear chirps, where x1(t) = 10 cos(1t+ 0.05t2

2
)

and x2(t) = 2 cos(3t+ 0.05t2

2
) as given in Table 3.1.

observations are not rigorous proofs/analyses. The theoretical study will

be carried out in Chapter 3.4.

Panel (d): The backbone of x(t) fluctuates around the horizontal line segment corre-

sponding to the backbone of x1(t), and could be considered noisy. Even

though the backbone of the mono-component signals displays a trend of a

horizontal line (as it would intuitively).

3.3.4 Case study #3: summation of two amplitude modu-

lated (AM) signals

Figure 3.6 presents the behavior of two AM signals and their sum. Similar observa-

tions are made as before; however, the profile of the backbone of x(t) does not seem

regular. This case study sets a standard for the proposed theoretical study: this

seemingly irregular case should be able to be comprehended.
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Figure 3.6: Case #3: Summation of two amplitude modulated sinusoids, where
x1(t) = (20 + 10 cos(0.3t)) cos(2t), and x2(t) = (3 + 2 cos(1t)) cos(6t) as given in
Table 3.1.

3.3.5 Case study #4: summation of two LTI SDOF responses

To mimic the free response of a simple beam being modeled as a lumped mass at mid-

span, the beam’s first and third modes would be dominant that can be represented

by using a double-component signal, we may have a2(t) < a1(t) and ω2(t) > ω1(t)

for all t to follow the conditions specified in Eqs. (3.13) and (3.14). Taking x1(t) =

10e−0.01t cos(1t) and x2(t) = 5e−0.015t cos(3t) as an example, the analysis is given in

Fig. 3.7. Similar observations are made as for Cases #2 except that the individual

backbones should be vertical here.
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Figure 3.7: Case #4: Summation of two exponentially decaying sinusoids, where
x1(t) = 10e−0.05t cos(1t) and x2(t) = 2e−0.05t cos(3t) as given in Table 3.1.

3.3.6 Case studies #5 and #6: summation of two amplitude

modulated and frequency modulated (AM-FM) signals

Two different kinds of AM-FM signals are studied in Figs. 3.8 and 3.9, where the

first is a summation of two exponentially decaying sweeping-up linear chirps while

the second is a summation of two exponentially decaying sweeping-down exponential

chirps. See Table 3.1 for their expressions. These two cases are designed to mimic

different bending behaviors of backbones; however, these two cases do not replicate

softening and hardening Duffing oscillators. Similar observations can be made as

before, which further confirms a need for a theoretical study.
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Figure 3.8: Case #5: Summation of two exponentially decaying sweeping-up linear
chirps, where x1(t) = 10e−0.1t cos(1t + 0.05t2

2
), and x2(t) = 2e−0.2t cos(3t + 0.05t2

2
) as

given in Table 3.1.
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Figure 3.9: Case #6: Summation of two exponentially decaying sweeping-down expo-
nential chirps, where x1(t) = 10e−0.05t cos(1t− 1.5e−0.3t), and x2(t) = 2e−0.1t cos(3t−
5e−0.3t) as given in Table 3.1.
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3.4 Theoretical Issues

Theoretical issues related to double-component signals are discussed herein referring

back to the case studies presented above. This is to confirm and generalize the obser-

vations in these case studies for more quantitative relations and eventually, for a new

signal decomposition method. Attention will be paid first and foremost to the time

histories of instantaneous parameters: instantaneous amplitude a(t), instantaneous

phase ϕ(t), and instantaneous frequency ω(t). This is because first, as mentioned pre-

viously, the backbone is a mapping from ω(t) to a(t) or a(t) to ω(t) after all. Given

the definition in Eq. (3.9), we feel it necessary to examine ϕ(t) in order to understand

ω(t), which turns out to be a beneficial strategy.

To start, two mono-component signals, x1(t), x2(t), and their sum (a double-

component signal), x(t), can be denoted as follows following Eq. (3.1):

z1(t) = x1(t) + jx̃1(t), z2(t) = x2(t) + jx̃2(t),

z1(t) + z2(t)︸ ︷︷ ︸
z(t)

= x1(t) + x2(t)︸ ︷︷ ︸
x(t)

+j [x̃1(t) + x̃2(t)]︸ ︷︷ ︸
x̃(t)

(3.20)

where z1(t), z2(t) and z(t) are the analytic signal of x1(t), x2(t) and x(t), respectively,

while x̃1(t), x̃2(t) and x̃(t) are the corresponding Hilbert transforms.

3.4.1 Assumptions

In this study, the following assumptions are made:

Assumption #1 a1(t) > a2(t) and ω1(t) < ω2(t), ∀t, which are Eqs. (3.13) and (3.14).

This assumption is adopted from [27, 30] and [29] (pp. 62) and ap-

plied throughout this chapter.

Assumption #2 ai(t) and ωi(t)’s are all slow varying for i = 1, 2, adopted from [30]

(pp. 746). This assumption is applied whenever specified in this
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section. This assumption is interpreted as ai(t) and ωi(t)’s first and

second time derivatives being negligible.

3.4.2 Vector representation

In a Cartesian coordinate system for analytic signal, z1(t), z2(t) and z(t) can be

depicted in Fig. 3.10 by vectors
−→
OA,

−−→
OB, and

−→
OC, respectively. In this representation,

the angle with respect to the real axis and the length of a vector are wrapped phase

and instantaneous amplitude of an analytic signal, respectively. Unwrapped phase

would be the corresponding wrapped phase plus a multiple of 2π’s depending on how

many full cycles the vector has rotated at time t as given in Eq. (3.7).
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Figure 3.10: Analytic signals in complex coordinate plane for an arbitrary time in-

stance t, where
−→
OA,

−−→
OB and

−→
OC depict the analytic signals z1(t), z2(t) and z(t),

respectively.

Applying the assumptions in Chapter 3.4.1, Fig. 3.11 illustrates a typical rotation

cycle involving z1(t), z2(t) and z(t) with an additional assumption that z1(t) and z2(t)

start off with no difference in wrapped phase and they both happen to be on the real

axis - as shown in Panel (a). Time instances corresponding to Panels (a), (c) and (e)

are of particular interest, when z1(t) and z2(t) are in phase, antiphase, and in phase

again. To capture these special moments, a mapping will be introduced shortly.
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Figure 3.11: Evolution of z1(t), z2(t) and z(t) with time. Time increases gradually
from Panels (a) to (e). As will be shown in Chapter 3.4.4, (a) t = t0 = 0, (c): t = t1,
and (e): t = t2.

3.4.3 Revised formulas for the Hilbert transform of double-

component signal

To continue, it is first necessary for us to get back to the two key formulas in Eq. (3.11)

and (3.12). It is discovered in this study that Eq. (3.12) is not accurate in general.

A more accurate formula is developed in E and presented below:

ω(t) = ω1(t) + ω̂(t) (3.21)

with

ω̂(t) =
[a22(t) + a1(t)a2(t) cos∆ϕ(t)]

a2(t)
∆ω(t)+

a1(t)ȧ2(t)− ȧ1(t)a2(t)

a2(t)
sin∆ϕ(t) (3.22)

where

∆ϕ(t) = ϕ2(t)− ϕ1(t), with ϕi(t) =

∫ t

0

ωi(τ)dτ + φi, for i = 1, 2 (3.23)

∆ω(t) = ω2(t)− ω1(t) (3.24)
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Equations (3.21) and (3.22) simplify to Eq. (3.12) when the following condition is

met:

a1(t)ȧ2(t)− ȧ1(t)a2(t) = 0 (3.25)

which is not always satisfied. Therefore, Eq. (3.12) is only an approximation of

Eqs. (3.21) and (3.22).

3.4.4 Time indices

A mapping

f : n 7→ tn, with n ∈ N0 (3.26)

is defined such that

∆ϕ(tn+1)−∆ϕ(tn) = π (3.27)

where ∆ϕ(t) is defined in Eq. (3.23). The mapping f is well-defined once the initial

time instance t0 is fixed, which will be done shortly after.

Time instance tn has a clear physical interpretation: From tn to tn+1, ∆ϕ(t), the

phase difference between z⃗2(t) and z⃗1(t), is increased by π. In Fig. 3.11, tn’s with

n = 0, 1, and 2 correspond to the time instances when the three vectors z⃗1(tn), z⃗2(tn)

and z⃗(tn) line up, i.e., in Panels (a), (c) or (e) at t = t0, t = t1, and t = t2, respectively.

z⃗2(t) rotates π more than z⃗1(t) from tn to tn+1.

The innovation in this study depends heavily on the introduction of both tn and

∆ϕ(tn), while a quantitative expression for ∆ϕ(tn) is not in place yet because Fig. 3.11

is only a special case contrasting with a more general situation when z⃗1(t0) and z⃗2(t0)

do not line up. That is, ϕ1(t0) ̸= ϕ2(t0) when t0 = 0. To address this challenge, the

starting point t0 needs a more careful definition. We choose not to define t0 = 0 in

general. Rather, t0 is defined as the time instance when the two vectors z⃗1(t) and z⃗2(t)

are rotated to an angle such that they both line up and point to the same direction
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for the first time. In other words, t0 should satisfy the following equation:

∆ϕ(t0) =

 0, if φ1 ≥ φ2

2π, if φ1 < φ2

(3.28)

where φ1 and φ2 are the initial phases of z1(t) and z2(t), respectively. When φ1 =

φ2 = 0, t0 = 0 is obtained as shown in Fig. 3.11(a).

Combining Eqs. (3.27) and (3.28) yields the following non-iterative formula:

∆ϕ(tn) =

 nπ + 0, if φ1 ≥ φ2

nπ + 2π, if φ1 < φ2

(3.29)

Figure 3.12(a) illustrates an important property, for n ∈ N0, z⃗(t) and z⃗1(t) have

the same phase value:

ϕ(tn) = ϕ1(tn), ∀n ∈ N0 (3.30)

This can be justified by applying Assumption #1 and the idea of mathematical in-

duction starting with ϕ(t0) = ϕ1(t0); more details are given in F. Since ϕ(t) ∈ C and

ϕ1(t) ∈ C, ϕ̂(t) , ϕ(t)− ϕ1(t) ∈ C. Given the continuity of ϕ̂(t), ϕ(t)− ϕ1(t) remains

the same sign between tn and tn+1. Eq. (3.30) lays the foundation for the proposed

signal decomposition method.
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Figure 3.12: A zoom-in view of Case #4, where the two mono-component signals are
both exponentially decaying sinusoids. Panel (a) illustrates the relationship between
ϕ(t) and ϕ1(t). Panels (b) and (c) indicate simultaneous local maxima and minima
for a(t) and ω(t) in an approximate sense.

Under Assumptions #1 and #2, G shows that a(tn) and ω(tn) reach local extrema

simultaneously. This property is illustrated in Fig. 3.12(b) and (c) using one of the

case studies presented above, a closer look at which shows that the local extrema of

a(t) do not exactly line up with the local extrema of ω(t). This is as expected due to

Assumption #2. This approximation also lays the foundation for the proposed signal

decomposition method while introducing errors that call for further studies.

3.4.5 Local extrema and bounds

The non-negative integer set N0 can be divided into two subsets, i.e., the even set

E and odd set O, with E = {0, 2, 4, . . .}, and O = {1, 3, 5, . . .}. Also shown in G,

under Assumptions #1 and #2, both a(t) and ω(t) reach their local maxima and

minima at tn when n ∈ E and n ∈ O, respectively. Thus, the two subsets, E and
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O, map to all local maxima and minima of a backbone, respectively. These are the

two bounds of the backbone. Unfortunately, there are no closed-form expressions for

these bounds. Nonetheless, this property does lead to closed-form expressions for the

following instantaneous quantities:

a(tn)max = a1(tn) + a2(tn), ∀n ∈ E (3.31)

a(tn)min = a1(tn)− a2(tn), ∀n ∈ O (3.32)

ω(tn)max = ω1(tn) +
a2(tn)

a1(tn) + a2(tn)
(ω2(tn)− ω1(tn)) , ∀n ∈ E (3.33)

ω(tn)min = ω1(tn) +
−a1(tn)

a1(tn)− a2(tn)
(ω2(tn)− ω1(tn)) , ∀n ∈ O (3.34)

where subscripts max and min denote local maxima and minima, respectively. Eqs.

(3.31) and (3.32) are obtained by applying Eqs. (G.3) to (E.3), while Eqs. (3.33)

and (3.34) are obtained by applying Eqs. (G.3) to (3.21).

For the purpose of developing a signal decomposition method, the instantaneous

amplitude of the first and second mono-components can be approximated by using

Eqs. (3.31) and (3.32): The summation of these two equations would be 2a1(t), while

the difference of these two equations would yield 2a2(t). This approximation, un-

fortunately, cannot be directly applied to Eqs. (3.33) and (3.34). It is important to

stress that both Assumptions #1 and #2 are applied to this approximation.

3.4.6 Proposed decomposition method

The procedure of the proposed signal decomposition method is given as follows:

1. Perform DHT of a given double-component signal x(t) that satisfies Assump-

tions #1 and #2 in Chapter 3.4.1 to obtain a(t), ϕ(t), and ω(t).

2. Option A: Locate all local maxima and minima of a(t); Option B: Locate all

local maxima and minima of ω(t). With either option, all corresponding time
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instances form the set of tn with n ∈ N0.

3. Find all ϕ(tn) values corresponding to all tn. Given Eq. (3.30), these ϕ(tn) will

be considered as ϕ1(tn).

4. If Option A is adopted in Step #2: Curve fit all local maxima and minima

of a(tn) for approximated Eqs. (3.31) and (3.32), respectively. If Option B is

adopted in Step #2: Locate all local extrema of a(tn) by picking the individual

values of a(tn) with tn obtained in Step 3. Afterwards, curve fit all maxima

and minima of a(tn), respectively. Average the two approximated curves for

approximated a1(t).

5. Curve fit all ϕ1(t) identified above to approximate ϕ1(t). Note that the instan-

taneous frequency ω1(t) can be obtained by numerically differentiating ϕ1(t).

6. Construct x1(t) by x1(t) = a1(t) cosϕ1(t).

7. Obtain x2(t) by using x2(t) = x(t)− x1(t).

This signal decomposition method is named after “index method” as it relies first

on identifying all time instances corresponding to tn with n ∈ N0 through identifying

peaks and valleys in a(t) or ω(t). Unfortunately, Step #2 involves approximations

thus introducing errors with both options according to Chapter 3.4.5. Another promi-

nent feature of the index method is to rely on the property revealed in Eq. (3.30) to

unlock the first component from the sum time history. Eq. (3.30) only involves As-

sumption #1; however, the execution of Eq. (3.30) under Step #3 receives errors from

Step #2.

The index method is tested on all six case studies with results presented in

Figs. 3.13 and 3.14 to contrast the exact and approximated x1(t) and x2(t), respec-

tively, and in Figs. 3.15 and 3.16 to contrast the original and recovered backbones

of each mono-component. The index method would not work well when a(t) or ω(t)
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stops oscillating, which prevents identifying those tn’s via finding the local maxima

and minima in a(t) or ω(t). This limitation is expected and actually shows up in Cases

#5 and #6, as shown in Panels (e) and (f) in Fig. 3.14. In Case #5, the extrema

of instantaneous amplitude of the sum signal are not obvious approaching the tail

as shown in Fig. 3.8(b) leading to not well approximated second mono-components

there. In Case #6, this issue is more severe. The approximated first and second

mono-components become erroneous starting from around 45 seconds. Fortunately,

this issue can potentially be overcome by using ω(t) to locate the tn’s instead. Im-

proved approximated results are presented in Fig. 3.17 when Option B is chosen in

Step #2.
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Figure 3.13: Validation of the proposed index method using approximated versus
exact x1(t) in all case studies. Option A is utilized for all cases to locate time indices
tn in Step #2.
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Figure 3.14: Validation of the proposed index method using approximated versus
exact x2(t) in all case studies. Option A is utilized for all cases to locate time indices
tn in Step #2.
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Figure 3.15: Validation of the proposed index method using recovered versus original
backbones of the first mono-component in all case studies. Option A is utilized for
all cases to locate time indices tn in Step #2.
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Figure 3.16: Validation of the proposed index method using recovered versus original
backbones of the second mono-component in all case studies. Option A is utilized for
all cases to locate time indices tn in Step #2.
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Figure 3.17: Validation of the proposed index method using approximated versus
exact component signals of (1) x1(t) and (2) x2(t) in (a) Case #5, and (b) Case #6.
Option B is utilized to locate time indices tn in Step #2.

A different challenge is manifested in the extracted second mono-component in

Case #3. As shown in Fig. 3.14(c), substantial errors in the approximated amplitude

of the second mono-component exist throughout. This could be resulted from abrupt

variations in the instantaneous frequency of the sum signal as shown in Fig. 3.6(c).

The index method is also tested on a Duffing oscillator described earlier in Fig. 3.1.

The simulation result is shown in Fig. 3.18. From Fig. 3.18(b), it can be seen that

the extracted first mono-component yields a much less oscillatory backbone curve
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compared with that for the original response. It can be seen that in Fig. 3.18(c),

the instantaneous frequency of the approximated first mono-component agrees well

with the TFD plot. However, the approximated second mono-component is not as

satisfactory as shown in Fig. 3.18(c).
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Figure 3.18: Validation of the proposed index method using Duffing equation ẍ(t) +
0.03ẋ(t)+x(t)+x3(t) = 0 with initial condition x(0) = 100 and ẋ(0) = 0. Option A is
utilized to locate time indices tn in Step #2. Panel (a), and (b) are the time histories,
and backbones, respectively. Panel (c) overlays the instantaneous frequencies of the
approximated first (in black) and second (in green) mono-components with the TFD
plot.

While error analysis will be pursued in future work, other implementation details

are under further refinement. So far, cubic spline is used for Steps #4 and #5 as in

reference [44]. Possibly, envelopes’ envelope as in reference [30] could be an option.

Numerical differentiation involved in Step #6 should be carried out with caution to

control high-frequency noise (e.g., [75]). Also, a2(t) obtained from Step #7 could be

validated with using half of the difference of Eqs. (3.31) and (3.32).

3.4.7 The integral in reference [27]

Part of the theoretical work can be used to examine a special integral that is the

cornerstone for the HVD method in reference [27].

Integrating both sides of Eq. (3.21) from tn to tn+1 with n ∈ N0 leads to the
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following equation:

ϕ(tn+1)− ϕ(tn) = ϕ1(tn+1)− ϕ1(tn) +

∫ tn+1

tn

ω̂(τ)dτ (3.35)

From Eq. (3.30), ϕ(tn+1) = ϕ1(tn+1) and ϕ(tn) = ϕ1(tn). Therefore, Eq. (3.35) be-

comes: ∫ tn+1

tn

ω̂(τ)dτ = 0 (3.36)

where ω̂ can be found in Eq. (3.22). This is an important integral concerning ω(t)

and ω1(t) given that ω̂(t) , ω(t)− ω1(τ). Such an integral was previously studied in

reference [27]. It is stated in reference [27] (Eq. (3) on pp. 521) that

∫ T

0

(ω2(t)− ω1(t))
[
a22(t) + a1(t)a2(t) cos

(∫ t

0
(ω2(τ)− ω1(τ))dτ

)]
a2(t)

dt = 0 (3.37)

with T = 2π/(ω2 − ω1) where the use of T as period would be debatable since T is

time-dependent due to the fact that both ω1 and ω2 are generally time-dependent.

Furthermore, as explained earlier in Chapter 3.4.3, the two integrands in Eqs. (3.36)

and (3.37) are not the same in general, Eq. (3.37) would thus be inaccurate even if

T were properly defined. Fundamentally, differences between Eqs. (3.36) and (3.37)

are caused by those between Eqs. (3.21) and (3.12) - controlled by the condition

specified in Eq. (3.25). In summary, Eq. (3.36) may be considered a modification and

generalization of Eq. (3.37).

Equation (3.36) is numerically verified successfully using all six cases as presented

in Fig. 3.19, where Eq. (3.37) is also presented as a comparison. The results of

Eqs. (3.36) and (3.37) would be the same theoretically in Case Study #1 because the

condition specified in Eq. (3.25) is met. The difference at the tail is caused by the

error (end effect) of DHT. In contrast, their differences are small but do exist when

Eq. (3.25) is not met, as shown in other case studies. Again, the error caused by
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DHT also exists.
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Figure 3.19: Time histories of the integrals in Eqs. (3.36) and (3.37) for Case Studies
#1 to #6 in Chapter 3.3.

3.5 Discussions

The seemingly simple Case Study #1 in fact can help understand the backbone of an

undamped Duffing oscillator under free vibration given in the following equation of

motion:

ẍ(t) + ω2
nx(t) + ϵx3(t) = 0, (3.38)

where the response x(t) can be approximated as a sum of two harmonics following [27,

62]:

x(t) = a1 cos(ω0t) + a3 cos(3ω0t) (3.39)

where a1, a3 and ω0 are all constants depending on system parameters. Using har-

monic balance method, H derives a system of equations that can be solved numer-

ically for a1, a3 and ω0. An example of ten such backbones is given in Fig. 3.20

corresponding to a series of ten different initial displacements while initial velocities

are always zero. Also in Fig. 3.20, ten other backbones are obtained by applying
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Figure 3.20: Two sets of backbones of different approximated solutions to an un-
damped Duffing equation ẍ(t) + x(t) + x3(t) = 0 using different initial displacements
only.

DHT on the approximated solutions to Eq. (3.38) using Runge-Kutta 45 algorithm

(implemented using MATLAB solver ode45). The backbones of the approximated

double-component response approximate the simulated response quite well.

As this study is directly built on Feldman’s work and aims at understanding and

improving it, future work needs to verify the proposed changes including the new

signal decomposition method. In particular, [27] states that Eq. (3.37) holds for a

triple-component signal. While we would agree with this in principle, we feel that

several much more stringent conditions may be required for the triple-component

signal as follows:

1. For all time instances, the instantaneous amplitude of the first mono-component

needs to be larger than that of the sum of the other two mono-components.

2. For all time instances, the instantaneous frequency of the first mono-component

needs to be slower than that of the sum of the other two mono-components.

Under these two conditions, the sum of the second and third components may be

considered a new component (which is not necessarily a mono-component). Having

said this, the triple-component signal may be considered a sum of two signals: one
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is mono-component, while the other may be not. The remaining analysis and result

may be similar to those in this study, which is to be studied.

To be more specific about some of the work to be done with the proposed signal

decomposition method, the Hilbert Vibration Decomposition method [27] was ap-

plied to the six case studies by employing the code available online [1]. Results are

presented in Figs. 3.21 and 3.22 together with the results generated by the proposed

signal decomposition method. In Fig. 3.21, all signals are noise free, like the rest

of this chapter, while 5% Gaussian white noise was added in Fig. 3.22. The values

of root-mean-square error in both Figs. 3.21 and 3.22 are presented in Table 3.2. It

can be seen that the proposed signal decomposition results are superior to the HVD

results for noise-free cases. However, it can also be seen that 5% noise alters the

results of both methods, such that there is no apparent reason to prefer the proposed

approach based on these six cases. This challenge could be understood by the fact

that although the Hilbert transform of white noise is white noise [9], instantaneous

quantities are obtained using nonlinear operators, thus backbone noise is not simply

Gaussian white noise. In practical application of Feldman’s backbone technique, we

typically start with measured accelerations that include “noise”. State estimation

using proper Kalman filters (e.g. [74]) is one of the popular and effective means of

obtaining cleaned displacement data, which would help ease the challenge discussed

here and is to be explored in future studies.
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Figure 3.21: Comparison of the HVD decomposition method and the proposed signal
decomposition method where the signals are the same as previous six cases without
noise.
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Figure 3.22: Comparison of the HVD decomposition method and the proposed signal
decomposition method where 5% Gaussian white noise was added in all six cases.

Table 3.2: Root-mean-square error (RMSE) values in Figs. 3.21 and 3.22.

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6
without noise, proposed 0.00 0.24 1.22 0.10 0.26 0.10
without noise, HVD 0.00 1.42 2.36 0.64 0.33 0.46
with noise, proposed 0.00 1.47 2.57 0.76 0.54 0.60
with noise, HVD 0.00 1.43 2.59 0.81 0.46 0.60

Chapter 3.4 may be explained by using function composition. The challenge of the

backbone of a double-component signal lies in the following fact: a−1(t) and ω−1(t)

may not exist making a(t) 7→ ω(a(t)) and ω(t) 7→ a(ω(t)), the two possible mappings
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for the backbone, not necessarily functions. Fig. 3.23 depicts this challenge, where

noisy backbones are entirely caused by non-functional mapping rather than noise in

data or from numerical operations. If the variable a(t) could be replaced with a1(t),

the backbone would become more manageable because a−1
1 (t) generally exists.
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Figure 3.23: Exercises of function composition applied to Case Studies #5 and #6,
where (a1) and (a2) x1(t) = 10e−0.1t cos(1t+ 0.05t2

2
), x2(t) = 2e−0.2t cos(3t+ 0.05t2

2
), and

(b1) and (b2) x1(t) = 10e−0.05t cos(1t−1.5e−0.3t), and x2(t) = 2e−0.1t cos(3t−5e−0.3t).

Last but not least, the wild behavior of simulated backbones - even occurring

for some mono-component signals - in the case studies is noted. The cause of this

behavior can be manifold. Two of the possible causes are: First, it could come from

the fact that the backbone is a highly nonlinear operator on a signal, which could

potentially lead to distortions in the result; Second, the end effect of the DHT is

hard to eradicate as explained in Chapter 2. This wild behavior deserves further

investigations.
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3.6 Conclusions

In this chapter, quantitative analysis has been carried out to understand possible

causes and remedies of “noise” encountered when implementing Dr. Feldman’s back-

bone technique. The problem was formulated here in terms of double-component

signals with specified conditions. Double-component signals have been examined in

relation to their mono-components using instantaneous quantities (amplitude, phase,

and frequency) in terms of time histories and backbones. Six case studies have been

presented, clearly revealing behaviors of double-component signals that are much

more complicated than those of their constituent mono-components. Equally impor-

tant, analytic forms of these double-component signals have been studied in depth. A

theoretical investigation has been attempted to illuminate the observations from the

case studies. First, an equation for instantaneous frequency of a double-component

signal has been refined and generalized. Time indices have been defined to charac-

terize special time instances that directly help decouple the two mono-components.

Eventually, a signal decomposition method was implemented and tested on all six

cases (and more), yielding promising simulation results while illustrating issues for

further improvement. In addition, an important integral previously introduced in

reference [27] has been examined and a more rigorous form of the integral has been

provided.
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Chapter 4

INSTANTANEOUS

BANDWIDTH FOR BACKBONE

TECHNIQUE

DEMONSTRATED BY SINGLE-

DEGREE-OF-FREEDOM

DUFFING OSCILLATOR

4.1 Introduction

4.1.1 Motivations

Since the “backbone” technique was introduced a little over two decades ago and

continuously being developed [23, 30, 29], its applications to real-world vibration sig-

nal analysis become increasingly important. Specifically for structural dynamics, one
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may wonder if the backbone technique is suitable for a wide range of dynamical sys-

tem parameter values that are practical. This constitutes the first practical question

to be studied in this chapter, which focuses on investigating whether the backbone

technique works and works robustly, and if not, how to make these happen. More

specifically, the author has long been inspired by [23] to use the backbone as a pat-

tern classifier for the types of underlying nonlinearity, see [46] as an example. For

this purpose, we would need a backbone as non-oscillatory and simple as possible –

rather than “noisy” backbones discussed in both [46] and Chapter 3.

Next, we consider a practical situation involving directly measured acceleration

rather displacement time histories. Naturally, two options would be possible: (i) ob-

taining the backbone of the measured acceleration – called “acceleration backbone”

hereafter, or (ii) approximating displacement based on acceleration before obtaining a

backbone using the approximated displacement time history, i.e., “displacement back-

bone”. In particular, we need to understand what an acceleration backbone entails

for applying the backbone technique in structural dynamics and other experimental

mechanics situations. This is because so far, backbone technique has been mainly

used to produce displacement backbones.

Answering these two practical questions is the primary motivation.

Theoretically, Dr. Michael Feldman has applied numerous techniques from elec-

trical engineering to his comprehensive backbone studies [30, 29] and HVD algo-

rithm [27]. Among them, however, it does not seem that instantaneous bandwidth,

another important concept concerning the instantaneous characteristic of a signal in

Hilbert transform theory, has been applied. We thus wonder whether there is a role

for this concept to play in the backbone technique, which is the secondary motiva-

tion. It turns out that instantaneous bandwidth is the theoretical foundation and/or

practical measure/indicator to fulfill the first motivation specified above.
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4.1.2 Technical solutions

Throughout this chapter, we choose Duffing oscillator to account for both hardening

and softening nonlinearity in a single-degree-of-freedom (SDOF) dynamical system.

Runge-Kutta 45 method is used to solve the governing equation of motion, which is a

second-order nonlinear ordinary differential equation (ODE) – for the free vibration

response subject to a positive initial displacement.

To answer the first practical question, we examine how the backbone technique

performs with the system parameters – including natural frequency of the linear

portion of the SDOF system, and damping ratio – varying within the ranges that are

considered meaningful in structural engineering. We run into two specific challenges

in the process: One is caused by large damping ratio, and the other is caused by mono-

components of more than two in the signal given the nature of the solution to a Duffing

oscillator. These challenges are quite typical for engineering practice. We provide

algorithmic solutions with one concerning discrete Hilbert transform (DHT) and the

other using digital filters; we validate these algorithmic solutions as a robust means

to make the backbone technique applicable to these otherwise difficult situations.

For the other practical question, we utilize continuous Hilbert transform in a quan-

titative analysis; we obtain a necessary condition for acceleration and displacement

backbones to be identical. Since this condition can hardly be satisfied by most free

vibration signals, it indicates that acceleration and displacement backbones are of-

ten not identical. As expected, simulations using six mono-component signals and

Duffing oscillator validate the derived necessary condition.

The concept of instantaneous bandwidth plays an essential role when we derive

the aforementioned necessary condition to address the second practical question; in-

stantaneous bandwidth also shed light in all algorithmic solutions to answer the first

practical question. We further discover that, for a Duffing oscillator, the backbone

proposed by Dr. Feldman may be considered a two-dimensional projection of a three-
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dimensional backbone. This three-dimensional backbone may be constructed by using

instantaneous amplitude, instantaneous frequency – as used by Dr. Feldman – and

instantaneous bandwidth as proposed in this study. This three-dimensional back-

bone would be a more proper phase portrait for Duffing oscillator as we show in the

analysis. To complete the discussion on instantaneous bandwidth, we show that a

damping estimation method in Dr. Feldman’s work is actually based on instantaneous

bandwidth.

As a chapter in a series of investigations by the authors and their co-author on the

backbone technique, the DHT algorithm in Chapter 2 will be utilized for numerically

obtaining all backbones in this chapter. The signal decomposition technique proposed

in Chapter 3 for double-mono-component signals will not only be utilized but also

be refined to deal with multi-component signals – free response of Duffing oscillators

and to obtain a backbone as smooth as possible for use as a pattern classifier.

4.1.3 Intended contributions

This study complements the existing work on the backbone technique in terms of both

applications and theoretical development. With the proposed piecewise DHT algo-

rithm and refined signal decomposition method, challenging free vibration responses

due to large damping ratio and multi-component signals will be taken care of, respec-

tively, leading to correct and smooth backbones. Instantaneous bandwidth, for the

first time, is applied to the backbone technique. Not only does instantaneous band-

width offer insights to displacement backbone versus acceleration backbone, but also

instantaneous bandwidth should be used as an indicator for the validity of computed

instantaneous frequency - following the concept in reference [15], which is established

in Hilbert transform theory but has not benefited the backbone technique. The trio of

instantaneous amplitude, frequency, and bandwidth is analyzed to be the governing

state variable set for Duffing oscillator; Feldman’s backbone is thus a two-dimensional
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projection of this complete trio. This broader view justifies Feldman’s backbone, and

also implies its potential limitation – which can be addressed by examining the com-

panion instantaneous bandwidth.

4.1.4 Structure of this chapter

The structure of this chapter follows a natural order when we settle the two research

questions defined in Chapter 4.1 one after another in Chapters 4.3 and 4.4. Be-

fore addressing the research questions, the concept of instantaneous bandwidth is

reviewed briefly in Chapter 4.2. After settling the two research questions, we reveal a

so-called three-dimensional backbone in Chapter 4.4.3. Before concluding this study

in Chapter 4.6, we make one more installment on the understanding and applica-

tion of instantaneous bandwidth in Chapter 4.5 in terms of an illuminating example

and damping estimation following Feldman’s lead but explicitly using instantaneous

bandwidth, respectively. I to L contain all derivations in this study.

4.2 Instantaneous Bandwidth

The concept of instantaneous bandwidth – denoted as b in this study – is first closely

related to instantaneous frequency. The formula for IB is formally introduced in

reference [15] as shown below:

b(t) =

∣∣∣∣ ȧ(t)a(t)

∣∣∣∣ (4.1)

where a(t) is the instantaneous amplitude and ȧ(t) is its first time derivative. The

relationship between the IB and IF is an the same as the relationship between band-

width and frequency of a signal [15]. That is, the bandwidth of a signal is an indicator

of the range of frequencies exist during the total duration of the signal, therefore, the

IB of a signal is an indicator of the range of frequencies exist at every time instance.

More concretely, the IB is a measure of the standard deviation of the IF. The for-
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mula in Eq. (4.1) is derived step by step in reference [15] following the fundamentals

of probability theory and is verified rigorously there. Later in Chapter 4.5, we will

provide more comments and a provoking example to shed light on this definition.

Since instantaneous bandwidth captures the spread-out of instantaneous frequency,

the magnitude of instantaneous bandwidth is a good indicator of the “accuracy” of

instantaneous frequency estimation. The smaller instantaneous bandwidth is, the

more accurate and meaningful the use of instantaneous frequency would be.

4.3 Applicable Range of Backbone to SDOF Struc-

tural Dynamics

4.3.1 Overview

As an important equation, the following mass-normalized equation of motion for a

Duffing oscillator has been utilized by Dr. Feldman for a couple of times (e.g., [23,

27, 30, 29]). It will be served as a benchmark equation for this study, where linear

viscous damping is assumed:

ẍ(t)+2ζ(2πfn)ẋ(t)+(2πfn)
2x(t)+αx3(t) = 0, with x(0) > 0, and ẋ(0) = 0 (4.2)

The parameters fn, ζ, α, x(0) and ẋ(0) are the natural frequency, damping ratio,

nonlinear stiffness, initial displacement and initial velocity, respectively. Without

losing generality, we fix ẋ(0) = 0 throughout this study to simplify the parametric

study on the initial condition (IC).

To consider meaningful values for fn and ζ, references in structural engineering

such as [12, 64] are consulted. Typical values for fn range from 0.3 to 22 Hz, damping

ratios are summarized in Table 4.1 following [64], while values as high as 25% are

considered in other literature [52]:
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Table 4.1: Maximum damping ratios of real-world structures adopted from Table
A17.5 in reference [64]
Type Steel Steel Concrete Concrete Masonry Wood Wood

(Welded) (Bolted) (Reinforced) (Prestressed) (Reinforced) Trusses Frames
ζ (%) 2.0 4.0 5.0 3.0 6.0 9.0 7.0

It is learned from [23] that a backbone curve of Eq. (4.2) intersects the f-axis at

the natural frequency of the linear portion of the SDOF system. This is because when

x → 0, the nonlinear term x3 can be discarded, leading to a linear SDOF that has a

constant frequency at fn. With 6%, a mid-range ζ value, Figs. 4.1 and 4.2 indicate

how the backbone curves are affected by varying fn values – with two different ICs.
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Figure 4.1: Backbones affected by natural frequency fn in the Duffing oscillator of
ẍ(t)+2×6%×(2πfn)ẋ(t)+(2πfn)

2x(t)+40x3(t) = 0 with initial condition x(0) = 10
and ẋ(0) = 0.
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Figure 4.2: Backbones affected by natural frequency fn in the Duffing oscillator of
ẍ(t)+2×6%×(2πfn)ẋ(t)+(2πfn)

2x(t)+40x3(t) = 0 with initial condition x(0) = 100
and ẋ(0) = 0.
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It can be seen that fn shifts backbone horizontally. The backbone always crosses

the f-axis at fn, where the bending slope is affected by fn. All backbones correspond-

ing to different fn tend to converge to the limiting case with fn = 0 – if the initial

displacement is large enough – as can be seen in Fig. 4.2. The limiting case may be

obtained by simplifying Eq. (4.2) as ẍ + αx3 = 0. It seems that a(t) and f(t) are

approximately linearly correlated in this case.

A smaller ζ value is used to repeat Fig. 4.2 and saved as Fig. 4.3 – without causing

any major alteration to the features of the backbone curves. Fig. 4.4 further confirms

that ζ affects only the “density” of a backbone curve, but not its bending behavior

at all. An intuitive explanation is that the damping ratio affects only the decaying

speed of the response, resulting in a difference in the density of the backbone curve.
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Figure 4.3: Backbones affected by natural frequency fn in the Duffing oscillator of
ẍ(t)+2×2%×(2πfn)ẋ(t)+(2πfn)

2x(t)+40x3(t) = 0 with initial condition x(0) = 100
and ẋ(0) = 0.

97



f(t)

10 12 14

a
(t

)

0

2

4

6

8

10
(a) =2%

f(t)

10 10.5 11 11.5 12 12.5 13 13.5 14

a
(t

)

0

2

4

6

8

10
(f) Combined backbones

=2%

=3%

=5%

=6%

=9%

f(t)

10 12 14
0

2

4

6

8

10
(b) =3%

f(t)

10 12 14
0

2

4

6

8

10
(c) =5%

f(t)

10 12 14
0

2

4

6

8

10
(d) =6%

f(t)

10 12 14
0

2

4

6

8

10
(e) =9%ζ ζ ζ ζ ζ

ζ

ζ

ζ

ζ

ζ

Figure 4.4: Backbones affected by damping ratio ζ in the Duffing oscillator of ẍ(t) +
2× ζ × (2π × 10)ẋ(t) + (2π × 10)2x(t) + 40x3(t) = 0 with initial condition x(0) = 10
and ẋ(0) = 0. The corresponding damping ratios are 2%, 3%, 5%, 6%, 9%.

As expected, α does significantly affect the bending behavior of the backbone as

shown in Fig. 4.5. Zero, positive, negative values for α correspond to straight-up,

right-bending and left-bending backbone, respectively. Moreover, the larger the α

value is, the greater the backbone bends. These are all consistent with [23]: The

nonlinear term is in the third power of the response, hence the larger α is, the more

rapidly a is affected.
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Figure 4.5: Backbones affected by cubic stiffness α in the Duffing oscillator of ẍ(t) +
2× 2%× (2π× 15)ẋ(t) + (2π× 15)2x(t) +αx3(t) = 0 with initial condition x(0) = 10
and ẋ(0) = 0.

For a softening Duffing oscillator, its phase portrait contains one attraction point

and two saddle points as depicted in Fig. 3.3(d) in reference [51]. This very fact is

paid attention to when deciding the combinations of parameter values and ICs for

softening case so that the free response dies out to the attraction point rather.

Based on the observations above, we would like now to connect the backbones of

a damped Duffing oscillators with an undamped one. On one hand, damping ratio

seems to have no affect on the bending behavior of the backbone. On the other hand,

IC seems to affect only the “length” of the backbone, but neither the bending behavior

nor the “density”. Based on these two observations, it is reasonable to argue that

the backbone of a damped Duffing oscillator could be represented by an undamped

Duffing by sampling representative ICs consecutively as illustrated in Fig. 4.7.
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Figure 4.6: Backbones affected by initial displacement x0 in the Duffing oscillator of
ẍ(t) + 2 × 6% × (2π × 10)ẋ(t) + (2π × 10)2x(t) + 40x3(t) = 0 with initial condition
x(0) = x0 and ẋ(0) = 0.
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Figure 4.7: Backbones of damped (in blue) and undamped (in red) Duffing oscillator
of the form ẍ(t) + 2ζ × (2π × 15)ẋ(t) + (2π × 15)2x(t) + 40x3(t) = 0, with ζ = 3%
and 0% for the damped and the undamped cases, respectively. For the damped case,
x(0) = 10, ẋ(0) = 0. For the undamped cases, ten nonzero initial displacements vary
from 1 to 10 while initial velocities are set to zero throughout.
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4.3.2 Proposed piecewise discrete Hilbert transform

During the parameter study and specifically in the process of producing Figs. 4.1

and 4.7, a very “noisy” tail of a backbone was encountered routinely as typified in

Fig. 4.8.
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Figure 4.8: Backbones with noisy ends when using the same parameter values as in
Fig. 4.1 but with longer durations.

Extensive troubleshooting took place until we noticed the incorrect DHT result

towards the tail of these signals, i.e., the amplification of the transformed signal

at towards the end. We believe that the roots of this end amplification problem

is the large value of xstart
max

xend
max

, where xstartmax and xendmax correspond to the magnitude at

the beginning and at end of the signal, respectively. xstartmax (xendmax) are computed by

subtracting the first (last) local maximum from the first (last) local minimum. To

simplify the analysis, we name this factor the decaying factor and denote is as κ.

When the duration T of a time history is unnecessarily long as shown in Fig. 4.8,

κ is as high as 106. All values of T and κ in Figs. 4.1 to 4.6 are given in Table 4.2.
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Table 4.2: Values of T (second) and κ in Figs. 4.1 to 4.6. Note that the column of κ
only indicates the magnitude level, rather than exact values.

Figure ID Parameter type Value Duration (sec) Decaying factor

Fig. 4.1 natural frequency (fn)

0.5 Hz 30 1e2
2 Hz 6 1e2
5 Hz 3 1e2
10 Hz 1.5 1e2
15 Hz 1 1e2

Fig. 4.2 natural frequency (fn)

0.5 Hz 30 1e2
2 Hz 6 1e2
5 Hz 3 1e2
10 Hz 1.5 1e2
15 Hz 1 1e2

Fig. 4.3 natural frequency (fn)

0.5 Hz 90 1e2
2 Hz 20 1e2
5 Hz 10 1e2
10 Hz 4 1e2
15 Hz 3 1e2

Fig. 4.4 damping ratio (ζ)

2% 7 1e2
3% 5 1e2
5% 2.5 1e2
6% 2.5 1e2
9% 2 1e2

Fig. 4.5 nonlinear stiffness (α)

−40 2 1e2
−20 2 1e2
0 2 1e2
20 2 1e2
40 2 1e2

Fig. 4.6 initial displacement (x(0))

10 1 1e2
8 1 1e2
6 1 1e2
4 1 1e2
2 1 1e2

This incorrect DHT performance can occur easily when ζ is large, even when

time history is not that long. See Fig. 4.9(a) for an example when ζ = 30% and

when the time history includes a period of time when the amplitude of x(t) is small.

In particular, κ is as large as 1e5. An interesting detail worth mentioning is that

the instantaneous amplitude goes through a abrupt change around 1.7 second and its

value drops to almost zero and at the same time the instantaneous frequency drops to

a unreasonably small value, as can be seen in Fig. 4.9(a2) and (c). The abrupt change

causes IB to a sudden increase, which can be explained either way: the variation in

IA is drastic, and the computed IF is meaningless at this time instance.
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Figure 4.9: Monolithic piece DHT contrasted with piecewise DHT using ẍ(t) + 2 ×
30%× (2π× 5)ẋ(t)+ (2π× 5)2x(t)+ 20x3(t) = 0 with initial condition x(0) = 10 and
ẋ(0) = 0. The first and second rows contrast the entire piece (as commonly done)
and the proposed piecewise DHT, while the third row uses ω(t) and b(t) to reveal the
insights into the contrast.

This challenge with DHT motivates the authors to thoroughly understand the

cause and provide a remedy. While we fabricate a toy problem in I to comprehend

the cause using analysis based on DHT, a quick explanation would be that when the

scale of the magnitude of x(t) differs tremendously, the circular convolution of the

DHT algorithm tends to incorrectly amplify the tail of x̃(t) leading to an incorrectly

amplified a(t). Thus, when we carefully choose the duration T such that κ is not too

large, correct DHT results were obtained, so that better backbones are possible, as

shown in Figs. 4.1 to 4.6.

A meaningful question would be: “What can we do when we cannot manually
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choose the duration and cannot truncate the portion with relatively smaller magni-

tude?” That is, what is the correct procedure to perform DHT when κ is ensured to

be large? The remedy proposed in this study is to perform DHT in a piecewise man-

ner. The improved DHT result under piecewise transformation is given in Fig. 4.9(b),

where the improvement on the estimated a is evident.

Nonetheless, another rational research question would be: “Practically, how would

we know whether we need to perform piecewise DHT? Alternatively, how would we

know enough pieces have been chosen?” To address the question, we can first observe

the decaying factor, i.e., κ. If it is too large, say beyond 104, then it might be

necessary to use piecewise DHT instead. We also believe computing ω(t) and b(t)

a good alternative. While b(t) would be formally introduced shortly after, the main

idea here is to use a concentrated ω(t) or a small-valued b(t) to infer a reliable DHT

result. A dispersed ω(t) or a large-valued b are signs for an unreliable DHT result.

Both scenarios are contrasted in Fig. 4.9(c) and 4.9(d) highlighting the effectiveness

of using ω(t), and more importantly, b(t), a concept still unknown to the backbone

community.

4.3.3 Improved signal decomposition method

With applying piecewise DHT whenever necessary as described above, all backbones

of Duffing oscillators studied here would still be oscillatory, i.e., not being simple

enough as a pattern classifier. Directly applying the signal decomposition algorithm

proposed in Chapter 3 still does not lead to a non-oscillatory backbone of the domi-

nant mono-component. This is due to two reasons as we understand: First, the free

response of a Duffing oscillator consists of numerous mono-components as the har-

monic balance or multi-scale solution (e.g., in reference [62]) implies, which causes

the instantaneous amplitude and moreover the instantaneous frequency to oscillate

significantly. Next, the estimation of instantaneous frequency is an inherently chal-
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lenging topic (e.g., in reference [6]). The instantaneous frequency estimated by the

signal decomposition method proposed in Chapter 3 is observed to contain high fre-

quencies. See Panel (b) in Figs. 4.10 to 4.13 – four typical cases representing those in

Chapter 4.3.1 – for instantaneous frequencies, and Panel (h) of these figures for noisy

backbone of the dominant mono-components.

b(t) is shown in Panels (c) and (g) of Figs. 4.10 to 4.13 presented earlier. Smaller

values of b in Panel (g) compared with those in Panel (c) indicate an improvement

in instantaneous frequency estimation after adopting the proposed modified signal

decomposition procedure.
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Figure 4.10: Demonstration of the effect of the modified signal decomposition proce-
dure when fn = 10Hz, ζ = 0.06, α = 40, x(0) = 10, ẋ(0) = 0. In panel (d), the
black curve is the instantaneous frequency of the first decomposed component, and
the two magenta lines are the two cutoff frequencies of the bandpass filter. The same
design is used for Figs. 4.11 to 4.13.
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Figure 4.11: Demonstration of the effect of the modified signal decomposition proce-
dure when fn = 10Hz, ζ = 0.09, α = 40, x(0) = 10, ẋ(0) = 0.
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Figure 4.12: Demonstration of the effect of the modified signal decomposition proce-
dure when fn = 10Hz, ζ = 0.02, α = −5, x(0) = 10, ẋ(0) = 0.
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Figure 4.13: Demonstration of the effect of the modified signal decomposition proce-
dure when fn = 10Hz, ζ = 0.09, α = −5, x(0) = 10, ẋ(0) = 0.

107



With the goal of producing a less oscillatory backbone with a simple pattern, we

improve the signal decomposition procedure as follows:

1. Perform DHT to x(t) by following Chapter 3. Beyond Chapter 3, the decaying

ratio and the DHT response are checked to make sure the end amplification

issue does not exist, otherwise, piecewise DHT procedure is taken out.

2. Compute instantaneous amplitude, instantaneous phase, instantaneous frequency,

and instantaneous bandwidth – with the last item to be explained later in

Chapter 4.4. The backbone obtained is called an unfiltered backbone of x(t)

hereafter. In particular, the numerical differentiation is done by using central

difference method; the MATLAB [59] code adopted is a slightly modified cen-

tral diff.m [10] to ensure forward and backward difference for the left and right

ends, respectively.

3. Use a bandpass filter on instantaneous amplitude to locate their “local extrema”

and corresponding time instances called time indices, tn, a concept developed

and explained in Chapter 3. Although both instantaneous amplitude and in-

stantaneous frequency are possible choices in this step, we stick to instantaneous

amplitude based on the assumption that instantaneous frequency generally con-

tains very high level of noise.

The reasons for using a bandpass filter – for the purpose of obtaining unbiased

estimation of the time indices – is as follows: On one hand, misleading high

frequency kinks in the instantaneous amplitude need to be filtered out with a

low enough low cut-off frequency; see Fig. 4.14(b1) for an example. In numerical

simulations, the high frequency kinks are severe especially when the damping

ratio is low even when the Duffing response is not added with any noise. The

reason for this could be the fact that Duffing response is a sum of infinite many

harmonics and that the existence of numerical error in the Duffing response. For
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practical consideration, high frequency kinks would be highly possible, therefore,

filtering them out is a good choice in general. On the other hand, local extrema

could possibly be overwhelmed by a rapidly decaying a due to a large damping

ratio. These local extrema, especially their corresponding time indices can

be recovered with a high enough high cut-off frequency; see Fig. 4.14(c1) for

an example. To clearly illustrate this practical decision, low- and high-cutoff

frequencies used in producing smoothen backbones highlighted in red in Panel

(h) of Figs. 4.10 to 4.13 are indicated as two constant lines in magnate in

Panel (d) of these figures. The low cutoff frequency is chosen based on the

assumption that the decaying profile being considered half a cycle. For the

high cutoff frequency, an initial value is picked so that it is about twice the

natural frequency of the Duffing oscillator. Further tuning is done based on the

performance of the decomposed first mono-component.
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Figure 4.14: Instantaneous amplitude of the response of a Duffing oscillator with
ω = 10, ζ = 0.09, α = 40, x(0) = 10, ẋ(0) = 0. The first and second rows give
unfiltered and filtered time histories, respectively. The first column gives an overview,
while the second and third columns illustrate the need of using lowpass and highpass
filter, respectively.

The rest of the procedure follows precisely that in Chapter 3:

4. Curve fit the local maxima and minima, respectively. In this study, cubic spline
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interpolation is utilized throughout, however other methods could be explored

in future studies.

5. Obtain the instantaneous amplitude of the first mono-component a1(tn) by av-

eraging the fitted local maxima and minima.

6. Obtain values of the instantaneous phase at tn. Use cubic spline interpolation

to interpolate the values to yield ϕ1(tn).

7. Compute x1(t) = a1(t) cosϕ1(t).

8. Obtain the backbone of x1(t) by following Chapter 3, called a filtered backbone

of x1(t), the dominant mono-component.

4.4 Backbones of Displacement, Velocity and Ac-

celeration

4.4.1 Major finding

Start with x(t) in its analytic signal form as follows:

x(t) = a(t)ejϕ(t) (4.3)

where a(t) and ϕ(t) are the instantaneous amplitude and phase of x(t). Now, we will

express ẋ(t) in analytic signal using a(t) and ϕ(t) as follows:

ẋ(t) = ȧ(t)ejϕ(t) + jω(t)a(t)ejϕ(t)

= ȧ(t)ejϕ(t) + ω(t)a(t)ej(ϕ(t)+
π
2 )

=

√
ȧ2(t) + (ω(t)a(t))2ej(ϕ(t)+arctan

ȧ(t)
ω(t)a(t))

= a(t)
√
b2(t) + ω2(t)ej(ϕ(t)+arctan

b(t)
ω(t)) (4.4)
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where b(t) is given in Eq. (4.1) If we choose b(t) to be nonnegative, based on the fact

that b is an indicator of the standard deviation of the estimated ω(t) (which will be

introduced and explained shortly after), we will have

b(t) =

∣∣∣∣ ȧ(t)a(t)

∣∣∣∣ (4.5)

Continuing on, practically the instantaneous amplitude and frequency of ẋ(t) are

as follows:

aẋ(t) = a(t)
√

b2(t) + ω2(t) (4.6)

ωẋ(t) =
d
(
ϕ(t) + arctan b(t)

ω(t)

)
dt

= ω(t) +
1

1 + b2(t)
ω2(t)

(4.7)

It can be seen that these instantaneous characteristics for ẋ(t) are affected by both

b(t) and ω(t) of x(t) in a nonlinear fashion. Only if b(t) ≡ 0 and ω(t) = constant,

the backbone of ẋ(t) is an undistorted version of that of x(t).

A similar analysis can be applied to compare the backbones of ẋ(t) and ẍ(t)

with the same conclusion drawn. The difference between the backbones from x(t)

and ẍ(t), i.e., displacement backbone and acceleration backbone, would thus be even

more complicated. Considering nonlinearities underlying general SDOF systems that

we try to capture, we cannot anticipate displacement backbone being identical to

acceleration backbone with the understanding that acceleration backbone would be

far more complicated. Therefore, typical patterns of displacement backbone given in

reference [23] cannot be conveniently generalized for acceleration backbone. With this

said, it seems wise to use displacement backbone only in practice so that the correla-

tions between backbone patterns and underlying system nonlinearities as established

in reference [23] can be utilized for pattern classification.
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4.4.2 Numerical results of displacement/velocity/acceleration

backbones

Numerical examples are provided in Figs. 4.15 and 4.16 to verify the complexity of

acceleration backbone over those of velocity and displacement backbone – except for

cases where both ω and b are constants with respect to time. For a simple swept

sine signal in Column (b) in Fig. 4.15, acceleration backbone completely destroys

the dominant feature that is shown clearly in displacement backbone. In Fig. 4.16

that uses Duffing oscillator and unfiltered backbone, acceleration backbones are far

more spread out that their displacement backbone counterparts. Given the results in

Fig. 4.15 using mono-components in each case, we anticipate the filtered backbones in

Fig. 4.16 differ drastically between displacement backbone and acceleration backbone.
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Figure 4.15: Displacement, velocity and acceleration backbones of Cases 1 to 6 in
Chapter 3.
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Figure 4.16: Displacement, velocity and acceleration backbones affected by natural
frequency fn in the Duffing oscillator of ẍ(t) + 2× 2%× (2πfn)ẋ(t) + (2πfn)

2x(t) +
40x3(t) = 0 with initial condition x(0) = 1 and ẋ(0) = 0.

4.4.3 Three-dimensional backbone

The state variables for a SDOF Duffing oscillator is well-known to be x and ẋ, which

are in a Cartesian coordinate system. With the view of analytic signal, the state

variable and equation may be given as follows for an unforced Duffing oscillator

following both the assumption and details given in J:

u =


u1

u2

u3

 =


a

b

ω

 (4.8)
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u̇ =


u1u2

−3
4
αu21 − u22 − cu2 + u23 − k

−2u2u3 − cu3

 (4.9)

It seems that the free Duffing model can be characterized by a(t), ω(t), and b(t).

Note that the b(t) here is slight different from the original definition in Eq. (4.5) in

the sense that the absolute sign is removed. This is only the location in this chapter

where IB is defined differently. How could this affect the understanding of backbone?

This indicates that the backbone defined by a(t) and ω(t) only examines two out of

the three state variables – not all. A backbone with all these three state variables

examined would be a more complete view of the underlying dynamics. Fig. 4.17

gives a sample of this new kind of three-dimensional backbone, which we think better

capture the underlying dynamics but does not help with pattern classification and

data compression.
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4.5 Discussions

4.5.1 More on instantaneous bandwidth

As stated previously, backbone technique is based on the instantaneous quantities

of a vibration signal. This may cause confusion or even lead us to a wrong under-

standing if not being careful enough. We believe that instantaneous bandwidth helps

make it easier in this regard. First, we supplement another physical interruption of

instantaneous bandwidth with details given in K:

|b(t)||x(t)| = |ẋ(t) + ω(t)x̃(t)|, or equivalently, |b(t)| =

∣∣∣∣ ẋ(t)x(t)
+ ω(t)

x̃(t)

x(t)

∣∣∣∣ (4.10)

Following [15] where a probabilistic viewpoint is employed, for a given signal x(t),

there are infinitely many ways of representing x(t) in amplitude-phase format, where

the amplitude would be a(t), while the phase is the time integral of ω(t). a(t) and

ω(t) are thus inherently correlated. The way we choose to represent x(t) would affect

ω(t). Fortunately, we can utilize b(t) to guard us against making mistakes. This

justifies whey we promote the use of b(t) with the backbone technique.

To make us clearer, Fig. 4.18 presents instantaneous characteristics of two seem-

ingly simple signals, both of which is a sum of two sinusoidal waves, i.e., a double-

component signal Chapter 3. With only a slight difference in the amplitude of one

component, the instantaneous characteristics may change drastically. By looking at

a(t) and ω(t) of xr(t), we would very likely to draw the conclusion that the signal is

a mono-component signal with a constant frequency. However, its b(t) indicates that

this conclusion is not correct. Large b(t) hints that ω(t) is not accurate in this case.

Looking more closely, the instantaneous phase, ϕ(t), in this case does not satisfy the

continuity property as pointed out in reference [72] to make the estimation of a(t)

and ω(t) valid.
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Figure 4.18: The instantaneous frequency for the signal xa(t) = −2 cos(2π0.1t) +
cos(2π0.4t) (upper 5 panels) and xb(t) = −2 cos(2π0.1t) + 2 cos(2π0.4t) (lower 5

panels). Following Chapter 3, for xa(t), a = (5− 4 cos(2π0.3t))1/2 , ω = 2π0.25 +

2π0.15 −3
5−4 cos(2π0.3t)

; For xb(t), a = (8− 8 cos(2π0.3t))1/2, ω = 2π0.25, i.e., 0.25Hz.

For xa(t), negative ω(t) occurs when instantaneous bandwidth blows up as shown
in (a4). This implies instantaneous bandwidth being a potential indicator of the
correctness of the instantaneous frequency estimation. For xb, ω(t) is constant but
without physical meaning. Instantaneous bandwidth in (b4) behaves even worse than
in (a4), indicating a worse instantaneous frequency estimation.

4.5.2 Damping estimation

The importance of the concept instantaneous bandwidth cannot be emphasized more.

For example, the assumed viscous damping in Eq. (4.2) is closely related to instanta-

neous bandwidth following [30], even though the concept of instantaneous bandwidth

is not used in that reference. Review notes on damping estimation are presented in L.

It is clear that Eq. (L.6) for damping estimation is heavily dependent on instanta-

neous quantities. Moreover, [30] omits the second term on the RHS in Eq. (L.6),

which we don’t see the reasoning yet. As a counter example, Fig. 4.19 presents a

comparison of the estimated damping coefficients with and without the second term,

where the one with the second term yields a slightly better result.
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Figure 4.19: Damping estimation of an exponentially decaying signal x(t) = e−ζωt
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estimated damping with the second term on RHS of Eq. (L.6), estimated damping
without the second term and exact damping, respectively.

4.6 Conclusions

A couple of important aspects related to the applicable range of the backbone tech-

nique have been thoroughly studied in this chapter, all of which is closely related to

the concept of instantaneous bandwidth that has not been applied to the backbone

technique.

First of all, a parametric study has been carried out to examine the performance

of the backbone technique – with contributions in Chapter 3 – applied to unforced

SDOF Dufffing oscillator with parameter values that can represent meaningful struc-

tural dynamics. The goal is to obtain a non-oscillatory and simple pattern from

the backbone of the dominant mono-component – in order to build on the promis-

ing correlations between the patterns and underlying types of nonlinearities given in

reference [23] for system identification and damage detection.

Overall, this seemingly simple task is not straightforward involving many nontriv-

ial details. First, severe errors have been observed for DHT result towards the tail

of the response. Causes have been revealed; a practical guidance has been provided

to avoid the errors in the first place. A piecewise DHT solution has been further
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proposed to overcome the errors with the efficacy of the solution demonstrated in

the simulation. Next, we have refined the signal decomposition procedure given in

Chapter 3 in order to produce a filtered version of the backbone of the dominant

mono-component that would otherwise not be suitable for pattern classification, the

intended application of the backbone. Design parameters of the proposed bandpass

filter have been discussed to facilitate applications to real-world data.

We have also quantified the relationship between displacement, velocity and ac-

celeration backbones. We have shown that the velocity/acceleration backbone will

be distorted in a nonlinear fashion compared with the displacement/velocity back-

bone for general signals. Necessary condition for an undistorted backbone has been

given in this study, which is not normally satisfied in practice. Acceleration backbone

and displacement backbone would thus be of different patterns, based on which we

recommend obtaining displacement from acceleration measurement as the first step

in applying the backbone technique so that those displacement backbone patterns

presented in reference [23] will remain useful.

Theoretically, we have introduced the concept of instantaneous bandwidth to the

backbone technique. We have computed instantaneous bandwidth in numerical ex-

ercises to demonstrate a unique, critical, and easily-obtained insight it brings in

seeking a correct backbone and its filtered version. The necessary condition men-

tioned above for backbones of velocity and acceleration being undistorted from those

of displacement is another example for the usefulness of instantaneous bandwidth.

To complement the seminal work in reference [15], we have supplemented another

physical interpretation of instantaneous bandwidth. For unforced Duffing oscillator

studied here, we have shown that instantaneous amplitude, instantaneous frequency,

and instantaneous bandwidth could be the governing state variables, and they form

a three-dimensional backbone. In other words, a backbone made up of instantaneous

amplitude and instantaneous frequency can be a projection of this three-dimensional
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backbone. This viewpoint helps understand and generalize the concept of backbone,

even though it may not directly help with pattern classification and data compres-

sion. We have also pointed out an important application in damping estimation, when

instantaneous bandwidth was used in Dr. Feldman’s work but without the name.
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Chapter 5

APPLICATIONS OF IMPROVED

BACKBONE TECHNIQUE TO

REAL-WORLD ACCELERATION

MEASUREMENTS

5.1 Introduction

We demonstrate and validate the improved backbone technique developed in previous

three chapters by using a couple of typical real-world data sets. To achieve this goal,

several critical technical details are addressed in the process of developing this work:

First, we propose to use the concepts of effective bandwidth and effective duration

to check the information richness of a given data set. Next, we exercise one particu-

lar design of Kalman filter published in reference [69] to estimate displacement time

history based on acceleration measurement. We contrast acceleration backbone and

displacement displacement backbone. These are in addition to applying the algo-

rithms and numerical procedures presented in the previous chapters.
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An overview of the selected data sets is given in Table 5.1. They form a total of

four cases and nine different data sets:

Table 5.1: An overview of all acceleration measurements to be studied. †The only
data set not collected by this research team and not tested under free vibration; this
data set was provide by Dr. Steven D. Glaser to Dr. Jin-Song Pei.

Case
ID

Brief Description Ref. Significance Accelerometer for
Data Acquisition &
Sampling Rate

1 † a timber wall [61] for validating the use of
effective bandwidth and
effective duration only

built-in accelerome-
ter to “mote”. fs =
64 Hz

2 a SDOF metal building
model

OU
CEES
5683

as the presumed best
candidate for a SDOF
system being linear and
elastic

Silicon Designs
2210-002. fs = 10
kHz

3a a full-scale prestressed
concrete girder taken
from a real-world bridge,
tested under simply sup-
ported condition, and
measured at mid-span

[33] for modeling a continu-
ous system as a SDOF
system at the beam’s
mid-span and for mod-
eling a prestressed con-
crete girder after more
than four decades in ser-
vice

Silicon Designs
2210-002. fs = 10
kHz

3b same s3a except for re-
inforcement detail of the
cross-section, span and
with an overhang on one
side

[33] similar to 3a Silicon Designs
2210-002. fs =
1000 Hz

3c same as 3b except for be-
ing tested after the mid-
span soffit was cracked

[33] similar to 3b but for a
damaged specimen

Silicon Designs
2210-002. fs = 10
kHz

4a-c a prototype timber
beam-column joint
model designed to be-
have as a SDOF model

[57] for demonstrating non-
linear response according
to the existing literature

Analog Devices
ADXL 105EM-3.
fs = 500 Hz

4d a prototype timber
beam-column frame
model designed to be-
have as a SDOF model

[57] same as 4a-c Analog Devices
ADXL 105EM-3.
fs = 500 Hz

Case #1 is different from the rest: The quality of the data is significantly less

satisfactory than that in other cases. This is caused by adopting an early wireless

sensor product called “mote” and using a slow sampling rate. This data set is thus
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visually of poor quality; it is merely used for demonstrating the proposed effective

bandwidth and duration concepts to quantify the information richness of a given data

set. How this data set was collected may be out of date, however the research need

in quantifying information richness of collected data is not. For example, when one

wishes to utilize the free vibration caused by an earthquake excitation for applying

the backbone technique, one may need to question first if the information carried in

the data is sufficiently rich when the magnitude of the earthquake is low. Using the

product of effectiveness bandwidth and effective duration, also known as bandwidth

duration product, as a quantitative measure is adopted from electrical engineering;

this proposed add-on pre-processing procedure to the backbone technique leads to a

more robust implementation.

Cases #2 to 4 contain meaningful data sets collected from structural systems that

could be modelled as SDOF systems. While the significance of each case is listed

in Table 5.1, three major challenges exist - especially for Cases #3 and 4. These

challenges are from the accuracy of SDOF system modeling, the complexity of the

adopted construction material, and the unknown damage status. These challenges

would be elaborated later in Section 5.4.1; the key message is that these data sets are

far more complicated than simulated results of Duffing oscillator (studied earlier by

us). This entails the need for additional signal processing effort.

The structure of this chapter is as follows: In Section 5.2, effective bandwidth

and effective duration, the two key concepts are reviewed, after which the product of

these two quantities is estimated for the data set under Case #1 as a measurement

for the data information richness. Section 5.3 reviews and implements a Kalman

filter that estimates displacement out of acceleration time history. Simulated data

is used to validate the implemented Kalman filter. Section 5.4 contains all inves-

tigations on Cases #2 to 4. First, domain knowledge is given in Section 5.4.1 for

anticipated result of these cases – when they are available. Time-frequency analysis
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and frequency-domain analysis are then carried out in Section 5.4.2 before accelera-

tion backbone for each case is presented in Section 5.4.3. Finally, an attempt is made

to estimate displacement time histories, from which displacement backbones are gen-

erated. Preliminary – including unsatisfactory – results are given in Section 5.4.4.

This, together with other challenges are discussed in Section 5.5 before conclusions

are drawn in Section 5.6.

5.2 Effective Bandwidth and Effective Duration

5.2.1 Concepts

The definition of effective bandwidth and effective duration is a somewhat controver-

sial issue as different definitions exist [7, 56]. To follow, two typical definitions are

provided hereafter with one for continuous case given in reference [35, 5, 7] and the

other for discrete case given in reference [71].

According to [7], effective bandwidth Be and effective duration Te for a continuous

signal are as follows:

B2
e =

∫∞
−∞ ω2|X(ω)|2dω∫∞
−∞ |X(ω)|2dω

(5.1)

T 2
e =

∫∞
−∞ t2|x(t)|2dt∫∞
−∞ |x(t)|2dt

(5.2)

The BeTe product is considered a measure for the richness of the signal [5, 7, 56];

a product of greater than 10 is considered acceptable [5, 7]. Therefore, we propose to

run a “BT test” first to check if a specified signal is meaningful to process.

Since we are dealing with real-world signals, discrete formulas for Be and Te would
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thus be desirable. A discrete form of Be and Te is given as follows in [71]:

B2
e = 2

N/2−1∑
k=0

(kN/Fs)
2X[k]N/Fs

N/2−1∑
k=0

X[k]N/Fs

(5.3)

T 2
e = 2

N−1∑
m=0

(m/Fs)
2x[m]/Fs

N−1∑
m=0

x[m]/Fs

(5.4)

These discrete formulas, however, are quite inconsistent with the formulas for the

continuous case. The denominator in Eq. (5.4) is simply the mean of the discrete

signal scaled by a constant of N/Fs, which could be zero even when the numerator

is not zero. In the author’s understanding, the discrete formulas may be given in the

following to mimic the continuous case – with the corrected terms presented in red:

B2
e = 2

N/2−1∑
k=0

(kN/Fs)
2|X[k]|2N/Fs

N/2−1∑
k=0

|X[k]|2N/Fs

(5.5)

T 2
e = 2

N−1∑
m=0

(m/Fs)
2|x[m]|2/Fs

N−1∑
m=0

|x[m]|2/Fs

(5.6)

5.2.2 BT test of the “mote” data

To quantify Be and Te by using Case #1 data set, we encountered a great deal of

challenge. The discrete formulas are only the author’s own interpretation but without

any supporting references. We thus tried to validate such choices in computing BeTe

product using a couple of signals with known property. Fig. 5.1 shows the BT tests

on 12 test signals. It can be seen that these BeTe results may not be quite helpful

for indicating the richness of information. The reason for this could be that the BT
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formulas for continuous signals may not be directly applicable to discrete signals.
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Figure 5.1: 12 carefully designed test signals with their BT products.

A typical data set from Case #1 is presented in Fig. 5.2. Despite the challenge

given above, we still computed the BT product of the signal in Case #1; see Fig. 5.2.

It is worth mentioning that the BT product in Cases #2 to #4 are about 10 times

larger than that of Case #1, the fact of which is consistent with better quality of the

data in these cases than that in Case #1. Nonetheless, we feel that we have not yet

obtained a reliable means of computing meaningful BT, which we are still trying to

achieve.
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Figure 5.2: Reconstructed time history of Case #1. The original measurements
contain a total of 16 missing data points out of the truncated 1800 data points. Next
neighborhood interpolation was used to reconstruct the missing data points. The
BeTe product of the reconstructed time history is 1.95e5.

5.3 Estimating Displacement from Measured Ac-

celeration

In the community of system identification, displacement estimation from acceleration

has long been an important and active research topic. According to [39, 40], basically,

there are two categories of methods: time domain method and frequency domain

method. [69] introduced a Kalman filter based technique by using absement, time

integral of displacement. Here, we will present a quick review of [69] and validate it

with three numerical examples.

5.3.1 Literature review

In this study, the technique of using Kalman filter for velocity and displacement esti-

mation is directly adopted from [69]. The fundamental assumption of the technique

is that there is no significant permanent displacement of the structure under test –

which is satisfied in the case studies – and the signal is linear. The last assumption

is not necessarily satisfied by the data sets. Nonetheless, we will still test out this

technique in conjunction with some filtering procedure as will be explained later on.
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The technique starts with forming a state-space equation. The state vector x is

defined as follows:

x[k] =


v[k]

d[k]

z[k]

 (5.7)

where v[k], d[k], z[k] are the velocity, displacement and absement at time index k,

respectively. The state space equation is then formulated as

x[k] = Ax[k − 1] + B (u[k] +w[k]) (5.8)

y[k] = Cx[x] + v[k] (5.9)

where A, B, C are as usually defined, u is the input, i.e., the acceleration, w and v

are the equipment and measurement noise that have normal probability distributions

with zero mean and covariances of Q and R, respectively. We have

A =


1 0 0

Ts 1 0

T 2
s /2 Ts 1

 , B =


Ts

T 2
s /2

T 3
s /6

 , C =

[
0 0 1

]

where Ts is the sampling interval, i.e., the reciprocal of sampling frequency Fs.

Following Kalman filter design, the prediction equations are:

x̂[k|k − 1] = Ax̂[k − 1] + Bu[k] (5.10)

P[k|k − 1] = AP[k − 1]AT + BQBT (5.11)
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and the correction (update) equations are:

K[k] = P[k|k − 1]CT
(
CP[k|k − 1]CT +R

)−1
(5.12)

x̂[k] = x̂[k|k − 1] + K[k] (y[k]−Cx̂[k|k − 1]) (5.13)

P[k] = (I−K[k]C)P[k|k − 1] (5.14)

The estimated state x̂ can thus be computed leading to approximated displacement

and velocity.

5.3.2 Validation using simulated data

The adopted Kalman filter technique is tested on three simulated data sets. The three

data sets are a sinusoidal wave, an exponentially decaying sinusoidal wave, and a free

response of a damped Duffing oscillator, all of which are polluted with simulated

Gaussian white noise to mimic real-world signals. All three signals are carefully

designed with known exact acceleration, velocity and displacement, except for the

Duffing case where the exact means the numerical results obtained by using RK45.

It can be seen in Fig. 5.3, for each signal, the displacement is recovered reasonably

well, indicating the promise of this technique.
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ẍ

-200

-100

0

100

200

(a2) Acceleration 

t

0 2 4 6 8 10

ẋ
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Figure 5.3: Validating Kalman filter-based displacement estimation method: (a1)
pure sinusoidal wave; (a2) exponentially decaying sinusoidal wave, and (a3) free
damped Duffing response. All acceleration time histories are added with Gaussian
white noise. Each signal is tested ten times independently; the converging time and
averaged root mean square error (RMSE) of the converged parts are recorded as fol-
lows: (a) 5 seconds and RMSE is 0.27; (b) 1.5 seconds and RMSE is 0.034, and (c)
nearly 0 second and RMSE is 1.51.

5.3.3 Drift problem

It needs to emphasize that for the Duffing case, the displacement estimation seems to

be very sensitive to the noise. Drastically different estimates are observed during ten

tests, some of which have very obvious drift as in Fig. 5.4(a1) and (a2). To resolve

this issue, we use a highpass filter on the displacement estimation to filter out the

drift as shown in Fig. 5.4 (b1) and (b2). Nonetheless, the filtered displacement can

still have obvious drift at the two ends (not shown in Fig. 5.4). In that case, the two

ends are discarded.

129



t

0 1 2 3 4 5

x
-10

-5

0

5

10

(a1) True v.s. estimated x

true

Kalman

t

0 1 2 3 4 5

x

-10

-5

0

5

10

(b1) True v.s. estimated+!ltered x

true

 lered

t

0 1 2 3 4 5

x

-10

-5

0

5

10

(a2) True v.s. estimated x

true

Kalman

t

0 1 2 3 4 5

x

-10

-5

0

5

10

(b2) True v.s. estimated+!ltered x

true

 lered

Figure 5.4: Two realizations of displacement estimation of the Duffing response that
shows obvious drift is corrected with a highpass filter. (a1) and (a2) are the two
Kalman estimation with obvious drift, and (b1) and (b2) are the corresponding filtered
displacement estimates. The root mean square error (RMSE) in (b1) and (b2) are
0.1361 and 0.1591, respectively.

5.4 Case Studies

5.4.1 Domain knowledge

Photos taken to show the setup of Case #2 are presented in Figure 5.5. The su-

perstructure is intended to be used as a SDOF model for teaching demonstration,

while the substructure is meant to be fixed. Two accelerometers are mounted to the

top and bottom mass of the superstructure, respectively, while the difference in their

reading is what is interested in data analysis. A modal hammer was used to excite

the superstructure; on other occasions, the top mass of the superstructure was pulled

along the SDOF direction before being released suddenly to create a non-zero initial

displacement.
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Figure 5.5: Test setup of Case #2. (a) is an overview; (b) is the superstructure; (c)
is the accelerometer mounted on the top mass, and (d) is the accelerometer mounted
on the bottom mass.

The following details belong to the estimation of the natural frequency of this

model building:

fn =
1

2π

√
k

m

where mg = 4.1276 lbf, and k is estimated as follows:

k = 4k̄, k̄ =
12EI

h3

with E = 22.324× 106 psi, and

I =
1

12
bd3, with b = 1.0 in and d = 0.0625 in

Finally, the clearance is 18 in, while the thickness of each plate is 1 in. Thus, h = 19

in. This leads to the estimated fn = 2.74 Hz.

For Cases #3, Fig. 5.6 shows a simple beam model:
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Figure 5.6: A model of a simply-supported beam.

An existing formula to calculate the simple beam’s in-plane vertical vibration

modal frequencies is employed:

ωn =
(nπ
L

)2

√
EIg

ρA
, (5.15)

where L is the span, E is Young’s modulus, I is the moment of inertia of the beam

cross-section, g is standard gravity, and ρ is linear weight of the material.

E was estimated using the empirical formula recommended by the American Con-

crete Institute [2] as follows:

E = 57000
√
fc

where fc is the cylindrical compressive strength of the concrete in the unit of psi.

ρ in the unit of lbf/in is calculated as follows:

ρ =
150

123
× A

where A denote the cross-sectional area of the girder and is in the unit of in2.

Plugging in all values to Eq. (5.15), we have the following results. See Table 5.2

for a summary:

Table 5.2: Estimated modal frequencies using a simple beam model for Case #3.
†The adopted design value.

Case ID L (ft) f ′c (psi) A (in2) I (in4) f1 (Hz)
3a 29 7205 471 99249 27.62

3b & 3c 23 5000 † 369 50979 32.45

As to Case #4, Fig. 2 in reference [57] presents a scaled drawing of the timber
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beam-column joint designed to demonstrate the correlation between the connection

design detailing, and the type of nonlinearity underlying the data - following the

lead in reference [34]. This detail is applied to Case #4a to c. Two identical beam-

column joints are used in one frame model, which is applied to Case #4d. Each

joint and frame model was tested in two different fashions: forced vibration from an

APS shake table with an ordered swept sine excitation, and unforced vibration using

a modal hammer. See Fig. 1 in reference [57] for the test setup. While the forced

vibration data was analyzed using a traditional frequency response function (FRF)-

based backbone, the result of which is presented in Figs. 5 and 6 in reference [57] for

the joint and frame models, respectively, processing the result of the unforced tests

using the backbone technique was not successfully carried out till this study.

According to Table 1 in reference [57], the timber used was kiln dried SPF, type

two pine. The four selected models for Case #4a to d are denoted as LN-L721, LN-

N723, LN-LN726, and LN-N711, respectively, where LN stands for using “L-Plate”

(Simpson Strong-Tie A21Z) and “Nails” (specifically, Grip Rite 12d 2-1/4”, bright

common) as the connectors for the top joint in all models, while “L-Plate” alone,

“Nail” alone, “L-Plate” and “Nails”, and “L-Plate” alone are used as the connectors

for the bottom joint of Case #4a to d, respectively.

Following Section 5.1, Table 5.1 summarizes technical challenges in modeling,

which would be directly reflected in the data and requires further signal conditioning.
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Table 5.3: More detailed overview of Cases #2 to 4. †Results in Table 2 in refer-
ence [57] for Case #4.

Case
ID

Accuracy of SDOF
Model

Level of Material Com-
plexity

Probability for Exist-
ing Damage

Anticipated Re-
sult †

2 good except for
base fixity

low unlikely fn = 2.74 Hz

3a continuous system
but modelled as
SDOF

high due to concrete’s
time-dependent behav-
ior, e.g., creep, as well
as possible corrosion of
prestressing strand

likely due to real-world
service

f1 = 27.62 Hz
for the first
mode, which is
vertical motion

3b same as 3a same as 3a very likely due to
real-world service and
repetitive lab tests
under both static and
dynamic load

same as 3a ex-
cept for f1 =
32.45 Hz

3c same as 3b same as 3b same as 3b plus cracks
caused by lab testing

f1 would be
lower than that
in 3b

4a out-of-plane mo-
tions measured as
well

high due to inherent
nonlinear behavior and
organic nature of tim-
ber

likely due to repetitive
lab dynamic tests taken
place before

softening in 2006
but inconclusive
in 2007

4b same as 4a same as 4a same as 4a same as 4a
4c same as 4a same as 4a same as 4a linear in 2006

but hardening in
2007

4d same as 4a same as 4a same as 4a hardening in
2007

First, adopting SDOF models is an approximation that could challenge the analy-

sis and may demand additional signal processing effort. For example, Case #2 would

be considered the closest to a linear time-invariant SDOF system, however, the fixity

of the base is in question making the data demonstrate a double-component behavior.

Case #3 is about continuous systems, however they are modelled - in an approxi-

mate sense - as SDOF systems following common practice in structural dynamics.

Case #4 concerns prototype models developed to demonstrate SDOF nonlinear dy-

namics, however they do display motions beyond the specified direction as indicated

by the acceleration measurements.
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Next, the complexity of construction materials involved deserves a close atten-

tion. While Case #2 concerns metal in room temperature thus being straightforward,

Case #3 deals with prestressed concrete. Even though the design philosophy for pre-

stressed concrete is to make an “elastic material” [53], for the concrete alone, it is

known to have been subject to long-term loading and unloading fatigue in addition to

creep behavior. In general, steel strands in these girders suspectable for corrosion in

the ends due to an inconsiderate design detail back forty years ago, which introduces

another source in complexity. Case #4 uses timber and typical connectors for timber

joints or frames. Timber is an inherently nonlinear construction material. Timber

also contains natural defects from being an organic material. The adopted connectors

would lead to different types of nonlinearities [34] - the very motivation for the design

of these timber joint or frame models [57].

Last, each specimen in Cases #3 and 4 was not in a pristine condition as detailed

in Table 5.3, i.e., they likely had existing damages before undergoing the free vibration

tests.

5.4.2 Time-frequency analysis and frequency-domain analy-

sis

As a first step, eight test data sets under Cases #2 to 4 are analyzed in frequency

domain by using short time Fourier transform (STFT) and power spectral density

(PSD) estimation. In all figures to be presented hereafter, all PSD plots are rotated

90 degrees so that they can be compared with their corresponding STFT plots more

conveniently. For every case study, the STFT and PSD of the entire time history are

given first. After that, the portions with interest are extracted and the corresponding

STFT and PSD are given. For Case #4, multiple portions are extracted in each case,

depending on how many independent tests there are in each data set.
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Case #2

The time history together with its STFT and PSD is shown in Figs. 5.13 and 5.8.

Fig. 5.8 indicates that the response may be approximated as a sum of two mono-

components.

Figure 5.7: Case #2: time history, STFT and PSD. The acceleration measurement
is down-sampled to 1000 Hz.
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Figure 5.8: Case #2 selected portion: time history, STFT and PSD. The acceleration
measurement is down-sampled to 200 Hz.

Case #3a

The entire time history together with its STFT and PSD is shown in Fig. 5.13. The

first observation is that right at the impulse force around 13 seconds, the STFT shows

a large range of frequency band that is excited. A couple of frequency components

are outstanding, possibly corresponding to different structural modes. In the PSD

plots, the frequency value of the first peak is consistent with the modal analysis; this

mode is also visible in STFT that lasts for at least three seconds. Another obvious

peak around 250Hz is quite interesting as it seems to contain higher energy level than

the fundamental frequency component as shown in the PSD plot. One reason for

this is that this is the PSD of the acceleration time history rather than displacement.

Therefore, the amplitude of higher frequency components tends to be amplified in

acceleration compared with displacement following the relationship between their

Fourier transforms, i.e.,

F{ẍ(t)} = −ω2F{x(t)} (5.16)
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Fig. 5.10 presents the time history together with its STFT and PSD plots of the

portion we are interested in and will be further processed later on. It can be seen that

in the PSD plot, the 250Hz mode does not dominate anymore. This is consistent with

the fact that higher mode dies out more rapidly in the free vibration of a concrete

girder.

Figure 5.9: Case #3a: time history, short time Fourier transform (STFT) and power
spectral density (PSD). The acceleration measurements is down-sampled to 1000Hz.
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Figure 5.10: Case #3a selected portion: time history, short time Fourier transform
(STFT) and power spectral density (PSD). The acceleration measurements is down-
sampled to 1000Hz.

Case #3b

The time history together with its STFT and PSD is shown in Figs. 5.11 and 5.14.

Figure 5.11: Case #3b: time history, STFT and PSD.
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Figure 5.12: Case #3b selected portion: time history, STFT and PSD.

Case #3c

As mentioned before, this is the same girder as in Case #3b but after being cracked.

It can be seen that the frequency response displays many more low frequency com-

ponents than in Case #3b as expected. The time history does not have an obvious

periodic behavior as in Case #3b due to the existence of a large range of low frequency

components. This would very likely increase the difficulty of applying the decompo-

sition method as the signal does not satisfy the condition that the first component is

absolutely dominant.
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Figure 5.13: Case #3c: time history, STFT and PSD. The acceleration measurements
is down-sampled to 1000Hz.

Figure 5.14: Case #3c selected portion: time history, STFT and PSD. The accelera-
tion measurements is down-sampled to 1000Hz.

Case #4a

The time history together with its STFT and PSD is shown in Figs. 5.15 and 5.18.
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Figure 5.15: Case #4a: time history, STFT and PSD.

Figure 5.16: Case #4a selected portion 1: time history, STFT and PSD.
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Figure 5.17: Case #4a selected portion 2: time history, STFT and PSD.

Figure 5.18: Case #4a selected portion 3: time history, STFT and PSD.

Case #4b

The time history together with its STFT and PSD is shown in Figs. 5.19 and 5.22.
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Figure 5.19: Case #4b: time history, STFT and PSD.

Figure 5.20: Case #4b selected portion 1: time history, STFT and PSD.
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Figure 5.21: Case #4b selected portion 2: time history, STFT and PSD.

Figure 5.22: Case #4b selected portion 3: time history, STFT and PSD.

Case #4c

The time history together with its STFT and PSD is shown in Figs. 5.23 and 5.26.
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Figure 5.23: Case #4c: time history, STFT and PSD.

Figure 5.24: Case #4c selected portion 1: time history, STFT and PSD.
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Figure 5.25: Case #4c selected portion 2: time history, STFT and PSD.

Figure 5.26: Case #4c selected portion 3: time history, STFT and PSD.

Case #4d

The time history together with its STFT and PSD is shown in Figs. 5.27 and 5.31.
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Figure 5.27: Case #4d: time history, STFT and PSD.
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Figure 5.28: Case #4d selected portion 1: time history, STFT and PSD.
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Figure 5.29: Case #4d selected portion 2: time history, STFT and PSD.

Figure 5.30: Case #4d selected portion 3: time history, STFT and PSD.
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Figure 5.31: Case #4d selected portion 4: time history, STFT and PSD.

5.4.3 Acceleration backbone

Even though we recommend using displacement backbones over acceleration back-

bones, it would still be meaningful to take a look at the acceleration backbones first.

For contrasting purpose, it would be interesting to examine some “raw” acceleration

backbones, i.e., the backbones obtained by processing the measured acceleration data

without filtering or decomposition. Fig. 5.32 shows two accelerations backbones of

Case #3a. It can be seen that the backbone is rather noisy. In fact, the instan-

taneous frequency value spreads out in a unreasonable range, indicating that the

instantaneous frequency is not trustworthy.
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Figure 5.32: Case #3a: backbones of acceleration measurements without filtering or
decomposition.

Since the original acceleration time histories are rather noisy, we use a lowpass

filter first. The cutoff frequency is chosen with great care so that only high frequency

noisy is filtered out but not the modes at high frequencies. The filtered acceleration

time histories are then decomposed by using the proposed decomposition procedure

given in Chapter 3. The backbones of both the filtered acceleration and its first

component are finally obtained. This procedure is applied to all cases. All results are

presented in Figs. 5.33 to 5.40.

None of these backbones is simple. We may agree that the backbones of the first

decomposed components indicate a linear behavior in Cases #2 and #3a, which agrees

with the expectation given the setup of these tests. Case #3b may be deemed linear,
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which does not necessarily agree with our expectation. For Case #3c, however, we are

not able to decompose the original signal successfully. The main reason, we believe,

is that the original signal does not satisfy the assumption that the first component

dominates.

Last but not least, a clear left bending behavior associated with softening nonlin-

earity can be seen in all four tests in Case #4d as shown in Fig. 5.40, which com-

plements the previous work done by our previous team members in reference [57].

This is consistent with the design of the timber joint. A left bending behavior is also

observed in Cases #4a - #4c but is not as obvious. These observations partially agree

with those in the work done by our previous team [57] and will be discussed later.
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Figure 5.33: Processed results for Case #2. (a) is the original and filtered acceler-
ation time histories of the processed data; (b) is the original and decomposed first
component acceleration time histories of the processed data, and (c) is the backbones
of the filtered acceleration time history and the decomposed first component. The
green vertical line in (c) is the mean value of the instantaneous frequency of the first
component.
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Figure 5.34: Processed results for Case #3a; the design of this figure follows that of
Fig. 5.33.
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Figure 5.35: Processed results for Case #3b; the design of this figure follows that of
Fig. 5.33.
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Figure 5.36: Processed results for Case #3c; the design of this figure follows that of
Fig. 5.33.
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Figure 5.37: Processed results for Case #4a. (a) is the full relative acceleration
time history of the timber joint; (b1)-(b3) are the original and filtered acceleration
time histories of three selected portions in (a), and (c1)-(c3) are the corresponding
backbones of (b1)-(b3).
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Figure 5.38: Processed results for Case #4b. The design follows the same pattern as
in Fig. 5.37.
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ẍ

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(b3) Acc. #3

-10 -5 0 5 10 15 20

a

0

0.05

0.1

0.15

(c3) Backbones #3

t

0 2 4 6 8 10 12 14 16 18

ẍ
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Figure 5.39: Processed results for Case #4c. The design follows the same pattern as
in Fig. 5.37.
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Figure 5.40: Processed results for Case #4d. The design follows the same pattern as
in Fig. 5.37. The only difference is that we have four selected portions in this case.

5.4.4 Estimated displacement and displacement backbone

Cases #2, #3a, #3b, and #4 data sets are further processed; displacements are

estimated in these tests by using the Kalman filter reviewed and validated earlier.

Afterwards, each estimated displacement time history is decomposed before obtaining

its first mono-component. Backbones are then obtained from both the displacement

and its first mono-component.

Unfortunately, the displacement estimation in these tests are not very good. Sim-

ilar to the Duffing signal tested previously in Fig. 5.4(a1) and (a2), obvious drift is

observed making the estimated displacement questionable. To overcome this prob-

lem, we again filter the displacement estimation with a highpass filter, just like what

we did in Fig. 5.4(b1) and (b2).

The processed results of Cases #2, #3 and #4 are presented in Figs. 5.41 to 5.48,

respectively. The backbones in Panel (e) indicate a linear behavior in both Cases #2
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and #3a, even though they are still noisy. The backbones in Case #3b, however, is

a little confusing. In particular, the tip of the first decomposed component seems to

bend slightly to the left, indicating a softening behavior. However, this nonlinearity

indication may not be entirely trustworthy, especially at the two ends of the backbone,

due to the use of highpass filtering. The mean frequencies are practically the same

as those in the acceleration backbones for all three cases, a good indicator for the

displacement estimates.
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Figure 5.41: Processed results for Case #2. (a) is the entire acceleration time his-
tory; (b) is the processed acceleration time history; (c) is the velocity estimation;
(d) is a combined plot of the displacement estimation (blue), filtered displacement
(green), and decomposed first component of the filtered displacement (red), and (e)
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Figure 5.42: Processed results for Case #3a; the design of this figure follows that of
Fig. 5.33.
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Figure 5.43: Processed results for Case #3b; the design of this figure follows that of
Fig. 5.33.
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Figure 5.44: Processed results for Case #3c; the design of this figure follows that of
Fig. 5.33.
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Figure 5.45: Processed results for Case #4a; the design of this figure follows that of
Fig. 5.33.
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Figure 5.46: Processed results for Case #4b; the design of this figure follows that of
Fig. 5.33.
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Figure 5.47: Processed results for Case #4c; the design of this figure follows that of
Fig. 5.33.
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Figure 5.48: Processed results for Case #4d; the design of this figure follows that of
Fig. 5.33.

Unfortunately, the displacement backbones are not meaningful for Cases #3c and

#4d as shown in Figs. 5.44 and 5.48, respectively. For Case #3c, the reason is

very likely that the acceleration measurement contains high nonlinearity which fails

the displacement estimation. For Case #4d, the backbone is spread out in a very

large frequency band, in addition to a wrong frequency range compared with the

acceleration backbone and the PSD result. The reason might be that the displacement

estimation is not accurate, which causes the decomposed first component erroneous

ending up with incorrect backbones.

5.5 Discussions

The Kalman filter approach for displacement recovery deserves further investigations.

In concrete, this method would fail in quite some cases when the acceleration is too

limited in length or has nonlinearity. The reason might be that the algorithm in
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reference [69] enforces a very strict condition on the output, i.e., the noisy absement

is always zero. Other displacement estimation methods may be worth studying, such

as frequency domain methods [39, 40].

Even with a trustworthy recovered displacement, the obtained backbone can still

be highly oscillatory. Such an issue can occur even when the backbone is obtained

from the first decomposed displacement. Other techniques such as envelope’s envelope

might be a good alternative to smooth the ultimate backbone [30].

It is worthwhile to mention that there is another kind of backbone among struc-

tural and mechanical engineers, i.e., an frequency response function (FRF) based

backbone. The FRF backbone is the mapping between the driving frequency and

peak amplitude of a model with different damping ratios. Taking a free Duffing os-

cillator as an example, Feldman’s backbone also has two versions: (a) is based on

Hilbert transform of numerical solution to the Duffing equation, while (b) is based

on an approximate solution to the Duffing equation leading to the backbone in the

form of ω2 = (1 + 3
4
a2) (see Reference [30]). This is illustrated in Fig. 5.49.
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Figure 5.49: Different backbones of a Duffing oscillator. The equation of motion is
ẍ + ζẋ + x + x3 = F . For Feldman’s backbone No. 1, ζ is taken as 0.05. Note that
the frequency in Feldman’s No. 1 backbone is actually normalized, i.e., the frequency
shown is actually the true instantaneous frequency divided by the natural frequency.
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5.6 Conclusion

In this chapter, the improved backbone technique has been tested on a couple of

case studies, where all data sets are collected acceleration measurements from real

world. We have attempted to apply the effective bandwidth and effective duration to

quantify information richness in data, however, we are not successful yet. An existing

Kalman filter approach for displacement recovery from acceleration seems to have

mixed performances. The improved backbone technique has some successes yet with

some issues to overcome.
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Chapter 6

CONCLUSIONS

The author has studied a couple of aspects related to the backbone technique for pro-

cessing and analyzing the free responses of nonlinear single-degree-of-freedom (SDOF)

systems. While specific conclusions for Chapters 2 to 5 are given therein, the conclu-

sion for this entire dissertation is given as follows:

First of all, the “bottom-up” research strategy used to carry out this research

seems to be fruitful in demystifying some critical yet detail-lacking contents in the

original backbone technique.

The Hilbert transform (HT) and discrete Hilbert transform (DHT) arena seems to

be colorful; different viewpoints do exist. One needs to make a rational choice based

on his/her application purpose. More importantly, one needs to bear in mind the ap-

proximate nature of instantaneous frequency and the conditions for all instantaneous

quantities to be physically meaningful. Technically, DHT needs to be implemented

with a great deal of care. The governing convolution formula for DHT is an efficient

means for mathematical manipulation. Within the scope of this study, mathematical

reasoning has been provided to justify two add-on procedures to fix the end effect.

In addition, piecewise DHT has been put forth and stressed for needed situations.

The analysis performed to the interaction of double-component signals and the sig-
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nal decomposition method directly help improve the original backbone technique and

beyond. The introduction of instantaneous bandwidth to the package of backbone

technique is an added contribution.

In terms of handling real-world free vibration acceleration measurements, the au-

thor has experienced a set of challenging cases. Additional filtering becomes necessary

due to increased complexity of the systems involved. Some future research topics are

effectively identified in this process.
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Chapter 7

FUTURE WORK

While specific future work recommendations for Chapters 2 to 5 are given therein,

the future work for this entire dissertation is given as follows:

The concept of mono-component deserves further discussions. As explained in

the introduction, researchers may have misunderstanding in this concept. A better

definition may be even worth a consideration.

Rigorous analysis of more general multi-component signals (with more than two

components) may be fruitful for even more fundamentally improving the backbone

technique and more. The goal is to obtain a smooth backbone out of the first de-

composed component. This goal, unfortunately, is only partially fulfilled regardless

of the improvement achieved. This proposed analysis would be one of the means to

achieve this goal.

The proposed piecewise discrete Hilbert transform (DHT) procedure can be fur-

ther streamlined. First, the criteria for selecting the cutting off point is currently

manually chosen. A better approach would be to define a threshold for the decaying

ratio such that the piecewise procedure can be automated. Next, the current extrema

detection method is based on the a very fundamental peak-picking method but suffers

heavily from noise. It can be potentially improved with other suitable methods.
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Following introducing instantaneous bandwidth to the backbone technique, group

delay may deserve some serious investment so that the backbone technique is even

more firmly grounded in classical Hilbert transform (HT) and DHT theories.

Forced response and multi-degree-of-freedom (MDOF) systems can be investigated

in the future, even though Dr. Feldman has explored these two topics to some extent.

The signal decomposition procedure proposed in this work needs to be further

improved in both algorithm and programming. In particular, the following aspects

deserve further investigation: First, we currently choose instantaneous frequency over

instantaneous amplitude in the process of obtaining the time indices due to the rea-

son that instantaneous frequency generally contains high frequency noise. It would

be interesting to investigate whether this potential issue can be resolved by using a

bandpass filter on instantaneous frequency – just like what we performed on instan-

taneous amplitude – with some carefully chosen passband. Second, for the passband,

especially the highpass cutoff frequency, is currently chosen manually. It would be

more beneficial to make it much more robust in future work. Together, this would

be another means to achieve the goal for making the backbone technique a pattern

classifier.

Directly measured displacement would be more desired for the backbone tech-

nique. In addition, other methods to derive robust displacement estimation from

acceleration and denoising techniques should be investigated for better handling real-

world free vibration data.
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Appendix A

Quantitative Analysis of Toy

Problem

We will use the frequency domain technique in reference [13] to obtain the Hilbert

transform of the given signal x[n] in this toy problem: x[n] = cos(2πωn/Fs) with

n = 0, 1, · · · , N − 1. To comprehend quantitatively the issues illustrated in Fig. 2.1,

consider the following scenarios, i.e.,

x1[n] = cos(2πωn/Fs), n = 0, 1, · · · , N1 − 1 (A.1)

x2[n] = cos(2πωn/Fs), n = 0, 1, · · · , N2 − 1 (A.2)

where N2 = N1 + 1 and Fs = ωN1 such that x1[n] is exactly one full period as in

Fig. 2.1(a1), while x2[n] is one full period plus an extra point as in Fig. 2.1(b1).
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For x1[n], we obtain its DFT by definition as follows:

X1[n] =

N1−1∑
k=0

x1[k]e
−j2πkn/N1

=

N1−1∑
k=0

ej2πωk/Fs + e−j2πωk/Fs

2
e−j2πkn/N1

=
1

2

N1−1∑
k=0

(
ej2πωk(1−n)/Fs + e−j2πωk(1+n)/Fs

)
(A.3)

It is obvious that X1[1] = X1[N1 − 1] = N1/2. For other n’s, X1[n] can be calculated

using the sum of geometric series as follows:

X1[n] =
1

2

(
ej2πω(1−n)/Fs

)N1 − 1

ej2πω(1−n)/Fs − 1
+

1

2

(
e−j2πω(1+n)/Fs

)N1 − 1

e−j2πω(1+n)/Fs − 1
(A.4)

Since

(
ej2πω(1−n)/Fs

)N1 − 1 =ej2π(1−n) − 1 = 0 (A.5)(
e−j2πω(1+n)/Fs

)N1 − 1 =e−j2π(1+n) − 1 = 0 (A.6)

We have

X1[n] =

 N1/2 n = 1, N1 − 1

0 otherwise
(A.7)

Its DHT would be as follows:

X̃1[n] = X1[n]Hc[n] =


−jN1/2 n = 1

jN1/2 n = N1 − 1

0 otherwise

(A.8)
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The inverse DFT of X̃1[n] can be conveniently derived as follows:

x̃1[n] = sin(2πωn/Fs) (A.9)

This corresponds to Fig. 2.3(a).

For x2[n], the derivation is similar, except that the two special points, i.e., n = 1

and n = N1 − 1 is not that special anymore. Following the sum of geometric series,

we will obtain the DFT of x2[n] as follows:

X2[n] =
1

2

ej2πω/Fs − 1

ej2π(Fs+ω−nFs)/Fs(Fs+ω) − 1
+

1

2

e−j2πω/Fs − 1

e−j2π(Fs+ω+nFs)/Fs(Fs+ω) − 1
(A.10)

The DHT in this case would be

X̃2[n]

=X2[n]Hc[n]

=


−j
2

ej2πω/Fs−1
ej2π(Fs+ω−nFs)/Fs(Fs+ω)−1

+ −j
2

e−j2πω/Fs−1
e−j2π(Fs+ω+nFs)/Fs(Fs+ω)−1

n = 1, · · · , N2−1
2

0 n = 0

j
2

ej2πω/Fs−1
ej2π(Fs+ω−nFs)/Fs(Fs+ω)−1

+ j
2

e−j2πω/Fs−1
e−j2π(Fs+ω+nFs)/Fs(Fs+ω)−1

n = N2+1
2
, · · · , N2 − 1

=


−j
2

αω−1
αe−j2πn/(Fs+ω)−1

+ −j
2

α−ω−1
α−1e−j2πn/(Fs+ω)−1

n = 1, · · · , N2−1
2

0 n = 0

j
2

αω−1
αe−j2πn/(Fs+ω)−1

+ −j
2

α−ω−1
α−1e−j2πn/(Fs+ω)−1

n = N2+1
2
, · · · , N2 − 1

(A.11)

where

α = ej2π/Fs (A.12)
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is a constant. Hence, we have the following steps:

x̃2[n]

=
1

N2

N2−1∑
k=0

X2[k]e
j2πkn/N2

=
1

N2

N2−1∑
k=0

X2[k]e
j2πωkn/(Fs+ω)

=
1

N2

(N2−1)/2∑
k=1

(
−j
2

αω − 1

αe−j2πk/(Fs+ω) − 1
+

−j
2

α−ω − 1

α−1e−j2πk/(Fs+ω) − 1

)
ej2πωkn/(Fs+ω)+

1

N2

N2−1∑
k=(N2+1)/2

(
j

2

αω − 1

αe−j2πk/(Fs+ω) − 1
+
j

2

α−ω − 1

α−1e−j2πk/(Fs+ω) − 1

)
ej2πωkn/(Fs+ω)

(A.13)

Plugging this formula with ω = 1 and Fs = 20, we can easily recover Fig. 2.1 (b2).

Fig. 2.1 (c2) can follow a similar manner as for Fig. 2.1 (b2), thus the derivation

is omitted here.
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Appendix B

Justification of the Two Properties

of Marple’s DHT Algorithm

Since N ∈ O is quite similar to N ∈ E in terms of derivation of the two properties,

we only deal with the case of N ∈ E herein.

For the first property, it is automatically verified by using Eq. (2.3) as x̃[n] is real.
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For the second one, we have

N−1∑
n=0

ℜ{z[n]}ℑ{z[n]}

=
N−1∑
n=0

x[n]
1

N

N−1∑
k=0

[
1− (−1)n−k

]
x[k]

N
2
−1∑

l=1

sin
2πl(n− k)

N

=
1

N

N−1∑
n=0

N−1∑
k=0

x[n]x[k]

N
2
−1∑

l=1

[
1− (−1)n−k

]
sin

2πl(n− k)

N


=

1

N

N−1∑
n=0

N−1∑
k=0

x[n]x[k]h[n− k]

=
1

N

N−1∑
n=0

(N−1)−n∑
i=1

x[n]x[n− i]h[i] +
1

N

N−1∑
n=0

(N−1)−n∑
i=1

x[n− i]x[n]h[−i]

+
1

N

N−1∑
n=0

x[n]x[n]h[0]

=
1

N

N−1∑
n=0

(N−1)−n∑
i=1

x[n]x[n− i]h[i]− 1

N

N−1∑
n=0

(N−1)−n∑
i=1

x[n]x[n− i]h[i]

= 0 (B.1)

The oddness of function h[n− k] is utilized during the manipulation, i.e., h[n− k] +

h[k − n].

We have now verified that Marple’s DHT algorithm indeed satisfies the two prop-

erties.
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Appendix C

Obtaining DHT of Signal after

Even Extension

The impulse response in this case is

hy[n] =

 0 n ∈ E
2

2N−2
cot nπ

2N−2
n ∈ O

(C.1)
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Therefore,

ỹ[n] =
2N−3∑
k=0

y[k]hy[n− k]

=
N−1∑
k=0

x[k]hy[n− k] +
2N−3∑
k=N

x[2N − 2− k]hy[n− k]

=
N−1∑
k=0

x[k]hy[n− k] +
1∑

l=N−2

x[l]hy[n+ l − (2N − 2)]

=
N−1∑
k=0

x[k]hy[n− k] +
1∑

l=N−2

x[l]hy[n+ l]

=
N−1∑
k=0

x[k]hy[n− k] +
N−2∑
k=1

x[k]hy[n+ k]

=
N−1∑
k=0

x[k] (hy[n− k] + hy[n+ k])− (x[0]hy[n] + x[N − 1]hy[n+N − 1]) (C.2)

the last equation of which is Eq. (2.15).
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Appendix D

Zero Ending Caused by Even

Extension

To dive into the derivation, let us first write down the value of hy[n] for several key

n values by following Eq. (2.16):

hy[0] = hy[2N − 2] =0 (D.1)

hy[N − 1] =0 (D.2)

hy[N − 1− k] + hy[N − 1 + k] =0, ∀ k ∈ Z (D.3)

Eqs. (D.1) is obvious; Eq. (D.2) is also easy to verify based on Eq. (2.16). For

Eq. (D.3), the reasoning is straightforward as well: when N − 1− k is even, hy[N −
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1− k] = hy[N − 1+ k] = 0 as N − 1+ k is also even. When N − 1− k is odd, we have

hy[N − 1− k] + hy[N − 1 + k]

=
1

N − 1
cot

(N − 1− k)π

2N − 2
+

1

N − 1
cot

(N − 1 + k)π

2N − 2

=
1

N − 1
cot

(
π

2
− kπ

2N − 2

)
+

1

N − 1
cot

(
π

2
+

kπ

2N − 2

)
=

1

N − 1
tan

kπ

2N − 2
− 1

N − 1
tan

kπ

2N − 2

= 0 (D.4)

With Eqs. (D.1) to (D.3), Eq. (2.15) can be evaluated at n = 0 and n = N − 1

conveniently as follows:

ỹ[0] =
N−1∑
k=0

x[k] (hy[−k] + hy[k])− (x[0]hy[0] + x[N − 1]hy[N − 1]) = 0 (D.5)

ỹ[N − 1] =
N−1∑
k=0

x[k] (hy[N − 1− k] + hy[N − 1 + k])

− (x[0]hy[N − 1] + x[N − 1]hy[2N − 2]) = 0 (D.6)

Thus we have verified that the DHT is zero at the two ends.
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Appendix E

Instantaneous Amplitude and

Instantaneous Frequency of

Double-Component Signal

The discussion herein follows Eq. (3.8) as elaborated in Chapter 3.2.2. A double-

component signal of the following format is studied herein:

x(t) = a1(t) cosϕ1(t) + a2(t) cosϕ2(t) (E.1)

where ϕi(t) =
∫ t

0
ωi(τ)dτ + φi for i = 1, 2, and ai(t), ϕi(t), ωi(t) and φi are the

instantaneous amplitude, instantaneous phase, instantaneous frequency and initial

phase of the ith mono-component, respectively. Note that non-zero initial phases are

considered in this study differing from Eq. (3.10). Here, [ai(t), ϕi(t)] form a canonical

pair for both i = 1, 2 as discussed in Chapter 3.2.2. Following the property of a

canonical pair and the linearity property of Hilbert transform, we have

x̃(t) = a1(t) sinϕ1(t) + a2(t) sinϕ2(t) (E.2)
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The instantaneous envelope of x(t) can be obtained by using Eq. (3.6):

a2(t) = x2(t) + x̃2(t)

= [x1(t) + x2(t)]
2 + [x̃1(t) + x̃2(t)]

2

= [a1(t) cosϕ1(t) + a2(t) cosϕ2(t)]
2 + [a1(t) sinϕ1(t) + a2(t) sinϕ2(t)]

2

= a21(t) + a22(t) + 2a1(t)a2(t) cos∆ϕ(t) (E.3)

where ∆ϕ(t) = ϕ2(t)− ϕ1(t) and x̃i is the Hilbert Transform of xi, for i = 1, 2.

For the instantaneous frequency of x(t), on one hand, notice that

ω(t) , ϕ̇(t) =
d

dt

[
arctan

(
x̃(t)

x(t)

)]
=

x(t) ˙̃x(t)− ẋ(t)x̃(t)

x2(t) + x̃2(t)
(E.4)

On the other hand, the following two equations are utilized

ẋ(t) = ȧ1(t) cosϕ1(t) + ȧ2(t) cosϕ2(t)− ω1(t)a1(t) sinϕ1(t)− ω2(t)a2(t) sinϕ2(t)

(E.5)

˙̃x(t) = ȧ1(t) sinϕ1(t) + ȧ2(t) sinϕ2(t) + ω1(t)a1(t) cosϕ1(t) + ω2(t)a2(t) cosϕ2(t)

(E.6)
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Thus, the following is obtained:

x(t) ˙̃x(t)− ẋ(t)x̃(t)

= ω1(t)a
2
1(t) + ω2(t)a

2
2(t) + (ω1(t) + ω2(t))a1a2 cos∆ϕ(t)

+ (a1(t)ȧ2(t)− ȧ1(t)a2(t)) sin∆ϕ(t)

= ω1(t)a
2(t)− (a2(t) + 2a1(t)a2(t) cos∆ϕ(t)) + ω2(t)a

2
2(t)

+ (ω1(t) + ω2(t))a1a2 cos∆ϕ(t) + (a1(t)ȧ2(t)− ȧ1(t)a2(t)) sin∆ϕ(t)

= ω1(t)a
2(t) + ∆ω(t)

(
a22(t) + a1(t)a2(t) cos∆ϕ(t)

)
+ (a1(t)ȧ2(t)− ȧ1(t)a2(t)) sin∆ϕ(t)

(E.7)

where ∆ω(t) = ∆ϕ̇(t) = ω2(t)− ω1(t). Plugging Eq. (E.7) into Eq. (E.4) yields

ω(t) = ω1(t) +
a22(t) + a1(t)a2(t) cos∆ϕ(t)

a2(t)
∆ω(t) +

a1(t)ȧ2(t)− ȧ1(t)a2(t)

a2(t)
sin∆ϕ(t)︸ ︷︷ ︸

ω̂ in Eqs. (3.22) and (3.36)

(E.8)
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Appendix F

Characteristics of Instantaneous

Phase at Indexed Time Instances

The discussion here follows that in E. An important property regarding the relation-

ship between instantaneous phase of the sum signal x(t) and its first mono-component

x1(t) is studied. Explanations can be given as follows by using Fig. 3.11:

From t0 to t1 in Figs. 3.11(a) to 3.11(c): The sum vector z⃗ leads the first com-

ponent z⃗1 resulting in ϕ(t) > ϕ1(t) as shown in Fig. 3.11(b). The inequality

holds till t = t1 when the three vectors line up, with z⃗2 directing to an oppo-

site direction as z⃗1 and z⃗, as shown in Fig. 3.11(c). Note that z⃗ has the same

direction as z⃗1 as mentioned above. Keeping in mind ϕ(t) ∈ C and ϕ1(t) ∈ C,

we have ϕ(t1) = ϕ1(t1).

From t1 to t2 in Figs. 3.11(c) to 3.11(e): Right after t = t1, the first component

surpasses the sum vector corresponding to ϕ(t) < ϕ1(t) as shown in Fig. 3.11(d).

The inequality holds till t = t2 where the three vectors line up and point to the

same direction again for the first time as shown in Fig. 3.11(e). Again given

ϕ(t) ∈ C and ϕ1(t) ∈ C, we have ϕ(t2) = ϕ1(t2).
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With the idea of mathematical induction, it can be seen that ϕ(tn) = ϕ1(tn) ∀ n ∈

N0.
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Appendix G

Characteristics of Instantaneous

Amplitude and Instantaneous

Frequency at Indexed Time

Instances

The discussion here follows that in E and F. Taking the first time derivative on both

sides of Eq. (E.3) leads to the following equation:

2a(t)ȧ(t) = 2a1(t)ȧ1(t) + 2a2(t)ȧ2(t) + 2ȧ1(t)a2(t) cos∆ϕ(t)

+ 2a1(t)ȧ2(t) cos∆ϕ(t)− 2a1(t)a2(t)∆ω(t) sin (∆ϕ(t)) (G.1)

Assumption #2 in Chapter 3.4.1 simplifies Eq. (G.1) into the following:

2a(t)ȧ(t) ≈ −2a1(t)a2(t)∆ω(t) sin∆ϕ(t) (G.2)
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A local extreme demands ȧ(t) = 0, i.e.,

sin∆ϕ(t) = 0 ⇔ cos∆ϕ(t) = ±1 (G.3)

This corresponds to the time instances tn such that ∆ϕ(tn) = nπ with n ∈ N0

according to Eq. (3.29).

Taking a further time derivative on both sides of Eq. (G.1), discarding all terms

containing ȧ1(t), ȧ2(t), ω̇1(t), and ω̇2(t) based on Assumption #2 again, and evaluat-

ing the equation at tn lead to the following equation:

2a(tn)ä(tn) ≈ −2a1(tn)a2(tn)∆ω
2(tn) cos (∆ϕ(tn)) (G.4)

In this sense, Assumption #2 is a sufficient condition for Eqs. (G.2) and (G.4) to

hold. These equations can be interpreted as follows:

When ∆ϕ(tn) = nπ with n ∈ E: ȧ(tn) = 0, and ä(tn) < 0, which corresponds to a

local maximum.

When ∆ϕ(tn) = nπ with n ∈ O: ȧ(tn) = 0, and ä(tn) > 0, which corresponds to a

local minimum.

Similar to obtaining Eqs. (G.2) and (G.4), we have:

ω̇(t) ≈ 2 (a21(t)− a22(t))

a3(t)
∆ω(t)ȧ(t) (G.5)

ω̈(tn) ≈ 2∆ω(tn)a
−3(tn)

(
a21(tn)− a22(tn)

)
ä(tn) (G.6)

from Eq. (3.21) and by applying Assumption #2 in Chapter 3.4.1. Again, Assumption

#2 serves as a sufficient condition for these equations. Further applying Assumption

#1 in Chapter 3.4.1 to Eq. (G.6) leads to ω̈(tn) bearing the same sign as ä(tn).

In summary, Eqs. (G.5) and (G.6) indicate that a(t) and ω(t) reach every local
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maximum or minimum simultaneously under the assumptions applied. Together with

Eqs. (G.2) and (G.4), it is concluded that local maxima and minima of both a(t) and

ω(t) occur when ∆ϕ(tn) = nπ with n ∈ E and n ∈ O, respectively.
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Appendix H

Backbone of an Undamped Duffing

Oscillator under Free Vibration

Following the idea of harmonic balance method (e.g., in reference [62]), the solution

of Eq. (3.38) is assumed to be of the following form:

x(t) =
l∑

k=0

ak cos (kψ(t)) , where ψ(t) = ω0t+ β0 (H.1)

where ak, ω0 and β0 are constants to be determined, with a3 ≪ a2 ≪ a1.

Let us explore the solution up to l = 3, i.e.,

x(t) = a0 + a1 cos (ψ(t)) + a2 cos (2ψ(t)) + a3 cos (3ψ(t)) (H.2)

In this case, the first and second time derivatives of the solution are obtained as

follows:

ẋ(t) = −ω0a1 sin (ψ(t))− 2ω0a2 sin (2ψ(t))− 3ω0a3 sin (3ψ(t)) (H.3)

ẍ(t) = −ω2
0a1 cos (ψ(t))− 4ω2

0a2 cos (2ψ(t))− 9ω2
0a3 cos (3ψ(t)) (H.4)
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Following harmonic balance method, a total of four homogeneous equations are

obtained as follows:

ω2
na0 + ϵa30 +

3

2
ϵa0a

2
1 +

3

4
ϵa21a2 +

3

2
ϵa0a

2
2 +

3

2
ϵa0a

2
3 +

3

2
ϵa1a2a3

= 0 (H.5)

ω2
na1 − ω2

0a1 + 3ϵa20a1 +
3

4
ϵa31 + 3ϵa0a1a2 +

3

4
ϵa21a3 + 3ϵa0a2a3 +

3

2
ϵa1a

2
2 +

3

2
ϵa1a

2
3

+
3

4
ϵa22a3

= 0 (H.6)

ω2
na2 − 4ω2

0a2 +
3

2
ϵa0a

2
1 + 3ϵa20a2 + 3ϵa0a1a3 +

3

2
ϵa21a2 +

3

2
ϵa1a2a3 +

3

4
ϵa32 +

3

2
ϵa2a

2
3

= 0 (H.7)

ω2
na3 − 9ω2

0a3 +
1

4
ϵa31 + 3ϵa20a3 + 3ϵa0a1a2 +

3

2
ϵa21a3 +

3

4
ϵa1a

2
2 +

3

2
ϵa22a3 +

3

4
ϵa33

= 0 (H.8)

With initial conditions x(0) and ẋ(0), a total of six equations are available. Thus,

there should be an analytical solution for the six unknowns a0, a1, a2, a3, ω0 and β0.

The following discussion is only for x(0) ̸= 0 and ẋ(0) = 0. a0 = 0 is expected

given that there is no permanent deformation of the response. In this case, Eq. (H.5)

becomes

3

4
ϵa21a2 +

3

2
ϵa1a2a3 = 0 (H.9)

Since a1 is the amplitude of the first term in x(t), which cannot be zero, thus we have

a1a2 + 2a2a3 = 0 (H.10)

If a2 ̸= 0, then a3 = −1
2
a1, which conflicts with the assumption of a3 ≪ a2 ≪ a1.

Thus, we claim a2 = 0. Accordingly, Eq. (H.7) does not contain any information.
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Meanwhile, Eqs. (H.6) and (H.8) simplify to:

ω2
na1 − ω2

0a1 +
3

4
ϵa31 +

3

4
ϵa21a3 +

3

2
ϵa1a

2
3 = 0 (H.11)

ω2
na3 − 9ω2

0a3 +
1

4
ϵa31 +

3

2
ϵa21a3 +

3

4
ϵa33 = 0 (H.12)

Combining these two equations with the initial condition

a1 + a3 = x(0) ̸= 0 (H.13)

the three unknowns a1, a3 and ω0 can be solved numerically following Eqs. (H.11)

to (H.13) in lieu of solving an ODE numerically. Other initial conditions can be

converted to the algebraic equations given above thus can be subsequently solved.
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Appendix I

DHT of Signal with Large

Decaying Ratio

In this section, we will look into a signal that challenges DHT and figure out why

the envelope of the tail is amplified. To show this, we will compare the DHT of two

signals, where the first signal x[n] is defined for n = 0, 1, · · · , N − 1 with N ∈ E and

the second signal x2[n2] is defined for n2 = 0, 1, · · · , N/2− 1. x2[n2] is chosen as the

second half of x[n], i.e.,

x2[n] = x[n+N/2− 1], ∀ n ∈ [0, N/2− 1] (I.1)

The goal here is to show that the envelope of the second half of x[n] is an amplified

version of x2[n2], even though they are the same sequence.

To simplify the analysis, we make the following assumptions on the signal x[n]

considered here:

Assumption #1 The signal length N is a multiple of 4.

Assumption #2 Every point in the second half is 1/M of the point N/2 proceeding
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it with M ≫ 1. In other words, the following is true

x[n2] = Mx2[n2], ∀ n2 ∈ [0, N/2− 1], where M ≫ 1 (I.2)

Admittedly, Assumption #2 is quite stringent; the idea is to make sure x[n] being

fast decaying and simplify the derivation.

By definition, the DHT of x[n] is as follows [13]:

x̃[n] =
N−1∑
k=0

x[k]h[n− k] (I.3)

where h[n] is the impulse response given as follows

h[n] =

 0 n ∈ E
2
N
cot πn

N
n ∈ O

(I.4)

By splitting the RHS into two parts, we have

x̃[n] =

N/2−1∑
k=0

x[k]h[n− k] +
N−1∑

k=N/2

x[k]h[n− k]

=

N/2−1∑
k=0

Mx[k +N/2]h[n− k] +
N−1∑

k=N/2

x[k]h[n− k]

=
N−1∑
l=N/2

Mx[l]h[n− l +N/2] +
N−1∑

k=N/2

x[k]h[n− k]

=
N−1∑

k=N/2

x[k] (Mh[n− k +N/2] + h[n− k])

=

N/2−1∑
k=0

x2[k] (Mh[n− k] + h[n− k −N/2]) (I.5)
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The second half of x̃[n] can be rewritten as

x̃[n2] =

N/2−1∑
k=0

x2[k] (Mh[n2 − k +N/2] + h[n2 − k]) , ∀ n2 ∈ [0, N/2− 1] (I.6)

Note that

x̃2[n2] =

N/2−1∑
k=0

x2[k]h2[n2 − k] (I.7)

where

h2[n] =

 0 n ∈ E
2

N/2
cot πn

N/2
n ∈ O

(I.8)

To show that the envelope of the second half is amplified, we only need to show

that there exists an integer K whose absolute value is greater than 1 such that

x̃[n2] = Kx̃2[n2]. By looking at Eqs. (I.6) and (I.7), it is sufficient to show the

following is true for some |K| > 1.

Mh[n2 − k +N/2] + h[n2 − k]︸ ︷︷ ︸
h̄1[n2−k]

= K h2[n2 − k]︸ ︷︷ ︸
h̄2[n2−k]

, ∀ n2 − k ∈ [−N − 1, N − 1] (I.9)

Although a mathematical proof is not given, Fig. I.1 presents the h̄1[n2 − k] and

h̄2[n2−k] for three typical N values whenM = 100. It can be seen that h̄2[n] > h̄1[n]

almost for any n. Given that the signal considered has a continuously decaying

feature, it is reasonable for us to claim that Eq. (I.9) should be satisfied. Therefore,

it is expected that the tail would be amplified when M >> 1 for a continuously

decaying signal.
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Figure I.1: h̄1[n] and h̄2[n] under different signal length N . Decaying ratio M is set
to 100.
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Appendix J

State-Space Representation of

Analytic Signal Using Duffing

Oscillator

The goal of working on this state-space view of unforce Duffing oscillator is to further

understand Dr. Feldman’ backbone concept, and to check if there is any similarity

with the classic state-space representation since both methods represent the system

with two signals in a cartesian coordinate.

In Cartesian coordinate, the state space of a Duffing oscillator ẍ+cẋ+kx+αx3 = 0

is as follows:

ẋ =

 ẋ

ẍ

 =

 x1

−cx2 − kx1 − αx31

 (J.1)

where

x =

 x1

x2

 =

 x

ẋ

 (J.2)

Following this idea, we will try to obtain a state-space representation of the Duff-

ing model in polar coordinate with states ϕ(t) and a(t) where x(t) = a(t) cosϕ(t)
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and a(t) and ϕ(t) are the instantaneous amplitude and instantaneous phase of x(t),

respectively. First of all, it is important to emphasize only these two states are not

enough, because they are both related to the current state of the system only and

have nothing to do with evolution. Therefore, it would be necessary to add their first

time derivatives in the states, which end up with the following state vector:

u =



u1

u2

u3

u4


=



a

ϕ

ȧ

ϕ̇


(J.3)

The corresponding state equation is as follows:

u̇ =



ȧ

ϕ̇

ä

ϕ̈


=



u3

u4

f1(u)

f2(u)


(J.4)

To determine the f1 and f2, the formulas of x, ẋ, and ẍ could be plugged back

into the equation of motion. First of all, we have

x = a(t) cosϕ(t) (J.5)

ẋ = ȧ(t) cosϕ(t)− ϕ̇(t)a(t) sinϕ(t) (J.6)

ẍ = ä cosϕ(t)− 2ȧϕ̇(t) sinϕ− a(t)ϕ̈(t) sinϕ(t)− aϕ̇2(t) cosϕ(t) (J.7)

Substituting Eqs. (J.5)- (J.7) into the equation of motion yields the following:

ä cosϕ−2ȧϕ̇ sinϕ−aϕ̈ sinϕ−aϕ̇2 cosϕ+cȧ cosϕ−cϕ̇a sinϕ+ka cosϕ+αa3 cos3 ϕ = 0

(J.8)
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Note that cos3 ϕ = 3
4
cosϕ+ 1

4
cos 3ϕ, Eq. (J.8) becomes the following

ä cosϕ− 2ȧϕ̇ sinϕ− aϕ̈ sinϕ− aϕ̇2 cosϕ+ cȧ cosϕ− cϕ̇a sinϕ+ ka cosϕ

+
3

4
αa3 cosϕ+

1

4
αa3 cos 3ϕ

= 0 (J.9)

We need to extract two equations out of this single equation, one for ä and one for ϕ̈.

One way of doing so is to follow the idea of harmonic balance method, i.e., discarding

the high frequency term in Eq. (J.9), and making the cos and sin terms to be zero,

respectively, from which we have

(
ä− aϕ̇2 + cȧ+ ka+

3

4
αa3

)
cosϕ = 0 (J.10)(

−2ȧϕ̇− aϕ̈− cϕ̇a
)
sinϕ = 0 (J.11)

Based on these equations, we have

ä = aϕ̇2 − 2cȧ− ω2
na−

3

4
αa3 (J.12)

ϕ̈ = − 2cϕ̇− 2ϕ̇
ȧ

a
(J.13)

Therefore, the approximated state space equation of the Duffing oscillator is as follows:

u̇ =



u3

u4

u1u
2
4 − cu3 − ku1 − 3

4
αu31

−cu4 − 2u4
u3

u1


(J.14)

An interesting observation is that u2 is not involved in the state equation, meaning
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it is a redundant state. Therefore, the simplified state equation is given as follows:

u̇ =


u3

u1u
2
4 − cu3 − ku1 − 3

4
αu31

−cu4 − 2u4
u3

u1

 (J.15)

where

u =


u1

u3

u4

 =


a

ȧ

ϕ̇

 =


a

ȧ

ω

 (J.16)

One step further is to replace the second states with b, i.e., ȧ
a
. Notice that for the

sake of manipulation, the b here is the original definition but without the absolute

sign. The substitution can be done similarly following the above manipulation, which

ends up with the following state equation:

u̇ =


ȧ

ḃ

ϕ̈

 =


u1u2

−3
4
αu21 − u22 − cu2 + u23 − k

−2u2u3 − cu3

 (J.17)

where the new state vector is

u =


a

b

ϕ

 (J.18)
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The derivation for the new state equation is as follows:

u̇ =


ȧ

ḃ

ϕ̈



=


ȧ

−
(
ȧ
a

)2
+ ä

a

−cϕ̇− 2ϕ̇ ȧ
a



=


ȧ

−
(
ȧ
a

)2
+

aϕ̇2−2cȧ−ka− 3
4
αa3

a

−cϕ̇− 2ϕ̇ ȧ
a



=


ȧ

−
(
ȧ
a

)2
+ ϕ̇2 − c ȧ

a
− k − 3

4
αa2

−cϕ̇− 2ϕ̇ ȧ
a



=


u1u2

−3
4
αu21 − u22 − cu2 + u23 − k

−2u2u3 − cu3

 (J.19)

The following formula is used in the above manipulation:

d
(
ȧ
a

)
dt

=
aä− ȧ2

a2
(J.20)
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Appendix K

Physical Meaning of Instantaneous

Bandwidth by Using Velocity

Although the definition of instantaneous bandwidth is readily given in Eq. (4.5), it

would be helpful if we could come up with a physical interpretation that is NOT

from a probabilistic viewpoint. The right-hand side is the absolute value of the ratio

of the time derivative of a(t) over a(t), from where it is not easy to tell that it is

a parameter that represents the spread of ω(t). As also stated above, [15] gives a

detailed derivation of this equation, but still, it is more mathematically meaningful

than physically. Having said this, here we try to make physical sense of this definition,

a different and new point of view from that in reference [15].

Consider a signal x(t) in the following amplitude-phase form:

x(t) = a(t) cos(ϕ(t)) (K.1)

where a(t) and ϕ(t) correspond to the instantaneous amplitude and instantaneous

phase, respectively. Therefore, the Hilbert transform of x(t) is

x̃(t) = a(t) sin(ϕ(t)) (K.2)
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First time derivative of x(t) is

ẋ(t) = ȧ(t) cos(ϕ(t))− ϕ̇(t)a(t) sin(ϕ(t)) = ȧ(t) cos(ϕ(t))− ω(t)x̃(t) (K.3)

Notice that cos(ϕ(t)) = x(t)/a(t), we have

ẋ(t) = ȧ(t)
x(t)

a(t)
− ω(t)x̃(t) (K.4)

Rearranging the terms yields

ȧ(t)

a(t)
x(t) = ẋ(t) + ω(t)x̃(t) (K.5)

If we take the absolute value of both sides, we will end with

∣∣∣∣ ȧ(t)a(t)

∣∣∣∣ |x(t)| = |ẋ(t) + ωx̃(t)| (K.6)

Notice that |ȧ(t)/a(t)| is what we define as b(t), therefore, we have

|b(t)||x(t)| = |ẋ(t) + ω(t)x̃(t)|, or equivalently, |b(t)| =

∣∣∣∣ ẋ(t)x(t)
+ ω(t)

x̃(t)

x(t)

∣∣∣∣ (K.7)

Although the exact physical meaning of the above equation remain undiscovered,

the two terms containing instantaneous bandwidth and instantaneous frequency, i.e.,∣∣∣ ȧ(t)a(t)

∣∣∣ |x(t)| on the LHS and ω(t)x̃(t) on the RHS are readily comparable, as x(t) and

x̃(t) are merely two different representation of one given signal. Hence, we success-

fully connected instantaneous bandwidth and instantaneous frequency with a seem-

ingly unusual equation. Eq. (K.7) indicates that instantaneous bandwidth can be

interpreted as a weighted sum of its first time derivative and its Hilbert transform

each normalized with respect to the original real signal.

It would be interesting to take a deeper look at the two terms on the RHS. Consider
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a special case where x(t) = cos(ωt), i.e., a pure sinusoid. In this case, a(t) is constant

1, and thus ȧ(t) is zero. Thus, we have:

ẋ(t) = −ω(t)x̃(t) (K.8)

which makes |b||x| = 0, meaning b = 0. Although this is a trivial case, we can take

a further look at the case when a is really slowly varying, i.e., ȧ(t) can be neglected.

In this case,

ẋ(t) ≈ −ω(t)x̃(t) (K.9)

and thus b ≈ 0. The implication of this result is that for lightly damped system, the

signal magnitude is slowly varying, hence the instantaneous amplitude.
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Appendix L

Review Notes: Damping

Estimation with Instantaneous

Bandwidth

Damping estimation using instantaneous characteristics is proposed in reference [23,

30]. The following steps summarize these studies by Dr. Feldman. Consider a model

with viscous damping and amplitude-dependent natural frequency as follows:

ẍ(t) + h(t)ẋ(t) + ω2
x(t)x(t) = 0 (L.1)

Replacing x(t) with its corresponding analytic signal yields

Ẍ(t) + h(t)Ẋ(t) + ω2
x(t)X(t) = 0 (L.2)
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where X(t) = x(t) + jx̃(t). Since

Ẋ(t) = X(t)

(
ȧ(t)

a(t)
+ jω(t)

)
(L.3)

Ẍ(t) = X(t)

(
ä(t)

a(t)
− ω2(t) + j2ω(t)

ȧ(t)

a(t)
+ jω̇(t)

)
(L.4)

we have

X(t)

(
ä(t)

a(t)
ω2(t) + ω2

x + 2h(t)
ȧ(t)

a(t)
j

(
2
ȧ(t)

a(t)
+ ω̇(t) + 2h(t)ω(t)

))
= 0 (L.5)

Hence

h(t) = − ȧ(t)

a(t)
− ω̇(t)

2ω(t)
(L.6)

ωx(t) = ω2(t)− ä(t)

a(t)
+ 2

ȧ2(t)

a2(t)
+

ȧ(t)ω̇(t)

a(t)ω(t)
(L.7)
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Appendix M

Selected MATLAB Codes

Developed in this Work

M.1 Computing Discrete Hilbert Transform with

Trimming and Even Extension

function [x_trim, x_tilde, loc_min, loc_max] = hilbert_TEM(x)

% hilbert_TEM compute Hilbert transform of a discrete signal with proposed two

% preprocessing steps.

% x - input signal (one dimension)

% x_trim - trimmed signal

% x_tilde - Hilbert transform of x

% loc_min - original start index of x_trim

% loc_max - original end index of x_trim

%

% Example:

% [x_trim, x_tilde, loc_min, loc_max] = hilbert_TEM(x);

%

x=x(:);

[~, loc1] = findpeaks(x);

[~, loc2] = findpeaks(-x);

if(max(loc1)>=max(loc2))

loc = loc1;

else

loc = loc2;

end

if(x(1)==max(x(1:min(loc))) && x(1)>0)

loc_min = 1;

else
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loc_min = min(loc);

end

loc_max = max(loc)-1;

x_trim = x(loc_min:loc_max);

x_ref = flipud(x_trim(2:end-1));

x_new = [x_ref; x_trim];

x_HT = hilbert(x_new);

x_tilde = imag(x_HT(length(x_trim)-1:end));

M.2 Computing Instantaneous Amplitude, Instan-

taneous Phase and Instantaneous Frequency

function [A, F, P, loc_min, loc_max]=inst_TEM(x, Fs)

% inst_TEM compute IA, IP, IF of a discrete signal.

% x - input signal (one dimension)

% Fs - sampling frequency (Hz)

% A - instantaneous amplitude

% F - instantaneous frequency (Hz)

% P

% Example:

% [A, F, P, loc_min, loc_max]=inst_TEM(x, Fs);

%

x=x(:);

[x_trim, x_tilde, loc_min, loc_max] = hilbert_TEM(x);

A2 = x_tilde.^2 + x_trim.^2;

A = sqrt(A2);

phi = atan2(x_tilde, x_trim);

P = unwrap(phi);

F = Fs * diff_new(P,[1:length(P)]’);

% diff_new is based on central_diff given in

% http://www.mathworks.com/matlabcentral/fileexchange/12-central-diff-m

M.3 Computing BeTe Product

function [BeTe] = BT(x, Fs)

% BT compute BT product of a discrete signal.

% x - input signal (one dimension)

% Fs - sampling frequency (Hz)

% BeTe- BT product of x

%

% Example:

% [BeTe] = BT(x, Fs);

213



%

x = x(:);

N = length(x);

t = 0:N-1/Fs;

X = fft(x);

m = [0:N-1]’;

K = N;

k = [0:K/2-1]’;

deltaT = 1/Fs;

deltaF = K/Fs;

sm = abs(x);

Sk = abs(X(1:K/2));

Be_num = sum((k.*deltaF).^2 .* Sk.^2 * deltaF);

Be_den = sum(Sk.^2 * deltaF);

Te_num = sum((m * deltaT).^2 .* sm.^2 * deltaT);

Te_den = sum(sm.^2 * deltaT);

Be = Be_num/Be_den;

Te = Te_num/Te_den;

BeTe = 2*sqrt(Be*Te);
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