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PREFACE 

This report is concerned with the maximization of 

total gas withdrawals from gas producing fields during 

producing seasons and requires the identification.of 

optimal withdrawal rates from the active wells. The 

transient behavior of the wells durini:; the short pro-

ducing season a.-vid the mutual interference of the wells 

make the physical problem complicated. During the early 

parts of the producing season, the demand rates are low 

and it is easy to produce the demand rate from just a few 

wells. However, later in the season, all wells need to be 

operated at peak capacity, or at least at optimal capacity 

in order to meet the demand. To compensate for some of this 

fluctuation, some of the abandoned oil fields are converted 

to storage facilities and are filled during the period of 

low demand and emptied during peak loads. However, the 

problem of the optimal operation exists whether the field 

is natural or one converted to storage. 

I would like to take this opportu.'1i t,y to express my 

appreciation for the assistance and guidance given me by: 

J. Scott 'l'urner, who suggested that I explore this topic 

and was always available for counsel, and A.G. Comer of 

the Department of Mechanical and Aerospace Engineering at 
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Oklahoma State University, who devoted the needed cooperation 

in locating and explaining many of the technical articles 

found in the bibliography. 

In addition I would like to thank Mrs. Margaret Estes 

for her typing excellence and advice. 
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CHAPTER I 

INTRODUCTION 

In recent years considerable progress has been made in 

the development and application of mathematical techniques 

for the solution of certain problems involving economic 

strategies. Such a problem might involve, for example, the 

scheduling of shipments of a numoer of goods from a number of 

sources to a number of destinations. The object would thus be 

to schedule the shipments in a manner so as to satisfy the 

destination requirements a11d at the same time minimize the 

transportation costs. 1 'rhe solution to such a problem is not 

always intuitively obvious. The obvious solution is frequentl~ 

far from the optimum. For example, if the shipments are to be 

made from only two sources to four destinations, the optimum 

solution is readily found. However, if shipments are to be 

made from fifteen or twenty sources to a hundred or so desti-

nations, even competent and experienced schedulers may spend 

considerable time in finding merely a reasonable answer. 

Even at that, the scheduler has no guarantee that his solu-

tion is the optimum solution. Moreover, the techniques 

employed will give no indication as to how far the solution 

is from the optimum answer. This leads to uncertainty; 

should the scheduler accept this solution or seek a better one. 2 
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Before the advent of the large high speed computers, 

little more could be done with such problems oecause of their 

great size and multiple solutions. A problem involving twenty 

sources and fifty destinations would require choosing from a 

very large number of possible combinations, the optimum combi-

nation of one thousand variables. 'fhe best one could do was 

to utilize intuition, extrapolation from past experience, and 

other non-exact approaches~ With a high speed computer, 

however, such problems can be solved providing a reasonable 

computational procedure ( or algorithm) can be utilized. 

The oil and gas industry became aware of the great powers 

of linear programming through the pioneering work of Charnes, 

Cooper, and Mellon (19?2, 1954) and the work of Gifford 

Symonds (1953). 3 Up until five or ten years ago there were 

few people in the petroleum industry who had heard of such 

things as "basic solution" or II convex set. 11 'l1oday, these 

terms are very familiar. The lag time oetween the theory 

and the application of linear programming is due to the fact 

that educational processes are involved and educational 

processes are notoriously slow. 

As technology improves, the proolems become more inter

woven and complex. The problems of the oil and gas industry 

are no exception.. 'l'hey can be logically grouped into cate

gories according to different phases: exploration and land 

lease; drilling and production; manufacturing; and distribu

tion and marketing. 4 An integrated oil company must first of 

all carry out exploration activities to determine where 
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exactly petroleum is to oe found. The land must then be 

acquired or leased and a "wildcat" well or exploratory well 

is drilled. If the well indications are favorable, addi

tional wells are drilled to develop the field and production 

gets under way. 

An oil or gas field may be produced in many different 

ways. Which is best? The complexity of a modern refinery 

is staggering. What is the best operating plan? What is 

meant by 11 best 11 ? Of course, not all of these problems lend 

themselves to linear programming, but some of them do. The 

techniques of linear programming have become quite extensive 

in many different segments of the oil and gas industry, but 

very little work has been done to date in extending these 

methods to the area of underground gas production. Specifi

cally, progress has been made in the area of gasolene blending, 

complete refinery operations, distribution of products from 

refinery to ·bulk plants, distribution from multi-refineries 

to bulk plants, scheduling of ships and routing of trucks 

from the bu1k plant to the service station. 5 It is true that 

even the simplest reservoir behavior problem is non linear 

in both geometry and time, and hence does not lend itself 

readily to linear programming models9 Yet this same objection 

has been made in the past in regard to almost all of the 

above categories. This report develops some linear pro

gramming models and indicates where they may have some appli

cability. Since a firm footing is always required for future 

blocks of knowledge, a short introductory section to the basics 



of the oil and gas industry wtll be found in Appendix A. 

For one with no prior petroleum experience, it would be 

advisable to read this section before proceeding in to the 

body of the paper. Also included, in Appendix B, are a few 

notes on the "state of the art" of linear programming in the 

petroleum industry today. From here then, the models will be 

developed for the optimal extraction of gas from natural 

sources or gas reservoirs previously injected. 
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FOOTNOTES 

1cyrus Derman, "A Simple Allocation Problem," Manage
ment Science, 1959, p. 453. 

2samuel B. Richmond, Operations Research for Management 
Decisions (New York, 1968), Chapter 10. ~ 

3w. w. Garvin, H. w. Crandall, J. B. John, and R. A. 
Spellman, 11 Applications of Linear Progra.11ming in the Oil 
Industry," Iv'Ianagemen t Science, 1958, p. 407. 

4~., P• 408. 

5~., P• 409. 



CHAPTER II 

A DETAILED APPROACH TO PETROLEUM TECHNOLOGY 

The demand for fuels is not constant due to the variable 

weather conditions. When gas or LP gas is produced in one 

locality and consumed in another, cheap transportation is 

essential. The lowest cost of transporting fluid fuels is 

normally through pipelines which operate as close to capacity 

as possible throughout the year. Storage of the fluid fuels 

at or near the: point of utilization is the mechanism of per-

mitting the pipelines to operate at capacity during periods 

of low consumption and to permit them to accept a constant 

supply. Consequently, since man has learned the importance 
i 

of undergro:und storage of fluids and gases, and since petroleum 

has been stored in underground reservoirs for millions of 

years by being trapped below a caprock and confined by 

underlying water, both the optimal removal of gases from 

natural sources as well as that from underground storage 

fields needs to be explored.1 

Natural gas is not the only fluid which may be stored 

within the natural caverns of the earth. Brine produced 

in connection with oil production is returned to the earth, 

sometimes even to other zones. Earthen pits are used after 

freezing the earth to form an impervious container for 

r 
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liquified natural gas or refrigerated propane. The new 

ecological emphasis on pollution of streams and the atmos

phere will no doubt provide future use of the earth for 

storage of waste materials. 

From various fields such as geology, petroleum engi

neering, water resources, hydrology, and the engineering 

area of underground storage comes the information needed for 

the understanding of the nature of the strata near the sur

face which might become storage zones. 

One very often misunderstood concept of the nature of 

the containers for underground storage is that there exists 

large mysterious caverns many miles deep and equally as 

many miles of endless branches. The only natural caverns 

underground are the relatively rare solution cavities in 

the carbonate rocks or the man made salt cavities created 

by solution mining. 

Oil and gas are found in a large variety of underground 

structures and their forms are so numerable that they are 

beyond the scope of this paper. The most common shape, 

however, has already been mentioned and is depicted in Figure 1. 

It is termed the buried hill or anticline. The features 

of interest are the height of the hill from the highest 

adjoining valley. This height is called the closure ,since 

it represents the size of the container closed to normal 

horizontal movement. Typical heights are as low as 100 to 

300 feet and this distance is relatively small as compared 

to the lateral distances which can be several miles.2 
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Figure 1. Common .Anticlines 
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Figure 1 should not be considered to scale because the 

vertical scale has far less real distance per unit of the 

figure than the horizontal scale. The sides of the hill 

may have a slope of 100 to 200 feet per mile or an angle 

of 1 to 2 degrees with the horizontal, and usually, one 

side of the hill is steeper than the other. 

The actual nature of the gas reservoir is learned 

during the initial drilling period. The presence of the 

hydrocarbons testifies to the presence of a container and 

the quality of the caprock to hold fluids below it. 3 

The common elements of an underground storage reservoir 

are depicted in Figure 2, for the many natural hydrocarbon 

fuels. First, there is a structure under which gas may 

accumulate. Second, there is a container, a porous bed of 

rock into and out of which fluids may flow through wells. 

Third, there is a water filled caprock which prevents the 

stored fluid from rising vertically due to buoyant forces 

or from moving laterally to rise elsewhere. F.ourth, there 

is depth or overburden to allow storage to take place under 

pressure much above atmosphere. Fifth, the water is present 

to confine the stored fluid from all directions. Below the 

stored gas, water moves under a pressure gradient to make 

room for the stored gas while in the caprock it seals the 

tight rock from penetration by the gas phase. Depth is 

considered an element of importance since economical con-

sideration requires enough depth to permit sufficient fluid 

pressures to be used to get satisfactory stored quantities 
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into a given space and to readily move them into and out of 

a storage container.4 

In a free system, oil and gas float to the top of 

water, and so it is in the underground storage container. 

A storage reservoir caprock is needed to hold buoyant fluids 

at a given depth. 

The caprock must not only stop vertical movement, but 

it must be shaped to prevent lateral movement as well. The 

anticline or inverted saucer type of structure shown in the 

figure is common. The hill on the underground structure 

may be nonappearing on the surface of the earth .and so is 

only located through core drilling. 

The conception of underground storage containers 

generally starts with the pore space in the rock, structures 

for containing the buoyant fluids, characteristics of the 

caprock to hold gases below them and the quality of the 

rocks that allow gases to move through them.5 

All underground strata, whether unconsolidated solids 

like soils, or rocks like sandstones or limestones have 

some amount of pore space not occupied by the solid substance. 

For example, a pile of sand probably consists of 65 percent 

solids and 35 percent voids filled with air if the sand is 

dried. A brick may well have a porosity of 15 percent of 

its volume. The sandstone used for building garden walls 

may have a porosity of 15-20 percent. Sometimes underground 

layers are unconsolidated and may have porosities of 
6 25-40 percent. 
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Therefore, it is the porous rocks which serve as 

reservoirs for oil and gas deposits. Since. the pore space 

within the rock cannot be viewed directly, the porosity con

cepts come from indirect measurementso Figure 3 shows the 

two primary types of pores inside rocks~ Granular materials 

such as sand have pore spaces be tween the grains with 

porosities often in the range of 10-35 percent depending 

upon the range of size of grains in the sand mixe The 

mixing of several sizes of grains can reduce the porosity 

significantly. Limestones or dolomites may have solution 

channels and cavities known as vugs to enlarge the pore 

space above that found between the grains .. Matrix porosity 

with its fine pores may behave quite differently from the 

larger solution channels or cavities. When rocks are 

composed of very fine particles such as shales, often 

described as compressed and dehydrated clay, they will have 

very small pores. Their porosities may be from 6-12 percent 

and they will permit water to flow through them very slowly 

with a high pressure drop .. Other rocks which transmit 

single phase fluids slowly a.re low porosity (2-8 percent) 

limestones, dolomites, and anhydrates. If· one talces core 

specimens of such caprocks and cleans and dries them in the 

laboratory, they will permit gas to flow through them very 

slowly, but fast enough so that a continued flow through 

several acres could accumulate to a large quantity. There

fore, it is not the low permeability of a rock per se which 

is characteristic of a caprock, but the quality of not 
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permitting one substance ( oil or gas) to displace another 

substance such as water which characterizes it as the 

f . . 1 7 con 1n1ng eyer. 

The mental picture then of a ca.prock is a low 

permeability--low porosity rock filled with water and gas 

pressing from below at small menisci in the pores. Each 

rock has measurable characteristics of the gas pressure 

required for gas to force the meniscus to move. This 

threshold pressure measurement was devised to test caprock 

for gas storage reservoirso 11he fact is generally accepted 

that water within the caprock is the sealing force for 

confining the stored gas in either a natural source field 

or a gas reservoir. 

Walls of buildings made of a single tier of cement 

blocks have been observed to pass water in a driving rain. 

Just as natural rocks have capacity to hold volumes of 

substances in their pores, fluids can be made to flow 

through them, Water wells which draw water through porous 

beds to the well bore depend upon the permeability of the 

layer to pass water. In contrast to the low permeability 

needed for caprocks, the rock comprising the storage zone 

beneath the caprock must permit fluids to flow through it 

readily. The pressure drop required to cause the flow 

depends upon the quantity flowing per unit of cross section 

and, hence, is greatest at the well bore. Not only are the 

permeabilities of the storage zone needed to predict gas 

flow, they also are necessary in aquifer storage reservoirs 



15 

for predicting water movement rates when injected gas is 

displacing the native water from the formation. Consider-

able time is required to develop aquifer storage reservoirs 

and the orderly displacement of the water depends both on 

the pressure differential and the formation permeability. 

Because of the high viscosity of water relative to gas, its 

rate of travel under a given pressure drop is much slower 

than for gas. 

In gas and oil fields, the potential of the wells found 

in the development indicates the permeability of the rock. 

High open flow gas wells indicate that the producing 

formation is permeable and that injection withdrawal rates 

in storage operations can be high. For aquifer storage 

fields, core tests and water pumping rates permit predictions 
8 

to be made of the rock permeability as it is in the earth. 

Basic.ally there are two kinds of pressure to consider 

in underground strata: fluid pressures in the pores of the 

rocks and the overburden pressure ex.hi bi ted by the solids. 9 

The first of these, fluid pressure, is of primary importance 

in gas storage while the second, overburden pressures, has 

much to do with hydraulic fracturing. 

A static column of water (with a density of 1 gm/ml or 

62.4 pounds/cu ft) has a vertical pressure gradient of 

.433 pounds per square inch per foot of depth. An open 

well casing full of water to a depth of 2000 feet will have 

a bottom hole pressure of 2000 x .433 or 866 psi above the 

top hole pressure. Since the rocks which comprise the 
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surface of the earth are essentially water filled rocks 

through which the water exerts pressure gradients, wells 

completed at various depts will find fluid pressures 

similar to • 6 psi/foot. In some wells, lack of rock 

permeability may cause water to enter the borehole very 

slowly and the water pressure may appear to be much less. 

Also, there are some variations in earth fluid pressures 

due to dynamic hydraulic situations. The overburden 

pressures are those which represent the load represented 

by the rock between a given depth and the surface .. 

Given that the reservoir has an initial pressure then 

of Po, which is a combination of fluid and overburden 

pressure, any disturbance such as a drilled well will 

cause a pressure drop which varies with time as well as 

distance from the. disturbance. Because this pressure 

varies throughout the reservoir, any further disturbance, 

or any other wells drilled, will cause a change in this 

pressure gradient and consequently will effect a change in 

the performance of each well. 

Consider a ci.rcular reservoir of exterior radius re with 

a well radius of rw at its center. The initial reservoir 

pressure is Po and is uniform. 'l'he well is opened and 

produced at a constant rate. Figure 4 illustrates the 

nature of the unsteady state pressure behavior in the 

reservoir. The pressure transient moves out into the 

·reservoir toward the exterior boundary re. The plot of P2 

versus log of the radius is nearly linear near the well bore. 
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ln rw ln r 

Figure 4. Reservoir Pressure Behavior 
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Extrapolation of this linear portion to initial pressure 

Po2 introduces the concept of a "drainage radius," rd. The 

period of time O < t < t 3 is referred to as unsteady state 

and is a period when pressure varies with time at any given 

·t· 10 pos1 ion. 

If the exterior boundary is maintained at a constant 

pressure, Po, then shortly after time t 3 the well will 

stabilize at a constant flow rate and constant flowing 

bottom hole pressure. hven though pressure varies with 

position, it no longer changes with time and a steady state 

condition prevails. A permeability pinchout at re or the 

pressure of the neighboring wells in a pattern of well 

spacing 2re results in a closed or no flow boundary at r 8 • 

In this case, as in the earlier unsteady state position, 

pressure varies with time throughout the reservoir. 

However, theory and experience show that the rate of 

pressure decline is nearly independent of position. That 

is dP/dt is constant throughout the reservoir and a quasi-

steady state conditmon prevails. 

It·should be established that around the well bore 

where most of the pressure drop occurs, much of the gas is 

flowing through the sand as contrasted to a pressure 

depletion. 

The question of well deliverabilit.Y involves prediction 

of well performance under steady state or quasi-steady state 

conditions. Unfortunately though, well performance data 

are frequently obtained under unsteady state conditions. 



Thus the problem is to deduce from these unsteady state 

data the steady state well performance. 11 
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The procedure employed to treat gas fields in inter-

ference, i.e .. , more than one well per reservoir, entails 

the principle of superposition.
12 

Mathematically the super-

position theorem states that the linear combination of 

particular solutions to a linear and homogeneous differential 

equation is a solution to the differential equation. The 

superposition theorem is a useful tool for treating systems 

upon which involved boundary conditions are imposed. The 

general solution is the summation of the particular solu-

tions obtained by treating one boundary condition at a 

time. In this particular multi well per reservoir problem, 

the performance of multiple gas wells in a common acquifer 

or reservoir can be evaluated from the separate solutions 

obtained by dealing with one well at a time. In essence, 

if the pressure change associated with producing each and 

every well were computed individually (i.e., ignoring the 

presence of all gas wells but one) for a time instant, t, 

and at some arbitrary point in the reservoir system, then 

the total pressure change at this point and time instant 

is given by the sum of all individual changes. For that 

matter, the arbitrary point may well oe the effective center 

or any other appropriate point in a gas field and the time 

instant may represent some assigned future date at which it 

is desired to predict the oehavior of the system. 

For illustration, assume two wells A and B, located in 
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a common aquifer. Producing well A is accompanied by a 

pressure change in A and a relatively smaller pressure 

change in B. Similarly, producing well B is accompanied 

by simultaneous pressure changes in B and A. 

Let P Aa = pressure change in A due to A I s 

production, and 

PAb = pressure change in A due to B's 

production. 

And define similarly PBb and PBa~ Then the total 

pressure change in A: 

p A = p Aa + p Ab 

and the total pressure change in B: 

The pressure change terms depend on the rates of 

production and the physical characteristics of the system. 

The superposition principle demands the same assump

tions on the gas field. That is, it assumes homogeniety 

of matrix rock with regard to permeability, porosity and 

thickness; homogeniety of the gas; etc. It also assumes 

that in the case of aquifers, the compressibility coefficient 

which is defined as the sum of the water and the rock effec-

tive compressibilities is assumed constant and independent 

of the pressure. 13 

Aquifers are merely water oearing zones extending over 

distances of miles. Water may enter a sandstone at a high 

elevation and flow downwards toward an outcrop. The flow 

rates are usually slow in terms of a few feet of motion per 
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year. Many sandstone layers are overlain by impervious 

shales or other rocks of caprock qualities. When a closed 

structure with the sm1dstone capped by shale is found, gas 

can be injected and stored in the porous sand. This type 

of storage operation is described as aquifer storage in 

that gas displaces water in an aquifer. The water just 

moves away from the gas injection well by compressing the 

water into the formation as the pressure rises. 

Katz and Coats state that the development of aquifers 

into gas storage reservoirs includes the location of the 

underground structure and a determination of the quality 

of caprock. 
14 

To test the caprock, water is pumped into 

the porous media to find if a pressure differential across 

the caprock will cause water movement through it. Once a 

structure has been located and all signs point to an 

impermeable caprock, pilot gas injections are made to 

initiate the gas bubble and further test the caprock. Such 

gas injection involves gas pressures above the initial 

aquifer pressure to make the water move. Development of 

such a gas reservoir ready to serve a storage demand may 

well take two to four years to initiate and the project 

may increase in size over a period of ten years or more. 

Once the aquifer storage area is developed, it will 

operate like a normal gas field which has a comparable 

degree of water drive. Sometimes caprocks permit gas 

migration upward and gas is collected in shallower strata. 

Although every operator hopes the caprock for his aquifer 
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storage reservoir will not lea.le, it is possible to operate 

successfully when gas leaks through the caprock. Gas 

collected in upper strata can be allowed to accumulate and 

be produced in the winter time. Continuous recy'cling of 

leaked gas from an upper collection zone back to the storage 

zone is a mechanism of maintaining operation. 
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CHAPTER III 

EQUA'.l'IONS OP FLOW--SINGLE WELL RESERVOIRS 

Linear Programming Basics 

The flow of gas in reservoirs has been treated in 

li teraJ..ly hundreds of technical. papers over the past thirty 

years. A weal th of field data has been presented along with 

increasingly complex mathematical treatments. 1 The equa-

tions used in this paper have been selected as those perti-

nent to the steady state condition a~d then adapted, by 

various assumptions, to conform to the restrictions involved 

in linear programming. 

The basic problems solved by linear programming are 

those of maximizing or minimizing some linear objective 

function subject to one or more linear constraints. 2 In 

more general terms: 

subject to 

Maximize or Minimize 

n 

E = \ , C X · 
L m J 

j=1 

n 

2 aijxj 
j=1 

< b. 
l 

( 1 ) 

(2) 

where there are m such restrictions, and i truces the values 
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from i = 1 for the first restriction to i = m for the mth. 

Attached to these constraints is the nonnegativity require-

ment. That is: 

for all i .. (3) 

This states that none of the variables may be negative. 

For the two examples in this paper, the objective 

function and its constraints will be derived and the solution 

will be determined algebraically through the use of one of 

the library programs stored in the Oklahoma State University 

IBM 360 MOD 50 digital computer. One should bear in mind 

that the same examples may be solved graphically, providing 

that the number of variables does not exceed three, with 

the solution appearing at one of the corners of the convex 

set. 

Gas Properties and Assumptions 

Used In Models 

The properties of natural gas products stored in the 

earth are generally well known for use in engineering calcu-

lations. These properties include densities, viscosities, 

and effect of expansion on cooling and hydrate forming 

conditions. 

The density of a natural gas is treated by use of the 

gas law, including the compressibility factor: 

r ZW 
PV = ZnRT = 29G RT (4) 

where 

P = pressure, psia 
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V = volume, cu. ft. 

z ::: compressibility factor (dimensionless) 

n = pound moles 

!R = gas constant = 10.73 

T = absolute temperature, OR 

W - pom1ds 

G = gas gravity, molecular weight/29.0. 

When Equation (4) is written for a pound of fluid, W = 1 

and V becomes the specific volume, cu.ft./lb .. 

The viscosities of natural gases have been measured and 

found to be a function of the gas gravity. Charts for the 

viscosities of various gases as a function of temperature 

have been prepared and may be found in any handbook of 

natural gas engineering.3 

With regard to the flow of gases through porous media, 

the present state of knowledge is far from being fully 

developed. The difficulty lies in the non linearity of 

partial. differential equations which describe both real and 

ideal gas flow. The solutions which are available consist 

of approximate analytical solutions, graphical solutions, 

analogue solutions, and numerical solutions. 

The earliest attempt to solve this problem involved 

the method of successions of steady states proposed by 

Muskat. 4 Approximate analytical solutions were obtained 

by linearizing the flow equation for ideal gas to yield a 

diffusivity-type equation. Such solutions, though widely 

used and easy to apply to engineering problems are of 
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1 imi ted value because o:f idealized assumptions and restric-

tions imposed upon the flow equation. 

Numerical methods using finite· difference equations 

and di.gi tal computing techniques have been used extensively 

for solving both ideaJ. and real gas equations- The most 

important contribution to the theory of flow of ideal gases 

through porous media was the conclusion reached by 

Aronofsky and Jenkins that solutions for the liquid flow 

case could be used to generate approximate solutions for 

constant rate production of ideal gases. 5 

The mechru1ism of fluid flow through porous medium is 

governed by the physical properties of the matrix, geometry 

of flow, PVT (Pressure-Volume-Temperature) properties of 

the fluid and pressure distribution within the flow system. 

In deriving the majority of the flow equations and estab-

lishing the solutions, the following assumptions are made. 

The medium is homogeneous, the flowing gas is of constant 

composition and the flow is laminar m1d isothermaJ.. The 

equations of flow which will be used in this paper will be 

those derived by VanEverdingen and Hurst as applied to 
6 

Darcy's laws of permeability. 

Bottom hole pressures in gas wells must take into 

account the changing density with pressure but can be 

computed from well head pressures, gas properties, well 

temperature, and depth. 

The flowing pressure or the pressure drop during 

flow includes the static pressure (bottom hole pressure) 
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at the mean flowing pressure and temperature a.rid the friction 

loss of the fluid flowing in a pipe. 

For a given field with fixed well size~ well depth, 

well temperature, and gas gravity, it is possible to compute 

the static pressure gradient and the flowing gradients for a 

series of flow rates. In this way it is not necessary to go 

through the calculations of either static or flowing pressure 

gradient each time the value is desired. Figure 5 is such a 

chart for the Hersher-Mt. Simon reservoir based on well head 

conditions. 7 Such charts can be prepared based on bottom 

hole pressures to be used when converting flowing bottom hole 

pressure to flowing well head pressure. 

Generalized Model Equations 

1'he present method of representing permeabili t,y was 

established in 1935 by a scientist named Darcy in whose be

half the uni ts of permeability were credi ted--darcy and 

millidarcy. A cuoe of rock one centimeter on an edge that 

passes fluid of one centipoise viscosity (water at 68°F) 

between two faces at a rate of one cubic centimeter per 

second when the pressure drop is one atmosphere (14.7 psi) 

is said to have a permeability of a darcy. Since few 

formations used to store gas have permeabilities this high, 

the term millidarcy of 1/1000 of a darcy is generally used. 

Al though there is a tendency of increasing permeability 

with increased porosity, it is by no means universal. A 

porous medium can easily have a high porosity but have the 
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passage so circuitous or restricted that the permeability 

is very low. In many formations, the gas must flow into 

and out of the wells through the matrix rock.. In these 

cases, rock having a permeability for the storage zone as 

low as one millidarcy has a good chance of being marginal 

or unacceptable. Rocks with permeability of 100 millidarcy 

are usually quite acceptable for gas flow while permeabil-

ities above 1000 millidarcy or a darcy are excellent and 

quite rare. 

Darcy's law used in measuring permeability assumes the 

flow rate is proportional to pressure drop. The equation 

defining Darcy flow is: 8 

( 5) 

where: 

q :: flow rate, cu. cm./sec. 

k = millidarcy or .001 darcy 
"' 

A cross-sectional to flow, C. = area cm. 

µ = fluid viscosity, cen tipoise 

p = pressure, 1 b. per sq. in. absolute 

L = length of core, cm. 

Subscript 1 = at entrance to core 

Subscript 2 = at exit from core. 

At higher flow rates, the flow does not increase as rapidly 

as the pressure drop increases, and non darcy or turbulent 

flow is said to occur. The quadratic equation which repre

sents this flow through cores is: 



where 

dP 
- dL 

::iJ.. H2 
-· k + apv 

dP - dL = pressure drop per U..."1.i t length 

V = velocity 

p = fluid density 

f3 = turbulence factoro 

This equation with 13 = 0 can be integrated for steady 

state flow to relate flow rate and pressure drop as: 

Pe 2 Pw 2 1424 1r211e9 ln 
re 

- = -kh r w 

where: 

q = production rate, mcf/day 

k = permeability, md. 

h = reservoir thickness, ft. 

Pe = pressure at exterior radius of reservoir, 

psi a 

Pw = well pressure at well radius, rw, psia 

T = reservoir temperature, 0 R = 460 + °F 

µ = gas viscosity, cp 

re, 

Z = gas compressibility factor, average between 

Pe and Pw 

r
8 

= exterior reservoir radius, ft., a mean radius 

approximated L~ non-circular reservoirs 

rw = well radius, ft. 

31 

( 6) 

Va:i.~ Everdingen and Hurst then took Darcy's equations for 

flow and related the W1steady state well pressure to production 
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or injection ratE:i for flow of slightly compressible liquids. 

One of several cases that they considered was the variation 

of well pressure with time caused by production at a constant 

rate starting from a shut in condition of uniform pressure. 

The counterpart to their liquid flow solution for the case 

of gas flow is:9 

Po - Pw = q f(tD) 

where: 

Po = initial reservoir pressure, psi.a 

Pw = flowing well pressure at some later time, 

t, psia 

f(tD) = dimensionless pressure drop (influence 

function) 

tD = dimensionless time. 

(7) 

The dimensionless time, tD, describes how the well 

pressure Pw changes with time when the flow rate changes 

abruptly from O to a constant rate, q. Mathematii.cally, tD 

is defined as: 

t = .00633 kPt(days) 
D IJ qi rw 

where: 

= .000264 kPt(hrs) 
µ t rw 

P = mean pressure (psia) oetween Pw and Po 

t = fractional porosity. 

An. assumption implicit in Equation (7) is that the 

(8) 

drawdown Po - Pw is not large. 1rhe use of an average pressure 

Pin the definition of dimensionless time is valid only for 

a small drawdown. 
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If the dimensionless time happens to be. greater than 

100 the f(tD) may be approximated by: 10 

f(tD) = !(lntD + .809) • (9) 

This approximation is good for an infinite reservoir 

or for a finite reservoir before the pressure transient 

reaches the outer boundary. The restriction of tD>100 for 

validity of Equation (9) is of little concern in practice 

since a dimensionless time of 100 generally corresponds to 

a very small real time. 

Equation (7) represents the technology of flow through 

a porous media--the behavior of underground reservoirs. 

Physically, the equation describes an underground reservoir 

which contains gas at an initial pressure Po. At time 

t = 0, gas production commences frbm a well bore at a constant 

flow rate, q. This equation thus gives the flowing well 

pressure Pw at any later time, t. It is assumed also that 

the function f(tD) has been precalculated for discrete values 

of time, ti. Thus, the equation expresses a linear relation

ship between Pw and q. 

This equation of flow will first be applied as a 

acheduling problem of optimal gas withdrawal. from a combined 

system of wells wherein there exists only one well per 

reservoir as depicted in Figure 6. 

It will be assumed that each reservoir contains a 

single ideal gas in a homogenous porous medium under the 

influence of an infinite water drive. This assures a uniform 
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Res.# 1 Hes.# 2 Res.# 3 Res. # 4 

Trunk Pipeline 

Figure 6. Single Well--Multi Reservoir Schematic 



gas with a uniform reservoir pressure. 

The well schedule should result in maximum profit 

where the system is subject to certain restrictions. 

Equation (7) is superimposed to a general form to permit 
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variations in q for different lumped wells and for a series 

of time periods representing times of different demands. 

where: 

q .. i,J 

po. 
J 

t. 
1 

Pw-
J 

=Po. 
J 

i 

- \ L 
k::1 

( qk . - qk 1 . ) • f . ( t . - tk 1 ) ,J ~. ,J J J.. -
( 10) 

= average production rate of the jth reservoir 

during the ith time period 

= · · al of the J. th · origin pressure reservoir 

= a specified time 

= 11 f 11 
. . th . we pressure o we 1n J reservoir. 

This linear program is constructed on the basis that 

Pwj at some time, ti' and qi,j represent the unknown variables 

Hence, the well pressure can take on any value provided it 

does not go below some specified value, Dj at time ti. This 

then gives the first linear constraint 

( 11) 

where: 

j = 1,2,3, ••• , J • 

The next set of constraints is derived from the overall 

material balance of the system which merely states that the 

cumulative production cannot be greater than the reserves: 

I 

l qi,jtiti < Bj ( 12) 

i=1 
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where: 

tit- = t. - t. 1 1 1. 1.-

B, = the removable oil in place for the jth reservoir 
J 

j = 1,2,3, ••• , J. 

Next it is required that the production rate in any 

time period should not exceed the pipeline capacity, Ri 

J 

where: 

~t. = t. - t. 1 1. 1 1.-

\ L qi , j tit i < Ri 
j:1 

( 13) 

Ri = the flow of gas through the trunk pipeline in 

th . th t. . ' e 1. 1.me perioa. 

In periods of low demand, Ri may be reduced directly and 

considered to be the actual demand. 

The problem now becomes one of decifering from all of 

the sets of values of the q. J. which satisfy the constraints 1. , . 

(11), (12), (13), that particular set for which the profit 

is the largest. That is, the equation to maximize is: 

J I 
\ \ 

a· -d. -At· (14) l' = l L •1.,J 1.,J . J. 
j=1 i:::::1 

where profit is defined to include all economic factors 

that are involved in producing and selling the gas to a 

pipeline facility. All of the economic factors pertaining 

to revenues and expenses are contained in the profitability 

index, di,j• The profit function 'f has the dimension of 

dollars and it represents the total profit over the entire 

lifetime of the project. 
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Summarizing, the generalized model for the single well 

per reservoir problem at any time t is represented by the 

following linear program: 

1t' = 

Objective function: 

J 
\ 
L 

j=1 

subject to these constraints 
i 

D j < Po j - l ( qk, j - qk-1 , j) • f j ( ti - tk-1) 
k=1 

J 

' l 
j=1 

A Numerical. Example 

As an example, consider the following situation. 

Located in each of two reservoirs is a single well. For 

each reservoir arbitrary values are assigned for permeability, 

viscosity, outer radius, initial pressure, etc. It will also 

be assumed that all of the reservoir parameters will remain 

constant throughout the time period being considered. The 

well pressures (in both reservoirs) are not allowed to go 

below some arbitrary value, such as 1 atmosphere. Thus, 

there are four constraints on the production rates, q. J. (one 
1, 

for each of two reservoirs for each of two time periods). 

The set of four inequalities are: 
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Pw1 ( t 1 ) Z D1 where D1 = 1 atm. ( 15) 

I>w2 ( t 1 ) Z D2 where D2 = 1 atm. ( 16) 

Pw1 ( t 2 ) ~ D1 where D1 = 1 atm. ( 17) 

Pw2(t2 ) > D2 where D2 = 1 atm. ( 18) 

Since the right hand of Equation (10) can be substituted 

for the Pwj of Equation (11): 

14.7 = 1 atm ~ Po 1 - [(q1 , 1 -q0 , 1 ) • f 1 (t1 -t0 )J 

for ( i = 1 j = 1) ( 19) 

14.7 = 1 atm ~ Po 2 - ~(q1 , 2 -q0 , 2 ) •f2(t1 - t 0 )] 

for (i=1 j=2) (20) 

14.7 = 1 atm ~ Po 1 - [ < q 1 1 - qo 1 ) • f 1 < t1 - to) , , 
+ (q2,1 -q1,1)·f1(t2-t1)J 

for (i = 2 j = 1) (21) 

14.7 = 1 atm ~ Po2 - [ < q 1 , 2 - qo, 2 > • r 2 < t 1 - to) 

+ (q2,2-q1 ,2)·f2(t2- t1)J 

for (i = 2 j = 2) . ( 22) 

1rhese above four inequalities constrain the individual 

reservoir production rates. It will be remembered that 

initial flow values are zero as are t 0 •s. Therefore, the 

equations of constraint reduce to 

14.7 ~ Po 2 -[(q1 , 2 )•f2(t1 )] (24) 

14.7 ~Po 1 -[(q11 )•f1(t1)+(q21 -q1 1 )•f1(t2 -t1 )J (25) , , ' 
14.7 ~ Po2-[(q1,2)·f2(t1) +(q2,2-q1,2)·f2(t2-t1)J • (26) 
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Let it be assumed for the example: 

Reservoir 1 Reservoir 2 

Po 1 = 1000 psi a Po 2 = 1200 psia. 

k1 = 20 md. k2 = 25 md. 

µ1 = .015 cp. 1J2 = .017 cp. 

t1 = • 12 fractional porosity t2 = • 14 fractional porosity 

rw = • 25 ft. rw = .25 ft .. 
1 2 

From Van Everdingen and Hurst's equations for 

dimensionless time tD, Equation (8), it follows that for 

time periods of one year where t 0 = 0, t 1 = 1 yr., t 2 = 2 yrs: 

For reservoir# 1: 

t, = .00633 kP~(days) 
µtrw 

= .00633(20 md)(1000 psia)(J65 days) 
(.015 cp)(.12)(.0625 ft2) 

= 41.1 X 107 

t
2 

= .00633(20 md)(1000 psia)(730 days) 
(.015 cp)(.12)(.0625 ft 2) 

= 82.2 X 107 

For reservoir# 2: 

.00633 kPt(days) 
t1 = -- 2- - -

µtrw 

= • 00633( 25 md) ( 1200 psia)( 365 days). 
(0.17 cp)(.14)(.0625 ft2) 

= 46.6 X 107 



t
2 

= .00633(25 md)(1200 psia)(730,days) 
(.017 cp)(.14)(.0625 ft2)_ 

= 93.2 X 107 
• 
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Solving for the respective influence functions from 

Equation (9) since tD > 100: 

f1(t1) = i(ln 41.1 X 107 + .809) 

= 10.32 

f 1(t2) = i(ln 46.6 x 107 + .809) 

= 10.38 

7 f 2(t1) = i(ln 46.6 x 10 + .809) 

= ·10. 38 

f1(t2-t1) = f1(82.2 X 107 - 41.1 X 107) 

= i(ln 41.1 X 107 + .809) 

= 10.32 

f2Ct2-t1) = f2(93.2 x 107 - 46.6 x 107) 

= }(ln 46.6 X 107 + .809) 

= 10.38 

Substituting these values into the above four constraint 

equations, Equations (23), (24), (25), and (26) yield: 

14.7 ~ 1000 - [q1,1<10.32)] 

14.7 ~ 1200 - [q1,2<10.38)] 

(27) 

(28) 
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14.7 ~ 1000 - [q1 1(10.32) + (q2 1-q, ,><10.32)] (29) ' , , 
14.7 ~ 1200 - [q, ,2< 10.38) + (q2,2-q1 ,2>< 10.38)]. (30) 

Rearranging: 

14.7 ~ 1000 - 10.32 q 1 1 ( 27a) , 
14.7 ~ 1200 - 10.38 q 1, 2 ( 28a) 

14.7 ~ 1000 - 10.32 q2, 1 ( 29a) 

14.7 .':; 1200 - 10.38 q2,2 • ( JOa) 

The material balance constrain ts from Equation ( 12) yield: 

Assume for this example that: 

B1 = 60 x 106 ftJ 

B2 = 70 x 10 6 ftJ 

and since t 0 = O, substitution gives: 

q 1 , 1 ( 4 1 • 1 X 10 7 ) + q 2 , 1 ( 4 1 • 1 X 10?) ~ 60 X 10 
6 () 1 ) 

q1, 2 (46.6 X 107 ) +q 2 , 2 (46.6 X 107 ) .':;70 X 10
6 

• (J2) 

The final constraints are for the production rates. From 

Equation ( 1 3 ) : 



Assume: 

Substitution gives: 

R1 = 100,000 ft3/day 

R2 = 200,000 ft3/day. 
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q 1 , 1 ( 4 1 • 1 X 10 7 ) + q 1 , 2 ( 46 • 6 X 10 7 ) ~ 100,000 ( )3) 

7 7 q 2 , 1 (41.1 X 10 ) + q2 , 2(46.6 X 10 ) _s200,000 • (34) 

In sum, the number of constraints altogether are IJ +I+ J, 

or in this case 2(2) + 2 + 2 = 8 constraint equations~ They 

are in order of derivation 

14.7 ~ 1000 - 10. 32 q 1 1 (27a) , 
14.7 ~ 1200 - 10.38 q1, 2 ( 28a) 

14.7 ~ 1000 - 10.32 q2, 1 ( 29a) 

14.7 ~ 1200 - 10.38 q2,2 (30a) 

r 

X 107 X 107 60 X 10° > 41. 1 q1 1 + 41.1 q2, 1 (31) , 
70 X 

6 107 46.6 X 107 (32) 10 Z 46.6 X q1,2 + q2,2 

100,000,241.1 X 107 
q1 1 , + 56.6 X 107 

q1,2 (33) 

200,000 ~ 41.1 X 107 
q2, 1 + 46.6 X 107 

q2,2 • (34) 

The problem now is to find from all the sets of values 

of q which satisfy the above constraints that particular i,j 

set for which the profit is the largest •. That is, one must 

maximize Equation (14): 

+ q1,2d1,2<t1 - to) 

+ q2,2d2,2<t2 - t1) • 
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The following table represents the assumed profit per 

ft3 of gas from the two sources over the two time periods. 

In any practical application of this work, a careful 

economic study would have to be made in order to estimate 

unit profits for time periods in the future. 

Reservoir d .. = $/ft3 
1,J 

Time 1 2 
= potential 

1 .00010 .00013 profit 
2 .00017 .00018 

Substituting these values gives the profit equation 

'f = q 1 1 ( • 00010) ( 4 1 • 1 X 10?) + q 2 1 ( • 0001 J) ( 4 1 • 1 X 10?) , , 

4 4 · 4 
'f = 4.1 x10 q 1 , 1 +5.)3 x10 q 2 , 1 +7.91 x10 q 1 , 2 

+8.39x104 
q2,2 (35) 

or the equation to be maximized subject to the constraints 

(27a)-(34). 

The algebraic solution of this model will contain the 

production rate for each of the two wells for each time 

period. More numerous reservoirs would not involve any new 

general equations, however, the constraint equations would 

become more complicated, as well as the objective function. 

The actual numerical solution obtained from the IBM 360 MOD 50 

computer and an analysis of the results appears in Appendix c. 
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CHAP'rER IV 

EQUATIONS OF FLOW--MULTI WELL RESERVOIRS 

Generalized Model Equations 

The first model in Chapter III is quite limited even 

without considering the required assumptions as homogenous 

gas, etc., for very seldom is only one well used per field. 

Consequently, the logical extension of the model would be 

to consider reservoirs that contain two or more wells. 

Accordingly, one must then re-examine the derived relations 

between well pressures and flow rate; that is, the in-

fluence function. 

Figure 7 depicts a reservoir with two wells 1 and m. 

Since the pressure decline in each well is influenced by 

the production in the other well, a generalized influence 

function will be introduced to describe the interaction. 

When developed, it will be assumed that the same generalized 

function will be applicable for any number of wells. 

Writing the single well influence function for the 1th 

well in ·the j th reservoir: 

where 

Po. - Pw .. 1 (t.) = q .. 1f. 1 (t.) J 1,J, 1 1,J, J, 1 

Po-= the original pressure in the jth reservoir 
J 
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(36) 



Figure 7. Single Reservoir-
Multi Well Schematic 
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Pw. - l l,J, 

q .. 1 
1, J , 
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th 11 . th .th t· . d = e we pressure ir1 e 1 ime per10 , 

the jth reservoir and the 1th well 

= a constant flow rate in the jth reservoir 

and the 1th well 

f. 1 ( t.) = the influence function. J, 1 

The generalized influence function will then be of 

the form: 

Po- - Pw- . 1 (t.) = q .. g. 1 (t.) (37) J 1,J, 1 1,J,m.J, ,m 1 

or, rearranging: 

where 

Po - - Pw - - 1 ( t ·) J 1,J, 1 :g. l (t.) 
qi,j,m J, ,m i 

qi,j,m = the constant flow rate at well m 

g.l (t.)= J, ,m 1 
the general influence function. For the 

ith time period and the jth reservoir, 

it expresses the partial pressure in the 

1th well due to a constant flow rate in 

well m. 

This might be understood more easily if the equation were 

written: 

Pw. . 1 ( t. ) = Po . - q. - g . 1 ( t · ) • ( 38) 1,J, 1 J 1,J,m J, ,m 1 

And then re-written for the effects of the flow from the 

well 1 on well m: 

where: 

Pwi,j,m(ti) = well pressure in the ith time period, the 
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jth reservoir and the mth well 

q .. 1 = const~t flow rate at well 1 1,J, 
g. 1 (t.) = the general influence function for the J ,m, 1 

1. th ti· me · d t· · th · · t per10 , rle J reservoir; 1 

expresses the partial pressure in the 
th m well due to a constant flow rate 

at the 1th well. 

Equations (38) and (39) will be combined through super

position as described in Chapter II to yield Equation (40). 

'rhis equation represents the well pressure in all wells, 

all reservoirs, all time periods, and for any arbitrary 

flow rates. A typical example is depicted in Figure 8. 

The equation representing the multi well reservoir is: 

f{l. . 
J 1 

Pwi,j,l =Poj - l l [(qk,j,m -qk-1,j,m)gj,l,m(ti -tk-1)] • 
m=1 k=1 

(40) 

Figure 8 shows several reservoirs, j = 1 , 2, 3, ••• , J 
I 

and within each reservoir, several wells, 1 = 1,2,3, ••• , M 

are producing gas. It will be assumed that each reservoir 

has its own pipeline gathering system which feeds into its 

own trunk pipeline. The trunk pipelines merge into a major 

transportation link which transports the gas to a refinery 

or final destination. 

The dimensionless time, tD, will again be defined at 

t. or the dimensionless time t .• From the first model: 
1 1 



Res # 1 

j = 1 

All Distances 
Between Wells 
Equals 5 miles 

Res# 2 

j = 2 
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Gathering 
System 

Major Transportation Link 

FitS,ru.re 8. Multi Well--Mul ti Reservoir Schematic 



= .00633 kPt(days) 
tD µtrw 

where: 

= .000264 kPt(hrs) 
µtrw 

P = mean pressure (psia) between Pw and Po 

~ = fraction porosity 

µ = gas viscosity, cp. 

k = permeability, md. 

rw = well radius, ft. 

t = time (hrs or days). 
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( 41) 

Again, it will be assumed that the drawdown pressure, 

Po - Pw is not large. J. s. Aronofsky and A. s. Lee have 

determined that the influence function for interference 
1 may be approximated by: 

g. 1 (t.) = i[ln ~t - .57722] 
J, ,m 1 r 

(42) 

for 

where: 

4t 
2 

r l ,m 

l ,m 

> 2000 

r = the well spacing oe tween two wells defined as l,m 

the ratio: 

distance between the two well centers 
well drawdown radius • 

'.!!his approximation is good for an infinite reservoir with 

constfmt pressure Po. 

The constraints to the model are much similar to those 

of the single well per reservoir model. More specifically: 

Equation (43) requires that the well pressure must always 
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be larger than a stated constant. 

Pw .. l > n. where i = 1 , 2, • 0 • , I 1,J, J 

j = 1 , 2, ... ' J 

1 = 1 , 2, ••• 7 M (43) 

Equation (44) requires that the cummulative production 

from all wells in a reservoir over the entire time period 

cannot exceed the recoverable reserves for that reservoir. 
M. 

J I ,· 
I l, [q .. 

1
tit,] < BJ. 

l., J' l. 
where j = 1,2, ••• , J. 

l= 1 i= 1 (44) 

Equation (45) states that all the production from one 

reservoir should not exceed in any one time period, the 

capacity of that particular trunk pipeline: 
lVl . 

J 

\L[q. · 1tit.J 1,J, J. 
< R· . where i = J. , J 

1=1 
j = 

1 , 2, ... ' I 

1 , 2, . . . , J 

Equation (46) requires that the flow from all the 

• 

(45) 

trunk pipelines must not be greater than the capacity of the 

major transportation link. This equation also acts to 

cover varying demands. .All that is required is to change 

wi for different demands. 

J M. 
J 

\ I [q .. 16t.J l < w. where 
' J.,J, l. - l. 

j:1 1=1 
i=1,2, ••• ,I. 

(46) 

Finally, Equation (47) is the functional that must be 

maximized: 
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I 

\ [(q .. 1 At.)d. · 1 ] L 1.,J, 1 i,J, (47) 

i=1 

This model now enables one to consider multi well 

models that permit interactions oetween wells. The dis-

advantage is that the new linear program contains more 

inequalities than previously, specifically (I•J•M+I•J+I+J) 

restraints. However, in many cases, this model will be 

still of tractable size. 

Again, this model will only be valid for wells that 

have been drilled; that is, a completely developed field. 

In summary, the model will be to maximize Equation (47) 

subject to the constraint Equations (43), (44), (45), and 

(46). 

A Numerical Example 

To demonstrate the versatility of this model, an 

example problem will now be solved based on the developed 

field depicted in Figure 8. For simplicity, only one time 

period will be considered with its own demand. Likewise, 

as shown, only two reservoirs will be used with three wells 

in the first and two in the second. 

First, from Equation (43), the following constraints 

are enumerated: 

Pw1 1 1 > D1 ) , , 
Pw1 1 2 > D1 j = 1 

> 
, , 

Pw1 1 3 > D1 t = 1 
' , 

Pw1 2 1 > D2 > ' , j = 2 
Pw1 2 " > D2 , '' 
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As oefore, these inequalities can be incorporated into 

Equation (40) as follows 

For j = 1: 

D 1 ~ po 1 - l [ ( q 1 1 1 - q{) 1 1 ) g 1 1 1 ( t 1 - to ) ] , , , , , , 
+ [ < q 1 , 1 , 2 - qo, 1 , 2) g 1 , 1 , 2 < t 1 - to) J 

+ [ ( q 1 , 1 , J - qo ; 1 , 3) g 1 , 1 , 3 < t 1 - to> J J 

which reduces to: (since qo,j,l and t 0 = 0) 

D1 .!:: Po1 - ([(q1,1,1)g1,1,1(t1)J +[(q1,1,2)g1,1,2(t1)J 

+ [(q1,1,3)g1,1,3<t1)J} (48) 

+ [Cq1,1,2 - qo,1,2>g1,2,2<t1 - to)J 

+ [(q1,1,3 - qo,1,3>g1,2,3<t1 - to)JJ 

which reduces to 

D1 ~ Po1 - ([(q1 1 1)g1 2 1<t1)J +[(q1 1 ?)g1 2 2<t1)J , , , , , ,._ , , 
+ [(q1,1,3>g1,2,3<t1)J} (49) 

D1 ~ Po 1 - ([ (q1 1 1 -, , qo 1 1>g1 3 1<t1 -, , , , to) J 

+ [ (q1 1 2 -, , qo , 1 , 2 ) g 1 , 3 , 2 ( t 1 - to) J 

+ [(q1,1,3 - qo , 1 , 3 ) g 1 , 3 , 3 < t 1 - to)JJ 

which reduces to: 

D1 ~Po1 - ([(q1,1,1)g1,3,1(t1)J+[(q1,1,2)g1,J,2(t1)J 

+ [(q1,1,3>g1,3,3<t1)J (50) 
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For j = 2: 

D2 ~ Po2 - l[(q1 2 1 - qo 2 1)g2 1 1<t, - to)J , ' , , , , 
+ [ < q 1 , 2 , 2 - qo , 2 , 2) g 2 ~- ·1 , 2 < t 1 - to) J l 

which reduces to 

D 2 ~ p O 2 - l [ ( q 1 , 2 , 1 - qO , 2 , 1 ) g 2 , 2 , 1 ( t 1 - t O ) ] 

+ [(q1,2,2 - qo,2,2>g2,2,2<t1 - to)JJ 

which reduces to 

Evaluating the dimensionless time for each reservoir using 

the following measured data and Equation (41) 

Po 1 

k1 

u1 

11 

r 
W1 

For 

Reservoir 1 Reservoir 2 

= 1000 psia Po 2 = 1200 psi a 

= 20 md k2 = 25 md 

= .015 cp µ2 = .017 cp 

= • 12 fractional porosity '2 = • 14 fractional 

= .25 ft r = w2 
.25 ft 

reservoir 1 

t
1 

= .00633(20 md)(1000 psi)(365 days) 
(.015 cp)(.12)(.0675 ft 2) 

= 41.1 X 107 

porosity 



For reservoir 2 

t
1 

= .00633(25 md)(1200 psi)(365 d§,Ys) 

(.015 cp)(.12)(.0675 ft2) 

= 46.6 X 107 

Assume that the well spacing is given as that in 

Figure 8. From Equation (42): 

r1 1 , 
r1,2 

r1, 3 

r2, 1 

r2,2 

r2,3 

r3, 1 

r3,2 

r3,3 

Distance= 5 miles= 26,400 ft 

Well drawdown' radius= 1055 ft 

Reservoir 1 Reservoir 

= 0 r1 1 = 0 , 
= 26~400 

1 55 = 250 r1,2 = 250 

= 250 r2, 1 = 250 

= 250 r2,2 = 0 

= 0 

= 250 

= 250 

= 250 

= 0 

2 

Consequently, the respective influence functions 

will be: 

g1, 1, 2 = g1 , 1 , 3 = g1 , 2, 1 = g1 , 2, 3 = g1 , 3, 1 = g1 , 3, 2 

= i[ln 4(41.1 X 

(250) 2 
107) - .57722] 

55 



g2,1,2 

= !(10.17732 - .57722] 

= 4.80005 

= g2,2,1 

= t[ln 4~46.6 X 

(250) 2 
107) -

= ![10.30226 - .57722] 

= 4.86252 

.57722] 

Let it be assumed that D1 = n2 ~ 1 atm = 14.7 psi. 

56 

Substi tu.ting these values into Equations (48), (49), (50), 

(51), and (52) yields 

or 

14.7 ~ 1000 - [4.80 q1 1 2 + 4.80 q1 1 3
J • (48a) 

, ' ' , 
Similarly: 

14.7 < 1000 - [4.80 q 1 1 - 1 + 4.80 q1 1 3] (49a) , , ' , 
14.7 _::: 1000 - [4.80 q1,1,1 + 4.80 q1,1,2J ( 50a) 

14.7 _::: 1200 - [4.86 q1 ,2,2] ( 51 a) 

14.7.::: 1200 - [4.86 q1,2,.1J . (52a) 

The next constraint from Equation (44) assuming that 

B1 = 60 X 108 ft3 and B2 = 70 x 108 
ft3 yields 
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(53) 

(54) 

Substitution gives 

7 7 41.1 X 10 q 1 1 1 + 41.1 X 10 q1 1 2 ' , , ' 

1 1 107 60 X 108 
+ 4 • X q1,1,J 5; ( 53a) 

46.6 X 107 46 6 107 70 10
8 

(54) q1 ,2, 1 + • X q1 ,2,2 5;; X • a 

From Equation (45) assuming that 

R1 1 = 500,000 ft3/day 
' 

and R1 , 2 = 300,000 ft3/day 

the next constraints are: 

(55) 

( 56) 

Substitution yields: 

7 7 41.1 X 10 q 1 1 1 + 41.1 X 10 q1 1 2 , , , , 

+ 41.1 X 107 < q1,1,3 500,000 (55a) 

46.6 X 107 q 1 , 2 , 1 + 46.6 X 107 q 1 , 2 , 2 ~300,000 • (56a) 

One should note that Equations (55a) and (56a) resemble 

Equations ( 53a) and ( 54a). Such would not be the case if 

more than one time period were considered. 
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The final constraint comes from Equation (46). That 

is: 

(57) 

For this example assume that w1 = 600,000 ft3/day. 

Substitution gives: 

41.1 X 107 q 1 1 1 + 41.1 X 107 q 1 1 2 + 41.1 X 107 q1 1 J , , ' , , , 

+ 46.6 X 107 q1 , 2 , 1 + 46.6 X 107 q 1 , 2 , 2 < 600,000 • 

( 57a) 

The functional. to be maximized comes from Equation (47) 

• 

The following table represents the profit in $/ft3• 

Such information would again come from an economic study and 

would probably vary over different time periods. It must be 

remembered that this model represents only one time period 

and as a result, the profit table will only consider that 

time period. 

Heservoir 
1 2 

1 .00010 .00013 d .. = $/ft3 

! 
i,J 

Wells 2 ! .00012 .00010 

3 .00011 
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Substituting these values for profit into the profit 

function, yields the functional to be maximized: 

'f = q 1 1 1 ( 4 1 • 1 X 10 7 ) ( • 0001 0) + q 1 1 2 ( 4 1 • 1 X 1 0 7 ) ( • 0001 2) 
, ' ' ' ' 

7 + q 1 , 2 , 2 (46.6 X 10 ) (.00010) (58) 

which reduces to 

'i' = 41.1 x103 q 1 1 1 + 49.3x103 q 1 1 2 + 45.2x103 q 1 1 3 ' , ' , , , 

+ 60 • 6 X 1 0) q 1 , 2 1 1 + 4 6 • 6 X 1 0 J q 1 , 2 , 2 • ( 58a) 

Reviewing, the linear programming model for the multi well 

reservoir problem consists of: 

'f (max) = 4 1 • 1 x 10 3 q 1 , 1 , 1 + 4 9. J x 10 
3 q 1 , 1 , 2 + 4 5. 2 x 10 

3 q 1 , 1 , 3 

+60.6x10 3 q 1 , 2 , 1 +46.6 x103 q 1 , 2, 2 ( 58a) 

1000 - [4.80 q1 1 2 + 4.80 q1 1 3] > 14.7 , , , , (48a) 

1000 - [4.80 q1,1,1 + 4.80 q1,1,3J > 14.7 (49a) 

1000 - [4.80 q1 1 1 + 4.80 q1 1 2] > 14.7 , , , , ( 50a) 

1200 - [4.86 q1 ,2,2] > 14.7 ( 51 a) 

1200 - [4.86 q1 2 1] > 14.7 , , ( 52a) 

7 7 41.1 x10 q 1 1 1 +41.1 x10 q1,1,2 , , 
7 + 41.1 x10 q 1 , 1 ,

3 
< 60 X 108 ( 53a) 



41.1 X 107 q 1 1 1 + 41.1 x107 q1 1 2 , , , ' 
7 + 4 1. 1 X 1 0 q 1 1 J _:5 500 , 000 , , 

46.6x107 q 1 , 2 , 1 + 46.6x1o7 
q 1 , 212 ~ J00,000 

7 . 7 
41.1 x10 q 1 1 1 + 41.1 x10 q 1 1 2 , ' ' , 

+41.1 x107 q 1 , 1 , 3 + 46.6 x1o 7 
q 1 , 2 , 1 

+ 4 6 • 6 X 10 7 
q 1 , 2 , 2 ~ 600,000 

60 

( 54a) 

( 55a) 

( 56a) 

( 57a) 

One should recognize that the answer will contain the 

flow rates for five wells for only one time period. For a 

computer solution of this multi well reservoir example, 

the reader is referred to Appendix C where the numerical 

results are given and analyzed. 



FOOTNOTES 

1 J. s. Aronofsky and A. s. Lee, 11 A Linear Programming 
Model for Scheduling Crude Oil Production," Journal of 
Petroleum Technology ( 1958), p. 53. 

2Hager, Chapter II. 

3Sell, Chapters I, II, III. 
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CHAP'rER V 

CONCLUSION 

'rhis paper has attempted to discuss one particular 

petroleum industry problem, optimization of gas withdrawal 

rates from single well reservoirs and multi well reservoirs, 

and to indicate how linear programming can be used to solve 

it. There can be no doubt that linear programming has 

made a place for itself in the petroleum industry, part~cu

larly in the manufacturing phase. It is beginning to be 

appreciated by management as an important help in making 

complicated decisions. It should be pointed out that the 

successful application of linear programming to practical 

problems has been made possible by the recent advent of 

large, high speed computers and by the existence of an 

efficient linear programming code. If digital computers were 

nonexistent, the answers wou1d be many years too late. 
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APPENDIX A 

* PETROLEUM BASICS 

Al though the petrolewn industry as it is known today 

is only a century old and started with the first bore hole 

drilled in 1859, the crude material was known and put to 

some use long before the Christian era. In those distant 

times the main use of the oil which seeped to the surface 

appears to have been as a waterproofing material or as a 

mortar in building construction. The "pitch" used by Noah 

to caulk the ark was probably an inspissated petroleum 

gathered from the shores of the Dead Sea. Also, the "slime" 

which upset calculations in the building of the Tower of 

Babel is referred to in some translations of the Bible as 
"bitumen" and it is recorded that in building the walls of 

Babylon use was made of bitumen. As well as bitumen, there 

are many references in history to the presence of natural 

gas, a companion to oil, in the ea~th. The famous Fire 

Worshippers' Temple at Baku, in the Caucasus, is one example, 

the temple being erected over a gas seepage. People traveled 

long distances to worship at the "eternal fires." Likewise, 

* 'l1he following is primarily a sum~a:rv of information 
found in the books by Hager ,md Sell.J ,J2 
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at Baba Gurgur, in Iraq and in the,Kirkuk oilfield, there 

still bums the gas of the "fiery furnace'' int~ which 

Shadrach and Meshach and.Abed-nego were cast. 

The word 11 petroleum" is derived from the Latin petra 

(rock) and oleum (oil) and by the modern definitions of 

today includes hydrocarbons found in the ground in various 

forms from the solid bitumen through the normal liquids, to 

gases. The largest and most important deposits are in the 

form of liquid crude petroleum, although considerable and 

increasing quantities of natural gas are being produced. 

The actual origin of petroleum is a much debated and 

postulated subject ruid as of yet, it cannot be said that 

the problem has Deen resolved to the complete satisfaction 

of all the theorists. However, at the present, it is 

generally accepted that it is derived primarily from 

organisms and plrui t life which have oeen buried in the 

earth by the deposition of sediments. Among the theories 

advanced to account for the transformation of these organic 

materials to petroleum are the effects of heat, of pressure, 

of time, or of combinations of these, bacterial action, of 

low temperature catalysts, or of radio activity. There is 

also the suggestion that the oil is not formed in the sedi

ments, but is released there, having already been produced 

in the living organism. 

'rhe search for petrolewn deposits in the earth no 

longer relies upon the chance discovery of a surface seepage 

of oil as an indicator of the possibility of a commercial 
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deposit existing at depth. Today, the geologist no longer 

has to wildcat his wells where the vehicle carrying the 

equipment broke down. In his turn, the geophysicist.finds 

that the instruments and techniques available to him are 

infinitely more precise and reliable than those used by his 

predecessor. No longer does an impenatrable forest or 

water present an obstacle to him. 

The essential ingredients for the genesis of oil are 

first, a shallow water area in which the original organic 

material could have been laid down in sufficient quantity, 

and secondly, that the dead organisms should have been 

buried by deposition of sedimentary material. The most 

common source rocks are believed to be shales and clays, 

but it is possible that limestones may also be a source rock. 

The sedimentary rocks in which the oil is found range 

in geological age from the pre-Cambrian to the Pleistocene, 

and the source rocks may have a similar age range, the 

composition of crude oil varying according to differences 

in the original substances and to variations in the conditions 

under which those substances have been transformed. Normally, 

a source rock will yield only comparatively small amounts of 

petroleum and some process of concentration is provided by 

migration of the oil from the source rock to a suitable 

reservoir rock. This migration occurs in two phases, 

primary W1d secondary. 

Primary migration, that is, the transfer of hydro

carbons from the source rock to the reservoir rock is most 
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probably due to the compaction of the source rock as it is 

buried deeper by subsequent sediments. Compaction squeezes 

fluids, mainly water, out of the rocks, generally upwards 

and in this process, oil and gas are transferred to the 

reservoir rock. In the reservoir rock secondary migration 

takes place. The oil from the source rock will contain 

varying proportions of dissolved gas. Wnen there is more 

gas than can be dissolved in the oil, the free gas will rise 

to the top of the reservoir to form a gas cap. 

The two principle requisites of a reservoir rock to make 

it suitable for the accwnulation of petroleum are porosity 

and permeability. There must be sufficient amou.,.'1.ts of pore 

space to hold a reasonable quantity of fluid and the pores 

must be interconnected, and of suitable size to make the 

rock relatively permeable, in order that the fluids or 

gases can readily flow in it. Most reservoir rocks are the 

coarse grained sedimentaries such as sandstones, limestones, 

dolomites, etc. 

For oil and gas to accumulate in the reservoir rock, 

some form of seal is necessary to prevent them from passing 

out of the reservoir. 'rhis seal is normally an. impervious 

caprock overlying the reservoir and of such shape as will 

prevent the upward escape of oil or gas. 

The actual distribution of oil and gas and water in a 

reservoir rock depends upon their densities, on the physical 

conditions, rmd on the details of the rock itself. Thus, 

in a reservoir rock of uniform properties, the upper zone 
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will be filled with a gas, the middle zone by oil with some 

gas in sol u ti.on, and below this will be water. The thick-

ness of the transitions between zones will depend on the 

physical properties of the fluio.s .and, in .those where the 

gas is completely in solution in the oil, there will be no 
.•'. 

gas zone. Where no oil is present, the gas will lie directly 

over the water. 

The oil containing layer may be of any thickness, from 

a few inches to possibly hundreds of feet, and in area may 

extend over many square miles. In any vertical sequence 

there may be several oil horizons separated by layers of 

unproductive beds of varying thickness. Thus an oil field 

may consist of several horizons from which oil may be pro-

duced separately or simtutaneously and the petroleums from 

different horizons may vary considerably in characteristics. 

After the deposition of the source and reservoir rocks, 

the earth's movements caused these beds to become folded 

or faulted, and in some cases, led to their partial destruc-

tion. Thus traps were formed in which oil and gas could be 

accumulated in addition to thGse created directly during the 

course of deposition. One of the most common forms of a 

trap is that known as the anticline in which the rocks are 

folded archwise with the limbs dipping away on either side 

from the crest. A symmetrical anticline has equal dips 

on both sides. 'I'his rarely occurs in nature and more often 

thw1 not, an anticline is asymmetrical with the limbs 

dipping at unequal angles. 
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Still another frequent type of structural trap is a 

dome, a type of fold in which the beds dip downwards in all 

directions from the central crest~ Where the rocks have 

been faulted, this movement may result in a reservoir rock 

on one side of the fault plane being brought against an 

impervious bed on the other. The trap so formed is called 

a fault trap. 

The preliminary work in locating a possible oil field 

is to examine the surface evidence which may be available$ 

This may include gas or oil seepages, areal photographs of 

petroleum bearing a.~ticlines, etc. This is then followed 

by a detailed geological and geophysical survey in order 

to select suitable sites for the drilling of test wells. 

It must be remembered that surface investigations and even 

geophysicai surveys can only give indications of the presence 

of underground conditions and structures suitable to the 

accumulation of petroleum in quantity. The drill is the 

final arbiter concerning the presence or absence of important 

amounts of petroleum. 



APPENDIX B 

LINEAR PROGRAMMING--A STATE OF THE ART 

IN THE PETROLEUM FIELD 

As previously mentioned, 1 in ear programming has been 

used quite extensively in the petroleum field considering 

the actual II scientific" age of both. Upon investigation 

of any scientific periodical index, one finds countless 

examples of linear programming appl.ications to not only 

the petroleum field, but to such fields as agriculture and 

economics and any other that may be mathematically 

modeled. In this light then, a few examples will be pre

sented of some linear programming models used as of late 

in the oil and gas industry. 

A paper done by an Oklahoma State University graduate 

student used linear programming techniques as an approach 

to the solution of the classical octane economics problem 

found in the area of gasolene blenqing. In past years, 

gasolene blending was comparatively simple. A slide rule 

and a few response charts were used quite effectively to 

make numerous grades of gasolene. Often, market conditions 

will even divert some gasolene component to another product. 

The combined effect of this is to present the refiner with 

a problem of how to blend for maximum profit. With today's 
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squeezed profit margins, most refiners have been forced to 

electronic computer solutions, using such techniques as 

linear programming. 

Three engineers from the Atlantic Richfield Refinery 

devised a simple but nonetheless instructive example of 

linear programming applied to petrol~urn refining. A 

refinery produces gasolene, furnace oil, and other by 

products. This same refinery can be supplied with a fairly 

large number of crude oils, which is usually the case. The 

available crude oils have different properties and yield 

different volumes of finished products~ Some of these 

crudes must be refined because of long term, minimum volume 

commitments, or because of requirements for specialty 

products. These crudes are considered fixed and yield 

gasolene and furnace oil volumes. From the remaining crudes 

and from those crudes which are available in volumes greater 

than their minimum volume commitment, must be selected those 

which can supply the required products most economically. 

These are the incremental crudes. The problem is to determine 

the minimum incremental cost of furnace oil as a function of 

incremental furnace ·oil production, keeping gasolene pro

duction and general refinery operations fixed. An actual 

problem was run with the equations derived oy Atlantic. The 

so called 11 parame tric programming" procedure was used on 

the IBM 704 LP Code. The results illustrated that the modern 

refinery is a complicated system with strong interdependence 

among the activities within it. It also demonstrated the 
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importance of the refiner's experience in correctly isolating 

portions of the refinery which can be separately considered. 1 

Having considered the refinery and one of the operations 
I 

within, namely gasolene blending, one might now consic;l.er 

some of the recent work done regarding the flow of the 

products from the bulk terminal to the service stations. 

The location and the roads connecting the service stations 

are considered given. Each service station requires the 

delivery of so many gallons of gasolene. Different truck 

types, differing in their capacity and operating character-

istics are available for making deliveries. There are a 

number of each type of truck available for the operation. 

The problem is to devise a delivery schedule such that the 

transportation cost is minimized. The Operations Research 

Group at Atlantic Richfield Company became quite interested 

in this technique devised and applied it as a means for 

handling transhipments on a daily basis. A method was 

developed that is not guaranteed to lead to the optimum 

solution, but will usually lead to a solution rather close 

to it. 2 

There can be no doubt that linear programming has made 

a place for itself in the petroleum industry, particularly 

in the manufacturing phase. It is beginning to be appreciated 

by management as an important help in making complicated 

decisions. One must realize, however, that everything in 

this world is not linear and that occasionally one will 

come across constraints which are mathematically not logical. 



75 

This is good in a way because if ever a method is devised 

that solves all problems, life would undoubtedly ·oecome 

rather dull. 



FOOTNOTES 

1G . arv1n, Crandall, John, and Spellman, pp. 407-4JO. 
2Ibid. 
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APPENDIX C 

comJ>UTER SOLUTIONS OF SINGLE WELL A.T\JD 

MULTI WELL RESERVOIR EXAMPLES 

Both sets of example equations were run on the CPS 

( Conversational Programming System) terminal at Oklahoma 

State University. 1.rhis terminal is tied in via phone to 

the IBM 360 MOD 50 digital computer and contains its own 

library programs. The specific library program used for 

the models was LINPRO, a program using the simplex method 

for solving linear programming problems. 

The equations are read into the computer in a tableau, 

the size of which is limited to an array where M ~ 13 and 

M + N + G < 31 where M = the number of equations, N = the 

number of variables, and G = the number of "greater thans 11 

(z). 

The single well, multi reservoir equations were read 

in and the following solution was obtained. 

Let: q 1 1 = X1 , 
q1,2 = X2 

q2, 1 = X3 

q2,2 = X4 

Slack Variables = 5 through 12 
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Answers: 

5 985.3 

6 1185.297772 

7 985.3 

8 60,000,000 

9 1185.295545 

10 69,700,000 

2 21,459.2275 

4 42,918 .. 4549 

Objective FW1ction Value= $5,298.28 

This solution indicates that a volume of 21,459 cu.ft./day 

in the first time period from the second well plus 

42,918 cu.ft./day in the second time period from the second 

well would result in the maximum value of the objective 

function of $5,298.28. Evidently, from this solution, the 

first well would not be operated in either time period.· 

In the second model, the equations were again read in 

in tableau. The printed solution consisted of: 

Let: q1,1,1 = X1 

q1,1,2 = X2 

q 1 1 3 = X , , 3 

q1,2,1 = X4 

q1 ,2,2 = X5 

Slack Variables= 6 through 5 
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.Answers: 

6 985.296496 

7 985.3 

8 985.296496 

9 1185. 3 

10 1185.29687 

1 1 .59997 E 10 

12 .69997 E 10 

13 200,000 

4 64,377.682 

2 72,992.700 

Objective Function Value= $7,499082 

This solution indicates that 64,377 cu.ft./day from the 

second well, first reservoir plus 72,992 cu.ft./day from the 

first well, second reservoir will yield the maximum value 

of $7,499.82 for the objective function. Again, the first 

and third wells of the first reservoir plus the second well 

of the second reservoir will not be operated. 

To check the model eauations further, numerous other 

examples were run. One specific additional set of equations 

for the single well, multi reservoir model was: 

6. 98 x1 _:: 700. 1 

7.63 x2 _:: 723.2 

7.25 x3 _:: 698.7 

7.02 x4 .:: 711.3 



38.3 x1 + 39.6 x3 .:: 125.0 

39.6 x2 + 32.1 x4 ~ 103.0 

41.1 X1 + 45.1 x2 ,:; 19.3 

36.9 x3 + 42.1 x4 ~ 20.4 

The solution involved three variables, or in other 
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words, required flow from both wells during one time period. 

More specifically, 

Let: 

q1 , 2 = X2 

q2, 1 = X3 

q2,2 = X4 

Slack Variables = 5 through 12 

.Answers: 

5 700.1 

6 719.93483 

7 675.81489 

8 707.89838 

3 315,656.565 

10 70.499264 

2 42,793-791 

4 48,456.057 

Objective Function Value= $23,015.36 
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In other words, in the first time period the second 

well would supply 42,793 cu.ft./day. In the second time 

period, a combination of both wells, the first yielding 

315,656 cu.r't./day and the second, 48,456 cu.ft./day 

would provide the maximum value of the objective function 

of $23,015.36. 
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