Thrombolysis Using Liposomal-Encapsulated Streptokinase: An *In Vitro* Study

P. D. Nguyen, E. A. O'Rear, A. E. Johnson, R. Lu, B. M. Fung First Published December 1, 1989 Research Article

Article Information

Proceedings of the Society for Experimental Biology and Medicine, Volume: 192 issue: 3, page(s): 261-269

Issue published: December 1, 1989

Abstract

The clot-lysing ability of streptokinase (SK) was examined using membrane-bound thrombi. Encapsulation of SK in large unilamellar phospholipid vesicles (liposomes) resulted in entrapping approximately 30% of its original activity. Measurements of streptokinase activity for liposomal-encapsulated streptokinase (LESK) indicated little loss of activity or leakage in Tris-buffered saline over a 24-hr period at temperatures of 4 and 23°C. However, incubation of free SK and LESK in platelet-poor plasma (PPP) at 37°C resulted in a decrease of SK activity. The retention of SK activity in LESK was considerably higher than that of unentrapped SK. Clot-dissolving time (CDT) was measured by monitoring the pressure drop during slow filtration in plasma through membrane-bound thrombi. The results indicated that both LESK and free SK were able to activate the fibrinolytic system. Without prior incubation in PPP at 37°C, the CDT of a SK and PPP mixture (SK/PPP) was $10.7 \pm 1.9 \text{ min}$ (n = 12), while that of a LESK and PPP mixture (LESK/PPP) was 12.4 ± 1.7 min (n = 12). The CDTdetected clot-lysing abilities of both SK and LESK were diminished by incubation in PPP, but to different extents. After 15- and 30-min incubations, the CDT of SK/PPP increased significantly to 15.5 ± 1.5 and 24.1 ± 2.4 min (n = 5, P < 0.05), respectively. In contrast, the CDT of LESK/PPP increased to 13.3 \pm 0.8 min (n = 5) after 15 min of incubation and to 16.0 \pm 1.1 min (n = 5, P < 0.05) after a 30-min incubation. These results suggest that entrapment of SK in liposomes preserves the thrombolytic potential of the plasminogen activator by limiting its exposure to the components of the plasma.