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GRAMMATICAL SETS IN HALF-RING MORPHOLOGIES
CHAPTER I
INTRODUCTION
The current lively interest in structural linguistics
among mathematicians is recent. Its history may be said

to begin in 1960, when a mathematical model for the syntax
of a language, called a phrase structure grammar, was

defined by Noam Chomsky [2,3]. The assumption motivating
the model was that sentences in linguage are generated
by a sequence of rewriting rules which, beginning with the
concept "sentence'" itself, relate or subdivide general
syntactical categories into classes more and more specific,
and finally into the particular words {or morphemes) used
in the sentence.
An example will help to clarify this idea. We assume

these grammatical facts:

(1) A sentence may be composed of a subject
followed by a predicate.

(2) A subject may be a noun phrase.

(3) A noun phrase may be a noun preceded by an
article and an adjective,

(4) A predicate may be a verb fcllowed by an
object.

(5) An object may be a noun phrase.

(6) "The" is an article; "a" is an article;
"aging" is an adjective; "flowered" is an adjective;

"duchess" is a noun; "parasol” is a noun; "carried" is a verb.

1
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Now, applying the rewriting rules inherent in state-
ments 1 through 6, we may construct the sequence

(1)

K
(2) (1)
Subject Predicate
(3) (6) (5)
Noun Phrase Verb Object
(6) - (6) (6) (6) (6) (6)
Article Adjective  Noun Artlicle Adjective Noun
]
]
The agling duchess carried a flowered parasol,

We can also construct the sentence "A flowered duchess
carried the aging parasol," or "A flowered parasol carried
the againg duchess," which illustrates the fact that struc-
ture, not meaning, is what the grammar is intended to model.
Phrase structure grammars are classified into types
according to the type of rewriting rules or productions

allowed. They are, in increasing order of generality:

right (or left) linear, context-free, context-sensitive,

and arbitrary phrase structure grammars. There is now a

large body of knowledge about these grammars, along with

associated models of machines. The machines, with a

finished sentence as input, perform a sequence of opera-

tlons which result in the acceptance of a sentence which 1is

well-formed according to a specified set of grammatlcal rules.
Since this paper 1is concerned with an extension of the

notion of context-free grammar, some familiarity with
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phrase structure grammars must be assumed. Virtually all
the results used here, along with a thorough treatment of
results in the area up to 1965, can be found in [T].

The interest in context-free grammars was fed by the
discovery that they were equivalent to a format for the
specification of programming languages called Backus normal
form. Algol was specified in this form, and a class of
languages called Algol-like-~-those whose syntax could be
specified in Backus normal form--was found to be the same
as the class of languages generated by context-free gram-
mars [10]. However, because of some side restrictions on
the form of Algol statements, it turned out that Algol was
not in fact an Algol-like language [6]. This discovery
motivated a search for a model slightly more general than
the context-free grammar and its associated accepting
machine, the pushdown acceptor (pda).

Linguists dealing with natural languages found
objections to phrase structure grammars as a model. The
class of context-free grammars was too small to mirror
the complexities of natural language; the class of context-
sensitive ones somewhat unwieldy. Chomsky himself resorted
to the use of additional operations called transformations,
which are applied to primitive sentence forms generated by
context-free grammars. A remarkable number of new
accepting machines have been defined, which (without
corresponding generating rules) delimit a language as that
collection of sentences accepted by the machine. A summary
of most of these, along with a chart showing the known and
conjectured relationships between them, appears in [9].

There has also been a bustling business in the gen-
eralization of context-free grammars. Notable among the new
grammars are the programmed grammars of Rosenkrantz [13],

which use context-free rules, whose eligibility for applica-
tion depcuds on which production was applied last and on
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the form of the intermediate string at the moment of
application. The indexed grammars of Aho [1], utilize a
new type of rule, called an indexed production, 1in addition

to context-free rules.
Underlying the notion of context-free languages and
the above generalizations is the fact that all words (which

unfortunately is the term used for well-formed strings
corresponding to the intuitive notion ¢f sentences which

we discussed earlier) in a language are assumed to be
elements in the free semigroup generated by a finite collec-
tion of symbols, wiiere the cperation is juxftaposition.

Davis [5] suggested that this simple juxtaposition is an
~oversimplification of the way grammatical elements are
linked together to form syntactically correct strings. He
proposed, as a substitute for the semigroup, an algebraic
system called a half-ring morphology, with three operations,
as a sultable model for the natural linkages of syntactical

elements. We illustrate this with an example,

A transitive verb calls for both a subject and an
object. It is natural to think of it as a two-place
predicate, with two numbered blanks, one to be filled with
a subject, the other with an object, as in

(_1 carried 2 ).
We form 2-tuples of the form (subject, object), where each
of these is without blanks, although they may be composed
of smaller elements containing blanks. Then the composi-
'tion operation * in the half-ring morphology is so defined
that (_1 carried 2 ) -+ (the aging duchess, a flowered parasol) =
The aging duchess carried a flowered parasol. That is,
the first element of the pair is substitufed for the blank
numbered 1, the second for the blank number two. The
second operation of the half-ring morphology, concatenation,
represents the formation of n-tuples. In the grammatical
rules we are then able to replace "followed by" with more
complex types of linkage.
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Davis' suggestion is that context-free rules be used |
to generate meaningful strings of elements in a morphology
along with operator symbols, and then, after the gzneration ‘
process is complete, to perform the indicated operations §
to obtain finished, filled-in sentences. That is what this f
paper attempts to do: to investigate the sets obtained in
such a way.

The other immediate ancestor of this approach is a
paper of Mezei and Wright [11]. Their generalization of
languages generated by context-free rules in semigroups to
languages generated by context-free rules in arbitrary
algebralc systems is precilsely what is needed to implement
Davis' suggestion for half-ring morphclogies. The alterna-
tive formulation of recognizable sets in Chapter 3 is an
application of their approach. The term recognizable set
is due to them; the term grammatical set .also appears in
their paper, attributed by them to David Muller. The
special cases of their results which are used in this paper
are summarized in Chapter 3. It 1s hard to overestimate
their value in simplifying proofs and adding a taste of
much-needed elegance,

The paper 1s organized as follows. Chapter II contains
the definition and basic results for half-ring morphologiéé.
The theorems which appear there are due to Davis and are
stated without proof (sometimes in slightly altered form)
in [5]. The proofs are mine, and are included for com-
pleteness. It will be useful to refer in iater chapters
to some of the constructions used in these proofs. Lemma
2.2 is proved in [4], where half-ring morphologies were
defined for a different use.

In Chapter III, -a half-ring grammar is defined. It

is the special context-free grammar which will generate
well-formed expressions involving morphology elements and
morphology operation symbols. The equivalent formulation
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of Mezel and Wright using finite congruences on a generic
algebra is presented. The collection of strings whether
generated by a half-ring grammar or representing a union of
congruence classes is called a recognizable set. A

grammatical set is then defined as the collection of

morphology elements resulting from carrying out the
operations represented by the strings in the recognizable
set. We state a best form for a grammar, which is an out-
come of the results in [11].

Various closure properties of grammatical sets are
investigated. In the case of the usual semigroup languages,
Ginsburg and Grelbach have abstracted a collection of clo-
sure properties by which they define an Abstract Family of
Languages (AFL) [8]. Theorems 3.3, 3.4, 3.6, and 3.7
provide what I feel are appropriate analogues of these
properties in the half-ring case., Theorem 3.21 demon-
strates a closure property related to the AFL requirement
that languages be closed under intersection with a regular
set. I am considerably less sure that this property is
the proper analogue to the AFL one.

A number of examples of grammatical sets in linear
morphologies are given. including sets which can not be
generated by context-free rules in a semigroup. Theorem
3.10 gives the result that every grammatical set is the
homomorphic image of a grammatical set in a free mor-
phology, a fact which will be useful in Chapter 4,

Regular sets are particularly well-behaved subsets of
a free semigroup, generated by rules of a particularly
simple form (see [7]). In attempting to define an
analogous class for grammatical sets in morphologiles, we
introduce the notion of A-regularity, for any recognizable

set A. For each A, we obtaln a class closed under union,
intersection, and complementation with respect to the set
generated by A. A particular recognizable set F, called
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the set of factorizations because of its relationship to §

the factorizations of phrases in a morphology discussed in ,
Chapter 2, is defined. In Chapter 4, we find that the 3
F-regular grammatical sets in a free morphology are gen-

erated by rules of an attractive simplicity, and further,
that all context-free languages (in the usual sens2) are
homomorphic images of such grammatical sets under a very
simple homomorphism.
The concept of concatenative depth and the dimension %

and degree of a grammatical set are introduced in Chapter
3, since they will be needed in Chapter L4,

The last section of Chapter 3 deals with ambiguity.
Two types of ambiguity are defined for grammatical sets:
structural and morphological. The first type is a function

of the generating rules; the second has to do with the
particular morphology into which the recognizable set is
mapped to produce a grammatical set. It turns out

(Theorem 3.27) that there is no morphological ambiguity in
free morphologles, and that there is no structural ambi-
guity in F-regular grammatical sets in any morphology
(Theorem 3.28). The relationship between structural
ambiguity and the inherent ambiguity of semigroup context-
free languages is discussed, and an example is given in
which a language known to be inherently ambiguous is
generated without either morphological or structural
ambiguity. In Chapter 4, we show that all semigroup context-
free languages can be generated as grammatical sets without
structural ambigulty.

Chapter 4 is concerned with special grammatical sets
in linear morphologies which we call restricted linguis-
tic sets, and which are shown to be appropriate for the
linguistic model we have in mind. They are (Theorem 4.10)
those grammatical sets containing only "completely filled in"
expressions in the morphology (called formulas), which
represent a single sentence (rather than a string of
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sentences, or a paragraph, for example) and which can be
generated by variables representing grammatical categories
which yield n-tuples of a fixed length and a fixed distri-
bution of blanks for the category. Some closure properties
of linguistic sets and restficted.linguistic sets are found.

A number of results having to do with the represen-
tation of the usual context-free languages as grammatical
sets are presented.

It happens that, in a linear morphology, the fbrmulas
are in the form of strings of (juxtaposed) symbels in a-
set S, as are the words in context-free languages. If we
consider these strings as elements of the free semigroup
generated by S, we are able to examine some closure
properties usually associated with context-free language.
These we call substratum properties.

The chapter concludes with a method for extending the
model to allow "erasures," or the elimination of unnecessary

empty blanks in the formation of sentences.



CHAPTER II
HALF-RING MORPHOLOGIES
The definitions, notation, and terminology presented

in this chapter follow Davis [5], with minor alterations.
Morphologies: By a half-ring we mean an algebraic

system (E,#,”) with binary operations % and - satisfying

(1) x-(y-z) = (x+y) -2z

(11) xx(y#%z) = (x#%y)¥z

(111) X#y = x#%z implies y = z
(iv) (x#y)+z = (x2)%(y-2)

for all x, ¥y, z in E. (Notatlonally, % takes precedence
over +, so that x.y#z is (x-y)#z, not x.(y#z).) The
operations % and - will be called concatenation and

composition, respectively. Following custom, we will

denote a morphology (E,#%,:) by E.

Consider the half-ring generated by a denumerable -
sequence of elements 1, 2, etc., subject to just these
defining relations:

(a) 1+ (mxx)
(b) ntl « (mxx)

m
n o+ (xsm)

for all my n =1, 2, etc., and all x. It 1s easy to verify

that such s half-ring-does exist. Any such half-ring will
be called a blank-morphology. The theorem which follows
shows that there is (up to isomorphism) only one blank-

morphology.
Let B = (B,%,°) be the half-ring generated by the

natural numbers 1, 2, etc., where % 1s juxtaposition, and

composition is defined by
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(nln2...nk)-(mlm2...mr) =m m_...m_,

where n = n (mod r) and 1l<n <r, for each 1 = 1,2,...,k.
i 1 i
Then B 1s the collection of all finite strings or sequences

of natural numbers. B 1s easlily seen to be a blank-
morphology.

The following lemmas follow immediately from the
definitions.
Lemma 2.1: In a blark-morphology,

_ry(ml Foo.. % mr) =m ,

—= — n
for natural numbers n, my, i = 1,2,...,r, where l<ner
and n = n (mod r).
Lemma 2.2: In a blank-morphology,
nl ¥ oo ow *Ilk = my ¥ oo 0% I,

T
g 1= 12,000k, and ny, =1,2,...,r, if
and only if k = r and n, = my for i =1,...,k

Theorem 2.3: Every blank-morphology is isomorphic to B

for numbers n

(above).
Proof: Let H = (E,#,-) be a blank-morphology generated by
G ={1l, 2,...}. Let e: B-H be defined as follows:

@(nl...n N #0 % L H0

) =Py Kk

—— mo—— —

Suppose Ny...ny and my...m, are non-null elements ip

B. Then, using the notation introduced above,
: . . LI = * ‘0
@[(nl.. nk) (m1 mr) o(m_ %, *m_ )

— —— ——

! My
=m_%...%¥m_, and
e} Tk
O(nl...nkhjp(ml...mr) = (N, % .. % fE)v(ml* oo # M)

= m % e 6 o m : ’
1
by Lemma 2.1. Hence 0 is a homomorphism. The onto pro-

S
st
=

perty of © follows from the fact that it maps B onfo a set
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of generators for E; the one-one property follows from
Lemma 2.2. Hence © is an lsomorphism.

From now on, we will call B, or any morphology iso-
morphic to it, the blank-morphology.

For any positive integer n, let hn: B+B be the map
defined by: h(x) = n, for all x in B. Such maps will be
called constant maps. o
Theorem 2.4: The only endomorphisms of the blank-
morphology are the identity map and the constant maps.
Hence B has no non-trivial automorphisms.

Proof: Let o be a non-trivial endomorphism of B, and let

n by any integer such that e{n) = m and n # m. Suppose

> rs . X LN
m>n. For any numbers @yseees8y 15 A1 28,5 WE have
(a oo na cos = n,
n (alaZ 8n-1"%m1 am)

Applying o,

O(n)'[e(al)e(a2)°"O(an—l)@(n)e<an+l)"‘G(am)] = 0(n)
& m-[e(a,)elay)...0(a 1) mela, q)...0a )] = m
But by Lemma 2.1,
m°[®(a1)@(a2)°“®(an-1) m O(an+l)...@(am)] = @(am).

Since a, was arbitrary, we have 0(s) = m for all natural
numbers s; a similar argument for m<n shows that © must
be the constant map hm'

Morphologles in general are half-rings in which the

blank-morphology 1s embedded in a manner to be made precise

in what follows.

A morphology 1s a system (E,%,-,m,") conslsting of a
half-ring (E,#,+) whose elements are called expressions,
among which rn 1s distinguished as a first blank, and a
unary shift operation ~ such that

(v) (xey)” = x°y°

(vi) mew = T

(vii) = (x#y)
(viii) x"«(n-y¥z) = x-(z¥m+y), and x"+7 = Xem,

TeX
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for all x, y, 2 in E. '

Consider the half-ring H generated by the single
element 7, where % 1s juxtaposition, and composition is
defined by

x*y = x for all x, y in H.
Enlarging H by defining the unary shift as the identity
operator, x* = X, we see that H becomes trivially a
morphology for which n° = n. To exclude this trivial
case, we add the restriction

(1x) T Fom,

which guarantees that in any morphology, the submorphology
generated by m, n*, n°°, etc., called blanks, is the blank-
morphology. Denote 7 by n(l) (n+1) = n(n)i
Then note that 7° # 7 implies that n(m) #Fom
such that m # n. Henceforth, bvlanks will be denoted by .
1, 2, 3, ete,

In a morphology, an expression x is closed if x:y = X
for all y. The degree of a closed expression is zero;
otherwise the degree of x is elither infinite or is the
least n such that x.(1l#2%...®) = x. The dimension of x,
if not infinite, is the least (unique) m>0 such that
(l#2% ..#m)-x = X. Expressions of dimension one are

, and for n>1, =

(n)

for all m, n

phrases ~ Closed phrases are formulas. A minimal set of
phrases which generates. the morphology is a vocabulary,
whose members are called morphemes.

We will consider here only locally finite morphologies,
that is, those satisfying

(x) for each x there are non-negative integers m

and n such that (l#...#m).x = x = x+(1%...%¥n), and in this
paper, . "morphology" will mean a locally finite morphology.

Linear morphologles,. Let S by any set, called an
alphabet of symbols, . or simply an alphabet. Let N =
{1,2,...} be a derumerable set of numerals, disjoint from S.
et W be the set of all non-null finite strings 8152"'Sk’
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where 54 isin S yN for i =1,2,...,k. Let E be the set
of all n-tuples of elements in W, for n = 1,2,... . For x
in E, call n the dimension of x. Define, for x and y in
E, of dimenslons r and s respectively, the sequences x”,
x#y, and x-y in E as follows:
(1) x* = the result of replacing each numeral n in
X by n+l,
(2) =x#y = the (r+s)-tuple whose components are de-
fined by

X if O<icr

i,

(x#y),
Vi-p? if r<i<r+s

1,2,...,v+s, and

for 1
(3) xe.y = the r-tuple whose components are defined
by (x~y)i = the result of substituting y,
for k in Xy modulo s, for each integer k,
for 1 = 1,2,...,r.
Let 7 be the 1l-tuple (1). Then (E,#,+,n,”) is called the
“total linear morphology over S. Note that the dimension
here defined corresponds to the definition of dimension in
a general morphology. Any submorphology of the total linear

morphology is a linear morphology over S.

Lukasiewicz morphologles are those linear morphologles
over a set S which are generated by a vocabulary V each of
whose members is of the form (s) or (sl...n), for s in S,
and such that if (s) and (tl...n) are in V for anyn, then
s # t; and if (sl...n) and (tl...m) are in V for any m, n,
then s # t.

Factorizatlon of Phrases. Given a set V of phrases in
any morphology, the set of V-factorizations 1s defined

recursively by

1) if x is a closed member of V or is a blank,
then the one-tuple (x) is a V-factorization;
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2) 1f x in V is of positive degree n and Fl,...,F
are-¥-faetorizations, then the tuple
(x, Fl,...,Fn) is a V-factorization.

The product F of a V-factorization F is defined recursively
by

n

3) if x is a closed member of V or is a blank,
then (x) = x;

Ly 1irf (x,Fl,...,Fn) is a V-factorization, then
(X,Fl’.Cl,Fnj = x.(—l*ll.*.ﬁh)‘

If F = x, then F is said to be a V-factorization of x.
It 1s easy to see that if V 1s a vocabulary for a morphology,
then every phrase has at least one V-factorization. If

each phrase has Just one V-factorization, call the vocabu-
lary monotectonic. Otherwise the vocabulary 1s polytec-
tonic. A morphology which has a monotectonic vocabulary

is a monotectonic morphology; otherwise.it is polytectonic.,
If an expression x is such that, for some n suffi-
ciently large, x+(lu...#(1-1)#y&(i+l)#,..#n) = x for every
phrase y, then x will be said to be free of the i-th blank,
The number of blanks in an .expression is n - k, where n is

the degree and k is the number of blanks, among the first
n, of which the expression 1s free. An expressilon is
initialized if the number of blanks in it is the same as
its degree.

The following useful facts about morphologles are easily
established. We will denote the dimension of x by dim (x),
and the degree of x by deg (x).

Lemma 2.5: 1) For all x, y, dim (x.y) = dim (x),
2) deg (x+y) < deg (y).
3) If x is closed, x° = x.
4) If deg x < n, then x<(l%...#n) = X,

Lemma 2.6: For all x, y,-
1) dim (x#y) = dim (x) + dim (y),
2) deg (x#y) = max {deg (x), deg (y)},
3) (xay)” = x°#y”, and
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4) if dim (x) = k, and n # k, then (ly...¥n)+x # Xx. |
Lemma 2.7: For all phrases Xy yj, for 1l<i<k, 1<j<m,

Xy#ooo®Xy = Yoko kY if and only if k = m and

1 k

X, 7Yy for i = 1,2,...,k.

Lemma 2.8: For an expression x of degree n, let 31’32""’jn
denote those blanks of which x is not free. Then
for any expressions y and 2z such that

jr'y = jr-z forr =1,2,...,k,
we have that i
Xey = X*2.

Lemma 2.9: For any expression x, deg (x) = n if and only
if (1) for m>n, x is free of the m~th blank,
and (i1) x is not free of the n-th blank.

Lemma 2.10: In a linear morphology, if x is initialized, of
degree n>0, then for any expression y,

1) deg (x-y) deg [(1%...%n)-y]l.
2) deg (x+y) = max {deg (n+y) | x is not free of
the n-th blank}.

Theorem 2.11l: For every expression x there exist elements

y and z of the blank-morphology such that X»y is 1nitialized

and (x-y)+z = x. Hence each vocabulary for a morphology

i}

may be replaced in a one-one fashion by a vocabulary whose
members are initialized.

Proof: Let x be any expression of degree n. If x is ini-
tialized, the theorem is trivially satisfled by y = 2z =
l#...#n., If x 1s not initialized, then suppose the number
of blanks in x is n-k. Then x is free of k blanks which we
dencte by the il-th,...,ikth.

Let p be any permutation of the integers 1,2,...,n,
such that n-k+lip(ij)§n for jJ = 1,2,...,k. Denote p(i) by Py
and p—l(i) by pj, for 1 = 1,2,...,n. Let y = py&...%p
and let z = pi*...*pé. Then y and z each belong to the
blank-morphology, and (x°y)+z = x°(y*2) = x*(1lx...%n) = X,
as required.
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It remains to show that x-y is initialized. We will
establish that x.y is free of the i-th blank for i1 # n-k and
not free of the i-th blank for i = n-k. Then by Lemma 2.9
we may conclude that x-y is initialized, of degree n-k.

Suppose that i>n. By Lemmas 2.5 and 2.6, deg (x:y) <
deg (y) = nj; hence by Lemma 2.9, x-y is free of the i-th
blank. |

Now consider, for any phrase w, the expression
(xey)e(l%,., . %i-l#wxit+tlx...%n)

x-(pl*...*pn)-(l*...*i-l*w*i+l*...*n)
x'(ql*...*qn),
where pj, for pj # 1

QJ—

w, if pj = 1,
By the construction, if i n-k, then pj = 1 implies that
x 1s free of the j-th blank. Hence we have
x-(ql*...*qn) = x-(pl*...*pn)
= XY,
and x°y is free of the i-th blank.
If l<i<n~-k, and x-y is free of the i-th blank, then
by the qonstruction, X 1s not free of the pi—th blank.
Choose a phrase w such that x-(l*...*pi—l*w*p£+1*...*n) # X.
Define y' and z' as follows:
y, if deg (w)<n

y' =
yen+l#,...xdeg (w), if deg (w)>n
Zz, 1f deg (w)<n
Z =
\z#n+l#...xdeg (w), if deg (w)>n.
Then x = Xeyez = Xeyez!

= Xeye(lg...si-lgwey'sitle...¥n) 2"
= X’y"(l*-.-&i—l*W'Y'%i+l%...*n)°Z'
= 'x-(ql%...¥qn),

where
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qj =
W-y'.zl’ if pj - i.
But y'-Z' = (l*...*m), where m = deg (W), SO W'y"Z‘ S

and x-(l*...*pi-l*w*pi+l*...*n) = x, a contradiction.
Hence x*y is free of precisely those blanks m>n-k, and is
initialized of degree n-k.

Theorem 2,.12: Every member of a monotectonic vocabulary
is already initilalized.

Proof: Suppose x is any expression of degree n in a

monotectonic vocabulary V, and x is free of the i1..th blank
Then x = x+(1l%...%¥n), and (x, (1),...,(n)) is a factorization
of x. But x = x+(1%...%i-lxx%i+lx...%n), hence
(x, (L),.00.,(1=1), (x), (i+1),..., (n)) is a second
factorization of x, a contradiction.

From now on, by vocabulary we will mean initialized
vocabulary.

An element (jl*...*jn) of the blank-morphology is
called a permutation if I; = p(i), 1 = 1,2,...,n, where p
is some permutation of the integers 1,2,...,n.

Theorem 2.13: Gilven two initialized vocabulariés W' and W

for a monotectonic morphology, for each morpheme W' and W

there is a unigue morpheme w'in W and a permutation p such
that w' = wep. Thus a monotectonic morphology has essen-

tially one vocabulary, and all vocabularies in a monotec-

tonic morphology are monotectonic.

Proof: Let V be a monotectonic vocabulary for the morphology.

We will establish the result when W' = V, from which the
theorem follows immediately. Suppose v, of degree n, is
in V, Then v has a W-factorization F= (w, Fl""’Fn)'

"

Dencte Flm ,.%Fn by F. Then v

V-factorization G = (v', Gpse
deg. (v') = k Hence we have v

weF. Similarly, for a
.,Gk),AwA='v' - G, where
v!eG-F

= v'e(le...2k)G-F.
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Fgrﬁi = 1,2,...,k, let H, be the (unique) V-factorization
of 1-(G-F). Then h = (v', Hl,...,Hk) is a V-factorization of
v; and since (v, (1),...,(n)) is a V-factorization of v, we
have n = k, v = v', and ﬁi =i fori=1,2,...,n. Since
1¢GeF = Hi’ we have GF = (l%...%n).

Now in a monotectonic morphology, if, for some ex-

pression x,y, and some integer m, x+y = m, then x = n for
some integer n, and n.y = m. For, suppose F = (v",Fl,...,Fk)
is a factorization of x, where v" is a morpheme. Then

X+y v"-(ﬁl*.,.*ﬁ Yoy

K
v"-(Fl-y*...*Fk.y).
Let R, be the factorization of F, -y, for lcick. Theu

(v", Rl""’Rk) is a factorization of m, as in (m). Hence

X is either closed or a blank; since x*y = m, X 1s not closed,
so x is a blank,
Now it follows readily that G and F and permutations
p_1 and p respectively and v = wep.
To establish the uniqueness of w, suppose v = w'-p'
for some permutation p' and some w' in W. Then
wep = w'-p'

-1
WepeDp

w

1

w'ep'ep®
' 1 -1

w o(p op ),

and w = w', by the minimality of a vocabulary.

Theorem 2.14: If a morphology with vocabulary V 1s mono-

tectonic, then it is i1somorphic to a Lukasiewicz morphology

over V as a set of symbols. Conversely every morphology
lsomerphic to a Lukaslewicz morphology is monotectonic.

Proof: Let M be monotectonic with vocabulary V. Let o be

the map which makes correspopd to each morpheme v in V of
degree k the element ¢1l...k 6f the linear morphology over the
set of symbols S = {¢|v e V}. Let M' be the Lukasiewicz sub-
morphology generated by the set (V). Extend © to M as
follows: fof a factorization F = (x, Fl""’Fk)’ where
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F = y, define o(y) to be o(x)-(o(F )#...40(F,)). Since V
is monotectonic, ¢ is well-defined, and 1s easily seen to
be an isomorphism onto M'.

To show-the converse, first we show a special property
of phrases 1n a Lukasiewilcz morphology. Define a partial
order on the phrases in M', a Lukasiewlcz morphology over
the set of symbols S: x<y if x = XperoXps ¥ = Yqeen¥y,
and yJ In 8 UN, 1z<i<k, 1l<j<r, and for l<i<k,

(This makes r>k a necessary condition.)

for Xi

X, =¥

. Tie property is this: =x<y if and only if x = y. We
-prove the nontrivial part of this assertion by induction

on the length r of yp» If r =1, theny = Yy = X T X.
Suppose the hypothesis 1s true for y of length no greater
than r, and suppose the length of y is r+l.

Let F = (v, Fl,...,Fn) be a V-factorization of y,

and let G = (w, Gl""’Gm) be a V-factorization of x. Then
v=sl...nand w = tl...m for some s, ¢t in S, and some non-
negative integers n, m. Hence, by the rules of composition,
vy, =8 and xl = t; since x<y and the length of x is at least
one, we have s = t; since v and w are both in V, we must
have v = w, and n = m.

Ifn=m=20, theny = v =w = x. If n>l, then

=(sL.m)JEﬁ”.ﬁ%)=SE_ Fw and
= (sl...n)- (G *. . .#G) = sGj. .G, and either F

1 1<y or
G.<F.. In either case, by_the 1nduction hypothesis,

1-1

] = 51, since the length of each is less than r+l Now

suppose that for i<j, 51 = @i; Then either Fj+l j+l or

Gj+liFj+l" In elther case, j+1 = G, $41° since the length
of each 1s less than r+l. So for a¢l Js 1<i<n, FJ = GJ,

hence y = x. This completes the proof of the property

| o <

|

i

as claimed.
Now let x be a phrase in M' with factorizations
F = (vl,Fl,...,Fr) and G = (v2,G1,...,Gm). By an argument

in the proof above, we have vy = Uy = (sl...r) for some s
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in S, r>0, and r = m. Since x = Sﬁl...ﬁr = Sﬁl...Gf,
~either F,<G, or G.<F,; since Fi and Ei are phrases,

1-71 1-1
Fi = @i by the property established above. Suppose, for
i<j, Fi = Gi; then Fj+l and GJ+1 are comparable, heqce

equal. Then for all j, l<j<r, F& = @5, We now complete
the proof by induction on the depth of a factorization,
defined as follows:

(1) If F = (v) for vinV, or F = (n) for a blank
n, then F has depth zero.

(2) IfF = (v, Fl,...,Fn), then depth (F) =

max {depth (F,)}+1.
l<jen !

Suppose that max {depth (F), depth (G)} = 0. Then
(1) G = (s) for some s in V.n S or (2) G = (n) for a blank
n. In case (1), x = s, hence F = (s) = G, since s clearly
has only one factorization; in case (2), again blanks

have only one factorization, so F = (n) = G.
Suppose that for max {depth (F), depth (G)}zn, F
and consider the case when max {depth (F), depth (G)}
ntl, Then G = ((slL ..r),Gl,...,Gr), where depth (Gi)in,
l<i<r, and F = ((sl...r),Fl,...,Fr), where depth (Fi)in,
l<icr, and Fy = Gy, l<i<r. Since for l<i<r, max
{depth (Fi), depth (Gi)} = n, and F,, G, are two factori-
zations of Fi =Gy, then by the inductim hypothesis,
Fi= Gi'
By an interpretation of a morphology A in a morphology
B we mean a homomorphism of A into B, i.e., a mapping 0o:
AsB:  x+x® which preserves operatios: |
7 = T, x19 = x@', (x*y)@ = x@%ye, and (x-y)O = x@-y@,
for all x, v in A:. We shall refer to the image of A in
B also as the "interpretation of A" (under o) and will call
A a formulatiom of its image. Thus to say that one mor-
phology can be formulated in another is to say that there

is an interpretatim mapping the latter onto the former.

.G,

El

Hence G = P and the proof 1s complete.
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" Theorem 2.15: Under any interpretation of one morphology

in another, the blank-morphology of the first maps iso-
morphically ommto that of the other.
Proof: By Theorems 2.4 and 2.5, and the requirement that
i = (i.e., o(1l) = 1), any interpretation is either an
isomorphism on the blank-morphology, or the constant map
hn’ for some natural number n. However, in the latter
case, we have in the 1mage morphology
r= 1l = ﬂ'o =q7',

which contradicts the requirement that in a morphology,
7t #om.

It i1s easily shown that the dimension of an expression
is always preserved under an interpretation, and the degree

is never increased. HowevegSREREENEN. cc may decrease, as

shown by the example whi vem 2.16.

gy into another
and does not
generated by a
@y, of that vocabu-
Yion of the whole
morphclogy. A morphology is free if it possesses a voca-
bulary by which 1t is freely generated.

Theorem 2.16: The free'morphologies-are precisely those
which are isomorphic to Lukasiewicz morphologles. Hence

is conservative if it p§

increase degree. A mo
vocabulary if every cons¢
lary can be extended to an

a morphology 1is free if and only if it is monotectonic.
Proof: Let M = (M,#,.,rm,”) be freely generated by V.

Let M' be the Lukasiewicz morphology generated by the set
o(V) constructed in the proof of Theorem 2.14. Note that o
is conservative, Since M is free, 0 can be extended to a
homomorphism ¢: M+M'. We will show that o 1s an isomor-
phism. Clearly o is onto; since o(V) is a vocabulary for
M'. Suppose 0(x) = o(y) for some phrases x,y in M, x # y.
Let n be the least non-negatlve integer such that there are

x, yin M, x #y, 0(x) = o(y), and there is a factorization-
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" Theorem 2.15: Under any interpretation of one morphology

in another, the blank-morphology of the first maps iso-
morphically anto that of the other.

“Proof: By Theorems 2.4 and 2.5, and the raquirement that

1 = a (1.e., 0(1) = 1), any interpretation is either an

isomorphlism on the blank-morphology, or the constant map
hn, for some natural number n. However, in the latter
case, we have in the image morphology

T o= ne = n'e = 7!,
which contradicts the requirement that in a morphology,
' # o7,

It 1s easlly shown that the dimension of an expression
is always preserved under an interpretation, and the degree
is never increased. However, the degree may decrease, as
shown by the example which follows Theorem 2.16,

A mapping of a subset of one morphology into another
is conservative 1f it preserves dimension and does not
increase degree. A morphology 1s freely generated by a
vocabulary if every conservative mapping of that vocabu-
lary can be extended to an interpretation of the whole
morphology. A morphology 1s free if it_possesses a voca-
bulary by which 1t 1s freely generated.

Theorem 2.16: The free'morphologies‘are preclsely those
which are isomorphic to Lukasiewicz morphologles.: Hence

a morphology is free 1if and .only if 1t is monotectonic.
Proof: Let M = (M,#,.,n,”) be freely generated by V.

Let M' be the Lukaslewlcz morphology generated by the set
o(V) constructed in the proof of Theorem 2.14. Note that o
is conservative. Since M is free, o can be extended to a
homomorphism ¢: M+M'. We will show that ¢ 1s an lsomor-
phism. Clearly o is oanto, since o(V) is a vocabulary for
M'\.  Suppose 9(x) = o(y) for some phrases x,y in M, x # y.
Let n be the least non-negative integer such that there are
X, yin My, x #y, o(x) = o(y), and there is a factorization
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F = (Vl’Fl""’Fm) of x and a factorization G = (v2,G1,...,GP)
of y such that max {depth (F), depth (G)} = n. Suppose n = 0.

Then depth (F) = depth (G) = 0; we have four cases:

1) F = (vl), G = (v2) for some Vis Uy € '
2) F = (Vl)’ G = (n) for vy o€ V, neN

3) F=(n), G = (v2) for vV, € V, neN

4 F = (n), G = (m) for n, m ¢ N.

In case 1, x = v, y = V,; hence e(vl) = @(vz); but by the
construction of O(vl), this implies Vi =V, 2 contradiction.
Cases 2 and 3 are symmetric. In case 2, x = Vl’ y = n;

hence @(vl) = 9(n) = n, by Theorem 2.15, again a contradic-
tion of the construction. In case 4, Theorem 2.15 gives

x = 0(x) =n, o(y) =m=y, again a contradiction. So

n#0.

Suppose n>0. Then 0(x) = O(vl)s(o(ﬁl)*...*e(ﬁﬁ)) =
o(v,)+(e(G)#...#0(G,)). Por l<icm, let F! be a o(V)-
factorization of O(Fi), and for l<j<r, let G! be a o(V)-
factorization of @(EJ). Then F' = (0(vy), Fi,...,F)
and G' = (e(v2), Gi,...,G;) are two factorizations of
o(x). Since M' is monotectonic, @(vl) = @(vz), m=r,
and for lsicm, F{ = 6] and F} = o(F,) = o(G,) = G}.

Suppose F, # G,; but max {depth (Fi)’ depth (Gi)}ip-l,
contradicting the minimality of n. So Fi = Gi' Also, by
the construction of 0(V), we see that vy = Vs Hence

x = F =G =y, another contradiction. So there are no
phrases x,y in M, x # y, such that o(x) = o(y). Now by
applying Lemma 2.7, we see that ¢ is 1-1, and hence an
isomorphism.

If M is a Lukasiewicz morphology, then it 1s mono-
tectonic, by Theorem 2.14. Let M' be any morphology, ©
any conservative map on V such that o(V) M'. For
blanks n in M, let 0(n) = n. For non-blank phrases x
in M, extend 0 as follows: let (V°F1""’Fn) be the unique
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factorization of x. Then o(x) = ®<V)'(O(Fl)*"'*e(ﬁh)>‘
For arbitrary expressions x = Ri®o oo # X in M, where

; 1s a phrase, let o(x) = @(xl)*e(x2)*...*®(xn).

This extension of © is well-defined. From the construction

each x

of 0, we have immediately that for all x, y in M, o(xxy) =
o(x)*0(y), and o(1l) =
If x = xl*...*xh, where the Xy
o(x') = o(xi*...*xé), by Lemma 2.1,
O(xi)*...*G(xﬁ), by the construction,
[o(x)]' = e(xl)'*...*e(xn)'; hence o(x') = o(x)' for all x

in M if and only if o(y') = o(y)' for all phrases y in M.

are phrases, then

Suppose there is a phrase y in M such that o(y') # [o(y)]'.
Let n pe the lecast integer such that there is a y, o(y') #
o(y)' and the factorization F = (v, Fisen
n. Ifn=0, then (1) F = (v), y = v, where v is closed or
(i1) F

vel' = v. Hence 0(v) = 0(v'). Since © does not increase

(n) for some blank n. In case (1), v' = (v-1)' =

,Fr) of y has depth

degree, deg (0(v)) = 0. Hence o(v)' = o(v), giving a contra-
diction. 1In case (ii), y' = n+l, o(y) = n, o(y) = n+tl = o(y"),
another contradiction. Suppose n>0. Then suppose deg (y) = s.

= AT 7
y=v (El*... Er)

= v~(§l*.ﬁ.*ﬁr)-(l*...*s);
y = V'(Fl*...*Fr).

(O]
—

<
~

1]

6(v)+ (o(F)x...40(F )

o(y) ' = [e(v)-(e(Fx...x0(F )]
= o(v)-(o(F)x.. *e(Fr))'
= o(v)- (@(F JAE R ..*G(F ")

= o(v)- (OQF')* ..xo(ﬁ )), by the minimality of n.
y' = v (F *Fr)‘
= ° -”' -'
v (Fl*"'*Fr)‘ _
Let G, be a factorization of Fi, l<i<r; then (v, G

i
is a (hence the unique) factorization of y', and

l’-co



24
o(y") = o(v)-(o(F])#...40(F)))
= o(y)', a contradiction. Hence

o(x")
To show that eo(x'y) = o(x).0(y) for all x,y in M, it will
suffice to restrict x to phrases. If equality fails, let

o(x)', for all x in M.

n be the least integer such that there is a phrase x and
an element y in M, o(x-y) # o(x).e(y), and the factorization
F = (v, Fl"“"Fr) of x has depth n. Ifn =20, (i) F = (v),

v eV, v closed, or - (ii) F= (m), m ¢ N. 1In case (i),

(x+y) = x, hence o(x-y) = o(x). Since ¢ is conservative
on V, deg (0(x)) = 0, hence o(x)-0(y) = o(x) = o(x-y),
a contradiction. In case (ii), suppose y = NEEEERE AW
for some integer k>0, where y; are phrases, l<i<k. Then

Xx.y =y_, where m = m(mod k). o(x-.y) = o(y_).
m m

o(x)-0(y) = m-Lo(y)] m-[@(yl)*...*@(yk)]

oly_)
m
o(x+y), a contradiction.

i

]

If n>0, o(x.y) @[v-(ﬁi*...*F})~y]

e[v-(ﬁl-y*...*ﬁf-y)];
let G, be the factorization of F 'y, l<icr. Then

(V’ Gl’lll
Xy, and

’Gr) is a (hence the unique) factorization of

e(x-y) e(v)~[e(§1)*...*o(6;)]

e(v)-[e(Fi-y)%...*(F}-y)]

e(v)-[o(ﬁi)-@(y)*...*@(Ff)-@(y)J
e(v)-[e(?l)*...*e(ﬁr)]-e(y)

i

by the minimality of n,

o(x)-o(y), a contradiction.
Hence for all x,y in M, o(x)-o(y) = o(x-y), and 0 is a
homomorphism as required, and M is free.

Corollary 2.17: Every morphology is the interpretation of

some free morphology. Thus every morphology has a monotec-
tonic formulation.
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" Procf: Given a morphology M, with vocabulary V, let
S ='{§|V e V} be a set of distinct symbols. Let W =
(vl...n|ldeg (v) = n}, and let M' be the Lukasiewicz
morphology generated by W. The correspondence o(vl...n) = v
gives a conservative map on W, and the theorem above extends
o to the desired homomorphism.

For a morphology M, we will call the morphology M'
of Corollary 2.17 the free morphology assoclated with M.

Example 2.18: Now we can easily construct an example of

a homomorphism which decreases degree. Let M and N be the
Lukasiewlicz morphologies generated by V = {a, bl, cl2},

and W = {a, b, cl} respectively. Let o(a) = a, o(bl) = b,
o(cl2) = ¢l. Since M is free, 0 can be extecnded to a
homomorphism which decreases the degree of bl and clZz.
Example 2.19: It is worth pointing out that it is necessary
to make the restriction on the vocabulary of Lukasiewicz
morphologies that if al...n and bl...r are in V for n,r>0,
then a # b. TFor consider the linear morphology M generated
by V= {sl12, sly, al, a}. V is not monotectonic, since the

expression "saa" has factorizations F1 = (sl1l2, (a), (a))

and F, = (sl, G2) where G, = (al, (a)). Since V is re-

duced, then by Theorem 2.13, 1f M 1s monotectonic, V must

be; hence M is not monotectonic, not free, not Lukasiewicz.
Example 2.20: This example shows that not every submorphology
of a free.morphology is free. Let M be the free (Lukasiewicz)
morphology generated by V= {sl2, al, b}. Let A be the
submorphology generated by W= {s12, salb, ab, bl}. Note

that W is a vocabulary, each of whose elements is in M.

But W is not monotectonic, for:
sabb = s12¢(ab#%b)
= salb«b

Hence sabb has two factorizations, and M is not free.



CHAPTER III

GRAMMATICAL SETS

Half-ring grammars. Let C, K, and S be symbols called

composition, concatenation, and shift, respectively. Let A

be a finite alphabet of symbols distinct from C, K, and S.
A contains a subset W of terminals; the other elements are
called variables. For any set B, we define T(B), the set of
terms over B, as the least set T such that

(1) BeT.

(i) If t e T, St ¢ T.

(iii) If t, u e T, Ctu ¢ T,

(iv) If t, ue T, Ktu ¢ T.

(Juxtaposition here denotes juxtaposition.)

We are interested in subsets of T(A), generated in a way we

explain next.

Some familiarity with context-free languages [7] will
be assumed. However, for completeness a definition is
included. The notation differs slightly from that in L773.

A context-free grammar is a 4-tuple G = (V,I,P,0),

where (1) V is a finite alphabet of variables.
(i1) <t i1s a finite alphabet of terminals.
(iii) o € z.

(iv) P is a finite colléction of ordered pairs
called rewriting rules (also called pro-
ductions) of the form o+B, where o e V and
B e (Vuz)*,

[Definition: For any set of symbols B, the Kleene closure
of B, denoted by B¥, is defined as follows: B° = {e},
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where e denotes the empty string of symbols; Bl = B; for

n>1, BY = B-B" = {xy|x ¢ B, y ¢ B*7'}. Then B* = U "
When we wish to exclude the empty string, we write B+ =
u_gh ’

We define the relations » and = for x,y in (VUZI)*¥
as follows:
(1) x»y if x = wav, y = upv, and o+ ¢ P, for
some u,v ¢ (VUZL)¥,
(2) x=y if there is a finite (possibly empty)
sequence X = Xp,XqyeeesXy =Y such that for 0<i<k-1,
X175 41
Then the context-free language generatsd by G is

defined as the collection of strings L(G) = {x in I¥|o%x}.
If, for any strings‘of symbols x and y of variables in

V and terminals in I, we have x=y, then we say that x

yields y. Any sequence X = Xo,xl,...,xk = y satisfying

(2) is called a derivation of y from x. If Xg = 0y then

we will often call the sequence simply a derivation of y.
The integer k 1s the length 6f'the derivation. A leftmost
derivation is a sequence satisfying (2), with the added
property that 247441 by the application of a production
to the leftmost variable appearing in X5 for l<i<k-1l.
It is well-=known that, in any context-free language, if x
yields y, then x yields y by a leftmost derivation. Hence
proofs will often consider only leftmost derivations.
Suppose that

(*) X = Xy~ X

ces —3X, = §
by 1oy Rk

is a leftmost derivation, where the pj represent the pro-
ductions applied at eagch step. Then suppose that for some

X, . > L, = i e le
Xy, some x1+j’ Whére J>0, % uav, where o 1s the leftmost

i
terminal in Xi and

X, T UQAV coed UZ. TV ommend uzz'v.;...___.—.;”z v o= X

g i+1 T Pigp Pisj 4 1+
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Then we will call the derivation

(¥%) O e L D T H,., ™D Z
Piy1 T Pigp @ Piyy

a subderivation of (#¥). We remark that (¥*) is also a
leftmost derivation.
A half-ring grammar G-is a context-free grammar

satisfying, for some finite alphabet A, where WA,

(1) £ = Wy{C,K,S}.

(i1) V = AW.

(iii) for each production o+f in P, g ¢ T(A).

From now on, grammar will mean half-ring grammar, and

since the symbols C,K,3 always appear in I, we will denote
G by the 4-tuple (V,W,P,0), where it is understood that
Wuy{C,K,S} = £. We will call L(G), where G is a half-ring
grammar, a recognizable set. A string in G will be any

finite sequence (represented by juxtaposition) of elements
in Vy Wy {C,K,S}. A terminal string will consist only of
elements in Wy {C,K,S}.

The generic algebra . PFor any positive integer n,
let W, {wl,...,wn} be a collecticn of distinct symbols.
Let J = T(W ). Then 9& = (Jn,ﬁ,f,§) is the generic alge-
bra on n symbols, where C,K are binary operations and S

is a uaary operation, defined by

for to, t, e I, c(tl,t2) = Ct,t,
K(tl,t2) = Ktltz
s(tl) = Stl.

This is the algebra, unique up to isomorphism, of which
every algebra of the same species and generated by a copy
of Jn is a homomorphic image. Where no confusion will
result, we will not differentlate between the symbols for
the operations C,K,S and the symbols C,K,S. Note that if
wn is the collection of terminals for a grammar G, then
L(G)CJn.
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Grammatical sets. Now let M be a morphology, and let

B = {bl,...,bn}, n>0, be an ordered collection of phrases
in M, Let ﬁ;wn+B be the one to one correspondence between
W and B, such that ﬁ(wi) = b, for l<i<n, Let n:Jn+M be
the (unique) homomorphic extension of f such that

(1) nCwy) = flw,), 1.

(11) n(Ct t,)

<

n(tl)'n(tg), for all t,,%,

l’tZ € Jn'

e J .
n

(1ii) n(KtltZ) n(tl)*n(tz), for all ¢

(iv) n(St) = n(t)', for all t ¢ Jn.
Then given any grammar G, the image of L(G) under
(denoted nL(G)) will be called the grammatical set (g-set)
generated by G in the pair (M,B)..

An alternative formulation. The use of the term

"recognizable set" is motivated by a paper by Mezei and
Wright [1967]. They define a recognizable set in J, as
the union of congruence classes of some finite congruence R
on 9&' As a'special case of their main result, we have the
important fact that the sets L(G), where G 1s a mdrphology
grammar whose set of terminals W has cardinality n, are
precisely these recognizable subsets of Jn. We will use
this fact repeatedly.

It will often be convenient to use, rather than a

1T of
. i'i=1
sets which are the congruence classes determined by R. We
itself a (finite)

congruence relation R itself, a collection R = {C

. . L PPN 4
will call the partition R = {C,},_,

congruence on Jn ir

(1) g =.Y c.

(2) Cn Cj = ¢, for l<i<j<r.

(3) for all i, there is a J, such that for all x
in Gy, Sx e . | |

(4) for all pairs (i,j), l<i<r, 1l<j<r, there is

a k such that for all x e C;, for ally ¢ Cj’ Cxy e Ck.
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(5) for all pairs (i,j), l<is<r, 1l<j<r, there is
a k such that for all x € Ci’ for all y ¢ Cj’ Kxy ¢ Ck’

The congruence relation assoclated with R is, of
course, defined by: xRy if and only if there is an i,
l<i<r, such that x e C; and y e Cy.

As an immediate consequence of this equivalence, we
know that our recognizable sets in Jn are closed under
finite intersection, finite union, and complementation with
respect to Jn.

Again as a special case of Mezel and Wright's results,
every non-empty g~set can be generated by a grammar G =
(V,wn,P,o) satisfying:

(1) If o»B is in P, a # o, then B has the form
(1) W l<j<n
or (ii) Cyé, vy, 6 ¢ V
or (iii) Xyé, y, 6 ¢ V
or (iv) Sy, y ¢ V.
(2) If o e V, there is an x ¢ T(wn) such that
e Xx. A grammar with this property is called
reduced. )
(3) Suppose L(G) = 1<g<k €, for some k<r, where
R = {Cl""’cr} is a congruence on J+ Then
V = {al’aE”"’an’U}’ where, for l<izr,
C; = {x in T(w)\ui=$x}, and ¢ appears in
precisely the productions ora 1<i<k.
Such a grammar will be said to be in best form.
Notational conventions. We fix some notation, in order to
avoild répeated qualification. é;will denote a g-set in a
pair (M,B). Without explicit mention, we will associate
with § a recognizable set L(G), where G = (V,W_,P,0), as
well as a congruence R = {Cl""’Cr} such that 4= n(L(®)) =

(P O

S

All symbols will be subscripted and superscripted as

necessary, for example Rl = {C%,...,Ci} and Gl = (Vl,wn,Pl,cl).
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If A = {Al""’Af} and B = {Bl,..
of sets, then we denote by AAB the collection fAin Bj[liiir,
1<jzn}.

If A is a finite set, |A| denotes the cardinality of A.

In a morphology (M,#,+,”,m), we will denote = by 1,

,,Bn} are cclliectlons

m° by 2, etec.

Lemma 3.1: If J.is a g-set in (M,A), and B is an ordered
set contalning preclsely the elements of A, then J is a
g-sct in (M,B).

Proof: Let @:wn+wn be the one-to-one correspondencg such
that for all wi in Wn, @(wi) is that elementwwj such that
ai = bj‘ Let ¢:Jn—>Jn be the unigue homomorphism determined
by ¢. In fact, ¢ is an:isomorphism. Let R = {Cl""’cr}
be the congruence associlated withj. Then define the
partition R' = {Dl,...,
x = ¢(y) and y ¢ Ci' Then R' is a finite congruence on Jn’

= U = U
and i 4 n(l_giik Ci)’ then 4 n(liiik Di)'

We will henceforth, with this lemma as justification,
assume any convenient ordering of a set A over which a

Dr} by: X € Di if and only if

grammar is generated. The next lemma allows us the addi-

tional 1iberty of embedding A in a larger set. ,
Lemma 3.2: If 4 is a g-set in (M,B) and B~D, where D is

a - finite set of phrases in M, then lis a g-set in (M,D).

Proof: Let 4 = n(l<y<k Ci)’ where R = {Cl”"’Cr} is a

congruence on J_, and B = {b;,b ..,bn}. Suppose D has

2’
m elements., By Lemma 3.1, we may assume without loss of

generality that D = {bl’bZ"‘"bn’dn+1""’dm}' Define a
. 1 = -

partition R {Cl""’cr’cr+l} of Jm’ where Cr+l

Jm\{ligir Ci}. It is easy to see that R' is a congruence

on Jm’ when we notice that C consists precisely of those

r+l
terms which contain at least one symbol P for i>n. Then

since & = n(l<¥<k CQ,JA is a g~ set in (M,D).
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Theorem 3.3: If 11 is a g-set in (M,C) then jl Ujé,is a
g-set in (M,ByC).
Proof: By Lemma 3.2, both él_and 42 are g-sets in (M,B ycC).
- - 1 -
Suppose |ByC| = n, and 31 = n(lg{ikl C;), where Ry =
1 1 _ 2 - L2 2
i,...,crl},,j2 - n(liyikg ¢}, where R, {cl,...,crz},

are congruences on Jn. Then let R3 = Rl R2;

{C

and R1 and R2

R, 1s a finite congruence on Jn’

3

lfigkl

ljjir2

l<i<r
REhS 2
[cl4c51 v Y el e®s

Let =
33 n 1N~ 1<) <k, im0

Then J3 is-a g-set in (M,ByC), and
b= 08y, oD YUY o = d Yy
In other words, the collection of g-sets in a morphology
M is closed under union.
For any sets A, B in a morphology M, we make the following
definitions:
(1) The composition of A and B is the set
CAB = {x+y|x ¢ A, y ¢ B}.
(2) 'The concatenation of A and B 1s the set
KAB = {xzy|x. e A,y ¢ B}.
(3) The shift of A is the set
SA = {x'|x ¢ A}.
Theorem 3.4: The collection of g-sets in a morphology M

is closed under composition, concatenation, and shift.

Proof: Letj1 and é% be g-sets in M. By Lemma 3.2, we may
assume that each is a g-set in (M,B), for some B = {bl,...,bn},
with associated congruences Rl,R2 on Jn. We define a par~

tition A ='{A1,A2,A3,Ah} of Jn’ where

Ay = {Cxylx, v ¢ Jn}
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A, = {Kxylx, y ¢ Jn}
A3 = {SXIX € Jn}
Au = Wn.
- ] - 1 2
Then A, 1<icr, Dij’ where Dij {Cxy|x ¢ Cis ¥ e Cj}’
1<jzr,
_ _ 1 2
A, = ligirl Eij’ where Eij = {Kxylx ¢ Cis ¥ e Cj}’
1i3ir2
A, =, Y F,, where P, = {Sx|x ¢ siy.
30 lddzzey 0 i 1
Define R3 by:
R3 = {Dijlliiirl’ 1iJ§r2}U {AZ’AS’AN}' R3 is a congruence

- ondJd_, and
n

j 1iiik1
3= D is precisely 05122.

Define RM by:
Ry, = {E1J|1§iirl, 1i5ir2}U {Al’A3’AH}' RH is a congruence

on Jn’ and

= n| - 1lg is the g-set Kjlgg.

Define R5 by:
R5 = {Fill_f_if_rl}u (Ap, 85,81, R5 is a congruence on J ,

and

= U - .
X5 n(liiikl Fi) is the g-set Sﬁi.

The next lemma is used repeatedly in the proofs of
Chapter 4. It is a slight variant of an exercise'in [7].
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The proof is straightforward and is omitted.

Lemma 3.5: Suppose, for a grammar G, for strings x,y in G,
x ylelds y by a leftmost derivation

(%) X = 2.2 +...+z; =y.

0 "1
Then: (1) if x = Cab for some strings a,b, then y

Cde
for strings d,e, such that a yilelds d and b yields e, each
by a subderivation of (¥).

(2) if x = Kab for some strings a,b, then y = Kde
for strings d,e, such that a ylelds d and b ylelds e, each
by a subderivation of (¥).

(3) if x = Sa for some string a, then y = Sd for some
string d, such that a yields d by a subderivatlion of (%¥),.

For a set A in a morphology M, we define the set T(A)

of terms over A in M as the least set TeM such that:

(2) If ty,t, €T, then t -ty ¢ T.
(3) 1If tl,tz e T, then tl*t2 e T.
(4) If t, € T, then t! ¢ T,

1 1
Theorem 3.6: If él is a g-set in (M,B), then the collec-
tion T(Xl) of terms cver Xl is a g-set in (M,B).

Proof: It suffices to show that if L(G) is a recognizable
set in J'n, then so is T(L(G)). Let G = (V,W ,P,0) be in

best form., Let G' = (V,Wn,P',c), where

P' = Py {o+Coo, o+Koo, o+So}.

We will show that L(G') = T(L(G)).

To show that T(L(G)) «L(G'), we show that L(G')
satisfies conditions 1 through U4 above.
(1) L(G) «L(G'), since PcP"',

(2) 1Irf 5%, € L(G'), then oFA by, oty Hence
by applying the production ¢+Coo, we have
c—rCocs@Ctlf;z, 50 Ctit, ¢ L{G").

(3) Similarly, if tl,t2 e L(G'), then we have

u+Kco=?Ktlt2, S0 Ktlt2 e L(G").
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(4) And again, if t ¢ L(G'), then aé?t and we
have the derivation ¢»Soz St, so St e L(G').
Next we show that L(G') cT(L(G)). Suppose there is
an x ¢ L(G'") which is not in T(L(G)). The proof is by
induction on m, where m is the least integer such that
there is such an x, and x has a derivation of length m.
Suppose m = 1. Then the derivation is o—»w(j = x for some j,
1<j<n, and some production in P, since otherwise x contains
nonterminals and is not in L(G'). Hence x e L(G) €T(L(G)),
a contradiction. Suppose m>l. Then we have a derivation,

(%) oﬁiaxl—;g X, 7;? ce F;*Xm = X,
where the ﬂi are productions ih P', Since G is in best
form, either
(1) Ty € P, in which case 7, = o»u for some a # o,
or (2) Ty £ P, in which case m, = o*Coo, o+Koo, or
o+30.

In case 1, because of the form of G, (in particular, ¢
does not appear on the right hand side of any production),
no production not in P can be appliéd, and x is in L(G), a
contradiction.

So'case (2) must hold. If Ty
X = Cylyz, where ¢ yields ¥q and ¢ yields Vo by subderiva-
tions of (*). Each of these subderivations has length no
greater than m-1, By the induétion hypothesis, Yy ﬁnd Yo
are in T(L(G)). Hence by property (4) of T, Cy,y, is in
T(L(G)), a contradiction. An analogous argument holds if

Ty o+Koo or ¢+So. Hence we have a contradiction, and no

such m can exist. Therefore L(G') c¢T(L(G)). This completes

the proof. N
Next we show that the morphology homomorphic image cof

a g-set is a g-set. ‘

Theorem 3.7: For any morphologies Ml’ M2, if Xl is a g-set

in (Ml,Bl) and h:M,-»M, is a homomorphism, then.h(ﬁl) is a

1772
g-set in (M2, h(Bl)>’

= ¢g+Coo, then by Lemma 3.5,
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Proof: Note that since h preserves dimension, h(B,) is a
finite set of phrases in M2' Suppose IBll = n, h(Bl) = qm.
Let Rl = {Cl""’cr} be the associated congruence on Jn’

4, n(liy C,). Let h(By) = {eg,evesopdy W = {Zq,00s2 )3

<k 71
n’:Jm+M2 the homomorphism such that n’(zi) = Cys 1<i<m;
let y:J +J be the (unique) homomorphic extension of the
mapping w:wn+wm such that, for wJ € wn, 1<j<n, n'.¢(wj) =
h(wj). For 1l<k<r, denote w(Ck) by D Let E, =

k* 0
{x in Jmlx £ w(Jn)}. For each non-empty subset I of
{1,2,...,r}, let E; = {x in Jm|x is in precisely the sets

~ c
C; for i e I}. Then R, = {Eg}y (B |I I#y (15250503,

1s clearly a partition of Jm' To show it 1s a congruence:

(1) Suppose x ¢ EO and y € EI for some I =
{nl,...,nk}. Then Cxy e Ej; 1if not, there is a 2z =
Cz,z, in J  such that v(z) = Cxy, w(zl) = X and W(ZZ) =y
But then x ¢ EO’ a contradiction. A similar argument shows
that Cyx, ny, Kyx, and Sx are in EO'

(2) If x e.EC and y ¢ Ej, again Cxy, Cyx, Kxy, Kyx,
- and Sx are in E0 by the same argument.

(3) Suppose X ¢ Ers J e EJ. Then we claim that
Cxy e Ey, where H 1s determined as follows: for l<n<r,
n el if and only if there is an i e I and a jJ ¢ J, such
that for all ¢t ¢ Ci’ for all u ¢ Ci’ Ctu ¢ Cn‘ Note that
Cxy € EO is not possible, since x and y are in h(Jn).
Suppose n £ H. Then x ¢ w(Ci), y s_w(CJ) and Cxy e w(Cn).
Suppose Cxy ¢ w(cn). Then there are elements Zy 22y in Jn
such that Cxy = w(Czlzz), X = w(zl), y = w(zz). Suppose
Zq € Ci’ Z, € 035 then 1 ¢ I, J ¢ J, and n ¢ H. So R2 is
a finite.congruencg on Jm.

Let £2 = n’(I {1’2,U k}DI)' $2 is then a g-set in

LL 2 )

(Mz’h(B1)>' To see that hn = n”y, it suffices to note that
for w, ¢ Wn, hn(wi) = n‘w(wn) by the definition of y. Also,
it 1s clear that
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1€1,7,..., 00 7 a0

Hence we have

hn( c.)

h(sl) 1_<_iik i

= n‘w(liiik ¢,)
e 1&5{...,k Dp)
= 22,

Given a recognizable set L(G) in Jn’ a substitution
1(L(@)) is defined as follows: To each Wy
a recognizable set L,. 1t 1s a set map which corresponds
to each term t in L(G) the collection of terms in J, formed
by making all possible substitutions of occurrences of terms
;oY terms in L . Then t(L(G)) = , é“&(G)T(t)' It is a

well-known result in context-free languages that recognizable

in wn, correspond

w

sets are closed under substitution.

A morphology M is finitely generated if it has a finite
vocabulary V. In the remainder of the paper, by a morphology
we will mean a locally finite, finitely generated morphology,

and by a vocabvlary, a finite, initialized vocabulary, unless
specifically stated otherwise.

Suppose we want to discuss, for a fixed morphology M,
all g-sets in (M,A) for all finite collections of phrases A.
The next lemma allows us to restrict attention to g-sets in
(M, VU{1}), where V is a vocabulary for M. In what follows,
we make a flxed ordering of VU{1l}, as follows: VU{l} =
{Vl’vz""’vn~l’1}’ so that the assoclated homomorphism
ru9%+M is specified by: n(w;) = v,, l<i<n-1

n(w ) = 1.

Lemma 3.8: If M is a morphology with vocabulary V, and 3
is a g-set in (M,B), then 4§ is a g-set in (M, VVU({1}).
Proof: Since V is a vocabulary, the map n:9h+M is onto.
Hence for each b ¢ B there is a term t in Jn such that
n(t) = b. Suppose B has m elements, and A= n(L(G)), where
G = (U,wm,P,o) is a grammar in best form on Jm.
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Define a grammar G' = (U,wm,P',c), where P' contains
(1) all productions in P except those of the form u+wj,
Lej<m.
(2) For each production in P of the form a+wj, where
n(w,) = b, the production a+t, where n(t) = b.

Let 4 = n(L(G)). It is easily seen that s= &,
Theorem 3.9: Let M be a morphology with vocabulary V.

Then every submorphology M' of M is a g-set in (M, VU {1}).

Proof: Let V' = {ul,...,um_l} be a vocabulary for M'.
Then let n:Jn+M be the homomorphism such that n(wi) = U,

l<i<n-1, and n(wn) = 1, Then R = {Jn} is a congruence on
J,, and n(J ) < M'. Hence M' is a g-set in (M, V' Uiy,
The theorem then follows from Lemma 3.8.

Theorem 3.10: Let M be a morphology, with vocabulary V.
Every g-set 4 in (M, VU{1}) is the homomorphic image of a

g-set in a free morphology M.

Proof: Let M', with vocabulary V', be the free morphology
associated with (M,V) constructed in the proof of Corollary
2.17, and let 0:M'»M be the homomorphism of that corollary.
Note that there is a one to one correspondence under ©
between elements of V' and V, and 6(1) = 1. Associated
with<£ is the congruence R = {Cl"'°’cr} on Jrl (where

V has n-1 elements), and the map n:: Jn+M determined by
n(wi) = V., l<i<n-1 and n(wn) = 1., All we need to do is
define n”:J_-»M' as the (unique) homomorphism such that
n(w,) = e ~(v,) nV', for l<i<n-1, which is precisely one
element since 0 is 1-1 on V'; and n’(wn) = 1. Thenéf' =
n'(. U C,) is a g-set in M', which is free, and o({') =4,

1<i<s i
by the construction.

Examples. Let us now look at soﬁe examples of the generation
of grammatical sets. |

Example 3.11: Let M be the linear morphology generated by

A = {(alb), (ab)}. Let G = (V,W2,P,c) be a grammar gen-

where n(wl) = (alb), n(we) = (ab),

erating L(G) in Iy

V = {g}, and P contains the productions
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o+3wlo

9,
Then L(G) consists of strings of the form
Cwlcwl..,Cwlwz, for n>0,

and (L(G)) is the collection of elements in M
(alb)+(alb)+...+(alb)-(ab) = aa...a bb...b, for n>0.
N——
n n+l n+l
Hence we have generated the context-free language
{anbnlnil}, as a g-set in (M,A).
From now on, when no confusion will arise, we will
substitute for the symbols L wn in the productions of
a grammar G, the expressions n(wi) of M.
Example 3.12: = {anbncnln>0}. This language is well-

known to be context-sensitive, but not context-free. Let

M be the linear morphology generated by A = {(alb2c3),
(al), (b2), (e3), (a), (b), (e)}. Let G = (V,W;,P,0)
be the grammar on J7, where V = {0, o} and P contains

(1) o=+C(alb2c3)a
(2) o+CKK(al)(b2)(c3)a
(3) o~KK(a)(b)(c).
Then L(G) consists of strings
C(alb2c3)CKK(al) (b2)(c3)CKK(al) (b2)(c3)...CKK(al) (b2)(c3)KK(a)(b)(c)
_ v
T~ !

n
for n>0, and = n(L(G)) = ta"p"c™n>0}, is a g-set in (M,4).
Example 3.13: = {abazb, abaaba3baub,,=,}, also known not

to be context-free. Let M be the linear morphology gen-
erated by A = {(abazb),(galbaalb),(aal),(aa),(abaab)}"

Define G = (V,WS,P,o) on J. by: V = {o,y}, P contains

5
(1) s+aba’b

(2) o~>C(2albaalb)y

(3) o~CK(aal)(2albaalb)y
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(4) y-K(aa)(abaab).
Then n(L(G)) = 4, a g-set in (M,4).
Example 3.14: Let M be any morphology, with blanks denoted

by 1,2,.... Let A= {1}. Let G = (V,wl,P,o) be the grammar
on Jn defined by: V = {¢}, P contains:

(1) o+K1lSc

(2) o-l.

Then L(G) contains all strings of the form K1SK1SK1lS...K1S1,
Example 3.15: J = {a|n>1}. Let M be the linear morphology
generated by A = {(al),(a)}. Let G = (V,W
V = {o,a} and P contains:
(1) o»C(al)o
(2) o»>(a).
Example 3.16: 4 = {(1), (11), (111),...}. Let M be
generated by A = {(1), (12)}. Let G = (V,wg,P,o), where
V= {o,a}, and P contains:
(1) o>C(12)a
(2)  «rCK(1)(12)a
(3)  ax(l)
(4)  o~(1)
Example 3,17: j'= {aqlq not prime}. Let jl = {an|n>l},

2,P,o), where

which 1s generated as in Example 3.15, except that pro-
‘duction (3) is eliminated. Let 4, = {(11),(111),...},
which is generated as in Example 3.16 except that pro-
duction (4) is eliminated. Then Cf f, = {a™[m, n>1] =4,
and the proof of Theorem 3.7 provides a way of getting the
necessary recognizable set.

Example 3.18: 4 = 1 (1), (32), (123),...). Let M be the
linear morphology generated by A = {(1), (12)}. Let

G = (V,WZ,P,G), where V = {o,a} and P contains:
(1) 02C{12)
(2) o»K(1)C(12)S
(3)  «>K(1)(2)
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(4) o+(1).

Regularity. We would like to define a collection of par-
ticularly well-behaved g-sets in a morphology M, which we
will call regular. In the case of phrase structure lan-
guages, the good behavior of regular sets is a consequence
of the fact that they represent the union of congruence {
classes of a finite congruence on the free monoid (under
juxtaposition) generated by the set of terminals. We will
use a closely related idea. Suppose M is finitely geu-
erated, with vocabulary V = {vl,...,vn_l} and we consider
Jn’ with associated homomorphism defined by, for W, o€ Wn,

n(wi) = vy, l<icn-l

n(w) = 1.
Then n:Jn+M is clearly onto. For a g-set S in (M, VU{1}),
S is the union of congruence classes of a finite congruence
on M if and only if n'l(S) is a recognizable set in J . It
will be fruitful to choose certain recognizable subsets A
of Jn’ and define a notion of A-regularity as follows:

Let M be a morphology with vocabulary V = {V15"”Vn—l}’
and Jn, n as above., Let A be a recognizable set in Jn‘
Then a g-set in (M, VU{1}) is A-regular if

(1) Scn(A)

(2) n"H(S) Na is a recognizable set in J . Then we
have:

Theorem 3.19: Let L be the collection of A-regular g-sets

in (M, VU{1l}). Then L is closed under finite intersection.
Proof: Let Sl and 32 be such g-sets. Then

™S nalnln ™M (8,) nAT = [n7H(5)) an

n'l(sl ns,) na

is recognizable, since it 1s the intersection of recognizable
sets. Now n[n'"l(s1 ns,) naj Csl ns, Nn(A) = S, NS,, since
Slfi(A) and S, ©(A). Suppose that x e 8, ﬂSE, Then x ¢ n(A).
Hence there is a y in A such that n(y) = x. Since

-1 -1 ~1
y €1 (S1 ﬁSZ), y e (n (S1 ﬁSE) NA, and x ¢ nln (S1 n82) Nal.

-1<

S?_)]nA
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“L(s.Nns,)Nal; so s, NS, = nln"H(s. NS ) NAY,
Hence Slfﬁsgffn[n (Slf182)f7A], so 8, M3, nln (S1 S2) A]?

hence is an A-regular g-set in (M, VU{1l}). The ftheorem
follows easily by induction.
Theorem 3.20: Let L be the collection of A-regular g-sets

in (M, VU{1}). Then L is closed under finite unicn.

Proof: Let Sl and 55 be such sets. 81‘JS2 is a g-set by
Theorem 3.3. SlUsgcn(A), since Slt‘:n(A) and Sgcn(A). To
see that 81{182 satisfies property (2),

-1 -1
[n7H(s,) Un™H(5,)1NA

[nh(s)) NATULn™H(s,) Nal,
which is recognizable since recognizable sets are closed

-1
n (S1 US2) nA

1]

under finite union., The theorem then follows easily by

induction.
Theorem 3.21: If Si and S2 are g-sets in (M, vV U{1}),
Sl is Y-regular, and 82 = n{A), for some recognizable subset

Aof Y, then S, NS, is a g-set in (I, vU{1i}).
Proof: Since Sl is Y-regular, Sl = n[n—l(sl) AYJ, and
n'l(Sl) NY is recognizable. Hence n"l(Sl) NY NA is

recognizable. Then

53

nln™(S)) NY nAJ €S, An(¥) An(A)
= Sl nSE'
If x e 8 082, then there is a y ¢ A such that x = n(y).

Since AcY, n(y) ¢ Y. Since n(y) ¢ Sl’ y € n'l(Sl), Hence

y e n‘l(sl) NY N4, and x & n{n"7(8,) AY AAL. So 50 S, &5
3 is,
Theorem 3.22: If S is a Y-regular g-set in (M,B) for any

hence Sl 082 = 83, and is a g-set since S

recognizable set Y in Jn, then n(¥Y)»S is a Y-regular g-set
in (M,B).
Proof: Since recognizable sets are closed under intersection

L(8)1 ¥)1 NY is recognizable.

and complementation, X = [Jﬁ\(n—
We claim that n(X) = n(YN\S. If y is in n(X), there is a
t in X such that n(t) = y. Since t is in ¥, y = n(t) is in

n(Y). Suppose y is in S; then t is in n-l(S) Y and hence
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not in X, a contradiction. Hence y is not in S, so y is
in n(¥)\S, and we conclude that n(X) en(Y)\S. On the other
hand, if y is in n(Y)NS, then y
if t is in n Y(S) AY, then n(t)
hence t is in JN(n"1(8) NY), s0 t is in X and y is in n(X).
Hence n(YNS @n(X), and n(YNS = n(X), as claimed.

To show that n(Y)\S is Y-regular, first it is obvious
that n(YNS cn(Y). Now

nT L (INS)INY = n7Mn(x)] NY.

Suppose t is in n_l(n(X))fWY, and t is not in X. Then

t is not in Jn\(n—l(s) Ny). Hence t is in n_l(S)\Y; but

then n(t) is in S, which is not possible since

n

n(t) for some t in Y,

f

y is in S, a contradiction;

T In(X) NYT = n(X) = n(INS,
a contradiction. Hence t must be in X, and n_l(n(X)) NYeX.
Since X €Y, and XCn—ln(X), we have ch_l[n(X)] Ny. So
X = n_l[n(Y)\S] NY, and since X is recognizable, n(¥)~g
is Y-regular.
Factorizations. Let M, V, 9'}1’ n be as in the previous

section. We define recursively a recognizable set FV (or
simply F, where V is understood) intgn, called the V-
factorizations (or factorizations) of NIir19Yf F will be
the least subset of n such that:

(1) W, eF.

(2) {8S...§p, |r>0} €F.
r

(3) For l<ismn-l, if deg (n(w,))
are in F, then Cwi EE;;;EP

r>1 and tl,,.b,tr

lt2"°tr is in F.
r-1
(4) For l<i<n-1, if deg (n(w;)) =1, and ¢t is in F,
then Cwit is in F.
We remark that n(F) is precisely the collection of phrases
in M, since there 1is a natural correspondence between the

V-factorizations in;}n and those defined earlier; namely,
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for a phrase x in M, with V-factorization G = (Vi’G1’°°°’Gk)’

there is a term t = CViKK.acKtlt .a.tr in F such that n(t) = x

2
and n(tj) = Gj’ 1<j<r.
Theorem 3.23: The collection of V-factorizations of M in

9& is a recognizable set.
Proof: Let R contain the following sets:
(1) By = {w,}, for l<i<n-1.

(2) B_ = {3S...5 w_|k>0}
n \.\rdn—

k
(3) For l<i<n-1,

{CwiKK...Ktlt2..‘tr|t e F}, if degree n(w,) = r>1

r-1

{Cwitlt e F}, if degree (n(wi)) = 1.

() Let s

max {deg (n(wi))]liiin—l}. Then for 2<jc<s,

D {KK...Kt ¢ ..,tjltl,t2,o..,tj e F,

NG
j-1

= U \J
(5) B =0 NG, B UG 6 UGS PP
It is easy to see that R is a partition of , and that F =
DI N TI S :
l<i<n 71 l<i<n-1 717"
is a congruence. The tables below show the results of appli-

cation of the operations C, K, S to set in R, and are trivial

We need only ascertain that R

to verify.

X SX

Bi,liiin—l E

B B
n n

Ci,liiin—l E

Dj’ 2<j<s E

E E




J n
B> Ci» if Cys if
l<ian-1 deg n(wy) =1 deg n(wy) =1
E, otherwise E, otherwise
Bn E E
Ci’ E E
l<i<n-1
Dj’ E E
22jzs
E E E
C Cj’ 1<j<n-1 Dys 2<k<s
Bi’ Ci’ if Ci’ if
deg n(wi) =1 deg n(wi) =k
1<im-l E, otherwise E, otherwise
Bn E E
l<i<n~1
DJ. s E E
2<j<s
E E E
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K Bj’ l<jen-1 Bn
Bl’ D2 D2
l<i<n-1
Bn D2 D2 !
Ci, D2 D2
l<i<n-1
Dj’ Dk+l’ if k<s Dk+1’ if k<s
2xjzs E, otherwise E, otherwise
E E E
K Cj’ l<j<n-1 Dk’ 2<k<s E
Bi’ D2 E E
l<i<n-1
Bn D2 E E
E
Ci’ D2 E
l<i<n-1
Dj’ Dk+l’ if k<s E E
25jzs E, otherwise
E E E E

We will examine the F-regular g-sets in more detail in Chapter
4, when we consider g-sets in linear morphclogies.

Concaftenative depth. For terms in < we define concatenative

depth (K-depth) recursively as follows:

(1) X-depth (wi) =1 for w, e W_.

(ii) For tl’tZ € Jn’ K-depth (Ctl’t2) = max {K-depth (tl),
K-depth (t,)}

(iii) For ¢.,t

128, € Jn’ K-depth (Ktl,t

2) = max {K-depth (tl)’
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K-depth (t2), dim n(Ktlt2)}.
(iv) For t ¢ Jn’ K-depth (St) = K-depth (t).
A subset B of ﬂh has finite K-depth r if r is the least

integer such that each element of B has K-depth no greater

than r. If no such r exists, then B has infinite K-depth,

Theorem 3.24: For any integer n>1, the collection of terms
t in 9h such that K-depth (t) = n is a recognizable set in

.

n
Proof: For l<i, j<n, let C(i,j) = {t in an—depth (t) = 1,

dim n(t) = j}. Let D = {t in nIK—depth (t)>n}. Then R =
{C(i,3)|1<i, j<n} U{D} is a partition of ?h‘ To show that
R is a congruence oné}n
(1) If x e C(i;3), y € C(k,p), then Cxy ¢ C(m,j) where
m = max {i,k}.
(2) If x e C(i,J), Sx e C(i,3).
(3) If xe C(i,j), v ¢ C(k,p), then
(1) if j+p<n, Kxy e C(m,j+p), where m = max {i,k,j+p}.
(2) 4if j+p>n, Kxy ¢ D.
Corollary 3.25: .Let D = {nl,...,nt} be a finite collection
of integers. Then J = {t ¢ 9th—depth (t) ¢ D} is a
recognizable set in

Proof: Recognizable sets are closed under union.
We will need the notion of K-depth, as well as that
of the dimension and degree of a set in Chapter 4,
A subset B of a morphology M will be called r-dimensional

if r is the least integer such that each element in B has
dimension at most r. A set C in 0 is r-dimensional if r
is %he least integer such that, for each element x in C,
the dimension of n(x) is no greater than r. (Note that the
definition is unambiguous, since, for all the homomorphisms
q:9n+M which we use, the dimension of n(x) is the same.)

In each case, if no such r exists, the set is infinite-

dimensional.
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Analogously, a subset B of a morphology M (respectively,
the algebra }n) has degree r if r is the least integer such
that the degree of x (respectively n{x)) is no greater than
r for all x in B. Otherwise, B has infinite degree,

Ambiguity. We want to consider two kinds of ambiguity which
can arise in the generation of a grammatical set; the first,
which is analogous to the ambiguity arising in phrase struc-
ture languages, and is related to the properties of the
recognizable sets, we will call structural ambiguity; the

second, which has to do with the properties of the par-
ticular morphology we are dealing with, we will call
morphological ambiguity.

Let M be a morphology with vocabulary V = {vl,...,vn_l},
and let M' be its associated free morphology with vocabulary
AN {Vi""’vﬂ—l}’ and onto homomorphism ©: M'+M such that
e(vi) = v, for l<i<n~1. We will need the following fact.
Theorem 3.26: If n: n+M is a homomorphism, then there are

homomorphisms u:}n+ ' and 0:M'»M such that 6o = n.
Proof: Let @ be the homomorphism of Corollary 2.17. Let
o be the homomorphism determined by: for w in Wn’ let a(w)
be that element of the vocabulary V' of M' such that
0a(w) = n(w) in the vocabulary V of M. Then it is easy to
see that 0 and o are the required maps.
We will consider only g-sets over (M, V U{1}), where
V = {vl,...,vn_l} is a fixed ordering of V; consider
homomorphic images of recognizable sets irlgh, where
n:y%+M is determiped by n(w,) = v,, l<i<n-1 and n(w,) = 1.
Now suppose A is a recognizable set mqéhf We will
call A structurally unambiguous under n 1f the map a:9n+M'
is one to one on A. Otherwise A is structurally ambiguous
under n. A g-set 4 in (M, V U {1}) is structurally un-
ambiguous if there exist a structurally unambiguous recog-
nizable set A in 0Qn such that £= n(A). Otherwise, 4

is structurally ambiguous.
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A g—set,! in M will be called morphologically unam-
biguous if 4= OQ['), for some g-set J' in (M', V' U{1}).
Otherwise,<1 is morphologically ambiguous.

Theorem 3.2t If X'is a g-set in a free morphology M,

then<f is morphologically unambiguous.

Proof: If M is free, then by Theorem 2,16, the map

©: M'+M is an isomorphism. By Theorem 3.10, J= OQ!')
for some g-set<1' in M, and © is one to one on 4.
Theorem 3.28: If 4 is an F-regular g-set in (M, Vy{l}),
where M is any morphology with vocabulary V and F is the
collection of V-factorizations of M inézn, ﬂmaugfis struc-
furally unambiguous.

Proof: Since J is F-regular, J= n[n-l(j) nNF] =
eu[n~l(J)r)F], where n—lgg)r\F is recognizable. We note
that ¢« is one to one on F; for M' is free with reduced

vocabulary V'; hence each phrase in M' has precisely one
V'-factorization, and the V'-factorizations are in one to
one correspondence with the terms in F.

Corollary 3.29: If é7= n(A), where A is recognizable,
and ASF, then J is structurally unambiguous.

In the theory of context-free languages, a context-
free grammar is unambiguous 1f each element of the language

it generated has precisely one leftmost derivation; other-

wise it is ambiguous. A context-free language is unambiguous
if there is an unambiguous grammar generating it; otherwise
it is inherently ambiguous.

This’type of ambiguity is analogous to the structural

ambiguity defined for half-ring grammars and grammatical
sets. As a matter fact, we can simulate the context-free
generating process with a morphology whose semigroup under
composition is the free semigroup generated by a collection
of terminal symbols (whose composition is concatenation);
then the context-free languages are the g-sets generated by
using only composition rules. Then the usual amoiguity '
corresponds exactly to our concept of structural ambiguity.
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In Chapter U4, we will show that all context-free
languages can be generated as structurally unambiguous g-
sets in linear morphologies. The example which follows is
a context-free language known to be inherently ambiguous.

It can be generated as a2 g-set which is both structurally

and morphologically unambiguous.

Example 3.30: = {aibwbaibaj)i,jil} {aibwbajbajli,jil}.
Let M be the linear morphology generated by V =

{(1bwb1lb2), (lbwb2b2), (al), (a)}. Let n:}L‘»M be determined
by:

n(wy) = (lbwblb2)
n(w,) = (1lbwb2b2)
n(w3) = (al)
n(w,) = (a).

Let M' be the free morphology associated with M, with
vocabulary V' = {cl2, dl2, el, f}, where
6(cl2) = (lbwblb2)

8(dl2) = (lbwb2b2)
e(el) = (al)
e(f) = (a).

Let G = (U,wa,P,o) be the grammartmqjm such that U =

"{o,a} and P contains

(1) 0+Cw1K

(2) o+Cw2K

(3) a+Cw3a

(4) oWy
Then L(G) €F, hence is structurally unambiguous by Corollary
3.29, and n(L(®) =d.

However, morphological ambiguity remainsj for example,
consider the two elements Clewawaand CWEKWHWM of L(G). We
have

‘_,“(Clewqwu) = (cl2)«(ff)
= ¢ff

and Q(CWQKW&WM> = (dl2)-(f*f)
= dff;



but n(Clewuwu) = Oa(Clewuwu)
= o(cfrf)
= (lbwblb2)-(a%a)
= abwbaba

and n(ngKw“wu) = ea(szKwuwu)

= o(dff)
= (lbwb2b2)-(a%a)
= abwbaba,

so 0 is not one to one on a(L(G)).

Now we let G' = (U',WM,P',U) be the somewhat more
complex grammar on wu defined by: U' = {o,a,1}, where
P' contains:

(1) a+Cwla

(2) a+Cw3a

(3) G+Wu

(4) c+CwlCKquw3a
(%) o+CwlCKCw3awu
(6) o+Cw2CKWMCw3a
(7) o>Cw,CKCugam,
(8) O+CWlCKw30w3Ta
(9) 0+CwchCw3rw3a
(10) o+Cw2CKw3Cw3ru
(11) c+Cw20KCw31w3a
(12) T+CW3T

(13) 1w

3
It is tedious but straightforward to show that‘[ = n(L(®)),

G is structurally unambiguous, and © is one to one on
n(L(G)). Hence é is both structurally and morphologically
unambiguous as a g-set in (M,V).



CHAPTER IV
LINGUISTIC SETS

For linguistic purposes, it turns out that grammatical
sets are not precisely the objects we want to deal with.

In particular, Example 3.16 and Example 3.18 show that
g~-sets may contaln elements of positive degree. We may
think of these elements as well-formed, but only partially
formed sentences, since they contain unfilled blanks. For
example,

The cowpoke kicked his pony in the
requires the addition of, say, "morning," "rain," "corral,"
or "flank" to become a complete sentence, though its
structure so far 1s acceptable, as compared with

Cowpoke pony the the his in kicked.

which presumably we would not generate as an element of a
g-set at all. We want to restrict a linguistic set, then,
to those elements of a g-set which are "completely filled
in," that is, those of degree zero.

In our linguistic application, a sentence is a one-
dimensional element. A concatenation of two or more one-
dimensional elements may be thought of as a string of
sentences, or a paragraph.

In a morphology M, let E be the collection of elements
of dimension 1. We have this fact:

Lemma 4.1: If J is a g-set in (M,4), so isd N E.

Proof: Let R = {n-l(E), nnl(M\E)}. Then R is a finite
congruence cw18%f as shown by the tables below, which are
easily verified.
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c 2 H(E) "t (MNE)
nH(E) n-l(E) n_l(E)

n L (RE) "L (MNE) "L (ME)

K n1(E) N (MNE) |
n"L(E) n—l(M\E) n-l(M\E) !
nTrONE) "L (IRE) " (ME)

S
" H(E) n"(E)
n_l(M\E) n_l(M\E)

Suppose ﬁ = n(U?=l Cj), where R' = {Cl,...,CS} is
a finite congruence on QWV Then

] - S "l "1
1s a finlte congruence. Define the g-set ﬁ' by:
k -1
' o= c,n E .
g1 = nlujoy (6 nn" (E))
Then I = lJ§=l (n(Cjﬂ n"H(E)))

c v, ((c)nE)

it

k
(t)d=ln(0j))ﬂ E
S NE.

If x is in 4N E, then there is a j, and there is a y
in C,, such that n(y) = x and y is in n"H(E). Hence y is
in C ﬂnhl(E), and n(y) is in (Cj ﬂn—l(E)); hence y is in
J'. S0 4" >4NE, and §' = 4nE.
It is not true that ir j:is a g-set of dimension k
greater than one, then 49= KK...Kgrﬁz...gk for some g-sets éz,
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1<i<k, as shown by the following example.
Let M be a free morphology with ordered vocabulary
V = {vl,...,vn_l} and let F be the collection of V-
factorizations in % , where ”(wi) = V., 1<i<n-1, and
n(wn) = 1, Then F is generated by the grammar G =
({c,a},wn,P,o), with productions

(1) 0¥W 4 s l<j<n,
(2) o+a
(3) o+Sa
(4)  a-l

(5) o+Cw,KK...Kgo...0, for each Wy

A

r-1 r
where r = deg n(wj).

Now L(G) is the collection of factorizations in Qn’
and n(L(G)) is the collection of phrases in M. Let G' =
({o,0,0"}, W sP',0'), where P' = Py{o'+CKllo}. Let
= n(L(G')) Then J' = {x#x|x e n(L(G))}. ' has
dimenslon two.

Suppose ﬁ' = KJ Xé for some g-sets JI,E Let vy
and v, be the distinct elements of V such that n(w ) = v

2 1
and ”<w2) = V,. Since vy is in d » Vy#vy 1s in A'; hence
vy must be 1in jl Similarly, v2 must be 1n‘j But since
X’ = Kjljg, then vl*v2 is in a contradlctlon, since

<L
Vl > V2.

This illustration shows that the structuring possibi-~
lities of g-sets reach beyond the sentence level. However,
we consider only the one-dimensional case in this paper,
which is that case corresponding to the construction of
isolated sentences. Lemma 4.1 shows that we may either
conslder sets £nE where éls an arbitrary g-set, or simply
g-sets AK of dimension one.

With this motivation, we define a linguistic set
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(1-set) T in the (M,A) as a set of the form ngL where
X is a g-set in (M,A) and D is the collection of formulas
in M.

Properties of linguistic sets. First we find some

simple closure properties.
Theorem 4.2: If ry and T,
T, ul,-

1 2
Proof: Suppose Fl = 31 nopo, r2 = 32 noD, for g-sets,f R
Xé. Then rur, = (X1(JA2)n D, and by Theorem 3.3,
ﬁlljﬂg is a g-set, hence the result follows.

are l-sets in (M,A), then so is

Theorem 4.3: If I is a linguistic set in (M,A) and

h:M+M' is a degree preserving homomorphism, then h(r) is
a linguistic set in (M', n(A)).

Proof: Let D be the set of formulas of M, D' those in M'.
For some g-set §, r = Inp. By Theorem 3.7, h(g) is a
g-set in (M',h(A)). Now

n(4 nD)
c n(d) nn(D)
c h(f) nD',
since h(D) €D' (homomorphisms never increase degree).
Suppose x is in h(}) ND'. Then there is a y in
such that h(y) = x, dim (h(y)) = 1, and deg (h(y)) = 0.
Since all homomorphisms preserve dimension, dim (y) = 1;

h(r)

since h preserves degree, deg (y) = 0. Hence y is in D,
so y is in 4ND and x is in h(r). So h(d) ND' Sn(r).
This concludes the proof that h(r) = h(j)fWD’, which is a
linguistic set in M'.

We notice in passing that l-sets are not closed under
concatenation, and are trivially closed under composition

i?d shift, since Cryr, = ry and 8ry = ry for l-sets Tl and

¢
Homogeneous variables and restricted linguistic sets. Now

1

we arrive at the final condition which will yield the class
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of sets we had in mind for linguistic applications., In the
generation of sentences from rewriting rules, the variables
in the grammars will represent grammatical categories, just
as they do in the linguistic applications of context-free
languages.

In Chapter 1, we suggested that transitive verbs be
considered as two-blank predicates, as

( 1 carried 2 ),

to be composed with a 2-tuple (x,y), where x is a subject
and y is an object. Hence we would like the variable v,
which yilelds the grammatical category "transitive verb,"
to yield only one-dimensional elements of degree two. We
will also want a variable o which yields precilsely 2-tuples

of the form (subject,object); these will all be two-dimensional

elements xyy such that deg (x) = 0 and deg (y) = 0, that is,
x and y are "completely filled in."

In similar fashion, other grammatical categories will
naturally have some fixed specifications of dimension and
degree. Therefore, we will define homogeneous variables,
which yield only elements of "fixed specifications.” The
condition of being generable by homogeneous variables will
be the final requlirement we make for the lingulstic model.

The sets we propose as models for the syntax of lan-
guage, then, are these: 1lingulstic sets 30 D, where 1 is
a grammatical set in (M,A) for a linear morphology M and
some finite set of phrases 4, J:is generated by a grammar
all of whose varlables are homogeneous, and D 1s the
collection of formulas in M.

We now make preclse the notion of homogeneous variable,

Let M be a linear morpholegy with (ordered) vocabulary

V= {Vl, ‘o ’Vn-l} and let n:9n~>1‘/1 be the homomorphism which

maps wy to A for l<i<n-1, and W to 1. Then let H =
(U,Wn,P,o) be a grammar. For a variable o in H, we will
cail o homogeneous 1if there is assoclated with it an r-tuple
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of finite sets of integers (Nl""’Nr)’ called its specifi-
cations, such that whenever o yields x in L(H),

1) n(x) has dimension r and

2) for l<ic<r, N, is precisely the collection of blanks
of which i+n(x) is not free.

As an example, if o is homogeneocus, o yields x, and
x = alb3xb2cxblal, then the =specifications of o are
({1,3},{2},{1,4}).

Then a g-set J in (M, V U{1}) will be homogeneous if
ic is the interpretation under n of a recognizable set

generated by a grammar all of whose variables are homo-
geneous. An l-set T in (M, V U{1l}) will be homogeneous 1if
it is J ND, for some homogeneous g-set j, where D 1is the
collection of formulas in M.

A natural restriction on the form of productions in
the grammar generating a grammatical set é will guarantee
that J can be generated by a grammar all of whose varilables
are homogeneous. The restriction is this: we will not
allow generating rules containing the operator symbol S.

Given a pair (M, V U{1}), where V is an ordered
vocabulary of M with n-1l elements, let G = (U,Wn,P,c) be
a grammar such that P contains no productions in which S
appears. Then n(L(G)) = I will be called a restricted
grammatical set (rg-set) and T = ﬁﬂ D a restricted
linguistic set (rl-set) where D is the collection of
formulas of M. ([Note that n here is the usual homomorphism

mapping W, to Vi l<i<n-1, and mapping W to 1.]

We may assume when desired that G is in best form
(see discussion in Chapter 3).

Let € be the collection of terms in gh containing the
symbol S. Then the equivalent formulation using finite
congruences on gh is this: the restricted g-sets I are
preciseli those such that R = {Cl""’cr} is a congruence
on 9&, jiacjn'§ = ¢, and T = n(ngCJ). Also, since
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R' = (S, 5\5} is a finite congruence Cﬁlg}v if we are given
any congruence R" on e then the use of the congruence
R'AR" will allow us to obtain as a g-set the "restricted
part" of any g-set. This procedure is equivalent to removing
from the generating grammar G (in best form) all rules
containing the symbol S on the right-hand side.

Now we will embark on a sequence of proofs which will
show that the restricted linguistic sets are precisely the
ones we had in mind. The main result is contained in
Theorem 4.10. Lemmas 4.4 and 4.5 are needed in the proof
of Theorem 4.6,

Lemma 4.4: Let G = (U,Wn,P,o) be a restricted grammar in
best form such that n(L(G)) is one-dimensional. Let
Ay = {o} U{a|o>a is in P}. For 1>0, let A, , =

A UiB € Ula+CBy 1s in P for some y in U, o in A, o Let

m be the number of variables in U. Then U4, = Am’ and for
i>0

each B in Am,,for each x such that B ylelds x, dim (n(x)) = 1.

Proof: Let [A,| denote the number of elements in A,.

Suppose that for some 1>0, Ai = Ai+l’ Then for all k>1,
A, = Ai+k' If k¥ = 2, suppose Ai # Ayioe Then there is a
production «+CBy in P such that o is inlAi*l, and B is not

in Ai+l5 hence o 1s not in A
A

17 A
Ai # Ai+k‘ Then, again, for some a,8,y, o+CRy is in P,

g0 2 contradiction, since
If the hypothesis holds for all j<k, suppose

a is in Ai+k-
A

a contradiction of our assumption; so if for some

1> and B8 is not in Ai+k-1; hence o is not in

i+k-12

120, &y = Ai495

Since Ai #F A

then Ai = Aj for all j»>1.

if and only if |A1|<|A then for

i+l i+ll’
some j<m, Aj = Aj+1 = Am, which proves the first assertion.
The second assertion follows by induction on the length m
of a derivation

o = XO‘FI% Xq _?Eg s fE;A» X, = Xy where o ¢ Am.
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Suppose m = 1. Then =, 1is 0 and dim [n(wj)] = 1, §

Suppose the assertinon holds for all x such that there is
a derivation of x of length «<m.

Case 1. 7., has the form ¢+8; then g yilelds x by a derivation

1
of length less than m, and dim [n(x)] = 1, by the induction

hypothesis.

1 has the form @¢-+CRy; then x = Ctlt2 and B yields

tl, y yields t2, both by subderivations of length less than

m. Hence dim [n(t{)] = 1 = dim [n(t)+n(t,)] = dim (n(Ct t,)) =
dim n(x).

Case 3.

Case 2. 1

T has the form o-K8y. This is not possible for

a variable o in Am’ since o 1s one-dimensional; for, suppose
it is. Since G is reduced, there is some y in L(G) such
that

(¥) arKBy = Kt.t, = y; dim (n(y))>2.

Let J be the least integer such that o is in Aj‘ Then

there 1s a derivatioen

o ‘4 06152_-"00635462'—? ° s e '_'PCC- . .CS<2J._1)6(2J._2) . .566M62,

J
where the ai are‘in V, and 52j-1 = a. Now apply to a
the sequence (¥), yielding
¥
(#%) o = CC...CKt, b, 28(23-2) "+ 86545,

Again, since G is reduced, there are productions in P
which can be applied to the variables in (#¥) to yield a
term z in gn, and dim n(z)>2. This contradicts the fact
that L(G) is one-dimensional. Hence no productions of the
form a+KBy appear in P for o in A. This completes the
proof of the second assertion.

Lemma 4.5: If ¢ = (V, WP, o) is a restricted grammar
generating X in (M,A), then for all a ¢ V, and for all t
le&n such that o yilelds t, deg (n(t))<r, where r =

max {deg ala ¢ A}.

Proof: By induction on the length m of a derivation.
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Assume G is in best form. Let t be rqékﬁ with derivation

\
o Trl’ Xl o

Suppose m = 1. Then my 1s a+wj, and n(wj) = a for some a

Y XoFees —H X, = b
m

in A, hence deg ”(Wj)ir'

Suppose the hypothesis hoids for all derivations of
length less than m. We consider cases corresponding to the
péssible forms of r.

Case 1. 1w, 1s o+0; then o yields t by a subderivation of

length lesé than m, hence deg n(t)<r by the induction
hypothesis.

Case 2. Ty is o«>CBy; then (by Lemma 3.5) t = Ctyvys

where y ylelds t2 by a subderivation of length less than m.
Hence deg (n(tg))ir. By Lemma 2.5, deg (n(Ct1t2)) =

deg (n(tl)=n(t2))§deg (n(t,)). Hence deg n(t)zr.

Case 3. )
3.5) 8 ylelds t, )
length less than m. Hence deg n(tl)ir, deg n(t2)ir. By
Lemma 2.6, deg (n(t)) = deg (n(Kt t,)) = deg (n(t))#n(t,)) =
max {deg (n(t;)), deg (n(t,))}zr,

Case 4, 1, is o»*w,. Then m = 1, and we have dealt with

1 J

this case.

is a>KBy; then t = Ktltg, and (again by Lemma

and y yilelds t, by subderivations each of

Theorem 4.6: Every one-dimensional restricted g-set has
finite K-depth.
Plan of Proof: Given a one-dimensional rg-set £==n(L(G))

in (M,A), we construct from G = (V,wn,P,c)a new grammar
G' = (U,wn,P‘,o(l,l)) such that L(G') has finite K-depth
and n(L(G)) = n(L(G')). In the construction of G', all
variables in U are of the form a(nl,nz) for certain positive
integers Ny N, They correspond to variables ¢ in V,

in the sense that collectively, the variables u(nl,nz)
yield in M precisely those terms which o does; in particu-
lar, a(nl,nz) yields those elements of M which are derived
from o in G and which have dimension n,-n,+l. From this

2 1
fact it will follow that the dimension of L(G') is one and
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that L(G') has finite K-depth. To show that L(G) €L(G'),
we choose x in L(G) and attempt to match to a leftmost
derivation (A) of x, a leftmost derivation (B) of z in
L(G') such that n(z) = n(x).

In the process of constructing (B), one production
at a time, from (A), we develop for convenience an inter-
mediate derivation (A). It matches (A) in a sense to be
defined precisely, except that some symbols in (A) are
"roofed", and matches (B) when the roofed symbols are
erased. If the construction of (B) can be successfully
carried out according to our algorithm, then we obftain a
z in L(G') such that n(z) = n(x), and may conclude that
L(G) “L(G'). The proof that the construction is always
successful consists of a tedious examination of cases.
The general plan for showing the reverse inclusion is
similar. We will make repeated use of Lemma 3.5, without
explicit mention, in the following fashion:

Given a derivation |

* i ————t—a o7, -
(%) O KT Ky X, T X
1 2 n
= CRy (we could

where the s denote productions, if Xy
illustrate with KBy or Sg as well) then x = Ct1t2 for
some tl, t2 such that B yields tl and y yields t2 by
appropriate subderivations of (¥).
Proof: Let T' be a one-dimensional rg-set in (M,A), where
A={a,...,a ). Let r = max {deg (x)|x & A}. We assume
r greater than 0, for if r = 0, and I' 1s one~dimensional,
then I €A, is finite, and clearly can be generated by a
grammar of K-depth. Let G = (V,Wn,P,o) be a grammar in
best form in gﬁ such that n(L(G)) = I, We construct from
G a new grammar G' such that n(L(G')) = r, and L(G') has
K-depth no greater than r.

Let V = A UB, where B = VA, and A is the set of
Lemma 4.4, To each o in V, correspond a set Va as follows:

(1) for ain A, V = {a(s,s)|lzs<rl),

m?
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(2) for o in B, Va = {a(nl,n2)|15n15p2§r}.

et U= U V. Let G' = (U,W ,P',0(1,1)), where
acV @ n

P' contains:

(1) o(1,1)+a(1,1), if o-»a is in P.

(2) u(nl,n2)+CB(nl,n2)y(l,n3), if a>CBy is
in P, a(nl,ng) is in Va, y(l,n3) is in VY, and B(nl,nz) is
in VB'

(3) (1) a(nl,n2)+KB(nlk)y(k+l,n )» if o(ny,n,)
is in Va, B(nl,k) is in VB’ y(k+l,n2) is in VY’ and a~KBy
is in P.

(ii) u(nl,r)+3(nl,r), if a(nl,r) is in V ,
B(nl,r) is in VB’ and a+Kgy is in P.

J

() o(s,s)»w, if a(s,s) is in V06 and a+wj is in P.

Claim: If a(nl,nz) yields x for x in L(G'), then dim n(x) =

n2-nl+l'

Proof of claim: By induction on the length m of a leftmost

derivation,

= ) -
X, a(nl,n2,-51é xl-—Ei;é x2-—¢... ﬁ;réxnl X

If m =1, then p; is a(nl,n2)+wj. By an inspection of P',
we see that n; = n,, hence n2~nl+1 = 1, Since n(wj) is a
phrase, the hypothesis is satisfied for m = 1,

Now suppose the hypothesis holds for k<m, and consider
a derivation of length m+l.
Case 1. Py is a(nl,n2)+CB(nl,n2)y(l,s). Then x = Ct t,,
where B(nl,na) yields tl, y(1l,s) yields t,; further, the

subderivation of t. from e(nl,ng) has length no greater

1
than m. Hence dim n(tl) = n25nl+1. But by Lemma 2.5,
dim n(CtltZ) = dim (n(tl)-n(te)) = dim n(tl), so the
desired conclusion holds.

Case 2. py 1is a(nl,n2)+KB(nl,k)y(k+l,n2). Then x =

Kt t2, where B(nl,k) yields tys y(k+l,n2) yields t,, both

1
by subderivations of length less than m+l. Hence dim n(tl) =
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k-n +1, dim n(tg) = n,-k, and therefore by Lemma 2.6,

dim n(x) = dim (n(Ktlt2)) = dim (n(t1>) + dim n(t2))

k—nl+l+n2-k

Case 3: p, 1is a(nl,r)+3(nl,r). Then B(nl,r) yields x
by a derivation of length m, and dim (x) = r-nl+1, as
required.
Case U, Py is a(nl,nl)+wj; occurs only when m = 1,
Hence in all possible cases, dim n(x) = ng—nlﬂ9 as
required.
Claim: I.(G')) has K-depth <r.
Proof of claim: We have assumed r>l. We show by induction

on the length m of a derivation that for any a(nl,nz) e U,
if a(nl,ng) yields x, where x is in J_, then K-depth (x)<r.

Let a(nl,nz) - > Xy P =P .. ~?~¢ X =X be such a
1 2 m
derivation. If m = 1, then Ty is a(nl,n2)+wj for some

Wj € wn. Hence x = Wj’ and K-depth (x) = l<r.

Suppose the hypothesils holds for all derivations of
length less than m. We will examine the four cases
corresponding to the possible forms of =

l.
Case 1. T is u(nl,n2)+wj; then m = 1, and thls case has
been dealt with,
Case 2. Ty is u(nl,n2)+06(nl,n2)y(l,s); then x = Ctlt2,

where B(nl,n ) yields t., and y(l,s) yields t., by subderi-

vations each of length %ess than m. Hence bs the induc-
tion hypothesis, K~depth (tl)ir and K-depth (t2)§r. Now
K~depth (x) = K-depth (Ctltz) = max {K-depth (tl),
K-depth (tg)}ir.
is a(n

Case 3. n2)+KB(nl,s)y(s+l,n2); then x = Ct.¢

l 2:
by sub-

1 1?

where B(nl,s) yields t, and y(s+l,n,) yields t

1 2°
derivations each of length less than m. Hence K-depth

(t,)<r and K-depth (t,)<r. Since K-depth (Kt t,) =
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max {K-depth (tl), K~-depth (tg), dim n(KtltZ)}’ we have
K-depth (Ktltg)ir from the fact that dim n(KtltE) =

n.-n +l§r.

2 1
Case 4. Ty is a(nl,n2)+8(nl,n2); then B(nl,nz) yields x by
a derivation of length less than m, hence K-depth (x)«<r.
Claim: L(G') is one-dimensional.
Proof of claim: For all x in L(G'), we have 9(1,1) yields x.
Hence dim (n(x)) = 1-1+1 = 1.

Now let 2' = L(G'). We will show that d=Jd". rirst
we show that Jt:jh Let x be an element of L(G), and let

G G G G G
(A) x5, = © » X ) X =P o0 > X —_—) X = X
0 Ty 1 " 2 LI n-1 T n

be a leftmost G-derivation, where the T, are productions in
P, l<i<n. We will attempt to construct a matching derivation

Gv Gl Gv G! .
B = 1,1)—» g ——> 7 e 37 7 =9
(B) yg = oL o> sy oo, Ty

for productions Py in P', such that n(x) = n(z). [In
(B), for convenience we adopt the convention that either
(1) Dy € P' or (ii) Py is a "place-holding" symbol only,

and 2 =z,.] As we proceed, we will have use also for a

i-1 i
"dummy" derivation

(4) y0=c—a—l> V1 T{? S yn_lf—q—n—? Vg =¥
which will be constructed along with (B), in such a way
that it differs from (A) only in that (possibly) some
variables o in A appear as & in (A). The symbols & will
be called roofed symbols. The process of construction

follows:

1. Let i =1; let y, = o; let z, = o(1,1). By the
0 0

form of G, w, is o»o for some aj let p, and g, be o(l,1)~
a(l,1).

2. 1If Xs and y, are identical except that (possibly)

1

some symbols in y, are roofed, then call x, and Vs almost

i
identical. In such case, continue. Otherwise, the construc-

tion has failed.
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3. Let e(y) be the string resulting from the erasure

of all roofed symbols in Vg For any strings X = 61...38,

Y = Yoo Ygo for any i,j, l<i<s, l<j<t, we say that Bi
matches y, if (i) 1 = j and (ii) either (a) B, = Yy or

(b) B, is a variable and Yy o€ VBi

If s =t and Bi matches Yy for 1l<i<s, then we say X matches
Y.

If e(yi) matches Zys continue. Otherwise the construc-
tion has failed.

i, TFor each variable a(nl,n ) in P examine the
matching variable o in Xy The string Xy has the form
; = Ua v, where u,v e (Vv Uw U{C K}) ¥,
The word x has the form x = ¢ t t3, whvre tl, t2= t3

X

(Wn U{C,K})*¥, and by an appropriate subderivation of (4),
u ylelds t,, o yields t,, and v yields t3.

4.3. If ny<r, and dim (n(t,)) # n,-n;+1, the
construction has failed. If n, = r, and dim (n(t2)) <
n, nl+l then the construction has failed. Otherwise
continue.
4,2, To each occurrence of a variable a(nl,ng)
in Zy with matching variable o in X, as above, we correspond
a collection of terms in ﬂh called the substitutes of
a(n, >1, ) and denoted by sub (a(nl,n )). Let sub (a(nl,nz))
be the collectlon n- ((l*.. *n2—n1+l) ”(t2)>'
The substitutes of z, [sub (zi)] will be the collection:
of all terms in 2& which can be formed by replacing each

in Z, by some element of sub a(nl,n2)

[

variable a(nl,n2
for EEQE occurrence of “(n19n2> in Z

If, for all t in sub (zi), n(t) = n(x), continue;
otherwise the construction has failed.

5. If i = n, the construction is complete, and
successful. Otherwise, add 1 to 1 and continue.

6. Next we choose P41 and Q41 We distinguish four

cases, depending on the form of T4 in P.
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Case 1. X, = u a V, LY is o~CBy.

i
1A. The matching occurrence of o in Y4 is roofed.

AAA

Let Q449 be a place-holder only,

so that zi = Zi+1‘

1B. The matching occurrence of o in Yy is not roofed.

be &4+Cgy, and let Ps4q

Let a3 be o+CBy. To choose Ps410 note that by step 3,

+1
there is a matching symbol u(nl,n2) in z,. Exzmine (h).

With notation as in step L, we have x = tlt2t3, and a

yields t,. Since (A) is a leftmost derivation, we now know

that the first step in the derivation of t, from a is “i+l;

that is, the associated sub-derivation has the form

u+CBy+...+Ctnt5 = t2,

s = dim (n(t5)), and let p

for some terms t&’ t. in Jn' Let

5

141 be a(nl,n2)+Cs(nl,n2)y(l,s).

Let us make sure that this production is in P'., Since

a(nl,nz) has appeared, it is in V; further, if 6(n1,n2) ¢ VB’

then B ¢ Am and n, # n,. However, R yields s where
dim ”(tu) = 1 by Lemma 4.6; hence dim ”(CtMtB) = 1, But

by step 4.1, since ty, = Ctytz, we know that dim n(Ctut5)i

5

n,-n,+l, This, along with the fact that n <n,, gives

n; =Ny, 2 contradiction1_ Hence B(nl,n2) is in VB and
1

Pit+1 is in P'.

Case 2. Xg T U eV, mq is q+K3y.

2A. The matching occurrence of o in Vi is roofed.

Let Q41 be &ngy, and let Pi1 be a place-holder only,
so that Z, = ziﬁl'

2B. The matching occurrence of « in V3 is not roofed.
Then there is a matching variable a(nl,n?) in Zi‘ Examine
(A). The subderivation o t, now can be seen to have the

2
form a+Key+Ktut5 = t2, for some t“, t5 in Jn. Suppose
s, = dim (n(tu)), and s, = dim (n(tS))' Then dim (n(tg)) =
54 + 8o by Lemma 2.6. We distinguish three cases, depen-

ding on the value of n, and of n1+sl~l.
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2B(i). 1l<n<r. Then by step 4, n,-n,+1 = sl+s2. Let

Pyyq bE a(nl,nz)+Ks(nl,nl+sl—l)y(nl+sl,n2) and let q,, .,
be a-+KBy.

To see that p, . ¢ P': if not, then either (1) B(nl,n
is not in VB’ B ¢ A and s

m
in V, ye A and s
Y m

1+sl-1)

l>1, or (2) y(nl+sl,n2) is not

2>l, or both., In the first case, we

have 8 yields t,, and dim n(tu)>l, a contradiction; in the
second case we have a similar contradiction.
2B(1i). n, = r, nj+s,-l<r. Let p, be u(nl,r)+

Ke(nl,nl+sl-l)y(nl+sl,r) and q be a+KBy.

Again, if Pyl £ P', then either B8 ¢ Am and sl>l,
a contradiction since 8 ylelds t, and dim ”(tu) = 8y5

or y ¢ Am and r-sl—nl>0. But by step 4, n1+51+52‘1ir3

2_>_r—sl-~nl+l>1. So s2>1 and y ylelds t5, where

dim n(t5) = s,, a contradiction.

that is, s

2B(iii). n, = r, nl+sl—liy. Let py,, De a(nl,r)+3(n1,r),

and let Q41 be a+KBy.

If Pyl £ P', then B ¢ Am’ and n,<r. Combining this

with the inequality n -l>r, we conclude s.>1, a contra-

1%81 1
diction, since 8 ylelds tu, dim n(tu) = 5. So Piyr € P.
Case 3. Xy= wovy m, is a+wj.-

3A. The matching occurrence of o In y,6 1s roofed.
i
Let g be &+Wj, and let Py be a placeholder, so that

= 2

2141 1"

3B. The matching occurrence of o in V4 is not roofed.

Then suppose a(n n2) is the matching occurrence in Zy It

l’
is now clear that the subderivation by which o ylelds ¢t,

is precisely o = w, = t_ . Since dim (n(t,)) =
m J 2 2
i+l

dim (n(wj)) = 1, by step 4 we have:

(1) if n, r, n2—n1+1 = 1 hence n; = 0,3

(i1) 1ir n, =r, ng—n1+lil, which also yields n, = n

1 2°
since n,>n,.
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So, in any case, n; = n,, and we let p. 141 Pe a(nl,n1)+wj,

and let Ay 41 be a+wj.

Case 4. ;41 = o>a. Because of the form of G, this case
appears if and only if i = 0; hence we need not consider it.
Now return to step 2. This completes the detail of
the construction. To clarify the construction, we present

an example below of a possible derivation (A) and the

assoclated derivations (A) and (B), when r = 2,

(A) o —> 0 — CBy — Cuyy —— Cu Kgr ——) Cw2KKayT EE——%

1 2 3 4 5

CW2KKW1YT -?-9 Cw2Klew2r 1Q;QCW2KKW1W2W3.

7
A o R
(B) o ql,u q2 »CBy a———)szy —q—u—-)CW2K£f —CJ;) CWZKKOLYT -a?
Cw2Kley% ~a;) Cw2Klew2T-—ag> szKlew2w3.
(B) 0(1,1) — a(1,1) ——C8(1,1)y(1,2) =—3ew y(1,2) —
Cw g(1, 2)‘———4?Cw Ka(1,1)y(1,1) ——9 Cw2K21y(1,1) Eré——>
Pg Pg 7
Cw 2Kw w2-—-§-?Cw lew2

If, for each x in L(G), the construction can be
successfully carried out, then we obtain a z in L(G') such
than n(x) = n(z). For notice that sub (zn) = {zn} = {z}
since Z contains no variables, and by step 4, n(z) = n(x).
Hence we may conclude that JCJ'

We will next show that the construction can always
be successfully completed., If it fails, it must fail at

{

step 2, 3, or 4, for some i>0. We will show by induction
on i that such failure is not possible. Suppose 1 1.
Steps 2 and 3 are trivially satisfied. We have zq al(l,1);

i}

t, = x. Since Afis one-dimensional, dim (n(x)) = 1, satis-

fying the first condition of step 4. If r>1l, then sub [a(l,1)] =
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{x}, and condition 4.2 is satisfied. If r = 1, then

sub [a(l,1)] = n_l((l)-n(x)), and for t in sub [a(1,1)],
n(t) = 1en(x) = n(x), since dim (n(x)) = 1. Hence the
construction never fails for 1 = 1.

Suppose, for x in L(G), with leftmost derivation (A),
the construction fails for the first time for some 1i+1,
i>1, at step 2. We have X, Sua v,y F u' o v' or
u' & v', where u and u' are almost identical and v and v'
are almost identical. An inspection of the choice of qy

shows that, if =, is u»t, whatever the form of t, the

i+l
production Aq 47 is a-»t' or a+t', for some t' such that ¢t
! i = =
and t' are almost identical. Hence X541 utv and Vi41

uw't'v' are almost identical, a contradiction; and there is
no failure at step 2.

Suppose there 1s a failure at step 3. If Xy = U v,
and vy = u' & v', then a3 ylelds only roofed variables, so
e(yi+l) = e(yi). Also, p; is only a place~holder, so

zZ = Zy, and since e(yi) matches Zis e(yi+l) matches

i+l

Zi41°
If xi =ue veand yi = u' o v', zi = u“u(n1,n2)V"=

where u" matches e(u'), v" matches e(v'), then the possible
forms for V412 e(yi+1), and Z4,.q are:

el

Vil Vi41) 2141

u'Cyv' | e(u')CBye(v') | u"CB(n ,k)y(k+l,n,)v"
1
u'KByv' | e(u')KBve(v') | u"K8(n,,k)v(k+l,n,)v"

AN A
u'kgyv' | e(u')se(v') u"B(nl,r)v”

u'wjv' e(uw,e(v") u"wjv"

J

In each case, e(yi+l) matches 2. q; hence another contra-
diction. The algorithm does not fail at step 3.

Then the construction must fail at step 4. We assume
Pi4] is not a place-holder, since otherwise step 4 is
identical to the i-th step 4, hence succeeds as before.
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s = — n
Again we have X, = U a V, 2, = U a(nl,nz)v > Tyl is a-t,

is o=»t" for some strings t,t", and x = utv,

i+l
= u"t"y". Since the construction succeeded for i,

Piv1
i
it can fail on condition 4.1 only for variables B(kl’kz)

which appear in t". The subderivation by which o yilelds t2

is now seen to be o —> t=»t_, and dim n(t,) = n,-n +1,
Tie1 2 2 2 1

if n?<r; dim n(t2>3n2_n1+1’ if n, =r. Again we must dis-
tinguish cases depending on the form of t.

Case 1. t = CBy; then t2 = Cthts’ with subderivations
B-+tu, y-+t5. By the choice of P12 g = Ce(nl,ng)y(l,s),

where
aim n(tg), 1f dim n(tg)<r

r , i1f dim n(t5)>r.

By Lemma 2.5, dim (n(tu)) = dim (n(tg)); by the previous

application of step 4, dim (n(t2)) = ny-n+l if n,<r, and if

n, = r, then dim (n(t,)}>n,-n,+1. By the choice of s,

2
dim (n(t5)) = 35 = g=1+1. So this case does not fail.

Case 2. t = KBy; then t2 = Ktut5
B tu, y t.. Then by the choilce of Pis1e either

, with subderivations

5
(1) n, = r, t" = S(nl,r), in which case nl+dim (n(tu))—13r,

- or (2) n, = r, g = KB(nlk)y(k+l,r), in which case

dim n(t)) = k-n;+1, dim n(tg)>2r-k,
or (3) N, <r, th = KB(nl,k)y(k+l,n2), and dim n(tu) =

k-nl+l; dim n(tB) = n2~k.

In each case, 4.1 1s satisfied.

Case 3. t = wj; then t" = Wj’ and no untested variable

appears. So condition 4.1 is satisfied.
Now the only condition the construction may fail to
satisfy is 4.2.
We will assume, then, that for some w in sub (z,

1+1)’
(w) # n(x). This implies that w is not in sub (z,), by
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the minimality of i+l. The only way this can happen is that
ity is a(nl,n2)+t" for some string t", where sub (t")
is not ccntained in sub [a(nl,nz)] for the occurrence of
a(nl,nz) to which Pi1 is applied. We will show by an
examination of all possible forms of t that this is not
possible, and thereby will conclude that for all w in

sub (z,,.), n(w) = n(x). This contradiction will complete

the pri:% that the construction is always possible,.

There are several cases, corresponding to the possible
forms of t and t".
Case 1. t = CBy, t" = Cs(nl,n2)y(l,s). For t in sub (t"),
1 = Cab for a in sub [B(nl,ng)] and b in sub [y(1,s)].
For such a,b, a is in n_l((l*...*nz—nl+l)-n(tu)), and b is
in n_l((l*...*s)-n(tB)).
1A. s<r. Then

n(Cab) (l*...*n2-nl+l)-n(tu)-(l*...*s)-n(tB).

(l*...*n2-nl+l)'n(tu)-n(t5),

since dim (n(ts)) = 8,

(L#...#n,-n,41) en(Ctyt.)

since Ctut5 = t,, Cab is in sub [a(nl,n2)].

1B. s = r., Then note that (by Lemma 4.5), deg (n(tu))jr,
hence n(tl)-(l*...*r) = (tu), and
n(Cab) (1%...%¥n,=-n +l)-n(tu)~(l*...xr)~n(t5)

2 1
(1*'"*nz'n1+l)'“(tu)’”(t5)’ as before.

i

Hence Cab is in sub [a(nl,ng)].
Case 2. t = KBy.

2A. 1,
sub [B(nl
of o 1n question. For such a, a is in n-l((lﬁ...%r-nl+1)-n(tu)).

=pr, t" = B(nl,r). Again there must be an a in
;)] which is not in sub [“(nl’n2)] for the occurrence

But by the construction, dim ”(tq)i?'n1+15 hence

(1%...*r—nl+l)-n(tu) (l*...%r-—nl+l)-(:n(tq)%n(t5))

(1*...%r-nl+l)-(n(Ktut5))

i
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= (1*...*r—n1+1)-(n(t2));
hence
a e n_l((l*...*r—nl+l)-n(t2)) = sub [a(n ,n,)7.

2B. =r; t" = Ks(nl,k)y(k+l,r).

"o
If t is in sub (t"), t = Kab for some a in sub
[B(nl,k)], and some b in sub [y(k+l,r)]. For such a,b, we

have a ¢ n-l((l*...*k-nl+l%n(t“)),

b e n-l((l*...*r—k)-n(tS), and
n(Kab) [(1*---*k-n1+l)'n(tu)]*[(l*---*P-k)°n(t5)]

(l*...*r-nl+l)°n(tu)*n(t5)),

since dim n(t4> = k-nl

= (l*...*r-n1+l)-(n(Ktut5)).

+1 and dim n(t5)3r—k,

Hence Kab is in sub [a(nl,n2)].

Case 3. t =w,, t"=w,, Then ny = Ny, t2 = w,. Since
n(w,) is a phrase, sub [a(ny,ny)] = n o(Len(t,)) = 17 (n(w ).

Hence w‘_j is in sub [a(nl,nz)].
So the constructlon did not fail for i>1 at any step;
hence all constructions can be completed successfully.
This completes the proof that XC:J'.
To show that ' © 4, let z be in L(G'), with leftmost

derivation

We construct a matching derivation
= ! = ' | -
(B) xg = 2y = 0= Xy——p> Xy Xy—h e P Xy —p Ay

X, where ™ l<i<n are in P, and the expressions Hi =

n cesTyo ) represent (possibly empty) sequences of

i
i
productions "ij in P.

i1y’

We will again have use for a dummy derivation

' = y! = 1 e . R -
(A ) yo yO U'I"')ylh-q yl qz) YZ"') LA qn/ yn Q /yn Yo




73

where Qi = (qil""’qimi) is a sequence which we construct

from ni.

We will show that n(z) = n(x). The construction is
similar to the earlier one.

1. Let i =1; let o = Xy = xé =¥y = yé. An inspec-
tion of P' shows that p, is 6(1,1)»a(1,1) for some a; let

and ap be o+a, and let I, and Ql be empty.

m
' 2. If xi and yi are a%most identical, continue.
Otherwise the construction has failed.
3. If e(yi) matches Zss continue; otherwise the
construction has failed.
4. Now we define sub (xi). We define a substitution
for an occurrence of a variable o in x{ as follows:

(1) if o is in &, sub (o) = n'l(l-n(t2)), where
as before we have a(nl,nz) yields t2 in (B) for the matching
variable a(nl,nz) in (B).

(2) if o is not in Am’ and n,<r, where a(nl,n2)
is the matching variable in (B), and “(n1>n2) yields t,
in (B), then sub (a) = n”™"((Lx...n,-n +1)-n(t,)).

(3) if o is not in Am and n, = r, then sub (a) =
U n—l([(l*...*r—n2+l)'n(t2)]*bl*.,.*bk), where for 1l<i<k,
k>0
bi is any phrase in M.

When all possible substitutions have been made for
each variable, call the resulting collection of terms
sub (xi). If, for all t in sub (xi), n(t) = n(z), then
continue. Otherwise the construction has failed.

5. If i = n, the construction is successful.
Otherwise, add 1 to i and continue.

6. Let us now choose Tie1? Y4410 Y41 and Qe We
consider four cases, depending on the form of Pi+l'

Case 1. is a(nl,n2)+CB(nl,n2)y(l,s). Let q4

+1
be placeholders, i.e.

Piy1

and LEpeY be o+CBy. Let ni+l

empty sequences.

and Q.4
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Pis1 is a(n ,n )+K8(nl,k)y(k+l,n
L) be a+KBy, and let I, 141
Case 3. Piyy is a(nl,r)+6( l,r). Then, by the construction

Case 2. Let qi+l and

o)
and Qi+l be placeholders.

of P', there is a variable y in V, and a production n in
P, such that 7 is a+KBY Let ., 141
and let q, 141 be a+KBY Since G 1s in best form, there is

be ¢ for any such m,

i+l
) such that y yields u by the

an element u in yh and a sequence of productions I, =

(”(1+1)1""’“(i+1 s

leftmost application of these productions. Apply this
sequence to y in (4), forming x! fe1 Let the corresponding
roofed sequence by Qi+1’ which when applied yields y! {41

J’

be o-w

Case 4. 41

Pyyq 18 als, s)+wj Let g;,, and m,

and let Hi+1 and Qi+1 be placeholders.
This completes the construction. Now when we have
shown that it is always possible, we may conclude that

A'C:J; for, when i = n, there are no variables in z,, and

sub (zﬁ) = {Zﬁ} = {z}; hence n(z) = n(x). *
It is easy to see by an argument analogous to that in
the first half of the proof that no fallure in the construc-
tion can come at steps 2 or 3.
We consider step 4, and show by induction on i that
no fallure can occur there. Suppose i = 1, Then for some
¢ in V, zl
the production o(1l,1)-+a(1l,1) appears in P' if and only if
y(1l,s) yields t5 by appropriate subderlivations.
If 7 1is in sub (t"), then 1t = Cuv for some u in sub (8),

= o, and t2 = X. By the construction of G',

some v in sub (y). Note that in this case, T, is the
empty sequence, and Zigl T Zi+1

1A. B &nd y are both in Am: Then Ny = No, by the
construction of P', and sub .(B8) = (l “(t&) . Also,

s =1, and sub (y) = n—l(l~n(t5)). By Lemma 4.4, dim n(ts) =

1 and dim n(tu) = 1. Hence for all u in sub (8), for all
v in sub (y), n(Cuv) = 1'”(tu)'l'”(t5)

= 1‘ﬂ(tu>‘N(t5)
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1°n(Ctut5)

l-n(t2); hence
Cuv is in sub (a), a contradiction.
iB. 8 iq in Am, y 1s not in Am: Then sub B =

an(l'n(tu)).

1§

1B. (i). s<r. sub (y) n“l((l*,..*s>-n(t5))

-1
n (n(tS)),

fl

since dim n(t5) = S.

1]

n(Cuv) 1-n(t“)'n(t5)

l‘n(CtutB)

l-n(t2)5
‘hence Cuv is in sub (a).
1B, (ii). s = r.

sub (y) = k:g ([l*...*s~n(t5)]*bl*...*bk).

1'“(tu)'{[(l*"'*r)'n(tS)]*bl*"'*bk} for some

n(Cuv)

k>0, some phrases bi’ 1<i<k.
l-n(tu/-(l*...*r)o[[(l*...*r)-n(tS)]*bl*._.*bk],

since by Lemma 4.5, deg (”(tq))ir3

i

l-n(tu)-(l*,..*r)-n(tB), since dim n(ts)ir

l'n(t“)'ﬂ(t5>

1.n(0t4t5)

i

l-n(t2);
hence Cuv is in sub (a).
1C. g isnot in A, y is in A : Then sub (y) =
" (Len ().
1C. (1). n,<r. Then sub g = n‘l[(l*...%nz-nl+l)~n(tu)]
(1*"'*nz‘n1+l)'”(tu)'l°“(t5)'

n(Cuv)

ft

(1%.,.%na—nl+l)-n(tu)-n(t5),
since by Lemma 4.4, dim n(tS) = 1;

(l*...%n2~nl+l)-n(t2); hence Cuv is in sub (o).
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1c. (ii). n, = r. Then

sub B = y n_l[[[l*...*nz—nlflj-n(tu)]*bl*...*bk].
k>0

n(Cuv) = [(l*'"*n2—nl+l)'n(tu)]*b1*‘"*bk*(l'n(tS))’

[(1%...%n

2'n1+1)'”(tu)'“(tS)]*[b'”(t5>]*'"*[bk'”(ts)]'

= [(l*"‘*ng'n1+l)'n(tz)]*[bl'n(tS)]*"'*[bk'n(tS)]’

which is in sub (o), since the fact that B8 is not in A
implies that o 1s not in Am.
1D. Nelther g nor o 1is in Am:
1D. (1). n,
_nl+l).n(t4)'(l*"'*S).n(tB)

<r, s<r.

n(Cuv) (1%...%n

2
(1%...%n

2'n1+1)'n(t4)'n(t5)’ since dim n(t5) = s,

(1*...*n2-nl+l)°n(t2);

hence Cuv is in sub (o).
1D. (ii). Ny<r, s = r.
[(1%...#n,-n +l)vn(tu)] [[(l*...*r)~n(t5)]*b1*...*bk],

e 1
for some phrases bi’ 1<i<k,

n(Cuv)

(l*...*nz-n1+l)'n(tu)'(l*--.*P)'n(tB),
since deg (n(t)))<r and dim (n(ts))zr,

= (1*...*n2~n1+l)'n(tu)-n(t5);
hence n(Cuv) is in sub (o).
1D. (ii1). n2
[[(1*--e%P-nl+l)'n(tu)]*bl*---*bk]°(1*---*5)°n(t5)

= r, S<r.

n(Cuv)

[[(lﬂa--*r~nl+l)-n(t4)]*bl*--.*bk]'n(t5),
since dim (n(t5)) =5

[(Léoo#ren #1) on(t,) on(E) Tlby +n(E) Toe . ulbyen(tg) T,

[(l*...*r-nl+l)-n(t2)]%[bl~n(t5)]%...%[bk=n(t5)];
hence Cuv is in sub (o).
1D. (iv). n,
n(Cuv) = {[(1*...*r-n+l)-n(tu)]%bl%...%bk}-{[(lw...*r)-n(t5)]*
cl%...*cj},

=r, s =r,

for some j, k>0, some phrase bi’ 1<i<k, Cqo l<g<j,
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since deg n(u)<r,

hence Cuv is in sub (o).

Case 2. t = Ks(nl,k)y(k+l,n ).
"o o_ 1

Am' Then t KBy, and Z3

(B), we have

11 hs

A
i+l

{[(l*..,*r—n+l).n(tu)]*b1*...*bk

{[(l*...*r—n+1)-n(ta)-n(tS)]*[bl

}-n(t5),

-n(tS)]*.,.*[bk'n(tS)];

Note that o can not be in

a subderivation of

a(nlsn2)+KB(nl,k)Y(k+l,n )%Ktut‘S = "C2,

where B(nl,k) yields t), and y(k+1,n2) yields t5, dim ”(tu) =

k—nl+l, dim n(t5) = ny-k.

for some a in sub (B), some b in sub (y).
2A. Ny<T.

n(Kab) = n(a)#n(b)

]

(1%...%n —nl+1)-(n(tu)*n(t5))

2
(1*...*n2—nl+l)-n(t2),
hence Kab is in sub (a).

]

If t is in sub (t"), then t = Kab

[(l*...*k-n+1)vn(tu)]*(l*...*nz—k)-n(tS)

2B. n, =r.
( - - . — . 0 )
n{Kab) [(1%...xk nl+l) n(tu)]*[(l*...*n2 k) n<t5)]*b1*"'*bs’
for some phrases bi’ l<i<s, some s<0;
= [(1*"'*n2)'(”(tu)*”(t5)>1*bl*"'*bs’
since dim n(tu) = k-ny+1, dim n(t5) = n,-k,
= [(l*"'*nz)'(”(tz))]*bl*'"*bs’
so Kab is in sub (a).
Case 3. ¢t = B(nl,r). Then t" = Kgy for some variable y in
V. There is an associated sequence L) of productions in

G by which-y yields some term a of Qh. As a subderivation
of (B), we have a(nl,rﬂ ~?7“@ B(nq,r)=$t2, where dim n(t2) =

i+l
r-nl+l.
We also have:
Xy = ua(nl,r)v Xigp = us(nl,r)v
= ¥ 1 = 1 !
Zs ufov Zi41 u'Kgyv
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Zi+l = u'Kgav', where no variables appear in u or u'. If

t is in sub (t"), then 7 = Kua for some u in sub (B8).

3A. 8 is in A : Then r = n,, and if u is in sub (B),

13
n(u) = (1-n(t2)), and n(kKua) = [1-n(t2)]*n(a)a

3B. 8 is not in A : Then for u in sub (B8),
n(u) = [(1*°°°*n1_r+l)'”(t2)]*bl*”"*bk’ and

n(Kua) = [(l*.,.*n1~r+l)-n(t2)]*bl*,,o*bk*n(a).

In either case, since the production o+Kfy is in P, o is

not in Am, so Kua is in sub (a).

= [ - ! =
Case 4. ¢t Wy Then t Wy, and 2, = 8. . As a
subderivation of (B), we have a(nl,n2)~>wj = tzﬂ Hence
WJ is in sub (a), and sub (t") = {wj}n

So we conclude that the construction can not fail for
any i+l, i>0, at step 4.2, hence there can be no failure
in the construction at any step. This completes the proof
that & €§; along with the earlier result that§€ 4",
we now have the final result: §' = §.

Lemma 4.7: If G is a reduced grammar with homogeneous
variables, and o~+CRy is in P, then dim g = dim o and

deg y>deg «a.

Proof: Since G is reduced, there are elements t,, t, in
9h such that o>Cgy=Ct t,, where g yields t
t2. Then dim o« = dim n(Ctth)
deg a>deg n(tz) = deg y, by Lemma 2.5.

1 and y yields

= dim n(tl) = dim 8, and

Lemma 4.8: If G is a reduced grammar with homogeneous
variables, and o-»KBy appears in P, then dim o = dim g + dim vy,
and deg (o) = max {deg 8, deg y!.

Proof: There are tl, t2 in Jn such that o-KBy 2Kt
where 8 yields ty and y yilelds t,. Then dim (a) =

dim n(KtltZ) = dim n(tz) + dim n(tl) = dim 8 + dim v,

and deg (a) = deg n(Kt1t2> = max {deg n(tl), deg n(SZ)} =

172

max {deg y, deg B81}.
For the remainder of this paper, we will consider

restricted linguistic sets in linear morphologies only.
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A morphology M will from now on mean a linear, finitely
generated, locally finite morphology. The following lemma
follows immediately from the definition of a linear mor-
phology.

Lemma 4.9: Let x be a phrase in a linear morphology. Let
M = {i|x is not free of the i-th blank}. Then i is in M

if and only if the integer i appears in the string x. Next,
given a linear morphology pair (M,A), where A = {al,...,an}
with assoclated map n(wi) = a;, l<izm, we define a special
finite congruence Rr on Qh. Let r = 1T?fn{deg (ai)}.

Partition 9n as follows:

D = {x in ?hlx contains the symbol S}

A= {x in.}h\Dlx has K-depth greater than r}
B= {x in ?n\(D Ua) {dim n(x) = 1}

B, {x in 9n\(D UA)|dim n(x) = r}.

Clearly ?h = AyDuyl lﬁ) Bj], and these sets are pairwise
disjoint., l<jsr

Now further partition each set BJ as follows: let
(Nl,..n,Nj) be a j-tuple of sets N, of nonnegative integers
such that for l<ke<j, either N = {0} or Nkc:{l,...,r}.
Letvﬁj be the collection of all such j-tuples. Then for
each (Nl,Nz,...,Nj) indj, let Bj(Nl,N2,...,NJ.) =
{x in Bj}for l<i<j, if deg (k+n(x)) = 0, then N = {0}
and if deg (ken(x)) # 0, then N, = {i[k-n(x) is not free
of the i-th blankl}.

Tt is easily seen that J BNy, e uy) =

(Nl,...,NJ.) stﬁj

and that the sets Bj(Nl,...,N.) are pairwise disjoint.
Hence we have a finite partition of 9h containing the sets
D, 4, and BJ.(Nl,...,NJ.) for all l<j<r, all j-tuples in&j.
Call this collection of sets Rr” To whos that Rr is a con-

gruence on Qh’ we check the following tables:



(1) C D Bi(Ml’ .,Mi)
D D D
Al D A |
. (P.,...,P.
B,j(Nl" ij) D Bj\-l’ ,PJ),
where for 1<k<j,
P = U M,
k SENK S
where s = x(mod 1i).
(2) S
D
A
Bj(Nl’° ,Nj)
(3) K|{D A Bi(Ml,. \M,)
D D D D
A D A A

J

By(N),...,N) | DA

For it+j>r: A
For i+j<r:

Bi+j(Nl,.n=,Nj,Ml,.c.,Mi)

The entry Bj(Pl"°"Pj> in (1) representing the class of

Cxy for x in Bj(N1’°'
nontrivial calculation.

follows, here 1s an example:

,,Nj), y in B, (M ,.

“’Mk) is the only

To illumine the argument which

n(x) = (alb2el)#(b3)*(16bcd)
n(y) = (alal)s(cc2)=ab

Then X ¢ B3(N1,N2,N3), where N, =
{1,6}, and y ¢ BM(Ml’M2’M3’MM)’ where M

M, = {0}, MM =

3 {0}.

{1,2},N2 = {3}, N3
= (1,4}, M, = {21,

1
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n(x) n(y) = n(Cxy) = (aalalbcc2calial)x(ba)#(alialce2ed).
Hence Cxy 1s in B3(P1,P2,P3), where P, = {1,2,U4}, Py =
{0}, P3 = {1,2,4}. Note that P, = M, UM,, P, = M3, P3 =
MlUMg = MlLJM2°

Now for the argument. If x is in Bj(Nl"°°’Nj)’
n(x) = Xp#o o KXy, where for 1l<k<j, x, 1s a string of
symbols in which the integers in Nk’ and no other integers,

ar (by Lemma 4.9). Similarly, n(y) = yy#e. %y, where

for 1<t<i, Vs contalns the inftegers Mt’ and no others. Now

n(x)-n(y) = [Xl'(yl*°°°*yi>]*[xz'(y1*°°‘*yi)]*‘°°*[Xj'(y1*°"°*yi)]

]}

z *..,*zj, where l<k<j, 2z, is the result of

1 k
substituting, for each integer n in X, the expression y ,
n

where n z n(mod i). Hence an integer m appears in Zy if

and only if there is n e Nk such that m ¢ M_. This completes
n

the demonstration that for t. in Bj(Nl’°"’Nj) and t

1 2
B, (My,.0,M,), 056, is dn B (P),...,P ) as defined Table (1).

in

172
We eliminate the other details of showing Rr represents

1

a finite congruence on g%, since they are trivial.
Theorem 4.10: These are equivalent:

(1) T is an rl-set in (M,A), for some A.

(2) T is an rg-set of dimension 1, degree 0 in (M,A),
for some A.

(3) T is a homogeneous g-set of dimension 1, degree 0
in (M,B), for some B.
Proof: (1) (2). If T is an rl-set in (M,A), then T =
8nD for some rg-set & in (M,A), where D is the collection
of formulas in M. Let E be the collection of one-dimensional
elements of M. Then R' = {nhl(E), ﬁ\n"l(E)} is a finite
congruence on x Since J is a %-set, §==n(B) for some
recognizable set B. Hence B Nn ~(E) is recognizable, and
since n(B n n-l(E)) = n(B) NE = ﬁ!ﬁE, §J1E is a g-set in
(M,4).

Now, since DcE, r = (JNE) ND, and ANE is a one-
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dimensional g-~set. Further, &ﬂE is restricted, since
B nn—l(E) contains no strings with operator symbols S if
B contains none.

Next we apply Theorem 4.6 to JNE, to conclude that
gt\E has finite K-depth r, for some positive integer r.
We let Rr be the special congruence defined above. We let
T = {Cl,,.a,CS} be the congruence associated with the
recognizable set L(G') (with K-depth no greater than r) of
Theorem 4.6, such that L(G') = LJ C, and n(L(G")) =

1<i<k
XnE. Now form the congruence R" = Rr{\T° By the construction
of L(G'), we have L(G') €¢B.,. So L(G') = \UJ (B, NC,) and

1 : 1l 1
l1<iz<k
L(a") ﬁn_l(D) = U [B ({0}) ], which is-a recognizable
1l<i<k '

set in ¢ . So n[L(C') nn~H(D)] = n(L(G")) ND

= 4NE ND

= JnD =T

is a g~set in (M,A). Clearly the restricted broperty is not
lost, and 40D has dimension one, degree zero, sincsz it is
contained in D. ,

(2)=(1). If r is an rg-set of dimension one, degree zero,
then r = r ND, hence I is an rl-set.

(1)=(3). By the discussion in the proof that (l):?(E)

we see that I 1s generated by a recognizable set whose
associated congruence is RAT, and I = n(L(G')); where

L(g')y = U (B.{0} NncC ) By the results of Mezei and
l<i<k

'Wright we know that L(G') can be generated by a grammar G"

1

in best form; in particular, each variable o # o in G"

has the property that, for some congruence class X in Rr T,
= {t in thxyields t}. Now we look at the classes X in

RﬁAT. If o is a variable in ¢", and o corresponds to a

class ¢f the form BJ(N1’°“”NJ) ﬂCi, then it is homogeneous.

Now suppose o corresponds to a class DﬂCi or Af1Ciu This
cannot happen, since G" is reduced (it is in best form)



83

and L(G') is restricted, with finite K-depth. Since L(G')
has dimension 1, degree 0, the specifications of ¢ must
be ({0}). Hence all variables in G" are homogeneous;
L(G") = L(G'"), and I = L(G") i1s a homogeneous g-set of
dimension 1, degree 0 in (M,A).
(3)(2). Let r = n(L(G)) be such a grammatical set in
(M, VyU{l}), where G = (U,wn,P,o). By a slight variant
of a well-known result ( Page 34, 7), it can be shown that
L(G) can be generatea by a grammar whcse productions are
all of the form (i) «~CBy,
(ii) o~KBy
(11i) oS8
or (iv) a+wj;
the construction does not destroy the homogeneity of the
variables. So we will assume that the productions in G
- have this form. Now suppose a production of the form «—+SB
appears in G, where deg 8 = 0. Then deg o = 0, We
construct a new grammar G' which differs from G only in
that these productions are replaced by productions a-+8,
Then the fact that n(L{G) = n(L(G")) follows easily by
inductions on the length of derivations in G and G';
the essential fact is that if deg 8
then deg n(x) = 0 and n(Sx) = n(x)' = n(x).
A similar argument shows that if o~Cgy appears in G',

0 and B yields x,

il
il

where deg 8 = 0, then we may substitute the production o-8;

note here that deg 8 = O implies deg o = 0.

Without displaying these straightforward proofs, we
assume, then, that I = (L(G)), where G = KU,Wn,P,c) has
homogeneous variables, and each production in P has the
form (1) e, for some wJ in Wn

or (ii) a-B, where deg o = deg B = 0.
or (iii) «-CBy, where deg B # 0.

or (iv) a~KBy ‘

or (v) a+SB, where deg B # 0.
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Let r be the largest degree of a variable in U. We
define a new grammar G' = (U‘,Wm,P',o°) as follows: Let
W= {w?lliiir, 1<j<n} be a set of m symbols (where m = nr).

To each variable o in U, we make correspond a set of symbols

U = {o7]0sicr}. Let U' = U .
aelU

Let P' contain:
(1) 1irf 0w is in P, the productions ai+w% for
all o in U_, !
(2) if a»8 is in P, the production a®~+g°.

(3) if a-CBy is in P, the productions al+CB°yl,

for O<iz<r.

(4) if o+KBy is in P, the productions ai+Keiyi,
for O<i<r.

(5) if o>38 is in P, the productions ai+8i+l,
for O<i<r.

Then G' is a restricted grammar. Now let n':9m+M be the
s
[n(wj)]<i>. [We repeat an earlier convention: for x in
M, denote x' by x'%) and x® oy "1, ye will agree that
x(°) = x.] Then let A = n'(wm). Now n'(L{G")) 1s a re-
stricted grammatical set in (M,A). It remains to show that
n"(L(G")) = n(L(@)).
Given a leftmost derivation

0 =3 Xo = X, =3...-—3X = X in G,
™ 0 Ty 1 a

we construct a matching G' derivation

(e} =
g *‘5‘(‘)7 yO "5‘; yl"")"“?yk y

(unique) homomorphism such that for w§ in Wm, n'(w

such that n'(y) = n(x).
Let g = 0. Choose P as follows.

. (o} o}
(1) 1Irf T, 1s o+wJ, then let p, be o +wj. If

T, 1s o+CBy, let Pg be ¢°+Cp°y°; if n, 1is o-+KBy, let Py be

0
is o-+B, let Py be ¢°+8°; if U is o»S8,

0

0°+Kg°y°; if =
0y

let p, be g8
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(2) If X differs from Yo only in that (a) Vg
contains no cymbols S, and (b) variables in Vg carry super-
scripts, then continue; otherwise the construction has
failed.

(3) For eadh variable Bi appearing in y_, find
the matching variable 8 in X For some t in gh’ B.yields
t. For s substitute SS. St. For each terminal w: in x ,

u—\{~J J S
i
substitute ééi;LEW . When all substitutions have been made,

J
i

call the resulting string sub (ys)° If n(sub ys) = n(x),
continue. Otherwise the construction has failed.

(4) If s = k, the construction is complete.
Otherwise, add 1 to s, and continue.

(5) Choose P If Xg_q = UBYV, for strings u
and v, and T is #~+t, we find the matcﬁlng variable 8"
Vgo12 and choose Py to be applied <o B~, depending on the
form of t.
Case 1. t =y. Then deg g = 0. If i =0, let Py be
B°+y°; otherwise the conscruction has failed.
Case 2. t = Cyé. Let Py be B8 +Cy°5
Case 3. t = Kys. Let p Dbe B Lakytet
Case 4. t = w,. Let pg be gw,

J 1 Js
Case 5. t = Sy. Let Py be B +yl t1 if this production is

in P'; otherwise the constructlon has failed.
Return to step 2.
Now if this construction is always successful, we have,

for each x in L(G), a y in L(G') such that n(x) = n'(y).
For n(sub y) = n'(y), since for all i,j, n'(w?) = n(SSG..Swj).
i

Hence we will conclude that r(L(G)) en'(L(G')). We show
by contradiction that the construction can always be
successfully carried out. Assume the construction fails
for some x in L(G). Let d be the least integer such that

there is an x in L(G) for which the procedure fails at some
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step for s = 4.

An inspection of step 1 shows that for d = 0, the
construction always works. So d must be greater than zero.

Suppose there is a failure at step 2. An examination
of all possible choices of P4 shows this is not possible,
by the minimality of d.

Suppose the construction fails at step 3. At step s-1,
we had x

S=-1
Bl+t' for some string t'. Since by the minimality of x,

= URV; Ty is g+t for some string t, and Py is

n(sub ys-l) = n(x), in showing that n(sub ys) = n(x) it
will suffice to show that n(sub 8°) = n(sub t'). We
consider cases depending on the form of t.
(1) t =vy. Then i =0, t' = y°, and sub y° = sub 8°.
(2) t = Cyé; then t' = Cy°6i; sub Bi = 8S...8Cz,z
e

172°
i
. 1 =
where y ylelds Zq and 6 yields 22, sub t Czl§§;&;§z2.
i
Then (sub gty = [n(zl)-n(ZZ)](i)
= n(Zl)'n(Z2)<i>
= n(t").
(3) t = Ky§; then t' = Ky's™; sub 8> = SS...SKz.z
3 ; SSRGS LY
i
. 1 =
where y ylelds zl and § ylelds Z53 sub % KQEL;LEtléi"‘St2°
1 i
Then n(sub Bi) = [n(Zl)*n(Z2)](l>
= n(z)) Pan(z )
= n(sub t').

(W) ¢t = Wy then t!' wgo sub g = §§;};§w = sub t',

J

hence n(sub 61) = n(t').
(5) t = Sy; then t'
y yields z; and sub (t') = §§:c°Sz. i+l

i+l

yl+1; sub BT = SS...8z, where
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Hence no failure can occur at step 3.

Then the construction must fail at step 5; that is,
there must be some production called for which does not
appear in P'. *
Case 1. t = y. Then deg g = O, hence 1 = 0 and the
desired production is in P',

Cases 2, 3, 4, 5. If i<r, then all needed productions

appear in P'. We will show that Br can never appear in the
construction.

We will need a definition. We say that ai produces
g1*K i there is a derivation a=su such that gi™X is a
symbol in u, and the derivation is formed under the following
restrictions:

(1) if a production ui+Cy°éi appears, then we apply
no further productions to y°._'

(2) 1if a production<ﬁ»K615'appears, we choose either
Gi or gi for the continuation of the derivation, applying
no further productions to the other.

k

The resulting string, then, will yield Bl+ from o

in a "direct" way, without additional productions which
are irrelevant to the appearance of Bi+k.

It is clear that if Br appears in a derivation, there
is some o° which produces it. We will show that, 1f, for
any i, ai produces Bi+k, then the least non-zero integer
appearing in the specifications of o« is greater than k.
Assuming this result for the moment, we then argue as
follows. Suppose Br appears in a derivation. For some o
in V, «°® produces Br; hence the least non-zero integer
in the specifications of o is at least r+l; if deg o # O,
then deg o is greater than r, a contradiction, since we
assumed r to be the maximum degree of variables in G.

Now, if deg o = 0, we claim that there is some y°
which produces 8” such that deg v° # 0. The only pro-
ductions applicable to «°®, if deg. o = 0, are of the form

(1) o°+g°, where deg B = 0 or (2) 0°+CR°8°, where deg 8 # O.
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The application of a production of type 1 ylelds again a
variable of degree zero with zero superscript. Hence we
must at some point in the derivation apply a production of
type 2, where deg (8)>0, in order to obtain the special
type of derivation which produces Br from «°, Buf in that
case, we have 8§° produces Br, and §° has positive degree.
So again we have arrived at a contradiction, and Br can
not appear.

We conclude that there is no failure at step 5, so
the construction is always possible, and n(L(G)) € n'(L(G")).

It remains to show the earlier claim that, if ul
produces i+k, then the least non-zero integer appearing
in the specifications of o 1s greater than k. Suppose the
assertion 1s not true. Let s be the least integer sucnh
that, for some i, some k, some o, some B, ai produces Bi+k
by a special derivation of length s such that the assertion
falls. Let us examine such a derivation, and consider
several cases, depending on the form of the first produc-
tion applied in the derivation. Clearly s is greater than
Zero.
Case 1. = 1s ai+yiv Then yi produces Bi+k, contradicting
the minimality of s.
Case 2. r 1s ui+CG°yi; then again yi produces Bi+k, a
contradiction of the minimality.

Case 3. = 1s ai+Kdiyi; then either Gi or yi produces

Bi+k, by a subderivation of length less than s, again a
contradiction.

Case 4. «n is ai+yi+ls Since yi+l yields Bi+k by a

special derivation of length less than s, the least positive
integer in the n-tuple of specifications of y is greater
than k-1. But note that since = is in P', the production
a+Sy 1s in P' further, deg v # 0 and deg o # 0. If

(Nl,ac
y respectively (notice they must both be m-tuples for some m,

n,Nm) and (Ml,gnn,Mm) are the specifications of o and

since for all x in a morphology L, dim x = dim x'), then
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for all sets Nj # {0}, Nj = {mtl|m is in Mj}' Hence the
least positive integer appearing in (Nl,...,Nm) is greater
than k, as required.

This completes the proof of the claim, and hence the
proof that (L(G))en'(L(G")).

Next we show the reverse inclusion. Let
ai—? zl——>zg——$,..——$zs = z be a leftmost derivation in G'.
We will show by induction on s that o yields an x in L(G)
such that n(x) (1) . n'(z).

Suppose s = 1. Then = 1is ai+w%n By the conétruction,
the production a+wj appears in P; and n'(w?) = [n(wj)](i).
So the assertion holds for s = 1.

Suppose s>1, and the assertion holds for k<s. We
distinguish several cases, depending on the form of .

Case 1. @ is o0°+8°. Then by the induction hypothesis,

g yields x in L(G) such that n(x) = n(z). Since a-»f is in
P, by the construction (note that deg o« = deg g = 0), we
have the desired result.

Case 2. n is o'>08°%’; then a»C8y is in B. Now z = Cy;¥,,
where 8° and yi yield vy and Yo by subderivations of length
less than s. Hence g yields Xq an@ y ylelds X5 such that
n'(yy) = n(xy) and n'(y,) = n(x2)<l). Hence o yields

CX1X2’ where

[}

n(exyxy) = fntag)en(ay) 1Y

- (1)

= ”(X1> n(x,)

= n'(yl.\)'n'(yz)

= n'(Cylyg)

= n'(z), as required.
Case 3. 1 is al+KBly1; then a-»Kpy 1s in P, and z = Kylygg
by the induction hypothesis, 8 yields Xy and y yields X5
such that n(xl)(l) = n(yl) and n(x2)(l) = n(y,). Hence

n(Kx %, (7 [n(xl)%n(x2>](l?
(1)*n(x2)(1)

n(Xl)
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= n'(yl)*n’(ye)

= 1
n (Kylyz)
= n'(z).
1 1+l ,
Case 4. 1w 1s o 8 . Then «+S8 is in P. By the in-
duction hypothesis, g yields x such that n(x)<i+l) = n'(z).
Hence o ylelds Sx and

n‘(SX)(i)

]

[n(x) 114
= [n(x)](i+1)

= n'(z).

Hence the assertion holds for all s.

Applying this assertion to ¢°, we have n'(L(G")) ¢
n(L(G)), which completes the proof.
F-regular restricted lingulstic sets. We will look at a
particularly well-behaved class of sets, the rl-sets in
(M, VU{1}) which are F-regular, where F is the collection
of V-factorizations of M in 9& defined in Chapter 3. We
let V= {vg,.. i) =
Vs l<i<n-1, n(wn) = 1, as usual. We obtain a simple form

"Vn-l} be a fixed ordering of V and n(w

for productions in the grammars generating such sets.
Theorem U4.11: Every F-regular rl-set can be generated by

a grammar whose productlons are of the form
(1) o+B
11) oW
( ]

or (1ii) o-Cw,KK...Ka
JN-\I—‘"

r-1
for some wJ in wn, some variables 030p500050,, SOME r>l,

1920 %2

where r is the degree of n(w,).

Proof: Let G = (U,Wn,P,o) be a grammar in best form
generating such a set T in (M, V U{1}). Then we define a

new grammar G' = (U,Wn,P',o). Let P' be the collection of

(1) productions o+8, where ¢-8 is in G, and (2) for all o # =,
for all strings t such that « yields t and t 1s of the form
(ii) or (4iii), the production a+t. We note that P' is a
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finite set, since V is finite, and the degree of elements in
(VU{1l}) is bounded.

It is clear that L(G') < L(G). Now we want to show that
L(G) €L(G'"). PFirst we will show by induction on the length
of a derivation that, for each o in U, if o yields a term
in F by a derivation in G, it yields the same term by a
derivation in G'. _

Suppose this is not true. Let m be the least Integer
for which there is some variable o and some term x in F
for which the hypothesis does not hold, with a leftmost
derivation in G of length m,

©= XY Ry e K, S X
1 2 m
Suppose m = 1. Then ™y must be u+wj for some terminal wj;

but a+wj is in P', so m is not 1., Suppose m is greater than
1. Since x is in F, ™ must be of the form o«+CRy, and s
must have the form B-w,, and x = ijt for some string t.
Case 1. deg (n(w)) = 1 and t is in F. In this case, y
ylelds t by a derivation in G of length less than m, so by
the minimality of m, y yields ¢ in G'. We note that a+ijy
is in P', so o yields x in G'.
Case 2. t is not in F. Then, since x = Cth is in F, ¢
has the form KK...Ktltg...tr for some terms ti in F, and
r-1

some r>l, where r = deg n(wj).

Since G is in best form, and the derivation 1s leftmost,

n3,nu,..n,nr+l must have the form g-+Kéu for some variables

£, 8, u, and Ko = Cngg;;;ggﬂxz..aa} for some variables o
r-1
By the construction, the production e ) is in P'.

Further, each o5 must yield ti (which is in F) by a sub-
derivation of length less than m; hence oy yields ti in G',
by the minimallity of m. Hence o« yields x in G', a contradic-

tion.
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So, for each variableqa, if o yields a term in F by
a derivation in G, it yeilds the term by a derivation 1in
G'. But a term x is in L(G) precisely when there is a
derivation L(G),

c+a=»x, and x is in F.

Now o+a is in P' whenever it is in P. Since x is in F
and o yields x in G, then o yields x in G'. Hence o yields
x in @' and x is in L(G'). So L(G)ecL(G'), and we may
conclude that L(G) = L(G').
Theorem 4.12: In a free morphology M, with vocabulary V,

if r is a g-set in (M, VU{1l}) generated by a grammar G

with productions of the form specified in Theorem 4.

then I is an F-regular rg-set.

Proof: From the form of the productions it is clear that
L(G) €F, and I is restricted. Since M is free, V is
monotectonic, hence for each phrase x in N, n-l(x) ne
consists of precisely one element. Therefore, n—l(L(G)) nNF =
L(G), which is recognizable; also, since L(G) «F, n(L(G))cC
n(F). So r is F-regular.

Lemma 4.13: 1If D is the collection of formulas in M with
{initialized) vocabulary V, then D is an F-regular restricted
linguistic set in (M, VUu{l}).

Proof: Let V=V, UV2, where V, consists of the elements of
degree zero in V, and V2 contains those of positive degree.
(U,Wn,P,c) such that L(G) =
DNn(F) = D since n(F) contains

We construct a grammar G
n"H(D) NF. Then n(L(®))
all phrases, and

N~ a(L(a))NF

1}

n LD Na(F)INF

n D) A Ta(R) N

n"H(D) NE

L(a),

hence n(L(G)) = D is an F-regular g-set; it is also an 1-
set since DND = D. We will see that D is restricted from
the form of the productions in G. We now specify G. Let

U= {o,a}. Let P contain:
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(1) o+Cw,KK...Kgo...0,
I = S~

r-1 r
where r = deg n(w,), if r>0 , and 1<j<n-1.
(2) oW,
By the form of the productions, L(G)C F is clear. Now we

if deg n(wk) = 0,

show that, for t in F, deg n(t) = 0 if and only if t is

in L(G). PFirst we show by induction on a leftmost deriva-

tion in G, that for t in L(G), deg n(t) = 0. Let the

derivation be

(¥) o-—:xl—gx2-——-)...--7xm= t.

Suppose m = 1. Then n 1is a~w, and deg (n(wk)) = 0 by the

construction of G. Suppose, for m>1l, the hypothesis holds

for all k<m. Then = is o+Cw,KK...Kgo...0., Then t =
I

r-1 r

Cw.KK...Ktltg...tP, where o yields ti by a subderivation
of (#) of length less than m; hence by the induction
hypothesis, deg n(ti) = 0 for all i. Therefore n(t) =
n(wj)-(n(tl)*...*n(tr)) has degree zero, since by Lemma 2.5,
deg n(t)<deg (n(tl)*...%n(tr))

= max {deg n(t;)|icicr}

= 0, :
This completes the first half of the broof.

Next we show, by induction on the depth of t (defined
below) that if t is in F and deg (n(t)) = 0, then t is in
L(G). The depth of a term t in F is:”

(1) if t e W depth (t) = 1

(2) ift = SS...Swn for some raO, depth (t) = 1

r

(3) if t = ij5§§;;§plt2

r-1
depth (t) = max {depth (t,)|l<icr} + 1.
If depth (t) = 1, and deg n(t) = 0, then t = Wj for some
W, such that n(wj) = 0. An inspection of P shows that wj

for some r>Q,

is in L(G) for such wj.
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Surrose for m>1l, the hypothesis holds for all t with

depth less than m, Then if L has depth m,
t = Cw,KK...Kt.t for some r>0,

j\v.Jl2

r-1
where for each t,, depth (ti) is less than m.

n(t) = n<wj)'(n(tl)*"'*n(tr)>' Since V is initialized
and ”(Wj) is in V and deg n(w,) = r, we may conclude by
Lemma 2.10 that deg (n(t)) = max {deg n(t,)|lsicrl.
Therefore if deg (n(t)) = 0, we have deg n(ti) = 0 for all 1,
l<i<r. Then by the induction hypothesls, we have o ylelds
t, for l<i<r. Since the production

i
g+Cw,XK...Koo...0
r-1 r

is in P, we have the derivation
o>Cw, KK...Kpo...0, Cw,KK...Kt.t....t
\_\f_j\~\/_J

J I~ 1 2 r

r-1 r r-1

in P, as required. This completes the proof.

Hence L(G) = n'l(D)\F, and the earlier discussion
completes the proof of the theorem.
Theorem 4,14: If ry and r,
(M, Vyu{l}), so are ryUrys Py
the collection of formulas in M.
Proof: By Theorem 4.10, r, and T,
Theorem 3.20, Pl!JF2 is an F-regular g-set. The restricted

property is preserved, since ry = n(C) and I, = n(D) for

are F-regular rl-sets in
nr2, and D\rl, where D is

are rg-sets. By

some recognizable sets C and D which do not contain strings
with the symbol S, hence neither does the recognizable set
CUD, and T, Ur2 = (cUD). So Pl‘Jrg is an F-regular rg-
set, hence an F-regular rl-set.

By Theorems 4,10 and 3.19, r, N r, is an F-regular

1 2

g-set; and rl n I's has dimension 1, degree 0, so it is an

l-set. Again the restricted property is preserved; for
_ ~1
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and Fl nP2 has degree zero.

Now we show that if a term t in F contains the symbol
S, then n(t) has positive degree; we use induction on the
depth m of a term t in F, defined as in the proof of Lemma
4,14, Suppose the depth of t is 1, and t contains S. Then
t = §;4;§wn, for some k>0, and n(t) is the blank k+l, which

k

has positive degree. Hence the assertion holds for m = 1.
Suppose the hypothesis holds for all terms of depth less
than m. If ¢ has depth m, t = ijK...Ktltg...tr for r>0,
ti in F of depth less than m, for l<i<m. If t contains 3,
then some tj must contain S; hence by the induction hypothesis
n(tj) has positive degree. But n(t) = n(wj)-(n(ti)*...*n(tr)),
and since V is initialized and n(wj) is in V and has degree
r, we conclude by Lemma 2.10 that

degn (t) = max {deg (n(t,))[l<isr}, which is positive.
This concludes the proof of the assertion.

So if there is a term t in ngl(rl Nr,) NF containing
the symbol S, then n(t) has positive degree. This is a

contradiction, since n(t) is in T nr2, which has degree

1

zeroc. Hence n-l(r nrz) NF is restricted, and therefore

1
so is T, ﬂrz.

Next, by Theorem 3.22, n(F)\l‘:L is an F-regular g-set.
By Lemma 4.13, D is an F-regular rg-set. Since F-regular
g-sets are closed under intersection, [n(F)\FljriD = D~ry
is an PF-regular g-set. It 1s also an l-set, since D\P1C7D,
which has dimension 1, degree 0. Now we need only show
that D~ry is restricted. To do this, we refer to the proofs
of Lemma*H.IB and Theorem 3.19 and Theorem 3.22, and note
that: DTy = (n(F)ST) 0D = n(¥), where ¥ = [n™7(D) MaNF]
is recognizable, and n(F)\I‘l = n(Ai. It remains only to
show that Y is restricted. But n (D) NF is restricted, by
the proof <of Temma 4.13, and clearly any subset of a restric-
ted set in Qh is restricted. So Y 1s restricted, and D‘Tl is

an F-regular restricted lingulstic set, as required.
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Theorem 4.15: Every context-free language 1s the homomorphic

image of an F-regular restricted linguistic set in a free
morphology.
Proof: Let H = (U,I,P,0) be a context-free grammar (in the
traditional sense) generating the context-free language L(H).
We may assume H is in Greibach normal form [111; that is,
&ll productions are of the fornm
(*) a+mala2...an,
for some variables Uy0qseseslys for some n>0, and fcr some
terminal m. Number the productions in P as pl, PoseessPy,
Let A = {Zl’z2""’zr} be a collection of distinct symbols.
We will define a submorphology M' of the total linear
morphology over A. If will be that submorphology generated
by the set V', which contains, for each ﬁi in P, the expres-
sion (zi}g...g), if Py has the form (¥), Now we define a
reocgnizable set L(G) on{ , where n:9%+M is the homomorphism
which maps w, to zi}g...g in V. Let G = (U,wr,P',c),
where P' contalns r productions dys l<i<r, each derived from
p; as follows:

if Py has the form O Oy e e 0O s

then a4 is a+CwiKK;..Kala2"..an.

The form of the productions in ¢ satisfies the hypothesis
of Theorem 4.12, hence n(L(G)) is F-regular. Now n(L(G)) is
a g-set in (M',V'), which is Lukasiewicz and hence free.
Note that n(L(G)) 1s restricted. Now let M be the sub-
morphology of the total linear morphology over £ generated
by the set A which we now define by: ml2...n is in A if
and only if, for some variables Ops Opyeeesl in U, for
some n>0, for some Py in P, the right-hand side of o4 is
L PRERL
We can define a homomorphism y:M'+M by specifying its
values on V', since V! is a vocabulary foy M' and M’ is
free. Let y be determined by: ¢(z,1l...n) =ml...n,
where mo ceeny is the right-hand side of P, -

1
Now we claim that uwn(L(G)) is the context-free language
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L(H). To see that L(H)cyn(L(G)), we show by induction on
the length k of a leftmost derivation in H that for any
variable o in U, if o yields x in L(H) by a derivation in
H, then o yields an element y in L(G) such that yn(y) = x.
Let the derivation be

(%) ot—H-)xl—g»...-EI-)xk = X,

where m denctes the fgrst production applied. Suppose k = 1.
Then = 1s a»m, for some m in . This case is easy; 1if

is p,, then the production “+Wj appears in Pt n(wj) =2y
and wn(wj) = w(zj) = m. Therefore the hypothesis holds for
k = 1, Assume the hypothesis holds for s<k. Suppose = is

pJ, which is o ma Then x = mz,%2,...%2_, where for

a L ) a .0 L]
172 n 172°°""n
1 yields zy by a subderivation of (¥¥). Since these

subderivations have length less than k, by the induction

l<i<n, o

hypothesls each a, yields Yy by a derivation in G such that

i

yn(y,) = z,. The production oc-erJKK...Kulaz...an is in P!
by the construction; hence we have a G-derivation

a+CwJKK...Ka1a2...un=7ijKK...Kyly2...yn.

n=-1 n=1
We also have
wn[CwJKK...Kyl...yn]

]

wn(wj)-(wn(yl)*-.-*wn(yn))

i

(ml...n)(z;%...42 ), where the 2z,
are phrases,

]

MZyZneeeB,y 85 required.

So L(H) cyn(L(G)). To show that yn(L(G))<SL(H), we show
by induction on the length of a leftmost derivation that
for any variable o, if o yields y by a derivation in G,
then o yielids yn(y) by a derivation in H. Let the deriva-
tion be

(¥#%) a-—gs»yo—g»...-g-»ym =y,

i
Suppose k = 1. Then w 1s a+Wj for some Wj in Wnn By the
construction, there is a production «+m in P such that

‘J)n(wJ

) = m.
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Suppose the hypothesis holds for derivations of length
less than k, and suppose 7 1s the‘production o~+Cw KK...Kal...a .

n-1
Then y = ijKK...Ktltg...tn, where oy yields ti in G for
l<i<n by a subderivation of (¥#¥¥), of length less than m.
By the induction hypothesis, for each i, o yields wn(ti)
by a derivation in H. By the construction, the production
Py in H is o@moy...c , where yn(w,) = (ml2...n). So we
have ia H, a»mal...ang;m[¢n(t1)]...[wn(tn)]. But this is
precisely yn(y), for

¥n(y)

wn[ijggg;;Epltz...tn]

n-1
wn(wj)-(wn(tl)*...*wn(tn))

(mi2...n)«(yn(t J#...#yn(t ))

mlyn(t ) T..  Dum(e )],

So L(H) oyn(L(G)). We complete the proof by noting that
since L(H) has dimension 1, degree 0, so does ¥n(L(G));
further, v preserves degree, hence n(L(G)) is a linguistic

set.

We remark that not all homomorphic .images of F-regular
rl-sets in free morphologles are context-free languages.
We will show, without going into the finer details, how to
construct as the homomorphic image of an rl-set in a free
morphology, the set C = {xx|x ¢ L(H)} for any context-free
language L(H). It is well-known that this set is not context-
free for arbitrdry context-free languages.

So let L(H) be a context-free language. By

Theorem 4.15, it is the homomorphic image of an F-regular
rl-set T in (M, V U{1}) where M is free. We add to V the
element (sl), where s is some symbol distinct from those in
V, and let L be the (free) morphology generated by V U{sl},
which is a vocabulary for L. T is easily shown to be an F-
regular rl-set in (L, V U{sl}U{1}). Now I = n(L{@)) for
some G = (U,wn5P,o). We define a new grammar G' =
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(U U{o‘},wn,P',o'), where P' = P U{o'+ij0}, and Ly is
such that n(wj) = s1. Then L(G') consists of strings ijt,

where n(t) is in L(H) under the homomorphism h of Theorem |
k.15, Extend h so that h(sl) = (11). Then n(L(G')) is
the collection of strings (sl)-n(t), and hn(L(G')) the

collection

(11)+nn(t) = (11)-x

(xx),

for x in L(H).
Theorem 4.16: Every F-regular rl-set in a free morphology

is a context-free language.

Proof: Let I be such a set in (M, V U{1}), where M is a
submorphology of the total linear morphology over S,

r = n(L(G)), G = (U,Wn,P,o). Then by Theorem 4.12, we
may assume that the productions in G are of the form

*
(¥) _ a—»ijwalaz. ..

r-1

r,’

where deg (n(wJ)) = r,

Define a context-free grammar H = (U,S,P',0), where
P' contains: for each production of the form (¥) in P,
the production

a+ma1a2...ar,

where ”(Wj) = ml2...r. Then we claim that L(H) = n(L(G)).

Let o be any variable in U. We show by induction on
the length of a leftmost derivation that if o yields a
string of terminals x, by a derivation in H, then o yields
by a derivation in G a term t inézn such that n(t) = x.

Let a-—&xi~9 xé~a ...——9xs = x be a leftmost derivation in
T

H. Suppose s = 1, Then = is o-m
that a+wJ is in P and “(Wj) = m. Hence the claim is true
for m = 1. Suppose the hypothesis holds for k<s. Then Xy =

¥ for some m in S such

Me,se00 , @and X = mMZ,2 s where for l<i<r, o, yields z,

1 r 172°
by a subderivation of length less than s. Hence by the

induction hypothesis, for each o5 there is a term ti iné}n
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such that oy yilelds ti by a G-derivation and n(ti) = 2.

Since = is S CE PR by the construction the production

a+ijKK"'Kal"'ar is in P, where n(wj) = ml2...r. Hence
we have the G-derivation
a»ijKK...Kulaz...ar:$ijKK...Ktlt2...tr =t
and n(t) = (ml2...r)-(z %z,%...%2 )
= MZiZy. .2, = X

Hence, in particular, the hypothesis holds for the variable
o, so L(H)en(L(G)).

Now we show by induction on the length of a leftmost
derivation in G that, for any variable o, if o ylelds T in
gln, then o yields n(t) by a derivation in H. Let the G-
derivation be a——atf—a'ti—% ...——>ts = f, Suppose s = 1,

k1)

Then v is a»w, for some w, in‘wn. Further, since I' is an
rl-set, and n(wj) is in T, ”(Wj) has degree zero. Since

M is free, n(wj) = m for some symbol m. By the construction,
o-m 1s.in P'. So the claim is true for s = 1. Suppose s>1,
and thé hypothesis holds for k<s. Then =7 1s of the form
a+CwJKK...Ka1a2...ar, t = ijKK'°'Ktlt2"'tr’ and for l<iz<r,
oy ylelds ti by a subderivation of length less than s. By

the construction, the production o-ma ey, is in P, where

1
”(Wj) = (ml2...r). Hence by the induction hypothesis we

have the H-derivation
a+mul...ar§?mzlzz.;.zr,
where z, = n(t,), l<i<r. Now

a(t) = (ml2...n)(n(ty)e. . #n(5))
= (ml§-°°£)'(zl*22*'-'*zr)
= MZiZye.eZ s

so the claim holds for all s.

Applying this result to the variable ¢, we have
n(L(G)) «L(H). Hence n(L(G)) = L(H), and is a context=
free language.

Theorem 4.17: All context-free languages are structurally

unambiguous rg-sets.
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Proof: We refer to the proof of Theorem 4.15. Let L(H) be
a context-free language. The recognizable set L(G) of that
proof, where L(H) = yn[L(G)], is contained in the set of
A-factorizations of M in n' Note that A is a vocabulary
for M. Hence, by Corollary 3.29, yn[L(G)] is structurally
unambiguous.

Theorem 4,18: Every restricted linguistic set is the

homomorphic image of a restricted grammatical set 1in a
free morphology.
Proof: Let r be an rl-set in (M,A). Let M' be the free
morphology associated with M, and let 0:M'-+M be the {onto)
homomorphism of Corollary 2.17. Suppose A = {al,a2,...,an}
and T = n(C) for a recognizable set C i119?ﬁ where n(wi) =
ays l<i<n. For each ay in A, let ai be any c:lement of the
set n_l(ai) in M'. Let n':9h+M‘ be the homororphism de-
termined by n'(w;) = aj, l<i<n. Then n'(C) is an rg-set
in (M',A'), and by the construction,

o[n' (€)1 = n(C) = . |
Substratum Propertlies. The formulas in linear morphologies

are finite strings of (juxtaposed) symbols from some finite
alphabet S, as are the words in context-free languages.

We ignore the morphology structure, for the moment, and
consider the formulas as elements in the free semigroup
with unity (under juxtaposition) generated by S, which we
denote by S¥. A represents the empty strihg in the semi-
group; note that it is not an element of a linear morphology.
This view allows us to examine properties usually assoclated
with the languages whose underlying algebraic system is

such a semigroup. In the case of lingulstic sets, we will
call such properties substratum properties.

Let S¥ and T¥* be semigroups over S, T respectively,
as above. Let hiS¥+T# be a (semigroup) homomorphism, Then
if I is a linguistic set in M, a submorphology of the total
linear morphology over S, I' is contained in S#¥; further,
if h is non-erasing, that is, if for all s in S, h(s) # A,
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then h(r) ¢M', the total linear morphology over T. In this
case we call h a substratum homomorphism of the l-set T.
Theorem 4.19: The restricted linguistic sets in linear

morphologies are closed under non-erasing substratum homo-
morphism,.
Proof: Let h:S*¥»T* be such a homomorphism, and let T be
an rl-set in (M,A), where M is a submorphology of the total
linear morphology over S, Let M' be the total linear mor-
phology over T. Then construct the set B from A as follows:
If a 1s in A, replace each occurrence of a symbol s in S
with the string h(s) from T¥. Note that the non-erasing
restriction guarantees that h(s) is not the empty string,
hence the element of B we construct is in M'. Suppose
I' = n(C) for some recognizable set C in x Let n': n+M'
be determined by: ifn (wk) = a;, then n'(wi) is that element
of B produced by the above construction. It follows easily
that n'(C) = h(T).

Let w = ala2...am be a phrase in a submorphology of

i

the total linear morphology M' over S; where each a4 is in
S UN. Then the substratum reversal of w, written wR, is
We extend this notion to all of

xRayR,  The substratum reversal

the formula:amam_l...azal.
M' be defining: (x#y)R =
of an l-set is the collection of reversals of its elements,
i.e. rR = (wRlw e 17}.
Lemma 4.20: 1In a linear morphology, for elements x,y,

(1) (x-y)f = xR.yR

(2)  (x)F = (xByr,
Proof: It suffices to prove the theovem when x is a phrase,
since (xxy)R = xR%yR. Suppose M' is a submorphology of the

It

total linear morphology over S, X
M', where ay € SUN, l<i<m, and y 21*22*"'%25 for phrases

8.8~...4_ 18 a phrase i
172 m phra n

i

~

z

-

in M', l<k<s. Then x y = élég. s where for l<iz<m,

's

ES

ai if a:.L e S

z_, where k = k(mod s) if a, = k for some k in N.
k




Then (x-y)R = émRém—lR‘ .éZRélR Now x = ad 1-+-8.2 and

yR le*zzR* . *ZSR; XR yR = bmbm—l‘ ‘bgbl’ where
i:LfEL.z—:S

b, =

k (mpd s) if a, = k for some k in N.

z_, where k i

k
In each case, aiR = b, 80 (x-y)R = XR-yR.

Now we look at (x")T. As before, x = a;a,...a . Then
x!' = b1b2"'bm’ where

(345 if a; is in S.

b, =
k+l, if a; = k for some k in N.
1R
We also have X bmbm—l"'bel'
R _
X - amam_l- o 8.28.1,
t
X = Cmcm—l"'c2cl’ where
ai, if a; 1s in S
c, =
i
k+l, if a, = k for some k in N. Hence (x‘)R = (XR)',

Theorem 4.21: Linguistic sets in linear morphologies are

closed under substratum reversal.
Proof: Let I be an l-set in (M,A), where M is a submorphology
of M', the total linear morphology over S.
We construct a set B from A. If &y is in A, then
8y = 8185...8 for symbols s; in S UN, 1<i<m. Let b =
S S «e:5,5.. Then let B be the collection of elements b,
m m-1 21 _ i
so formed from elements in A. B is a collection of phrases
in M'. Suppose I = n(C) for some recognizable set C in 0
Define n':/n+M' by : n'(wi) = bi' Then we claim that 1 = n'{C).
It suffices to show that for all t in (., n(6) R = nree);
this we do by induction on the operator depth j of t. Suppose

J = 1; then t = w, for some LA in Wn, and n(t) = ays then

i
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n'(t) = bi = aiR by the construction. Hence the assertion

holds for J = 1. Suppose J>1 and the hypothesis holds for
s<j. We consider three cases, depehding on the form of t.

Case 1. t = Ct,t, for some tl, t2 1119& with operator depth

172
less than j. Now
n(6)% = [n(e)en(e,)1%

n(tl)R'n(tg)R by Len.  1.20;

it

n'(tl)'n'(t2), by the induction hypothesis

= n'(Ctltg), as required.
Case 2. & = K"clt2 for some tl, t2 legh with operator depth
less than J. Then
R R
n(t)" = (nlt)en(t,))
- n(tl)R*n(t2>R, by definition;
= n'(t)#n'(£,), by the induction hypothesis,
= n'(Ktltz), as required.
Case 3. t = St, for some t, irxga with operator depth less
than j. Then ' |
n(e)" = [n(t)7'F

[n(tl)R]' by Lemma 4.20;

[n'(tl)]', by the induction hypothesis,

n'(St), as required.
Hence for all t in 3 n(t)R = qn'(t). Now if x is in T,
X = n(t) for some t in C; n'(t) = n(t)R is in n'(C). If y
is in n'(C), then y = n'(t) = n(t)R for some t in C. So
R - n'(C), and is an l-set in (M',B).

..bs be formulas in M',

Let x = a o8y and y = blb

a . e v
172 2
the total linear morphology over S, where a0 bj e S, l<i<n,
l<j<s. Then the substratum product of x and y, denoted xy,

Zla2"’anb1b2"’bs‘ If X and Y are two
subsets of M', we define the substratum product of X and Y

to be XY = {xylx ¢ X, y ¢ Y}.

is the formula z =
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Theorem 4.22: Restricted linguistic sets in linear mor-

phologies are closed under substratum product.
Proof: Let I, be an rl-set in (M,A), where r, = n(C) for

1
some recognizable set thRﬁ let Iy be an rl-set in (L,B),
where ry = n'(D) for some recognizable set D in » Suppose

M and L are submorphologies of the total linear morphologies
over S and S' respectively. Let P be the total linear
morphology over S US'. Now we will generate F1F2 as an ril-
set in (P,AUBU{(12)}). Fix an ordering for AUBU{(12)} =
{dl,...,ds}. Let n'": S+P be the homomorphism determined by:
n"(wi) = di’ l<i<s. Suppose C = L(G) and D = L(H) for
grammars in best form G = (U,Wn,P,o), H = (U',wm,P'go').
Assume U and U' are disjoint. Let J = (U’UU‘,WS,P",O")
wher2 P" contains:

(1) o"+ijKoo‘, for that wj such that n"(wj) = (12)

(2) All productions in P and P' except those of the

form a+wi for wi

(3) For each production AW, in P, the production

inW_ or W .
n n

a-W, , Where n"(wk)'= n(wi).
(L) For each production 0wy in P', the production
1" Vo= -t
AW, where n (wk) 7 (wi).
Then n"(L(J)) yields precisely those strings of the
form (12)+(xzy) = xy, where x is in ry and y is in T,.

Theorem 4.23: If I is an rl-set in (M,A), then so is T
Proof: Let I = I, =T, in the proof of Theorem 4,22, To

1
the grammar J generating the product I'T, add the productions
o+c" and o'+»o", to form the grammar J'. It is tedious but

completely straightforward to show that n"(L(J")) is precisely
I‘+.

Erasure Operators. In linguistic applications, although we
want to reject sentences with unfilled blanks, it will be

convenient, on occasion, to have a method for removing

"extra" blanks, if the sentence is otherwise grammatically

correct. For example, the sentence
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The ___ duchess carried a ____ parasol,
1s well-formed, and does not reguire for syntactical cor-
rectiness the addition of modifiers in the blanks.

We now introduce an element e, called an erasure
operator, whose function is to eliminate unwanted blanks;
that is, (The ____ duchess carried a ___ parasol) e =
The duchess carrled a parasol. We will call a morphology
with such an element & morphology with erasure operator.

Formally, we introduce ¢ into the total linear mor-
phology M = (M,<,#,',r) over the set S. Let M' be the
collection of all n-tuples, each of whose slots contains
either a finite non-emnpty sequence of symbols in S UN, or
the symbol e, Then M' = (M',.,%,',(1)), the total linear
morphology over S with erasure operator e, is defined as

v

follows.

he "~ =
Denote the n~tuple x (xl,xg,...,xn) by X #Xok oo o RX .

n
For x,y in M', where x = X koo kX and y = Yy#eoo#Y s

(1) =x#%y is the n+s-tuple x oo BE KT R RY

(2) x+.y is the n-tuple Zl*%"*zn’ where z, is defined by:
(1) 4if X = € then % = €.
(2) 1if x, # ¢, then z, is the result of (a) sub-
stituting for each blank k in Xy

k = k(mod s), if y_# e: and (b) erasing the blanf k in

the expression y_, where

Xy ity = e. k
k

(3) x' is the n-tuple z,#...xz , where
e, 1f X; = €

z, =

the result of substituting, for each blank k in x
the blank k+1, otherwilse.

Thereby M' becomes a half-ring morphology, with M as
a submorphology. Now let L, with vocabulary V, be any
submorphology of M., Then the submorphology of M generated

i,

by V y{e}l contains L. So we have
Theorem 4.24: Every linear morphology L can be extended

e
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to a linear morphology with erasure operator e.

Now let us consider ¢ to be the empty sequence of
symbols A. Then we may consider the matter of arbitrary
substratum homomorphism,

Theorem 4.25: The collection of rl-sets in linear mor-

phologies with erasure operators is closed under arbitrary
substratum homomorphism.
Proof: We refer to the proof of Theorem 4.19. Given the
situaticn in that proof, we may now construct the set B
from A as follows: if 8y = 5185048 for symbols sj in
S yN, then
(1) if a, = ¢, then b, = c.

(2) 1f for some Sys 8y
of (a) substituting, for each 5 5 in S, the string h(sj),
if h(sj) # Ay and (b) erasing 5 if h(sj) = A,

(3) if for all Sy» 8y ¢ S, then
(1) - if h(sj) = A\ for all Sj in 2,5 bi = g,
(11) 4if for some Sj’ h(sj) # A, then by is
defined as in rule 2,
With this change in the construction of B, the con-
struction is identical with that of Theorem 4,19.

is in N, then bi is the result
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