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Frequency equations and modes of free vibrations of 
rectangular plates with various edge conditions 
C W Bert, BSc, MS, PhD, FAAIMech, FAAAS, FAIAA, FASME and M Malik, PhD, MemASME 
School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA 

This paper considers linearfree vibrations 
simply supported, clamped and free edges 

tropic rectangular ith combinations of the classical boundary conditions of 
of guided edges. The total number of plate 

conjigurations with the classical boundary conditions are known to be twenty-one. The inclusion of the guided edge condition gives rise 
to  an additional thirty-four plate conjigurations. Of these additional cases, twenty-one cases have exact soiutions for which frequency 
equations in explicit or transcendental form may be obtained. The frequency equations of these cases are given and, for each case, 
results of thefirst nine modefrequencies arkipbulated fo$a range of the plate aspect ratios. 
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NOTATION 

edge lengths of the plate parallel to the x and y 
axes respectively 
clamped edge 
flexural rigidity of the plate = Eh3/{12(l - v’)} 
Young’s modulus of the plate material 
free edge 
guided edge 
plate thickness 
modal index between the two opposite edges 
which are both simply supported, one simply 
supported and the other guided, or both guided 
modal index between the opposite edges other 
than those designating the index m 
simply supported edge 
dimensionless mode function = W(X,Y)  
coordinates along the two perpendicular edges of 
a rectangular plate 
dimensionless coordinates = xja, yjb 

plate aspect ratio = a/b 
Poisson’s ratio of the plate material 
plate material mass per unit area 
circular natural frequency of plate vibrations = 

dimensionless frequency = wa2,/(p/D) 

1 INTRODUCTION 

The vibration problem of rectangular plates, although 
now more than some two hundred years old in its 
research account, continues to be of considerable 
research interest. The reason for this is that a rectangu- 
lar plate is a basic structural element and hence practi- 
cal applications may involve enormous parametric 
variations in respect of, for example, loading, materials, 
aspect ratio and support conditions. 

On the assumption of a harmonically periodic time 
response, the analysis of freely vibrating thin rectangu- 
lar plates of isotropic materials involves essentially the 
solution of the following eigenvalue differential equa- 
tion : 

(1) w x x x x  + 2122Txx,, + 14w,,,, - Q2W = 0 
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where a subscript comma (,) followed by variables X, Y ,  
etc., represents a partial derivative with respect to the 
variables. 

The solution of equation (1) depends basically on the 
edge boundary conditions. The classical boundary con- 
ditions employed for the analysis of plates are simply 
supported (SS), clamped (C) and free (F) edges, and with 
all possible combinations of these conditions at the four 
edges, 21 rectangular plate configurations are possible. 
Of these, only six configurations obtained by taking two 
opposite edges simply supported have analytical solu- 
tions and an explicit form of frequency equation exists 
in each of these cases. However, for the remaining 15 
configurations, solutions may be obtained by approx- 
imate methods such as the Rayleigh-Ritz method and 
numerical methods such as the finite difference and 
finite element methods, The approximate methods are 
convenient and have been used most extensively, 
employing the beam mode functions to represent the 
mode shapes of the vibrating plates. Mention may be 
made of the work of Young (1) who used the Rayleigh- 
Ritz method to analyse several frequency modes 
of square plates of clamped (C-C-C-C), cantilever 
(C-F-F-F) and two adjacent clamped and two adjacent 
edges free (C-C-F-F) configurations. In this work, 
Young (1) used 18-term plate mode functions obtained 
by taking three and six terms of X -  and Y-direction 
functions respectively of the beam mode functions. War- 
burton’s paper (2) was the first comprehensive work on 
plate vibrations in which, using the Rayleigh method, 
frequency equations were presented for the 21 config- 
urations of SS, C and F edge combinations. In this 
work, the plate mode functions were approximated by 
single-term beam mode functions. More accurate fre- 
quency data of the 20 cases were given by Leissa (3), 
who for the Rayleigh-Ritz solution of the 15 cases used 
36-term mode functions formed by six terms each of the 
X -  and Y-direction beam mode function. 

The three boundary conditions of simply supported, 
clamped and free edges are of most practical interest 
and are indeed mathematically correct boundary condi- 
tions. The conditions are simply three of the four pos- 
sible combinations of essential and natural conditions 
of the calculus of variations as applied to the energy 
functional of the classical thin plate theory. The fourth 
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mathematically possible boundary condition given by 
zero rotation (essential condition) and zero effective 
shear force (natural condition) makes what has been 
referred to in the literature as the guided (G) edge. This 
boundary condition has remained unattended in plate 
literature due to its limited and possibly obscure practi- 
cal applications. The boundary of a piston inside a 
circular cylinder with a narrow clearance may 
appropriately be modelled as a guided edge. A similar 
situation may be conceived of a rectangular plate inside 
a rectangular cylinder. From a mathematical stand- 
point, the axes of symmetry in symmetric modes of 
vibrations are equivalent to guided edges. This equiva- 
lence has actually been used in plate vibration analyses; 
see, for example, the recent work of Gorman (4) on the 
free vibration analysis of orthotropic rectangular plates. 

This work considers the free vibration of rectangular 
plates with one or more edges guided. The possible 
combinations of the three conventional (SS, C and F) 
edge conditions with the guided edge condition at the 
four edges give rise to 34 additional configurations. 
With the inclusion of the plate configurations con- 
sidered in earlier works (2, 3), the total number of 
rectangular plate configurations with all possible com- 
binations of S S ,  C ,  F and G edges becomes 55. These 
configurations are listed in Table 1, where the first 21 
configurations of earlier works (2, 3) are included for 
completeness. 

The intent of this paper is to produce the frequency 
equations and the frequency data of rectangular plates 
with one or more guided edges for the cases in which 

Table 1 Rectangular plate configurations based on possible 
combinations of simply supported, clamped, free 
and guided edge conditions 

Cases 1 to 6 of plates with two opposite edges simply supported 
have an analytical solution. 

4. SS-C-SS-C 5. SSC-SS- F 6. SS-F--SS-F 

Solutions of cases 7 to 21 are possible by approximate or numerical 
methods only. 
7. c-c-C-c 8. C-C-C-SS 9. C C C F 10. C-SS-C-F 

11 .  C-F-C-F 12. C-F-SS-F 13. C-C-SS-SS 14. C-C-SS-F 
15. C-SS-SS-F 16. SS-SS-F-F 17. C SS--F- F 18. C--C-F-F 
19. SS-F-F-F 20. C-F-F-F 21. F-F-F-F 

Cases 22 to 25 of plates with two opposite edges simply supported 
have an analytical solution. 
22. SS-SS-SS-G 23. SS-C-SSG 24. S S G - S b F  25. SS-G-SS-G 

Cases 26 to 33 of plates with one edge simply supported and 
opposite edge guided have an analytical solution. 
26. C-SS-C-G 27. C-SS S S G  28. SS-SS-G-G 29. C-SSG-G 
30. SS-SS-G-F 31. SS-C-G-F 32. SSG-G-F 33. SS-F--C-F 

Cases 34 to 42 of plates with two opposite edges guided have an 
analytical solution. 
34. C-G-SS-G 35. C-GC-G 36. S S  G G G 37. C-GG-G 
38. SS-G-E' G 39. C-G-FG 40. G-G-F-G 41. FG-F-G 
42. GG-G-G 

Solutions of cases 43 to 55 are possible by approximate or numerical 
methods only. 
43. C-C-C-G 44. C-C-SSC 45. C-C-G-F 46. C - C G G  
47. C-G-C-F 48. C-G-SS-F 49. C-SS-G-F SO. C - G ~ G  F 
51. C-FG-F 52. SbG-F-F 53. C-G-F-F 54. G-G-F-F 
55. G-F-F-F 

Plate designation follows the standard notation; for example, an SS-CG-F 
plate has its edges simply supported, clamped, guided, and free at X = 0, Y = 0, 
X = 1 and Y = 1 respectively. 
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1 .  S S S S - S S - S S  2. SS-SS-SSC 3. SS-SS-SS-F 

analytical solutions of equation (1) exist. Such plate 
configurations are 21 in number and are listed as cases 
22 to 42 in Table 1. A brief relevant theory and then the 
frequency equations of these cases are given in the fol- 
lowing sections. Thereinafter, the frequency data of 
these cases are presented and discussed. 

2 ANALYSES 

The guided edge is modelled as the one with zero 
normal slope and zero effective shear force. These con- 
ditions may be expressed mathematically as 

w, = 0, w,,, + (2 - V ) P W , , ,  = 0 
at an X-type edge and 

w y  = 0, I Z W y y y  + (2  - v ) I y : x , y  = 0 (3) 
at a Y-type edge. 

Obviously analytical solutions of the plates with two 
opposite edges simply supported and guided support in 
combination with SS, C and F conditions on the 
remaining two edges should be possible. These are listed 
as cases 22 to 25 in Table 1. However, similar to the 
case of plates with two opposite edges simply sup- 
ported, analytical solutions are also possible for plates 
with two other support combinations of the opposite 
edges. These are: (a) one edge simply supported and the 
opposite edge guided and (b) the two opposite edges 
guided. This conclusion stems from the fact that SS-G 
and G-G beams have mode functions of the following 
form : 

SS-G beam 

(4) 
R 

Wx(X) = sin a,X; 01, = (2m - 1) - 
2 

G-G beam 

Wx(X) = cos a,X; a, = (m - l ) ~  ( 5 )  

which satisfy the boundary conditions of dW,/dX = 0 
(zero rotation) and d2 Wx/dX2 = 0 (zero moment) at the 
guided edge of the beam. Now assuming the edges 
X = 0 and X = 1 of a plate to be simply supported and 
guided respectively, or to be both guided, the mode 
function of the plate may be considered to be in the 
following form : 

(6) W(X, Y )  = WX(X)WY( Y) 

where W,(X) is the X-direction mode function and is 
either of the two beam mode functions given by equa- 
tions (4) and (5). Then it may be seen that equation (6) 
satisfies each of the two boundary conditions at X edges 
of the plate, as given by equation (2). 

Substituting equation (6)  in equation (1) and then 
using either of the equations (4) and (3, the equation for 
the Y-direction mode function may be obtained as 

d4W d2W 
A4 $ - 2A2ai dY2 + (a: - B4)wY = o (7) 

where 
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With the solution of equation (7), the plate mode 
function takes one of the following two forms: 

Case I: 8’ > a: 

W ( X ,  Y) = W,(X)[A sin @, Y + B cos @,,, Y 

+ C sinh Y, Y + D cosh Y, yl (9) 

Case 11: p2 < a: 

W(X,  Y) = W,(X)[A sinh @,,, Y + B cosh @, Y 

+ C sinh Y, Y f D cosh Y, (10) 
where 

and 

Y, = J ( B Z  -i- U 3 / A  (12) 

Equations (9) and (10) are of identical form as the 
mode function for plates with two opposite X edges 
simply supported; see, for example, reference (2). The 
only difference is in the value of LY,, which, for the 
plates simply supported at two opposite edges, is given 
by 

a,,, = mx (13) 

The frequency equations associated with equations (9) 
and (10) are determined by invoking the boundary con- 
ditions of the edges Y = 0 and Y = 1 and then setting 
the determinant of the coefficient matrix of the con- 
stants A, B, C and D equal to zero. The solution of 
transcendental equations so obtained gives the fre- 
quency parameter SJ = j’. It may be seen, however, that 

1 

22. SS-SS-SS-G plate 

23. SS-C-SSSG-plate 
Case I:  p2 > a: 

@, tan @,,, + Y, tanh Y, = 0 

Case 11: 8’ < a: 

@, tanh @,,, - Y, tanh Y, = 0 

24. SS-G-SS-F plate and 32. SS-G-G-F plate 
Case I: P’ > a: 

@,(vai - A’Yi){(2 - .)a% + A’@:> sin @, cosh Y, 

similar to the case of the SS-SS-SS-SS plate, exact 
expressions for the frequencies may be obtained for the 
plate configurations of cases 22, 25,28, 36 and 42, which 
are formed by the combination of SS and SS, SS and G, 
and G and G types at two pairs of the opposite edges of 
the rectangular plates. 

3 FREQUENCY EQUATIONS FOR RECTANGULAR 

In the following, frequency equations for the plate con- 
figurations 22 to 42 of Table 1 are given. In the plate 
configurations of cases 22 to 25, the two opposite 
simply supported edges are taken at X = 0 and X = 1. 
However, the two opposite edges of cases 26 to 42, 
having one simply supported and the other guided or 
both guided, are taken either at X = 0 and X = 1 or at 
Y = 0 and Y = 1. This is done for some convenience in 
the interpretation of the results of these cases with 
respect to some of the cases of 1 to 21 and of the beam 
vibrations. It should be noted, however, that for the 
cases where the two opposite SS and G or G and G 
edges are at Y = 0 and Y = 1, 

PLATES WITH ONE OR MORE GUIDED EDGES 

and 

Y, = J(B’ + Pa:) (15) 

For plate configurations with identical boundary 
conditions at the other two opposite edges, the fre- 
quency equations are given by factoring the original fre- 
quency equation separately for symmetric and 
antisymmetric modes. The factoring procedure is the 
same as that used in reference (1). 

+ Y,(va: + A2@:){(2 - v ) a i  - A’Y;) cos @, sinh Y, = 0 (19) 
Case 11: p2 < a: 

@,,,(vai - A’Y:)((2 - v)a: - A”@:) sinh @, cosh Ym 

- Y,(vai - ,12@3{(2 - v)aH - A2Y:) cosh @, sinh Y, = 0 (20) 

(21) 

25. SS-G-SS-G plate 

Q,,, = x Z ( m 2  + A2(n - I)’} 
Q IMechE 1994 Proc Instn Mech Engrs Vol208 
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26. C-SS-C-G plate and 35. C-G-C-G plate 
Case I :  8’ > A’ui 

Symmetric : 

@m ‘ y m  

2 2 
@, tan - + Y,  tanh - = 0 

Antisymmetric: 

@m 

2 2 
Y, tan - - @, tanh ‘y, = 0 

Case 11: 8’ < A’ai 
Symmetric: 

@m ‘y m 

2 2 
@, tanh - - Y,  tanh - = 0 

Antisymmetric: 

@m ‘y m 

2 2 
Y, tanh - - @, tanh - = 0 

27. C-SS-SS-G plate and 34. C-G-SS-G plate 
Case I :  8’ =- L’ai 

(@: + @, Y i )  cos @, sinh Y, - (Y: + @; Y,) sin @, cosh Y,  = 0 

(@: - @, Y i )  cosh @, sinh Y, + (Y: - @i Y,,,) sinh @, cosh Y, = 0 

Case II: 8’ < L’ai 

28. SS-SS-G-G plate 

Q,, = - {(2m - + A’(2n - I)’} (3” 
29. C-SS-G-G plate and 37. C-G-G-G plate 
Case I :  8’ > A2ai 

@, sin @, cosh Y, + Y,  cos @, sinh Y,  = 0 

@, sinh Qrn cosh Y, - Y, cosh @, sinh Y, = 0 

Case II: 8’ < A2ai 

30. SS-SS-G-F plate 
Case I :  /I2 > a: 

@,(vai - AZYi){(2 - v )a i  + A’@;} cos @, sinh Y ,  

- Y,(vai + A2@;){(2 - v )a i  - A2Yi} sin @, cosh Y,  = 0 
Case 11: 8’ < a: 

@,(vai - A’Yi){(2 - v )a i  - A’@;} cosh @, sinh Y,  

- Y,(vai - A2@3{(2 - v )a i  - A’Yi} sinh @, cosh Y,  = 0 

31. SS-C-G-F plate 
Case I: 8’ > a; 

@, Y,[(va: + A’@:,{(2 - v)af + A’@:} + (va: - A’Y3{(2 - v)ai - A’Y:}] 

- @,A@,,, sin @, sinh Y,  + Y,  cos @, cosh Y,)(va: - A2Y:){(2 - v)a i  + A’@;} 
+ Y,(Y, sin @, sinh Y,  - @, cos @, cosh Y,)(vai + A’@i){(2 - v)ai - A’Yi} = 0 

Case 11: f12 < af 

@, Y,C(vai - A2@3{(2 - V).: - A’@;} - ( v a i  - A’Y3{(2 - v)a i  - 1’ Y i } ]  

-@,(@, sinh @, sinh Y, - Y,,, cosh @, cosh Y,,J(vai - A2Y:){(2 - v)a: - A’@:} 
- ‘J’,,,(Y, sinh @, sinh Y, - @, cosh @, cosh Y,)(vai - A2@3{(2 - .)a; - A’Yi} = 0 

Part C : Journal of Mechanical Engineering Science 0 IMechE 1994 
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33. SS-F-G-F place 
Case I :  p’ > a: 

Symmetric: 

@,{(2 - v)a i  + A’@i}(vai - A’Yyl) tan - @m + Ym((2 - v)a: - A’Yi}(va; + A2@2 tanh - ‘ y m  = 0 
2 2 

Antisymmetric : 
v)a i  + A’@i)(va; - A’Ya tanh - y m  - Y,((2 - v)ai - A’Yi}(vai + A 2 @ i )  tan - @m = 0 

2 2 @ m { ( 2  - 

Case 11: p’ < a; 

Symmetric : 

@,{(2 - v)a$ - A2@i}(vcti  - A’Ya tanh - @m - Y,{(2 - v)a i  - A2Y;}(vai - A2@3 tanh - ‘y m = 0 
2 2 

Antisymmetric : 
Yrn @m 

2 2 
@,{(2 - v )a i  - A’@i}(va$ - A’Ya tanh - - Y,{(2 - v)a i  - A’Yi}(vai - A’@$) tanh - = 0 

36. SS-GG-G place 

38. SS-G-F-G plate 
Case I: p2 > A2ai 
@,(vL’a~ - Yi){(2 - v)A’ai + @:} cos @, sinh Y, 

- y m ( v  

Case 11: 8’ < AZaf 

@,(vA2ai - Y3((2 - v);l’ai - @i} cosh a,,, sinh Y, 

’a: + @3{(2 - v)A’ai - Y i }  sin @,,, cosh Y, = 0 

- Ym(vA2ai - @3{(2 - v)A’ai - Y i }  sinh @, cosh Y, = 0 

39. C-G-F-G plate 
Case I: fl’ > 

a,,, Y,[(vA’ai + @i){(2 - v)AZai  + @;} + (~1%; - ~; ) { (2  - v)A’ai - Y:)] 

-am(@, sin @, sinh Y, + Y, cos @, cosh Y,,,)(vA’a~ - Y3{(2 - v)A’a; + @i} 
+ Y,(Y, sin @, sinh Y, - @, cos @, cosh Ym)(vA2a~ + @3{(2 - v)A’a; - Y i }  = 0 

Case 11: p2 < 1%; 
@,,, Y,[(vA’ai - @i){(2 - v)A2ai - @i} - (vA2ai - ~$){(2 - v)Azai - Y;} ]  

-@,(@, sinh a,,, sinh Ym - Y, cosh @, cosh Y,)(vA’ai - Yi){(2 - v)A’ai - Qi} 
- !P,(Y, sinh @, sinh Y, - @, cosh @,,, cosh Y,)(vL’ai - @ 3 ( 2  - v)A’a; - Y i }  = 0 

40. G-G-F-G place 
Case I: 8’ > A’a; 

@,(vA’cri - Yi){(2 - v)A’rxi + @i} sin @, cosh Ym 

+ Ym(vA2a; + @3{(2 - v)A’ai - Y$) cos Gm sinh Y, = 0 

Case 11: p’ < AZa: 

@,(vA2ai - Y3{(2 - v)A2ai - @;] sinh @, cosh Y, 

+ Y,(vA’ai - @,3{(2 - v)12ai - Y i }  cosh @, sinh Y, = 0 
Q IMechE 1994 Proc Instn Mech Engrs Vol 208 
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41. F-GF-G plate 
Case I: fl’ > 2%: 

Symmetric : 

@,{(2 - v ) P a i  

Antisymmetric: 

@,{(2 - v)12ai 

Case 11: #Iz < lzai 
Symmetric: 

C W BERT AND M MALIK 

@m y m 
2 + @i} (v12a i  - Y 3  tan - + Ym{(2 - v)12ai - Yi>(vl’a$ + @i) tanh - 2 = 0 

y m  @m + @ i } ( v L z u ~  - Y i )  tanh - - Y,((2 - v ) i 2 a i  - Y i ) ( v A Z u ~  + @i) tan - 2 = 0 2 

@m Y m  
2 2 @,((2 - v)L2ui - @i)(v12a; - Y i )  tanh - - Ym{(2 - v)A2a; - Y~}(vA2u2,  - @;) tanh - = 0 

(46) 

(47) 

Antisymmetric: 

(49) 
Y m  @m 

2 2 @,{(2 - v)12ui - @’,}(vL2ai - Y 3  tanh - - ‘Ym{(2 - v)L2ai - Y~)(vlZzu$, - @i) tanh - = 0 

42. G G G - G  plate 

a,, = 7P((?n - 1)2 + P ( n  - l ) Z }  

4 RESULTS AND DISCUSSION 

The frequency equations of cases 22 to 42 given in the 
previous section are utilized to obtain the frequencies 
and mode shapes of the respective rectangular plate 
configurations. The transcendental equations are solved 
by the Newton-Raphson method. In all cases, the accu- 
racy of calculation is maintained by having both of the 
following convergence criteria met : 

where k is the iteration count and f ( Q )  = 0 is the fre- 
quency equation. 

The frequencies of the rectangular plate config- 
urations of cases 22 to 42 of Table 1 are given in Tables 
2 to 22. As with the application of the free boundary 
condition, the value of Poisson’s ratio needs to be speci- 
fied for the application of the guided boundary condi- 
tion. All of the tabulated results are obtained with 
Poisson’s ratio, v = 0.3. Further, these data are present- 
ed in the same format as in reference (3). Thus, the cal- 
culated frequencies are for the first nine modes of free 
vibrations and each mode frequency is given for five 
values of the aspect ratio, L = 3, 3, 1, 3 and 5. The two 
digit numbers (the mode set) given above each fre- 
quency value describe the mode shapes, the two digits 
giving in order the number of half-waves in the X and 
Y directions respectively. In some cases, multiplicity of 
modes with the same frequency value is possible. Three 
obvious cases, as seen from the frequency equations 
(19), (26) and (50), are of SS-G-SS-G, SS-SS-G-G and 
G-G-G-G square plates. For example, in SS-G-SS-G 
square plates, modes 13 and 22 would be of the same 
frequency. In SS-SS-G-G and G-G-G-G square 
plates, the two digits of a mode set are interchangeable. 

A guided edge is a partially free edge in that the edge 
is fully free to deflect laterally (hence zero effective shear 
force). However, the normal rotation of a guided edge is 
Part C :  Journal of Mechanical EnginTring Science 

fully restrained and, hence, unlike that of free edge, the 
moment normal to the edge is not zero. Thus, it can be 
expected that frequencies of a plate with a guided edge 
will be higher than frequencies of a similar plate but 
with the corresponding edge free; the difference should 
obviously increase with increasing length of the guided 
edge. As an illustration of this point, Table 23 provides 
comparisons of the fundamental mode frequencies of 
four sample plates of cases 23, 25, 28 and 34 with the 
fundamental mode frequencies of similar plates having 
corresponding edges free, where the latter data are 
taken from reference (3). It may be seen that the com- 
parison conforms to the aforementioned conclusion. 

Table 2 Frequency parameter 62 = wa2J(p/D) for SS-SS- 
S W  plates (case 22) 

Mode 
sequence 

1 

2 

3 

4 

5 

6 

7 

8 

9 

I = aJb 

a 4 1 s 5 
1 1  

10.26439 

1 2  
13.42266 

1 3  
19.73921 

1 4  
29.21403 

2 1  
39.87320 

1 5  
41 347 12 

2 2  
43.03148 

2 3  
49.34802 

1 6  
57.63849 

1 1  
10.96623 

1 2  
19.73921 

1 3  
37.28517 

2 1  
40.57504 

2 2  
49.34802 

1 4  
63.60412 

2 3  
66.89399 

3 1  
89.92307 

2 4  
93.21294 

1 1  
12.33701 

1 2  
32.07622 

2 1  
41.94582 

2 2  
61.68503 

1 3  
71.55464 

3 1  
91.29385 

2 3  
101.16345 

3 2  
11 1.03306 

1 4  
130.77227 

1 1  
15.421 26 

2 1  
45.03007 

1 2  
59.83448 

2 2  
89.44329 

3 1  
94.37810 

3 2  
138.79132 

1 3  
148.66092 

4 1  
163.46533 

2 3  
178.26974 

1 1  
25.29086 

2 1  
54.89968 

3 1  
104.24770 

1 2  
148.66092 

4 1  
173.33494 

2 2  
178.26974 

3 2  
227.61776 

5 1  
262.16138 

4 2  
296.70500 

Q IMechE 1994 
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Table 3 Frequency parameter i2 = wa2,/(p/D) for SS-C- 
SSkG plates (case 23) 

1 = afb 
Mode 

sequence 3 3 1 t + 
1 1  

10.34454 

1 2  
14.04455 

1 3  
21.1 501 6 

1 4  
31.479 16 

2 1  
39.91111 

2 2  
43.36022 

1 5  
44.97255 

2 3  
50.20251 

2 4  
60.36157 

1 1  
11.35736 

1 2  
22.20117 

2 1  
40.75741 

1 3  
42.14094 

2 2  
50.82661 

2 3  
70.40495 

1 4  
70.82477 

3 1  
90.04086 

2 4  
99.03525 

1 1  
13.68577 

1 2  
38.69393 

2 1  
42.58662 

2 2  
66.299 10 

1 3  
83.48830 

3 1  
9 1.704 17 

2 3  
11 1.0091 6 

3 2  
114.35987 

1 4  
147.87515 

1 1  
19.74590 

2 1  
47.28049 

1 2  
76.28195 

3 1  
95.81989 

2 2  
102.69262 

3 2  
149.17297 

4 1  
164.51541 

1 3  
176.72268 

2 3  
203.64496 

1 1  
41.18466 

2 1  
65.27632 

3 1  
11 1.24204 

4 1  
178.459 14 

1 2  
197.06296 

5 1  
266.16636 

3 2  
266.22905 

2 2  
222.304 13 

4 2  
330.07159 

Table 4 Frequency parameter R = wa2,/(p/D) for SS-G- 
SS-F plates (case 24) 

A = afb 
Mode 

sequence 3 3 1 t t 
1 1 1  1 1  1 1  1 1  1 1  

2 1 2  1 2  1 2  1 2  2 1  

3 1 3  1 3  2 1  2 1  1 2  

4 1 4  2 1  1 3  2 2  2 2  

5 1 5  2 2  2 2  1 3  3 1  

6 2 1  1 4  2 3  3 1  3 2  

9.80967 9.77630 9.73624 9.68035 9.59073 

11.23540 13.56000 17.68503 25.99163 38.83029 

15.58910 24.97316 39.18812 39.06442 49.96131 

22.82281 39.27262 42.38443 57.89956 86.13909 

33.05941 43.26324 47.96686 80.61141 87.80425 

39.34042 44.55592 74.52565 88.17328 139.22916 

7 2 2  2 3  1 4  3 2  4 1  
40.78708 55.56297 86.28681 107.92544 156.50305 

8 2 3  1 5  3 1  2 3  1 3  
45.35977 72.82745 88.36340 114.93042 201.81403 

9 1 6  2 4  3 2  4 1  4 2  
46.39969 75.92463 97.34229 157.00555 210.14622 

Table 5 Frequency parameter i2 = wa2,/(p/D) for SS-G- 
SS-G plates (case 25) 

I = a/b 
Mode 

sequence $ 4 1 s : 
1 1 1  1 1  1 1  1 1  1 1  

2 1 2  1 2  1 2  1 2  2 1  

3 1 3  1 3  2 1  2 1  1 2  

4 1 4  2 1  1 3 , 2 2  2 2  3 1  

5 1 5  2 2  2 3  3 1  2 2  

9.86960 9.86960 9.86960 9.86960 9.86960 

11.44874 14.25610 19.73921 32.07622 39.47842 

16.18615 27.41557 39.47842 39.47842 71.55464 

24.08184 39.47842 49.34802 61.68503 88.82644 

35.13579 43.86491 78.95684 88.82644 101.16345 

6 2 1  1 4  3 1  1 3  3 2  
39.47842 49.34802 88.82644 98.69605 150.51 148 

7 2 2  2 3  1 4 , 3 2  3 2  4 1  

8 2 3  2 4  2 4 , 3 3  2 3  4 2  

9 1 6  1 5  4 1  4 1  5 1  

41.05756 57.02438 98.69605 111.03306 157.91368 

45.79497 78.95684 128.30486 128.30486 219.59871 

49.34802 80.05346 157.91368 157.91368 246.74012 

Table 6 Frequency parameter Q = wa2,/(p/D) for C-SS-C- 
G plates (case 26) 

1 = afb 
Mode 

sequence + 4 1 t 4 
1 1  

22.59267 

1 2  
24.49990 

1 3  
28.95085 

1 4  
36.62408 

1 5  
47.81866 

2 1  
61.96811 

1 6  
62.53913 

2 2  
64.36538 

2 3  
69.32701 

1 1  
22.99377 

1 2  
28.95085 

1 3  
43.69217 

2 1  
62.49553 

1 4  
68.21484 

2 2  
69.32701 

2 3  
83.98722 

1 5  
102.21620 

2 4  
107.46894 

1 1  
23.81563 

1 2  
39.08925 

2 1  
63.53450 

1 3  
75.84165 

2 2  
79.525 12 

2 3  
114.77960 

3 1  
122.92963 

1 4  
133.74324 

3 2  
139.62235 

1 1  
25.82839 

1 2  
64.62293 

2 1  
65.91258 

2 2  
104.03138 

3 1  
125.48348 

1 3  
151.41376 

3 2  
164.16200 

2 3  
188.13173 

4 1  
204.64472 

1 1  
33.34114 

2 1  
73.84346 

3 1  
133.79716 

1 2  
151.41376 

2 2  
188.13173 

4 1  
213.23941 

3 2  
246.92373 

5 1  
312.27195 

4 2  
326.42658 
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Table 7 Frequency parameter 62 = wa2J@/D) for C-SS- 
SS-G plates (case 27) 

1 = alb 
2 - 3 sequence + 3 1 2 $ 

Mode 

1 1 1  1 1  1 1  1 1  1 1  

2 1 2  1 2  1 2  2 1  2 1  

15.71498 16.25197 17.33175 19.88128 28.69490 

18.21222 23.64632 35.05113 54.80179 63.67189 

3 1 3  1 3  2 1  1 2  3 1  
23.64632 40.01524 52.09793 61.91931 118.33890 

4 1 4  
32.35143 

5 1 5  
44.40293 

6 2 1  
50.30419 

7 2 2  
53.04523 

2 1  
50.90933 

2 2  
58.64636 

1 4  
65.61802 

2 3  
74.76167 

2 2  2 2  1 2  
69.91281 96.14142 149.91641 

1 3  3 1  2 2  
73.43892 109.28108 182.84986 

3 1  1 3  4 1  
106.47861 149.91641 192.62251 

2 3  3 2  3 2  
107.41974 150.79279 236.741 14 

8 2 3  2 4  3 2  2 3  5 1  
58.64636 99.75951 124.63336 182.84986 286.56495 

9 1 6  1 5  1 4  4 1  4 2  
59.76803 100.26980 132.11919 183.41742 310.93672 

Table 9 Frequency parameter B = oaZJ(p/D) for C-SS-G- 
G plates (case 29) 

1 = a/b 
Mode 

sequence 4 z 1 4 3 
1 1 1  1 1  1 1  1 1  1 1  

2 1 2  1 2  1 2  2 1  2 1  

3 1 3  1 3  2 1  1 2  3 1  

4 1 4  2 1  2 2  2 2  1 2  

5 2 1  2 2  1 3  3 1  4 1  

6 2 2  2 3  3 1  3 2  2 2  

7 1 5  1 4  2 3  1 3  3 2  

8 2 3  3 1  3 2  4 1  5 1  

9 2 4  2 4  1 4  2 3  4 2  

5.81936 6.26090 7.23771 9.77231 18.96041 

8.08908 13.68577 25.55405 34.90559 43.69646 

13.68577 30.66680 32.27388 52.99488 88.55561 

22.76060 31.12901 49.95263 76.39840 141.58094 

30.54960 38.69393 64.65340 79.58863 153.02587 

33.19201 54.83114 76.82904 120.97059 163.71027 

35.16490 56.74241 87.77843 141.58094 207.22450 

38.69393 75.61025 94.8171 1 143.88868 237.13414 

47.29799 80.04968 123.71718 163.71027 271.32883 

Table 8 Frequency parameter SZ = wa2J(p/D) for SS-SS- 
G-G plates (case 28) 

Table 10 Frequency parameter SZ = cc,a2J(p/D) for SS-SS- 
G-F plates (case 30) 

I = a/b 
Mode 

sequence + 5 1 - 3 2 - 2 5 

I = alb 
Mode 

2 sequence 3 3 1 4 5 - 
1 

8 

9 

1 1  
2.86219 

1 2  
6.02046 

1 3  
12.33701 

1 4  
21.81 183 

2 1  
22.60140 

2 2  
25.75967 

2 3  
32.07622 

1 5  
34.44492 

2 4  
41.55104 

1 1  
3.56402 

1 2  
12.33701 

1 3  
29.88297 

2 1  
23.30323 

2 2  
32.07622 

2 3  
49.62218 

1 4  
56.20192 

3 1  
62.78165 

3 2  
71.55464 

1 1  
4.93480 

1 2  
24.67401 

2 2  
44.41322 

1 3  
64.15243 

2 3  
83.89164 

1 4  
123.37006 

2 4  
143.10927 

3 4  
182.58769 

1 5  
202.32690 

1 1  
8.01905 

2 1  
27.75826 

1 2  
52.43228 

3 1  
67.23668 

2 2  
72.17149 

3 2  
111.64991 

4 1  
126.45431 

1 3  
141.25872 

2 3  
160.99793 

1 1  
17.88866 

2 1  
37.62787 

3 1  
77.10629 

4 1  
136.32392 

1 2  
141.25872 

2 2  
160.99793 

3 2  
200.47635 

5 1  
21 5.28076 

4 2  
259.69398 

1 1  
2.75921 

1 2  
5.42661 

1 3  
10.91745 

1 4  
19.5 1803 

2 1  
22.40585 

2 2  
25.43546 

1 5  
31.29366 

2 3  
31.41195 

2 4  
40.33745 

1 1  
3.24534 

1 2  
10.08901 

2 1  
22.94559 

1 3  
25.22801 

2 2  
30.99806 

2 3  
46.90610 

1 4  
49.20968 

3 1  
62.23846 

3 2  
70.65406 

1 1  
4.03369 

1 2  
18.82085 

2 1  
24.0 10 13 

2 2  
41.17398 

1 3  
53.02547 

3 1  
63.28672 

2 3  
75.81905 

3 2  
81.60647 

1 4  
107.13867 

1 1  
5.40480 

2 1  
26.29021 

1 2  
38.19461 

2 2  
62.45178 

3 1  
65.69032 

3 2  
104.92 105 

1 3  
115.5OO61 

4 1  
124.59921 

2 3  
139.18638 

1 1  
8.40570 

2 1  
32.58939 

3 1  
73.02836 

1 2  
99.92883 

2 2  
126.38984 

4 1  
132.24111 

3 2  
173.47716 

5 1  
210.84330 

4 2  
238.36367 

Part C: Journal of Mechanical Engineering Science @ IMcchE 1994 

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


FREQUENCY EQUATIONS AND MODES OF FREE VIBRATIONS OF RECTANGULAR PLATES 315 

Table 11 Frequency parameter 62 = wa2,/@/D) for S W -  
G-F plates (case 31) 

Table 13 Frequency parameter 62 = cuaZ,/(p/D) for SS-F- 
G-F plates (case 33) 

_ _ _ _ ~ ~  

A = a/b 
Mode 

sequence f f 1 $ 3 
1 1  

2.89012 

1 2  
6.21580 

1 3  
12.52664 

1 4  
21.96768 

2 1  
22.44440 

2 2  
25.83048 

2 3  
32.40367 

1 5  
34.57336 

2 4  
42.05780 

1 1  
3.80890 

1 2  
12.62721 

2 1  
23.14264 

1 3  
30.1 1297 

2 2  
32.62931 

2 3  
50.57697 

1 4  
56.37256 

3 1  
62.34557 

3 2  
71.75133 

1 1  
5.70387 

2 1  
24.69429 

1 2  
24.94379 

2 2  
45.75496 

3 1  
63.67993 

1 3  
64.40177 

3 2  
85.02257 

2 3  
85.39922 

4 1  
122.487 18 

1 1  
10.05836 

2 1  
28.54656 

1 2  
52.52807 

3 1  
67.07182 

2 2  
74.39645 

3 2  
114.73055 

4 1  
125.55658 

1 3  
141.52892 

2 3  
162.89452 

1 1  
24.09540 

2 1  
41.88557 

3 1  
79.29600 

4 1  
136.82253 

1 2  
140.68936 

2 2  
163.63873 

3 2  
206.65681 

5 1  
214.38180 

4 2  
267.85559 

Table 12 Frequency parameter 62 = wa2,/(p/D) for SS-G- 
G-F plates (case 32) 

L = a/b 
Mode 

sequence 4 4 1 3 4 
1 1  

2.44001 

1 2  
3.76564 

1 3  
7.79427 

1 4  
14.82200 

2 1  
22.10998 

2 2  
23.55383 

1 5  
25.00849 

2 3  
28.05593 

2 4  
35.50419 

1 1  
242458 

1 2  
5.73837 

1 3  
16.55753 

2 1  
22.05908 

2 2  
25.99497 

1 4  
36.1 1310 

2 3  
37.95583 

2 4  
57.90728 

3 1  
61.41 662 

1 1  
2.40785 

1 2  
9.18141 

2 1  
21.99667 

2 2  
30.51000 

1 3  
33.42615 

2 3  
56.18961 

3 1  
6 1.3 1043 

3 2  
70.22123 

1 4  
77.60132 

1 1  
2.38954 

1 2  
16.44805 

2 1  
21.90654 

2 2  
39.79131 

3 1  
61.15337 

1 3  
71.24825 

3 2  
80.55708 

2 3  
95.36497 

4 1  
1 20.12404 

1 1  
2.37104 

2 1  
21.7421 1 

1 2  
39.031 19 

3 1  
60.85150 

2 2  
65.92023 

3 2  
110.53142 

4 1  
119.68813 

4 2  
172.39071 

1 3  
192.17367 

A = a/b 
Mode 

sequence + 4 1 % t 
1 1 0  1 0  1 0  1 0  1 0  

2.41748 2.39476 2.37812 2.36651 2.35881 

2 1 1  1 1  1 1  1 1  1 1  
3.54255 4.93166 6.88053 9.95755 16.27758 

3 1 2  1 2  2 0  2 0  2 0  
6.98577 13.73649 21.82123 21.67062 21.46592 

4 1 3  2 0  1 2  2 1  2 1  
13.18711 21.93610 26.37240 36.30325 52.99995 

5 2 0  2 1  2 1  1 2  3 0  

6 1 4  1 3  2 2  3 0  3 1  

7 2 1  2 2  3 0  3 1  4 0  

8 2 2  2 3  1 3  2 2  1 2  

9 2 3  1 4  3 1  4 0  4 1  

22.03391 25.44957 29.20802 54.45647 60.19616 

22.50839 30.89042 51.64536 60.70750 100.84236 

23.32236 36.39538 61.00028 77.71239 118.67756 

27.62051 54.57724 65.21760 82.63270 144.01826 

34.66433 56.96614 68.98018 119.47634 164.05938 

Table 14 Frequency parameter 62 = waZ,/(p/D) for C-G- 
SS-G plates (case 34) 

i = a/b 
Mode 

sequence f f 1 ? 3 
1 1 1  1 1  1 1  1 1  1 1  

2 1 2  1 2  1 2  1 2  1 2  

3 1 3  1 3  2 1  2 1  2 1  

4 1 4  2 1  1 3  2 2  3 1  

5 1 5  1 4  2 2  1 3  2 2  

15.41821 15.4182J 15.41821 15.41821 15.41821 

16.62762 18.90125 23.64632 35.05113 73.43892 

20.53412 30.66806 49.96486 49.96486 49.96486 

27.58086 49.96486 51.67428 69.91281 104.24770 

37.96003 51.67428 58.64636 100.26980 107.41974 

6 2 1  2 2  2 3  3 1  3 2  
49.96486 53.77580 86.13447 104.24770 161.98201 

7 2 2  2 3  1 4  3 2  4 1  
51.32673 65.61570 100.26980 124.63336 178.26973 

8 1 6  1 5  3 1  2 3  4 2  

9 2 3  4 2  3 2  4 1  1 3  

51.67428 81.82250 104.24770 133.79097 236.44817 

55.47812 86.13447 113.22810 178.26973 257.54404 
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Table 15 Frequency parameter s1 = oa2J(p/D) for C 4 -  
C-G plates (case 35) 

1 = a/b 
Mode 

2 3 5 sequence + T 1 - - 
1 1  

22.37329 

1 2  
23.27743 

1 3  
26.358 19 

1 4  
32.35634 

1 5  
41.77684 

1 6  
54.74307 

2 1  
61.67282 

2 2  
62.85993 

2 3  
66.51050 

1 1  
22.37329 

1 2  
25.04358 

1 3  
35.10382 

1 4  
54.74307 

2 1  
61.67282 

2 2  
65.00787 

2 3  
75.60498 

1 5  
84.05420 

2 4  
94.58528 

1 1  
22.37329 

1 2  
28.95085 

1 3  
54.74307 

2 1  
61.67282 

2 2  
69.32701 

2 3  
94.58528 

1 4  
102.21620 

3 1  
120.90339 

3 2  
129.09554 

1 1  
22.37329 

1 2  
39.08925 

2 1  
61.67282 

2 2  
79.52512 

3 1  
120.90339 

3 2  
139.62235 

2 3  
140.20451 

3 3  
199.81054 

4 1  
199.85945 

I 1  
22.37329 

2 1  
61.67282 

1 2  
75.84165 

2 2  
114.77960 

3 1  
120.90339 

3 2  
174.78585 

4 1  
199.85945 

4 2  
254.68757 

1 3  
258.61 358 

Table 16 Frequency parameter 52 = wa2J(p/D) for S S G -  
G-G plates (case 36) 

1 = a/b 
Mode 

3 1 z I sequence f 
1 1 1  1 1  1 1  1 1  1 1  

2 1 2  1 2  1 2  2 1  2 1  

3 1 3  1 3  2 1  1 2  3 1  

4 1 4  2 1  2 2  2 2  1 2  

5 2 1  2 2  1 3  3 1  2 2  

2.46740 2.46740 2.46740 2.46740 2.46740 

4.04654 6.85389 12.33701 22.20661 22.20661 

8.78395 20.01337 22.20661 24.67401 61.68503 

16.67963 22.20661 32.07622 44.41322 64.15243 

22.20661 26.59310 41.94582 61.68503 83.89164 

23.78575 39.75258 61.68503 83.89164 120.90266 

27.73359 41.94582 71.55464 91.29385 123.37006 

28.52316 61.68503 91.29385 111.03306 182.58769 

36.41884 66.07152 101.16345 120.90266 199.85950 

6 2 2  2 3  3 1  3 2  4 1  

7 1 5  1 4  3 2  1 3  3 2  

8 2 3  2 4 , 3 1  1 4  2 3  4 2  

9 2 4  3 2  3 3  4 1  5 1  

Table 17 Frequency parameter Q = waZJ(p/D) for C a -  
G-G plates (case 37) 

1 = afb 
Mode 

5 4 1 f T sequence $ 
1 1 1  1 1  1 1  1 1  1 1  

2 1 2  1 2  1 2  1 2  2 1  

3 1 3  1 3  2 1  2 1  1 2  

5.59332 5.59332 5.59332 5.59332 5.59332 

6.58955 8.77595 13.68577 25.55405 30.22585 

10.44421 21.01355 30.22585 30.22585 64.65340 

4 1 4  2 1  2 2  2 2  3 1  
17.79873 30.22585 38.69393 49.95263 74.63888 

5 1 5  2 2  1 3  3 1  3 2  
28.55346 33.90309 42.58662 74.63888 132.18848 

6 2 1  1 4  2 3  1 3  4 1  
30.22585 42.58662 66.29910 91.70417 138.79131 

7 2 2  2 3  3 1  3 2  4 2  

8 2 3  2 4  3 2  2 3  5 1  

9 1 6  3 1  1 4  4 1  1 3  

31.53007 45.64117 74.63888 94.81711 196.74474 

35.56866 66.29910 83.48830 114.35987 222.68295 

42.58662 74.63888 91.70417 138.79131 249.44447 

Table 18 Frequency parameter Q = wa2,/(p/D) for SS-G- 
F-G dates (case 38) 

1 = a/h 
Mode 

3 1 t 1 sequence 3 
1 1 2  1 2  1 2  2 1  2 1  

2 1 3  2 1  2 1  1 2  3 1  

3 2 1  1 3  2 2  2 2  1 2  

4 1 4  2 2  1 3  3 1  2 2  

5 2 2  2 3  3 1  3 2  4 1  

6 2 3  1 4  2 3  1 3  3 2  

7 1 5  3 1  3 2  4 1  4 2  

8 2 4  3 2  1 4  2 3  5 1  

3.00815 6.09382 11.68454 15.41821 15.41821 

8.08648 15.41821 15.41821 24.01013 49.96486 

15.41821 19.36545 27.75635 41.17398 63.28672 

16.03714 21.26984 41.19665 49.96486 81.60647 

17.63615 36.21285 49.96486 75.81905 104.24770 

23.62108 41.19666 59.06551 90.29409 117.74400 

27.05642 49.96486 61.86061 104.24770 172.23755 

32.59686 55.36157 90.29409 108.91848 178.26973 

41.19665 59.06552 94.48370 129.5841 1 245.86039 
9 1 6  2 4  3 3  4 2  5 2  
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Table 19 Frequency parameter 0 = wa2,/(p/D) for C-C- 
F-G plates (case 39) 

Table 21 Frequency parameter B = wa2,/(p/D) for F G  
F-G plates (case 41) 

1 = afb 
Mode 

- 2 sequence 3 3 1 2 3 
1 1 1  

3.5 1602 

2 1 2  
4.90043 

3 1 3  
9.29287 

4 1 4  
16.88752 

5 2 1  
22.03449 

6 2 2  
23.9131 1 

7 1 5  
27.69696 

8 2 3  
29.24977 

9 2 4  
37.60249 

1 1  1 1  
3.51602 3.51602 

1 2  1 2  
7.47665 12.68736 

1 3  2 1  
20.13441 22.03449 

2 1  2 2  
22.03449 33.06509 

2 2  1 3  
27.1 1900 41.70193 

2 3  3 1  
41.02548 61.69721 

1 4  2 3  
41.70193 63.01483 

3 1  3 2  
61.69721 72.39756 

2 4  1 4  
63.01484 90.61138 

1 1  
3.51602 

2 1  
22.03449 

1 2  
24.69429 

2 2  
45.75496 

3 1  
61.69721 

3 2  
85.39922 

1 3  
90.61138 

2 3  
11 1.89639 

4 1  
120.90192 

1 1  
3.51602 

2 1  
22.03449 

3 1  
61.69721 

1 2  
63.67993 

2 2  
85.02257 

4 1  
120.90192 

3 2  
125.60711 

4 2  
185.13687 

5 1  
199.85953 

0 2  
1.5 1746 

1 2  
5.37965 

0 3  
6.13807 

1 3  
12.03259 

0 4  
13.9 1495 

1 4  
20.8572 1 

2 1  
22.37329 

0 5  
24.85138 

2 2  
24.97996 

0 2  
4.24808 

1 2  
9.60853 

0 3  
17.2095 1 

2 1  
22.37329 

1 3  
24.37527 

2 2  
20.24098 

0 4  
38.94496 

2 3  
46.20734 

1 4  
46.73815 

0 2  
9.63139 

1 2  
16.13478 

2 1  
22.37329 

2 2  
36.72564 

0 3  
38.94496 

1 3  
46.73815 

3 1  
61.67282 

2 3  
70.7401 1 

3 2  
75.28338 

0 2  
21.82123 

2 1  
22.37329 

1 2  
29.20802 

2 2  
51.64536 

3 1  
61.67282 

0 3  
87.98670 

3 2  
90.801 11 

1 3  
96.04051 

4 1  
120.90339 

2 1  
22.37329 

0 2  
61.00028 

3 1  
61.67282 

1 2  
68.98018 

2 2  
94.14103 

4 1  
120.903 39 

3 2  
135.66521 

4 2  
194.85679 

5 1  
199.85945 

Table 20 Frequency parameter B = oa2,/(p/D) for G-G- 
F-G plates (case 40) 

A = afb 
Mode 

sequence f f 1 t t 
1 2  

1.53452 

2 1  
5.59332 

1 3  
6.21285 

2 2  
7.99381 

2 3  
13.78225 

1 4  
14.04868 

2 4  
22.27667 

1 s  
25.04049 

3 1  
30.22585 

1 2  
4.30238 

2 1  
5.59332 

2 2  
11.55184 

1 3  
17.36197 

2 3  
25.73314 

3 1  
30.22585 

3 2  
35.82730 

1 4  
39.18813 

2 4  
47.96686 

2 1  
5.59332 

1 2  
9.73624 

2 2  
17.68503 

3 1  
30.22585 

1 3  
39.18812 

3 2  
42.38443 

2 3  
47.96686 

3 3  
74.52565 

4 1  
74.63888 

2 1  
5.59332 

1 2  
21.99667 

3 1  
30.22585 

2 2  
30.51000 

3 2  
56.18961 

4 1  
74.63888 

1 3  
88.36340 

2 3  
97.34229 

4 2  
100.25083 

2 1  
5.59332 

3 1  
30.22585 

1 2  
61.31043 

2 2  
70.22123 

4 1  
74.63888 

3 2  
97.43 186 

5 1  
138.791 3 1 

4 2  
142.64258 

5 2  
206.62 132 

Table 22 Frequency parameter B = wa2,/(p/D) for G-G- 
G-G plates (case 42) 

1 = afb 
Mode 

sequence $ 8 1 t 5 
1 1 2  1 2  1 2  2 1  2 1  

2 1 3  2 1  2 2  1 2  3 1  

3 2 1  2 2  1 3  2 2  1 2  

4 2 2  1 3  2 3  3 1  2 2  

5 1 4  2 3  3 3  3 2  4 1  

1.57914 4.38649 9.86960 9.86960 9.86960 

6.31655 9.86960 19.73921 22.20661 39.47842 

9.86960 14.25610 39.47842 32.07622 61.68503 

11.44874 17.54596 49.34802 39.47842 71.55464 

14.21223 27.41557 78.95684 61.68503 88.82644 

6 2 3  1 4 , 3 1  1 4  1 3 , 4 1  3 2  
16.18615 39.47842 88.82644 88.82644 101.16345 

7 2 4  3 2  2 4  2 3  4 2  
24.08184 43.86491 98.69605 98.69605 150.51 148 

8 1 5  2 4  3 4  4 2  5 1  
25.26619 49.34802 128.30486 11 1.03306 157.91368 

9 2 5  3 3  1 5  3 3  5 2  
35.13579 57.02438 157.91368 128.30486 219.59871 
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Table 23 Comparison of fundamental frequency parameter 
O,, for plates with guided and free edges 

1 = a/b 
Plate 

- 2 tYW 4 1 1 3 $ 
~~ ~ 

ss-c-SS-G 
SSC-SS-F 

SS-G-SS-G 
SS-F-SS-F 

ss-SS-G-G 
SS-SSF-F 

C-G-SS-G 
C-F-SS-F 

10.3445 
10.1888 

9.8696 
9.7600 

2.8622 
1.3201 

15.418 
15.382 

11.3574 
10.9752 

9.8696 
9.6983 

3.5640 
2.2339 

15.418 
15.340 

13.6858 
12.6874 

9.8696 
9.6314 

4.9348 
3.3687 

15.418 
15.285 

19.7459 
16.8225 

9.8696 
9.5582 

8.0191 
5.0263 

15.418 
15.217 

4i. i 847 
30.6277 

9.8696 
9.4841 

17.8887 
8.2506 

15.418 
15.128 

In the case of a G-G beam, the first mode, for rn = 1 
in equation (5), corresponds to rigid body lateral trans- 
lation of the beam. Thus, for a plate with two opposite 
edges guided, the mode of plate vibration would be 
cylindrical with straight generatrices between the guided 
edges; the curved generatrices and frequency of plate 
vibration correspond to those of a vibrating beam 
having end conditions that are the same as those of the 
other two opposite edges of the given plate. It may be 
seen, for example, that the frequencies of the 11, 21, 31, 
etc., modes of SS-G-SS-G, C-G-SS-G, C-G-C-G and 
C-G-F-G plates (see Tables 5, 14, 15 and 19) are 
actually the frequencies of SS-SS, C-SS, C-C and C-F 
beams respectively. In fact, in these cases, and also in 
the case of SS-G-G-G and C-G-G-G beams (see 
Tables 16 and 17), the fundamental plate frequencies are 
the fundamental frequencies of the equivalent beams.* 

Another feature of the plates with two opposite edges 
guided is the absence of the 11 and 01 modes if the plate 
can have rigid body translation and/or rotation. This 
may be seen in the case of SS-G-F-G, G-G-F-G, 
F-G-F-G and G-G-G-G plates (see Tables 18, 20, 21 
and 22). 

It should be noted that the opposite guided edges are at Y = 0 and T = 1. 
Also the dimensionless frequency R is defined with X-type edge length a, which 
is the length of the equivalent beam. Therefore, the 11, 21, 31, etc, mode fre- 
quencies of a given plate are independent of its aspect ratio. 

m = 3  

(a) SS-F-G-F plate: 30 mode 

In quite a few cases, the vibration frequencies and 
modes of the guided edges may be inferred from those 
vibration modes which are symmetric about the central 
axes of symmetry of the plates with classical boundary 
condition cases (cases 1 to 21 in Table 1). This is for the 
reason, as mentioned earlier, that the boundary condi- 
tions of a guided edge are actually duplicated on the 
lines of symmetries. As an illustration of this point, con- 
sider the case of Y-symmetric rnl modes of the SS-C- 
SS-C plate of some aspect ratio 1. These modes (that is 
21, 31, etc., modes) of vibration are symmetric about the 
Y = $ central axis and in these vibration modes the SS- 
C-SS-C plate is actually equivalent to the SS-C-SS-G 
plate of aspect ratio 21. Thus rnl mode frequencies of 
the SS-C-SS-C plate would be identical to the rnl 
mode frequencies of an SS-C-SS-G plate of aspect 
ratio 21. Further inferences just for the rnl modes of 
SS-C-SS-C plates can be drawn considering the fact 
that rnl modes are X-symmetric for odd values of the 
index rn; the equivalent plate configuration with guided 
edges become the SS-C-G-C and SS-C-G-G plates for 
X-symmetric and both X- and Y-symmetric modes 
respectively. 

The aforementioned analogy is seemingly helpful in 
analysing many cases of the plates with guided edges 
directly from the already available results of the plates 
with classical boundary conditions. This includes the 
cases for which the solutions are not presented here. 
For example, case 55 (the G-F-F-F plate) may be 
inferred from case 21 (the F-F-F-F plate), It should be 
noted, however, that such inferences are conveniently 
possible only from rn = 1 X-symmetric and n = 1 Y- 
symmetric vibration modes; in all other cases the loca- 
tions of lines of symmetry parallel to the central axes 
need to be known to determine the aspect ratio for the 
equivalence of plate configurations. 

Lastly, mention may be made of the existence of an 
unusual flutter-type mode in the case of SS-F-GF and 
F-G-F-G plates. As given in Tables 13 and 21, these 
modes are designated as 10, 20, etc., modes for SS-F- 
G-F plates and as 01, 02, etc., modes for F-G-F-G 
plates. As illustrated in Fig. 1, the mode shape between 

(b) F-G-F-G plate: 04 mode 
Fig. 1 Flutter-type modes 
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the guided edges is concave without any nodal line 
between the free edges, with maximum deflection 
occurring at the free edges. 

5 CLOSURE 

This work concerned the free vibration analysis of thin 
isotropic rectangular plates with one or more guided 
edges. The number of plate configurations with all pos- 
sible combinations of simply supported, clamped, free 
and guided conditions at the four edges of the plate, 
with at least one guided edge, is 34. Of all these cases, 
analytical solution of the eigenvalue differential equa- 
tion is possible for 21 cases only. This paper contains 
the frequency equations and comprehensive frequency 
data of these 21 cases of plates with guided edges. The 
solutions of the remaining 13 cases are possible by 
approximate methods, such as the Rayleigh-Ritz 
method, or by numerical methods, such as the finite dif- 
ference and finite element methods. However, in some of 
these cases, the vibration modes and frequencies may be 

interpreted from those vibration modes of plates with 
classical boundary conditions which are symmetric 
about the central axes parallel to the plate edges. 

A guided edge condition is of some limited practical 
interest. The condition may be effectively utilized in the 
interpretation and analyses of the vibration modes of 
plates with other boundary conditions. It is believed 
that the detailed information on plates with guided 
edges provided in this paper fills some of the void in the 
literature on rectangular plates. 
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