Frequency equations and modes of free vibrations of rectangular plates with various edge conditions

C W Bert, BSc, MS, PhD, FAA/Mech, FAAAS, FAIAA, FASME and M Malik, PhD, MemASME
School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA

Abstract

This paper considers linear free vibrations of thin isotropic rectangular plates with combinations of the classical boundary conditions of simply supported, clamped and free edges and the mathematically possible condition of guided edges. The total number of plate configurations with the classical boundary conditions are known to be twenty-one. The inclusion of the guided edge condition gives rise to an additional thirty-four plate configurations. Of these additional cases, twenty-one cases have exact solutions for which frequency equations in explicit or transcendental form may be obtained. The frequency equations of these cases are given and, for each case, results of the first nine mode frequencies are tabulated for a range of the plate aspect ratios.

NOTATION

$a, b \quad$ edge lengths of the plate parallel to the x and y axes respectively
C clamped edge
$D \quad$ flexural rigidity of the plate $=E h^{3} /\left\{12\left(1-v^{2}\right)\right\}$
$E \quad$ Young's modulus of the plate material
F free edge
G guided edge
h plate thickness
m modal index between the two opposite edges which are both simply supported, one simply supported and the other guided, or both guided
n modal index between the opposite edges other than those designating the index m
SS simply supported edge
$W \quad$ dimensionless mode function $=W(X, Y)$
x, y coordinates along the two perpendicular edges of a rectangular plate
X, Y dimensionless coordinates $=x / a, y / b$
$\lambda \quad$ plate aspect ratio $=a / b$
$v \quad$ Poisson's ratio of the plate material
$\rho \quad$ plate material mass per unit area
$\omega \quad$ circular natural frequency of plate vibrations $=$ $\omega_{m n}$
dimensionless frequency $=\omega a^{2} \sqrt{ }(\rho / D)$

1 INTRODUCTION

The vibration problem of rectangular plates, although now more than some two hundred years old in its research account, continues to be of considerable research interest. The reason for this is that a rectangular plate is a basic structural element and hence practical applications may involve enormous parametric variations in respect of, for example, loading, materials, aspect ratio and support conditions.
On the assumption of a harmonically periodic time response, the analysis of freely vibrating thin rectangular plates of isotropic materials involves essentially the solution of the following eigenvalue differential equation:

$$
\begin{equation*}
W_{, X X X X}+2 \lambda^{2} W_{, X X Y Y}+\lambda^{4} W_{, Y Y Y Y}-\Omega^{2} W=0 \tag{1}
\end{equation*}
$$

The MS was received on 11 May 1994 and was accepted for publication on 29 July 1994.
where a subscript comma () followed by variables X, Y, etc., represents a partial derivative with respect to the variables.
The solution of equation (1) depends basically on the edge boundary conditions. The classical boundary conditions employed for the analysis of plates are simply supported (SS), clamped (C) and free (F) edges, and with all possible combinations of these conditions at the four edges, 21 rectangular plate configurations are possible. Of these, only six configurations obtained by taking two opposite edges simply supported have analytical solutions and an explicit form of frequency equation exists in each of these cases. However, for the remaining 15 configurations, solutions may be obtained by approximate methods such as the Rayleigh-Ritz method and numerical methods such as the finite difference and finite element methods. The approximate methods are convenient and have been used most extensively, employing the beam mode functions to represent the mode shapes of the vibrating plates. Mention may be made of the work of Young (1) who used the RayleighRitz method to analyse several frequency modes of square plates of clamped ($\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$), cantilever (C-F-F-F) and two adjacent clamped and two adjacent edges free ($\mathrm{C}-\mathrm{C}-\mathrm{F}-\mathrm{F}$) configurations. In this work, Young (1) used 18 -term plate mode functions obtained by taking three and six terms of X - and Y-direction functions respectively of the beam mode functions. Warburton's paper (2) was the first comprehensive work on plate vibrations in which, using the Rayleigh method, frequency equations were presented for the 21 configurations of SS, C and F edge combinations. In this work, the plate mode functions were approximated by single-term beam mode functions. More accurate frequency data of the 20 cases were given by Leissa (3), who for the Rayleigh-Ritz solution of the 15 cases used 36-term mode functions formed by six terms each of the X - and Y-direction beam mode function.

The three boundary conditions of simply supported, clamped and free edges are of most practical interest and are indeed mathematically correct boundary conditions. The conditions are simply three of the four possible combinations of essential and natural conditions of the calculus of variations as applied to the energy functional of the classical thin plate theory. The fourth
mathematically possible boundary condition given by zero rotation (essential condition) and zero effective shear force (natural condition) makes what has been referred to in the literature as the guided (G) edge. This boundary condition has remained unattended in plate literature due to its limited and possibly obscure practical applications. The boundary of a piston inside a circular cylinder with a narrow clearance may appropriately be modelled as a guided edge. A similar situation may be conceived of a rectangular plate inside a rectangular cylinder. From a mathematical standpoint, the axes of symmetry in symmetric modes of vibrations are equivalent to guided edges. This equivalence has actually been used in plate vibration analyses; see, for example, the recent work of Gorman (4) on the free vibration analysis of orthotropic rectangular plates.

This work considers the free vibration of rectangular plates with one or more edges guided. The possible combinations of the three conventional (SS, C and F) edge conditions with the guided edge condition at the four edges give rise to 34 additional configurations. With the inclusion of the plate configurations considered in earlier works $(2,3)$, the total number of rectangular plate configurations with all possible combinations of SS, C, F and G edges becomes 55. These configurations are listed in Table 1, where the first 21 configurations of earlier works $(2,3)$ are included for completeness.

The intent of this paper is to produce the frequency equations and the frequency data of rectangular plates with one or more guided edges for the cases in which

Table 1 Rectangular plate configurations based on possible combinations of simply supported, clamped, free and guided edge conditions
Cases 1 to 6 of plates with two opposite edges simply supported
have an analytical solution.

| 1. SS-SS-SS-SS | 2. SS-SS-SS-C | 3. SS-SS-SS-F |
| :--- | :--- | :--- | :--- |
| 4. SS-C-SS-C | S. SS-C-SS-F | 6. SS-F-SS-F |
| Solutions of cases 7 to 21 are possible by approximate or numerical | | |
| methods only. | | |
| 7. C-C-C-C 8. C-C-C-SS 9. C-C C F 10. C-SS-C-F
 11. C-F-C-F 12. C-F-SS-F 13. C-C-SS-SS 14. C-C-SS-F
 15. C-SS-SS-F 16. SS-SS-F-F 17. C-SS-F-F 18. C-C-F-F
 19. SS-F-F-F 20. C-F-F-F 21. F-F-F-F $>l$ | | |${ }_{l}$

Cases 22 to 25 of plates with two opposite edges simply supported
have an analytical solution.
22. SS-SS-SS-G \quad 23. SS-C-SS-G \quad 24. SS-G-SS-F \quad 25. SS-G-SS-G

Cases 26 to 33 of plates with one edge simply supported and
opposite edge guided have an analytical solution.

26. C-SS-C-G	27. C-SS SS-G	28. SS-SS-G-G	29. C-SS-G-G
30. SS-SS-G-F	31. SS-C-G-F	32. SS-G-G-F	33. $S S-F-G-F$

Cases 34 to 42 of plates with two opposite edges guided have an analytical solution.

34. C-G-SS-G	35. $\mathrm{C}-\mathrm{G}-\mathrm{C}-\mathrm{G}$	36. SSGGG	37. $\mathrm{C}-\mathrm{G}-\mathrm{G}-\mathrm{G}$
38. SS-G-F G	39. $\mathrm{C}-\mathrm{G}-\mathrm{F}-\mathrm{G}$	40. G-G-F-G	41. F-G-F-G
42. G-G-G-G			
Solutions of cases 43 to 55 are possible by approximate or numerical methods only.			
43. $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{G}$	44. $\mathrm{C}-\mathrm{C}-\mathrm{SS}-\mathrm{G}$	45. $\mathrm{C}-\mathrm{C}-\mathrm{G}-\mathrm{F}$	46. $\mathrm{C}-\mathrm{C}-\mathrm{G}-\mathrm{G}$
47. $\mathrm{C}-\mathrm{G}-\mathrm{C}-\mathrm{F}$	48. C-G-SS-F	49. $\mathrm{C}-\mathrm{SS}-\mathrm{G}-\mathrm{F}$	50. C-G-G F
51. $\mathrm{C}-\mathrm{F}-\mathrm{G}-\mathrm{F}$	52. SS-G-F-F	53. $\mathrm{C}-\mathrm{G}-\mathrm{F}-\mathrm{F}$	54. G-G-F-F
55. $\mathrm{G}-\mathrm{F}-\mathrm{F}-\mathrm{F}$			

Plate designation follows the standard notation; for example, an SS-C-G-F plate has its edges simply supported, clamped, guided, and free at $X=0, Y=0$, $X=1$ and $Y=1$ respectively.
analytical solutions of equation (1) exist. Such plate configurations are 21 in number and are listed as cases 22 to 42 in Table 1. A brief relevant theory and then the frequency equations of these cases are given in the following sections. Thereinafter, the frequency data of these cases are presented and discussed.

2 ANALYSES

The guided edge is modelled as the one with zero normal slope and zero effective shear force. These conditions may be expressed mathematically as

$$
\begin{equation*}
W_{X}=0, \quad W_{, X X X}+(2-v) \lambda^{2} W_{, X Y Y}=0 \tag{2}
\end{equation*}
$$

at an X-type edge and

$$
\begin{equation*}
W_{, Y}=0, \quad \lambda^{2} W_{Y Y Y}+(2-v) W_{, X X Y}=0 \tag{3}
\end{equation*}
$$

at a Y-type edge.
Obviously analytical solutions of the plates with two opposite edges simply supported and guided support in combination with $S S, C$ and F conditions on the remaining two edges should be possible. These are listed as cases 22 to 25 in Table 1. However, similar to the case of plates with two opposite edges simply supported, analytical solutions are also possible for plates with two other support combinations of the opposite edges. These are: (a) one edge simply supported and the opposite edge guided and (b) the two opposite edges guided. This conclusion stems from the fact that SS-G and G-G beams have mode functions of the following form:
SS-G beam

$$
\begin{equation*}
W_{x}(X)=\sin \alpha_{m} X ; \quad \alpha_{m}=(2 m-1) \frac{\pi}{2} \tag{4}
\end{equation*}
$$

G-G beam

$$
\begin{equation*}
W_{x}(X)=\cos \alpha_{m} X ; \quad \alpha_{m}=(m-1) \pi \tag{5}
\end{equation*}
$$

which satisfy the boundary conditions of $\mathrm{d} W_{x} / \mathrm{d} X=0$ (zero rotation) and $d^{2} W_{x} / \mathrm{d} X^{2}=0$ (zero moment) at the guided edge of the beam. Now assuming the edges $X=0$ and $X=1$ of a plate to be simply supported and guided respectively, or to be both guided, the mode function of the plate may be considered to be in the following form:

$$
\begin{equation*}
W(X, Y)=W_{x}(X) W_{y}(Y) \tag{6}
\end{equation*}
$$

where $W_{x}(X)$ is the X-direction mode function and is either of the two beam mode functions given by equations (4) and (5). Then it may be seen that equation (6) satisfies each of the two boundary conditions at X edges of the plate, as given by equation (2).

Substituting equation (6) in equation (1) and then using either of the equations (4) and (5), the equation for the Y-direction mode function may be obtained as

$$
\begin{equation*}
\lambda^{4} \frac{\mathrm{~d}^{4} W_{y}}{\mathrm{~d} Y^{4}}-2 \lambda^{2} \alpha_{m}^{2} \frac{\mathrm{~d}^{2} W_{y}}{\mathrm{~d} Y^{2}}+\left(\alpha_{m}^{4}-\beta^{4}\right) W_{y}=0 \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta^{4}=\Omega^{2} \tag{8}
\end{equation*}
$$

With the solution of equation (7), the plate mode function takes one of the following two forms:

Case I: $\beta^{2}>\alpha_{m}^{2}$

$$
\begin{align*}
W(X, Y)= & W_{x}(X)\left[A \sin \Phi_{m} Y+B \cos \Phi_{m} Y\right. \\
& \left.+C \sinh \Psi_{m} Y+D \cosh \Psi_{m} Y\right] \tag{9}
\end{align*}
$$

Case II: $\beta^{2}<\alpha_{m}^{2}$

$$
\begin{align*}
W(X, Y)= & W_{x}(X)\left[A \sinh \Phi_{m} Y+B \cosh \Phi_{m} Y\right. \\
& \left.+C \sinh \Psi_{m} Y+D \cosh \Psi_{m} Y\right] \tag{10}
\end{align*}
$$

where

$$
\Phi_{m}= \begin{cases}\sqrt{ }\left(\beta^{2}-\alpha_{m}^{2}\right) / \lambda, & \beta^{2}>\alpha_{m}^{2} \tag{11}\\ \sqrt{ }\left(\alpha_{m}^{2}-\beta^{2}\right) / \lambda, & \beta^{2}<\alpha_{m}^{2}\end{cases}
$$

and

$$
\begin{equation*}
\Psi_{m}=\sqrt{ }\left(\beta^{2}+\alpha_{m}^{2}\right) / \lambda \tag{12}
\end{equation*}
$$

Equations (9) and (10) are of identical form as the mode function for plates with two opposite X edges simply supported; see, for example, reference (2). The only difference is in the value of α_{m}, which, for the plates simply supported at two opposite edges, is given by

$$
\begin{equation*}
\alpha_{m}=m \pi \tag{13}
\end{equation*}
$$

The frequency equations associated with equations (9) and (10) are determined by invoking the boundary conditions of the edges $Y=0$ and $Y=1$ and then setting the determinant of the coefficient matrix of the constants A, B, C and D equal to zero. The solution of transcendental equations so obtained gives the frequency parameter $\Omega=\beta^{2}$. It may be seen, however, that
similar to the case of the SS-SS-SS-SS plate, exact expressions for the frequencies may be obtained for the plate configurations of cases $22,25,28,36$ and 42 , which are formed by the combination of SS and SS, SS and G, and G and G types at two pairs of the opposite edges of the rectangular plates.

3 FREQUENCY EQUATIONS FOR RECTANGULAR PLATES WITH ONE OR MORE GUIDED EDGES

In the following, frequency equations for the plate configurations 22 to 42 of Table 1 are given. In the plate configurations of cases 22 to 25 , the two opposite simply supported edges are taken at $X=0$ and $X=1$. However, the two opposite edges of cases 26 to 42 , having one simply supported and the other guided or both guided, are taken either at $X=0$ and $X=1$ or at $Y=0$ and $Y=1$. This is done for some convenience in the interpretation of the results of these cases with respect to some of the cases of 1 to 21 and of the beam vibrations. It should be noted, however, that for the cases where the two opposite SS and G or G and G edges are at $Y=0$ and $Y=1$,

$$
\Phi_{m}= \begin{cases}\sqrt{ }\left(\beta^{2}-\lambda^{2} \alpha_{m}^{2}\right), & \beta^{2}>\lambda^{2} \alpha_{m}^{2} \tag{14}\\ \sqrt{ }\left(\lambda^{2} \alpha_{m}^{2}-\beta^{2}\right), & \beta^{2}<\lambda^{2} \alpha_{m}^{2}\end{cases}
$$

and

$$
\begin{equation*}
\Psi_{m}=\sqrt{ }\left(\beta^{2}+\lambda^{2} \alpha_{m}^{2}\right) \tag{15}
\end{equation*}
$$

For plate configurations with identical boundary conditions at the other two opposite edges, the frequency equations are given by factoring the original frequency equation separately for symmetric and antisymmetric modes. The factoring procedure is the same as that used in reference (1).
22. $S S-S S-S S-G$ plate

$$
\begin{equation*}
\Omega_{m n}=\left(\frac{\pi}{2}\right)^{2}\left\{4 m^{2}+\lambda^{2}(2 n-1)^{2}\right\} \tag{16}
\end{equation*}
$$

23. SS-C-SS-G-plate

Case I: $\beta^{2}>\alpha_{m}^{2}$

$$
\begin{equation*}
\Phi_{m} \tan \Phi_{m}+\Psi_{m} \tanh \Psi_{m}=0 \tag{17}
\end{equation*}
$$

Case II: $\beta^{2}<\alpha_{m}^{2}$

$$
\begin{equation*}
\Phi_{m} \tanh \Phi_{m}-\Psi_{m} \tanh \Psi_{m}=0 \tag{18}
\end{equation*}
$$

24. $S S-G-S S-F$ plate and 32. $S S-G-G-F$ plate

Case I: $\beta^{2}>\alpha_{m}^{2}$

$$
\begin{align*}
\Phi_{m}\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right\} \sin \Phi_{m} \cosh & \Psi_{m} \\
& +\Psi_{m}\left(v \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\} \cos \Phi_{m} \sinh \Psi_{m}=0 \tag{19}
\end{align*}
$$

Case II: $\beta^{2}<\alpha_{m}^{2}$

$$
\Phi_{m}\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right\} \sinh \Phi_{m} \cosh \Psi_{m}
$$

$$
\begin{equation*}
-\Psi_{m}\left(v \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\} \cosh \Phi_{m} \sinh \Psi_{m}=0 \tag{20}
\end{equation*}
$$

25. SS-G-SS-G plate

$$
\begin{equation*}
\Omega_{m n}=\pi^{2}\left\{m^{2}+\lambda^{2}(n-1)^{2}\right\} \tag{21}
\end{equation*}
$$

26. $C-S S-C-G$ plate and 35. $C-G-C-G$ plate

Case I: $\beta^{2}>\lambda^{2} \alpha_{m}^{2}$
Symmetric:

$$
\begin{equation*}
\Phi_{m} \tan \frac{\Phi_{m}}{2}+\Psi_{m} \tanh \frac{\Psi_{m}}{2}=0 \tag{22}
\end{equation*}
$$

Antisymmetric:

$$
\begin{equation*}
\Psi_{m} \tan \frac{\Phi_{m}}{2}-\Phi_{m} \tanh \frac{\Psi_{m}}{2}=0 \tag{23}
\end{equation*}
$$

Case II: $\beta^{2}<\lambda^{2} \alpha_{m}^{2}$
Symmetric:

$$
\begin{equation*}
\Phi_{m} \tanh \frac{\Phi_{m}}{2}-\Psi_{m} \tanh \frac{\Psi_{m}}{2}=0 \tag{24}
\end{equation*}
$$

Antisymmetric:

$$
\begin{equation*}
\Psi_{m} \tanh \frac{\Phi_{m}}{2}-\Phi_{m} \tanh \frac{\Psi_{m}}{2}=0 \tag{25}
\end{equation*}
$$

27. $C-S S-S S-G$ plate and 34. $C-G-S S-G$ plate

Case I: $\beta^{2}>\lambda^{2} \alpha_{m}^{2}$

$$
\begin{equation*}
\left(\Phi_{m}^{3}+\Phi_{m} \Psi_{m}^{2}\right) \cos \Phi_{m} \sinh \Psi_{m}-\left(\Psi_{m}^{3}+\Phi_{m}^{2} \Psi_{m}\right) \sin \Phi_{m} \cosh \Psi_{m}=0 \tag{26}
\end{equation*}
$$

Case II: $\beta^{2}<\lambda^{2} \alpha_{m}^{2}$

$$
\begin{equation*}
\left(\Phi_{m}^{3}-\Phi_{m} \Psi_{m}^{2}\right) \cosh \Phi_{m} \sinh \Psi_{m}+\left(\Psi_{m}^{3}-\Phi_{m}^{2} \Psi_{m}\right) \sinh \Phi_{m} \cosh \Psi_{m}=0 \tag{27}
\end{equation*}
$$

28. SS-SS-G-G plate

$$
\begin{equation*}
\Omega_{m n}=\left(\frac{\pi}{2}\right)^{2}\left\{(2 m-1)^{2}+\lambda^{2}(2 n-1)^{2}\right\} \tag{28}
\end{equation*}
$$

29. $C-S S-G-G$ plate and 37. $C-G-G-G$ plate

Case I: $\beta^{2}>\lambda^{2} \alpha_{m}^{2}$

$$
\begin{equation*}
\Phi_{m} \sin \Phi_{m} \cosh \Psi_{m}+\Psi_{m} \cos \Phi_{m} \sinh \Psi_{m}=0 \tag{29}
\end{equation*}
$$

Case II: $\beta^{2}<\lambda^{2} \alpha_{m}^{2}$

$$
\begin{equation*}
\Phi_{m} \sinh \Phi_{m} \cosh \Psi_{m}-\Psi_{m} \cosh \Phi_{m} \sinh \Psi_{m}=0 \tag{30}
\end{equation*}
$$

30. $S S-S S-G-F$ plate

Case I: $\beta^{2}>\alpha_{m}^{2}$

$$
\begin{align*}
\Phi_{m}\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right\} \cos \Phi_{m} \sinh & \Psi_{m} \\
& -\Psi_{m}\left(v \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\} \sin \Phi_{m} \cosh \Psi_{m}=0 \tag{31}
\end{align*}
$$

Case II: $\beta^{2}<\alpha_{m}^{2}$

$$
\begin{align*}
\Phi_{m}\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right\} \cosh \Phi_{m} \sinh & \Psi_{m} \\
& -\Psi_{m}\left(v \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\} \sinh \Phi_{m} \cosh \Psi_{m}=0 \tag{32}
\end{align*}
$$

31. $S S-C-G-F$ plate

Case I: $\beta^{2}>\alpha_{m}^{2}$

$$
\begin{align*}
& \Phi_{m} \Psi_{m}\left[\left(v \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right\}+\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\}\right] \\
& \\
& \quad-\Phi_{m}\left(\Phi_{m} \sin \Phi_{m} \sinh \Psi_{m}+\Psi_{m} \cos \Phi_{m} \cosh \Psi_{m}\right)\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right\} \tag{33}\\
& \quad+\Psi_{m}\left(\Psi_{m} \sin \Phi_{m} \sinh \Psi_{m}-\Phi_{m} \cos \Phi_{m} \cosh \Psi_{m}\right)\left(v \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\}=0
\end{align*}
$$

Case II: $\beta^{2}<\alpha_{m}^{2}$

$$
\begin{align*}
& \Phi_{m} \Psi_{m}\left[\left(v \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right\}-\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\}\right] \\
&-\Phi_{m}\left(\Phi_{m} \sinh \Phi_{m} \sinh \Psi_{m}-\Psi_{m} \cosh \Phi_{m} \cosh \Psi_{m}\right)\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right\} \\
&-\Psi_{m}\left(\Psi_{m} \sinh \Phi_{m} \sinh \Psi_{m}-\Phi_{m} \cosh \Phi_{m} \cosh \Psi_{m}\right)\left(v \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right)\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\}=0 \tag{34}
\end{align*}
$$

33. $S S-F-G-F$ plate

Case I: $\beta^{2}>\alpha_{m}^{2}$
Symmetric:

$$
\begin{equation*}
\Phi_{m}\left\{(2-v) \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right\}\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right) \tan \frac{\Phi_{m}}{2}+\Psi_{m}\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\}\left(v \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right) \tanh \frac{\Psi_{m}}{2}=0 \tag{35}
\end{equation*}
$$

Antisymmetric:

$$
\begin{equation*}
\Phi_{m}\left\{(2-v) \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right\}\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right) \tanh \frac{\Psi_{m}}{2}-\Psi_{m}\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\}\left(v \alpha_{m}^{2}+\lambda^{2} \Phi_{m}^{2}\right) \tan \frac{\Phi_{m}}{2}=0 \tag{36}
\end{equation*}
$$

Case II: $\beta^{2}<\alpha_{m}^{2}$
Symmetric:

$$
\begin{equation*}
\Phi_{m}\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right\}\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right) \tanh \frac{\Phi_{m}}{2}-\Psi_{m}\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\}\left(v \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right) \tanh \frac{\Psi_{m}}{2}=0 \tag{37}
\end{equation*}
$$

Antisymmetric:

$$
\begin{equation*}
\Phi_{m}\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right\}\left(v \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right) \tanh \frac{\Psi_{m}}{2}-\Psi_{m}\left\{(2-v) \alpha_{m}^{2}-\lambda^{2} \Psi_{m}^{2}\right\}\left(v \alpha_{m}^{2}-\lambda^{2} \Phi_{m}^{2}\right) \tanh \frac{\Phi_{m}}{2}=0 \tag{38}
\end{equation*}
$$

36. $S S-G-G-G$ plate

$$
\begin{equation*}
\Omega_{m n}=\left(\frac{\pi}{2}\right)^{2}\left\{(2 m-1)^{2}+4 \lambda^{2}(n-1)^{2}\right\} \tag{39}
\end{equation*}
$$

38. $S S-G-F-G$ plate

Case I: $\boldsymbol{\beta}^{2}>\lambda^{2} \alpha_{m}^{2}$

$$
\begin{align*}
\Phi_{m}\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right\} \cos \Phi_{m} \sinh & \Psi_{m} \\
& -\Psi_{m}\left(v \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\} \sin \Phi_{m} \cosh \Psi_{m}=0 \tag{40}
\end{align*}
$$

Case II: $\beta^{2}<\lambda^{2} \alpha_{m}^{2}$

$$
\begin{align*}
\Phi_{m}\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right\} \cosh \Phi_{m} \sinh & \Psi_{m} \\
& -\Psi_{m}\left(v \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\} \sinh \Phi_{m} \cosh \Psi_{m}=0 \tag{41}
\end{align*}
$$

39. $C-G-F-G$ plate

Case I: $\beta^{2}>\lambda^{2} \alpha_{m}^{2}$

$$
\begin{align*}
\Phi_{m} \Psi_{m}\left[\left(v \lambda^{2} \alpha_{m}^{2}+\right.\right. & \left.\left.\Phi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right\}+\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\}\right] \\
& \quad \Phi_{m}\left(\Phi_{m} \sin \Phi_{m} \sinh \Psi_{m}+\Psi_{m} \cos \Phi_{m} \cosh \Psi_{m}\right)\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right\} \\
& +\Psi_{m}\left(\Psi_{m} \sin \Phi_{m} \sinh \Psi_{m}-\Phi_{m} \cos \Phi_{m} \cosh \Psi_{m}\right)\left(v \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\}=0 \tag{42}
\end{align*}
$$

Case II: $\beta^{2}<\lambda^{2} \alpha_{m}^{2}$

$$
\begin{align*}
& \Phi_{m} \Psi_{m}\left[\left(v \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right\}-\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\}\right] \\
& -\Phi_{m}\left(\Phi_{m} \sinh \Phi_{m} \sinh \Psi_{m}-\Psi_{m} \cosh \Phi_{m} \cosh \Psi_{m}\right)\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right\} \\
& \quad-\Psi_{m}\left(\Psi_{m} \sinh \Phi_{m} \sinh \Psi_{m}-\Phi_{m} \cosh \Phi_{m} \cosh \Psi_{m}\right)\left(v \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\}=0 \tag{43}
\end{align*}
$$

40. $G-G-F-G$ plate

Case I: $\beta^{2}>\lambda^{2} \alpha_{m}^{2}$

$$
\begin{align*}
& \Phi_{m}\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right\} \sin \Phi_{m} \cosh \Psi_{m} \\
& \quad+\Psi_{m}\left(v \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\} \cos \Phi_{m} \sinh \Psi_{m}=0 \tag{44}
\end{align*}
$$

Case II: $\beta^{2}<\lambda^{2} \alpha_{m}^{2}$

$$
\begin{align*}
\Phi_{m}\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right\} \sinh \Phi_{m} \cosh & \Psi_{m} \\
& +\Psi_{m}\left(v \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right)\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\} \cosh \Phi_{m} \sinh \Psi_{m}=0 \tag{45}
\end{align*}
$$

41. $F-G-F-G$ plate

Case I: $\beta^{2}>\lambda^{2} \alpha_{m}^{2}$
Symmetric:

$$
\begin{equation*}
\Phi_{m}\left\{(2-v) \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right\}\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right) \tan \frac{\Phi_{m}}{2}+\Psi_{m}\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\}\left(v \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right) \tanh \frac{\Psi_{m}}{2}=0 \tag{46}
\end{equation*}
$$

Antisymmetric:

$$
\begin{equation*}
\Phi_{m}\left\{(2-v) \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right\}\left(\nu \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right) \tanh \frac{\Psi_{m}}{2}-\Psi_{m}\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\}\left(v \lambda^{2} \alpha_{m}^{2}+\Phi_{m}^{2}\right) \tan \frac{\Phi_{m}}{2}=0 \tag{47}
\end{equation*}
$$

Case II: $\beta^{2}<\lambda^{2} \alpha_{m}^{2}$
Symmetric:

$$
\begin{equation*}
\Phi_{m}\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right\}\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right) \tanh \frac{\Phi_{m}}{2}-\Psi_{m}\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\}\left(v \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right) \tanh \frac{\Psi_{m}}{2}=0 \tag{48}
\end{equation*}
$$

Antisymmetric:

$$
\begin{equation*}
\Phi_{m}\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right\}\left(v \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right) \tanh \frac{\Psi_{m}}{2}-\Psi_{m}\left\{(2-v) \lambda^{2} \alpha_{m}^{2}-\Psi_{m}^{2}\right\}\left(v \lambda^{2} \alpha_{m}^{2}-\Phi_{m}^{2}\right) \tanh \frac{\Phi_{m}}{2}=0 \tag{49}
\end{equation*}
$$

42. $G-G-G-G$ plate

$$
\begin{equation*}
\Omega_{m n}=\pi^{2}\left\{(m-1)^{2}+\lambda^{2}(n-1)^{2}\right\} \tag{50}
\end{equation*}
$$

4 RESULTS AND DISCUSSION

The frequency equations of cases 22 to 42 given in the previous section are utilized to obtain the frequencies and mode shapes of the respective rectangular plate configurations. The transcendental equations are solved by the Newton-Raphson method. In all cases, the accuracy of calculation is maintained by having both of the following convergence criteria met:

$$
\frac{\left|\Omega^{(k+1)}-\Omega^{(k)}\right|}{\Omega^{(k+1)}} \leqslant 10^{-8}, \quad f(\Omega) \leqslant 10^{-6}
$$

where k is the iteration count and $f(\Omega)=0$ is the frequency equation.

The frequencies of the rectangular plate configurations of cases 22 to 42 of Table 1 are given in Tables 2 to 22 . As with the application of the free boundary condition, the value of Poisson's ratio needs to be specified for the application of the guided boundary condition. All of the tabulated results are obtained with Poisson's ratio, $v=0.3$. Further, these data are presented in the same format as in reference (3). Thus, the calculated frequencies are for the first nine modes of free vibrations and each mode frequency is given for five values of the aspect ratio, $\lambda=\frac{2}{5}, \frac{2}{3}, 1, \frac{3}{2}$ and $\frac{5}{2}$. The two digit numbers (the mode set) given above each frequency value describe the mode shapes, the two digits giving in order the number of half-waves in the X and Y directions respectively. In some cases, multiplicity of modes with the same frequency value is possible. Three obvious cases, as seen from the frequency equations (19), (26) and (50), are of SS-G-SS-G, SS-SS-G-G and G-G-G-G square plates. For example, in SS-G-SS-G square plates, modes 13 and 22 would be of the same frequency. In SS-SS-G-G and G-G-G-G square plates, the two digits of a mode set are interchangeable.

A guided edge is a partially free edge in that the edge is fully free to deflect laterally (hence zero effective shear force). However, the normal rotation of a guided edge is
fully restrained and, hence, unlike that of free edge, the moment normal to the edge is not zero. Thus, it can be expected that frequencies of a plate with a guided edge will be higher than frequencies of a similar plate but with the corresponding edge free; the difference should obviously increase with increasing length of the guided edge. As an illustration of this point, Table 23 provides comparisons of the fundamental mode frequencies of four sample plates of cases $23,25,28$ and 34 with the fundamental mode frequencies of similar plates having corresponding edges free, where the latter data are taken from reference (3). It may be seen that the comparison conforms to the aforementioned conclusion.

Table 2 Frequency parameter $\Omega=\omega a^{2} \sqrt{(\rho / D)}$ for SS-SS-SS-G plates (case 22)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{3}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 11 \\ 10.26439 \end{gathered}$	$\begin{gathered} 11 \\ 10.96623 \end{gathered}$	$\begin{gathered} 11 \\ 12.33701 \end{gathered}$	$\begin{gathered} 11 \\ 15.42126 \end{gathered}$	$\begin{gathered} 11 \\ 25.29086 \end{gathered}$
2	$\begin{gathered} 12 \\ 13.42266 \end{gathered}$	$\begin{gathered} 12 \\ 19.73921 \end{gathered}$	$\begin{gathered} 12 \\ 32.07622 \end{gathered}$	$\begin{gathered} 21 \\ 45.03007 \end{gathered}$	$\begin{gathered} 21 \\ 54.89968 \end{gathered}$
3	$\begin{gathered} 13 \\ 19.73921 \end{gathered}$	$\begin{gathered} 13 \\ 37.28517 \end{gathered}$	$\begin{gathered} 21 \\ 41.94582 \end{gathered}$	$\begin{gathered} 12 \\ 59.83448 \end{gathered}$	$\begin{gathered} 31 \\ 104.24770 \end{gathered}$
4	$\begin{gathered} 14 \\ 29.21403 \end{gathered}$	$\begin{gathered} 21 \\ 40.57504 \end{gathered}$	$\begin{gathered} 22 \\ 61.68503 \end{gathered}$	$\begin{gathered} 22 \\ 89.44329 \end{gathered}$	$\begin{gathered} 12 \\ 148.66092 \end{gathered}$
5	$\begin{gathered} 21 \\ 39.87320 \end{gathered}$	$\begin{gathered} 22 \\ 49.34802 \end{gathered}$	$\begin{gathered} 13 \\ 71.55464 \end{gathered}$	$\begin{gathered} 31 \\ 94.37810 \end{gathered}$	$\begin{gathered} 41 \\ 173.33494 \end{gathered}$
6	$\begin{gathered} 15 \\ 41.84712 \end{gathered}$	$\begin{gathered} 14 \\ 63.60412 \end{gathered}$	$\begin{gathered} 31 \\ 91.29385 \end{gathered}$	$\begin{gathered} 32 \\ 138.79132 \end{gathered}$	$\begin{gathered} 22 \\ 178.26974 \end{gathered}$
7	$\begin{gathered} 22 \\ 43.03148 \end{gathered}$	$\begin{gathered} 23 \\ 66.89399 \end{gathered}$	$\begin{gathered} 23 \\ 101.16345 \end{gathered}$	$\begin{gathered} 13 \\ 148.66092 \end{gathered}$	$\begin{gathered} 32 \\ 227.61776 \end{gathered}$
8	$\begin{gathered} 23 \\ 49.34802 \end{gathered}$	$\begin{gathered} 31 \\ 89.92307 \end{gathered}$	$\begin{gathered} 32 \\ 111.03306 \end{gathered}$	$\begin{gathered} 41 \\ 163.46533 \end{gathered}$	$\begin{gathered} 51 \\ 262.16138 \end{gathered}$
9	$\begin{gathered} 16 \\ 57.63849 \end{gathered}$	$\begin{gathered} 24 \\ 93.21294 \end{gathered}$	$\begin{gathered} 14 \\ 130.77227 \end{gathered}$	$\begin{gathered} 23 \\ 178.26974 \end{gathered}$	$\begin{gathered} 42 \\ 296.70500 \end{gathered}$

Table 3 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for SS-C-SS-G plates (case 23)

Mode sequence	$\frac{7}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{3}{2}$
	11	11	11	11	11
	10.34454	11.35736	13.68577	19.74590	41.18466
	12	12	12	21	21
	14.04455	22.20117	38.69393	47.28049	65.27632
	1.3	21	21	12	31
	21.15016	40.75741	42.58662	76.28195	111.24204
4	14	13	22	31	41
	31.47916	42.14094	66.29910	95.81989	178.45914
5	21	22	13	22	12
	39.91111	50.82661	83.48830	102.69262	197.06296
6	22	23	31	32	51
	43.36022	70.40495	91.70417	149.17297	266.16636
7	15	144	23	41	32
	44.97255	70.82477	111.00916	164.51541	266.22905
8	23	31	32	13	22
	50.20251	90.04086	114.35987	176.72268	222.30413
9	24	24	14	23	42
	60.36157	99.03525	147.87515	203.64496	330.07159

Table 4 Frequency parameter $\Omega=\omega a^{2} \sqrt{(\rho / D)}$ for SS-G-SS-F plates (case 24)

Mode sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$1=a / b$	
	1	11	11	11	$\frac{3}{2}$
	9.80967	9.77630	9.73624	9.68035	9.59073
2	12	12	12	12	21
	11.23540	13.56000	17.68503	25.99163	38.83029
3	13	13	21	21	12
	15.58910	24.97316	39.18812	39.06442	49.96131
4	14	21	13	22	22
	22.82281	39.27262	42.38443	57.89956	86.13909
5	15	22	22	13	31
	33.05941	43.26324	47.96686	80.61141	87.80425
6	21	14	23	31	32
	39.34042	44.55592	74.52565	88.17328	139.22916
7	22	23	14	32	41
	40.78708	55.56297	86.28681	107.92544	156.50305
8	23	15	31	23	13
	45.35977	72.82745	88.36340	114.93042	201.81403
9	16	24	32	41	42
	46.39969	75.92463	97.34229	157.00555	210.14622

Table 5 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for SS-G-SS-G plates (case 25)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 11 \\ 9.86960 \end{gathered}$	$\begin{gathered} 11 \\ 9.86960 \end{gathered}$	$\begin{aligned} & 11 \\ & 9.86960 \end{aligned}$	$\begin{gathered} 11 \\ 9.86960 \end{gathered}$	$\begin{aligned} & 11 \\ & 9.86960 \end{aligned}$
2	$\begin{gathered} 12 \\ 11.44874 \end{gathered}$	$\begin{gathered} 12 \\ 14.25610 \end{gathered}$	$\begin{gathered} 12 \\ 19.73921 \end{gathered}$	$\begin{gathered} 12 \\ 32.07622 \end{gathered}$	$\begin{gathered} 21 \\ 39.47842 \end{gathered}$
3	$\begin{gathered} 13 \\ 16.18615 \end{gathered}$	$\begin{gathered} 13 \\ 27.41557 \end{gathered}$	$\begin{gathered} 21 \\ 39.47842 \end{gathered}$	$\begin{gathered} 21 \\ 39.47842 \end{gathered}$	$\begin{gathered} 12 \\ 71.55464 \end{gathered}$
4	$\begin{gathered} 14 \\ 24.08184 \end{gathered}$	$\begin{gathered} 21 \\ 39.47842 \end{gathered}$	$\begin{aligned} & 13,22 \\ & 49.34802 \end{aligned}$	$\begin{gathered} 22 \\ 61.68503 \end{gathered}$	$\begin{gathered} 31 \\ 88.82644 \end{gathered}$
5	$\begin{gathered} 15 \\ 35.13579 \end{gathered}$	$\begin{gathered} 22 \\ 43.86491 \end{gathered}$	$\begin{gathered} 23 \\ 78.95684 \end{gathered}$	$\begin{gathered} 31 \\ 88.82644 \end{gathered}$	$\begin{gathered} 22 \\ 101.16345 \end{gathered}$
6	$\begin{gathered} 21 \\ 39.47842 \end{gathered}$	$\begin{gathered} 14 \\ 49.34802 \end{gathered}$	$\begin{gathered} 31 \\ 88.82644 \end{gathered}$	$\begin{gathered} 13 \\ 98.69605 \end{gathered}$	$\begin{gathered} 32 \\ 150.51148 \end{gathered}$
7	$\begin{gathered} 22 \\ 41.05756 \end{gathered}$	$\begin{gathered} 23 \\ 57.02438 \end{gathered}$	$\begin{aligned} & 14,32 \\ & 98.69605 \end{aligned}$	$\begin{gathered} 32 \\ 111.03306 \end{gathered}$	$\begin{gathered} 41 \\ 157.91368 \end{gathered}$
8	$\begin{gathered} 23 \\ 45.79497 \end{gathered}$	$\begin{gathered} 24 \\ 78.95684 \end{gathered}$	$\begin{gathered} 24,33 \\ 128.30486 \end{gathered}$	$\begin{gathered} 23 \\ 128.30486 \end{gathered}$	$\begin{gathered} 42 \\ 219.59871 \end{gathered}$
9	$\begin{gathered} 16 \\ 49.34802 \end{gathered}$	$\begin{gathered} 15 \\ 80.05346 \end{gathered}$	$\begin{gathered} 41 \\ 157.91368 \end{gathered}$	$\begin{gathered} 41 \\ 157.91368 \end{gathered}$	$\begin{gathered} 51 \\ 246.74012 \end{gathered}$

Table 6 Frequency parameter $\Omega=\omega a^{2} \sqrt{(\rho / D)}$ for C-SS CG plates (case 26)

	$\lambda=a / b$					
Mode						
sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$	
1	11	11	111	11	11	
	22.59267	22.99377	23.81563	25.82839	33.34114	
2	12	12	12	12	21	
	24.49990	28.95085	39.08925	64.62293	73.84346	
3	13	13	21	21	31	
	28.95085	43.69217	63.53450	65.91258	133.79716	
4	14	21	13	22	12	
	36.62408	62.49553	75.84165	104.03138	151.41376	
5	15	14	22	31	22	
	47.81866	68.21484	79.52512	125.48348	188.13173	
6	21	22	23	13	41	
	61.96811	69.32701	114.77960	151.41376	213.23941	
7	16	23	31	32	32	
	62.53913	83.98722	122.92963	164.16200	246.92373	
8	22	15	14	23	51	
	64.36538	102.21620	133.74324	188.13173	312.27195	
9	23	24	32	41	42	
	69.32701	107.46894	139.62235	204.64472	326.42658	

Table 7 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for C-SS-SS-G plates (case 27)

Mode sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
	1.1	11	11	11	11
	15.71498	16.25197	17.33175	19.88128	28.69490
	12	12	12	21	21
	18.21222	23.64632	35.05113	54.80179	63.67189
	13	13	21	12	31
	23.64632	40.01524	52.09793	61.91931	118.33890
4	14	21	22	22	12
	32.35143	50.90933	69.91281	96.14142	149.91641
5	15	22	13	31	22
	44.40293	58.64636	73.43892	109.28108	182.84986
6	21	14	31	13	41
	50.30419	65.61802	106.47861	149.91641	192.62251
7	22	23	23	32	32
	53.04523	74.76167	107.41974	150.79279	236.74114
8	23	24	32	23	51
	58.64636	99.75951	124.63336	182.84986	286.56495
9	16	15	14	41	42
	59.76803	100.26980	132.11919	183.41742	310.93672

Table 8 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for SS-SS-G-G plates (case 28)

G-G plates (case 28)					
Mode	$\lambda=a / b$				
sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	11	11	11	11	11
	2.86219	3.56402	4.93480	8.01905	17.88866
2	12	12	12	21	21
	6.02046	12.33701	24.67401	27.75826	37.62787
3	13	13	22	12	31
	12.33701	29.88297	44.41322	52.43228	77.10629
4	14	21	13	31	41
	21.81183	23.30323	64.15243	67.23668	136.32392
5	21	22	23	22	12
	22.60140	32.07622	83.89164	72.17149	141.25872
6	22	23	14	32	22
	25.75967	49.62218	123.37006	111.64991	160.99793
7	23	14	24	41	32
	32.07622	56.20192	143.10927	126.45431	200.47635
8	15	31	34	133	51
	34.44492	62.78165	182.58769	141.25872	215.28076
9	24	32	15	23	42
	41.55104	71.55464	202.32690	160.99793	259.69398

Table 9 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for C-SS-GG plates (case 29)

	$\lambda=a / b$				
Mode sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	11	11	11	11	11
	5.81936	6.26090	7.23771	9.77231	18.96041
2	12	12	12	21	21
	8.08908	13.68577	25.55405	34.90559	43.69646
3	13	13	21	12	31
	13.68577	30.66680	32.27388	52.99488	88.55561
4	14	21	22	22	12
	22.76060	31.12901	49.95263	76.39840	141.58094
5	21	22	13	31	41
	30.54960	38.69393	64.65340	79.58863	153.02587
6	22	23	31	32	22
	33.19201	54.83114	76.82904	120.97059	163.71027
7	15	14	23	13	32
	35.16490	56.74241	87.77843	141.58094	207.22450
8	23	31	32	41	51
	38.69393	75.61025	94.81711	143.88868	237.13414
9	24	24	14	23	42
	47.29799	80.04968	123.71718	163.71027	271.32883

Table 10 Frequency parameter $\Omega=\omega a^{2} \sqrt{(\rho / D)}$ for SS-SS G-F plates (case 30)

G-F plates (case 30)						
Mode	$\lambda=a / b$					
sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$	
1	11	11	11	11	11	
	2.75921	3.24534	4.03369	5.40480	8.40570	
2	12	12	12	21	21	
	5.42661	10.08901	18.82085	26.29021	32.58939	
3	13	21	21	12	31	
	10.91745	22.94559	24.01013	38.19461	73.02836	
4	14	123	22	22	12	
	19.51803	25.22801	41.17398	62.45178	99.92883	
5	21	22	13	31	22	
	22.40585	30.99806	53.02547	65.69032	126.38984	
6	22	23	31	32	41	
	25.43546	46.90610	63.28672	104.92105	132.24111	
7	15	144	23	13	32	
	31.29366	49.20968	75.81905	115.50061	173.47716	
8	23	31	32	41	51	
	31.41195	62.23846	81.60647	124.59921	210.84330	
9	24	32	14	23	42	
	40.33745	70.65406	107.13867	139.18638	238.36367	

Table 11 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for SS-C-G-F plates (case 31)

Mode	$\lambda=a / b$					
sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$	
1	11	11	11	11	11	
	2.89012	3.80890	5.70387	10.05836	24.09540	
2	12	12	21	21	21	
	6.21580	12.62721	24.69429	28.54656	41.88557	
3	13	21	12	12	31	
	12.52664	23.14264	24.94379	52.52807	79.29600	
4	14	13	22	31	41	
	21.96768	30.11297	45.75496	67.07182	136.82253	
5	21	22	31	22	12	
	22.44440	32.62931	63.67993	74.39645	140.68936	
6	22	23	13	32	22	
	25.83048	50.57697	64.40177	114.73055	163.63873	
7	23	14	32	41	32	
	32.40367	56.37256	85.02257	125.55658	206.65681	
8	15	31	23	13	51	
	34.57336	62.34557	85.39922	141.52892	214.38180	
9	24	32	41	23	42	
	42.05780	71.75133	122.48718	162.89452	267.85559	

Table 12 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for SS-G-G-F plates (case 32)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 11 \\ 2.44001 \end{gathered}$	$\begin{gathered} 11 \\ 2.42458 \end{gathered}$	$\begin{gathered} 11 \\ 2.40785 \end{gathered}$	$\begin{gathered} 11 \\ 2.38954 \end{gathered}$	$\begin{aligned} & 11 \\ & 2.37104 \end{aligned}$
2	$\begin{aligned} & 12 \\ & 3.76564 \end{aligned}$	$\stackrel{1 \underset{5.73837}{2}}{ }$	$\begin{aligned} & 12 \\ & 9.18141 \end{aligned}$	$\begin{gathered} 12 \\ 16.44805 \end{gathered}$	$\stackrel{21}{21.74211}$
3	$\begin{gathered} 13 \\ 7.79427 \end{gathered}$	$\begin{gathered} 13 \\ 16.55753 \end{gathered}$	$\begin{gathered} 21 \\ 21.99667 \end{gathered}$	$\begin{gathered} 21 \\ 21.90654 \end{gathered}$	$\begin{gathered} 12 \\ 39.03119 \end{gathered}$
4	$\begin{gathered} 14 \\ 14.82200 \end{gathered}$	$\begin{gathered} 21 \\ 22.05908 \end{gathered}$	$\begin{gathered} 22 \\ 30.51000 \end{gathered}$	$\begin{gathered} 22 \\ 39.79131 \end{gathered}$	$\begin{gathered} 31 \\ 60.85150 \end{gathered}$
5	$\begin{gathered} 21 \\ 22.10998 \end{gathered}$	$\begin{gathered} 22 \\ 25.99497 \end{gathered}$	$\begin{gathered} 13 \\ 33.42615 \end{gathered}$	$\begin{gathered} 31 \\ 61.15337 \end{gathered}$	$\begin{gathered} 22 \\ 65.92023 \end{gathered}$
6	$\begin{gathered} 22 \\ 23.55383 \end{gathered}$	$\begin{gathered} 14 \\ 36.11310 \end{gathered}$	$\begin{gathered} 23 \\ 56.18961 \end{gathered}$	$\begin{gathered} 13 \\ 71.24825 \end{gathered}$	$\begin{gathered} 32 \\ 110.53142 \end{gathered}$
7	$\begin{gathered} 15 \\ 25.00849 \end{gathered}$	$\begin{gathered} 23 \\ 37.95583 \end{gathered}$	$\begin{gathered} 31 \\ 61.31043 \end{gathered}$	$\begin{gathered} 32 \\ 80.55708 \end{gathered}$	$\begin{gathered} 41 \\ 119.68813 \end{gathered}$
8	$\begin{gathered} 23 \\ 28.05593 \end{gathered}$	$\begin{gathered} 24 \\ 57.90728 \end{gathered}$	$\begin{gathered} 32 \\ 70.22123 \end{gathered}$	$\begin{gathered} 23 \\ 95.36497 \end{gathered}$	$\begin{gathered} 42 \\ 172.39071 \end{gathered}$
9	$\begin{gathered} 24 \\ 35.50419 \end{gathered}$	$\begin{gathered} 31 \\ 61.41662 \end{gathered}$	$\begin{gathered} 14 \\ 77.60132 \end{gathered}$	$\begin{gathered} 41 \\ 120.12404 \end{gathered}$	$\begin{gathered} 13 \\ 192.17367 \end{gathered}$

Table 13 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for SS-F-G-F plates (case 33)

	$\lambda=a / b$				
Mode sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	10	10	10	10	10
	2.41748	2.39476	2.37812	2.36651	2.35881
2	11	11	11	11	11
	3.54255	4.93166	6.88053	9.95755	16.27758
3	12	12	20	20	20
	6.98577	13.73649	21.82123	21.67062	21.46592
4	13	20	12	21	21
	13.18711	21.93610	26.37240	36.30325	52.99995
5	20	21	21	12	30
	22.03391	25.44957	29.20802	54.45647	60.19616
6	14	13	22	30	31
	22.50839	30.89042	51.64536	60.70750	100.84236
7	21	22	30	31	40
	23.32236	36.39538	61.00028	77.71239	118.67756
8	22	23	13	22	12
	27.62051	54.57724	65.21760	82.63270	144.01826
9	23	14	31	40	41
	34.66433	56.96614	68.98018	119.47634	164.05938

Table 14 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for C-G-SS-G plates (case 34)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 11 \\ 15.41821 \end{gathered}$				
2	$\begin{gathered} 12 \\ 16.62762 \end{gathered}$	$\begin{gathered} 12 \\ 18.90125 \end{gathered}$	$\begin{gathered} 12 \\ 23.64632 \end{gathered}$	$\begin{gathered} 12 \\ 35.05113 \end{gathered}$	$\begin{gathered} 12 \\ 73.43892 \end{gathered}$
3	$\begin{gathered} 13 \\ 20.53412 \end{gathered}$	$\begin{gathered} 13 \\ 30.66806 \end{gathered}$	$\begin{gathered} 21 \\ 49.96486 \end{gathered}$	$\begin{gathered} 21 \\ 49.96486 \end{gathered}$	$\begin{gathered} 21 \\ 49.96486 \end{gathered}$
4	$\begin{gathered} 14 \\ 27.58086 \end{gathered}$	$\begin{gathered} 21 \\ 49.96486 \end{gathered}$	$\begin{gathered} 13 \\ 51.67428 \end{gathered}$	$\begin{gathered} 22 \\ 69.91281 \end{gathered}$	$\begin{gathered} 31 \\ 104.24770 \end{gathered}$
5	$\begin{gathered} 15 \\ 37.96003 \end{gathered}$	$\begin{gathered} 14 \\ 51.67428 \end{gathered}$	$\begin{gathered} 22 \\ 58.64636 \end{gathered}$	$\begin{gathered} 13 \\ 100.26980 \end{gathered}$	$\begin{gathered} 22 \\ 107.41974 \end{gathered}$
6	$\begin{gathered} 21 \\ 49.96486 \end{gathered}$	$\begin{gathered} 22 \\ 53.77580 \end{gathered}$	$\begin{gathered} 23 \\ 86.13447 \end{gathered}$	$\begin{gathered} 31 \\ 104.24770 \end{gathered}$	$\begin{gathered} 32 \\ 161.98201 \end{gathered}$
7	$\begin{gathered} 22 \\ 51.32673 \end{gathered}$	$\begin{gathered} 23 \\ 65.61570 \end{gathered}$	$\begin{gathered} 14 \\ 100.26980 \end{gathered}$	$\begin{gathered} 32 \\ 124.63336 \end{gathered}$	$\begin{gathered} 41 \\ 178.26973 \end{gathered}$
8	$\begin{gathered} 16 \\ 51.67428 \end{gathered}$	$\begin{gathered} 15 \\ 81.82250 \end{gathered}$	$\begin{gathered} 31 \\ 104.24770 \end{gathered}$	$\begin{gathered} 23 \\ 133.79097 \end{gathered}$	$\begin{gathered} 42 \\ 236.44817 \end{gathered}$
9	$\begin{gathered} 23 \\ 55.47812 \end{gathered}$	$\begin{gathered} 42 \\ 86.13447 \end{gathered}$	$\begin{gathered} 32 \\ 113.22810 \end{gathered}$	$\begin{gathered} 41 \\ 178.26973 \end{gathered}$	$\begin{gathered} 13 \\ 257.54404 \end{gathered}$

Table 15 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for C-G-
C-G plates (case 35)

	$\lambda=a / b$					
Mode						
	sequence	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	
1	11	11	111	11	$\frac{5}{2}$	
	22.37329	22.37329	22.37329	22.37329	22.37329	
2	12	12	12	12	21	
	23.27743	25.04358	28.95085	39.08925	61.67282	
3	13	13	133	21	122	
	26.35819	35.10382	54.74307	61.67282	75.84165	
4	14	14	21	22	22	
	32.35634	54.74307	61.67282	79.52512	114.77960	
5	15	21	22	31	31	
	41.77684	61.67282	69.32701	120.90339	120.90339	
6	16	22	23	32	32	
	54.74307	65.00787	94.58528	139.62235	174.78585	
7	21	23	14	23	41	
	61.67282	75.60498	102.21620	140.20451	199.85945	
8	22	15	31	33	42	
	62.85993	84.05420	120.90339	199.81054	254.68757	
9	23	24	32	41	13	
	66.51050	94.58528	129.09554	199.85945	258.61358	

Table 16 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for SS-G-G-G plates (case 36)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{3}$	$\frac{3}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 11 \\ 2.46740 \end{gathered}$	$\begin{gathered} 11 \\ 2.46740 \end{gathered}$	$\begin{gathered} 11 \\ 2.46740 \end{gathered}$	$\begin{aligned} & 11 \\ & 2.46740 \end{aligned}$	$\begin{gathered} 11 \\ 2.46740 \end{gathered}$
2	$\begin{gathered} 12 \\ 4.04654 \end{gathered}$	$\begin{aligned} & 12 \\ & 6.85389 \end{aligned}$	$\begin{gathered} 12 \\ 12.33701 \end{gathered}$	$\begin{gathered} 21 \\ 22.20661 \end{gathered}$	$\begin{gathered} 21 \\ 22.20661 \end{gathered}$
3	$\begin{gathered} 13 \\ 8.78395 \end{gathered}$	$\begin{gathered} 13 \\ 20.01337 \end{gathered}$	$\begin{gathered} 21 \\ 22.20661 \end{gathered}$	$\begin{gathered} 12 \\ 24.67401 \end{gathered}$	$\begin{gathered} 31 \\ 61.68503 \end{gathered}$
4	$\begin{gathered} 14 \\ 16.67963 \end{gathered}$	$\stackrel{21}{22.20661}$	$\begin{gathered} 22 \\ 32.07622 \end{gathered}$	$\begin{gathered} 22 \\ 44.41322 \end{gathered}$	$\begin{gathered} 12 \\ 64.15243 \end{gathered}$
5	$\begin{gathered} 21 \\ 22.20661 \end{gathered}$	$\stackrel{22}{26.59310}$	$\begin{gathered} 13 \\ 41.94582 \end{gathered}$	$\begin{gathered} 31 \\ 61.68503 \end{gathered}$	$\begin{gathered} 22 \\ 83.89164 \end{gathered}$
6	$\stackrel{22}{23.78575}$	$\begin{gathered} 23 \\ 39.75258 \end{gathered}$	$\begin{gathered} 31 \\ 61.68503 \end{gathered}$	$\begin{gathered} 32 \\ 83.89164 \end{gathered}$	$\begin{gathered} 41 \\ 120.90266 \end{gathered}$
7	$\begin{gathered} 15 \\ 27.73359 \end{gathered}$	$\begin{gathered} 14 \\ 41.94582 \end{gathered}$	$\begin{gathered} 32 \\ 71.55464 \end{gathered}$	$\begin{gathered} 13 \\ 91.29385 \end{gathered}$	$\begin{gathered} 32 \\ 123.37006 \end{gathered}$
8	$\begin{gathered} 23 \\ 28.52316 \end{gathered}$	$\begin{aligned} & 24,31 \\ & 61.68503 \end{aligned}$	$\begin{gathered} 14 \\ 91.29385 \end{gathered}$	$\begin{gathered} 23 \\ 111.03306 \end{gathered}$	$\begin{gathered} 42 \\ 182.58769 \end{gathered}$
9	$\begin{gathered} 24 \\ 36.41884 \end{gathered}$	$\begin{gathered} 32 \\ 66.07152 \end{gathered}$	$\begin{gathered} 33 \\ 101.16345 \end{gathered}$	$\begin{gathered} 41 \\ 120.90266 \end{gathered}$	$\begin{gathered} 51 \\ 199.85950 \end{gathered}$

Table 17 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for C-G-
G-G plates (case 37)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 11 \\ 5.59332 \end{gathered}$	$\begin{gathered} 11 \\ 5.59332 \end{gathered}$	$\begin{gathered} 11 \\ 5.59332 \end{gathered}$	$\begin{aligned} & 11 \\ & 5.59332 \end{aligned}$	$\begin{aligned} & 11 \\ & 5.59332 \end{aligned}$
2	$\begin{gathered} 12 \\ 6.58955 \end{gathered}$	$\begin{gathered} 12 \\ 8.77595 \end{gathered}$	$\begin{gathered} 12 \\ 13.68577 \end{gathered}$	$\begin{gathered} 12 \\ 25.55405 \end{gathered}$	$\begin{gathered} 21 \\ 30.22585 \end{gathered}$
3	$\begin{gathered} 13 \\ 10.44421 \end{gathered}$	$\begin{gathered} 13 \\ 21.01355 \end{gathered}$	$\begin{gathered} 21 \\ 30.22585 \end{gathered}$	$\begin{gathered} 21 \\ 30.22585 \end{gathered}$	$\begin{gathered} 12 \\ 64.65340 \end{gathered}$
4	$\begin{gathered} 14 \\ 17.79873 \end{gathered}$	$\begin{gathered} 21 \\ 30.22585 \end{gathered}$	$\begin{gathered} 22 \\ 38.69393 \end{gathered}$	$\begin{gathered} 22 \\ 49.95263 \end{gathered}$	$\begin{gathered} 31 \\ 74.63888 \end{gathered}$
5	$\begin{gathered} 15 \\ 28.55346 \end{gathered}$	$\begin{gathered} 22 \\ 33.90309 \end{gathered}$	$\begin{gathered} 13 \\ 42.58662 \end{gathered}$	$\begin{gathered} 31 \\ 74.63888 \end{gathered}$	$\begin{gathered} 32 \\ 132.18848 \end{gathered}$
6	$\begin{gathered} 21 \\ 30.22585 \end{gathered}$	$\begin{gathered} 14 \\ 42.58662 \end{gathered}$	$\begin{gathered} 23 \\ 66.29910 \end{gathered}$	$\begin{gathered} 13 \\ 91.70417 \end{gathered}$	$\begin{gathered} 41 \\ 138.79131 \end{gathered}$
7	$\begin{gathered} 22 \\ 31.53007 \end{gathered}$	$\begin{gathered} 23 \\ 45.64117 \end{gathered}$	$\begin{gathered} 31 \\ 74.63888 \end{gathered}$	$\begin{gathered} 32 \\ 94.81711 \end{gathered}$	$\begin{gathered} 42 \\ 196.74474 \end{gathered}$
8	$\begin{gathered} 23 \\ 35.56866 \end{gathered}$	$\begin{gathered} 24 \\ 66.29910 \end{gathered}$	$\begin{gathered} 32 \\ 83.48830 \end{gathered}$	$\begin{gathered} 23 \\ 114.35987 \end{gathered}$	$\begin{gathered} 51 \\ 222.68295 \end{gathered}$
9	$\begin{gathered} 16 \\ 42.58662 \end{gathered}$	$\begin{gathered} 31 \\ 74.63888 \end{gathered}$	$\begin{gathered} 14 \\ 91.70417 \end{gathered}$	$\begin{gathered} 41 \\ 138.79131 \end{gathered}$	$\begin{gathered} 13 \\ 249.44447 \end{gathered}$

Table 18 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for SS-G-F-G plates (case 38)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 12 \\ 3.00815 \end{gathered}$	$\begin{gathered} 12 \\ 6.09382 \end{gathered}$	$\begin{gathered} 12 \\ 11.68454 \end{gathered}$	$\begin{gathered} 21 \\ 15.41821 \end{gathered}$	$\begin{gathered} 21 \\ 15.41821 \end{gathered}$
2	$\begin{gathered} 13 \\ 8.08648 \end{gathered}$	$\begin{gathered} 21 \\ 15.41821 \end{gathered}$	$\begin{gathered} 21 \\ 15.41821 \end{gathered}$	$\begin{gathered} 12 \\ 24.01013 \end{gathered}$	$\begin{gathered} 31 \\ 49.96486 \end{gathered}$
3	$\begin{gathered} 21 \\ 15.41821 \end{gathered}$	$\begin{gathered} 13 \\ 19.36545 \end{gathered}$	$\begin{gathered} 22 \\ 27.75635 \end{gathered}$	$\begin{gathered} 22 \\ 41.17398 \end{gathered}$	$\begin{gathered} 12 \\ 63.28672 \end{gathered}$
4	$\begin{gathered} 14 \\ 16.03714 \end{gathered}$	$\begin{gathered} 22 \\ 21.26984 \end{gathered}$	$\begin{gathered} 13 \\ 41.19665 \end{gathered}$	$\begin{gathered} 31 \\ 49.96486 \end{gathered}$	$\begin{gathered} 22 \\ 81.60647 \end{gathered}$
5	$\begin{gathered} 22 \\ 17.63615 \end{gathered}$	$\begin{gathered} 23 \\ 36.21285 \end{gathered}$	$\begin{gathered} 31 \\ 49.96486 \end{gathered}$	$\begin{gathered} 32 \\ 75.81905 \end{gathered}$	$\begin{gathered} 41 \\ 104.24770 \end{gathered}$
6	$\begin{gathered} 23 \\ 23.62108 \end{gathered}$	$\begin{gathered} 14 \\ 41.19666 \end{gathered}$	$\begin{gathered} 23 \\ 59.06551 \end{gathered}$	$\begin{gathered} 13 \\ 90.29409 \end{gathered}$	$\stackrel{3 \stackrel{2}{2}}{117.74400}$
7	$\begin{gathered} 15 \\ 27.05642 \end{gathered}$	$\begin{gathered} 31 \\ 49.96486 \end{gathered}$	$\begin{gathered} 32 \\ 61.86061 \end{gathered}$	$\stackrel{41}{104.24770}$	$\stackrel{4 \underset{2}{2}}{172.23755}$
8	$\begin{gathered} 24 \\ 32.59686 \end{gathered}$	$\begin{gathered} 32 \\ 55.36157 \end{gathered}$	$\begin{gathered} 14 \\ 90.29409 \end{gathered}$	$\begin{gathered} 23 \\ 108.91848 \end{gathered}$	$\begin{gathered} 51 \\ 178.26973 \end{gathered}$
9	$\begin{gathered} 16 \\ 41.19665 \end{gathered}$	$\begin{gathered} 24 \\ 59.06552 \end{gathered}$	$\begin{gathered} 33 \\ 94.48370 \end{gathered}$	$\begin{gathered} 42 \\ 129.58411 \end{gathered}$	$\begin{gathered} 52 \\ 245.86039 \end{gathered}$

Table 19 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for $\mathrm{C}-\mathrm{G}$ F-G plates (case 39)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 11 \\ 3.51602 \end{gathered}$	$\begin{aligned} & 11 \\ & 3.51602 \end{aligned}$			
2	$\begin{gathered} 12 \\ 4.90043 \end{gathered}$	$\begin{gathered} 12 \\ 7.47665 \end{gathered}$	$\begin{gathered} 12 \\ 12.68736 \end{gathered}$	$\begin{gathered} 21 \\ 22.03449 \end{gathered}$	$\begin{gathered} 21 \\ 22.03449 \end{gathered}$
3	$\begin{gathered} 13 \\ 9.29287 \end{gathered}$	$\begin{gathered} 13 \\ 20.13441 \end{gathered}$	$\begin{gathered} 21 \\ 22.03449 \end{gathered}$	$\begin{gathered} 12 \\ 24.69429 \end{gathered}$	$\begin{gathered} 31 \\ 61.69721 \end{gathered}$
4	$\begin{gathered} 14 \\ 16.88752 \end{gathered}$	$\begin{gathered} 21 \\ 22.03449 \end{gathered}$	$\begin{gathered} 22 \\ 33.06509 \end{gathered}$	$\begin{gathered} 22 \\ 45.75496 \end{gathered}$	$\begin{gathered} 12 \\ 63.67993 \end{gathered}$
5	$\begin{gathered} 21 \\ 22.03449 \end{gathered}$	$\begin{gathered} 22 \\ 27.11900 \end{gathered}$	$\begin{gathered} 13 \\ 41.70193 \end{gathered}$	$\begin{gathered} 31 \\ 61.69721 \end{gathered}$	$\begin{gathered} 22 \\ 85.02257 \end{gathered}$
6	$\begin{gathered} 22 \\ 23.91311 \end{gathered}$	$\begin{gathered} 23 \\ 41.02548 \end{gathered}$	$\begin{gathered} 31 \\ 61.69721 \end{gathered}$	$\begin{gathered} 32 \\ 85.39922 \end{gathered}$	$\begin{gathered} 41 \\ 120.90192 \end{gathered}$
7	$\begin{gathered} 15 \\ 27.69696 \end{gathered}$	$\begin{gathered} 14 \\ 41.70193 \end{gathered}$	$\begin{gathered} 23 \\ 63.01483 \end{gathered}$	$\begin{gathered} 13 \\ 90.61138 \end{gathered}$	$\begin{gathered} 32 \\ 125.60711 \end{gathered}$
8	$\begin{gathered} 23 \\ 29.24977 \end{gathered}$	$\begin{gathered} 31 \\ 61.69721 \end{gathered}$	$\begin{gathered} 32 \\ 72.39756 \end{gathered}$	$\begin{gathered} 23 \\ 111.89639 \end{gathered}$	$\begin{gathered} 42 \\ 185.13687 \end{gathered}$
9	$\begin{gathered} 24 \\ 37.60249 \end{gathered}$	$\begin{gathered} 24 \\ 63.01484 \end{gathered}$	$\begin{gathered} 14 \\ 90.61138 \end{gathered}$	$\begin{gathered} 41 \\ 120.90192 \end{gathered}$	$\begin{gathered} 51 \\ 199.85953 \end{gathered}$

Table 20 Frequency parameter $\Omega=\omega a^{2} \sqrt{(\rho / D)}$ for $\mathrm{G}-\mathrm{G}$ F-G plates (case 40)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 12 \\ 1.53452 \end{gathered}$	$\begin{gathered} 12 \\ 4.30238 \end{gathered}$	$\begin{gathered} 21 \\ 5.59332 \end{gathered}$	$\begin{aligned} & 21 \\ & 5.59332 \end{aligned}$	$\begin{aligned} & 21 \\ & 5.59332 \end{aligned}$
2	$\begin{gathered} 21 \\ 5.59332 \end{gathered}$	$\begin{gathered} 21 \\ 5.59332 \end{gathered}$	$\begin{gathered} 12 \\ 9.73624 \end{gathered}$	$\begin{gathered} 12 \\ 21.99667 \end{gathered}$	$\begin{gathered} 31 \\ 30.22585 \end{gathered}$
3	$\begin{gathered} 13 \\ 6.21285 \end{gathered}$	$\begin{gathered} 22 \\ 11.55184 \end{gathered}$	$\begin{gathered} 22 \\ 17.68503 \end{gathered}$	$\begin{gathered} 31 \\ 30.22585 \end{gathered}$	$\begin{gathered} 12 \\ 61.31043 \end{gathered}$
4	$\begin{gathered} 22 \\ 7.99381 \end{gathered}$	$\begin{gathered} 13 \\ 17.36197 \end{gathered}$	$\begin{gathered} 31 \\ 30.22585 \end{gathered}$	$\begin{gathered} 22 \\ 30.51000 \end{gathered}$	$\begin{gathered} 22 \\ 70.22123 \end{gathered}$
5	$\begin{gathered} 23 \\ 13.78225 \end{gathered}$	$\begin{gathered} 23 \\ 25.73314 \end{gathered}$	$\begin{gathered} 13 \\ 39.18812 \end{gathered}$	$\begin{gathered} 32 \\ 56.18961 \end{gathered}$	$\begin{gathered} 41 \\ 74.63888 \end{gathered}$
6	$\begin{gathered} 14 \\ 14.04868 \end{gathered}$	$\begin{gathered} 31 \\ 30.22585 \end{gathered}$	$\begin{gathered} 32 \\ 42.38443 \end{gathered}$	$\begin{gathered} 41 \\ 74.63888 \end{gathered}$	$\begin{gathered} 32 \\ 97.43186 \end{gathered}$
7	$\begin{gathered} 24 \\ 22.27667 \end{gathered}$	$\begin{gathered} 32 \\ 35.82730 \end{gathered}$	$\begin{gathered} 23 \\ 47.96686 \end{gathered}$	$\begin{gathered} 13 \\ 88.36340 \end{gathered}$	$\begin{gathered} 51 \\ 138.79131 \end{gathered}$
8	$\begin{gathered} 15 \\ 25.04049 \end{gathered}$	$\begin{gathered} 14 \\ 39.18813 \end{gathered}$	$\begin{gathered} 33 \\ 74.52565 \end{gathered}$	$\begin{gathered} 23 \\ 97.34229 \end{gathered}$	$\begin{gathered} 42 \\ 142.64258 \end{gathered}$
9	$\begin{gathered} 31 \\ 30.22585 \end{gathered}$	$\begin{gathered} 24 \\ 47.96686 \end{gathered}$	$\begin{gathered} 41 \\ 74.63888 \end{gathered}$	$\begin{gathered} 42 \\ 100.25083 \end{gathered}$	$\begin{gathered} 52 \\ 206.62132 \end{gathered}$

Table 21 Frequency parameter $\Omega=\omega a^{2} \sqrt{ }(\rho / D)$ for $F-G$ F-G plates (case 41)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{aligned} & 02 \\ & 1.51746 \end{aligned}$	$\begin{gathered} 02 \\ 4.24808 \end{gathered}$	$\begin{aligned} & 02 \\ & 9.63139 \end{aligned}$	$\begin{gathered} 02 \\ 21.82123 \end{gathered}$	$\begin{gathered} 21 \\ 22.37329 \end{gathered}$
2	$\begin{gathered} 12 \\ 5.37965 \end{gathered}$	$\begin{gathered} 12 \\ 9.60853 \end{gathered}$	$\begin{gathered} 12 \\ 16.13478 \end{gathered}$	$\begin{gathered} 21 \\ 22.37329 \end{gathered}$	$\begin{gathered} 02 \\ 61.00028 \end{gathered}$
3	$\begin{gathered} 03 \\ 6.13807 \end{gathered}$	$\begin{gathered} 03 \\ 17.20951 \end{gathered}$	$\begin{gathered} 21 \\ 22.37329 \end{gathered}$	$\begin{gathered} 12 \\ 29.20802 \end{gathered}$	$\begin{gathered} 31 \\ 61.67282 \end{gathered}$
4	$\begin{gathered} 13 \\ 12.03259 \end{gathered}$	$\begin{gathered} 21 \\ 22.37329 \end{gathered}$	$\begin{gathered} 22 \\ 36.72564 \end{gathered}$	$\begin{gathered} 22 \\ 51.64536 \end{gathered}$	$\begin{gathered} 12 \\ 68.98018 \end{gathered}$
5	$\begin{gathered} 04 \\ 13.91495 \end{gathered}$	$\begin{gathered} 13 \\ 24.37527 \end{gathered}$	$\begin{gathered} 03 \\ 38.94496 \end{gathered}$	$\begin{gathered} 31 \\ 61.67282 \end{gathered}$	$\begin{gathered} 22 \\ 94.14103 \end{gathered}$
6	$\begin{gathered} 14 \\ 20.85721 \end{gathered}$	$\begin{gathered} 22 \\ 20.24098 \end{gathered}$	$\begin{gathered} 13 \\ 46.73815 \end{gathered}$	$\begin{gathered} 03 \\ 87.98670 \end{gathered}$	$\begin{gathered} 41 \\ 120.90339 \end{gathered}$
7	$\begin{gathered} 21 \\ 22.37329 \end{gathered}$	$\begin{gathered} 04 \\ 38.94496 \end{gathered}$	$\begin{gathered} 31 \\ 61.67282 \end{gathered}$	$\begin{gathered} 32 \\ 90.80111 \end{gathered}$	$\begin{gathered} 32 \\ 135.66521 \end{gathered}$
8	$\begin{gathered} 05 \\ 24.85138 \end{gathered}$	$\begin{gathered} 23 \\ 46.20734 \end{gathered}$	$\begin{gathered} 23 \\ 70.74011 \end{gathered}$	$\begin{gathered} 13 \\ 96.04051 \end{gathered}$	$\begin{gathered} 42 \\ 194.85679 \end{gathered}$
9	$\begin{gathered} 22 \\ 24.97996 \end{gathered}$	$\begin{gathered} 14 \\ 46.73815 \end{gathered}$	$\begin{gathered} 32 \\ 75.28338 \end{gathered}$	$\begin{gathered} 41 \\ 120.90339 \end{gathered}$	$\begin{gathered} 51 \\ 199.85945 \end{gathered}$

Table 22 Frequency parameter $\Omega=\omega a^{2} \sqrt{(\rho / D)}$ for $\mathbf{G}-\mathbf{G}-$ G-G plates (case 42)

Mode sequence	$\lambda=a / b$				
	$\frac{2}{5}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
1	$\begin{gathered} 12 \\ 1.57914 \end{gathered}$	$\begin{gathered} 12 \\ 4.38649 \end{gathered}$	$\begin{aligned} & 12 \\ & 9.86960 \end{aligned}$	$\begin{aligned} & 21 \\ & 9.86960 \end{aligned}$	$\begin{aligned} & 21 \\ & 9.86960 \end{aligned}$
2	$\begin{aligned} & 13 \\ & 6.31655 \end{aligned}$	$\begin{gathered} 21 \\ 9.86960 \end{gathered}$	$\begin{gathered} 22 \\ 19.73921 \end{gathered}$	$\begin{gathered} 12 \\ 22.20661 \end{gathered}$	$\begin{gathered} 31 \\ 39.47842 \end{gathered}$
3	$\begin{gathered} 21 \\ 9.86960 \end{gathered}$	$\begin{gathered} 22 \\ 14.25610 \end{gathered}$	$\begin{gathered} 13 \\ 39.47842 \end{gathered}$	$\begin{gathered} 22 \\ 32.07622 \end{gathered}$	$\begin{gathered} 12 \\ 61.68503 \end{gathered}$
4	$\begin{gathered} 22 \\ 11.44874 \end{gathered}$	$\begin{gathered} 13 \\ 17.54596 \end{gathered}$	$\begin{gathered} 23 \\ 49.34802 \end{gathered}$	$\begin{gathered} 31 \\ 39.47842 \end{gathered}$	$\begin{gathered} 22 \\ 71.55464 \end{gathered}$
5	$\begin{gathered} 14 \\ 14.21223 \end{gathered}$	$\begin{gathered} 23 \\ 27.41557 \end{gathered}$	$\begin{gathered} 33 \\ 78.95684 \end{gathered}$	$\begin{gathered} 32 \\ 61.68503 \end{gathered}$	$\begin{gathered} 41 \\ 88.82644 \end{gathered}$
6	$\begin{gathered} 23 \\ 16.18615 \end{gathered}$	$\begin{aligned} & 14,31 \\ & 39.47842 \end{aligned}$	$\begin{gathered} 14 \\ 88.82644 \end{gathered}$	$\begin{aligned} & 13,41 \\ & 88.82644 \end{aligned}$	$\begin{gathered} 32 \\ 101.16345 \end{gathered}$
7	$\begin{gathered} 24 \\ 24.08184 \end{gathered}$	$\begin{gathered} 32 \\ 43.86491 \end{gathered}$	$\begin{gathered} 24 \\ 98.69605 \end{gathered}$	$\begin{gathered} 23 \\ 98.69605 \end{gathered}$	$\begin{gathered} 42 \\ 150.51148 \end{gathered}$
8	$\begin{gathered} 15 \\ 25.26619 \end{gathered}$	$\begin{gathered} 24 \\ 49.34802 \end{gathered}$	$\begin{gathered} 34 \\ 128.30486 \end{gathered}$	$\begin{gathered} 42 \\ 111.03306 \end{gathered}$	$\begin{gathered} 51 \\ 157.91368 \end{gathered}$
9	$\begin{gathered} 25 \\ 35.13579 \end{gathered}$	$\begin{gathered} 33 \\ 57.02438 \end{gathered}$	$\begin{gathered} 15 \\ 157.91368 \end{gathered}$	$\begin{gathered} 33 \\ 128.30486 \end{gathered}$	$\begin{gathered} 52 \\ 219.59871 \end{gathered}$

Table 23 Comparison of fundamental frequency parameter Ω_{11} for plates with guided and free edges

Plate type	$\lambda=a / b$				
	$\frac{2}{3}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$
	10.3445	11.3574	13.6858	19.7459	41.1847
	10.1888	10.9752	12.6874	16.8225	30.6277
	9.8696	9.8696	9.8696	9.8696	9.8696
	9.7600	9.6983	9.6314	9.5582	9.4841
SS-SS-G-G	2.8622	3.5640	4.9348	8.0191	17.8887
SS-SS-F-F	1.3201	2.2339	3.3687	5.0263	8.2506
C-G-SS-G	15.418	15.418	15.418	15.418	15.418
C-F-SS-F	15.382	15.340	15.285	15.217	15.128

In the case of a G-G beam, the first mode, for $m=1$ in equation (5), corresponds to rigid body lateral translation of the beam. Thus, for a plate with two opposite edges guided, the mode of plate vibration would be cylindrical with straight generatrices between the guided edges; the curved generatrices and frequency of plate vibration correspond to those of a vibrating beam having end conditions that are the same as those of the other two opposite edges of the given plate. It may be seen, for example, that the frequencies of the $11,21,31$, etc., modes of SS-G-SS-G, C-G-SS-G, C-G-C-G and C-G-F-G plates (see Tables 5, 14, 15 and 19) are actually the frequencies of SS-SS, C-SS, $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{F}$ beams respectively. In fact, in these cases, and also in the case of SS-G-G-G and C-G-G-G beams (see Tables 16 and 17), the fundamental plate frequencies are the fundamental frequencies of the equivalent beams.*

Another feature of the plates with two opposite edges guided is the absence of the 11 and 01 modes if the plate can have rigid body translation and/or rotation. This may be seen in the case of SS-G-F-G, G-G-F-G, F-G-F-G and G-G-G-G plates (see Tables 18, 20, 21 and 22).

[^0]In quite a few cases, the vibration frequencies and modes of the guided edges may be inferred from those vibration modes which are symmetric about the central axes of symmetry of the plates with classical boundary condition cases (cases 1 to 21 in Table 1). This is for the reason, as mentioned earlier, that the boundary conditions of a guided edge are actually duplicated on the lines of symmetries. As an illustration of this point, consider the case of Y-symmetric $m 1$ modes of the SS-C-SS-C plate of some aspect ratio λ. These modes (that is 21, 31, etc., modes) of vibration are symmetric about the $Y=\frac{1}{2}$ central axis and in these vibration modes the SS-C-SS-C plate is actually equivalent to the SS-C-SS-G plate of aspect ratio 2λ. Thus $m 1$ mode frequencies of the SS-C-SS-C plate would be identical to the $m 1$ mode frequencies of an SS-C-SS-G plate of aspect ratio 2λ. Further inferences just for the $m 1$ modes of SS-C-SS-C plates can be drawn considering the fact that $m 1$ modes are X-symmetric for odd values of the index m; the equivalent plate configuration with guided edges become the SS-C-G-C and SS-C-G-G plates for X-symmetric and both X - and Y-symmetric modes respectively.

The aforementioned analogy is seemingly helpful in analysing many cases of the plates with guided edges directly from the already available results of the plates with classical boundary conditions. This includes the cases for which the solutions are not presented here. For example, case 55 (the G-F-F-F plate) may be inferred from case 21 (the $F-F-F-F$ plate). It should be noted, however, that such inferences are conveniently possible only from $m=1 X$-symmetric and $n=1 Y$ symmetric vibration modes; in all other cases the locations of lines of symmetry parallel to the central axes need to be known to determine the aspect ratio for the equivalence of plate configurations.

Lastly, mention may be made of the existence of an unusual flutter-type mode in the case of SS-F-G-F and F-G-F-G plates. As given in Tables 13 and 21, these modes are designated as 10,20 , etc., modes for SS-F-G-F plates and as 01, 02, etc., modes for F-G-F-G plates. As illustrated in Fig. 1, the mode shape between

(a) SS-F-G-F plate: 30 mode

(b) F-G-F-G plate: 04 mode

Fig. 1 Flutter-type modes
the guided edges is concave without any nodal line between the free edges, with maximum deflection occurring at the free edges.

5 CLOSURE

This work concerned the free vibration analysis of thin isotropic rectangular plates with one or more guided edges. The number of plate configurations with all possible combinations of simply supported, clamped, free and guided conditions at the four edges of the plate, with at least one guided edge, is 34 . Of all these cases, analytical solution of the eigenvalue differential equation is possible for 21 cases only. This paper contains the frequency equations and comprehensive frequency data of these 21 cases of plates with guided edges. The solutions of the remaining 13 cases are possible by approximate methods, such as the Rayleigh-Ritz method, or by numerical methods, such as the finite difference and finite element methods. However, in some of these cases, the vibration modes and frequencies may be
interpreted from those vibration modes of plates with classical boundary conditions which are symmetric about the central axes parallel to the plate edges.

A guided edge condition is of some limited practical interest. The condition may be effectively utilized in the interpretation and analyses of the vibration modes of plates with other boundary conditions. It is believed that the detailed information on plates with guided edges provided in this paper fills some of the void in the literature on rectangular plates.

REFERENCES

1 Young, D. Vibration of rectangular plates by the Ritz method. Trans. ASME, J. Appl. Mech., 1950, 17, 488-493.
2 Warburton, G. B. The vibration of rectangular plates. Proc. Instn Mech. Engrs, 1954, 168, 371-384.
3 Leissa, A. W. Free vibrations of rectangular plates. J. Sound Vibr., 1973, 31, 257-293.
4 Gorman, D. J. Accurate free vibration analysis of the completely free orthotropic rectangular plate by the method of superposition. J. Sound Vibr., 1993, 165, 409-420.

[^0]: * It should be noted that the opposite guided edges are at $Y=0$ and $Y=1$. Also the dimensionless frequency Ω is defined with X-type edge length a, which is the length of the equivalent beam. Therefore, the $11,21,31$, etc., mode frequencies of a given plate are independent of its aspect ratio.

