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The problem is formulated as one in the linear theory of thin, laminated, anisotropic elastic plates. A direct 
force-and-moment formulation is used, simplifying approximation is introduced and a closed-form solution is 
obtained. This solution exhibits bending-stretching coupling if the plate is asymmetrically laminated with 
respect to mass or stiffness or both, Numerical results typical of certain composite materials of current interest 
are presented. Specific laminates considered as examples include (1) glass-epoxylsteel, (2) cross-ply graphite- 
epoxy, and (3) various quasi-isotropic layups of organic fibre-epoxy. 

1 INTRODUCTION 
The problem of determining the elastic stresses in a thin 
isotropic circular disc rotating at constant speed about a 
normal axis passing through its centre (Fig. la) was attri- 
buted by Timoshenko (1)* to Maxwell in 1850. The 
analogous problem for a disc constructed of cylindrically 
orthotropic material was attributed by Lekhnitskii (2) to 
Glushlcov in 1939. In such a material, the material- 
symmetry axes are oriented along a cylindrical co-ordinate 
grid pattern (Fig. lb ) .  The technical manifestation of such a 
disc is exemplified by one filament wound so that all of 
the filaments are circumferential. 

In certain products, such as grinding wheels, it is most 
economic from a production standpoint to  construct the 
disc of rectangular orthotropic material. In this kind of 
material, the material-symmetry axes are oriented along a 
rectangular grid pattern (Fig. lc). This rotating-disc 
problem was solved by Lekhnitskii in 1944 (3). 

In some instances, it may be necessary to  construct the 
disc by laminating it of multiple layers of different 
materials. For the case of an arbitrary lamination scheme of 
isotropic materials (see Fig. Id for an example), this prob- 
lem was solved recently by Bert (4). 

The title problem may be considered to be a generaliza- 
tion of (3) and (4) and is solved in closed form in the 
present paper. It is exemplified by a disc laid up in a cross- 
ply arrangement of multiple layers of different materials 
that are rectangular orthotropic, such as material reinforced 
by glass cloth (5) or unidirectional filaments. Fig. le shows 
a simple two-layer example of such a disc. 

Another class of examples comprises the quasi-isotropic 
lamination scheme originated by Werren and Norris (6)  and 
further studied by Tsai and Pagan0 (7) and by Bert (8). The 
application of this lamination scheme to rotating discs was 
patented recently by Rabenhorst et d. (9). Two simple 
examples of this lamination scheme are shown in Fig. 2. 

The MS. o f  this paper was received at the Institution of Mechanical 
Engineers on 3rd May 1974 and accepted for publication on 27th 
Januury 19 75. 3 
*References are given in Appendix 3. 
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a Homogeneous isotropic. b Single-layer cylindrically orthotropic. 
c Singlelayer rectangular orthotropic. d Two-layer isotropic. e Two- 

cross-ply, rectangular orthotropic. 

Fig. 1. Examples of circular disc configurations 

It is to be emphasized that in lamination arrangements in 
which both the stiffness and mass are symmetrically 
disposed with respect to the midplane of the laminate, 
there is no difference between the functional form of the 
solution and the form for a homogeneous or single-layer 
disc within the context of thin-plate theory. However, if 
either the stiffness or the mass is located unsymmetrically 
with respect to the laminate midplane (or if both are), 
bending-stretching coupling takes place and changes the 
qualitative character of the solution. The bending- 
stretching coupling phenomenon has been demonstrated by 
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schemes 
Fig. 2. Exploded views of quasi-isotropic lamination Nr, N ,  

many previous investigators in connection with normally 
loaded plates, see, for instance, Whitney (10) and chapter 
VI of Ashtons and Whitney’s book (1 1). 

The topic of laminated plates loaded by centrifugal 
action is not treated in the classical book on the subject 
(11). To the best of the author’s knowledge, the only 
previous papers on the topic of rotating laminated plates 
are a plate-theory analysis by Deb (12), a classical-elasticity 
analysis by Wu and Ramsey (13) of a disc symmetrically 
laminated of isotropic material and Bert’s previous thin- 
plate analysis (4) of a disc laminated arbitrarily (either sym- 
metrically or asymmetrically) of isotropic materials. The 
present solution, which employs thin-plate theory, is more 
general than previous analyses in that it takes into account 
both rectangular anisotropic material and arbitrary lamina- 
tion symmetry. 

1.1 Notation 
A, B, D, H Constants defined in equations 

(20). 
[AijI> [BijI, P i j l  Stiffness submatrices for the 

composite plate; defined in 
equations (1 1). 

[ A ; ] ,  [B;] , [D;] , [H;] Matrices defined in equations 
(1 0). 

[aij],  [ b i j ] ,  [di i ] ,  [hij] Composite compliance submat- 
rices defined in equations (9). 

c19 G Constants appearing in equation 

Cij Cauchy three-dimensional 

D1 Constant appearing in equations 

Young’s moduli in fibre (L) and 
transverse (T) directions. 

EL 9 ET 

(17). 

elastic-stiffness coefficients. 

(18). 

zi 

K i  

B 

P 
Po9 P1 

Qi 

u~ , u~ 

Tzx ’ Tzy 

Body forces, per unit area, in x, 
y directions. 
Shear modulus related to L, T 
directions. 
Composite-plate thickness. 
Indices that take on values 1, 2, 
6; 1 and 2 refer to normal-type 
actions in directions x, y; 6 
refers to xy shear action. 
Constants defined in equations 

Bending moments (i = 1, 2) and 
twisting moment (i = 6) per unit 
length. 
Radial-bending and twisting 
moments, per unit length, 
related to r, 0 co-ordinates. 
Body couples, per unit area, in 
x, y directions. 
Membrane forces, per unit 
length, related to  xy co-ordinate 
system (i = 1,2,6). 
Radial and shear membrane 
forces, per unit length, related to  
plane polar co-ordinate system r, 

Thickness-shear stress resultants 
acting on edges cut by x andy 
co-ordinates. 
Plane-stress reduced-stiffness co- 
efficients. 
Plane polar co-ordinates in the 
plane of the plate. 
Displacements in x, y, z direc- 
tions. 
Rectangular co-ordinates in the 
plane of the plate. 
Thickness-direction co-ordinate, 
measured from the midplane of 
the composite plate. 
Midplane engineering-strain com- 
ponents related to xy co- 
ordinate system (i = 1,2,6). 
Curvature-change components 
related to xy co-ordinate system 
(i= 1,2,6). 
Effective isotropic in-plane 
Poisson’s ratio. 
Extensional, coupling, and 
flexural Poisson’s ratios for iso- 
tropic case. 
Major and minor Poisson’s ratios 
related to L, T directions. 
Material density. 
Composite mass coefficients 
defined in equations (3). 
Stress components related to xy 
co-ordinate system (i = 1, 2, 6). 
Stresses in fibre and transverse 
directions. 
Thickness shear stresses in the zx 
and zy planes. 
Rotational speed. 

(20). 

e. 

= a( )/ax. 

JOURNAL OF STRAIN ANALYSIS VOL 10 NO 2 1975 OIMechE 1975 85 
 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sdj.sagepub.comDownloaded from 

http://sdj.sagepub.com/


C. W. BERT 

2 ANALYSIS 

2.1 Basic assumptions 
The analysis presented is based on classical theory for thin, 
laminated plates, as presented in chapters 11-VI of (11). 
However, it is necessary to add body forces and body 
moments due to the midplane symmetric and asymmetric 
parts of the mass distribution within the laminate. 

For completeness, the assumptions inherent in the 
analysis are stated explicity as follows. 

(1) The displacements, slopes, and strains are all so small 
that the classical linear strain-displacement relations are 
adequate. 

(2) The disc is sufficiently thin compared with its radius 
for the Kirchhoff hypothesis to be used. This implies that 
the only non-zero strain components are the three in-plane 
strains, that these vary linearly with the distance from the 
mid-plane, and that the plate is in a state of plane stress in 
its plane. 

(3)The disc is assumed to consist of a completely 
arbitrary lamination arrangement, in which each layer is 
made of homogeneous, rectangular orthotropic, linear 
elastic material of arbitrary thickness and oriented at any 
arbitrary angular orientation. The behaviour of a rectan- 
gular orthotropic material with its major material-symmetry 
axis oriented arbitrarily is mechanically equivalent to that 
of a material which is generally anisotropic with respect to 
rectangular co-ordinates. It is assumed that the layers are 
bonded together with a perfect bond. 

(4) The disc is assumed to be solid circular, of uniform 
thickness, and rotating at a uniform speed about its axis. 
The only generalized forces considered are the quasi-static 
ones due to the centrifugal action. 

( 5 )  In this analysis, the disc is assumed to be free at its 
edge. However, by means of superposition, other edge con- 
ditions could be included without much difficulty. 

2.2 Basic equations 
The x and y axes are rectangular Cartesian co-ordinates 
fved in the mid-plane of the disc and rotating with it. The 
stress components in this co-ordinate system are denoted in 
contracted composite-material notation (chapter 2 of (14)) 
as follows: ul and uz are normal stresses in the x andy 
directions and (16 is the shear stress acting along the x and y 
directions (Fig. 3). All of the other stress components are 
absent, since the disc is assumed to be in a state of plane 
stress (hypothesis 2). 

IY 

01 

L 

Ax is  of d i s L  ’ 
rotation / 

/’ 
Fig. 3. Element of one layer of the disc showing co-ordinate 

axes and stress components 

The stress resultants and stress couples are defined as 
follows: 

( N i , M i ) = J ! $ 2 ( l , z ) u i d z ( i =  1,2 ,6)  . . . . (1) 

where z is the thickness-direction position co-ordinate 
measured from the mid-plane of the composite disc and h is 
the total thickness of the composite disc (Fig. 4). 

The respective body forces and body moments, per unit 
plate area, in the x and y directions are as follows (Fig. 4): 

Cr1 ,fd = P O ~ ~ ( X ,  Y ) ;  (ml ,  mz) = p1 J ( x ,  Y )  . . (2) 

where w is the rotational speed, 

(Po,P1)=J!$2 ( 1 , Z ) P d z .  f . * * * . . . (3) 

and p is the material density which may vary in stepwise 
fashion from layer to layer. 

The respective in-plane force, moment, and thickness- 
direction force-equilibrium equations that must be satisfied 
are : 

(4) 

Q1, ,+QZ, ,=O . . . . . . . . . . . . ( 6 )  

/ z 

0 hi; 

‘ X  b 
u Stress resultants and body forces. b Stress couples and body 

couples. 
Fig. 4. Schematic diagrams 
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where the thickness-shear-stress resultants are defined as 

(el, Q z >  =I!$2 (T,,, r Z y )  dz . . . . . . . (7) 

The rectangular anisotropic constitutive relations (hypo- 
thesis 3) are, from chapter 3 of (M), 

. . . (8) 

where the composite compliance submatrices aij ,  bij ,  d i j ,  hij 
are defined as 

as 

* * (9) 

[hij]  = - [D,*]-' [Hi;],  [ d . . ]  'I = [D*]- '  11 1 [aij] = [A$ - [B;] [D;]-' [H;] 

[b i j ]  = [B,?] [Di:]-' 

Here 

. . . (10) I [Ai?] = [ A i i ] - l ,  [Bi7] = - [A i j ] - l  [Bij] 

[Hi?] = [Bij] [Ai j ] - l  

[D,*I = [DijI - [BijI LAij1-l [BijI 

and the respective composite stiffness submatrices are 
defined as 

where the Q, are the plane-stress reduced-stiffness coeffic- 
ients obtained from the Cauchy three-dimensional stiffness 
coefficients as follows (1 5): 

Q, = Cij - (Ci3 q3/C33) (i, j = 1,2,6) . . . * (12) 

Owing to the symmetry of the general array of Cii, we have 
Q,, = Q,. Equations useful in calculating the Q ,  from the 
more familiar elastic properties, Young's and shear moduli 
and Poisson's ratio, are given in Appendix 1. 

The mid-plane strains Si and curvature changes K~ are 
defined in terms of the displacements u, v, w in the respec- 
tive x, y, z directions by the following linear relations 
(hypothesis 1): 

. . . (13) 1 61 = u , , ; f ; = v , y ; ~ 6 6 ~ v , , + u , y  

K 1  = -  W,,,; K 2  = -  WyYy; K6 =-2W,,y 

Thus, the following strain- and curvature-change compat- 
ibility relations must hold (4):t 

t The derivation of equation (5) is presented in Appendix 2 

K ~ , y y  K z , y y - K g ? y = O  * * * * * * * * * (15) 

The boundary conditions to be satisfied are those associ- 
ated with a free edge along r = R (hypothesis 5), where R is 
the radius of the disc. 

Nr=O,Nro  =O;Mr=O,Mr, = O  . . . . . . (16) 

as well as the regularity conditions at the centre of the disc, 
whch is assumed to be solid (hypothesis 4), i.e. N , ,  N 2 ,  
N6,  M I ,  M2, M6 must dl be finite at the disc axis (x = y = 

Equations (1)-(16) constitute a complete mathematical 
0). 

formulation of the problem. 

2.3 Closed-form solution 
The problem is formulated in terms of the membrane forces 
and moments. Any set of functions N1, N 2 ,  N 6 ,  M1, M2 
and M6 that satisfy equations (1)-(16) constitute the 
unique solution of the problem. 

Motivated by Lekhnitskii's solution for the homo- 
geneous orthotropic case (3) and the solution for the lami- 
nated isotropic case (4), one may assume that the mem- 
brane forces per unit length are of the following form: 

N2=?4w2 [C, l(3x2+y2-R2) - (17) 

N1 = ?4 o2 [C, (x' + 3y' - R2) 

+ c, (R* - x2 - y 2 ) ]  

+ c, (R' -x2  - y ' ) ]  

N6 = - 34 o2 (2C1 xy) 

where C 1  and C2 are constants to be determined. Equations 
(1 7) satisfy the appropriate boundary conditions, the first 
two of equations (16), as well as the regularity conditions 
on N1,  N2 ,  and N6.  To satisfy the in-plane equilibrium 
equations (4), it is necessary to set C2 = po . 

In analogous fashion, the moments per unit length are 

M2=3402 [Dl (3xZ+y'-R') . . . . * (18) 

+ p 1  (R' -x2  - y Z ) ]  t Mi = 34 U' [Dl (x' + 3y2 - R 2 )  

+ p1 (R' - x2 -y ' ) ]  

M6 = - %a2 ( u > 1  Xy) 

where D 1  is a constant to be determined. 

(14) and (1 5) one obtains the following results: 
Inserting equations (17), (18), and (8) into equations 

. . . . . (19) I C1 = (DK1 - BK2)/(AD - BH) 

D1 = ( -HK, + AK?)/ (AD - BH) 
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Material I 
(steel) 

Based on actual - orthotropic glass-epoxy 
-8.333 properties 

- - -  that glass-epoxy 
is  isotropic 

Material I1 
(fibreglass-epoxy)* 

3 DISCUSSION 
Equations (17) with C2 = po and (18) with C1 and D1 
given by equations (1 9) constitute the closed-form solution 
ofthe approximate title problem. For a homogeneous, rectan- 
gular orthotropic disc B = 0 and p 1  = 0 and all terms with 
subscripts 16 and 26 vanish. The result coincides with that 
of Lekhnitskii (3). For a disc arbitrarily laminated of iso- 
tropic materials, all  = a22 = a, b l l  = bz2 = b, d l l  = dz2 = d, 
a6 = 2(1 + u,)a, b6 = 2(1 4- ub)b, d& = 2(1 + ud)d, where 

present solution coincides with that derived in (4) by an 
entirely different formulation and method of solution, but 
using the same compatibility equations. 

Vo -alz/all, vb = -bIdbll, and vd -d12/d11. Then the 

29.5 X 10' 
0.28 

= E/(2(1 + v ) ]  
0.283 

4 NUMERICAL EXAMPLES 

4.1 Example 1 : Glass-epoxy/steel 
The numerical example is selected to illustrate the import- 
ance of the bending-stretching coupling effect, as well as 
the orthotropic effect which occurs even when the stiffnesses 
Qll  and Q22 associated with the respective x and y direc- 
tions are equal. The laminate is chosen to be a two-layer 
one to exaggerate the bending-stretching coupling effect. 
Layer I is steel and layer I1 is fibreglass-epoxy, assumed to 
have the material properties listed in Table 1. 

The maximum normal stresses (bending plus membrane) 
always occur at the centre (r = 0) of a solid disc. The 
maximum normal stresses occurring in the two layers are 
depicted graphically in dimensionless form as a function of 
the thickness ratio (thickness of steel divided by total thick- 
ness) in Fig. 5 (solid curves). 

It is seen that the thickness ratio has a strong influence 
on the maximum stresses. The dimensionless maximum 
stress in the steel has its minimum value at a thickness ratio 
of unity, and the dimensionless maximum stress in the 
glass-epoxy is also minimized at the Same thickness ratio. 
Fig. 5 shows that the steel curve is especially sensitive at 

3.26 X 10' 
0.12 
0.810 X 10' 
0.071 

Table 1. Layermaterial parameters for example 1 

Parameter 

Young's modulus E, lb/ina 
Poisson's ratio Y 
Shear modulus, lb/ina 
Specific weight, Ib/in' 

*181-style fabric (16). 

h 0 . 7 5 4  ,,-Glass -epoxy 1 2 

"0 0.2 0.4 0.6 0.8 1.0 
Steel thickness/total thickness 

Fig. 5. Effect of thickness ratio on the maximum dimen- 
sionless normal stresses in the individual layers o f  a two- 

layer rotating disc 

small values of the thickness ratio: decreasing the steel 
thickness in this range causes a dramatic increase in stress in 
the steel. In contrast, both curves are especially insensitive 
at large values of the thickness ratio: changes in glass- 
epoxy thickness for a disc that is largely made of steel has 
little effect on the stresses. 

The question arises of the effect of the material ortho- 
tropy of the glass-epoxy on the calculated maximum 
stress, since this material has a very special kind of ortho- 
tropy in that EL = ET = E and thus uLT = uTL = U, but G 
# E/[2(1 + u)] . The results of calculations for this case are 
depicted by the dashed curves in Fig. 5. It is clear that, for 
this particular combination of materials, the effect of 
material orthotropy of one layer is not nearly as pro- 
nounced as the effect of asymmetric lamination. 

This example illustrates the obvious disadvantage of 
asymmetrically laminating a multi-material rotating disc. 
Sometimes, however, it may not be possible to avoid asym- 
metrical lamination. An example may be a wooden block 
mounted on a steel faceplate for turning on a lathe. The 
wooden block may be laminated plywood or may even be 
monolithic, since wood is itself an orthotropic material 
owing to its cellular structure as manifested in its 'grain'. 

4.2 Example 2: Two-layer, cross-ply graphite-epoxy 
This example is selected to emphasize the effect of a highly 
orthotropic material (EJET 3 1) utilized in the most 
simple lamination scheme (two-layer cross-ply; see Fig. 2e). 

The properties used are taken from (1 7) and are listed in 
Table 2. The effect of varying the cross-ply ratio (ratio of 
the OO-layer thickness to the total thickness) is shown in 
Fig. 6. It is not surprising that use of a cross-ply ratio of 0.5 
(i.e. 0' and 90' layers having the same thickness) results in 
an increase in the maximum normal stress reached in either 
layer compared with that reached in a single-layer disc. In 
the two-layer cross-ply case, bending-stretching coupling is 
always induced even when the cross-plyyatio is 0.5. How- 
ever, it is to be emphasized that this does not mean that the 
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Property 

Major Young's modulus E Ib/in* 
Minor Young's modulus2; lb/inZ 
Major Poisson's ratio vLT 
Shear modulus (GLT), Ib/in' 
Specific weight (pg), lb/in' 

Table 2. Individual-layer material properties for  composite 
materials in Examples 2 and 3 

Example 2 Example 3 
(Graphite- (Organic fibre- 

epoxy *) epoxy* *) 

25.0 X lo6 
1.13 X lo6 

11.0 X lo6 
0.8 X lo6 

0.3 X lo6 
0.35 0.34 
0.77 X lo6  
0.055 0.050 

14 

12 

10 

*Thornel-50 fibres-4617 epoxy resin (17). 
**Kevlar 49 fibres (0.60 volume fraction) - epoxy resin (18). 

I I I I 

12.184 - 

- 

0 
120 
60 
60 
0 

120 

t 

N? Q 81 

hl 
3 . 

1.746 I 0.349 
2.511 0.255 
1.396 0.308 
2.840 0.185 
1.070 0.272 
2.840 0.185 

2.184 

-0.556 

-0.546 
"0 0-2 0 4  0.6 08 

Oo layer thickness / t o t a l  thickness 

Fig 6. Effect of cross-ply ratio on the maximum dimen- 
sionless stresses in the individual layers of a two-layer, 

cross-ply graphite-epoxy rotating disc 

single-layer disc is the best graphite-epoxy design to use, 
since in the cross-ply design the transverse normal stresses 
are much less than in the single-layer design, for which 
transverse normal stress would undoubtedly be the govern- 
ing failure criterion. The present paper is limited to stress 
analysis only and the topics of multiaxial-stress failure 
criterion and optimal design are not considered. 

The dashed curve shown in Fig. 6 is obtained by making 
the approximation of an 'equivalent' isotropic disc having E 
= (E,ET)l/' and v = (vLT uTL )l/'. It is seen that this 
approximation gives a very lnaccurate and exaggerated 
prediction of maximum stress. 

4.3 Example 3: Quasi-isotropic layups of organic fibre- 
epoxy 
The quasi-isotropic lamination scheme, originated by 
Werren and Norris (6), consists of orthotropic layers 
oriented in such a way that the resulting elastic stretching 

stiffness (the [Aii] submatrix) is isotropic, i.e. it has stiff- 
ness coefficients that are independent of orientation in the 
plane. The necessary and sufficient conditions that must be 
met to achieve such a result are (8): 

the total number of layers (n)  must be 3 or more; 
the individual layers (denoted by index k, ranging from 
1 to n) must have identical orthotropic elastic coeffic- 
ients Qij and layer thicknesses; 
all interfacial bonds must be perfect, i.e. there must be 
no interlayer shear deformation, slip, or debonding; 
each layer in a set of layers (denoted by index K )  must 
be oriented at an angle 8 ,  = a(K - 1)/S with respect to 
some reference direction, where S is the number of such 
sets. 
Since a laminate made according to the above design is 

isotropic in regard to  its stretching submatrix [Aii] only 
and not, in general, in regard to its bending-stretching 
coupling and bending stiffnesses, [Bii] and [Di i ] ,  this 
design is called quasi-isotropic or pseudo-isotropic. 

The simplest lamination scheme meeting the criteria 
listed above is the threelayer lay-up consisting of one layer 
at 0", one at 6O0, and another at 120' (Fig. 2a). There are 
three combinations of such arrangements: 

0"/60"/120", suggested by Rabenhorst et al. (9) 
0"/120"/60" 
6O"/O0/12Oo 
The numerical results for the dimensionless maximum 

normal stresses for these three kinds of lamination scheme 
are presented in Table 3, which is based on properties listed 
in the last column of Table 2. It appears that the 
Oo/6O0/12Oo and 0"/120°/60" lamination schemes are 
equally better than the 6Oo/O0/12O0 arrangement. It is 
interesting that the first two schemes had identical maxi- 
mum stresses in the layers. Thus, so far as maximum 
stresses are concerned, interchanging the 60" and 120" 
layers had no effect for this kind of loading. The explana- 
tion for this is that the individual-layer orientation angles 
ek appear only as even powers of sin ek and cos 8, in the 
stress expressions. 

The next to the simplest quasi-isotropic lamination 
scheme is the four-layer one consisting of one layer each at 
Oo, 4S0, 903 and 135". So far as the effects on the stresses are 
concerned, the 45" and 135" layers can be interchanged 
(just as the 60" and 120" layers could be interchanged in 
the three-layer case), but the 0" and 90" layers cannot be 
interchanged. Then there are six distinct lamination 
arrangements; they are listed, along with the dimensionless 

Table 3. Dimensionless maximum normal stress in each 
layer for various three-Iqver quasi-isotropic lay-ups 

of organic fibre-epoxy composite material 

Lamination I Layer 1 Orientation, I(aLw/u*R' 
scheme degrees x 10. 

1 0 1.746 0.349 
0.255 

3A 1 1 1;; I i::;: 1 0.308 

3c + 3 
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Lamination 
scheme 

maximum normal stresses, in Table 4, which is based on the 
properties listed in the last column of Table 2. It appears 
that lamination scheme 4F is best since it has the smallest 
value of maximum normal stress. It is interesting that this 
lamination scheme has a maximum stress that is approxi- 
mately 7.8 per cent lower then the best three-layer quasi- 
isotropic arrangement (3A or 3B). 

It is noted that in the best three-ply (3A and 3B) and 
four-ply (4F) quasi-isotropic lamination arrangements, the 
stress distributions are not symmetrical about the mid-plane 
of the plate. This suggests that detrimental bending- 
stretching coupling action is taking place. This action can 
be eliminated by appropriate combination of two 3A or 
two 4F laminates into a single symmetrically laminated six- 
or eight-layer 'double' laminate. The resulting layer stresses 
for such lamination schemes (6A, 6B, and 8A) are listed in 
Table 5. It is interesting that the stresses are uniform 
throughout the thickness and that all three of these arrange- 
ments (6A, 6B, and 8A) have the same maximum stresses 
(approximately 60.8 per cent smaller stress than 3A or 57.5 
per cent smaller than 4F). 

In the patent specification of Rabenhorst et al. (9) the 
following seven-ply lamination scheme is shown: 
120"/60"/0"/120"/0"/60"/120". Although this lamination 
arrangement is symmetric about the laminate mid-plane, it 
is not quasi-isotropic and this results in a higher maximum 
stress than do the double quasi-isotropic lay-ups, see 
Table 5. 

For the 6A, 6B, and 8A lay-ups, the facts that the maxi- 
mum normal stresses in the directions along the fibres (L) 
and transverse to the fibres (T) are uniform through the 
thickness and that the quasi-isotropic lamination scheme 
results in the same in-plane stiffnesses in all directions in 
the plane might suggest that the maximum normal stress 

Orientation, (oL,/wzRa) (o-/w'R') 
degrees x 10. x 10' 

Table 4. Dimensionless maximum normal stress in each 
layer for various four-layer quasi-isotropic lay-ups 

of organic fibre-epoxy composite material 

1 0 
2 60 
3 120 
4 120 
5 60 
6 0 
1 60 
2 0 
3 120 
4 120 
5 0 
6 60 

6A 

6B 

Lamination 1 Layer 1 Orientation, 1 ( o L m a x / W a ~ 2 )  

scheme degrees x 10' 

0.985 
0.985 
0.985 
0.985 
0.985 
0.985 
0.985 
0.985 
0.985 
0.985 
0.985 
0.985 

1 0 
2 45 
3 90 
4 135 
5 135 
6 90 
I 45 
8 0 

8A 

0.985 0.094 
0.985 0.094 
0.985 0.094 
0.985 0.094 
0.985 0.094 
0.985 0.094 
0.985 0.094 
0.985 0.094 

Table 5. Dimensionless maximum normal stress in each 
laver o f  selected six-. seven-. and eiaht-laver laminates* 

4A 
1 0 1.340 0.305 
2 45 2.23 1 0.212 
3 90 1.644 0.318 
4 135 2.396 0.228 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

4B 

4 c  

4D 

4E 

4F 

0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 
0.094 

~ ~~ 

0 0.124 0.075 
90 0.078 0.165 

135 0.876 0.178 
45 2.341 0.222 
0 0.963 0.451 

135 2.567 0.244 
45 2.043 0.194 
90 2.529 0.268 
45 1.717 0.163 
0 1.981 0.221 

90 2.062 0.275 
135 2.630 0.250 
45 0.944 0.045 

135 1.410 0.134 
0 1.469 0.198 

90 2.500 0.215 
45 2.150 0.204 
0 1.616 0.303 

135 2.314 0.220 
90 1.549 0.333 

Seven-layer, symmetrically laminated lay-ups suggested in (9) 

7A 

120 
60 

0 
120 

0 
60 

120 

0.959 
0.959 
1.110 
0.959 
1.110 
0.959 
0.959 

0.098 
0.098 
0.09 1 
0.098 
0.091 
0.098 
0.098 

could be calculated from the following simple expression 
applicable to a homogeneous isotropic disc, provided that 
the effective isotropic in-plane Poisson's ratio P is calculated 
from Werrens and Norris' equation (see Appendix 1): 

um,/02R2 = (3 + v )  (p/8) . . . . . . . . (21) 

Equation (21) yields a value of urnax = 0.540X lo4. 
However, it of course predicts that urn= is equal to this 
value in all directions, i.e. the sum of the dimensionless 
principal stresses is 1.080X lo4. In lamination arrange- 
ments .6A, 6B, and 8A, the sum of the dimensionless 
principal stresses is essentially identical, namely 
1.079 X lo4. Thus the principal-stress sum is invariant, but 
there is no simple way to  determine a priori the separate 
values of uLrnax and uTrnax. 
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APPENDIX 1 APPENDIX 2 

(30) with respect t oy  and the second with respect t ox  and 
then add the resulting two equations to obtain equation 

Since all solution of equations (30) necessarily satisfy 
equation ( 1  5), the latter equation is a necessary condition 
for curvature compatibility. However, it is noted that 

( 1  5). 

SOME COMPOSITE-MATERIAL RELATIONS DISCUSSION OF THE CURVATURE COMPATIBILITY 
CONDITION 

For a single, thin layer of orthotropic composite material, 
let E~~ and E ,  denote major minor Young’s moduli, 
vLT the major Poisson’s ratio and G L ,  the shear modulus 

ratio vTL can be determined from the reciprocal relation: 

The Curvature changes are related to the displacements by 
the linear 

related to material-symmetry axes. The minor Poisson’s K 1 = - W , x x ;  Kz=-W, , , , , ;  K 6 = - 2 W , x y  . . . (27) 

Integrating the first two of equations (B - l),  one obtains 
vTL =vLT(ET/EL) . . . . . . . . . . (22) w,, = -I K 1  dx +fl.y); w,y = - l K ~ d r + g ( X )  

The plane-stress reduced stiffness coefficients related to . . . (28)  

Differentiating equations (27 )  and (28 )  appropriately, we get 

W,xxy - - K I , ~  . . . . . . (29)  

Thus, the equations necessary and sufficient to ensure 
compatibility of the three curvaturechange components are 
as follows: 

the material-symmetry axes (L and T) are: 

- - 
W,xxy - - JKci,x; 

- (23) w,xyy=  - 1K6,Y;  w,xyy - - K2,x 
. . . . . .  I QLL = EL /A; QLT = vL+fT/A 

QTT = E T I k  Qss = GLT 

where 

h 1 - V L T V T L .  

KI,y - f K 6 , x  = 0; K z , ~  - 1K6, , ,  = 0 . . . . 1 (30) 
The two first-order equations (30) are not analogous to 

the single second-order equation (14) governing midplane 
strain compatibility. To obtain a single second-order 
equation in the curvature components directly analogous to 

To transform the properties from the material-symmetry 
directions (L, T) of an individual layer to arbitrary ortho- 
gonal reference directions (1, 2),  the following transforma- 
tion equations may be used: 
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