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CHAPTER I

RESISTANCE OF FLUID MEDIA TO THE MOTION OF A SPHERE

Introduction

The purpose of the investigation to be summarized in these 

pages was two-fold. The first phase of the investigation dealt with 

a problem that has been considered many times in the past. That is, 

the variation of the correction to Stokes ' law as a function of the 

Reynold's number. The second phase, on the other hand, dealt with a 

problem that, to this writer's knowledge, has never been treated be

fore, either theoretically or experimentally. The problem dealt with 

the effect of line singularities in a fluid on the drag force experi- 

aiced by a sphere moving parallel to the line.

The remainder of this chapter discusses the motivating interest 

of these problems to workers in fluid mechanics. Chapter II contains 

the experimental details and conclusions drawn from the first part of 

this investigation. Chapter III describes the second phase of the in

vestigation, and the conclusions drawn from it. Finally, Appendix B 

summarizes several earlier investigations.

Motion of a Sphere in an Unbounded Medium

The development of the mathematical properties of the motion of 

fluids began as early as the time of Newton with his assumption that the
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stress set up in a fluid as a result of its motion is directly propor

tional to the velocity gradient perpendicular to the fluid motion at 

the position of the s t r e s s I n  one dimension this assumption takes 

the mathematical form

f = n CD

where the proportionality constant n is known as the coefficient of

static viscosity, and is a measure of a particular fluid's resistance

to shear. This assumption is easily verified by experiment.

The further development in the governing differential equation

of fluid motion was culminated in 1823 with the development of the
f 21Navier-Stokes equation .

p{ + (v*V)v} = nV^v - 9p - pV4i + (n+n')v(7 *v) , (2)

where p is the fluid density, V<ji represents any conservative external force 

acting on the fluid, Vp represents the force on the fluid resulting from 

pressure gradients, V^v is proportional to the force due to stress set 

up in the field, dv/dt is proportional to the time rate of change of 

momentum of a fluid element moving with the flow, and n' is an addi

tional property of the fluid having to do with the internal forces set 

up by compression. This equation essentially represents momentum con

servation at eveiy point in the fluid. In all cases to be considered here, 

external forces will not be involved, and the fluid can be taken to 

be incompressible for all practical purposes. The equation then reduces to



p{-^ + (v'V)vj = nV^v - Vp , (3)

coupled with a condition of incompressibility given by

V'v = 0 . C4)

Equations (3) and (4) are the governing differential equations for all 

flows to be considered here.

The general solution of this set of equations for the velocity 

field has never been obtained due to the nonlinearity of the term 

(v'Y^v which is proportional to the .convective mdmentum of the fluid. 

The first approximate solution for a spherical body at rest in a 

highly viscous medium having a slow, uniform velocity at infinity was 

obtained by Stokes in 1853. With these conditions in mind, he ignored 

the time dependent and inertial effects, and solved the equations.

0 = - vp, V'V = 0 (5)

subject to the boundary conditions at the sphere surface and at infin

ity. These equations have come to be known as Stokes' equations of 

steady, creeping motion. The end result of his calculation was the pre

diction of a drag force on the sphere due to the fluid of

= 6irrirU , (6)
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where r is the sphere radius and 0 is either the fluid velocity at in

finity, or the negative of the sphere velocity in an otherwise quies

cent fluid of infinite extent.

Since the initial solution by Stokes, there have been numerous 

attempts to improve his approximation, several of which are worth men

tioning. In 1881, Whitehead tried a standard iteration technique of 

bringing the inertial effects into a second order solution by using 

the Stokes' field for the first order solution. However, his attempt

failed since the resultant second order velocity field could not be
f4)made to satisfy the boundary condition at infinity . In 1910, Oseen 

used the basic nondimensional parameter of the motion, known as Reynold's 

number and symbolized here by Re = prU/n, to argue that Stokes' solution 

was not even correct to first order since the inertial terms tended to 

dominate the flow at infinity. Based on this reasoning, he replaced the 

(v-V3v terms by the linear terms (Û'V)v, using the argument that the in

ertial effects were only important at very large distances fran the body 

where the velocity field had a value very close to that at infinity.

His solution for the resultant flow field lead to a prediction of the 

drag force on the sphere of^^^

D = 6tTTirU(l + Re), Re<<l . (7)0 o

Even though the justification of this calculation left much to 

be desired, there was no improvement in its underlying assumptions un

til around 1955. At that time Kaplun and Lagerstrom suggested a divis

ion of the flow field into two regions: one near the body where an
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iteration scheme like that proposed by Whithead would be used on the 

time-independent Navier-Stokes equations when expressed in coordinates 

suitable to that region, and one very far from the body where the 

Whitehead iteration^cheme would be applied to the time independent 

Navier-Stokes equations when expressed in coordinate suitable to that 

r e g i o n F o r  obvious reasons the coordinates near the sphere have 

come to be known as Stokes' coordinates, while those far from the sphere 

have come to be known as Oscen coordinates. Then, since the resultant 

second order equations in either region can only be matched to either 

the inner or outer boundary, Kaplun proposed the existence of an over

lap domain in which appropriate asymptotic expansions of the inner and 

outer region solutions could be matched to determine their remaining

arbitrary constants. This technique falls under the general classifi-
f 7 81cation of singular perturbation problems ’

In 1957, Proudman and Pearson used the Kaplun technique to solve 

the sphere problem. The end result of their calculation was that the 

sphere drag should be given by

S = 67rrirÛ[l + I  Re + ^  Re^znRe + 0(Re2)], Re«l , (8)P o 4Ü

where the entrance of the 2n Re term into the field is phenomenon now 

known as "switchback" and is an indirect result of the inertial terms 

Even though there exists no rigorous mathematical proof of the Kaplun 

technique, it is thought by many to be the best theoretical treatment 

available at this time, so that Eq. (6) should certainly be considered 

in the analysis of any experimental investigation in which the drag force 

on a sphere is measured.
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It is fairly common knowledge that the experimental values of sphere 

drag often lie somewhere between the theoretical predictions of Stokes and 

Oseen, within the predicted accuracy of the experimentA"^^ One notable excep

tion is the recent work of Maxworthy who concludes that the Oseen prediction 

fits his data quite well for 0 < Re For several reasons it

was decided that another try at this measurement was in order. First 

as has previously been stated, many earlier results are not in agree

ment with Maxworthy's conclusion.* It was also felt that the experi

mental accuracy reported by Maxworthy and others did not represent the 

limit in precision that could be obtained. Maxworthy's conclusion, 

based on only a few data points with the lowest value of Re being 0.2,

was that the Oseen value was followed all the way to Re = 0; whereas,
f 141other workers, based in part on an analysis by Perry, have come to

the conclusion that the correction to Stokes' drag relation goes to zero
fl51 (161for Re f 0. Furthermore, Broersma , Carrier , and others have 

concluded from their work that the correction to Stokes' law is definitely 

lower than that given by either Oseen or Proudman. Thus, it was felt 

that, with slightly more accurate measurements covering a more continous 

range of Re numbers, a better answer could be given concerning the varia

tion in sphere drag with Reynold's number.

*See Figure 3, for a comparison of previous experimental lines with 

these found here.



Based on t^e discussion given above, the equation that should

be used in an experimental investigation of this sort would be of the

form

B = ÔTinrÜCl + oRe + gRê jyi Re + y Re 2 (9)

with a, g and y serving as parameters to be determined by the experi

ment. However, the true experimental situation is more complicated than 

Eq. (9), since the body always moves in a finite rather than an infinite 

medium. Thus, it will be necessary to take this difference into account.

Motion of a Sphere in a Cylindrical Container 

The actual experimental situation investigated here involved 

the motion of a small sphere in a large cylindrical container, with the 

ratio of sphere radius to container radius ranging from -v 0.004, for 

the smaller spheres to ^0.007 for the larger spheres. Even though these 

ratios were quite small, they could not be ignored relative to inertial 

effects with Re ■v 0.01. One further complication resulted from the neces

sary presence of the floor of the container. The ratio of the average 

sphere radius, to the distance of the sphere from the container floor, when 

at the mid point of its fall, was found to be ~0.005, which indicated that 

it could be ignored to first order for reasons to be explained below. Due 

to all these complications, it was felt best to restrict the experimental 

fit to first order corrections in Reynold's number and the boundaries.

The effect of the presence of more than one boundary symmetry on 

the motion of a sphere represents a very difficult theoretical problem.



For a sphere moving axially in an infinitely long cylinder, several 

theoreticians have shown that Stokes' law should be multiplied by the 

first order correction factor^^^

1/Cl - 2.10 r/L), (10)

where L represents the container radius. On the other hand, it has

been shown that a sphere moving perpendicular to an infinite plane

wall in an otherwise unbounded fluid results in an alteration of Stokes'
C21)law by the multiplicative factor

(1 + 9/8-r/B), (11)

where B represents the average distance from the sphere center to the 

wall.

However, it is not correct to combine the correction factors 

given by Eqs. (10) and (11) independently either from a theoretical or

experimental standpoint, since the resultant correction factor is far
f22'itoo high ̂ . The appropriate correction to Stokes' law for a finite

(23)cylindrical container has been extensively studied by Tanner . The 

effect of the floor of the container is strongly dependent upon the 

ratio of B to L. His calculations and experimental results show that 

for B/L ̂ 1.32, as it was in this experiment, the appropriate correction 

for the container floor is x 10  ̂a/B which, when coupled with the 

a/B values here, gives a negligible first order effect.



Based on these considerations the equation that has been used

in the analysis here is given by

D = 6TiTirU(l + ctRe)(l + 2.10 r/L) . (12)

Actually, until now each bracketed factor has only been proven in absence 
of the other. In this thesis it is shown that the effect of inertia and 
)f the wall are related. Tucker and 
exact stationarity and found a = 0.

(24)of the wall are related. Tucker and Broersma considered the case of

Motion of a Sphere When Line Singularities are Present 

In any situation involving the slow, steady motion of a sphere 

through a viscous fluid, there are always one or more boundaries at 

some finite distance from the sphere. There have been numerous theore

tical and experimental investigations of the effect of various bound

aries on the drag force experienced by a sphere. An extremely compre

hensive compliation of these investigations is given in the recent
(25)treatise by Happel and Brenner.

However, the particular problem of a sphere moving in the 

vicinity of one or more line singularities that are parallel to the 

direction of motion of the sphere, appears not to have been treated.

Such an analysis should be of importance for at least two reasons.

First, there should be an intrinsic interest in measuring the drag in

crease on th^ sphere when moving in this fashion, and, for one singular

ity at least, it should be possible to calculate this effect directly, 

Furthermore, as the number of such singularities is increased, it might 

be possible to gain some insight into the manner in which the effect of 

various boundary symmetries is built up. Thus, the manner in which a 

cylindrical boundary is built up has been considered in some detail in 

Chapter III.
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Based on the general foim of boundary corrections that have 

been calculated, the experimental data in this case was assumed to 

obey a relation of the form

b ■= 6nnaU(l + aRe)(l .+ r/s) , (13)

where n is an integer representing the number of line singularities 

present at distance s from the sphere center, and 6^ is the numerical 

factor to be determined from the experimental results. The effects of 

the other boundaries were ignored in Eq. (13) since in all cases r/s 

was more than an order of magnitude larger than r/L and r/B.



CHAPTER II

DEPENDENCE OF SPHERE DRAG ON REYNOLD'S NUMBER

Experimental Apparatus

The Fluid Container and Cathetometer

The container for the viscous medium in this investigation is

a large metal tank having cylindrical symmetry Its height is 105 cm

and its diameter is 78 cm. It has a plexiglass window in one side of

It that was used for viewing, and its top is partially covered with a

metal flange for heat shielding The tank was placed in a large sand

box both for leveling and thermal insulation. Previous to this investigation 

the tank had been coated on the inside with several layers of oil re

sistant white epoxy Since the spheres used in these experiments were 

white, a final coat of oil resistant black epoxy was painted over the 

white in such a manner that two thin white lines were left directly be

hind the upper and lower portions of the plexiglass window Then two 

strips of black plastic tape were placed on the outside of the window 

in Close alignment with the white lines on the inside of the tank.

Two microscopes were mounted on a cathetometer so that each 

level in the tank could be viewed from a distance. The distance be

tween the two sets of reference lines was determined with this cathe

tometer, after it had been placed in the exact position where the fall-
11
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time measurements were to be taken, and carefully leveled. The micro

scopes were focused on a three meter rod placed along the axis of the 

tank, and their position was adjusted to give a reproducible arrange

ment for deciding when the leading edge of a falling sphere was aligned 

with the tank reference lines and the cathetometer crosshairs. The 

final setting decided upon was such that the distance over which the 

spheres were timed was 34.500 rO.005 cm.

Container Placement 

prom prior knowledge of the strongly temperature dependent pro

perties of the VISCOUS medium, it was known that the tank and its im

mediate surroundings would have to be maintained at an almost constant 

temperature, if the accuracy desired was to be obtained For this rea

son the container was placed in a well-insulated room, and all measure

ments were taken through a double plexiglass window by means of the 

cathetometer arrangement described above, viewed from the outside laboratory.

As a check on the temperature at a given point in the room, a 

Beckman thermometer,cap able of showing temperature differences of 0,01°C, 

was mounted on a stand between the tank and an outside window. This 

temperature was constantly monitored both before and during the experi

mental runs In most cases the temperature in the room was found to be 

constant to 0 01°C provided the laboratory room temperature was not under

going rapid fluctuations. Runs were never made if this thermometer 

showed temperature variations as large as 0 02*C. Due to the thermal 

insulation between the outside of the tank and the center of the tank, 

where the spheres actually fell, this precaution should have been more 

than sufficient.
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Temperature Measurement

Two thermometers, which had previously been subjected to a re

lative calibration when placed together, were -p-l-aaed on the outside of 

the tank at the upper and lower reference marks. Insulation was 

placed over these thermometers so that a check could be maintained 

on any temperature gradients in the container Even when the Beckman 

thermometer showed no measurable temperature fluctuation in the room, 

these thermometers showed a constant temperature differential of 

0 < aT .0.10° C with the lower temperature occurring at the lower re

ference line

The difference in height between the reference lines corres

ponded to a pressure difference in the medium of approximately 0.06 

atm. Using an approximate figure for the compressibility of the medium 

gives an estimated density difference at these levels of x2 x 10 ^gm/cm^, 

which is slightly less than the accuracy with which the oil density 

could be measured. This estimate was found to be in close agreement 

with the variation in oil density as a function of temperature (dis

cussed later), since according to those measurements AT <0.10° C would 

imply Ad < 4 X 10"'gm/cm^, Thus, comparison of the data obtained here 

with theoretical predictions based on an incompressible fluid should 

be meaningful.^

The temperature used in all calculations later was obtained 

from a standard thermometer that was suspended over the tank in such 

a way that it could be lowered into the center of the tank from out-
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side the room. In all cases temperature readings on this thermometer 

were taken when it was located at the approximate midpoint of the dis

tance over which the sphere fell. The smallest separation of the etched 

lines on this thermometer corresponded to a temperature difference of 

0.05° C; however, when viewing it with the cathetometer, it was pos

sible to estimate visually to the nearest 0.02° C.

An experimental arrangement such as the one described above 

does have the disadvantage that the container temperature cannot be 

controlled. However, the temperature will naturally vary slowly so 

that measurements can be taken at many different temperatures over a 

period of time. Furthermore, there might be a definite ad

vantage of this equilibrium arrangement over one in which the tempera

ture is controlled. As noted above, the equlibrium state of the 

medium is apparently one in which a small temperature gradient exists. 

Thus, if the temperature of the medium is "forced", by means of a sur

rounding water bath say, to maintain an almost constant temperature 

throughout, it is quite possible that local instabilities might oc

cur resulting in convective mixing. To this writer's knowledge there 

IS no proof that such mixing will actually occur; however,

if it does, the fall times of a sphere might not be as reproducible as 

those found with an arrangement such as the one described here.
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Lighting

The lighting of the tank was accomplished by means of a 15 

watt, water-cooled, fluorescent lamp that was mounted just over the 

top of the tank. This light was only kept on during the actual fall 

time of the spheres, and it was possible to adjust the water flow rate 

so that significant changes in the Beckman thermometer were not caused 

by its presence. The additional precaution was taken of measuring the 

midpoint temperature of the oil bath before and after each run.

Sphere Dropping Mechanism

Since it was necessary to keep the container isolated to the 

extent noted above, a mechanism was necessary for dropping the spheres 

by remote control. To accomplish this task, a plexiglass disk was con

structed having a single hole. This disk was mounted horizontally so 

that the hole was directly over a vertical tube through which the 

spheres ultimately entered the oil. Another plexiglass disk having 

twelve holes was then mounted directly over the first disk in -such a 

way that it could be turned about its vertical axis by a small motor 

wired to a switch outside the room. In this way 12 or more spheres 

could be placed on this apparatus in a planned arrangement 24 hours be

fore the actual run was to be made. By running the motor for a pre

calculated time interval each of the holes in the top disk could then 

be brought, in turn, into alignment with the vertical tube.
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The actual entry of a sphere into the oil was made by means 

of a tube of diameter slightly larger than that of the sphere This 

tube extended into the oil for several inches, and served three pur

poses. First of all, it served to bring the sphere into a state of 

motion that resulted in a very smooth entry into the large container. 

Next, it had previously been found that almost all the air bubbles, 

that tend to form on the sphere when it first enters the oil, will 

break away from the sphere before it leaves the tube. The tube was 

not an unqualified success in this respect, since several runs had to 

be thrown out due to air bubbles on the sphere; however, in most runs 

the sphere was evidently free of air bubbles. Finally, the close ratio 

of the tube diameter to the sphere diameter served to align the sphere 

very close to the axis of the tube. This close alignment was essen

tial to the measurements that were made in the second phase of this in

vestigation, A small basket was placed on the container floor to catch 

the spheres. This basket was raised by nylon cords having heavy hooks 

attached to one end. These cords were never present during an actual 

experimental run.

Properties of the Viscous Medium 

The oil chosen for these experiments is a very clear oil known as 

Whiterex 334 Its viscosity had previously been measured with a #300 

Cannon viscometer and a #400 Eubank-Fisher viscometer both of which 

had been commercially calibrated relative to standard oils. A least- 

mean-square fit of these values to a line of the form
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£n ri = Jüirî + AT [14]

£nn^ = 0.693

A = - 0.074 ,

over a temperature range from 20.00° C. The standard deviation in 

the n values found from the above line is given by

o(n) = 0.01 .

The data points did not fit the above line this well outside the 

temperature range indicated above; however, this temperature range 

did cover the range over which fall-time measurements were taken.

Determination of Oil Density

Pycnometer Calibration 

In order to determine the density of the oil as a function 

of temperature, the standard pycnometer technique was used. To in

sure sufficient accuracy in these measurements, a water bath was

used that was capable of maintaining a constant temperature to

±0.015° C. Since the accuracy of these measurements is crucial to 

the final results, it is perhaps of some interest to describe the 

details.



18

Initially, the pycnometer was thoroughly cleaned, and placed 

in a drying oven. Upon its removal from the drying oven, it was im

mediately placed in a freshly prepared dessicator, and was left there 

until it was in thermal equilibrium with the room in which a Sartorius 

balance was located. Its mass was then determined on this balance to 

±2 X lO'^gm.

The pycnometer was next rinsed and very slowly filled with 

distilled, deionized water that had previously been heated to remove 

all air bubbles. At the time of filling the pycnometer, the water 

temperature was slightly below room temperature. The filled pycnometer 

was then lowered almost up to its top in the constant temperature bath 

until equilibrium with the bath temperature, which was slightly above 

room temperature, was attained. At this point, while the pycnometer 

was still in the bath, the water bead at the top of the pycnometer, 

which had formed due to the slightly increased temperature, was care

fully removed with the tip of a tissue, so that the pycnometer was ex

actly filled at the known bath temperature. The pycnometer was then 

removed from the bath, and a clean glass slide was placed on its top. 

Then the remaining outside surface was carefully cleaned with a highly 

volitile solvent and dried with tissues. Finally, the pycnometer was 

transferred, using tissue so that finger dirt would not adhere to it, 

to the balance where its mass was determined.

Based on these measurements, the volume of the pycnometer was 

determined in the following manner:
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M(pycnometer dry) = 54.1584 gm.

M(pycnometer and water) = 156.2505 gm at T = 28.90“ C 

p(water at T = 28.90°C) = 0.99570 gm/cm^

p(air) = 1.174 x 10  ̂gm/cm^* 

p(balance weights) = 8.4 gm/cm^*

M(pycnometer in vacuo) = M(in air) [1 + p(air)( - ^ (weightsj  ̂̂

= 1.00119 M(in air) ,

and so •

V(pycnometer) = 1^6 • 2505_ -̂ _54.1584 q  Q0119)

= 102.6550 cm^ .

Measurement of oil density.

For the determination of the mass of the pycnometer when filled 

with the oil to be used in the experiment, the same procedure as that 

described above for the pycnometer when filled with water was used. It 

should be noted that by starting the determinations at a temperature 

below the median temperature for which the oil density is desired, it 

is a single matter to continue to increase the bath temperature in 

small increments and simply wipe off the resultant oil bead on the top, 

without ever needing to refill the pycnometer.

*These figures were supplied as nominal values by the manufacturer of 
the balance, with the guarantee of ±2 x 10“ gm on the instrument 
used here.



20

Cooling the pycnometer and oil more than about 6“ C below room 

temperature is quite another matter, since water then tends to condense 

on the outside and may even get inside. Also, after the pycnometer has 

been removed from a bath whose temperature is lower than that of the 

room, the oil will immediately begin to expand. Thus, one must be quite 

careful not to wipe off the oil that comes out of the top of the pycno

meter after its removal from the bath. Finally, for a small increase in 

the bath temperature that is still below room temperature for the next 

measurement, it is usually necessary to refill the pycnometer.

Subjecting the resultant values of p^, I to a least-mean-square

fit to the line

Pg = pQ + ET (16)

gives*

= 0.88732 gm/cm^,

e = 0.000411 gm/C“ cm^. 

The associated standard deviations are

o(Pq) - 0.00001 gm/cm^ 

o ( : |e  I) = 0.000005 gm/C® cm^

■<?CPq) = 0.00003 gm/cm^

provided those points lying 2a(p^) or more from the line are discarded. 

The data points used for the above determination are given in Table 1,

*A11 numerical calculations in this paper were carried out on an 
Ollivetti-Underwood Programmar 101. Thus, in order to minimize 
machine error, no attempt was made to round off intermediate numer
ical results. In all cases the associated standard deviations of 
numerical results are given, so that the proper number of significant 
figures is clear.
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Table 1. Oil density at various temperatures.

T(“C) M(pycn, + oil in air)(gm) p^(gm/cm^)

18.01 146.2160 0.88002

19.00 146.1668 0.87954

20.00 146.1216 0.87910

20.50 146.1011 0.87890

20.62 146.0960 0.87885

21.46 146.0591 0.87849

22.32 146.0242 0.87815

23.00 145.9945 0.87786

24.00 145.9935 0.87746

24.70 145.9238 0.87717

26.20 145.8581 0.87653

27.10 145.8171 0.87613
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where in each case has been found from the relation

Pq CoII) = [MCpycn. 5 5 ^ 4 91 (;i.00119)gm/cm3.

The mass 55.9849 gm in the above relation corresponds to the mass of 

the empty pycnometer plus a wire holder attached to it for this set 

of measurements. As a final note, the effect of the volume coeffic

ient of expansion of the pyrex glass in the pycnometer has been ignored 

here. The worst error in p^ due to this effect occurred in the measure

ment at 18.01° C, since the volume of the pycnometer was determined at 

28.90° C. Using the numbers from Table 1 and a volume coefficient of 

expansion for pyrex of 1 x 10  ̂cm^/C°, gives the associated error in 

p̂  to be 1 X 10~® gm/cm^.

Sphere Properties 

Choice of Spheres 

In order to investigate the variation of sphere drag with Re 

number in the first phase of this investigation, and the effect of line 

boundaries on sphere drag in the second phase, it was found necessary 

to use spheres of varying density and size. Also, since a good part of 

the experiment depended upon having motions with Re<<l, the sphere den

sities had to be rather close to that of the oil. It was finally de

cided that spheres of 4 different plastics would be used. The plastic 

types were polypropylene, polyethylene, nylon and teflon. However, 

upon receipt of the polyethylene and the teflon spheres, it was found 

that they were not even close to the specified sphericity tolerance; 

therefore, they were not used in the actual experiments.
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For the polypropylene spheres, the following nominal diameter 

sizes were used: 1/8", 3/16" and 1/4", For the nylon spheres, the

nominal diameters used were: 3/32", 1/8", 5/32" and 3/16". These den

sities and sizes permitted motions with Reynold's number varying from 

~0.006 to ~0.260 over a fairly continuous range.

Determination of Sphere Density

Since it is quite possible for plastic materials to absorb 

some of the fluid with which they are in contact, the precautionary

step of "soaking" each of the spheres for a period of about one week

was taken.* After this period the sphere parameters were determined. 

These parameters were then checked at the conclusion of the experi

mental runs.

The driving force used in the experiments was that of gravity 

so that it was the difference between the sphere density and oil den

sity that was ultimately used in the calculations. Thus, it was de

cided that the sphere density should be measured directly using the 

pycnometer technique according to the procedure discussed below. In 

this way the necessary accuracy in the density difference was obtained.

*In the manufacturer's specification of the nylon sphere properties, 
the surface penetration of water in a 24 hour;- period was given as 
1/8 the sphere thickness or ~1.5 per cent: of its volume; for poly
propylene the surface penetration was only 0.01 per cent of its 
volume for water.
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By mixing two infinitely soluble fluids, one of density less 

than that of a particular sphere and the other of density greater than 

that of the sphere, it was possible to achieve a fluid state in which 

the gravitational force on the sphere was almost exactly balanced by 

the buoyant force on it due to the fluid mixture. Then the density 

of the resultant mixture was determined using a technique very much 

like that described for the oil density measurements.

In order to get some idea of the final drift velocity of the 

sphere that had to be obtained for the accuracy desired, consider the 

relation that holds for Re = pUr/n«l, namely

6iTnrlI(l + aRe)/(l - 2.1 r/L) = y  irr̂ Apg,

where Ap = p(sphere) - p(fluid mixture). In all cases considered in 

this set of measurements Re was small enough to be ignored. Clearly, 

the necessary variable measure of the condition Ap ^ 0 is given by the 

magnitude of U. Thus, the working relation given above should be put 

in the form

U = ^ 1 ^  (1-2.1 r/L)Ap.

Since the oil density was known to 0(10”^gm/cm^), it was necessary to 

achieve a fluid mixture in which the final drift velocity, in conjunc

tion with the other parameters given in the relation above, would make 

Ap < ~ 0(10“^gm/cm^). In the fluid mixture used Üie cgs unit magni

tudes were n ~ 10"^, r^ 4x10 g ~ 10^ and r/L 10 ^. Inserting 

these approximate figures into the working relation gives

U ^ 0.5 cm/min. (17)
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The final U values ultimately attained in the actual measurements 

were at least an order of magnitude smaller than the above figure.

Before discussing the actual fluid mixtures used for the two 

plastic types, one difference in the experimental technique from 

that used in measuring the oil density should be pointed out. Ini

tially, once the balance of the sphere in the fluid mixture had been 

attained, in a position as close to the middle of the mixture as pos

sible due to slight density gradients that arose as the mixture sat, 

the mixture was transferred to the pycnometer and immediately weighed. 

However, the resultant densities were not reproducible with the same 

accuracy that had previously been attained for the oil density, namely 

± 3x10 ^gm/cm^.

The desired accuracy was finally achieved by first transfer

ring the filled pycnometer, with the sphere in it, to the water bath. 

Then the bath temperature was adjusted until the desired U-balance was 

achieved. At that point the fluid mixture was leveled at the top of 

the pycnometer, and the usual procedure was followed for determining 

its mass.* - _

The fluid mixture used for determining the nylon sphere den

sities was obtained by mixing distilled water with a saturated solu

tion of potassium iodine. The sphere buoyancy was observed to be

*The pycnometer was initially filled so that a small bead of the fluid 
mixture remained on its top in case the final desired temperature was 
slightly below room temperature. Also, evaporation had to be care
fully guarded against.
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quite sensitive to the addition of alternate drops of these two fluids, 

and the only procedural difficulty encountered was that of making sure 

there were no residual air bubbles on the sphere when balanced.

The fluid mixture used for the polypropylene spheres was ob

tained by mixing distilled water and propyl-alcohol. This alcohol was 

used since its boiling point of 97.5° C was a very close match to that 

of water. In any case the beakers containing the fluid mixtures for 

both plastic types were kept sealed as much as possible.

The densities found in the manner described above are listed 

in Table 2.

Determination of Sphere Radius

The other sphere parameter that is necessary for the final 

calculations is the radius. This parameter was initially measured 

with a measuring microscope with an accuracy of ±5x10 ‘‘cm. However, 

various diameters of the spheres were found to vary by as much as 

IxlO'^cm so that an averaging process was necessary. Furthermore, it 

is r^ that actually enters into the calculations so that the residual 

error of IxlO'^cm present in the direct r measurements was definitely 

too large.

Thus, it was decided that the average value of r would be used 

which follows quite simply from weighing the spheres on a very accur

ate balance, and using the relation

1/3
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where p was known from the direct density determinations already made.

For spheres 3/16 PP, 1/4 PP, 5/32 N, 3/16 N a Sartorius balance was 

used that had a precision of ±2x10 ĝm. For spheres 1/8 PP, 3/32 N 

and 1/8 N, a Kahn electrobalance, having a precision in this range of 

5xl0”^gm, was used. Combining these results according to the relation 

given for <r> above gives an average value that is correct to ±1.0x10 ĉm. 

The results of these measurements are listed in Table 2,

Determination of Fall Times

A total of 60 different experimental runs were made, each of 

which involved the timing of at least 12 different spheres. However, 

several of these times were thrown out due to the presence of one or 

more tiny air bubbles on the spheres as has been previously mentioned. 

These bubbles were easily detected by looking through the cathetometer 

telescopes, and were almost always very near the top of the sphere, so 

that the observer was able to rule out most such occurrences.automati

cally.

After the first several runs, it was found that the occurrence 

of air bubbles on the spheres could be reduced by coating the spheres 

with a thin layer of oil as they were placed in the sphere dropping 

mechanism. With the spheres coated in this fashion, they tended to 

adhere to the sides of the vertical fall tube. To counteract this 

effect a probe was mounted over this tube in such a way that it could 

be lowered into the tube, from outside the room, to free the sphere.
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Table 2. Sphere Parameters.

Sphere
type mass (mg) pCgm/cm^) <r> (cm)

1/8 PP 15.568 0.90766 0,15998

3/16 PP 49,70 0.90573 0.23573

3/32 N 8.072 1,16584 0,11824

1/4 PP 119,23 0 90611 0.31550

1/8 N 18,927 1.16584 0.15708

5/32 N 37.28 1.16593 0.19690

3/16 N 64.44 1.16594 0.23630
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In order to insure that the spheres fell into an otherwise 

undisturbed fluid in each case, a definite time interval was allowed 

to elapse between each fall. The lower limit of this time in each 

case was determined from an appropriate two-sphere interaction formula. 

These times found to be less than 5 to 10 minutes after the end of 

the preceding run, in order to insure that the two-sphere interaction 

was more than an order of magnitude smaller than the accuracy desired.

Calculation of Uncorrected Viscosity

Since the true viscosity of the oil was only known from direct 

measurements to ±0,1, it was decided to first calculate a value for 

the oil viscosity that had not been corrected for inertial or boundary 

effects. This parameter of the motion, sybmolized here by n' is given 

according to Stokes' law by

When the parameters that have been measured are placed in the above 

relation, it takes the form

n' = ( )(ÂF - |e|T)t ,

where Ap" = p (sphere) - p^, £ = distance over which the spheres fell

and t is the time taken for the sphere to fall thorugh this distance. 

All times were measured with a Gallet stopwatch. The observer cali

brated himself and the watch to WWV with an accuracy of ±0.05 sec for
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the time intervals of order 50 sec and larger. The accuracy achieved 

in the actual measurements for time intervals of order 20 sec was pro

bably no better than ±0.1 sec due to stop and start reactions of the • 

observer; however, this effect should have been fairly random.

An estimate of the accuracy of n' to be expected from these 

measurements can be obtained quite simply. From Eq. (19) it follows 

that

The cgs unit magnitudes typical to these parameters are rvlO ^, g'vlÔ , 

tA-lÔ , £'v3xl0, Ap '\'10"̂  and |e|Tv10 ^. The errors associated with them 

are c(r)'vlxlO~^, e(t)~5xlO ^, e.(£)vlO ^, E(Ap)~6xlO and 

c(|e|T)xlxlO Thus,

|e(ri')|'v8xl0“ -̂r 5x10"* + 3x10"* + 5x10"^ + 3xl0“\lxl0"*.

Clearly, the limiting factor in the measurements is the result of 

the errors present in the sphere and oil density.

The above analysis explains why it was necessary to push the 

pycnometer technique, used for the density measurements, to the limit. 

Evidently, the only way to decrease the error limit from that found 

above would be to use denser spheres, of smaller radius to maintain 

low Re values, and a fluid medium with much less temperature depen

dence on its parameters.

The values of n' found for each of the spheres are listed be

low in Tables 3, 4, 5, 6, 7, 8, and 9.
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Table 3. Uncorrected viscosity for 1/8 PP sphere,

t n' £nn'exp

19.85 440.81 2.0295 0.7078'
20.10 431.29 1.9928 0.6895
20.35 422.00 1.9569 0.6713
20.52 416 16 1.9345 0.6598
20.57 414.06 1.9261 0.6555
20.60 412.78 1.9210 0.6528
20,62 412.23 1.9190 0.6518
21 00 400.09 1.8725 0.6273
21.05 398.17 1.8640 0.6232
21.25 390.52 1.8342 0 6066
21.40 385.85 1.8161 0.5967
21r45 383.38 1.8058 0 5910
21,80 372 64 1.7639 0.5675
21.90 370.00 1.7538 0.5618
22.25 357.40 1.7024 0,5320
22-70 344.02 1.6489 0.5001
23.00 355.50 1.6148 0.4792
23.45 321 57 1.5573 0.4430
23-55 319.53 1.5496 0.4380
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Table 4. Uncorrected viscosity for 3/16 PP sphere

T ^exp n ' £nn*

19.85 218.90 2,0400 0,7129
20,00 216 07 2,0183 0.7022 :
20.10 214.32 • 2,0050 0.6956
20.20 212.38 1.9899 0.6881
20.40 208.57 1.9602 0,6730
20.52 206,32 1.9426 0.6640
20.57 205,85 1.9397 0.6625
20.60 205.24 1.9348 0.6600
20.62 205,10 1.9341 0.6596
20.70 203.20 1.9185 0.6515
20.80 201.72 ■ 1.9075 0,6458
21,00 198.04 1.8784 0.6304
21.10 196.84 1.8693 0,6258
21.25 193.59 1.8432 0,6115
21.40 190.93 1.8220 0.5999
21,50 189.38 1.8099 0.5933
21,55 188,67 1.8045 0.5902
21 60 187.56 1 7952 0.5851
21.83 184.00 1,7672 0,5694
22.30 177,22 1.7141 0.5389
22.70 170.71 1.6610 0.5074
23.00 166,09 1.6232 0,4844
23.40 161 02 1.5830 0.4593
23.45 160.43 1,5783 0,4563
23.55 159.09 1.5674 0.4494
23.65 158.50 1.5639 0.4472
24,50 148 60 1,4844 0,3950
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Table 5. Uncorrected viscosity for 3/32 N sphere

T ^exp n' &nn'

19.85 80,41 2.0343 0.7101
20.00 79.23 2.0049 0.6956
20.10 78.75 1.9930 0.6896
20.20 78,18 1.9789 0.6825
20.40 77.20 1.9546 0.6702
20.50 76.57 1,9390 0,6621
20,57 76.23 1.9306 0,6578
20.61 . 75,90 1.9223 0.6535
21,00 73.88 1.8722 0,6271
21.25 72.60 1.8404 0.6100
21.40 71.89 1.8228 0.6004
21.45 71.62 1.8161 0.5967
21.50 71.28 1.8076 0 5920
21.83 69.58 1.7653 0.5683
22.05 68.45 1.7372 . 0.5532
22.25 67 57 1.7153 0.5396
22.30 67.34 1.7096 0.5363
22,40 66 85 1,6974 0.5291
22.70 65,30 1,6588 0 5061
23,00 63.76 1.6204 0.4826
23.45 61 64 1.5675 0,4495
23 55 61.06 1.5530 0.4401
23.65 60.54 1.5400 0,4317
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Table 6. Uncorrected Viscosity for 1/4 PP sphere

T ^exp n' &nn'

19.85 121.48 2.0569 ; 0.7212
20.00 120.04 2.0372 0.7116
20.10 118.88 2.0206. . 0.7034
20.20 117.71 2.0037 • 0.. 6950
20.40 116.21 1.9842 0.6852
20.52 115.18 1,9702 0.6781
20.57 114.77 1.9647 0,6753
20.62 114.49 1.9613 0.6736
20.70 113.45 1.9459 0.6657:
20.80 112.44 1.9314 0.6582
21.00 110.61 1.9057 0.6448
21.05 110.06 1.8977 0.6406
21.25 108.03 1.8682 0.6250
21.40 106.70 1.8494 0.6148
21.-45 106.13 1.8409 0.6102
21.50 105.80 1.8365 0.6078
21.55 105.40 1.8309 0.6048
21.83 102.88 1.7946 0.5848
22.20 99.41 1.7436 0.5559
22.70 95.38 1.6852 0.5219
23.00 92,77 1.6463 . 0.4985
23.45 89 13 1.5920 0.4650
23.55 88.20 1.5777 0.4559
23.65 87.50 1.5674, 0.449472
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Table 7. Uncorrected viscosity for 1/8 N sphere,

I ^exp n' £nn'

19,85 45.69 2.0401 0.7130
20.00 45,18 2.0177 0.7019
20.10 44.76 1.9992; 0.6927.
20.40 44.11 1.9711( 0.6785
20.50 43.86 1.9602 0,6730
20,52 43.87 1.9589 0.6724
20.57 43.67 1.9519 0,6688
20.60 43.56 1.9470 0.6663
20.62 43.50 1.9444 0.6649
20.80 43.00 1.9226 0.6536
20.94 42 66 1,9077 0,6459
21.00 42.36 1.8945 0.6389
21,10 42.10 1.8831 0.6329
21.25 41.42 1.8562 0.6185
21.40 41.06 1.8374 0.6083,
21.45 40.93 1.8317 0,6052
21.50 40.81 1.8265 0.6024
21,80 40.08 1.7946 0.5847
21.83 40.02 1.7920 0.5833
22.30 38.34 1.7179 0,5411
22.70 37.30 1.6722 0.5141
23.00 36.48 1.6407 0.4951
23.15 36.18 1.6231 0.4843
23.45 35.40 1.5888 0.4629
23.55 35.17 1.5787 0.4566
23.65 34.91 1.5672 0.4493:
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Table 8. Uncorrected viscosity for 5/32 N sphere.

T ^exp n' 2n n '

19.85 29.64 2.0801.' 0.7324' •

20.62 28.03 1.9693 0.6776

21.43 26.50 1.8639. 0.6226"

21.45 26.47 1.8760 0.6291.

22.20 25.18 1.7731 0.5727

22.30 25.00 1.7606 0.5656

23.00 23.66 1.6679 ., 0.5116

23.65 22.42 1 5820' ^ 0.4754
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Table 9. Uncorrected viscosity for 3/16 N sphere.

T ^exp n' £n n'

20.20 20.43 2.06611'' 0.7256

21.00 19.48 1.9722*. 0.6791.

21.25 19.20 1.9446 0.6650

21.40 18.98 1.9227 0.6537

21.50 18.90 1.9149 0.6496

22.20 18.20 1.8458 0.6129,

23.00 17.10 1.7362. 0.5517.

23.55 16.59 1.6858. .. 0.5222



38

Least-Mean-Square Fit of Raw Data

It is a well-established fact that many liquids have a 
[27]normal curve given by

&n n = Ay, + Eŷ /k , (20)

where and are adjustable parameters. However, it is a simple 

matter to show that

£n n = £n - X(T^ - 20° C), (21)

where & n and A are now the adjustable parameters, is equivalent 

to the original normal curve provided the temperature range is small. 

In the data found above, the tençerature range is 4° C so that the 

lines given by Eqs. (20) and (21) will be equivalent to 0(10*^) in

£n n.

In all cases the raw data was subjected to a least-mean-

square fit to one or more lines of the form given by Eq. (21). This

equation was found to be visually preferable in eliminating bad points

because of the smaller slope associated with it, and was quite suffi-
-3cient to determine the associated "viscosity" to 0(10 ). In several

cases points were thrown out since they lay more than 2a away from 

the line. In two cases, 1/4 PP and 1/8 N, it was clear that a single 

line was not sufficient to cover the entire temperature range; there

fore, the slope and intercept of two lines of the form given by Eq. 

(21) were determined for these two cases.
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The results of these least-mean-square fits to a line of the

form

Jln n' = £n - X'T, (22)

where the primes serve to indicate that the parameters have yet to 

be corrected for wall and inertial effects, are shown in Table 10.

Variations of Sphere Drag with Reynold's Number

General

Once the best values of the parameters associated with line 

given by Eq. (22) have been determined, it is possible to inquire about 

the variation of the sphere drag with Reynold’s number. The values of

n' which have now been determined are related to the true viscosity n

by

n’ = n(l + aRe)/(l - 2.10 r/L), (23)

where, as usual, it is assumed that the effects of the outer boundary 

and inertia are independent to first order.

Defining

n a n'(l - 2.10 r/L) , (24)

it holds that

^  - 1 = aRe , (25)

but clearly this last relation is equivalent to normalizing the wall 

corrected drag with respect to the Stokes’ drag D^, since also



Table 10. Least-mean-square fit of uncorrected viscosities to Equation (22)

Sphere
Type T-Range(°C) ann; o(£nn^) o(A') o(£nn)

1/8 PP 19.85 - 23.65 0.69727 ; 0.0727: 0.0004 0.0003 0.0009.
3/16 PP 19.85 - 23.65 0.7027: 0.0724. 0.0004 0.0003 0.0012
3/32 N 19.85 - 23.00 0.6975 0.0704 0.0007 0.0004 0.0015
1/4 PP 20.00 - 23.65 0.7162 0.0727 0.0006 0.0003 0.0015
1/4 PP 19.85 - 21.00 0.7128 0.0675 0.0010 0.0014 0.0013
1/4 PP 20.52 - 23.65 0.7174 0.0733 0.0004 0.0002 0.0008
1/8 N 19.85 - 23.65 0.7074 0.0705: 0.0008 0.0004 0.0022,
1/8 N 19.85 - 20.62 0.7030 0.0606. 0.0004 0.0008 0.0006.
1/8 N 20.50 - 23.65 0.7094 0.0713 0.0004 0.0002 0.0008.
5/32 N 19.85 - 23.65 0.7206 . 0.0673 0.0009 0.0005 0.0013
3/16 N 20.20 - 23.55 0.7397.. 0.0610. . 0.0011 0.0006 0.0015 .
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D
g— - 1 = aRe (26)

Thus, by plotting n/n - 1 versus Re it should be possible to 

answer several questions concerning the variations of the correction 

to Stokes' drag with Re: 1) Does the drag correction approach zero

as Re approaches zero? 2) If the answer to the first question is in 

the affirmative, is this approach only in the limit Re = 0; or, is 

Stokes' law applicable to finite Re values? 3) What is the average 

value of the parameter a as Re ^ 0?

The concept of an average value of a in the last question is 

essential. Even though only first order corrections are being con

sidered at this point, it is well-known that higher order terms in 

Re must be present. Hence, a may well change over certain ranges in 

Re, In plotting oRe versus Re, the slope of the curve is given by

35^ s <o> , (27)

where <a> will be a meaningful number for a given Re range only if 

a>> Re(da/dRe) over that range,

A serious difficulty presents itself at this point due to the
-2fact that the true viscosity of the fluid is only known to 0(10 ), 

so that the error in aRe due to the inaccuracy in this parameter is 

given by

e(oRe) = e( ^  - 1)

= \  E(n)

0.007
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An error of this size is larger than some gRe values that will be 

found for the 1/8 PP sphere.

n Base

In any case, it is still of interest to look at the result

ant plot of cxRe vs. Re using the directly measured values of q, pro

vided the associated error limits are kept in mind. Thus,.Tables 11, 

12, 13, 14, 15, 16 and 17 list the values of q ', q', aRe, Re and o 

for each of the spheres at several temperature values in the range 

covered by the experiment.

The manner in which the Reynold's number has been calculated 

in these tables should be mentioned. Since, by definition.

Re = 2ÎÜ = 2 ^  . (28)n nt

it is necessary to find the proper t-value that should go into this 

relation for a given sphere at a given temperature. In all fairness 

to the spirit of the comparison being made here, this t-value should 

be that associated with the sphere when falling in an infinite medium. 

So take

2r^Ap * 

which gives Re to be

Re = (ÂJ + IslTQCPo - UlT) (29)

A simple error analysis shows that the values of Re found in this 

fashion will be correct within 1.5x10 .
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Table 11. Comparison of n and n'(l/8 PP).

T-20 n n ' fj* otRe Re a**

0 2.000 2.0082 1.9905' -0.0047 0.0056:' -0.838'

0.5 1.927 1.9365. 1.9195 -0.0038 0.0060 -0.638

1.0 1.857 1.8673 1.8590. -0.0032 0.0066; -0.494

.1.5 1.789 1.8006 1.7848 -0.0023 0.0071 -0.328

2.0 1.724 1.7364 1.7211 -0.0016 0.0077 -0.214

2.5 1.661 1.6743 1.6596 -0.0008 0.0084 -0.097

3.0 1.601 1.6145 ' 1.6003. -0.0004 0.0091 -0.045’

*Wall correction: n = n' (1 - 2.10 r/L) = n'(0.9912).
**
a = 1/Re( ~  - 1).
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Table 12. Comparison of n and n'C3/16 PP).

T— 20 n n ' n* OtRe Re a

0 2.000 2.01932 1.9930. -0.0034 0.0167(1 -0.206

0.5 1.927 1.9474' 1.9220! -0.0025 0.0181 -0.140;

1.0 1.857 1.8780 1.8536 -0.0018 0.0197 -0.091

1.5 1.789 1.8112 1.7876 -0.0074 0.0213. -0.034

2.0 1.724 1.7468 1.7240 0.0000. 0.0231 0.002

2.5 1.661 1.6845 1.6626 0.0009' 0.0250 0.039

3.0 1.601 1.6246 1.6035: 0.0015. 0.0271 ’ 0.057

Wall correction: fi = n(0.9870).
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Table 13. Comparison of n and t\'(5/52 N)

T-20 n n' n* aRe Re a

0 2.000 2.0087 1.9959 -0.0021 ' 0.0227 -0.095

0.5 1.927 1.9392 1.9266 ' -0.0002 ' 0.0244 -0.010

1.0 1.857 1.8720 1.8598 . 0.0015 0.0263 0.060

1.5 1.789 1.8072 1.7954 0.0034 0.0282 . 0.121

2.0 1.724 1.7446 1.7333 0.0053 0.0304 0.175

2.5 1.661 1.6841 1.6732 0.0071 0.0327 0.217

3.0 1.601 1.6258 1.6153 ! 0.0090 . 0.0352 0.257

*Wall correction: n = n '(0.9935).
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Table 14. Comparison of n and n'(l/4 PP).

T-20 n n' Ü* aRe Re a

0 2.000 2.0372 2.0018 0.0009 0.0403 0.022

0.5 1.927 1.9684 1.9341 0.0037 0.0437 0.084

1.0 1.857 1.9000 1.8670 0.0053 0.0474 0.113

1.5 1.789 1.8340 1.8021 0.0073 0.0514 0.142

2.0 1.724 1.7695 1.7387 0.0085 0.0557 0.153

2.5 1.661 1.7062 1.6765 0.0093 0.0604 0.154

3.0 1.601 1.6463 1.6176 0.0104 0.0655 0.158

Wall correction: fj = n'(0.9826).
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Table 15. Comparison of n and n'(l/8 N).

T-20 n n' n* aRe Re a

0 2.000 2.0296 2.0120 0.0060 0.0528 0.113

0.5 1.927 1.9602 1.9431 0.0083 0.0568 0.146

1.0 1.857 1.8914 1.8750 0.0097 0.0611 0.159

1.5 1.789 1.8259 1.8101 0.0116 0.0657 0.176

2.0 1.724 1.7627 1.7474 0.0135 010707 0.191

2.5 1.661 1.7016 1.6869 0.0153 0.0761 0.201

3.0 1.601 1.6427' 1.6285. 0.0173' 0.0818. 0.211

Wall correction: n = n'(0.9913)
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Table 16. Comparison of n and n'(5/32 N).

T-20 n n' n* aRe Re a

0 2.000 2.0556' 2.0332 0.0166' 0.1030 0.161

0.5 1.927 1.9876: 1.9659. 0.0186 0.1105 0.168

1.0 1.857 1.9217 1.9007 0.0219 0.1186 0.184

1.5 1.789 1.85811 1.8378 0.0267 0.1276 0.209

2.0 1.724 1.7965, 1.7769: 0.0331 0.1374 0.241

2.5 1.661 1.7371 1.7182 0.0350 0.1473 0.238

3.0 1.601 1.67951 1.6612 0.0383 0.1581 0.242:;

*Wall correction :: n = n '(0.9891).
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Table 17. Comparison of n and n'(3/16 N)

T-20 n n' n* aRe Re a

0 2.000 2.09549 2.06824 0.03412 0.17517 0.1948

0.5 1.927 2.03256 2.00613 0.03945 0.18723 0.2107

1.0 1.857 1.97140 1.94578 0.04612 0.20039 0.2302

1.5 1.789 1.91223 1.88737 0.05440 0.21480 0.2533

2.0 1.724 1.85473 1.83061 0.06431 0.23057 0.2789

2.5 1.661 1.79899 1.77561 0.06964 0.24641 0.2826

3.0 1.601 1.74503 1.72234 0.07646 0.26370 0.2900

Wall correction: ft = n'(0.9870).
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When a plot of these values is made (Fig. 1), several inter

esting features appear. First, the points for the various spheres are 

not well connected. In fact, all the values of a Re associated with 

the 1/8 PP sphere are negative; whereas, several of the oRe values 

associated with the 3/16 PP sphere and the 3/52 N sphere are also 

negative. Looking at the average value of aRe associated with each 

of the spheres, it would definitely appear that a decreases as Re de

creases in the range 0.01 Re 0.035, to the extent that Stokes' law 

lies within the error limits for Re 0.03.

Furthermore, it would appear that these average values assume 

a fairly constant slope for Re>0.04. When the aRe values for Re>0.04 

are subjected to a least-mean-square fit to the line

oRe = <a>Re + (aRe)^ , (30)

where <a> and (aRe)^ are, respectively, the slope and intercept of the

line, it is found that

<a> = 0.244,

(aRe)^ = -0.003.

The standard deviations associated with these values are given by

a{(aRe)^} = 0.0013

o(<a>) = 0.0133

a(aRe) = 0.003.
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Clearly e{CaRe)^} and e(aRe) must still be taken to be ~0.007 due to 

the absolute error present in the calculation.

Assuming that negative values of aRe are highly unlikely, it 

may be asserted that the aRe values associated with the 1/8 PP sphere 

must be positive. Then the error limit of 0.007 associated with the 

n values must be no greater than ^0.002 at Re ~0.006. A somewhat 

smaller positive value, is found if it is assumed that <a> found above 

retains any significance in this region, since at Re~0.006,

<a>Re -v(0.244) (0.006) ~ 0.0015.

n(l/8 PP) Base

In any case it is evidently meaningful to take n(l/8PP) as a 

base for the other spheres, under the assumption that the 1/8 PP sphere 

will have aRe-values of order 0 ± 0.002. The error associated with the 

aRe-values for the other spheres is then

E(aRe) = [1 + a(l/8)Re(l/8)] + ^  ̂  [1+ a(l/8)Re(l/8)]
^tl/8) [h(l/8)]2

+ -̂ (-l/8)' e [a (l /8 )R e(l/8 )]

0.0007 + 0.0007 + 0.002 

~ 0.0034 ,

which is only half the error that was present when the n values were 

used.
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With this comparison in mind. Tables 18, 19, 20, 21, 22 and 

23 list the values of n', n', aRe, Re and a for each of the remaining 

spheres at several of the temperature values in the range covered by 

the experiment. The relation used for determining the Re values in 

these tables is

Re - 2 r3g (Sp + |c|T)(Pn - |e|T)
■ 9 n' n(l/8 PP)

Due to the improved accuracy of n(l/8 PP) over the original n values, 

the error in these values of Re is given by 0.00005.

1.
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Table 18. Comparison of n(l/8 PP) and n'[3/16 PP)

T-20 n(l/8PP) n' fj aRe Re a

0 1.99059 2.0193 1.9930 0.00124 0.0168 0.073

0.5 1.91951 1.9474 1.9220 0.00134 0.0182 0.073

1.0 1.85092 1.8780 1.8536 0.00147 0.0197 0.074

1.5 1.78480 1.8112 1.7876 0.00161 0.0214 0.075

2.0 1.72114 1.7468 1.7240 0.00171 0.0231 0.073

2.5 1.65964 1.6845 1.6626 0.00180 0.0251 0.072

3.0 1.60035 1.6246; 1.6035 0.00197. 0.0271 0.072
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Table 19. Comparison of fi (1/8 PP) and n'(3/32 N)

T-20 n(l/8PP) n' n aRe Re a

0 1.99059 2.0087 1.9956 0.00256 0.0228 0.121'

0.5 1.91951 1.9392 1.9266 0.00369 0.0245 0.150

1.0 1.85092 1.8720 1.8598 0.00481 0.0263 0.182

1.5 1.78480 1.8072 1.7954 0.00596 0.0283 0.210

2.0 1.72114 1.7446 1.7333 0.00706 0.0304 0.231

2.5 1.65964 1.6841 1.6732 0.00817 0.0327 0.249

3.0 1.60035 1.6258 1.61531 0.00934, 0.0352: 0.265.
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Table 20. Comparison of fi (1/8 PP) and n'(l/4 PP)

T-20 n(l/8PP) n' n aRe Re a

0 1.99059 2.03725 2.00180 0.00563 0.04057 0.1388

0.5 1.91951 1.96840 1.93415 0.00763 0.04395 0.1736

1.0 1.85092 1.90007 1.86701 0.00869 0.04761 0.1825

1.5 1.78480 1.83406 1.80215 0.00972 0.05157 0.1885

2.0 1.72114 1.76954 1.73875 0.01023 0.05587 0.1831

2.5 1.65964 1.70624 1.67655 0.01019 0.06051 0.1684

3.0 1.60035 1.64630 1.61765 0.01081 0.06554 0.1649
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Table 21. Comparison of n(l/8 PP) and n'(l/8 N)

T-20 n(l/8PP) n ' n aRe Re a

0 1.99059 2.0296!' 2.0120 0.0107 0.0531: 0.202

0.5 1.91951 1.95927 1.9431 0.0123 0.0571 0.215

1.0 1.85092 1.8914. 1.8750. 0.0130 0.0613 0.212

1.5 1.78480 1.8259 1.8101 0.0141 0.0659 0.215

2.0 1.72114 1.7627 1.7474' 0.0153 0.0708 0.215

2.5 1.65964 1.7016 1.6869 0.0164 0.0761 0.215

3.0 1.60035 1.6427 1.62851 0.0175 0.0818 0.214
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Table 22. Comparison of nCl/8PP) and n(5/32 N)

T-20 n(l/8PP) n' n aRe Re a

0 1.99059 2.0556 2.0332 0.0214 0.1030 ■ 0.207

0.5 1.91951 1.9876 1.9659 0.0241 0.1105 0.218

1.0 1.85092 1.9217 1.9007 0.0264 0.1186 0.227

1.5 1.78480 1.8581 1.8378 0.0297 0.1276 0.232

2.0 1.72114 1.7965' 1.7769 0.0324 0.1374 : 0.236

2.5 1.69564 1.7371.; 1.7182 ' 0.0353 0.1473 ■ 0.239.

3.0 1.60035 1.6795 1.6612 , 0.0380. 0.15811 0.240V
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Table 23. Comparison of ri(1/8 PP) and n(3/16 N)

T-20 n(l/8PP) n' n aRe Re a

0 1.99059 2.0954' 2.0682 0.0390: 0.1760 0.2211

0.5 1.91951 2.0325 2.0061 0.0451 0.1882 0.239

1.0 1.85092 1.9714 1.9457 0.0512. 0.2013 0.254

1.5 1.78480 0.9122 1.8873 0.0574 0.2154 0.266

2.0 1.72114 1.8547 1.8306 0.0636 0.2304 0.276

2.5 1.69564 1.7989 1.7756 0.0698 0.2464 0.283.

3.0 1.60035 1.7450. 1.7223 0.0762.. 0.2636 : 0.2891
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The graph that results in this case (Fig. 2) shows a much im

proved correlation between the various spheres, while retaining several 

general features of the original graph. A general accelerated decrease 

in the value of aRe is observed for Re <0.030 whereas, the slope main

tains a fairly constant value for 0.030< Re <0.180. Thus, the values 

in this range have again been submitted to a least-mean-square fit to 

a line of the form

aRe = <a> Re + (aRe)^ . (30)

The results of this fit are

<a> = 0.225,

(aRe)^ = 0.0003,

with associated standard deviations of

o(<a>) = 0.006,

a{(aRe)^} = 0.0005, 

o(aRe) = 0.001 .

Here again, we must take e{(aRe)^} and e(aRe) to be ~0.0034 due to the 

errors associated with the parameters used in the calculations.
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Conclusions

In summary, both plots of aRe versus Re appear to show that 

a'v-O for Re < 0.009. There is a sharp increase in a over the range 

0.015<Re<0.030; whereas, o achieves a fairly constant value over the 

range 0.035<Re<0.175 giving a good value for <a>. Finally, there ap

pears to be another sharp increase in a from 0.175<Re<0.260. Fig. 3 

compares the two lines found here to several other well-known theore

tical and experimental investigations. It would appear that the pre

sent investigation is most in accord with the experimental work of 

Castelman^^^^ and Broersma^^^^; whereas, none of the accepted theore

tical lines fit the data very well. The only exception to this last 

statement occurs in the range Re^0.02 where Stokes' law appears to be 

far superior to any of the others. This conclusion is in close ac

cord with Carrier.

The experimental results discussed above cannot be denied, since 

they are more precise than any given previously. On the basis of these 

results, there is no doubt that the most commonly quoted correction to 

Stokes' law, namely 3/8 Re, is not correct. The Kaplun technique evi

dently does give the best possible solution to the Navier - Stokes' 

equations for Re<<l; however, the solution simply does not explain what 

happens in a tank. Thus, it may well be that the Navier - Stokes' 

solutions are simply not valid .for fluids for 0.< Re<<l, in a finite 

container.
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CHAPTER III 

EFFECT OF LINE BOUNDARIES ON SPHERE DRAG

Experimental Apparatus

The same general experimental arrangement was used for this 

phase of the investigation as that described in Chapter II. The only 

difference was the presence of line boundaries in the fluid. These 

boundaries were simulated by lowering monofilament nylon strings into 

the fluid in such a mannef~that they were parallel to the fall-tube 

axis, and at a known horizontal distance, s, from the axis.* The 

manner in which this distance was determined will be discussed below. 

The strings were heavily weighted at the lower end so that they would 

maintain a fixed position in the oil as the sphere passed along their 

length.

One of the primary purposes of this investigation was to find 

the correction to Stokes' law as a function of the ratio of the sphere 

radius to the distance of the string center from the sphere center, r/s. 

Thus, the diameter of the strings used was chosen to be much smaller 

than that of the smallest sphere used, so that any effect of their di

ameter could be ignored in a first order analysis. The ratio of the

*
The axis of the fall-tube had been carefully aligned to coincide with 
the container axis previously.
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string diameter chosen to the diameter of the smallest sphere used 

was 0.018/0.236 ^ 0.076. Also, these thin cords produced such a small 

change in the volume of the fluid that no essential temperature change 

was introduced by their presence.

In order to provide for exact string placement, and to allow 

the removal of the strings during a given experimental run, the fol

lowing mechanism was constructed. A cylindrical aluminum shell was 

mounted on the ball dropping mechanism in such a way that its top was 

several centimeters below the large plate which held the sphere drop

ping disks, and its bottom was approximately IS centimeters above the 

lower tip of the fall-tube. The axis of the shell was aligned to the 

axis of the fall-tube to within 0.001 cm. Next, twelve commercially 

threaded, \ in. diameter rods were inserted horizontally through the 

perifery of the shell at equally spaced intervals through the full 366* 

range. The axes of these rods were perpendicular to the shell surface 

to within 10 seconds of arc.

The holes in the shell were also threaded so that the distance 

from the inner tip of the rods to the fall-tube axis could be varied. 

Initially, it was hoped that by counting turns_of the rods this dis

tance could be fixed rather exactly fo? several rods simultaneously. 

However, the quality of the threading was such that variations in the 

relative rod distances as large as 0.02 cm were observed. Thus, a 

nut was brazed onto each rod at a position along its length such that, 

when this nut was flush against the outside of the shell and "locked" 

into place by means of a nut drawn up to the inside surface of the 

shell, the tip of each rod was M).561±0.001 cm from the fall-tube axis.
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Next, several sets of twelve spacers were machined to slide on 

the rods between the outside of the shell and the fixed nut. Each 

spacer in a given set was the same length to within 0.001 cm. Thus, 

the distance of each rod from the central axis could be increased in 

fixed proportion to the other rods. Finally, each rod tip was notched 

in exactly the same way so that the nylon strings could slide along 

this tip down into the oil. The strings were run up to a pulley sys

tem over the tank, and then out through the viewing window, so that 

they could be raised or lowered without entering the room. Table 24 

shows the actual s - distances that were achieved in this manner as 

determined to 0.001 cm by a measuring microscope with the strings in 

place.

Fall Time Determinations 

Procedure

During the planning of this experiment, several methods for 

making the fall time determinations were considered. Ideally, the ef

fect of the line boundaries could be found by timing two falls of the 

same sphere along the same path and at the same temperature, once in 

the presence of the line boundaries and once with no line boundaries 

present. Calling t^ the time for the sphere to fall with n line 

boundaries present, and tg the time with no line boundaries present,

Eq. (13) gives

t^/tg = (1 - r/s), (32)
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Table 24. Horizontal Distance from Fall Line of 
Spheres to Line Boundaries

Rod Position s (cm)

no spacers 0.609

no spacers* 0.638

0.5 cm spacers 1.060

1.0 cm spacers 1.561

1.5 cm spacers 2.061

2.0 cm spacers 2.561

2.5 cm spacers 3.060

3.0 cm spacers 3.561

As mentioned in Chapter II, two fall-tubes were 
used. Thus, when the fall-tube of largest out
side diameter was used, the "no spacer" distance 
was somewhat larger than indicated in the table.
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provided the second order effects for the two falls are ignored. How

ever, the experimental setup was such that, once a given sphere was 

dropped, the room would have to be entered and the sphere retrieved 

before it could be dropped again. Clearly, such a process would have 

destroyed the thermal equilibrium of the fluid, and, by the time this 

equilibrium was again reached, the temperature would quite likely be 

different.

Another method, involving no difficulty in experimental techni

que, would have been to drop a given set of spheres with the lines pre

sent on one day, and then drop the same set of spheres without the 

lines present on another day. According to Eq. (19), the ratio of the 

times found for a given sphere in this manner would be given to first 

order by

n Ap

where the superscripts A and B refer to the first day and the second 

day, respectively. However, as the error analysis in Chapter II con

cerning the calculation of the uncorrected viscosity clearly showed,

Ap and n are the least well-known quantities of all.

With the above considerations in mind, a compromise technique 

was devised to provide the magnitude of this effect as accurately as 

possible within the limitations of the experimental arrangement. For 

each precisely calibrated sphere, as described in Chapter II, several 

other spheres were chosen whose parameters closely matched those of 

the standard. Then, at intervals all during the course of the experiment.
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certain runs were used to calibrate the fall times of these spheres 

relative to the standard.* Thus, calling t^ the time of fall of the 

standard sphere and t^ the time of fall of the mth secondary sphere, 

both dropped on day A, Eq. (19) shows that the ratio of these two 

times will be given by

A ' (l+.Rea)A(1.2.1 r_/L) '

Then, once the above ratio is known, if the mth sphere is 

dropped on day B, and a time (t^)g is measured, the time that the 

standard sphere would have taken is simply

(ts):*'" = (t^)A(tm)B 'm

where the superscript "est." indicates that (tg)g is not a directly 

measured quantity. According to Eqs. (19) and (34), Eq. (35) can be 

written as

est (1+oRe )
= T T - ^  • 0 7 ^  r,/L) . (36)
2r^APgg m^A

On the other hand, the standard sphere had been dropped on day B, 

its fail time according to Eq. (19) would be

*
The temperatures associated with these calibration runs covered the 
entire temperature range of the experiment (20.00 C to 23.50 C).
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9 £ n
(tj_ = ----- —  (1+aReJ (1+2.1 r /L)

2r;2A£;g

Thus, the ratio of the estimated time of fall of the standard 

to the rate at which it would have fallen on day B is given by

‘ t, ■ 1-aCReĴ  • l̂ aCRe,)̂  '

By expanding Eq. (37) to first order in Re, and replacing each Re 

value by the basic parameters, it follows that, for any day B,

est_ , 1 , - t ^ ) ^ s  - • (3*)

The sphere having the largest fall times and the lowest Re 

values is 1/8 PP. When the parameters associated with this sphere 

and the fluid, over one-half the temperature range of the experiment, 

are inserted into Eq. (38), it is found that (t^)®^^ = t^ (1 ± 5 x 10 ®). 

Thus, using the typical t^(l/8 PP) value of 400 sec, it should be pos

sible to determine t^(l/8 PP) in this manner to within 0.002 sec. A 

similar estimate of ''<0.002 sec is also found for all the other spheres. 

Since these differences are much smaller than the accuracy of ±0.05 sec 

with which the times were measured, the procedure was justified.
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While the actual timing error for a single measurement of the 
©s tratio t /t is 0.01/t , the results of from 7 to 9 calibration runs s s s

for each secondary sphere gave a mean value of this ratio whose stand

ard deviation of the mean was of the order of the error for a single

time measurement, namely 0.05 sec. In fact, these results were so
©s ̂good that a number of (t̂ ) times were used in the analysis dis-

©s tcussed in Chapter I. In all cases the (t̂ ) values used there were 

found to lie on the curve, within the allowed experimental error, formed 

by the t^ values.

Technique

In order to achieve the spirit of the ideal procedure leading 

to Eq. (32), the following experimental technique was used. In set

ting up a given run, the first six slots of the twelve-slot disk on 

the ball-drop mechanism were used to hold a certain variety of sphere 

types, e.g. 1/8 PP^, 3/32 N^, 3/16 PP^, 1/4 PP^, 5/32 N^, and 3/16 N^. 

Then the second six slots were used to hold an identical variety of 

sphere types, e.g. 1/8 PP^, 3/32 N^, 3/16 PP^, 1/4 PP^, 5/32 and 

3/16 Nj.

After loading the ball-drop mechanism, the string configura

tion to be used in the next run was set up and lowered into place in 

the tank. Then the container room was locked up and allowed at least 

twelve hours to reach thermal equilibrium. As soon thereafter as a 

constant temperature was found to exist in the room, the run was be

gun.
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In this way the first six spheres were timed, with appropriate 

time intervals between each fall as discussed in Chapter 11, in the 

vicinity of a particular string configuration. At this point the 

strings were slowly raised up out of the oil, using the pulley mechan

ism discussed earlier, until the weights on their ends were entirely 

out of the oil, and the tank thermometer was lowered into position in 

the oil. Since convective currents were set up by raising the strings 

out of the fluid, a time interval of approximately thirty minutes was 

allowed to pass with the tank thermometer still in place. Then, if 

the tank thermometer showed the same temperature as the recorded value 

when the run was initiated, it was very slowly pulled up, and another 

time interval of 10 to 15 minutes was allowed to elapse before the next 

sphere was dropped. Thus, the remaining spheres were timed with no 

line boundaries present at a temperature essentially identical to that 

during the fall of the first six spheres.* Finally, at the end of the 

run, the tank thermometer was again lowered into place and its temper

ature observed. Only one run out of more than forty had to be thrown 

out due to a noticeable temperature difference before and after the 

run.

*
For the initial run, the first six spheres were allowed to fall in 
the absence of one string, which was then lowered into the tank during 
the run. However, this procedure gave rise to tiny air bubbles along 
the string which took several hours to rise to the surface. Also, by 
lowering the strings into the oil before a run was begun, their place
ment could be checked and any necessary corrections made.
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estTables 25, 26, 27, 28 and 29 show the t^ and t^ values 

determined in this manner. When more than one string is present in 

the fluid, they were all placed at the same distance, s, from the fall 

axis, as indicated by the r/s values giyen in these tables. The 

values that appear have been calculated from Eq. (32) as a first order 

estimate. Finally, for later reference, the associated value Re^ for 

each fall without the boundaries present has been included in the 

tables.

Table 30 lists the mean value of each 6̂ , and the standard de

viation from each mean.
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Table 25. One String Runs

T(°C) tj(sec) tgCsec) ti/'o r/s Gl KCO

1/8 PP Sphere

20.50 435.84 416.24 1.047 0.26 0.179 0.006

23.65 330.65 316.45 1.044 0.25 0.178 0.010

23.00 344.60 335.54 1.027 0.15 0.178 0.009

3/32 N Sphere

22.40 69.17 66.85 1.034 0.19 0.178 0.032

23.65 62.54 60.54 1.033 0.18 0.178 0.039

23.00 65.02 63.76 1.019 0.11 0.178 0.035

3/16 PP Sphere

20.70 216.58 203.20 1.065 ■ 0.37 0.178 0.018

19.50 239.65 224.90 1.065 0.37 0.177 0.016

23.65 168.82 158.50 1.065 0.37 0.176 0.029

23.00 172.56 166.09 1.038. 0.22:. 0.174 0.027

1/4 PP Sphere

19.50 138.53 127.60 1.085 0.49 0.173 0.036

20.70 123.30 113.45 1.086 0.49 0.175 0.045

23.65 94.92 87.50 1.084 0.49 0.171 0.073

23.00 97.59 92.77 1.051 0.29 0.174" 0.065.
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Table 25 (Cont'd.)

1/8 N Sphere

23.65 36.51 34.91 1.045 0.24 0.186 0.089

23.00 37.41 36.48 1.025 0.14 0.172 0.081

5/32 N Sphere

23.65 23.49 22.42 1.047 0.30: 0.154 0,168.
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Table 26. Two String Runs

irc) tgCsec) tgCsec) ^2 / ^ 0 r/s 2̂ *:0

1/8 PP Sphere

21.40 416.33 385.85 1.078 0.25 0.314 0.007

22.30 384.40 356.12 1.079 0.25 0.316 0.008

23.45 336.97 321.57 1.047 0.15 0.317 0.009

23.55 330.07 319.53 1.032; 0.10 0.320 0.009

3/32 N Sphere

21.20 77.30 73.00 1.058 0.18 0.318 0.027

22.30 72.29 67.34 1.073 0.18 0.397 0.031

23,45 63.75 61.64 1.034 0.11 0.308 0.037

23.55 62,42 61.06 1.022 0.07 0.293 0.038

3/16 PP Sphere

21.05 220,31 197.44 1,115 0.37 0.313 0.019

21.40 212.85 190.93 1.114 0.37 0.310 0.021

23.45 171,69 160.43 1.070 0.22 0.314 0.028

23.55 166.55 159.09 1.046 0,15 0.310 0.029

1/4 PP Sphere

21.05 126.64 110.06 1.150 0.49 0.304 0.047

21.40 122.79 106.70 1.150 0.49 0.304 0,050
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Table 26 (Cont'd.)

22 .22 114.45 99.41 1.151 0.49 0.305 0.057

23.45 97.29 89.13 1.091 0.29 0.307 0.070

23.55 93.64 88.20 1.061 0.20 0.305 0.071

1/8 N Sphere

22 .30 41.29 38.34 1.076 0.24 0.312 0.075

23 .45 37.85 36.10 1.048 0.14 0.327 0.088

23,.55 36.21 35.17 1.029 0.10 0.292 0.089

5/32 N Sphere

22.,20 27.46 25.18 1.090 0.30 0.293 0.139

3/16 N Sphere

22.20 20.10 18.20 1.104 0.37 0.282 0.232

23.55 17.34 16.59 1.043 0.15 0.287 0.274
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Table 27. Four String Runs

T(“C) t^(sec) tpCsec) '4/to r/s *4 %*0

1/8 PP Sphere

22.70 391.15 344.02 1.137'. ' 0.25 0.545 • 0.008 :

21.80 423.72 372.64 1.137 . . 0,25 0.546 0.007

21.83 406.08 374.84 1.083 : 0.15' 0.551 0.007

21.00 422.87 400.09 1.056 0.10. 0.552 0.006

21.55 396.12 379.70 1.043 0.07 0.554 0.007

20.52 430.76 416.16 1.035 0.06 0.556 : 0.006 .

20.10 442.03 431.29 1.024; 0.04 0 .5 5 3 : 0.006 '

3/32 N Sphere

21.80 76.91 69.78 1.102 0.18 0.552 0.029

21.50 78.54 71.28 1.101 . 0.18. 0.550 0.028

21.83 73.78 69.58 1.060 0.11 0.543 0.029

21.00 77.00 73.88 1.042. 0.07 0.555 0.026

20.10 80.21 78.75 1.018. 0.03 0.561 0.023

3/16 PP Sphere

22.70 204.30 170.71 1.196’ ' 0.37 0.531 0.025

21.60 223.72 187.56 1.192 0.37 0.521 0.021

21.50 226.50 189.38 1.196 0.37 0.529 0.021

21.83 206.45 184.00 1.220 0.22 0.547 0.022
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Table 27 (Cont'd.)

21.00 214.57 198.04 1.083 0.15 0.552 0.019

21.55 200.60 188.67 1.063 0.11 0.549 0.021

20.60 215.63 205.24 1.050 : 0.09 0.550 0.018

20.52 216.83 206.32 1.050 0.09 0.553 0.018

20.10 222.25 214.32 1.037 . 0.06 0.560 0.017

- 1/4 PP Sphere

22.70 119.39 95.38 1.251 : 0.49 0.508 0.071

21.80 128.44 102.63 1.251 : • 0.49 0.508 0.054

21.50 132.39 105.80 1.251 0.49 0.507 0.051

21.83 119.10 102.88 1.157 0.29 0.529 0.054

21.00 122.57 110.61 1.108 0.20 . 0.535. 0.047

21.55 114.21 105.40 1.083 0.15 0.546 0.051.

20.10 124.63 118.88 1.048 '' 0.08. 0.543 0.041.
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Table 28. Six String Runs

TC“C) tg(sec) tgCsec)
V ' o ®6 *:0

20.62 457.47 412.23

1/8 PP Sphere 

1.109 0.15: 0.726 0.006

20.62 82.05 75.90

3/32 N Sphere 

1,081 • 0.11 0.730 0.024.

20.62 237.67 205.10

3/16 PP Sphere 

1.158 0.22: 0.712 0.018

20.62 138.14 114.49

1/4 PP Sphere 

1.206 0.29 0.693 0.044
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Table 29, Twelve String Runs

T(°C) tg(sec) ^1 2 /^ 0 r/s ^12 *C0

1/8 PP Sphere

21.25 456.48 390.52 1.168 0.15 1 118 0.006

20.57 451.00 414.06 1.089 0.07 1.143 0.006

19-85 480.14 440.81 1.089 0.07 1.143 0.005

20.80 430.50 406.23 1.059 0.05 1.148 0.006

20.00 460.77 434.79 1.059 0.05 1.149 0.005

3/32 N Sphere

21.25 81.72 72.60 1.125 ' 0.11 1.131 0.027

22.25 73.44 67.57 1.086 0.07 1.143 0.031

21,50 75.93 71.28 1.065 0.05 1.144 0.028

20.57 81.21 76.23 1.065 0.05 1.146 0.024'

19.85 85,66 80.41 1.065 0.05 1.145 0.022

20.80 77.74 74,40 1.044 0.03 1.151 0.022

3/16 PP Sphere

21.25 240.19 193.59 1.240 0.22 1.079 0.020

22.30 207.10 177.22 1.168 0.15 1.116 0.024

21.50 214.01 189.38 1.130 0.11 1.130 0.021

20.57 232.63 205.85 1.130 0.11 1.131 0.018.
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Table 29 (Cont.d)

19.85 247.37 218.90 1.130 0 . 1 1 1.131 0.016

20.80 219.46 201.72 1.087 0.07 1.142 0.019

2 0 . 0 0 235.06 216.07 1.087 0,07 1.141 0.016

1/4 PP Sphere

21.25 140.86 108.03 1.303 0.29 ; 1.019 0.048

20.40 141.62 116.21 1.218 0 . 2 0 1.082 0.043

22.25 120.59 99.00 1.218 0 . 2 0 1.079 0.057

21.50 123.69 105.80 1.169 0.15 1.105 0.051

20.57 134.20 114.77 1.169 0.15 1.106 0.044

19.85 142.06 121.48 1.169 ■ o.is- 1.107 0.039

20.80 125.47 112.44 1.115 0 . 1 0 1.125 0.045

2 0 . 0 0 133.96 120.04 1.115 0 .1 0. 1.125 0.040
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Table 30. Best B Values from First Order Calculation n

String Number (n) ën

1 0.176 0.003

2 0.311 0.009

4 0.543 - ■ 0.006

6 0.716 0.017

1 2 1.123 0 . 0 1 2
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Variation of Sphere Drag with Number of Lines

The most obvious effect shown by Table 30 is the increase in 

6^ as the number of lines surrounding the sphere's fall line was in

creased. Figure 4 gives a graphic display of this increase. Cer

tainly, the qualitative features of the resultant curve are not unex

pected.

A single line gives rise to a definite interaction of the 

fluid with the sphere which results in an increase in the drag force 

exerted by the fluid on the sphere. With two lines on opposite sides 

of the sphere, each at a distance large compared to the sphere radius, 

their combined effect might well be independent to first order. This 

supposition is apparently not verified within the error limits shown • 

in Table 30; although the interaction is seen to be small.

As more lines are added, the interaction between the lines 

should become more and more apparent, which is evidently verified by 

the 4, 6 and 12 line cases. The tapering off of the curve in Fig. 4 

is definitely to be expected, since 6^ should approach Faxén's value 

of 2.1 as n-»®. Perhaps the only surprising result in this figure is 

that the increased drag on the sphere is over half the expected 

Faxén value when n is just twelve.

Since no known theoretical treatment of this effect exists in 

the literature, its quantitative aspects are deferred to the final 

section of this paper, where the theoretical consequences of line 

boundaries are considered in general.
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Theoretical Analysis 

Impossibility of Exact Boundary Match Between a Sphere and a Line

The most straight forward approach to the problem of predicting 

the increased drag on a sphere due to some particular configuration of 

line boundaries would be to solve the Stokes' equations given by (5a,b) 

for the velocity field, and then match the arbitrary constants in the 

solution to both the sphere and the line boundaries subject to the con

dition that the field remain finite at infinity. Clearly, the usual 

axisymmetric solution used for finding the drag force on a sphere in an 

unbounded medium will not be general enough in this case, due to the 

asymmetry introduced by certain line configurations.

The solution to Stokes' equations is given in general terms by 

L a m b . U s i n g  his results, the velocity field can be put in the form

''r ' '’n'

P“,n . .a,n+2„m _ ,a.n+l n

(40b)

^nm 2n(2n-lj sin6^

pm (40c)
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where p”* = P™(cos ©) is the usual Legendre polynomial, p”̂ = dP™/d6 n n n, 0 n
and B , C , D are arbitrary constants to be determined by thenm nm nm
boundary conditions. In the double summations, n = 0, 1, 2, ... so 

that the condition of a finite field at infinity is guaranteed, while 

m = 0, 1, 2, ..., n -  1. For the case of one vertical line at hori

zontal distance s from the sphere center, the appropriate boundary

conditions are

V = U & at r = a, (41a)

V = 0 at p = 0 and r sin© = s . (41b)

The boundary condition given by Eq. (41a) is easily fit to 

the field as expressed in spherical coordinates in Eqs. (40a,b,c). 

The second boundary condition, however, is incompatible with these 

equations. The velocity field can be transformed to cylindrical co

ordinates by means of a very laborous technique outlined in Happe1 
f 321and Brenner. However, the resultant match to the line boundary

would not be compatible with that on the sphere.

The general perturbation technique known as the "method of 

reflections" could perhaps be used to obtain a first order approxi

mation to this problem; however, there is no guarantee that this
(33)method would work since the line boundary is not closed. There

still remain several "trick" techniques that might provide a crude 

estimate of the effect of line boundaries. One of these techniques 

is discussed in the following sections.
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Method of Images

The method of images in fluid mechanics follows from a re

ciprocal theorem to the Stokes' equations. This theorem was the work
f34lof Lorentz, and can be stated in the following manner. Let

and (vl,n^j)be the velocity and stress fields corresponding 

to any two motions of the same fluid which conform to the Stokes'

Eqs. (5a,b). Then

C42)

where S is a closed surface bounding any fluid volume V; S may con

sist of a number of distinct surfaces separated from each other.

Based on the above theorem, for any solution (v,P) of the 

Stokes' equations, a new solution is given by

2
v' = - V + 2ui - 2|x|Vu + ^  Vp , (43)

p ' = p  + 2 x  9% p - 4nVjj u , (44)

where v = (u, v, w). A proof of the above relations is given in 

Appendix A.

The primary usefulness of these new solutions arises from 

the fact that at x = 0

v' = V, u' = -u, w' = -w , (45)
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so that they represent a mirror image solution of the original solu

tion (v, p) relative to the plane x = 0. Lorentz used this fact to 

find the first order drag correction both to a sphere moving toward 

an infinite plane and to a sphere moving parallel to an infinite 

plane, with the results of the former calculation being quoted in 

Eq. (11).

The calculation for a sphere moving parallel to an infinite

plane is of definite interest here, since it will be possible to make

a crude comparison between a plane and a line. Hence, an outline of

this calculation will now be given. Consider a sphere of radius £

moving along the £  axis with velocity U, whose midpoint is located

at (-S, 0, 0). The Stokes' field due to the motion of this sphere
fss )for a point force in an unbounded medium is given by

u = - I  Ua , (46a)
r3

V = - I  Ua , (46b)
r^

w = - I  Ua (-̂  + — ) , (46c)4 r .̂3

where r^ = (|x|+s)^ + y^ + ẑ . By adding this solution to its mirror 

image solution, one should have the appropriate field for a sphere 

moving parallel to an infinite plane in the region x<0. The x-compo

nent of the reflected field is found from Eqs. (43) and (46a,c) to be
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w* = j  UaCp + - 2|x| [- Ua(|x|+s) +

(47)

Evaluating this velocity component at x = - s= 5»r = 2s, y = z = 0 

gives

w' = Ua/s(3/8 + 3/8 - 3/16) = U(9/16-a/s) .

Hence the z-component of the sphere's velocity relative to the fluid 

is (1 + 9/16*a/s)U giving a total drag on the sphere of

Dp = 6 nnaU(l + 9/16-a/s) . (48)

Relation Between Plane and Line

In order to obtain an estimate of the drag force on a sphere 

due to its motion parallel to a rigid line boundary, it should be 

possible to consider the line as being made up of infinitesimal point 

forces. The magnitude of these point forces should be such that, if 

they are summed over an entire plane, the resultant effect is the 

same as that given by Eq. (48).
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The effect of each infinitesimal point force can be repre

sented by the proportionality

jll * / XI
dF <= -------[ (Ucose)cose] , (49)

z (&/s)^

where I is the distance from the point to the sphere, and n repre

sents the dimensionality of the total surface with area element d^A 

under consideration, i.el, n = 3 for a sphere, n = 2 for a plane, 

n = 1 for a line. The factor U cos0 arises when the component of the 

velocity of the sphere is taken perpendicular to the line joining the 

sphere center to the point force, and the factor cos8 arises when the 

z-component of the resultant force is formed. When Eq. (49) is eval

uated for a plane, the result is ir̂ /2 ; whereas, the result for a line 

is u/2 .

Thus, the additional drag on a sphere moving parallel to a 

line can be estimated by

l/ir-9/16-a/s s 0.179-a/s. (50)

Conclusion

The theoretical analysis given above, though admittedly crude, 

should provide a first order comparison with the experimental results. 

This expectation is borne out for one string since the coefficient of 

a/s given by Eq. (50) is only 1.7 per cent higher than the experi

mental result for as given in Table 30.
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For two strings, it was noted in the discussion of Table 30 

that the effect of two strings was not quite twice that of a single 

string. The case of a sphere moving between parallel planes has 

been treated by Faxen with the result to first order being given by(^^)

Dg = $irri aU(l + 1.004*a/s) . (51)

When the coefficient of the a/s term given above is again divided by 

IT, the result is 0.320 as compared to 0.311 found from experiment.

The difference between these two values is only 5 per cent, which is 

good agreement for a first order approximation. It should be remem

bered that the experimental values as calculated in Table 30 do 

ignore the higher order effects that were necessarily present in the 

actual sphere fall. Unfortunately, the accuracy in timing the spheres 

was not great enough to justify a higher order analysis. However, it 

would be expected that the experimental values for the would be

slightly higher since the series in a/s usually alternates in sign.

The situation is complicated, however, by the fact that, to the second 

order in a/s (if the second order occurs at all), the first order ef

fects of the string size, the outer boundary and fluid inertia must be 

considered.

For the larger string numbers, the comparison between planes 

and lines would probably not be quite as close to that found above, 

unless some account could be taken of the difference in the interactions 

between the planes as compared to those between the lines. However,
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such a comparison is not possible at this time since results for 

higher numbers of planes are not available in the literature.

In conclusion, the effect of increased sphere drag as mea

sured earlier appears to be quite close to the predictions that fol

low from the Stokes' equations.
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Appendix A

It is to be proved here that given a field (v,p) satisfying 

the Stokes' equations

riV̂ v = ^p, V*v = 0 ,

the field given by

v' = V + 2ui - 2xVu + —  j

p' = p + 2x?xp - 4nVxU ,

is also a solution to Stokes' equations.

Using the fact that

V ^ v  =  9 . V . VA A

for V'v = 0 , it is a simple matter to show that

nV^v = - 2riVV̂ u + 4nv2ui - 2t\ V^Vu- 2(7^p)xi + 27p -

- 27 pi + 2x7 7p .X^ X

On the other hand,

7p' = 7p + 2i7^p + 2x77^p - 4q77^u .

Since 7^p = 0, ri7̂ v = 7p and n7^u = 7xP, it is easily seen

that
n7^v' = 7p' .

These same facts can be used to easily varify the relation

7v' = 0 .



95

Appendix ̂

Simultaneous Translation and Rotation of Bodies 
at Low Reynold's Numbers

History of the Problem 

The so-called lift forces, associated with a body undergoing 

both translational and rotational motion through a material medium, 

have been a scientific curiosity since the time of Sir Isaac Newton, 

if not longer. Newton mentioned having observed the effect in

the game of tennis, and gave his explanation as follows: for its

parts on that side where the motions conspire must press and beat the 

contiguous air more violently than on the other; and there excite a 

reluctancy and reaction of the air proportionably greater ... He 

then proceeded to make an analogy between this effect and his corpus

cular theory of light, thinking perhaps that some of the bending of 

the paths of these corpuscles in a prism might be accounted for in 

this manner; however, he gave no quantitative treatment of the pro

blem.

No further discussion of this problem appears in the litera

ture until after the middle of the nineteenth century. At approxi

mately that time a cannon maker named Robbins performed some qualita

tive experiments by bending the muzzel of his cannons and observing 

the resultant motions of the cannon balls, which, he claimed, tend 

to move in a direction opposite to the bend in the m u z z l e . T h e  

first person to claim the equivalence between the motion of a simul

taneously rotating and translating body in a fluid to that of a
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f41')rotating body placed in a steady stream of fluid was Euler, His

argument was . if the ball has a progressive motion we may 

consider it at rest, and the air flowing against it with the veloc

ity of the ball's motion; for the force with which the particles of 

air act on the body will be the same in both cases," On the basis of 

his investigations, Euler came to the conclusion that Robin's work 

had been faulty and that "if, therefore, such a ball should receive 

two such motions in the cannon, yet its progressive motion in the 

air will be the same as if it has no rotation." Poisson later came 

to the erroneous conclusion that, "since friction is greater where 

the density of air is greater, the front of the ball suffers greater 

friction than the back; thus, there is a lateral force, which shows

to be very small, tending to deflect the ball as if it were rolling
(42)upon the air in front of it."^

In 1890, P, G, Tait carried out an analysis of this problem 

based on the assumption that the fluid medium would exert a resist

ance on the ball proportional to the square of the linear velocity 

plus some small portion of the angular v e l o c i t y , I t  would then 

follow that the deflecting force would vary as the product of the 

linear and angular velocities. He received confirmation of his rea

soning from Sir G. G, Stokes, He also performed numerous experiments 

with golf balls and found fair agreement with his theoretical calcu

lations .
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The first treatment of this problem from the standpoint of
f44 45")pure hydrodynamics was due to Proudman in 1916 and Taylor in 1917. ’

However, their analyses were based on the assumption of a perfect 

fluid and could only be expected to apply to large Reynold's number 

motions. Therefore, though such motions have been given a good deal 

more mathematical and experimental consideration than low Reynold's 

number motions, their results will not be discussed here. The re

mainder of this section will deal with only those analyses of low 

Reynold's number motions.

The first analysis of the lift forces involved in low Re number 

motion was due to Garstang in 1 9 3 3 . Realizing that lift forces 

based on the interaction of two modes of body motion could not possi

bly be associated with the Stokes' equations due to their linearity, 

he chose to work with the Oseen equations. These equations were 

solved for both spheres and cylinders, and he found that neither the 

torque nor the drag on these bodies would differ from that found when 

they possessed either translational or rotational motion separately.

In the case of the sphere, he immediately ruled out a lift force as

sociated with "side spin", i.e., the spin axis in the direction of 

the translation, on the basis of symmetry His results for a sphere 

having "top spin", i.e., its spin axis perpendicular to the trans

lational motion, were rather confusing. The evaluation of the as

sociated lift force by means of integrals at infinity gave zero lift, 

while integrals over the body surface gave a force in the opposite 

direction to that predicted earlier for ideal fluids. A similar state
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of confusion resulted from the cylinder calculations. Evaluation 

of the associated lift forces by means of integrals at infinity gave 

a result in accordance with ideal fluid theory; whereas, integrals 

over the body surface gave only one half that value. In his concluding 

remarks he stated that "the discrepancy and disagreement of the results 

with observation show that if Oseen's equations are used to determine 

coefficients from boundary conditions, we cannot rely upon obtaining 

a good approximation of the motion either near the solid or at infin

ity." He also noted the fact that there was no way to make iiirect com

parisons between his results and experiment since no motions of this 

type in the low Reynold's number range had ever been measured.

In 1961, the Kaplan technique, as explained in the Introduction, 

was applied by Rubinow and Keller to obtain the lift on a sphere.

By taking the spin axis to have an arbitrary, but fixed, orientation 

throughout the calculation, they were able to give their result in 

vector form according to the relation

= H pa^U X n, (52)

where U is the stream velocity and Q is the angular velocity of the 

sphere. This result is one fourth as large as the result predicted 

by ideal fluid theory for large Re.

It is of interest to note that as of the beginning of 1969, 

eight years later, no experimental investigation of the above effect 

has yet appeared in the literature. Also, no one has yet published 

an expression for the low Reynold's number lift on a cylinder, and 

no expeiimental work of this nature has been published.
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Preliminary Experimental Work 

The fluid medium used in almost all of the investigation was 

Whiterex - 344, whose properties were described in Chapter II. Sev

eral runs were also made with castor oil.. The body symmetries used 

were both cylindrical and spherical. The cylindrical bodies were 

those used by Dodson in his work; whereas, the spherical bodies were 

obtained in department stores and were quite crude,

The original apparatus constructed for these experiments was 

designed to give simultaneous readouts of the torque, drag, and lift 

on the body. It also allowed the rigid body to move with three trans

lational degrees of freedom and one rotational degree of freedom. Two 

of the translational degrees of freedom and the rotational degree of 

freedom were driven externally in a fashion that was to still allow 

individual changes in these motions, due to the interaction of the 

body with the fluid medium, to be measured. In this way it would have 

been possible to simulate something as complicated as Brownian motion. 

Unfortunately, the mechanical constraints necessary to create 

the driving motions never could be made to operate without causing 

interactions with the body motion that in some cases were larger than

the fluid interaction that was to be measured. In addition, the

method of taking measurements with this device did not work out quite 

as well as expected. This method involved the creation of a permanent

record by means of an electrical spark between a sharp point and a

plane. There was always the problem of linearity between the spark 

and the line of the sharp point, especially after the device had been
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sparked several times and had pitted the surface of the plane. I 

still believe this recording device could have been made to work; 

however, the mechanical difficulties were never resolved before it 

was concluded that another approach might give some of the desired 

results in a more realistic length of time.

At this point it was evident that external mechanical inter

actions would have to be minimized as much as possible. Certainly, 

the timing of bodies undergoing free-fall in a fluid medium meets 

the above criterion, and, as such, constitutes the most frequently 

used technique of obtaining precise results in the field of low 

Reynold's number hydrodynamics. However, the problem still remained 

of creating a simultaneous rotational motion of the body, with the 

axis of rotation perpendicular to the line of the translational mo

tion caused by the constant gravitational field. Two such ways were 

eventually used, each having its own advantages and disadvantages.

The first technique devised to create simultaneous rotation 

and translation involved the use of the common yo-yo configuration. 

It is an established fact that trying to drag a string, connected to 

the body, through the medium causes more problems than it solves. 

However, in the yo-yo the string, attached to a fixed upper support, 

simply unwinds from the spindle so that very little motion of the 

string should take place. Thus, the deviation of the line of motion 

of the yo-yo from the line connecting the center of mass of the ball 

to the point of the fixed support (which would define the vertical
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along which the yo-yo would fall in a vacuum) should give a measure 

of the lifting force associated with the motion of the yo-yo.

However, experimentation with this device soon showed that 

the situation was more complicated than had at first been thought.

This complication arises from the fact that the rotational motion 

of the medium in the vicinity of the yo-yo's surface causes a devia

tion from the straight line in string coming up from the yo-yo to the 

fixed support, which was not accounted for in the paragraph above.

This deviation varied with the magnitude of the rotational motion of 

the yo-yo; but, in most cases it appeared that the string did not lose 

contact with the yo-yo spindle at that point where a straight line 

from the fixed support just lines up with the tangent line of the 

spindle (as it should do when the yo-yo falls in a vacuum). Rather, 

the string continued to cling to the yo-yo for a short arc length 

above this tangent point. Then, starting from that point at which 

the string left the yo-yo spindle, it rather quickly curved up toward 

the point of support. The overall effect of this string bend was to 

create a tangent line running from the fixed support down to the yo-yo 

that more nearly intersected the center of mass of the yo-yo than the 

outer tangent of the spindle. Calling the angle of the string's devi

ation from the vertical4 it is a simple matter to show that, for o<<l, 

its theoretical value should be given by

~ F^/Cmg-D). (53)

*There was one other con^lication here. As the string of finite radius 
was wound around the yo-yo spindle, it was necessary to try to alter
nate the turns on either side of the geometric center, since otherwise 
the yo-yo would rotate about a vertical axis as it fell.
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The alternate technique used to create simultaneous transla

tion and rotation of the body was achieved in the free-fall of a body 

whose center of mass did not coincide with its geometric center. If 

the center of mass of the body is almost vertically above its geo

metric center when the body is dropped, it is possible to have the 

body rotate through almost 180° as it falls. This implied a slow 

rate of rotation over a decent fall length which proved to be a de

triment to the experimental runs utilizing this effect. A complete 

analysis of the time dependent motion of such bodies was not found 

necessary, since, to a veiy good approximation, the horizontal motion 

of the bodies used very rapidly reached a steady state condition. This 

state of motion implies that the horizontal component of the lifting 

force was just balanced by the horizontal component of the dragging 

force. Thus, the angle of deviation should have the value

Sth 1 Pl/fo'
The technique used to determine the angle of deviation of 

the bodies' motion from the vertical consisted of photographing the 

motion through a light chopper rotating at a known rate. Two exposures 

of each plate were made, with the second exposure defining the verti

cal. The developed plates were then analyzed by means of a measuring 

microscope. In all cases the bodies fell in rather small fishtanks 

whose seams had been coated with epo:y to keep the oil from seeping 

out. However, it was not possible to isolate the tank thermally. This



103

fact, coupled with the difficulty of determining the cylinder drag 

and the lack of sphericity of the spheres, precluded the attainment 

of high precision in the measurements. Sample results for the spheres 

and cylinders are summarized and discussed separately.

Table 31 shows fair agreement with the relation given by 

Rubinow and Keller. Even though the experimental accuracy leaves 

much to be desired, it definitely appears that the Rubinow and Keller 

relation is to be preferred over the result for ideal fluids in low 

Reynold's nimiber motions. Since the string tension was not measured 

directly in the yo-yo motion, it is impossible to compare the actual 

fluid drag with the predicted value to see if they really were the 

same. In the case of the off-center bodies, a direct comparison was 

possible by making a second run, immediately after the first, in 

which the center of mass was directly below the geometric center.

The drag on the rotating bodies appeared to show a systematic increase
a2oof about 4 per cent as Re^ = increase from 0 to 0.006 to 0.011; 

however, the absolute error in this range was at least 1 0 per cent 

so that these measurements though interesting, are far from conclusive.
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Table 31. Spherical Bodies

Fluid
Medium

Type of 
Motion

Viscosity
(css) e°exp Sh^^exp

C.O yo-yo 7.84 0.148 4°40' 1.04

C.O. yo-yo 7.86 0.139 4°12' 1.13

C.O. off-center 7.65 0.132 0° 9' 1.3

Table 32. Cylindrical Bodies

Fluid
Medium

Type of 
Motion Re Body g 

Length exp ^th/^exp

W. yo-yo 0.295 6.38 29' 1 1 . 0

W. off-center 0.846 6.38 14' 8.7

W. yo-yo 1.293 12.57 1°1 0 ' 4.5
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The above results are even more inconclusive than those for 

the sphere. Since no lift relation for low Reynold's numbers is 

known, the relation given by inviscid theory was used, and no attempt 

was made to maintain a small value of Reynold's number on the falls. 

There is a definite trend in the values; however, it is not

possible to conclude, say, that the indicated decrease in this ratio 

is strictly due to increasing length of the cylinder as opposed to 

the Re number associated with the motion. In particular, the rota

tional rate of the off-center body was an order of magnitude smaller 

than that of the yo-yo. Due to the small size of the tank containing 

castor oil, it was impossible to obtain decent results in that medium.

Conclusions

The data discussed above represent only a very small sample 

of the total. Over 200 such motions were actually photographed. How

ever, as these sançle results indicate, the experimental setup was far 

frcan ideal, so that, rather than trying to make these measurements 

more precise, the decision was made to do the work discussed in the 

main part of this dissertation. I feel that the work discussed here 

may still have some merit if for no other reason than to indicate some 

of the pitfalls associated with it to later workers in the field.

Also, as a result of these investigations, several alternate approaches 

to the problem have become apparent. For example, by using a more 

viscous fluid than whiterex, it should be possible to use larger bodies 

which have a rotational drive mechanism inside them.
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In concluding this section it might be mentioned that a number

of other effects were photographed during this period. Quite a few

photographs have been taken of the fall of two-sphere configurations 

whose orientation relative to one another was fixed. In particular, 

the case of the identical spheres constrained to touch was investi

gated. For low Reynold's number motion, the orientation of the line 

of centers of the spheres relative to the vertical, g, should remain 

fixed as they fall. However, their line of motion should deviate 

from the vertical as a function of g according to the relation

tan t = 0.099_tan 6 .. _ (5 5)
1 * (O.gOljtan^S

which has e = 0 at g = 0 , ir/ 2  as would be expected, and gives

e = 2*59' at g = 4 6 * 2 9 ' . The photographic data, on the mâjc niâx
other hand, appeared to show ^  5® at g ̂  52*. However, the spheres 

used were, again, of poor quality, and were not quite identical. Now 

that high quality spheres are available and a better experimental set

up has been arranged, it should be possible to check this theory with 

much higher precision.
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