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ABSTRACT

Recently Response Surface Methodology (RSM)
has come to the attention of researchers in the
area of human performance, as evidenced by a spe
cial issue of Human Factors (August 1973) devoted
to the topic. These articles, as well as others
in the area, neglect to discuss the fact that RSM
can be used as an optimum seeking technique.
There can be, however, a serious practical prob
lem or question that may arise in using the
optimization technique associated with RSM
(Cochran 1973). Those coefficients of the full
model found to be insignificant can be eliminated
and a new, or ~bbreviated, model determined with
only the significant coefficients retained. The
optimization procedure may now be applied, using
either the full or the abbreviated model with the
possibility of completely different outcomes.
Considerable differences between the values of
the independent and dependent variables may be
found at the optimum points between the full and
various abbreviated models.

INTRODUCTION

Response surface methodology (RSM), a re
gression technique developed by Box and Wilson
(1951), requires a minimum number of data points
to obtain a full second order model. It is very
efficient and therefore useful in a variety of
situations for estimating the parameters (re
gression coefficients) of a second order model.
Recently RSM has come to the attention of resear
chers in the area of human performance, as evi
denced by a special issue of Human Factors (Aug
ust 1973) devoted to the topic. Within this
issue Clark and Williges (1973) discuss and demon
strate the uses of RSM in experiments on human
performance. This article, as well as others in
the area, neglects to discuss the fact that RSM
can be used as an optimum seeking technique.

Through a series of experiments, the experi
menter using RSM is able to approach and finally
describe the response surface about the optimal
point (if one exists). There can be, however, a
serious practical problem or question that may
arise in using the optimization technique associ
ated with RSM (Cochran 1973). Contradictory re
sults may be obtained depending on the selection
of a. As is explained in detail in Myers (1971),
in the use of RSM as an optimum seeking technique,
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it is customary to conduct a series of experiments
each describing an area closer to the optimum per
formance point than the one before. From each
experiment the coefficients of the second order
regression model are estimated. The regression
model is then used to find the stationary point
(maximum, minimum, or saddlepoint). The station
ary point is found by taking the partial deriva
tives (with respect to the regression coefficients)
setting the resulting derivatives equal to zero,
and solving the resulting equations simultaneously.
The solution must be verified to be a maximum,
minimum or saddle point by determining the signs
of the eigen values. If the eigen values are (1)
all positive - the point is a minimum point; (2)
all negative - the point is a maximum; or (3)
mixed - the point is a saddle point. The next
experiment is then set up such that the experiment
al points encompass the stationary point of the
regression model of the previous experiment. This
process is repeated until the stationary point
(hopefully an optimum point) is at or near the
center of the model's experimental points.

PROBLEM

l{hen some of the coefficients of the regres7
sion model are not significant, a problem may
arise in the use of the optimization technique
discussed above. The significance of all coeffi
cients can be evaluated, using analysis of
variance, noting that significance or lack of it
is highly dependent upon the value of a specified
by the experimenter. Those coefficients found to
be insignificant can be eliminated and a new, or
abbreviated, model determined with only the signi
ficant coefficients retained. The optimization
procedure may now be applied, using either the
complete or the abbreviated model with the possi
bility of completely different outcomes.

There is a dilemma here that concerns whether
the experimenter uses the full or abbreviated
model. This is made worse when it is realized
that the selection of a can have an effect on the
composition of the abbreviated model. In fact,
there could be numerous abbreviated models which
depend only upon the experimenter's selection of a.

The existence of alternative models forces
the experimenter to make a decision as to which
model to use. One thing supporting the use of the
complete model is that it most accurately predicts
the data from which it was developed. On the
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other hand, an abbreviated model may be used be
cause it contains only those terms which have a
significant effect on the predicted value.

The objective of this research was to
examine several sets of data and demonstrate
the possible consequences in optimizing on the
different models - full or abbreviated. This
should provide very useful information for those
researchers using RSM as an optimizing technique.

Sets of data involving three factors (Table
1) from Clark et al (1971) (Yl and Y2), Myers
(1971) (Y3), and Cochran and Cox (1964) (Y4) were
examined and analyzed in the following manner:

1. Estimates of the regression coefficients
for a full second order model were deter
mined with an appropriate analysis of
variance ANOVA) using the computer pro
gram of Clark et al (1971).

2. Significant terms (both a = .05 and a =
.025) were determined from the ANOVA and
new regression coefficients determined
using only the significant terms.

3. The stationary point was determined for
complete models, the abbreviated models
using a = .05 and a = .025.

4. Differences between the stationary points
of complete and abbreviated models were
noted and the percent difference from the
complete to the abbreviated models calcu
lated.

Table 1-

Data in Coded Form for Three-Factor. Second Order. RSM Central-
Composite Designs taken froID four sources.

Coded Values Data Source
Observation Block X, X, X, Y, Y, Y, Y,

-1 0.59 16.2 6.8 7.83

-1 0.45 14.3 6.1 6.92

-1 0.71 17.0 10.4 19.90

-1 -1 -1 0.47 17.4 6.6 16.44

0.67 15.5 10.1 22.22

0.63 15.8 9.9 19.49

-1 -1 0.76 16.8 7.9 16.10

-1 -1 0.42 18.1 9.2 14.90

-1 -1 0.79 14.9 6.9 12.50

10 0.81 16.2 7.3 4.68

11 0.0 0.0 0.0 0.70 14.8 9.7 24.27

12 0.0 0.0 0.0 1-0.59 15.0 12.2 22.76

13 -1.63 0.0 0.0 0.39 19.0 9.8 17.65

14 0.0 -1.63 0.0 0.56 17.3 6.9 25.39

15 0.0 0.0 -1.63 0.82 14.8 4.0 7.37

16 1.63 0.0 0.0 0.76 13.9 5.0 0.20

17 0.0 1.63 I 14.6 6.3 lfLIG0.0 10.69

18 0.0 0.0 1.63, .41 19.2 8.6 1l.9!:l

19 0.0 0.0
0.0 I .60 15.8 9.7 27 .88

20 0.0 0.0 0.0 .M 15.7 9.6 27.53

In analyzing two sets of data from Cochran
(1973) which used a RSM design in five variables,
almost the same procedure was followed, the differ-
ence being that the full and only one abbreviated
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model (a = .05) were used. Therefore, data from
four, three factor, and two, five factor RSM de
signs were examined to ascertain and demonstrate
changes in the stationary point due to the level
of significance used in the model determination.

RESULTS

Three Factor Models

Table 2 contains coefficients of the three
factor coded models arrived at using RSM. "Yl"
indicates the full second order RSM model for the
first set of data, "Yl,el" indicates the second
order model for the same data arrived at by includ
ing only those terms shown by ANOVA to be signifi
cant at that el. Upon examination of Table 2, it
becomes apparent that deletion of insignificant
terms can reduce the size of the model appreciably.
The most pronounced case here is "Y3" vs "Y3,.025"
where the number of terms is reduced from 9 to 2.

The coded independent variable values and the
function value (Yi) at the stationary point are
shown in Table 3 for the coded, full and abbrevi
ated second order, three fa~tor models. In addi
tion to the coded variable and function values,
the percents of change from the full to the
abbreviated models are given. The coded values of
the independent variables in these examples change
from the full to the abbreviated models by as
little as 2.6% [X3 for the Y2 05 model] to as
much as 368% [X2 for the Y4,.OS model]. Of the
changes in the value of the independent variables
(excluding those variables where their main
effects and all interactions are eliminated from
the model), 10 are equal to or greater than 100%
and 13 are greater than 50%. Changes of these
magnitutes and frequencies must have an effect on
the function values (Yi) at their stationary
points.

The relative changes in the uncoded indepen
dent variable values are of more importance than
those of the coded independent variable values.
Table 4 contains the uncoded independent variable
values and the percent of change from the full
models. The percents of change of the uncoded
independent variables in these three examples
range from 2.71 (X3 for the Y2,.05 model) to
39,326.47 (X2 for the Y4 .05 model) percent. If
this extreme value is di~regarded, the range is
still from 2.71 to 62.16 (Xl for the Y4 .05 model)
percent (disregarding also those variabies elimin
ated from the model). The average percent of
change from these models was 1982.14 percent with
the extreme value included and 16.65 with it delet
ed. In any case, an average change of over 16
percent could be critical in using the experiment
al results to make decisions.

Although changes in the models from the full
to the abbreviated ones cause changes in the values
of the functions (Yi) at their respective station
ary points, they do not appear to be as drastic as
those for the variable values (coded or uncoded).
The magnitude of these changes in function values
range from a low of 2.6% [Y4,.025 model] to a high
of 24% [Y3,.05 model]. The difference in the
ranges of magnitudes of change between the inde-
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X XX XXXX 'X 2X'Model Bo X, X, X, , l a , z , s z ,

Y, 0.6368 0.0663 -0.0505 -0.0457 -0.01821 0.0006 _0.0032 -0.0875 0.0325 0.0700

Y" .OS 0.62300 0.0663 0.0505 -0.0457 -0.0875 0.0700

\ -0.0875 0.0700
Yl t~02S 0.6230 0.0663 I

I
" 15.4481 -1.2027 -0.5033 0.8466 0.3275 \ 0.1395 0.5343 0.1375 0.2875 0.0125

Y2,,05 15.4481 ,-1.2027 -0.5033 0.8466 0.3275; 0.1395 0.5343 0.2875

Y2,.025 15.5541 -1.2027 -0.5033 0.8466 0.31771 0.5244 Q.2875

I I
I

-0.3500 1-0.5000

" 10.1171 -1.1134 0.918 1. 0289 -0.7464 -1.0472 -1.1600 -0.1500

Y3,.05 9.5502 -1.1134 1.0289 -0.9948 -1.1076

Y3,.025 8.8442 -1.0423

Y, 24.0062 -4.7960 -1.1909 -0.2.164 -5.6074 -0.7766 -s .3236 -1.6738 -1.463 0.9713

Yll.,OS 23.4164 -4.7660 -1.1909 -5.5529 -5.2691 -1.6738

Y4,.025 23.4164 _4.7960 -5.5529 -5.2691

Table 2. Coefficien~s for the coded full and abbrevf ac ed second order,
three factor, models.

PercentSt8tionaryPercent
X,

PercentX,percentX,
Model Chanjl;e chaeee Change Point Value Chan e

Y, 0.7081 0.9661 0.1477 0.6821

y! " OS 0.5765 - 18.6 0.7568 - 21.7 -0.0036 102.4 0.6612 - 3.1

Yl,.025 0.0 -100.0 0.7568 - 21.7 -0.0265 117.9' 0.6216 - 8.9

Y, 2.3070 0.7303 -1.4218 13.2751

Y:.!: ,.05 2.4767 7.4 1.8039 147.0 -1.4588 2.6 12.8872 - 2.9

Y2,.025 1.8928 - 18.0 0.2516 - 65.5 I - .69,55 51.1 13.5755 2.3

Y3 -0.6851 0.1803 0.3075 10.6650

Y~,. os 0.5567 181.3 0.0 -100.0 -0.5144 -267.3 8.1079 , -24.0

Y3,.025 0.0 100.0 0.0 -100.0 : 0.0 -100.0 8.8442 -17.1
I

Y4 -0.3641 -0.3958 -0.0342 25.1113

Y~ ,.05 -0.7115 - 95.4 1.8555
,

368.8 0.0

I
lOO.O 24.0177

I
- 4.4

y~ ,.025 -0.4318 - 18.4 0.0 i 100.0 0.0 100.0 24.4520 - 2.6

Table 3. Coded indt-pendent vnri<!u1 e valul?s and tho value of
Yi at t he s t ar Icna r y point for the full and
abbreviated, second order, three factor models.

X,
Percent:

X,
Percent

X,
Percent Stationary Percent

Model Chan e Chan e Chanae Point Value chan e
I

Y, 406.81 37.56 7.90 0.6821

Y, 05 393.65 - 3.23 35.38 _ 5.80 7.49 5.19 0.6612 - 3.1,.
336.00 -17.41 35.38Y, 025 - 5.80 7.43 5.95 0.6216 - 8.9

Y, 566.70 35.11 3.69 13.2751

Y, 05 583.67 2.99 46.29 31.84 3.59 2.71 12.8872 - 2.9,.
Y 525.28 - 7.31 70.12 -14.21 5.64 52.85 13.5755 2.3

2,'025

234.45 56.62 1.28 10.6650

271.70 15.89
,

'3 05 55.00 - 2.86 .79 -38.18 8.1079 - 24.0,.
Y, 025 1.1 -14.06 8.8442 -17.1,.
Y, .0074 .0068 .2276 25.1113

Y, 05 .0028 -62.16 2.6810 39326.47 .2500 9.84 24.0177 - 4.4,.

" 025 .0061 -17 .57 24.4520 - 2.6,.
Table 4. Uncoded independent va r LabIe va Luas and the value of

Yi at the stationary poane for the full and abbr-ev La-
ted. second order, three factor models.
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pendent variables (Xi'S) and the dependent varia
bles (Yi's) may be surprising at first glance but
is actually quite reasonable. This is due to the
fact that only the most insignificant terms are
eliminated. Therefore, these are the terms which
least affect the regression line or surface. Be
cause the dependent variable is affected by many
terms, one term has to change considerably to
change the dependent variable significantly. In
addition, a large change in one independent varia
ble may be negated by a change of another variable
with the net result of little or no change in the
value of the dependent variable.

stationary point for both full and abbreviated
models. In addition, the percents of change in
these values from one model to the next are in
cluded. Of the ten possible changes in the coded
values of the independent variables, six are of
100% or greater and seven are of 50% or greater.
Two variables were eliminated in the abbreviated
models because they were not significant in their
main effects or interaction terms. The changes
in the coded values of the independent variables
of the five factor models at the stationary point
range from a low of 27.3% [X4 for the YS,.05 model]
to a high of 546.3% [X4 for the Y6,.OS model].

Five Factor Models

The results of the analyses of the five
factor models are similar in most aspects to those
for three factor models. Table 5 contains the
coded five factor models arrived at using second
order RSM. Consistent with the notation of the
three factor models, the Ys indicates the full
second and Ys .05 indicates the second order model
for the same data arrived at by including only
those terms shown by ANOVA to be significant at
the 0.05 level. The reduction in the size of the
model by elimination of insignificant terms is
quite obvious and pronounced here. The reduction
in the number of terms for Ys to Ys,.OS is from
21 to 6 and is from 21 to 9 for Y6 to Y6,.05'

Table 6 shows the coded values of the five
independent variables and related Yi at the

Table 7 contains the uncoded values of the
independent variables and related dependent varia
ble values at the stationary points for the five
factor models. The range of percents of change of
the values of the uncoded independent variables
was from 3.61 [Xl for the Y6, .05 model] to 523.00
[X4 for the Y6,.OS model] percent. The average
percent change is 182.33 percent. It becomes
obvious at this point that the selection of the a
level can have drastic effects on the independent
variable values at the stationary point.

The changes of the dependent variable values
(Yi) at the stationary points were 79.6% (YS 05)
to 870.2% (Y6,.OS) from the full to the abbre~ia
ted models. These changes are more extreme than
similar changes of the three factor models. This
could be due to the fact that the reduction in the
size of the full model by elimination of insigni-

X, X2 X
5

X 2
1

X 2
2

X 2
3

X 2
4

X 2
5

Ys 1100.89 -1.13/ 0.21 0.f16 5.38 11.62 -1.50 -1.50 -1.75 -6.75 -4.51 0.81 0.06 1.69 -3.94 0.06 -1.81 2.56 1.44 -2.19 -1,06

Ys•• os 97.0S 5.38 11.62 ...6.51 -4.77 -3.94

Y6 91.13 I 15.651.361-4.31 23.59 26.79 17.12 15.79 -10.91 -51.09 -13.92 -17.41 -1.49 2.53 0.89 -2.53 4.5( 11.06 5.67 -13.99 3.00

Y6,.05 87.50 15.65 23.59 26.77 20.76 19.43 -47.45 -10.28 -17.41

Table 5. Coefficients for the Coded Full and Abbreviated Second Order, Five Factor Models

Percent
Ch

Percent Stationary
Ch Pit VI

Percent
Ch

Percent
Ch

Percent
Ch

Percent
ChangeM d 1c e i 2 ange .j ange , ange 5 ange c n a ue enge

Ys -21.60 10.73
-12.34 l 1-3•

70 17.20 I 174.80

YS•• os ... 2.98 +86.2 0.0 -100.0 0.0 +100.0 -2.69 27.3 0.0 -100.0 35.59 -79.6

Y, ... 0.15 ... 0.1 0.37 I 0.22 0.
67

1
105.96

Y6,.OS 0.0 100.0 0.0 100.0 ... 7.83 -221.6 -11.80 -546.3 -13.39 -209.9 -9114.60 -870.2

Table 6. Ceded independent variable values and the va Lue of
Yi at tbe atnti Ionary point for the full and
abbreviated. second order. five factor. models.

x, l'erc~nt
X2

Percent
X,

Percent Percent Percent Stationary Percent
Model Chan e Chan e Chan e x, Chan e X,

Chan e Point Value Chan e

-7.62xlO-4]
168.65 ~ I ' I

Y, -2.09

I
--58.63 I 444.6 174.80

Y, ,- 05 - .000105 i -86.20 - ,-22.01 !+62.46 49. 88.98 35.59 -79.6

i ! i I
Y, .83xlo-

4
1 : 19.10

•

8425

1

: 88.47 I 64.41 105.96

Y,
-4

1
20

•
I I

05 - .8x10 - 3.61 +4.71 -1.075 -227.6! -374.30
1-523.00

-258.97 ' -502.06 -9114.60 -870.2..
Table 7. Uncoded independent variable values and the value of Y

at the stationary point for the full and abbreviated 1
second o rdee , five recece , acdej.s ,
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ficant terms is much greater in these five factor
experiments than for the three factor experiments
examined.

Example

A look at the Y3 models will illustrate what
happens to the independent and dependent variables
as the different models are used. This example
"involves an experiment from which the researcher
attempts to gain an insight into the influence of
sealing temperature (xl)' cooling bar temperature
(x2), and % polyethylene additive (X3) on the seal
strength in grams per inch of a breadwrapper
stock." (Myers, 1971, page 78). All models in
this case give stationary points which are maxi
mums. The full model indicates the maximum of
10.6650 grams per inch of breadwrapper stock is
attained when the sealing temperature (xl) is
234.45 degrees, the cooling bar temperature (x2)
is 56.26 degrees, and the percent of polyethylene
additive (x3) is 1.28%.

When the first abbreviated model (a = .05) is
used, a maximum seal strength of 8.1079 grams per
square inch is attained when the sealing tempera
ture (xl) is 271.70 degrees, the cooling bar tem
perature (x2) is 55.00 degrees, and the percent of
polyethylene is 0.79%. This model indicates the
best seal strength is only 8.1079 rather than the
10.6650 attained for the full model. In addition,
it indicates that the sealing temperature should
be 37.25 degrees higher, cooling bar temperature
should be 1.62 degrees lower and the percent poly
ethylene additive reduced from 1.28 to 0.79 (.49
percent less).

Using the second abbreviated model (a = 0.025)
a maximum point of 8.8442 grams per inch is indi
cated when the percent polyethylene additive is
1.1 percent'and the other two variables are un
specified but within the limits of the experiment
al data.

The changes in the independent variable values
and the dependent variable values in this case are
considerable. In addition, they do not appear to
be predictable or consistent. The maximum seal
strength predicted goes from 10.6650, i.e., the
full model, down to 8.1079 in the first abbrevia
ted model (a = .05), and back up to 8.8442 in the
second abbreviated model (a = .025). The value of
the first independent variable increases from the
full to the Y3,.05 model and then becomes unde
termined in the Y3,.025 model. The value of the
cooling bar temperature (unlike the sealing tem
perature) goes down slightly from the Y3 to the
Y3,.05 model, and then it too becomes undeter
mined in the Y3,.025. In the progression from Y3
to Y3,.05 to Y3,.025, the optimum percent of poly
ethylene goes down from 1.28 to 0.79 percent, and
then up to 1.1 percent. There does not appear to
be any consistent pattern of change as one pro
gresses from the full to the more abbreviated
models.

CONCLUSIONS

This study has demonstrated a definite pitfall
in the use of RSM, or any regression technique, as
an optimizing technique. It was shown that the
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stationary point (maximum, minimum, or saddle
point) is' dependent upon how abbreviated a model
is which is itself dependent upon the selection of
a. Both the location (values of the independent
variables) of the point and the value of the de
pendent variable may be altered considerably and
unpredictably by the selection of a and therefore
the model.

This research has not, however, resolved the
problem - it has only brought it to light. There
is still a dilemma for which the experimenter is
given no method of resolving. Examination of this
problem for possible solution, such as determina
tion of alternate criteria for determination of
the correct model, should be a goal of future re
search in the area.
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