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This study presented a fully-automated computer-aided method (scheme) to detect meta-

phase chromosomes depicted on microscopic digital images, count the total number of chro-

mosomes in each metaphase cell, compute the DNA index, and correlate the results to the 

prognosis of childhood acute lymphoblastic leukemia (ALL).  The computer scheme first 

uses image filtering, threshold, and labeling algorithms to segment and count the number 

of the suspicious “chromosome,” and then computes a feature vector for each “detected 

chromosome.” Based on these features, a knowledge-based classifier is used to eliminate 

those “non-chromosome” objects (i.e., inter-phase cells, stain debris, and other kinds of 

background noises).  Due to the possible overlap of the chromosomes, a classification cri-

terion was used to identify the overlapped chromosomes and adjust the initially counted 

number of the total chromosomes in each image.  In this preliminary study with 60 testing 

images (depicting metaphase chromosome cells) acquired from three pediatric patients, 

the computer scheme generated results matched with the diagnostic results provided by 

the clinical cytogeneticists.  The results demonstrated the feasibility or potential of using a 

computerized method to replace the tedious and the reader-dependent diagnostic methods 

commonly used in genetic laboratories to date.

Key words: Acute Lymphoblastic Leukemia (ALL); Metaphase chromosomes; Chromosome 

analysis; and Evaluation of prognosis.

Introduction

Childhood acute lymphoblastic leukemia (ALL) is a disease in which too many 
underdeveloped infection-fighting white blood cells – lymphocytes – are found 
in children’s bone marrow and blood.  Those leukemia cells can replace normal 
blood cells and spread to other important organs such as liver, spleen, kidney, and 
the central nervous system.  ALL is the most common cancer in children and is 
among one of the most curable cancers in pediatric malignancies (1).  ALL ac-
counts for 75% of all cases of childhood leukemia, with nearly 3,000 children in 
the United States and 5,000 children in Europe diagnosed with ALL every year 
(2).  The outcome for children with ALL has improved dramatically with the 
development and progress of therapeutic methods.  The survival rate for children 
under 15 years old reaches 75%.  Despite this great improvement, there are still 
25% of pediatric patients who suffer from ALL, fail to response to the regu-
lar therapy, and experience a cancer recurrence.  Relapsed leukemia is the third 
most common childhood cancer.  On the other hand, some leukemia patients are 
treated too heavily even if they are highly curable with a small dosage or less 
chemical treatment.  This can cause serious side effects to the patients (3).  Thus, 
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a major challenge for the effective treatment of children with 
ALL is to find better methods to evaluate each case and pre-
dict its prognosis (good or poor).  This may be important 
to help physicians select optimal therapeutic methods and, 
hence, cure more pediatric patients.

A number of clinical, genetic, molecular features have been 
identified and investigated to correlate or predict the out-
come of patients with ALL (1).  Among them, age, WBC (the 
number of white blood cell), and sex are the standard clini-
cal time-honored features used to determine the intensity of 
treatment.  DI (DNA Index – the ratio of DNA content of leu-
kemia cells to the normal human diploid cells or nuclei) and 
the number of chromosomes (Ploidy) as genetic features are 
the prognosis factors used to predict the outcome of pediat-
ric patients’ treatment.  Although chromosome band patterns 
are considered one of the most important and sensitive fea-
tures in diagnosis of variety of cancers, ALL can be reliably 
classified into four categories based on the modal number 
of chromosomes depicted on identified metaphase cells (2).  
These four categories are: (i) hyperdiploid defined by more 
than 47 chromosomes with DI greater than 1.0 (35-45% of 
cases); (ii) pseudodiploid defined when DI is equal to 1.0 
and the number of chromosomes with structural or numeric 
abnormalities is 46 (About 40% of cases); (iii) diploid (46 
chromosomes, DI of 1.0, about 8% of cases); and (iv) hy-
podiploid (fewer than 46 chromosomes, about 8% of cases; 
DI less than 1.0).  DI is a statistically significant indicator 
and the strongest prognosis factor to evaluate the treatment 
outcome when compared to age, WBC, and sex in a POG 
(Pediatric Oncology Group) study (4).  In general, patients 
with ALL having a DI between 1.16 and 1.6 have been re-
ported to have a better prognosis than those with a DI less 
than 1.16 (5, 6).  Specifically, “high” hyperdiploidy (defined 
as the number of chromosomes larger than 50 or by a DNA 
Index [DI >1.16 (7-9)] measured by flow cytometry (10-13), 
has very favorable prognosis.  On the other hand, pseudodip-
loidy or hypodiploidy (With DI <1.16), and lack of common 
ALL antigen (CALLA) expression are typically associated 
with a poorer treatment outcome (14, 15).

In order to acquire and analyze those genetic features, as well 
as predict prognosis or predict the efficacy of the patients’ 
treatment, technologists in a genetic lab need to first prepare 
a number of testing slides (usually 4-10) for each patient 
(16).  Chromosome gain or loss due to preparation method is 
an important issue in affecting diagnostic accuracy of leuke-
mia.  Hence, technologists in genetic laboratory need to rec-
ognize whether a metaphase cell is incomplete or over com-
plete due to preparation bias.  As a common testing practice, 
technologists usually choose approximately 20 of the ana-
lyzable metaphase cells by observing and searching through 
a large number of potential metaphase cells depicted on all 
slides prepared for a patient.  As a result, visually searching 

for and diagnosis of these analyzable metaphase cells is a la-
bor-intensive and time-consuming process (16).  In addition, 
this procedure introduces a large inter- and intra-reader vari-
ability, which may cause substantial error in the evaluation or 
prediction of prognosis for the patients’ treatment.

In order to improve detection efficiency and sensitivity, de-
velopment of automated chromosome detection has attract-
ed great research interests since 1980s.  Several computer 
schemes have been developed in an attempt to identify and 
analyze chromosomes (17-19).  Most of them are semi-auto-
matic schemes and the operator intervention is often required.  
Using these interactive metaphase finding and karyotyping 
systems, genetic laboratory technologists visually verify the 
identified metaphase cells, select analyzable cells, and then 
use the mouse, light pens, and other methods to segment 
metaphase clusters (20-23), and correct separations between 
touching and overlapping chromosomes (24).  Several com-
mercial systems including Magiscan (Joyce Loebl, Gateshead 
UK), Cytoscan (Image Recognition Systems, Warrington, 
UK), AKS-2 systems (Amoco Technology Inc. Naperville, 
IL), and Genetiscan (Perceptive Scientific Instruments Inc., 
League City, TX), have been used in some genetic labora-
tories to assist automatic metaphase chromosome finding 
and karyotyping task (25).  Due to the continuous research 
efforts, several new techniques have been recently investi-
gated and developed to improve accuracy in identification 
of metaphase chromosomes.  These included a knowledge-
based chromosome contour searching method (26), a novel 
recursive algorithm (27), minimum entropy segmentation 
(28), and a rule-based approach to realize fully automatic 
chromosome segmentation (29).  The most of these methods 
are often computing intensive.  Some algorithms take several 
hours to segment one image (28).  In addition, the robustness 
of these methods has not been adequately investigated.

To improve the efficiency of detecting analyzable metaphase 
chromosome cells and to predict prognosis of ALL, we devel-
oped and tested a new computer-aided method and scheme to 
automatically detect metaphase chromosomes depicted on a 
microscopic digital image, count the total number of individ-
ual chromosomes depicted on one metaphase cell, and com-
pute the DNA index.  The detailed description of the scheme, 
along with the experimental results when applying the scheme 
to 60 images acquired from three pediatric patients at differ-
ent categories of ALL prognosis, is presented here.

Materials and Methods

We select 60 chromosome images from three pediatric pa-
tients with ALL from a genetics laboratory at the University 
of Oklahoma Health Science Center.  Those chromosome 
images are captured by an optical microscope with objective 
lenses of 100X magnification power, the binocular eyepiece 
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lenses of 10X magnification, and a 
digital camera.  The physical pixel 
size of those images is 0.2 μm × 
0.2 μm.  Those chromosome im-
ages have an average size of 768 
× 576 pixels and cells are stained 
with Giemsa.  The 20 chromo-
some images were acquired from 
each child patient diagnosed with 
three different categories of ALL 
(peudodiploid, hypodiploid, and 
hyperdiploid).  Figure 1 demon-
strates six examples from these 
three categories.  An experienced 
cytogeneticist counted the num-
ber of the chromosomes in each of 
these 60 images.  The results were 
saved in a “truth” file.

Figure 2 describes the detailed 
flow chart of this computer-aided 
detection and analysis scheme. 
The scheme includes the following 
major components.

Adjustable Threshold

The first step in this method is to 
segment the suspicious chromo-
somes through an initial threshold 
and then in the following itera-
tive steps, re-segment the actual 
chromosomes using a variable 
(adaptively adjusted) threshold 

	 a	 b	 c

	 e	 f	 g

Figure 1:  Analyzable metaphase chromosome im-
ages from three groups.  (a) (e) Category I: The 
number of chromosomes is equal to 46; (b) (f) Cat-
egory II: The number of chromosomes is less than 
46; and (c) (g) Category III: The number of chromo-
somes is more than 46.

Objects with size > S1
and crcularity >C

Computing the following
features: size, circularity, average 

gray value, minimum gray value,radial length, 
edge pixel size, average edge pixel size

Objects with
size > S1 and
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radial length > R
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Component-
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Figure 2:  A flow chart of a computer-aided scheme for detecting chromo-
somes and counting the number of chromosomes depicted on one image.
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to further delete other inter-phase cells, stain debris, and 
background noise.  Because the value of the threshold is 
changed in re-segment iterative steps, this threshold is ad-
justable.  In the initial segment, since the objects have much 
lower gray values than the background, the initial threshold 
should be large.  In the re-segment steps, we should choose 
an appropriate threshold according to the slope of the gray 
value histogram of the image.

Morphological Filter

In the second step, we utilize a morphological filter to remove 
small objects and holes linked to initially detected chromo-
somes.  Specifically, a 3 × 3 open filter was used to get rid of 
the background noise and small objects such as stain debris.  
Moreover, this open filter can also disconnect some of the 
partially touching chromosomes.

Component Labeling Algorithm

In the third step, with the binary “noise free” image gener-
ated in the second step, we count the number of objects based 
on a 4-connectivity component-labeling algorithm (30).  The 
labeling algorithm includes the following steps.

 I. Scan the image from top to bottom and left to 
right (pixel-by-pixel)

 II. If the pixel p is logic one, examine the upper and 
the left of p, the labeling of p occurs as follows:

  a. If the upper and left neighbors are not logic 
one (object), then we assign a new label to p, and 
record this label in the equivalence table;

  b. If only one neighbor has a label, assign its 
label to p;

  c. If both of the neighbors have the same label, 
then copy it;

  d. If both of the neighbors have different labels, 
assign the smallest one of the labels to p and make 
a note of the equivalences;

 III. After completing the scan, the equivalent label 
pairs are sorted into equivalence classes and a 
unique label is assigned to each class.

 IV. Scan the image again, during which each label 
is replaced by the label assigned to its equiva-
lence classes.

Feature Selection

After the computer scheme detected all the separated ob-
jects through a component-labeling algorithm, it comput-
ed a set of seven features from each object in attempt to 
better classify between chromosomes and other un-related 
objects (noise) in the fourth step.  A list of features is de-
scribed as follows: 

 I. The size of each labeled object: It is gained by 
counting the number of pixels contained in the 
region (Nm);

 II. The circularity of each labeled object: Based on 
the area size of the object (Nm), the method de-
fines an equivalent circle originating at the grav-
ity center of the object, and computes the number 
of pixels that are located inside the object contour 
and the circle (NC), which has the same size as 
the labeled object.  The circularity is defined as 
  , the ratio of the region pixels covered 
by the circle to the total pixels inside the labeled 
region;

 III. The average gray value of each object: It is com-
puted as an average digital value of pixels

 IV. The minimum average gray value of all objects: It 

is obtained by

 V. The distance of each object to the cell center (ra-
dial length): It is defined as the distance between 
the gravity center (xc, yc) of total labeled regions 
in the image (center of a cell) and the center of 
one individual region (xk, yk).  It is computed as

 VI. The perimeter of each object: this feature is com-
puted by counting the number of edge pixels in 
the object (Pi);

 VII. The average perimeter of all objects is defined as 
  (N is the number of all objects in 
an identified cell).

Deleting Non-chromosome Objects

Based on the seven features, a knowledge-based classifier (a 
set of rules) was applied to delete those non-chromosome ob-
jects, which include inter-phase cells, stain debris, and other 
types of artificial background noise.  These empirical rules 
were decided based on our visual observations and discus-
sion with the cytogeneticists.  For example, the inter-phase 
cells are typically large, circular, and dark, but sometimes 
their shape are also irregular, and their gray value are very 
low.  In general, our classifier included following four rules 
to identify and delete inter-phase cells and stain debris (as 
well as other small irregular objects):

 I. Regular and round inter-phase cells: the size of an 
object is larger than S1 and the circularity is larger 
than C (S1 is larger than six times of the average size 
of objects in the image, and C is equal to 0.90); 

Ci =
NC
Nm

(Gave = ΣGi);1
Nm

Nm

i=1

Gmin = Min(ΣGaver_i);
Nm

i=1

Dk = xc – xk)2 + (yc – yk)2 .

Pave = ΣPi1
N

N

i=1
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 II. Irregular inter-phase cells I: the size of an object 
is larger than S1 and the gray value of this object 
is smaller than or equal to the minimum average 
gray value of all objects in the cell; 

 III. Irregular inter-phase cells II: the size of an object 
is larger than S1 and it is far away from the gravity 
center in the chromosome image (a cell), and its 
radial length is larger than R [R equals to (maxi-
mum radial length – standard deviation of radial 
length of all objects)];

 IV. Stain debris or other small irregular objects 
(noise): the size of an object is larger than S2, 
which is equal to 90 pixels or 1/10 of the average 
size of all objects.

To achieve the optimal results, the scheme iterates above 
steps to detect and delete as many non-chromosome objects 
as possible.  As long as there are any non-chromosome ob-
jects detected in the iteration (using above four classifica-
tion criteria), the scheme sets flag = false and automatically 
performs a new iteration.  The scheme stops the iteration, if 
there is no single non-chromosome object detected (when 
the scheme sets flag = true).  Figure 3 gives a detailed ex-
ample result which successfully deletes those objects that 
are not metaphase chromosomes.  The performance of these 
classification rules has been tested in our previous study 
(31) using a database of 100 images including both analyz-
able and unanalyzable metaphase cells.

Counting the Number of Chromosomes

Since a number of chromosomes can be overlapped (as 
shown in Figure 3), the number of chromosomes counted 
in one image after above image processing (including the 
use of a labeling algorithm) often under-estimates the actual 
number of chromosomes.  In order to detect these overlapped 
chromosomes and count them correctly, in the last stage of 
our computer scheme, we estimate and count the overlapping 
chromosomes.  A number of techniques have previously been 
developed and reported by other research groups to segment 

the overlapped chromosomes (26-29).  The estimated accu-
racy of these algorithms is typically in the range between 
70% and 80%.  The biggest obstacles of these methods are 
their computational complexity and inefficiency.

Because in this study our goal is to count the number of chro-
mosomes in one metaphase chromosome image, as long as 
the computer scheme can detect how many chromosomes 
are overlapped, the scheme can adjust (correct) the counted 
number of total chromosomes without physical segmentation 
(separation) of overlapped chromosomes.  Our hypotheses are 
that: (i) by avoiding the complex and often unreliable process 
of decomposing (or separating) the overlapped chromosomes, 
the computer scheme can be much more simple and efficient; 
(ii) based on the ratio of the area size of an overlapped object 
to the average size of other objects, the scheme can estimate 
how many chromosomes are included in this overlapped ob-
ject, and then add that number to the total number of chromo-
somes in one test metaphase image.  For this purpose, we used 
the following criteria to identify or determine whether one or 
more chromosomes are overlapping.  The criterion is when 
the area size of an object is larger than two times the average 
area size of all objects and the perimeter of this object is also 
larger than two times the average perimeter of all objects, the 
computer scheme will consider this labeled object involves 
overlapped chromosomes and correspondingly increase the 
counted number of chromosomes in this test image.

Computing DNA Index

After completing the detection and count process for all 
testing slices (the microscopic images depicting analyzable 
metaphase chromosomes) acquired in one case (one patient), 
the scheme computes the DNA index of the case,
where Nave is the average number of chromosomes detected 
and counted in all testing images of a pediatric patient and 
Nnorm = 46 (since a normal metaphase cell should include 46 
chromosomes).  This index can be used to correlate or predict 
the prognosis of ALL.

	 (a)	 (b)

Figure 3:  One example of eliminating the non-
chromosome objects.  (a) Original image and 
(b) processed image.

DI = .Nave
Nnorm
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Results

Using visual assessment, we found that the number of chro-
mosomes counted by the computer scheme for each of identi-
fied metaphase cells is similar to the corresponding number 
recorded in the “truth” file (with difference ≤ ± 2 chromo-
somes for a metaphase cell).  Table I summarizes the statisti-
cal data and analytic results of the prognosis for three test 
cases (pediatric patients diagnosed with ALL), while Figure 
4 demonstrates the plots of the distribution of the number of 
chromosomes in these three testing cases.  The average num-
ber of chromosomes from patient I is 45.8, which is approxi-
mately 46, and DNA index (DI) is 0.99 (45.8/46).  Based on 
the average number of the chromosomes in one metaphase 
cell and DI of the patient, the scheme classified this case as a 
pseudodiploid category ALL.  The number of chromosomes 
counted in each of 20 images from case II is less than 46.  The 
average number is 41.4 with DI of 0.90 (41.4/46).  Therefore, 
case II was classified to be a hypodiploid category ALL.  All 
of the 20 images from case III have more than 46 chromo-
somes.  The average number of chromosomes in case III is 
56.5 and DI is 1.22 (56.5/46) (between 1.16 and 1.6).  Ac-
cording to the number of chromosomes and DI, the computer 
scheme classified case III as a hyperdiploid category ALL.

Discussion

The identification of genetic features can help clinicians pre-
dict and evaluate cancer prognosis, as well as select optimal 
treatment procedures for the patients with the appropriate 
levels of chemical and/or radiation therapies.  In this prelimi-
nary study, we described a computerized method (scheme) 
to automatically detect metaphase chromosomes depicted on 
a digitally acquired microscopic image and count the total 
number of detected chromosomes in a metaphase cell.  One 
of the main purposes of developing a computerized method 
or scheme is to replace the tedious and inefficient process 
commonly used in genetic diagnostic laboratories to perform 
chromosome image analysis (including visually searching 
for and identifying analyzable metaphase chromosomes as 
well as counting individual chromosomes and calculating 
DNA index or other features).  Because the technologists 
in the genetic laboratory typically randomly select 20 to 30 
metaphase chromosome cells from a large number of poten-
tially analyzable cells, errors and inter-reader variations can 
occur in the diagnosis of subtle cases and the evaluation of 

treatment efficacy.  In our laboratory we have been working 
to develop a comprehensive computer-aided detection and 
diagnosis scheme for the diagnosis of chromosome images.  
The overall scheme was designed to include a number of in-
dependent modules.  The first developed module is designed 
to automatically identify analyzable metaphase chromosomes 
and delete inter-phase cells and stain debris (31).  This study 
focused on the development of the second module.  Due to 
the difficulty in segmentation of overlapped chromosomes, 
the schemes previously developed (24) have not been used 
to automatically count the number of chromosomes in each 
identified metaphase cell.  One unique characteristic of our 
scheme is that it can count the number of chromosomes with-
out segmenting overlapped chromosomes.  In addition, by 
computing the average number of chromosomes depicted on 
a large number of metaphase cells acquired from one patient, 
the scheme may minimize the negative impact due to the 
sample slide preparation errors that may cause chromosome 
gain or loss and improve diagnostic accuracy.

This study demonstrates that our computer-aided scheme can 
reliably detect individual chromosomes depicted on a noisy 
image and count the total number of chromosomes involved 
in a metaphase cell after compensating the effect of chromo-
some overlapping.  The advantage of using this computer 
scheme is that it cannot only replace the tedious (inefficient) 
process of visual searching and counting, but also help clini-

Table I 
The Prognosis analysis result for three groups. 

Numbers of images by chromosome counts Testing 
Case <45 45 46 47 >47 

Average Range of 
Numbers DI Category Prognosis 

Evaluation 

I 1 5 12 2 0 45.8 44~47 0.99 Pseudodiploid Poor 
II 19 1 0 0 0 41.4 36~45 0.90 Hypodiploid Poor 
III 0 0 0 0 20 56.5 48-65 1.22 Hyperdiploid Good 

Figure 4:  Distribution of the number of chromosomes in three testing cases.
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cians report more consistently diagnostic results.  In this study, 
our scheme predicted that patient III had a good prognosis and 
the outcome of the treatment was usually good.  On the other 
hand, patients I and II had a poor prognosis and, therefore, a 
more aggressive treatment should be recommended.  These 
conclusions are highly correlated with those analyzed and 
recommended by the clinicians in our genetic laboratory.

This preliminary study has several limitations.  First, if some 
of the analyzable metaphase chromosomes are overlapped by 
the irregular inter-phase cells, those chromosomes are likely 
to be considered a part of inter-phase cells and be eliminated.  
For example, this is the primary reason that the number of 
chromosomes in some metaphase cells (images) from case 
I is slightly different from the number of 46.  In our future 
research, we need to test and optimize the computing algo-
rithms used in the scheme with more chromosome images 
acquired from more patients within different age groups and 
different genders.  We will investigate and search for more 
effective methods to recognize the overlapped chromosomes 
and optimally compensate the counting results.  Second, the 
size of the testing dataset used in this study is very limited.  
We are currently acquiring more cases to increase the size 
and diversity of our dataset.  The robustness of the scheme 
will be evaluated in our future studies.
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