
10.1177/1094428104268752ORGANIZATIONAL RESEARCH METHODSMendoza et al. / VALIDITY IN MULTIPLE-HURDLE DESIGNS

Criterion-Related Validity in Multiple-Hurdle
Designs: Estimation and Bias

JORGE L. MENDOZA
DAVID E. BARD
MICHAEL D. MUMFORD
SIEW C. ANG
University of Oklahoma

Employee selection often involves a series of sequential tests (or hurdles). How-
ever, validation strategies under this complex design are not found in the litera-
ture. Missing is a discussion of the statistical properties important in establishing
criterion-related validity in multiple-hurdle designs. The authors address this gap
in the literature by suggesting a general statistical model for range restriction cor-
rections. Because the multiple-hurdle design includes as special cases predictive
and concurrent designs, the corrections apply also to these designs. The general
correction model is based on algorithms from the missing data literature. Two
missing data procedures are examined: the estimation-maximization procedure
and the Bayesian multiple imputation (MI) procedure. These procedures are
large-sample equivalent and often yield similar results. The MI procedure, how-
ever, has the added advantage of providing easily obtainable standard errors. A
hypothetical example of a multiple-hurdle design is used to illustrate the
procedures.

Keywords: selection; range restriction; multiple-hurdle design; missing data;
corrections

Many validation strategies can be used to provide evidence for the meaningfulness of a
test (Messick, 1998). Nonetheless, the criterion-related validation strategy remains
one of the two most commonly applied test validation strategies; the other is content
validation. The goal of any criterion-related validation effort is quite straightforward.
Essentially, an attempt is made in a criterion-related validation effort to show that the
test is related to one or more performance outcomes of interest (American Educational
Research Association, American Psychological Association, & National Council on
Measurement in Education, 1999).
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The main goal of any criterion-related validation effort is to provide an estimate of
the population, or true, relationship between the test under consideration and the out-
come of interest. However, a number of design considerations are known to influence
the accuracy of the estimates of the test-criterion relations obtained in these studies.
For example, the accuracy of these estimates may be influenced by unreliability in the
test, or criterion, measures (Bobko, 1995; Mendoza & Mumford, 1987; Sackett,
Laczo, & Arvey, 2002) as well as the operation of contaminating variables distorting
the test-criterion relationship within the sample at hand (James, Demaree, Muliak, &
Mumford, 1988). However, one of the most pervasive problems influencing the accu-
racy of estimates obtained in this validation design is range restriction. The reason
range restriction exerts a pervasive biasing effect on criterion-related validation
studies arises from the simple fact that any prior, or concurrent, selection decision
involving an attribute related to a test generally results in a reduction of the observed
test-criterion relationship vis-à-vis the population test-criterion relationship (Ghiselli,
1966; Lord & Novick, 1968; R. T. Linn, 1968). Range restriction is moreover endemic
in most selection situations in which prior selection and existing tests act to induce
restriction.

This problem is not new: Pearson (1903) and, later, Lawley (1943) proposed a set of
equations for correcting observed correlations for range restriction (direct and indi-
rect). Modifications and extensions of these equations have appeared in a number of
studies (see Greener & Osburn, 1979; Gross & McGanney, 1987; Ree, Carretta,
Earles, & Albert, 1994; Sackett & Yang, 2000). The correction for direct range restric-
tion assumes that the regression line characterizing the test-criterion relationship is
constant in both the unrestricted and the restricted populations. It also assumes that the
error variances are equal in both the unrestricted and restricted populations. These
assumptions hold when the predictor and criterion are jointly normally distributed
(before selection). Implicitly, the range restriction correction also assumes that a valid
estimate of the unrestricted variance for the predictor is obtainable (Hoffman, 1995).
Sackett and Ostgard (1994) and, later, Ones and Viswesvaran (2003) have studied this
issue and concluded that in many validation situations, the predictor variance obtained
in an applicant pool, although often affected by self-selection, is a fairly accurate esti-
mate of the unrestricted variance. Corrections for range restriction are commonly
applied in meta-analyses in which an attempt is made to identify the true test-criterion
relationship as well as in many validation designs in which range restriction is present.

Pearson (1903) and Lawley (1943), in their development of the correction formu-
las, did not address estimation or hypothesis testing, and the specific distributional
properties of their corrections are still unknown. They developed the corrections for-
mulas at the population level not dealing with estimation. Using computer simula-
tions, however, researchers have shed light on the distributional properties of their cor-
rections (e.g., see Greener & Osburn, 1979, 1980). However, others (e.g., Gross, 1990;
Mendoza, 1993) have shown that at the sample level, these corrections are maximum
likelihood estimators of the population parameters. The main problem with the
Pearson-Lawley approach, however, is that as given, it does apply to complex but real-
istic validation designs. An example of this is a validation design in which multiple
selection tests are used sequentially: a multiple-hurdle design. The multiple-hurdle
design has been described by Sackett and Yang (2000) as “simultaneous or sequential
selection, all variables measured, and unrestricted variances are not known for one or
more selection variables” (p. 116).
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According to Sackett and Yang (2000), corrections for this design have not
appeared in the literature. This omission is of some importance because many selec-
tion systems are implemented in a sequential mode. Our interest in the present effort is
to offer a general approach, with a solid statistical framework, to correct observed test-
criterion relationships for range restriction in designs involving sequential selection.
The interested reader is referred to Sackett and Yang (2000) for an excellent review
and taxonomy of current correction procedures.

The corrections given here for the multiple-hurdle validation design comprehend
the Pearson-Lawley corrections and are based on missing data procedures. These pro-
cedures were developed by Rubin (1978) and others (e.g., see Dempster, Laird, &
Rubin, 1977; Little & Rubin, 1987) and are based on multiple imputation and maxi-
mum likelihood estimation. Because at the sample level, the Pearson-Lawley correc-
tions are maximum likelihood estimators, they are subsumed under the more general
corrections given here. By observing that range restriction is a special case of missing
data, we develop a comprehensive set of corrections and principles that apply to most
selection designs. In addition, we observe that a multiple-hurdle validation is equiva-
lent to a monotonic missing data structure. Showing that the monotonic data structure
is equivalent to a multiple-hurdle validation design allows us to borrow simple estima-
tion procedures from the missing data literature. In complex selection situations such
as the multiple-hurdle validation design, these missing data procedures are easier to
implement and more versatile than the Pearson-Lawley corrections, yielding
estimates and their standard errors that can be used to form confidence intervals and
test hypotheses.

Parameter estimation under range restriction is feasible only when we meet either
the missing at random (MAR) or missing completely at random (MCAR) assumption
(Rubin, 1976). Under MCAR, the more restrictive of the two assumptions, the missing
data are truly missing at random and as such are not related to either observed or any
other data. For example, if we were to hire at random from a pool of applicants, the cri-
terion data for those not selected would be MCAR. Clearly, the MCAR assumption is
not likely to be met in most selection situations. The assumption that is likely to be met
in most selection situations is the MAR assumption. For the moment, it suffices to say
that MAR assumes that the criterion data are missing because of decisions made with
data (test results) under our control (observed). The criterion values are missing
because the test scores were too low and the applicants were not selected. The basic
idea is that because we can establish a relationship between the missing and the
observed, we can use the observed data to “fill in” for the missing data, thus enabling
us to estimate the parameters of the referent population. Although random is part of the
definition, the MAR assumption does not mean that the observed data are a random
sample from the referent population. Instead, the MAR assumption implies that the
observed data contain sufficient information to estimate the regression parameters,
which in turn can be used to fill in for the missing data. We believe that in most multiple-
hurdle (and simpler) validation designs, the MAR assumption is likely to be met. In
those rare instances in which the MAR (or the MCAR) assumption is not met, the
missing data are missing not at random (MNAR), and we must model the missing data
mechanism to estimate the parameters. These procedures are complex and will not be
discussed here.

Although at the sample level, correction formulas yield comparable results to miss-
ing data procedures, their value lies in being able to show explicitly the nature of the
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statistical bias. The formulas are especially useful in helping us understand the biasing
effects present in multiple-hurdle designs. They also provide a general algebraic solu-
tion to the difficult problem of correcting for range restriction under conditions in
which multiple hurdles have been employed for selection. Before turning to their
development, we consider the nature of the bias arising in regression and correlation
estimates in three (concurrent, predictive, and multiple-hurdle) criterion-related
validation designs.

Biases in Regressions and
Correlations Due to Selection

In a concurrent validity design, a (new) test is validated by administering it to the
incumbents, then correlating the scores with a measure of performance. The important
point of the design is that these incumbents had been previously selected by another
test (the old test) and that the predictor and criterion information are collected at about
the same time. The selection process, as it should, has biased the sample by bringing
into the organization those more qualified. The incumbents are not a random sample of
the general population. Consequently, statistical procedures that assume a random
sample are not appropriate.

There are two basic statistical questions that must be asked in a concurrent validity
study: What is the correlation between the criterion (generally some measure of job
performance) and the (new) test? And is the correlation between the new test and the
criterion larger than the correlation between the old test and criterion? These two ques-
tions are fundamentally at the population level. Consequently, we must be able to
accurately estimate the two population correlations. But these correlations are difficult
to estimate: They often suffer from range restriction and unreliability. The reliability
of the criterion and predictor are important in that they attenuate the correlation
between predictor and criterion. Reliability also affects the regression of the criterion
on the predictor. In this article, however, we focus on the effects of range restriction on
estimation.

In contrast to the concurrent design, in a predictive validation design, the new and
old tests (in some applications, only the new test is given) are given to the applicants,
but only one test is used in the decision to hire. A predictive study aims to establish
how accurately test scores can predict criterion scores that are obtained at a later time.
As in the concurrent design, the two basic questions are as follows: What is the correla-
tion between the criterion and the (new) test? Or, as stated in the 1999 standards, “How
accurately do test scores predict criterion performance?” And is the correlation
between the new test and the criterion larger than the correlation between the old test
and criterion? The predictive situation is different from the concurrent situation; rather
than having the test scores on the incumbents, we have test scores on the applicants.

In a multiple-hurdle situation, an applicant progresses from one stage to another
only after passing a specific test (or hurdle). The number of hurdles varies, but usually
a system does not include more than three or four hurdles. For example, the recently
enacted Transportation Security Administration used a multiple-hurdle design to
select airport screeners (Kolmstetter, 2003). The first hurdle in this selection system
involved an online application that was used to screen for minimum qualifications. Eli-
gible applicants then were invited to take a computerized test battery (with a 48% pass
rate). Those who passed the test proceeded to the next hurdle. The next hurdle entailed
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a structured interview, a physical abilities test, and a medical evaluation (with an 86%
pass rate). Those who passed received employment offers with employment
contingent on passing a security background check.

The multiple-hurdle approach is often useful when job training is long, complex, or
expensive, or when the organization is very selective or has a large applicant pool.
Although these selection situations are well known and are often mentioned in mea-
surement and industrial psychology texts, the statistical issues of the multiple-hurdle
validation designs are not well understood. It should be pointed out that a concurrent
(or predictive) design containing a new test and an old test is a simple version of a
multiple-hurdle design. Next, we discuss the statistical properties of multiple-hurdle
designs.

To develop the statistical argument, we introduce three variables, say Z, X, and Y,
as Ghiselli (1964) did in his three-variable case. Without loss of generality, we concep-
tualize each variable either as a scalar or as a vector containing several measures. We
will let Z be a vector with pz elements, X a vector with px elements, and Y a vector with
py elements. In addition, because of the sequential nature of the multiple-hurdle
design, we denote the number of original observations as n, the number of observa-
tions selected with Z as n*, and the number of observations selected with X as n**.

In a concurrent validation design (a single-hurdle situation), we select with Z and
observe both X and Y some time after the individuals have been selected. (The Z in this
design could be the “old” test used to select the incumbents, X the “new” test that we
wish to validate, and Y the measure of performance.) Figure 1 illustrates this concur-
rent validation situation. It is known that in this situation, we encounter both direct
range restriction and indirect range restriction. We encounter direct range restriction
when we look at the relations between Z and X and between Z and Y and indirect
range restriction when we look at the relation between X and Y. Under direct restric-
tion, the regression weights are unbiased, but the correlations are biased. Under indi-
rect range restriction, both the correlation coefficients and regression weights (and the
standard errors) are biased (Sackett & Yang, 2000).

Figure 1 illustrates which regressions and correlations are biased in a concurrent
validity study. We can see from Figure 1 that all the correlations are biased including
the multiple R for the regression of Y on (Z, X). On the other hand, all of the regression
weights are unbiased except for the regression of Y on X. For the unbiased regressions,
the standard errors are also correct and can be used to test hypotheses about the popula-
tion regression weights. We will show later why the regression and correlations are
biased in some situations. To answer the first question posed, we must obtain an unbi-
ased estimate of the correlation (between Y and X) and regression of Y on X. Both the
correlation and regression are biased under this design. They both must be adjusted for
range restriction to answer the first question appropriately.

Figure 2 illustrates a two-hurdle situation. In this situation, we first select with Z,
then we select with X. The criterion Y, again, is available only for those who were
selected. Usually, Y takes the form of some sort of performance appraisal obtained 6 to
12 months after selection. As Figure 2 illustrates, only the regression of Y on (Z, X)
and the regression of X on Z (based on n* cases) are unbiased. The other regressions
are biased and must be corrected for range restriction. All correlations, as in the con-
current design, are biased and must be corrected for range restriction. These observa-
tions generalize to selection designs involving more than two hurdles.
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Figure 3 illustrates a predictive validation design. In this situation, we administer Z
and X to the applicants, then select with Z (“old” test). The criterion Y is obtained
some time after selection, say, 6 to 12 months after selection. In this design, the corre-
lation and regression of X on Z, based on the n observations, are unbiased and need not
be corrected. Also, the regression of Y on (Z, X) and that of Y on Z are unbiased. How-
ever, the regression of Y on X must be corrected for indirect range restriction. When
we look at the correlations, we see that the correlations between Z and Y, and between
X and Y, are biased and must be corrected for range restriction. Not surprisingly, in
each of the three designs, the correlation and regression of Y on X are biased and must
be corrected.1

Statistical Argument

Single-Hurdle Selection: Concurrent Validation

To obtain the regressions and correlations in the unrestricted population, we must
first find the unrestricted variance-covariance matrix Σ (of Z, X and Y). The statistical
task in the single-hurdle design illustrated in Figure 1 involves obtaining Σ from the
restricted variance-covariance matrix Σ* of the selected (marginal) population:

Σ
Σ Σ Σ

Σ Σ
Σ

Σ Σ Σ
Σ*

* * *

* *

*

=
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zz zx zy

xx xy
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Σ
Σ

Σ

















= .

The submatrices in Σ* are all observable. The submatrices in Σ, however, are not and
must be obtained from the observed matrices. The only observable submatrix in Σ is
Σzz, which is based on the “applicants.”
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Figure 1: Regressions and Correlations in a Concurrent Validation Design:Selection With Z
a.  Unbiased (or biased) refers to regression model specified on left.
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Assuming that Z, X, and Y are multivariate jointly normally distributed (before
selection) and applying Lawley’s (1943) results,2 we find that the relationship between
the restricted and unrestricted matrices is

Σ Θ Σ∗
zx zx= *

Σ Θ Σ∗
zy zy= * ,

(1)
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Figure 2: Regressions and Correlations in a Two-Hurdle Validation Design: Selections
With Z Then X
a. Unbiased (or biased) refers to regression model specified on left.
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Figure 3: Regressions and Correlations in a Predictive Validation Design:Selection With Z
a. Unbiased (or biased) refers to regression model specified on left.
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where

Θ = Σ Σ∗
zz zz

*−1.

Because the covariance between X and Y has been affected by indirect restriction,
untangling the relation between restricted and unrestricted parameters is a bit more
complicated. Following Ree et al. (1994), we can show that the relation is

Σ Σ
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yy

xx xy

yy

xz zx xz





 =









 +

* *

*

* * * * *

* *

Φ Σ
Σ Φ Σ

∗

∗
zy

yz zy









 , (2)

where

Φ Σ Σ Σ Σ* * * *= −− − −
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1 1 1.

Noting that the regression of X on Z in the selected population is Bx z zz zx.
* * *= −Σ Σ1 and

that the regression of Y on Z is By z zz zy.
* * *= −Σ Σ1 , we can rewrite Equations 1 and 2 in

terms of these regressions as follows:

Σ Σzx zz x zB= *
.

*

Σ Σzy zz y zB= *
.

*
(3)

Σ Σ
Σ

Σ Σ
Σ

Σ Σxx xy

yy

xx xy

yy

x z zz zB





 =









 +

−* *

*
.

* ('
z x z x z zz zz y z

y z zz zz y z

B B B

B B

*
.

*
.

* *
.

*

.
* *

.
*

) ( )

( )

′

′

−
−

Σ Σ
Σ Σ









 .

Both of these regressions are computed on the n* cases. From Equation 3, we can see
that the variance-covariance matrix of the unrestricted population is a function of Σzz

and the restricted parameters Σ zz x zB*
.

*, , and By z.
* .

Next, we turn our attention to the relation between the regressions in the unre-
stricted and restricted populations. Recall that the regression of X on Z is
Bx z zz zx. = −Σ Σ1 , and that the regression of X on Z on the restricted population is
Bx z zz zx.

* * *= −Σ Σ1 . From Equations 1 and 2, we see that these two regressions are equal:

B Bx z zz zx zz zx zz zx x z.
* * * * *

.( )( )= = = =− − − −Σ Σ Σ Θ Θ Σ Σ Σ1 1 1 1 .

Similarly, we can show that B By z y z. .
*= . The regressions are not affected by direct

range restriction and can be computed on the restricted population without having to
be corrected. Under multivariate normality, it is not hard to show using a similar argu-
ment that direct range restriction does not affect the conditional variances, that is,
Σ Σ Σ Σxx z xx z yy z yy z. .

*
. .

*,= = and Σ Σxy z xy z. .
*= . Incidentally, Ghiselli (1964, p. 364), in

deriving his formula to correct the correlation between X and Y for direct and indirect
range restriction, assumed that Σ Σxy z xy z. .

*= . This assumption, as we pointed out, will
be met under multivariate normality. His correction equations are obtainable under our
set of equations.
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We now turn our focus to the regression of Y on X. In this situation, indirect range
restriction, rather than direct, affects the covariance between X and Y. Under indirect
selection, the regressions are not equal. The reason for the inequality is not difficult to
show. Consider the regression of Y on X on the unrestricted By x xx xy. = −Σ Σ1 and
restricted By x xx xy.

* *= −Σ Σ ∗1 populations. Again, using Equation 2, we rewrite the unre-
stricted regression in terms of the restricted parameters and find that

By x xx xz zx xy xz zy.
* * * * * * * *( ) ( )= + +−Σ Σ Φ Σ Σ Σ Φ Σ1 . (4)

We can see from Equation 4 that the restricted and unrestricted regressions are not
equal unless the covariance between X and Z is zero. In other words, the unrestricted
and restricted regressions are equal only when Z is uncorrelated with X.

Two-Hurdle Selection

Next, we discuss the two-hurdle situation given in Figure 2. In the two-hurdle situa-
tion, we assume that n* individuals are selected with Z from a pool of n individuals.
Then, n** are selected with X from the n* previously selected (n > n* > n**). This
selection process yields what Little and Rubin (1987) have called a monotonic missing
data structure. Again, we are interested in obtaining the unrestricted variance-
covariance matrix Σ from the variance-covariance matrices Σ* and Σ** of the selected
(marginal) populations:
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The matrices with one asterisk (*) are observed after selection on Z and are based on
n* cases. The matrices with two asterisks (**) are observed after selection on X and are
based on n** cases. Consequently, the matrices Σzz, Σ zz

* , Σ zz
** , Σ zx

* , Σ zx
** , Σ xx

* , Σ xx
** , Σ zy

** ,
Σ xy

* , Σ yy
** are the ones observable. The matrices that are not observable, and must be

solved for, are the matrices Σzx, Σxx, Σzy, Σxy, Σyy. We first solve for the matrices involving
selection with Z. From Equations 1 and 2, we get

Σ Θ Σzx zx= * *
.

Σ Σ Σ Θ Σ Σ Σ Σxx xx xz zx xx x z zz zz x zB B= + = + −′* * * * *
.

* *
.

*( )

(5)

Because the multiple-hurdle situation involves direct selection with Z and X, we use
our previous results involving equality of slopes and conditional variances to solve for
the remaining matrices. We solve for the matrices Σzy, Σxy by noting that the slopes in
the unrestricted and restricted populations are equal, By.zx = By zx.

** This equality follows
from the normality assumption. Next, consider the regression of Y on (Z, X), and par-
tition the predictor vector so it corresponds to the elements in Z and X such that
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Rewriting Equation 6, we can see that
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Now, note that the regressions are equal, B By zx y zx. .
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Because By zx.
** is based on the n** cases, it is directly observable. Substituting into

Equation 6 with the observed regression, we find that

Σ Σ Σzy zz z zx xB B= +** **

and

Σ Σ Σxy xz z xx xB B= +** ** . (7)

We next solve for the last remaining unsolved matrix Σ yy . Because the conditional
variances are not affected by direct selection, Σ Σyy zx yy zx.

**
.= . From the definition of the

conditional variances, it follows that

Σ Σ Σ Σyy y zx zx zx y zx yy y zx zx zx y zxB B B B− ′ = − ′
. , .

**
.

**
,

**
.

** .

Solving for the variance of Y in the unrestricted space, we obtain

Σ Σ Σ Σyy yy y zx zx zx y zx y zx zx zx y zB B B B= − + ′′**
.

**
,

**
.

**
. , . x .

But the slopes are equal under direct selection, so

Σ Σ Σ Σyy yy y zx zx zx zx zx y zxB B= + −′**
.

**
. ,

**
.

**( ) . (8)

Note that in the multiple-hurdle situation, the equations must be solved sequentially.
First, we solve Equation 5. Then, using the results from Equation 5, we solve Equation
7. After obtaining the results from Equation 7, we solve Equation 8. Putting all of the
results together, we get Σ, the unrestricted population.

We focus next on the relationship between the unrestricted and restricted regres-
sions of Y on X. The unrestricted regression of Y on X is by definition
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By x xx xy. = −Σ Σ1 .

If we rewrite the regression using Equations 5 and 7, we can see that in the multiple-
hurdle situation, the regression of Y on X depends on the relation between X and Z, the
Z selection ratio, and the restricted variance of X,

B B By x xx xz zx xz z xx x.
* * * ** **( ) ( )= + +−Σ Σ Φ Σ Σ Σ∗ 1

= +






−( ) ( )* * *

**

**
Σ Σ Φ Σ Σ Σ∗

xx xz zx xz xx
z

x

B

B
1

= +B B Bz x z x.
** **.

(9)

Furthermore, notice that when the covariance between X and Z is zero in the unre-
stricted population, the covariance between X and Z is also zero in the restricted popu-
lation. (If Z is uncorrelated with X, then it follows from Equation 5 that
Σ Θ Σzx zx= =* * 0 and Σ zx

* = 0). When the covariance between X and Z is zero, it fol-
lows from Equation 9 that unrestricted and restricted regressions are equal,

B By x xx xx xx xy xx xy y x.
** ** ** **

.
**( )= + = =− − −Σ Σ Σ Σ Σ Σ1 1 10 .

In situations in which the covariance is not zero, the unrestricted and restricted regres-
sions are not equal.

Three-Hurdle Situation and Beyond

The three-hurdle selection situation involves just a minor generalization of the two-
hurdle situation. Consider the situation in which we first select with Z, then X, and
then W. The Y is observed after the last hurdle. Using our previous result, we can see
that the first set of equations is

Σ Θ Σzx zx= ( ) ( )1 1

Σ Σ Σ Σxx xx x z zz zz x zB B= + −′( )
.

( ) ( )
.

( )( )1 1 1 1 .
(10)

To simplify the notation, we are using a number between the parentheses to take place
of the asterisks. Our second set of equations yields

Σ Σ Σzw zz z zx xB B= +( ) ( )2 2

Σ Σ Σxw xz z xx xB B= +( ) ( )2 2

Σ Σ Σ Σww ww w zs zx zx zx zx w zxB B= + −( )
.

( )
, ,

( )
.

( )( ) ,2 2 2 2

(11)
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where
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Similarly, we obtain the last set of equations,

Σ Σ Σ Σzy zz z zx x zw wB B B= + +( ) ( ) ( )3 3 3

Σ Σ Σ Σxy xz z xx x xw wB B B= + +( ) ( ) ( )3 3 3

(12)

Σ Σ Σ Σwy wz z wx x ww wB B B= + +( ) ( ) ( )3 3 3

Σ Σ Σ Σyy yy y zxw zxw zxw zxw zxw y zxwB B= +
′

−3 3 3 3
.

( )
, ,

( )
.

( )( ) ,

where
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Again, the equations must be solved sequentially. We solve Equation 10 first. Then,
using the results from Equation 10, we solve Equation 11. After obtaining the results,
we solve Equation 12. Generalizations to more complicated designs are possible by
following the logic described. Before discussing parameter estimation, we consider
Figure 3, a variant of Figure 1.

The Modified Single-Hurdle Selection: Predictive Validation

Figure 3 describes a selection situation in which Z and X are collected but only Z is
used for selection. The criterion Y is observed only on the individuals selected. This
design is often used to establish predictive validity. In this design, the elements of the
variance-covariance matrix between Z and X are directly available, Σzx,zx. So our task is
much simpler. The only matrices that are not observable are Σzy, Σxy, and Σyy. These
matrices are obtained as follows:

Σ Θ Σzy y= * *
2

Σ Σ Σxy xz z xx xB B= +* * , and (13)

Σ Σ Σ Σyy yy y zx zx zx zx zx y zxB B= + −′*
.

*
, ,

*
.

*( ) .

Following the previous argument, we can show that the only biased regression in
Figure 3 is the regression of Y on X. As in the concurrent validity situation, the regres-
sion of By x.

* is biased. In terms of bias for the regression of Y on X, the predictive and
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concurrent designs are the same. One advantage of this design, however, is that we can
directly obtain an unbiased estimate of the correlation between Z and X.

Estimation

The statistical equations presented above helped us with the understanding of
biases in validation designs. However, the equations are only partially helpful when it
comes to estimation because the equations must be modified every time that we add or
delete a hurdle. More general procedures based on computer iterations exist that do not
require such modification. We discuss two of these procedures: the estimation maxi-
mization (EM) computer algorithm of Dempster et al. (1977) and the multiple imputa-
tion procedure (MI) of Rubin (1978).

The equations (formulas) given in the previous section and the EM procedure yield
maximum likelihood (ML) estimators. The use of the equations for estimation can be
justified by a factorization of the likelihood under a monotonic missing data structure
(e.g., see Little & Rubin, 1987; Mendoza, 1993). Because both EM and the formulas
(under a monotonic data structure) yield ML estimators, they give very similar results.
The EM, however, is a computer algorithm procedure that yields ML estimators under
a variety of missing data structures and is not limited to the monotonic missing data
structure (see McLachlan & Krishnan, 1997). The EM algorithm works iteratively by
estimating the conditional distribution of the missing values, conditional on a current
estimate of the parameter and the observed values. The EM and MI procedures are
similar in that both basically rely on “filling in” for the missing values to obtain the
appropriate estimators of the unrestricted parameters. The MI procedure, however,
approaches the filling-in problem from a Bayesian perspective (Rubin, 1987).

Filling in for the missing data requires, however, that we meet the MAR assumption
(Rubin, 1976). Under the MAR assumption, the missing data mechanism can be
ignored in estimating parameters; the estimation procedure does not need to explicitly
account for the distribution of the missing data. The MAR assumption is likely to be
tenable in many selection situations because missingness is under the control of the
investigator. Although the MAR assumption may not be a problem, the sample size
could be. In a multiple-hurdle with two or more hurdles, the initial sample size must be
large or the selection ratios must not be too small to avoid having a small sample at the
criterion level. Next, we discuss the MAR as it applies to selection.

Consider the data matrix W for a simple validation design containing observed and
missing values (not observable), W = (XobsYobsYmis). The predictor data are observed,
and the criterion data are available only for those who were selected. The MAR
assumption requires that the probability of missing be independent of the missing
data, Ymis, but depend on the observed data, Xobs. In other words, the fact that an obser-
vation on Y is missing does not depend on the value of Y but on the value of X. The
basic idea here is that X is sufficient to predict whether Y is missing. This is, of course,
what happens in many selection situations: We use a test score to decide whether to
select an individual. If they are selected, the criterion is observed; if they are not
selected, the criterion is missing. Note that the MAR assumption implies that the con-
ditional distribution of Y given X is the same whether Y is missing or observed (Rubin,
1976). According to Schafer and Schenker (2000), the observed data provide no infor-
mation to support or contradict the MAR assumption. The evidence to support the
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assumption must be found from sources outside the observed data. If the MAR
assumption is met and the observed variables are related to the criterion, issues of sam-
ple size aside, the EM, MI, and the formulas should provide accurate corrections in
many selection situations. The reader is referred to Little and Schenker (1995),
Schafer and Graham (2002), or Allison (2001) for an excellent discussion of the MAR
assumption and other topics dealing with missing data.

Next, consider the multiple-hurdle design with variables Z, X, and Y and assume
that Z and then X are used in the selection of individuals. Here, Z is sufficient to predict
whether X is missing, but Z and X are needed to predict whether Y is missing. Notice
that X by itself is not sufficient for the presence or absence of Y. The independence-
from-missing-data assumption embedded in MAR requires that we have data on all of
the variables that are related to selection. For example, suppose that unbeknownst to us
another variable besides Z and X was used occasionally to make hiring decisions.
Because selection here is a function of Z, X, and the undisclosed variable, MAR would
not be met if you take into consideration only Z and X. Any correction not taking into
account the undisclosed variable would be biased, with the degree of bias depending
on the variable’s effect on selection and its correlation with Z and X. Of course, if the
variable were highly correlated with Z and X, then the bias would be small. Similarly,
if self-selection bias were to keep high performers from applying, the missingness
would be a function of the unobserved performance, and MAR would not be met. If
MAR is not met, the missing data are said to be MNAR, and other procedures must be
used. This situation is also referred to as a nonignorable.

MAR is not an all-or-none condition, and different degrees of MAR can exist for a
variable or variables in a data set. Collins, Schafer, and Kam (2001) showed that the
ML and MI estimates are robust to mild violations of the MAR assumption. They also
showed that inclusive designs (those that collect auxiliary variables, variables that are
likely to be related to the missingness) are more robust than restrictive designs (those
that do not collect these variables) to MAR violations.

Procedures that are appropriate for nonignorable (MAR is not met) situations (the
missing data are a function of missing information) have been given by Heckman
(1976), Amemiya (1984), Little (1995), and, in the context of range restriction, Gross
and McGanney (1987). However, these procedures are sometimes difficult to imple-
ment and often are very sensitive to assumptions (Allison, 2001). Because it is our
position that with a bit of planning and careful data collection, most selection situa-
tions can assume MAR, we focus on procedures that are appropriate under MAR.
However, before leaving this subject, we make a point about attrition.

If data are missing because of selection and attrition, attrition must be taken into
consideration. To meet the MAR assumption, we must have data on the selection vari-
ables and the variables related to attrition. If attrition is related to performance (and the
performance measure is taken before attrition takes place and again later after attrition
takes place), then one could incorporate attrition as an additional hurdle in the design.
In this situation, we are likely to meet MAR because we have information that is
related to attrition. When attrition is not related to the observed data, then the MAR
assumption is not likely to be met unless attrition is truly a random phenomenon. We
can ignore attrition only when it is truly random; that is, attrition is unrelated to both
the observed and unobserved data. In this situation, the missing data (due to attrition)
are MCAR. This is the only situation in which we can ignore attrition (see Little &
Rubin, 1987; Switzer, Roth, & Switzer, 1998, for a discussion of MCAR). In valida-
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tion designs in which attrition can be a factor, the researcher will be well served by col-
lecting auxiliary variables that are likely to be related to attrition.

Multiple Imputation Procedures

As we discussed earlier, the MAR condition is important because under MAR, the
observed data likelihood provides the appropriate likelihood function for estimating
the parameters of the (unrestricted) population. Consequently, inferences using ML or
MI procedures are valid when the missing data are MAR. Although it is generally easy
to obtain ML estimates using the EM algorithm (or any other ML algorithm), the stan-
dard errors are generally not easy to obtain. Although the stochastic EM algorithm
(Meng & Rubin, 1991), the bootstrap (McLachlan & Krishnan, 1997), and others
(Schafer & Schenker, 2000) have appeared in the literature for obtaining standard
errors of ML estimates, they are not always available and easy to implement. At this
point, the MI procedure appears to be the more flexible and easier to implement in gen-
eral situations in which we desire standard errors, confidence intervals, and tests of
hypotheses.

Rubin (1978) formally introduced the concept of multiple imputations. In multiple
imputations, each missing value in the data set is replaced by a set of m (> 1) values
drawn from the posterior predictive distribution of Ymis (see Rubin, 1987; Schafer &
Olsen, 1998). The MI procedure yields m imputed (complete) data sets. The imputed
data in the MI procedures, by the way, reflect both sampling uncertainty and model
uncertainty. Because the data sets have no missing observations, they can be analyzed
with standard statistical procedures. After analyzing each of the data sets, the results
are combined in one overall analysis using the combination rules given by Rubin
(1987). Rubin showed that the combined estimates follow approximately the t distri-
bution. In addition, Li, Raghunathan, and Rubin (1991) have given an F approxima-
tion to be used in multiparameter inferences, allowing for the test of the null hypothe-
sis that all of the parameters are zero.

Many multiple imputation procedures have been proposed in the literature. Basi-
cally, these procedures can be described as being Bayesian or non-Bayesian. The
Bayesian procedures fill in the missing values from the conditional distribution

P(Ymis | Yobs, ψ).

However, in Bayesian terms, the parameter ψ is a random variable with a posterior dis-
tribution, and Yobs refers to observed data in the entire data set. Thus, before we can fill
in any missing values, we must first formulate the posterior distribution of ψ. The fill-
in process involves sampling first from the posterior distribution of ψ to obtain the
realization ψo, then to sample from

P(Ymis | Yobs, ψo)

to fill in the missing values. The process is repeated m times to obtain m values for each
missing observation.

The non-Bayesian alternatives do not rely on the predictive posterior distribution to
model the uncertainty of the missing data. Rao and Shao (1992) gave a procedure to
estimate the mean and variance of variables with missing data (under MAR condi-
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tions) using a modified jackknife procedure. In addition, Efron (1994) also has pro-
vided a number of nonparametric procedures to handle missing data. This procedure
can be applied to parametric and nonparametric situations, but it is computationally
demanding. We will not discuss the non-Bayesian procedures further.

The MI procedure must incorporate the appropriate variability among the m sets of
imputations to be “proper” (Rubin, 1987). Imputation procedures that are not proper
yield bias estimators (see Rubin, 1996, for a technical discussion of proper imputation
procedures). However, Schafer (1997) has demonstrated that the MI procedures are
robust to modest departures from the imputation model. The MI procedure is also
robust to the normality assumption (Graham & Schafer, 1999). Nevertheless, care
should be taken in selecting the appropriate imputation model and ensuring that the
assumptions are met. Also, care should be taken to include in the imputation model
any association that may prove important to subsequent analyses.

Recently, MI implementation has been made easier and more effective by the work
of Schafer and Olsen (1998). They presented a data augmentation (DA) technique
based on the work of Tanner and Wong (1987). DA is an MI procedure that uses a
Monte Carlo approach to simulate the Bayesian posterior distribution. The procedure
alternates between the random imputation of missing data under assumed values of the
parameters and draws from the Bayesian posterior distribution of the parameters.
Once DA has converged, it can be used to obtain the m multiple imputations needed.
Schafer and Olsen (1998) have presented three computer programs in S-Plus NORM,
CAT, and MIX for the implementation of this DA procedure. NORM is also available
as a stand-alone for Windows. The computer programs are easy to use and can be
obtained from Schafer’s Web site. NORM is used for multivariate normal data, MIX is
used for mixed models, and CAT is used for loglinear models. Similar procedures are
now available in SAS. SAS 8.2 and later versions contain two missing data analytic
procedures (Proc MI and Proc MIANALYZE). Unlike NORM, Proc MI can set maxi-
mum and minimum values for the imputed data. In addition, Proc MI allows for round-
ing off the missing values (for a more complete list of available software, see Allison,
2001; Horton & Lipsitz, 2001; Schafer & Graham, 2002).

NORM can be used to generate m imputed (complete) data sets from a data set with
missing data. The m data sets are then each analyzed using standard statistical proce-
dures. The results are then averaged (combined) over the m data sets to estimate the
parameter and construct a test of the hypothesis. The number of data sets m in most sit-
uations does not have to be large. Schafer (1997) recommends three to five data sets
per estimator. So if we were interested in estimating two parameters, we would set m =
6-10. Once the m data sets are generated, NORM can be used again to combine the
results. To check the stability of the results, one can replicate the entire imputation pro-
cess with a larger m and see whether there are qualitative differences between the two
runs. Because in most situations computer time is not an issue and because the larger
the m the more stable the results are likely to be, the researcher should not be too con-
servative with the size of m.

An Example

We illustrate the procedures next using simulated data. The advantage of using sim-
ulated data is that we know the population parameters. Thus, the results are easy to
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evaluate. For analyzing the data, we wrote two SAS macros (Macro A and Macro B)
that create files to be used in NORM and in SAS. Both the MI and EM procedures are
available through NORM version 2.03. Schafer’s NORM program was used to esti-
mate the population variance-covariance matrix; with it, we obtained an ML (EM) and
an MI estimate of this matrix.

Macro A was used to perform the regression analyses, and Macro B was used to
perform the correlation analyses. Both macros are available from the authors. The cor-
relation macro has a procedure created within SAS PROC IML to estimate the large-
sample variance-covariance matrix of the correlations. The procedure was based on
the work of Olkin and Finn (1995).

A random sample of 300 observations was obtained from a multivariate normal dis-
tribution with variables Z, X, and Y. The population means were 100, the variances
were 30, and the covariances were each 15 (and each correlation is .5). After the ran-
dom sample size of 300 was obtained, the data were rank ordered along the Z variable,
and the top 200 observations were selected. Next, we rank ordered the remaining data
set along the X variable, and the top 100 observations were selected. The final sample
had 300 Z scores, 200 X scores, and 100 Y scores, simulating a multiple-hurdle design
(Figure 2 depicts the shape of this sample). Because Figures 1 and 3 are special cases
of Figure 2, the example followed Figure 2. The analysis of either of the other two is
very similar.

Table 1 gives the EM, MI, and formula-corrected estimates of the population
variance-covariance matrix as well as estimates obtained from the listwise-deletion
analysis (n** = 100). The population values are also given for comparisons. Two sets
of estimates were computed for the MI procedure, one with 10 and one with 20 impu-
tations, but only the results for the 20 imputations are shown in Table 1. Because
NORM estimated the fraction of missing data to be high, .57, we increased the number
of imputations from 10 to 20 and reran the analysis. By increasing the number of impu-
tations to 20, one can increase the efficiency of the MI estimation (see Schafer &
Olsen, 1998). As a note of caution, NORM may yield different estimates of the frac-
tion of missing information depending on the number of imputations, so it is important
that the initial number of imputations not be too small. Otherwise, NORM seems to be
very precise and useful.

We see from Table 1 that the listwise-deletion (uncorrected) analysis underesti-
mated the population variances and covariances. On the other hand, the EM and the
formula estimates were much closer to the population parameters but not as accurate
as the MI estimates when the number of imputations was 20. Next, the corrected
variance-covariance matrices were submitted to SAS Proc Reg to obtain the regres-
sions and multiple correlations. These are given in Tables 2 and 3.

Table 2 gives the regression coefficients for five regression analyses (listwise, EM,
both MIs, and formulas) when (a) Y was regressed on Z, (b) Y was regressed on X, and
(c) Y was regressed on (Z, X). Conditions a and b are biased. We can see from Table 2
that in the unbiased condition, as expected, the EM, MI, and formula estimates were
not very different from the listwise regression analysis. In the bias conditions, how-
ever, the EM, MI, and formula estimates performed much better than did the listwise
deletion. Again, the MI with m = 20 yielded the most accurate estimates.

Not given in Table 2 are the MI standard errors for the regression of Y on (Z, X).
Using Macro A, we found the MI standard errors, when m = 20, to be .15 for both the Z
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and X regression coefficients. When we tested the null hypothesis that the two popula-
tion regression coefficients were zero (multiple correlation is zero), we reject it with
F(2, 53) = 8.45, p < .01.

Table 3 is analogous to Table 2 but gives the squared correlations instead of the
regression coefficients. We see from Table 3 that the listwise-deletion analysis under-
estimated the population multiple R2. The EM and MI also underestimated the R2, but
by a lesser amount. The underestimation is present also in the squared correlation
between Y and Z and between Y and X. Both the EM and MI (with 20 imputations)
gave better estimates than did the listwise-deletion analysis.

Next, to demonstrate the use of the procedures when they involve correlations, we
tested the null hypothesis that all of the correlations (ρzx, ρzy, ρxy) were zero in popula-
tion. Because this test involves a simultaneous inference, we obtained the variance-
covariance matrix of the correlations for each of the imputed data sets. We obtained
this matrix by implementing the procedure given by Olkin and Finn (1995) in Macro
B, and the test was executed in NORM using the multiparameter inference option. As
expected, the null hypothesis of no correlations was rejected, yielding F(3, 86) =
17.15, p < .01. The corrected correlation and the standard errors were rzx = .57 (.09),
rzy = .40 (.11), and rxy = .45 (.10), not too far from their population value of .50.
(Clearly, these correlations correspond to those given in Table 3. However, the advan-
tage of this analysis is that we also get the standard errors.)

Next, to test for Ho: ρzy – ρxy = 0 (in many designs, this would be the hypothesis that
the new test is better than the old test), we created a file (with Macro B) containing the
variance of the difference between the correlations and submitted it to NORM. As
expected (recall that both correlations are .5 in the population), the null hypothesis was
not rejected. The t ratio was –.50 with p = .62.
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Table 1
Estimates of the Variance-Covariance Matrix Under Population, Listwise Deletion,

Estimation Maximization (EM), Multiple Imputation (MI), and Formulas

Method Z X Y

Population Z 30.00 — —
X 15.00 30.00 —
Y 15.00 15.00 30.00

Listwise deletion Z 15.57 — —
X 4.80 10.30 —
Y 4.76 4.26 26.50

EM Z 29.89 — —
X 16.41 27.50 —
Y 11.41 12.11 30.12

MIa Z 31.72 — —
X 16.58 29.88 —
Y 16.05 16.62 32.35

Formulas Z 29.98 — —
X 16.47 27.72 —
Y 11.47 12.21 30.92

a.  Number of imputations = 20.
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It should be pointed out that any of these correlations also could be corrected for
attenuation if an estimate of reliability is available. Also, if the standard error of this
reliability coefficient is available (see Fan & Thompson, 2001) a confidence interval
on the doubly corrected correlation can be found following Mendoza, Stafford, and
Stauffer (2000). For example, suppose that the alpha reliability of X is estimated out-
side of the validation study to be .90. Further assume that by applying the procedure
illustrated in Fan and Thompson (2001), you find the lower bound and upper bound of
the reliability for a 95% confidence interval to be .70 and .97, respectively. Then,
applying the Bonferroni technique given in Mendoza et al. (2000), the 90% lower
bound for the doubly corrected correlation is

ρl = − =. . (. )

.
.

449 1 96 101

70
30,
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Table 2
Estimates of the Regression Coefficients Under Population, Listwise Deletion,

Estimation Maximization (EM), Multiple Imputation (MI), and Formulas

Unbiased Biased

Method Za Xa Zb Xc

Population .33 .33 .50 .50
Listwise deletiond .21 .32 .31 .41
EM .21 .32 .38 .44
MI e .16 .24 .28 .33
MI f .22 .35 .42 .48
Formulas .21 .32 .38 .44

a. Y on Z and X.
b. Y on Z only.
c. Y on X only.
d. N = 100.
e. Number of imputations = 10.
f. Number of imputations = 20.

Table 3
Biased Squared Correlations Under Population, Listwise Deletion,

Estimation Maximization (EM), Multiple Imputation (MI), and Formulas

Method Multiple R2 a r2 b r2 c

Population .33 .25 .25
Listwise deletiond .09 .06 .07
EM .21 .15 .18
MI e .14 .09 .12
MI f .25 .17 .21
Formulas .20 .14 .17

a. Y on Z and X.
b. Y on Z.
c. Y on X.
d. N = 100.
e. Number of imputations = 10.
f. Number of imputations = 20.
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and the upper bound is

ρu = + =. . (. )

.
.

449 1 96 101

97
657 .

Discussion

Before turning to the broader conclusions flowing from the present study, certain
limitations should be noted. To begin, our example focused on only one multiple-
hurdle design; other validation designs are clearly possible. However, the multiple-
hurdle design used is rather representative, and we hope it provides a relatively reason-
able test of the proposed procedures. Also, it should be recognized that the estimates
produced by the multiple imputation procedure were examined under only two condi-
tions in which 10 and 20 imputed data sets were examined. With the use of 20 imputa-
tions, the MI procedure produced estimates that were similar to the equation estimates
and provided an accurate representation of population parameters. Nonetheless, it is
also true that use of a larger number of imputations, up to some asymptotic level,
would likely have provided more stable results.

With these caveats in mind, we believe the results obtained in the present effort have
some noteworthy implications. Perhaps the most important implication pertains to the
assumptions we make in framing the problem of range restriction. Earlier, we argued
that range restriction can be viewed as a specific instance of the more general problem
of estimating full-sample variance-covariance matrices under conditions in which
data are missing. Using this proposition, we have suggested a general approach for
correcting for range restriction that encompasses many of the traditional correction
procedures as special cases. Moreover, application of this approach yielded correc-
tions for correlation coefficients and regression weights, along with sampling errors,
for designs that had proven intractable using more traditional approaches.

The EM and MI procedures, as well as the formulas, all produced far more accurate
estimates of population regression weights and correlations than did listwise-deletion
analyses. Of course, relative to uncorrected estimates, listwise-deletion analyses evi-
denced the expected underestimation of test-criterion relations. In this regard, how-
ever, it should be noted that although the EM and MI procedures, as well as the formu-
las, did not display the same level of gross underestimation as listwise-deletion
analyses did, they were somewhat conservative estimators of population parameters.
Preliminary work by Chasteen and Mendoza (2003) in the context of a multiple-hurdle
design also has shown that the EM and MI estimators are generally conservative as
long as the sample size is not too small (n** = 30) or all of the correlations are zero.
Although these conditions are not very likely in practice, R. L. Linn, Harnisch, and
Dunbar’s (1981) recommendation to routinely report both observed and corrected cor-
relations makes sense. More research is needed to fully understand the strengths and
weaknesses of these procedures in the context of validation designs.

Although the derivation of the equations is of interest in its own right, the impor-
tance of the equations lies in the fact that they provide a general approach to assess the
impact of selection at the population level, pointing out that selection is not a problem
that can be solved by simply increasing sample size. Although the equations can be
used for estimation, the estimation of the parameters is best implemented using a mul-
tiple imputation procedure that provides estimates of the standard errors.
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Application of this approach can improve the accuracy of corrected validity coeffi-
cients, especially if an extensive set of variables is collected in validation studies. The
variables collected should be able to model both the sources of missing data and poten-
tial influences on performance. Although some cost is entailed in such extended data
collection efforts, it is also the case that these additional variables provide a more com-
prehensive basis for appraising the validity of the resulting selection system and
improve the accuracy of the estimation. Application of this strategy, moreover, will
result in the integration of corrections and performance theories. This integration of
correction estimates with substantive theory was recommended by James et al. (1988)
and should serve to provide requisite evidence for the substantive meaningfulness of
corrected estimates.

It appears from the results obtained that it is possible to find a general solution that
allows for estimation, confidence intervals, and hypothesis testing of corrected coeffi-
cients in many range-restriction problems through the application of missing data pro-
cedures. These procedures have the added advantage that they are a reasonably robust
to moderate departure from normality. Furthermore, procedures that do not require the
normality assumption are increasingly becoming more available. These are the only
procedures, given that appropriate measures are collected, that are capable of address-
ing the multitude of factors that generate range restriction in validation designs,
including recruiting, self-selection bias, and attrition. Although it is not yet clear what
measures (auxiliary variables) should be collected—more research must be done
before we can formulate an answer—we have a set of procedures with a theoretical
framework that gives us the flexibility needed for the estimation of complex range-
restriction effects. Given the advantageous characteristics of the missing data
approach, we believe that missing data models can provide a coherent framework for
effectively addressing range-restriction problems in many criterion-related validity
studies.

Notes

1. In a predictive validity design in which the new test is used for selection, the design re-
duces to a two-variable design. In this case, the correlation between the test and criterion is cor-
rected for direct range restriction.

2. Normality is assumed for convenience. For the equations to hold, we need only (a) equal
(linear) conditional expectations over the selected and referent populations and (b) constant
conditional variances over the selected and referent populations.

References

Allison, P. D. (2001). Missing data. Thousand Oaks, CA: Sage.
Amemiya, T. (1984). Tobit models: A survey. Journal of Econometrics, 24, 3-61.
American Educational Research Association, American Psychological Association, & Na-

tional Council on Measurement in Education. (1999). Standards for educational and psy-
chological testing. Washington, DC: American Educational Research Association.

Bobko, P. (1995). Correlation and regression: Principles and applications for industrial/
organizational psychology and management. New York: McGraw-Hill.

Chasteen, C. S., & Mendoza, J. L. (2003, April). Restriction in range issues in validation de-
signs: Modern tools for old problems. Paper presented at the national meetings of the Amer-
ican Educational Research Association, Chicago, IL.

438 ORGANIZATIONAL RESEARCH METHODS

 at UNIV OF OKLAHOMA on January 20, 2016orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive
strategies in modern missing-data procedures. Psychological Methods, 6, 330-351.

Efron, B. (1994). Missing data, imputation, and the bootstrap. Journal of the American Statisti-
cal Association, 89, 463-475.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39(series B), 1-38.

Fan, X., & Thompson, B. (2001). Confidence intervals about score reliability coefficients,
please: An EPM guidelines editorial. Educational and Psychological Measurement, 61,
517-531.

Ghiselli, E. E. (1964). Theory of psychological measurement. New York: McGraw-Hill.
Ghiselli, E. E. (1966). The validity of occupational aptitude tests. New York: John Wiley.
Graham, J. W., & Schafer, J. L. (1999). On the performance of multiple imputation for

multivariate data with small sample size. In R. Hoyle (Ed.), Statistical strategies for small
sample research (pp. 1-29). Thousand Oaks, CA: Sage.

Greener, J. M., & Osburn, H. G. (1979). An empirical study of the accuracy of corrections for re-
striction in range due to explicit selection. Applied Psychological Measurements, 3, 31-41.

Greener, J. M., & Osburn, H. G. (1980). Accuracy of corrections for restriction in range due to
explicit in heteroscedastic and nonlinear distributions. Educational and Psychological
Measurement, 40, 337-346.

Gross, A. L. (1990). A maximum likelihood approach to test validation with missing data and
censored dependent variables. Psychometrika, 55, 533-549.

Gross, A. L., & McGanney, M. L. (1987). The restriction of range problem and nonignorable se-
lection process. Journal of Applied Psychology, 72, 604-610.

Heckman, J. (1976). The common structure of statistical models of truncation, sample selection
and limited dependent variables, and a simple estimator for such models. Annals of Eco-
nomics and Social Measurement, 5, 475-492.

Hoffman, C. (1995).Applying range restriction corrections using published norms: Three case
studies. Personnel Psychology, 48, 913-923.

Horton, N. J., & Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software
packages for regression models with missing variables. American Statistician, 55, 244-254.

James, L. R., Demaree, R., Muliak, S. A., & Mumford, M. D. (1988). Validity generalization: A
rejoinder to Schmidt, Hunter, and Raju. Journal of Applied Psychology, 73, 443-452.

Kolmstetter, E. (2003). I-Os making an impact: TSA transportation security screener skill stan-
dards, selection system, and hiring process. Industrial-Organizational Psychologist, 40(4),
39-46.

Lawley, D. N. (1943). A note on Karl Pearson’s selection formulae. Proceedings of the Royal
Society of Edinburgh, 62, 28-30.

Li, K. H., Raghunathan, T. E., & Rubin, D. B. (1991). Large-sample significance levels from
multiply imputed data using moment-based statistics and an F reference distribution. Jour-
nal of the American Statistical Association, 86, 1065-1073.

Linn, R. L., Harnisch, D. L., & Dunbar, S. B. (1981). Correction for range restriction: An empiri-
cal investigation of conditions resulting in conservative corrections. Journal of Applied
Psychology, 66, 655-663.

Linn, R. T. (1968). Range restriction problems in the use of self-selected groups for test valida-
tion. Psychological Bulletin, 69, 69-73.

Little, R. J. A. (1995). Modeling the dropout mechanism in repeated-measures studies. Journal
of the American Statistical Association, 90, 1112-1121.

Little, R. J. A., & Rubin, D. B (1987). Statistical analysis with missing data. New York: John
Wiley.

Little, R. J. A., & Schenker, N. (1995). Missing data. In Arminger, G., Clogg, C. C., & Sobel, M. E.
(Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 39-75).
New York: Plenum.

Mendoza et al. / VALIDITY IN MULTIPLE-HURDLE DESIGNS 439

 at UNIV OF OKLAHOMA on January 20, 2016orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA:
Addison-Wesley.

McLachlan, G. J., & Krishnan, T. (1997). The EM algorithm and extensions. New York: John
Wiley.

Mendoza, J. L. (1993). Fisher transformations for correlations corrected for selection and miss-
ing data. Psychometrika, 58, 601-615.

Mendoza, J. L., & Mumford, M. D. (1987). Corrections for attenuation and range restriction.
Journal of Educational Statistics, 12, 282-293.

Mendoza, J. L., Stafford, K. L., & Stauffer, J. M. (2000). Large-sample confidence intervals for
validity and reliability coefficients. Psychological Methods, 5, 356-369.

Meng, X. L., & Rubin, D. B. (1991). Using the EM to obtain asymptotic variance-covariance
matrices: The SEM algorithm. Journal of the American Statistical Association, 86, 899-
909.

Messick, S. J. (1998). Alternative models of assessment, uniform standards of validity. In M. D.
Hakel (Ed.), Beyond multiple choice: Evaluating alternatives to traditional testing for se-
lection (pp. 59-74). Mahwah, NJ: Lawrence Erlbaum.

Olkin, I., & Finn, J. D. (1995). Correlation redux. Psychological Bulletin, 118, 155-164.
Ones, D. S., & Viswesvaran, C. (2003). Job-specific applicant pools and national norms for per-

sonality scales implications for range-restriction corrections in validation research. Journal
of Applied Psychology, 88, 570-577.

Pearson, K. (1903). Mathematical contributions to the theory of evolution XI: On this influence
of natural selection on the variability and correlation of organs. Philosophical Transactions
of the Royal Society, London, Series A, 200, 1-66.

Rao, J. N. K., & Shao, J. (1992). Jackknife variance estimation with survey data under hot-deck
imputation. Biometrika, 79, 811-822.

Ree, M. J., Carretta, T. R., Earles, J. A., & Albert, W. (1994). Sign changes when correcting for
range restriction: A note on Pearson’s and Lawley’s selection formulas. Journal of Applied
Psychology, 79, 298-301.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
Rubin, D. B. (1978). Multiple imputations in sample surveys—A phenomenological Bayesian

approach to nonresponse. Proceedings of the Survey Research Methods Section American
Statistical Association, 20-34.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: John Wiley.
Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical

Association, 91, 473-489.
Sackett, P. R., Laczo, R. M., & Arvey, R. D. (2002). The effects of range restriction on estimates

of criterion interrater reliability: Implications for validation research. Personnel Psychol-
ogy, 55, 807-825.

Sackett, P. R., & Ostgard, D. L. (1994). Job-specific applicant pools and national norms for cog-
nitive ability tests: Implications for range restriction corrections in validation research.
Journal of Applied Psychology, 79, 680-684.

Sackett, P. R., & Yang, H. (2000). Correction for range restriction: An expanded typology. Jour-
nal of Applied Psychology, 85, 112-118.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychologi-

cal Methods, 7, 147-177.
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data prob-

lems: A data analyst’s perspective. Multivariate Behavioral Research, 33, 545-571.
Schafer, J. L., & Schenker, N. (2000). Inferences with imputed conditional means. Journal of the

American Statistical Association, 95, 144-154.
Switzer, F. S., Roth, P. L., & Switzer, D.M. (1998). Systematic data loss in HRM settings: A

Monte Carlo analysis. Journal of Management, 24, 763-777.

440 ORGANIZATIONAL RESEARCH METHODS

 at UNIV OF OKLAHOMA on January 20, 2016orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


Tanner, M. A., & Wong, W.H. (1987). The calculation of the posterior distributions by data aug-
mentation. Journal of the American Statistical Association, 82, 528-550.

Jorge L. Mendoza is a professor in the psychology department at the University of Oklahoma.

David E. Bard is a graduate student in the psychology department at the University of Oklahoma.

Michael D. Mumford is a professor in the psychology department at the University of Oklahoma.

Siew C. Ang is a graduate student in the psychology department at the University of Oklahoma.

Mendoza et al. / VALIDITY IN MULTIPLE-HURDLE DESIGNS 441

 at UNIV OF OKLAHOMA on January 20, 2016orm.sagepub.comDownloaded from 

http://orm.sagepub.com/

