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When gross deviations from parametric assumptions are observed, conventional
data transformations are often applied with little regard for substantive theoreti-
cal implications. One such transformation involves using the logarithm of posi-
tively skewed dependent variables. Log transformations were shown to severely
decrease estimates of true moderator effects using moderated regression proce-
dures in a Monte Carlo simulation. Estimates of moderator effect sizes were sub-
stantially better estimates of the true latent moderator effect (i.e., larger by a mul-
tiple of 2.6 to 534) when estimated using a simple percentile bootstrap procedure
in the original, positively skewed data. Conclusions with regard to the presence or
absence of a true moderator effect using a simple bootstrap procedure were unaf-
fected by the violation of parametric assumptions in the original, positively
skewed data. In contrast, moderated regression analysis performed on a log-
transformed dependent variable severely increased Type-Il error. Implications are
drawn for applied psychological and management research.

At one time or another, almost all investigators in applied psychological and manage
ment research have been concerned by the assumptions required of common-paramet
ric statistical tests. Investigators typically assume that their samples were drawn from a
single population and rely on the power of the central limittheorem and other paramet
ric assumptions to draw inferences about latent relationships within that population.
When violations of parametric assumptions are severe, investigators often use some
data transformation designed to minimize the violation. For example, all three empiri
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cal studies reported in a recent spediahdemy of Management Jourrfatum on
managerial compensation performed log transformations on compensation data
(Conyon & Peck, 1998; Finkelstein & Boyd, 1998; Sanders & Carpenter, 1998) with
no mention of the purpose or rationale behind these transformations. Presumably, the
log transformations were done to address the presence of heteroskedasticity, that is,
the lack of independence between the meangifrenX (ﬂ X;) and the variance of

givenX (03 \Xi ) that coincides with extreme positive outliers or severe positive skew
(Winer, 1974). Winer's 1974 text has had a pervasive influence on organizational
research as reflected in the fact that it is the most highly cited publication 8oitial
Science Citation Indeftnstitute for Scientific Information, 1999) between 1957 and
1997 (J. L. Bennett, personal communication, July 12, 1999)—it is difficult to under
estimate the effect that Winer’s text (and its subsequent updates) has had on erganiza
tional researchers. It could be argued that performing log transformations en posi
tively skewed dependent variables has become a convention within applied
psychology and management research.

One of the following characteristics is required of studies using parametric ordinary
least squares (OLS) procedures to examine linear relationships between vafiables
andY: (a) XandY are random, bivariate normal or (K)s fixed andeis normal, where
e =Y;—bX; —b,. In the former caseX is random in the sense that investigators do not
specify or control levels oX treatment effects in advance. Insteddalues observed
occur ata frequency dictated by the population probability distributiod f@ommon
survey methods employed in research examining voluntary employee turnover (e.g.,
Mobley, Griffeth, Hand, & Meglino, 1979), job satisfaction (Smith, Kendall, & Hulin,
1969), performance prediction (Bray, Campbell, & Grant, 1974; Owens & Schoen-
feldt, 1979), and executive compensation (Finkelstein & Boyd, 1998) provide exam-
ples of random-effects designs. Importantly, whxandY are distributed bivariate
normal, probabilistic inferences (e.g., conducting hypothesis tesf: @f = 0 or esti-
mating confidence intervals can be drawn dup’sgpresence in the bivariate normal
density function described in Equation 1:
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If Xis not normally distributed, as in the latter case, one may still use the central
limittheoremto assurmﬁj \Xi is normally distributed in order to test hypotheses about
p.! In these circumstanceX,is often a fixed effect that takes on values occurring in
some known frequency other than what one would have expected if valXeseare
drawn atrandom from the population (e.g., values thfat the investigator selected for
purposes of manipulation). Importantly, regardless of study design, traditional para
metric procedures cannot be used in conducting hypothesis tests or estimating Cls if
the true probability density function for prediction error (e) is unknown.

As noted above, one common violation of parametric assumptions occurs when the
variance ofY givenX (g;|X,) is a function of the conditional mea¥|(x;). Efforts
examining severely positively skew&dlistributions routinely occur in applied psy
chological research, particularly in compensation research. Skewed compensation
distributions are caused by a number of factors, including the increasing span of pay
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ranges as the pay range midpointincreases (England & Pierson, 1990) and the extreme
levels of executive compensation typically reported in U.S. corporafiBosh fac

tors resultin a lack of independence betvv\?@‘ii ando? \Xi , violating the homoske
dasticity assumption (Winer, 1974).

Winer (1974, pp. 398-401) described a number of transformations that correct or at

least lessen violations of some parametric assumptions. Log transformations of vari
ables demonstrating highly positive or negative skew yield a more bell-shaped fre
guency distribution, Whel’?é\ X ando.are relatively uncorrelated. Winer (1974,
p. 400)noted that log transforms are particularly effective in stabilizing the condi
tional variance ofY given X when the independence of error terms is violated due to
o; =k?X?or whenY has a great deal of positive skew (Olds, Mattson, & Oldeh,
1956)3

The usual effect of such transforms is to lessen the prediction error for vales of
occurring at the extreme tail of the positively skewed dependent variable,-conse
quently increasingj, in additive models used to predict [¥gTheSYSTAT6.0 for Win
dows: Statistic§SPSS, 1996, pp. 252-257) manual described one such example in
which gross domestic product (GDP) per capita (X) was used to predict military-spend
ing (Y) in a sample of 57 countries. In this exampfr;goes from .417 to .734 in the
presence of log transformation.

Importantly, the resultant model using the transformed dat¥,jg =
10P0*P1legroXeoposio \which does not technically adhere to OLS characteristics (e.g.,
unbiased, minimum-variance parameter estimates). This model is perfectly service-
able if prediction is the investigator’'s main concern—inferences about the accuracy of
prediction can be drawn from),. Note that probabilistic inferences cannot be drawn
for ry,, by, by, or Y unless one assumes that the Jggterm in Y5 =
10Po*P1legroXeoposoe s normally distributed. We are aware of no research stream
(theory based or otherwise) that holds thatjodeis normal? Regardless, the model
must have some theoretical meaning if explanation is the investigator's main concern.
For example, it is unclear what theory or policy implications should be drawn from
finding that the log of salary is differentially related to organizational tenure for men
and womer?. The authors are unaware of any studies examining interactive models
providing a theoretical rationale justifying nonlinear (monotonic or nonmonotonic)
transformations in applied psychological or management research (although concepts
like the diminishing marginal utility of money may provide such a rationale in the
future). Enhanced statistical elegance achieved via nonlinear transformations has not
been accompanied by theory-based rationale justifying its use.

Nonlinear transformations can cause more uncertainty in interpreting tests of mod
eration than they resolve. Investigators generally need to estimate sample sizes
required for replications and extensions of past research. Investigators examining pre
viously reported data on the GDP—military spending relationships will solve

H/@-r2)

rxy :tulz N_2

I

for N, estimating that they need a sample size, Wtj)en 417, that is approximately
four times as large as the sample required Wiien .734 ata = .05. Again, absent
theoretical rationale, arguments can be mounted for either estimate.
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Importantly, nonlinear (monotonic and nonmonotonic) transformations of original
data create a number of problems for OLS applications used to detect moderator
effects. Busemeyer and Jones (1983) demonstrated monotonic transformations could
be found that causévalues generated from a truly additive model (&/g: b, + b, X,
+b,X,) to yield support for a multiplicative model (e.§.= b, + b,X; + b,X, + byX,X,)
and vice versa. Hence, reports of significam nonsignificant interaction effects
after having performed log transformation ¥nemain open to alternative interpreta
tion (cf. Henderson & Frederickson, 1996; Sanders & Carpenter, 1998).

In sum, investigators often face circumstances in which data are clearly not bivari
ate normalg is not normal, and/or heteroskedasticity is present. Nonlinear transfor
mations generate unknown levels of distortion in the many estimates of moderator
effects required to test theories in management and applied psychology (Busemeyer &
Jones, 1983; Russell & Bobko, 1992). Investigators’ continued use of nonlinear trans
forms to test moderator effects (e.g., Henderson & Frederickson, 1996; Kuhn &
Sweetman, 1998; Sanders & Carpenter, 1998) will result in literatures characterized
by mixed findings containing frequent Type-I and -1l errors. This will be especially
true when other investigators do not use nonlinear transformations in studying the
same phenomena (e.g., Gomez-Mejia, Tosi, & Hinkin, 1987). Severe consequences
for theory development will result.

The bootstrap is a relatively new method of empirically estimating characteristics
of population distributions from sample data (Efron, 1979) that holds remarkable
implications for these applied research issues. Unfortunately, Mooney and Duval
(1993) noted that “the bootstrap.i. . foreign to most social scientists schooled in the
traditional parametric approach to inference” (p. 27). This study briefly reviews the
bootstrap literature and reports the results of a Monte Carlo simulation demonstrating
how log transformations can yield spuriously low estimates of moderator effect sizes
(i.e., AR?). Finally, a bootstrap approach to detect interaction effects when authors
would otherwise employ log transformations and traditional OLS techniques is pre-
sented, and implications for applied psychological and management research are
offered.

Bootstrap Estimation Procedures

Bootstrapping holds promise as a statistical estimation technique yielding precise
estimates of population distributions from sample data. Bootstrapping estimates the
population distribution of a statistic (e.g,,) by iteratively resampling cases from a set
of observed data. BasicalB,bootstrap samples of sidéare taken with replacement
from the original sample of siz¢ and saved to a file. An investigation usiBg 1,000
bootstrap samples of sikls able to approximate the actual sampling distribution that
would have been obtained if multiple independent samples of\sizere drawn from
the population (Efron & Tibshirani, 1993).

There are many advantages to using the bootstrap technique. First, it is not
restricted by the normality assumptions of parametric tests. The percentile bootstrap
ping method (Efron & Tibshirani, 1993, chapter 13) generates information about the
latent population distribution, permitting estimation of Cls directly from the boot
strapped sampling distribution (e.g.Bif 1,000 bootstrap samples are taken, the-boot
strap correlations, representing the 25th and 975th largest values constitute the lower
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and upper points of a 95% CI). The graphical interpretation &equency distribu

tions also yields insight into characteristics of the latent population distribution
(Efron & Tibshirani, 1993). When the sample is drawn from a population with a single
value ofp, the central limit theorem dictates that thé&equency distribution will rap

idly approximate the normal distribution &andN increase. A multimodal, fre-
qguency distribution would suggest that the sample was drawn from multiple popula
tions, each with its own value pf Second, information about the form of the original
sample is retained with no loss of distributional information. Rasmussen (1987) noted
that loss of information does occur when nonparametric techniques convert data to
ranks. Lunneborg (1985) described bootstrapping as falling between parametric and
nonparametric procedures for making probabilistic inferences.

Rasmussen (1987) presented the following simple example of a bootstrap proce
dure. Suppose a researcher wants to test the null hypothesig,frad between
first-year grade point averages (GPA) and Graduate Record Exam (GRE) scores using
data obtained from 10 graduate students idpa cre= 0). First, an initial bootstrap
sample (B) is randomly drawn with replacement from these 10 observations, yielding
the possibility of some observations being represented more than once in the bootstrap
sample, whereas other observations may not be included. A single bootstrap sample
may include the following cases:5, 2, 8,6, 2, 7,9, 6, 1, and 2. Note that due to random
sampling with replacement, Case 2 was included more than once, whereas Case 3 was
notincluded in this first bootstrap sampleBhe 10 cases may resultin a correlation
of, say, .59. This procedure is repeated a large number of timesBe=d.,000), and
eachr, is saved to a separate file. Second, the bootstrap correlatigrerérrank
ordered with the 25th and 975th correlations representing 95% CI end points. Finally,
the null hypothesisly: pepa, cre= 0 is tested by determining whether zero falls within
the Cl (Rasmussen, 1987).

Studies examining similarities in results obtained from bootstrap and normal the-
ory approaches when parametric assumptions are met test the bootstrap’s ability to
estimate true latent population distributions (e.g., Diaconis & Efron, 1983; Efron,
1985, 1986; Lunneborg, 1985). These studies resulted in bootstrap statistics (e.g., esti
mates of CIs) that were extremely close to those generated from parametric
approaches. Bickel and Freedman (1981; Freedman, 1981) demonstrated that the
bootstrap was asymptotically valid for many statistics with known population-prob
ability distributions (e.gtand OLS regression statistics). However, the procedure is
perhaps of most value in drawing inferences about statistics with unknown popula
tion probability distributions (e.g., medians or mixed samples drawn from multiple
populations).

Some issues remain unresolved in using bootstrapping to conduct hypothesis test
ing, most revolving around the relative accuracy of parametric versus bootstrap proce
dures in estimating probability intervals at the extreme tails of known (i.e., normal)
distributions. However, the simple percentile bootstrap method of estimating Cls
described above provides “good theoretical coverage properties as well as reasonable
stability in practice” (Efron & Tibshirani, 1993, p. 169). “Good theoretical coverage”
refers to Cls that (a) accurately estimate the probability of the population parameter
falling within the CI and (b) divide coverage error equally across the twd tails.

Empirical comparisons of bootstrap and traditional OLS regression procedures’
abilities to detect moderator effects when the dependent variable is positively skewed
are presented below.
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Monte Carlo Simulation

Design

Intypical random-effects designs, investigators do not know how independent vari
ables and prediction error are distributed. In fixed-effects designs, investigators typi
cally control or specify independent variable levels, although the depeYvidesttibu-
tion will be a function of the independent variable(s) and prediction eredr (
distributions. Classical measurement theory presufive¥, +e, wherey,. isthe true
latent value o/ for personi. Whel;, is a function of som&(e.g.,Y=b,+b;X; +eor
Y = by + b X, + bX, + b X X, + €), X;, X,, or emust be nonnormal in order for the
observed; to be nonnormally distributed. Consequently, to simulate the kinds of data
that investigators might encounter in either random- or fixed-effects designs, data
were generated in nine Monte Carlo simulations in which independent variébles
andX, and prediction error (e) systematically varied across normal, uniform, and chi-
square distributions. Normal distributions were selected to simulate multivariate nor
mal conditions in random-effects designs. Uniform distributions were selected to
simulate fixed-effects experimental designs. Chi-square distributionX famd e
simulated positively skewedl distributions such as those found in compensation
research.

Sample

Simulation data were generated for combinationXgfX,, ande distributions
using the SYSTAT9 (SPSS, 1996) computer package. Five thousand samigles of
113 pairedX;, X, observations were drawn at random from all possible combinations
of normal, uniform, and chi-square population distributi®ns<,, ande(Guzzo, Jette,

& Katzell [1985] reported a meaN = 113 across studies in a meta-analysis of
compensation-based intervention programs). Results are only reported for conditions
in which X; andX, were drawn from identical population distributions, although the
results wherX; andX, were drawn from different population distributions were con
sistent with those reported beldMote that 5,000 samples Nf= 113 were drawn for
every combination oX, Y, andedistributions described below as per Mooney’s (1997)
suggestions for conducting Monte Carlo simulations, resulting in nine sets of 5,000
samples o = 113. All aspects of the Monte Carlo simulation were replicated using
5,000 samples dfi = 226 and\N =56 (i.e., using samples twice and one half as large as
N = 113). Identical patterns of results emerged and are available from the first author
on request.

WhenX; andX, observations were drawn at random from a normal populatien dis
tribution, p ando were set aft = 3 ando = 1. VariablesX, andX, within each data set
were then rounded to the nearest integer (yielding values ranging from 1 to 5, i.e.,
5-point Likert scales) in order to simulate measurement circumstances commonly
encountered in applied psychological and management research. Unifema X,
data sets were drawn from a population containing integer values between 1 and 5,
inclusive. AdditionalX, and X, data sets were drawn from chi-square distributions
with three degrees of freedom. These steps resulted in nine Monte Carlo data sets when
the three possiblX distributions (normal, uniform, chi-square) were combined with
the three possibledistributions (normal, uniform, chi-square).
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Three dependent variables were generated within each data set to reflect large,
medium, and small effect sizes. Equations 2, 3, and 4 were used to generate values for
Y., Y,, andY; within each of the nine data sets:

Y, = .75%X, + .25e )
Y, = .50%X, + .50e ®)
Y, = .25%X, + .75e (4)

Under the e-equals-normal condition, prediction egavas drawn from a normal
population with a mean and standard deviation set equal to the mean and stanrdard de
viation of theX, X, product term with which it was paired. Under the e = uniform cendi
tion, ewas randomly drawn from a uniform population distribution ranging from 1 to
20. Under the e = chi-square conditiewyas randomly drawn from a chi-square pepu
lation distribution with 9 degrees of freedom (where 9 is the mean population value for
all XX, product terms regardless of samplgand X, distribution characteristics).
Hence, three dependent variabl€s,Y,, andY;, reflecting large, medium, and small
moderator effect sizes were available to be examined within each of the nine data sets.

Analyses

All tests of interaction effects used moderated regression analysis (Bobko, 1995;

Darlington, 1968; Saunders, 1955, 1956). Fheest of H,; AR? = 0, whereAR? =
riumplicative = R jauefOr the equation¥ = by + b,X; + b,X, + bsX,X, andY = by + b, X,

+ b,X,, respectively, constitutes the test of an interaction effect wheand X, are
interval scale measures. The strategy and organizational theory literatures commonly
refer to this as the Chow test (Chow, 1960).

To provide a point of reference, sampled\of 50,000 for each combination &§
andX, distribution were generated separately for purposes of estinfatixif) when
e=0. WhenX, andX, were normal, uniform, and chi-squaE{AR?) = .057, .077, and
.256, respectively. These values should be considered asymptotes or what would occur
under circumstances of perfect, error-free prediction. The addition of prediction error
will slowly decreaseE(AR?), for example, if whenX, and X, are distributed as
chi-square the true prediction modeMs= .1X,X, + .9¢, then clearlyE(AR?) # .256.
Regardless, it should be noted that theseeapectedalues ofAR? and actual values
observed might be larger or smaller whédoes or does not include prediction error
(e.g., Russell & Bobko [1992] observAB2 to be greater thaf AR?] for some subjects).

Results

Table 1a reports results of moderated regression analyses performed on the three
effect sizes (¥, Y,, andY;) in the nine different combinations &fande distributions
(i.e., normal, uniform, and chi-squaxgandX, distributions paired with normal, uni
form, and chi-square distributions). Moderator effect sizes are captured by the

Downloaded from orm.sagepub.com at UNIV OF OKLAHOMA on January 20, 2016


http://orm.sagepub.com/

Russell, Dean / BOOTSTRAPPING MODERATED REGRESSION 173

medianAR? column, containing the 2,500th largest valueA&® obtained from the
5,000 samples dfl = 113. AlthougtF statistics testing,: AR? = 0 can be derived for
medianAR? values, only the ones derived for normally distributed prediction error
meet parametric assumptions and are interpretable (i.e., statistics reported in bold in
Table 1a). Regardless, the 2.5 and 97.5 percentile valudeiere identified within

the set of 5,000 Monte Carld= 113 sample8As the expected value of tiestatistic
testingH,: AR®=0is F=1.0, one would rejedd, using logic that underlies simple per
centile bootstrap applications when thetatistic

AR? [ (4-3)
(1_ Rriultiplicatlve) / (113— 4

)

(i.e.,Fy 100=

for the moderator effect cutting off the lower 2.5% of the 5,008 is greater than 1
(i.e., wherF = 1.0 falls outside of the 95%F° Cl). Median values oAR? reported in

Table 1aforwhich the lower 2.5 percentile values genetfatgeater than 1.0 are indi
cated in italic.

Interestingly, profiles oAR? for large, medium, and small effect sizes for interpret
able equations in Table 1a (i.e., those meeting OLS assumptions) are .047, .024, .006;
.067, .041, .009; and .221, .191, .087 ¥grandX, distributions drawn from normal,
uniform, and chi-square populations ®f and X,, respectively. Not surprisingly,
smaller values oAR? are observed as the effect size decreases a¢rossandY,. The
pattern of effect sizes across normal, uniform, and chi-square distributions is consis-
tent with McClelland and Judd’s (1993) demonstration that multiplicative effect sizes
are maximized in designs using extreme valueX,@&ndX,. Normally distributedX,
andX, will have the fewest extrem, X, observations due to low probabilities in the
extreme tails of the normal distribution. Uniform and chi-square distributionX,for
andX, will have increasingly more frequent extreme observations in the tails of an
X, X, distribution, respectively.

If X,, X,, or eare highly positively skewed, as they are when drawn fxgm, popu-
lations, Y will demonstrate some skewness. Investigators following Winer’'s (1974)
convention would perform a log transform &fin hope of permitting probabilistic
inferences that are possible when parametric assumptions are met. Table 1b reports
moderated regression results wh&ny,, andY; were subjected to a lggtransforma
tion for the fiveX;, X,, ande combinations involving skewed chi-square distributions
(whenX,, X,, or eare positively skewedy will be positively skewed). Moderated
regression effect sizes for the nontransfornygdy,, andY; (Table 1a) are 2.7 to 15
times larger than effect sizes observed for log-transformed,, andY; (Table 1b).
Perhaps most interestingly, effect sizes for the one data set that meets parametric
assumptions (YandX, distributed as chi-squaredistributed normally) go fromAR? =
.221toAR? = .032 forY, and log,Y;, respectively; fron\R? = .191 toAR? = .041 forY,
and log,Y,, respectively; and frodMR? = .087 toAR? = .025 forY; and log,Ys, respee
tively. Hence, moderated regression effect sizes are 3.5 to 6.9 times larger and more
likely to correctly detect the true latent population moderator effect when estimated
from the nontransformed data, although investigators following convention would
have log-transformed,, Y,, andY; before conducting the analyses. The stronger the
moderator effect, the larger the difference between effect sizes derived from nentrans
formed versus log-transformed.
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Table 1a

Monte Carlo Moderated Regression Analyses for Different X
and e Distributions: 5,000 Random Samples of N =113
(Y, =.75X, X, + .25e, Y, = .5X, X, + .5e, and Y; = .25X, X, + .75¢€)

Median (R ;ultiplicative - R;dditive = AR?)
X, and X, Distribution e Distribution
Characteristic Characteristic R ipicaive R iaaiive AR?
Normal: p = 3, 0 = 1, rounded Normal: e= 9, 0 =52
to nearest integer Y1 .943 918 .047
Y, .786 J71 .024
Y3 .298 .288 .006
Uniform random number
between 1 and 18
Y1 919 .893 .047
Y, 726 .709 .025
Y3 .293 .281 .007
Chi-square: df = 9°
Y1 .943 918 .047
Y, 732 712 .029
Y .383 373 .008
Uniform random number: Normal: e=9, 0 = 5%
distribution from 1 to 5, Y1 .956 .920 .067
rounded to nearest integer Y, .803 778 .041
Y3 .360 .347 .009
Uniform random number
between 1 and 20
Y1 .960 .924 .068
Y, .648 .616 .041
Y3 431 420 .009
Chi-square: df = 9°
Y1 .969 .933 .070
Y, 713 .680 .046
Y .496 484 .012
Chi-square: df = 3, rounded Normal: e= 9, ¢ = 52
to nearest integer Y1 991 .873 221
Y, .910 .798 191
Y3 .561 AT7 .087
Uniform random number
between 1 and 18
Y1 .992 .874 .220
Y, .924 .815 .190
Y3 .658 .589 .086
Chi-square: df = 9°
Y1 .992 .874 221
Y, .939 .827 197
Y3 .647 561 104

Note. N =113 is the average N across k = 330 effect sizes reported in a meta-analysis of Guzzo,
Jette, and Katzell (1985). Data presented in bold met parametric assumptions and are interpret-
able. Results presented in italics had the 2.5 percentile value of Ffor AR? greater than 1, hence Ho:

F=1.0did not fall in the 95% ClI.

a. M and SD for all normally distributed error terms were set to be equal to the M and SD for the

product X, X,.

b. The expected value of the chi-square distribution is equal to its df. Hence, with df =9, the ex-
pected midpoint of the error distribution is equal to the mean of the X, X, product term.
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Table 1b
Moderated Regression Results for Log,o(Y;) = .75X,.X, + .25¢,
Log,o(Y,) = .5X.X, + .5e, and Log,o(Y3) = .25X, X, + .75e

Median (R ;ulliplicative - R;dditive = AR?)
X, and X, Distribution e Distribution
Characteristic Characteristic R ipicaive R iaaiive AR?
Normal Chi-square: df = 92
Log,oYq .876 873 .006°
Log;oYs 749 743 .007
LogyoYs .343 334 .005
Uniform random number Chi-square: df = 92
Log1oY1 .948 944 008
LogoYs 724 714 .010
LogyoYs 440 431 .008
Chi-square: df= 3 Normal: =9, SD=5"
Log1oY1 874 856  .032
LogoYs 748 720 .041
LogyoYs .501 475 .025
Uniform random number
between 1 and 20
LogioY: .862 .843 .032
LogyoYs 716 .688 .040
LogyoYs 498 473 025
Chi-square: df = 9%
LogioY: .829 .808 .035
LogyoYs .805 772 .051
LogqoYs .618 .585 .039

a. The expected value of the chi-square distribution is equal to its df. Hence, with df = 9, the ex-
pected midpoint of the error distribution is equal to the mean of the X, X, product term.

b. M and SD for all normally distributed error terms were set to be equal to the M and SD for the
product X, X,.

c. The F statistic for the 2.5 percentile value of AR® was greater than 1.

In sum, moderated regression effect sizes derived from a Monte Carlo simulation of
5,000N = 113 samples drawn from normal, uniform, and chi-sqeanedX distribu-
tions are 2.7 to 15 times more likely to detect true latent moderator effects (i.e., reject
H,: AR? = 0) when the dependent variable magbeen subjected to a log transforma
tion. The final portion of this study demonstrates how primary researchers would
apply a simple bootstrap procedure in analyzing data obtained from a single sample
and confirming implications of the Monte Carlo results (i.e., that inferences drawn
from bootstrap-generated Cls about moderator effects are expected to exhibit less
Type-Il error).

Bootstrap Demonstration

Samples

As arule, researchers generally face circumstances in which they have data gath
ered from a single sample, not 5,000 samples. Hence, to simulate what individual
researchers typically encounter, nine sample ef113 pairedX,, X, observations
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were created at random from normal, uniform, and chi-square population distributions
using the SYSTAT9 computer package. WhgrandX, observations were drawn at
random from a normal population distributignando were set aft = 3ando = 1. As

in the Monte Carlo simulation and consistent with measurement circumstances com
monly encountered in applied psychological and management res¥gacliX, data
setswere rounded to the nearest integer, yielding values from 1 to 5. Urd{@mnaX,

data sets were drawn from a population containing integer values between 1 and 5,
inclusive, yieldingX; = 3.012,0x, = 1.438, and, = 2.889,0x, = 1.394, respectively.
Finally, X; andX, data sets were drawn from chi-square distributions with 3 degrees of
freedom, yieldingX; = 2.986,0x, = 2.344, andX, = 3.008,0%, = 2.660, respectively.
Three dependent variables were generated within each sample using Equations 2, 3,
and 4 described in the Monte Carlo simulation above. Error terms (e) were drawn from
the same populations as described in the Monte Carlo simulation above, with their
means and standard deviations set equal tX{Keproduct term means and standard
deviations.

Analyses

Tests of interaction effects using moderated regression analysis were performed
using dependent variabl¥s Y,, Y3, LogY;, LogY,, and Log¥in each of the nine sam-
ples. In additionB = 1,000 bootstrap estimatesAR® were derived for all dependent
variables in each of the nine samples using the percentile bootstrap method described
above®

Results

Table 2a reports results of moderated regression analyses performed on the nine
samples olN = 113 containing different combinations X¥f, X,, ande distributions
(i.e., normal, uniform, and chi-square distributionsgfand X, paired with normal,
uniform, and chi-square distributions). AlthougtF statistics are reported for med
eration effects in all nine combinations, only the three derived for normally distributed
prediction error meet parametric assumptions and are interpretable (i.e., statistics
reported in bold in Table 2a). Moderator effect sizes are captured lyRheolumn
(theF statistic test$,: AR? = 0) (Bobko, 1995; Darlington, 1968).

AR?for Y, inthe three interpretable equations in Table 2a are .049, .068, and .216 for
X; and X, distributions drawn from normal, uniform, and chi-square populations,
respectively. This profile of effect sizes is again consistent with the observation that
normalX; andX, will have the fewest extren, X, observations due to low probabili
ties in the extreme tails of the normal distribution and results reported in the Monte
Carlo study reported above.

Figure 1 demonstrates wh&i X,, or ewere highly positively skewed, as they are
when drawn fromy % _, populations) exhibited some positive skewness. Investiga
tors following convention would perform a log transform ¥moping to permit the
probabilistic inferences that are possible when parametric assumptions are met. Table
2breports moderated regression results wh&as subjected to a lggiransformation
for the five X;, X,, ande combinations with skewed chi-square distributions (i.e.,
skewedY distributions appear only whex,, X,, or edistributions were positively
skewed). Consistent with the Monte Carlo findings reported above, moderated regres

Downloaded from orm.sagepub.com at UNIV OF OKLAHOMA on January 20, 2016


http://orm.sagepub.com/

Russell, Dean / BOOTSTRAPPING MODERATED REGRESSION 177

sion effect sizes for the original nontransformed data were two to seven times larger
than effect sizes observed for log-transformed data. Effect sizes for the one data set
that met parametric assumptions &4dX, distributed as chi-squaredistributed nor

mally) went fromAR? = .216 toAR? = .030 wherY was subjected to log transformation.
Hence, moderated regression effect size was 7.2 times larger when it was (correctly)
estimated from nontransformed data.

However, Cls aroundR? can be derived via bootstrapping procedures regardless
of howX,, X,, e, or Yare distributed. Table 3 reports bootstrap estimates of the 2.5 per
centile values of the moderated regression effectARraaken fromB = 1,000 boot
strap samples of siZ¢ = 113 for the five situations in whiclf is positively skewed,
that is, those that are subject to log transformation using the current methodological
convention. Interestingly, median effect sizes across 1,000 bootstrap samples were
between 2.6 and 534 times larger thsR effect sizes resulting from analyses eon
ducted aftery was log transformed (see Table 2b). This suggests that to be equally
likely to be detected, moderator effect sizes wives skewed and log transformed
must be 2.6 to 534 times as large as those observed under condition¥ istmern log
transformed andR? is estimated from the median bootstesigF value. Alternatively,
other things being equal, the sample size needed to correctly gjed®2 = 0 would
need to be 6.76 to 285,156 times as large whénskewed and log transformed in
these samples. Investigators using OLS moderated regression and log-transformed
dependent variables would be much more likely to fail to detect true interaction effects
(Type-II error).

Discussion

This study demonstrated a fundamental problem in the detection of latent modera-
tion effects when log transforms are used to correct positively skewed dependent vari-
ables. Specifically, the increased probability of Type-Il error was demonstrated in a
Monte Carlo simulation generating 5,000 samples from known population distribu-
tions and in a subsequent bootstrap analysis of individual simulated samples. Results
suggested severe decrements in the statistical power required to test moderation
regression effects (i.e-,: AR? = 0) that result from log transformations. These decre
ments occurred when parametric assumptions were in fact met (i.e., the data reported
in bold in Tables 1a and 2a) and when parametric assumptions were not met.-Graphi
cally, log transformations change tivedistribution shape, effectively decreasivg
variance by reducing the degree to which extremely posttiveues deviate from the
mean. If these extremévalues were created by an interaction between one or more
positively skewed independent variables (e.g., wgandX, are distributed as chi-
square), log transformations &feffectively disguise thextremevalues ofY that
should result from the product of extrerXg and X, values adess extreme&alues,
effectively yielding a log¥Yariable that exhibits less variance than the original Yaw
observations. Although Type-I error is always possible (cf. Aguinis & Pierce, 1998), it
is clear that log transformations of positively skewed dependent variables greatly
enhance the probability of Type-Il error.

(text continues on p. 182)
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Table 2a
Moderated Regression Analyses for Different X and e Distributions: N =113 (Y; = .75X, X, + .25¢e, Y, = .5X, X, + .5¢, and Y; = .25X, X, + .75¢€)
X, and X, Distribution Characteristic e Distribution Characteristic R sipicaive Roaddiive AR? Fi 100 P Value
Normal: p = 3, 0 = 1, rounded to nearest integer Normal: e = 8.789, SD = 4.996%
2 .799 .750 .049 5.616 <.01
Y, .587 .561 .026 2.910 > .05
Y3 .331 .322 .009 0.990 > .05
Uniform random number between 1 and 20
2 .880 .821 .059 6.834 <.01
Y, .601 .580 .021 2.357 > .05
Y3 291 .282 .009 0.990 > .05
Chi-square: df = 9°
2 .932 .887 .045 5.136 <.05
Y, .599 .567 .032 3.603 > .05
Yy _ .333 .329 .004 0.438 > .05
Uniform random number: distribution from 1 to 5, Normal: e = 8.702, SD = 6.029%
rounded to nearest integer Y1 .825 757 .068 7.953 <.01
Y, .633 .590 .043 4.898 <.05
Y3 436 425 .011 1.110 > .05
Uniform random number between 1 and 20
' .831 787 .044 4.561 <.05
Y, .599 .580 .019 2.111 > .05
Y3 .395 .383 .012 1.324 > .05
Chi-square: df = 9°
Y1 .813 792 .071 9.269 <.01
Y, .701 .651 .050 5.737 <.05

Y3 521 479 .042 4.779 <.05
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Chi-square: df = 3, rounded to nearest integer Normal: e = 8.982, SD = 6.163%

Y1 .846

Y, .620

Y3 461
Uniform random number between 1 and 20

Y1 .906

Y, .782

Y3 .506
Chi-square: df = 9°

Y1 .949

Y, .682

Y3 466

.630
460
.355

.688
.642
446

799
.581
426

.216
.160
.106

.214
.140
.060

.150
.101
.040

30.030
12.976
12.924

29.677
17.744
6.957

19.235
12.246
4.542

<
<
<

.001
.001
.001

.01
.01
.01

.01
.01
.05

Note. Only statistics appearing in bold are interpretable under parametric assumptions and Fstatistics test H,: AR* = 0. N= 113 is the average Nacross k= 330 effect sizes re-

ported in a meta-analysis of Guzzo, Jette, and Katzell (1985).
a. M and SD for all normally distributed error terms were set to be equal to the M and SD for the product X, X,.

b. The expected value of the chi-square distribution is equal to its df. Hence, with df= 9, the expected midpoint of the error distribution is equal to the mean of the X, X, product

term.
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Figure 1: Frequency Distribution for X, X, and Y (X, and X, are chi-square distributed and Y = .75X /X, + .25e)
Note. The variable e is drawn from random normal or random uniform distributions with e and o, set equal to X, X, and a,,,,, respectively.
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Table 2b

Moderated Regression Results for Log,o(Y;) = .75X,.X, + .25, Log,(Y,) = .5X, X, + .5e, and Log,,(Y3) = .25X,X, + .75e

X, and X, Distribution Characteristic e Distribution Characteristic REipicaive Raddiive AR? Fi 100 P Value
Normal Chi-square: df = 92
LogigY1 757 .736 .021 2.338 > .05
LoggYo 511 .500 .011 1.100 > .05
LogyoY3 .409 402 .007 0.768 > .05
Uniform random number Chi-square: df = 92
LogigY1 .880 .877 .003 0.328 > .05
LogigYo .567 .566 .001 0.109 > .05
LogyoY3 .399 .399 .000 0.087 > .05
Chi-square: df=3 Normal: € = 8.808, SD = 6.029"
LogigY1 .553 523 .030 3.371 > .05
LoggYs .399 .385 .014 1.548 > .05
LogyoY3 .278 .269 .009 0.990 > .05
Uniform random number between 1 and 20
LogigY1 611 .550 .061 7.081 <.05
Log,gYs 456 425 .031 3.487 > .05
LogyoY3 .342 .331 .011 1.100 > .05
Chi-square: df = 92
LogigY1 .678 .588 .090 10.780 <.01
Log,gYs 444 .399 .045 5.136 <.05
LogioY3 .367 .348 .019 2111 > .05

a. The expected value of the chi-square distribution is equal to its df. Hence, with df=9, the expected midpoint of the error distribution is equal to the mean of the X, X, product

term.
b. Mand SD for all normally distributed error terms were set to be equal to the M and SD for the product X, X,.
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Table 3
Bootstrap 95% Confidence Intervals of Moderated Regression Analyses:
B =1,000, N=113, and Simulation Data Derived From
Y, =.75X. X, + .25e, Y, = .5X X, + .5e,and Y; = .25X, X, + .75e

X, and X, Distribution e Distribution
Characteristic Characteristic RE ipicae R AR?
Normal Chi-square: df = 92
Y, .833 .663 .170°
Y, .602 482 .120°
Y3 433 .343 .090
Uniform random number Chi-square: df = 92
Yy 917 .700 217°
Y, .689 529 .160°
Yy .450 .340 .110°
Chi-square: df=3 Normal: e = 8.808,
SD = 6.029"
Yy 817 .607 .210°
Y, .555 422 .133°
Y3 311 178 .133°
Uniform random
number between 1 and 20
Y, .862 .666 .196°
Y 499 .349 .150°
Ys 311 201 111°
Chi-square: df = 9%
Y, .890 .656 .234°
Y .609 448 .161°
Y3 522 402 .120°

Note. N = 113 is the average N across k = 330 effect sizes reported in a meta-analysis of Guzzo,
Jette, and Katzell (1985).

a. The expected value of the chi-square distribution is equal to its df. Hence, with df = 9, the ex-
pected midpoint of the error distribution is equal to the mean of the X, X, product term.

b. M and SD for all normally distributed error terms were set to be equal to the M and SD for the
product X, X,.

c. The F statistic for the 2.5 percentile value of AR” was greater than 1.

Fortunately, results also indicated that bootstrapping procedures provide a viable
alternative to traditional, parametric statistical procedures for detecting moderator
effects regardless of ho¥,, X,, ande are distributed. In fact, in situations in which
convention dictates thatshould be subjected to log transformation, log transferma
tions caused extremely severe decrements in statistical power for parametric OLS pro
cedures relative to bootstrap procedures. Data simulated here are commonly found in
compensation research, where parametric procedures are commonly us¥dhafter
been subjected to a routine log transformation (e.g., Henderson & Frederickson, 1996;
Sanders & Carpenter, 1998).

Of course, log transformations could be justified on some theoretical basis. The
authors are unaware of any theoretical rationale put forth by compensation theory or
any other area of applied psychological or managementresearch to justify such atrans
formation in the presence of a multiplicative model. Furthermore, the authors have
never seen any discussion of the theoretical underpinnings of latent models that result
from such a transformation, such¥as 10°0 11910 (SPSS, 1996). As a result, any
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gains in statistical elegance and predictive power (i.e., for additive models) stemming
from log transformations are not currently matched by gains in theoretical insight.
Null results for tests of moderation in studies employing log transformations are
expected to frequently reflect Type-Il errors when a true latent moderation process is
present.

In sum, when hypothesized models involve interaction effects, applied psychologi
cal and management research would benefit from a routine application of the bootstrap
procedures. Although they do not replace common parametric procedures, bootstrap
applications are appropriate when parametric assumptions are not viable (e.g., when
heteroskedasticity is present due to a positively skewed dependent variable)-Nonlin
ear monotonic transformations may achieve necessary statistical conditions for para
metric inferences in OLS applications to additive models (Busemeyer & Jones, 1983;
Winer, 1974). The results indicated that nonlinear monotonic transformations erode
investigators’ capacity to assess theory-based predictions of moderation effects (e.g.,
estimates of moderation effetR?). Importantly, bootstrapping provides an alterna
tive method of assessing theory-based inferences of moderation effects from data that
cannot be assessed with comparable statistical power by conventional procedures.

Notes

1. Note that ifX is not normally distributed andis a linear function oK, Y will also likely
not be normally distributed.

2. Bergman, Scarpello, and Hills (1998) and Milkovich and Newman (1996) noted how pay
ranges are generally a constant or increasing percentage of the range midpoint. Hence, as the pay
range midpoint (and mean) increases, the variation in observed salaries around the midpoint in-
creases.

3. Of course, weighted least square (WLS) procedures would also resolve the heteroskedas-
ticity problem. However, it would do so by migrating what was a nonlinear transformation
paired with ordinary least squares into the internal optimal weighting procedures that are char-
acteristic of WLS.

4. We thank an anonymous reviewer for bringing this to our attention.

5. We thank an anonymous reviewer for this example.

6. See Efron and Tibshirani (1993), chapter 14 (pp. 178-201) for a discussion of alternatives
to the simple bootstrap. Specifically, the bias-corrected and acceleratgda(®iGhe approxi
mate bootstrap confidence (ABC) interval methods are marginally more complex techniques
that overcome most shortcomings associated with the simple bootstrap.

7. The first author will provide these results on request.

8. AR for the 2.5 and 97.5 percentile values are available from the first author on request.

9. See Efron and Tibshirani (1993), chapter 14 (pp. 178-201) for more elaborate bootstrap pro
cedures exhibiting certain statistical elegance that might yield more robust confidence intervals.
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